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Abstract

We present a design and implementation of an in-memory object graph store, dubbed ϵStore. Our

key innovation is a storage model Ű epsilon store Ű that equates an object on the heap to a node in

a graph store. Thus any object on the heap (without changes) can be a part of one, or multiple,

graph stores, and vice versa, any node in a graph store can be accessed like any other object on the

heap. SpeciĄcally, each node in a graph is an object (i.e., instance of a class), and its properties

and its edges are the primitive and reference Ąelds declared in its class, respectively. Necessary

classes, which are instantiated to represent nodes, are created dynamically by ϵStore. ϵStore

uses a subset of the Cypher query language to query the graph store. By design, the result of any

query is a table (ResultSet) of references to objects on the heap, which users can manipulate the

same way as any other object on the heap in their programs. Moreover, a developer can include

(transitively) an arbitrary object to become a part of a graph store. Finally, ϵStore introduces

compile-time rewriting of Cypher queries into imperative code to improve the runtime performance.

ϵStore can be used for a number of tasks including implementing methods for complex in-memory

structures, writing complex assertions, or a stripped down version of a graph database that can

conveniently be used during testing. We implement ϵStore in Java and show its application using

the aforementioned tasks.
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1 Introduction

We present a design and implementation of an in-memory object graph store, dubbed ϵStore,

which enables easy implementation of methods for complex structures, writing assertions

over a set of objects on the heap, and substituting (as a lightweight alternative) a graph

database in an application during the testing process.
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id: long 

firstName: String

Person

id: long 

content: String

Post

Likes

(a) An example schema.

personId firstName

1 “Alice”

2 “Bob”

personId postId

1 44

2 33

postId content

33 “Foo”

44 “Bar”

Person Likes Post⨝ ⨝

(b) Relational database model.

Key Value

id 1

firstName “Alice”

Key Value

id 44

content “Bar”

Node

getEndNode() 

getStartNode() 

getType() 

Relationship

getLabels() 

getRelationships() 

getProperties()

Node

name:  

“Likes”

RelationshipType

getLabels() 

getRelationships() 

getProperties()name:  

“Person”

Label

name:  

“Post”

Label

(c) Traditional graph database model.

id: 1 

firstName: 

“Alice” 

Likes

id: 33 

content: 

“Foo”

id: 44 

content: 

“Bar”

id: 2 

firstName: 

“Bob” 

Likes

Person

Post

Person

Post

(d) ϵStore model.

Figure 1 Comparison of different storage models for the schema in (a).

ϵStore introduces a novel storage model–epsilon storage–that equates an object on the

heap to a node in a graph store. Figure 1 illustrates the differences among well-known storage

models and epsilon storage; a schema (or class diagram) that is being instantiated is shown

in Figure 1a. In ϵStore, any object on the heap (without changes) can be a part of a graph

store (or even multiple stores), and vice versa, any node in a graph store can be accessed like

any other object on the heap. Specifically, each node in a graph is an object (i.e., instance of

a class). Its properties and its edges are the primitive and reference fields declared in its

class, respectively. Necessary classes, which are instantiated to represent nodes, are created

dynamically by ϵStore.

ϵStore uses a subset of the Cypher query language [22] to query the graph store; Cypher

is a powerful yet concise declarative language popular in the space of graph databases [55].

In our design, the result of any query is a table (ResultSet [51]) of references to objects on

the heap, which users can manipulate the same way as any other object on the heap in their

programs. Moreover, a developer can include (transitively) an arbitrary object to become

a part of a graph store. Processing, e.g., parsing, Cypher queries at runtime can be costly,

thus, ϵStore includes support for query rewriting into imperative code at compile-time. Our

experiments show query rewrites improving query end-to-end execution times by 5x.

We implemented ϵStore in Java. Our primary focus was to enable novel programming

style and propose an efficient storage model. We demonstrate the uniqueness of ϵStore with

three use cases. First, we demonstrate the use of ϵStore for concisely expressing complex

assertions. Second, we show how ϵStore can be used for implementing various methods.

Visualisation of object relations and their fields through graphs can simplify API design.

We write methods for a dozen of widely-used data structures from popular libraries (e.g.,

Guava [21]), as well as methods for H2 [23], an in-memory relational database. We compare

ϵStore with OGO [57] in terms of runtime performance. OGO is a framework for Java that

allows using Cypher to query the heap. Third, we use ϵStore as a lightweight replacement

for graph databases; using an in-memory database (or another form of an object store) is

common during testing to save setup cost and runtime cost incurred if a full-blown database

is used [6]. At the same time, we note that ϵStore is not meant to replace graph databases

in production as that is not the primary intent for ϵStore. To estimate benefits of using
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ϵStore instead of a graph database, if so desired, we use queries and datasets from the

Social Network Benchmark (SNB) [1] of the Linked Data Benchmark Council (LDBC) [56].

LDBC is the most popular benchmark for graph databases. The LDBC SNB was designed

to model a snapshot of the activity in a realistic social network. Finally, we evaluate the

compile-time code rewriting capability of ϵStore, on the LDBC queries, by comparing its

performance with the vanilla version of ϵStore.

Our results show versatility of ϵStore for various tasks and good performance in case a

lightweight store is sufficient in the testing process.

The key contributions of this paper include:

Idea. We introduce a novel storage model. Besides being used as a traditional object

store (manipulated only via queries), our design enables a unique interoperability between

imperative code and objects in a graph store. Results of queries are references to objects

in a graph store, thus enabling further imperative processing of the results. Furthermore,

any object, which is created by imperative code, can be included into a graph store

without any intermediate abstraction and queried for complex relations.

Formalization. We formalize the core of the proposed storage model and the set of

API operations supported by ϵStore. We also define a mapping and describe the way

instances of any existing class, map to nodes and edges, and can be queried.

Implementation. We implemented ϵStore in Java thus using Java features to dynam-

ically create and load classes that are necessary to represent nodes and their properties.

We focus on enabling novel programming models. We also perform compile-time query

rewriting into imperative code to reduce the runtime cost. Our implementation is publicly

available on GitHub1.

Evaluation. We performed a three-pronged evaluation. First, we evaluated ϵStore on

queries and datasets from the LDBC SNB. Second, we evaluated the power of ϵStore

by comparing its execution of library methods of Java data structures, implemented

as Cypher queries, with OGO. Finally, we evaluated the compile-time code rewriting

capability of ϵStore on the LDBC SNB benchmark queries.

2 Example

ϵStore is an in-memory graph store. We demonstrate several aspects of ϵStore using an

example that showcases the following: (1) creation of a graph store, (2) creation of nodes

and edges, (3) querying the graph store, and (4) capturing existing objects into a graph

store. We also use this example to provide a brief introduction to the Cypher graph query

language [22].

Schema. We use a subset of the LDBC SNB schema shown in Figure 1a to discuss the

example. It contains two entities, Person and Post. The Person entity has two properties:

id of type long and firstName of type String. The Post entity has properties: id of type

long and content of type String. A Person can be in a relation (LIKES) with a Post.

Introduction to Cypher. Cypher is a declarative query language introduced by Neo4j

and designed to be expressive when querying graph stores. The labelled property graph

(LPG) data model uses nodes and relations to model data. A simple LPG modelling

1 https://github.com/EngineeringSoftware/eStore
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relations specified in the pattern. Therefore, the query in Figure 2b creates an instance of

type Person and an instance of type Post with the given properties. It then assigns the

reference field LIKES of the Person instance with the Post instance. Assuming that the

Person and Post classes are not present in the classes loaded by the JVM, ϵStore uses the

byte code manipulation framework, ASM [7], to first dynamically create these classes.

The node properties are mapped to the primitive fields of these classes whereas the

relations are mapped to their reference fields. All reference fields, created using class creation,

are Arrays of type Object with the same name as the relation labels. This design decision

allows support for one-to-many relations with the same label between nodes.

Inserting objects with explicit schema. ϵStore also supports inserting instances of existing

classes using the captureAll API method as shown in Figure 2e. captureAll captures

all references under reflexive transitive closure, and hence, all objects reachable from the

captured object are also inserted into the store. The class definitions of Person and Post are

given in Figure 2c and Figure 2d, respectively. The field dynamicClasses is empty since the

classes of the objects inserted already exist and are not required to be created dynamically.

Data modification through queries. The objects captured into an instance of ϵStore can

be modified using Cypher queries. The query (lines 3-6) in Figure 2f deletes the relation

between two nodes. It is a single part query with two clauses, a reading (MATCH) clause and

an update (DELETE) clause. The MATCH clause identifies a set of objects and their references

that matches the specified pattern. The specified pattern is a two node relation pattern

specifying the labels, properties and relations for the referrer and referee nodes. Since this

pattern exists in our store, the variables m,r, and n, are mapped to the Person instance,

the reference field LIKES of the Person instance, and the Post instance respectively. The

DELETE clause on line 6 deletes all the objects mapped to the variable r. Therefore, the field

LIKES of the referrer node is set to null which is shown as the edge being removed in the

corresponding graph store state.

3 Graph Store

We first formalize our proposed storage model and the core operations supported by ϵStore

(§3.1). We then discuss the mapping between Cypher semantics and Java semantics as

implemented by ϵStore (§3.2), followed by a discussion on the API methods provided by

ϵStore (§3.3). Finally, we highlight the key implementation details (§3.4).

3.1 Semantics

ϵStore requires no changes to the language syntax, compiler, or execution environment.

Thus, we focus on formalizing the core operations of ϵStore such as capturing, deleting, and

querying objects. We use big-step operational semantics in our formalization. This section

clarifies these operations by providing precise definitions and illustrative examples for each

of the rules.

Table 1 shows the key symbols used in our formalization. We define a type (τ) as a

(type_name, set_of_fields) pair. Each field is a tuple: (name, type_name), and has a unique

name within a type definition. To simplify discussion, we will assume that int and string

are the only primitive types available: (int, ∅) and (string, ∅). We define a set type (Set, {}),

as an untyped set of values. We also define a metadata type that will be used to describe a

type: (Meta, {(name, string)}). We use Γ to denote a set of all available types at runtime.
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Table 1 DeĄnitions of key symbols used in our formalization of ϵStore operations.

Symbol Definition

Ξ The set of all objects available on the heap.

Γ The set of all available types at runtime.

τ A type definition (τ ∈ Γ), consisting of a type name and a set of fields.

o An object on the heap (o ∈ Ξ).

oτ A meta-type instance (oτ ∈ Ξ).

o An instance of ϵStore

fields(o) The set of non-primitive field names belonging to object o.

meta(o) Retrieves the meta-type instance (oτ ) of the object o.

type(v) Retrieves the type (primitive) of the primitive value v.

new(τ) Creates a new object instance of type τ .

ntype(L, f) Creates a new type named L with a set of fields defined in f which is a

tuple of field names and their types (f = (n1 : t1, ..., nk : tk)).

o[p/v] Represents an object o with a set of primitive fields p assigned to a set

of values v.

o.name Retrieves the value of the field named name of the object o.

o.⋆name Set of references reachable under transitive closure from the field named

name of o via non-primitive fields.

Ξ(o, f ← v) Assigns the value v to the field f of object o.

We use Ξ to denote all objects available on the heap, i.e., Ξ = ¶o1, o2, ..., on♢. Each object

(o) is an instance of a type (τ) and has a unique identifier. An object has a set of values,

each corresponding to one field of the object’s type. An access to a field (o.name) returns its

current value, and a “star” access to a field (o.⋆name) returns a transitive closure, i.e., set of

objects reachable via non-primitive fields starting from the given field. We use the following

notation to update the field f of an object o to value v: Ξ(o, f ← v).

For each type (τ) in a running program, there is an object (oτ ) on the heap, created by

the execution environment, which is an instance of the Meta type (analogous to instance of

java.lang.Class [47])).

An instance of ϵStore is simply an object on the heap (o ∈ Ξ). We define the ϵStore

type as (ϵStore, {(store, Set)}). Thus, objects in a graph store are the objects reachable

via the store field of an ϵStore instance, i.e., db = o.⋆store, and we have that db ⊂ Ξ. As a

result of our design, it is trivial to have any object on the heap inserted into a graph store,

to share objects across graph stores, and even to embed one graph store into another.

We define the following helper functions: meta(o) returns the metadata object for the

given object; fields(o) returns the set of reference field names for the given object; new(τ)

creates a new object (o) of the type τ on the heap and its corresponding set of primitive

fields p and their values v is denoted by o[p/v]; ntype(L, f) makes a new type (named L)

with field names and types defined in the tuple f (tuple of field names mapping to their

corresponding types). type(v) returns a name of the primitive type for the given primitive

value.

We now formally define the core high-level operations that can be performed on an

ϵStore instance. In all cases, o ∈ Ξ ∧ o ∈ Ξ and we use the following configuration:

⟨operation, Ξ, Γ⟩

ECOOP 2025
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For each rule, we first specify its big-step operational semantics, followed by a brief

description of the rule, and finally an example showing the state of o and other relevant

objects, before and after rule application. We assume that all objects used in these examples

are instances of type Person and that this type exists in Γ unless specified otherwise. For

each of the examples, the relevant changes in the after state are highlighted in blue.

▶ Rule 3.1 (Capture).

store′ = o.store ∪ ¶o♢

⟨o.capture(o), Ξ, Γ⟩ ⇓ ⟨_, Ξ(o, store← store′), Γ⟩

The capture rule defines the operation of inserting a single object o (present on the heap Ξ)

into an ϵStore instance o. The union in the premise ensures that if o already exists in o,

then no modifications occur to o. In the example, we see that the ϵStore instance is empty

and there exists an object o on the heap in the before state. After applying the capture

rule, the ϵStore instance contains the the object o1.

Before:
o.store = ø
o1 { id:1, ĄrstName:"A", LIKES:o2 }
o2 { id:2, ĄrstName:"B", LIKES:null }

After:
o.store = {o1}
o1 { id:1, ĄrstName:"A", LIKES:o2 }
o2 { id:2, ĄrstName:"B", LIKES:null }

o.capture(o1)

▶ Rule 3.2 (CaptureAll).

C = o.store ∪ ¶o.⋆f ♣f ∈ fields(o)♢ ∪ ¶o♢

⟨o.captureAll(o), Ξ, Γ⟩ ⇓ ⟨_, Ξ(o, store← C), Γ⟩

The captureAll rule is similar to the capture rule but here, the reference fields of the object

o being captured are transitively visited and captured into o in addition to o. We see that in

the premise of the rule, we first collect all the reference fields of o (fields(o)). Next, for every

reference field (f), we collect the set of references reachable under transitive closure from o

through that field (o.⋆f). This set is then unioned with o and the existing store of o to get

the new store. In the example, we see that the store of o is initially empty and there are

2 instances of Person (o1,o2) with one referencing the other. On applying the rule to the

referrer instance (o1), the store now contains both, the referrer and the referee instances.

Before:
o.store = ø
o1 { id:1, ĄrstName:"A", LIKES:o2 }
o2 { id:2, ĄrstName:"B", LIKES:null }

After:
o.store = {o1,o2}
o1 { id:1, ĄrstName:"A", LIKES:o2 }
o2 { id:2, ĄrstName:"B", LIKES:null }

o.captureAll(o1)

▶ Rule 3.3 (Delete).

store′ = o.store \ o

⟨o.delete(o), Ξ, Γ⟩ ⇓ ⟨_, Ξ(o, store← store′), Γ⟩

The delete rule is used to remove contained objects from ϵStore. In the premise, we

remove the object o from the existing store to get the new store (store′). This is then used

to update the store in the conclusion. If the object does not exist in the store then the store

is unmodified after applying the rule. Deleting an object only removes that object from the

store while its references that may be part of the store are not removed. In the example, the

store initially contains two instances (o1,o2) with one referencing the other. On applying the

rule to the referrer instance, only the referrer instance (o1) is removed in the after state of

the store.
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Before:
o.store = {o1,o2}
o1 { id:1, ĄrstName:"A", LIKES:o2 }
o2 { id:2, ĄrstName:"B", LIKES:null }

After:
o.store = {o2}
o1 { id:1, ĄrstName:"A", LIKES:o2 }
o2 { id:2, ĄrstName:"B", LIKES:null }

o.delete(o1)

▶ Rule 3.4 (Match).

C = ¶o ♣ o ∈ o.⋆store ∧meta(o).name = L♢

⟨_ = o.query(“match {a:L} return a”), Ξ, Γ⟩ ⇓ ⟨_ = C, Ξ, Γ⟩

The match rule is used to query the store and retrieve stored objects matching one or

more specified predicates. Although this rule supports complex predicates, we use a simple

predicate to simplify its semantic description. We use the predicate of matching and retrieving

all objects in the store whose type matches L. In the premise, we collect the set of all stored

objects whose meta-type name matches L. This set is returned as the result of the query in

the conclusion. In the example, the store initially contains two instances (o1,o2) both of type

Person. The result is initially empty. On applying the rule to retrieve all stored objects of

type Person, we see that the result now contains o1 and o2 which are the stored objects of

type Person.

Before:
o.store = {o1,o2}
o1 { id:1, ĄrstName:"A", LIKES:o2 }
o2 { id:2, ĄrstName:"B", LIKES:null }
result = ø

After:
o.store = {o1,o2}
o1 { id:1, ĄrstName:"A", LIKES:o2 }
o2 { id:2, ĄrstName:"B", LIKES:null }
result = {o1,o2}

result = o.query
("match(n:`Person`)
return n")

▶ Rule 3.5 (Create with pre-defined schema).

L ∈ Γ o = new(L) o[p/v]

⟨o.query(“create {:L {p : v}}”), Ξ, Γ⟩ ⇓ ⟨o.capture(o), Ξ, Γ⟩

The create rule with pre-defined schema is used to create and capture an object of a given

existing type into an ϵStore instance. This rule uses the CREATE clause in the Cypher query.

We use a simple example of creating an object of an existing type L with a field p and value v

to describe its semantics. In the premise, we first create the object o of type L and update its

field named p to value v. In the conclusion, we simply invoke the previously defined capture

rule on the ϵStore instance with o as argument to capture it into the store. In the example

below, the store initially contains 2 instances of type Person (o1, o2). After applying the

rule, we see that the store now contains 3 instances of type Person and o3 is now non-null.

We assign a “name” o3 to this created object only for the purpose of showing the before and

the after states of applying the rule.

Before:
o.store = {o1,o2}
o1 { id:1, ĄrstName:"A", LIKES:null}
o2 { id:2, ĄrstName:"B", LIKES:null }
o3 = null

After:
o.store = {o1,o2,o3}
o1 { id:1, ĄrstName:"A", LIKES:null}
o2 { id:2, ĄrstName:"B", LIKES:null }
o3 { id:3, ĄrstName:"C", LIKES:null}

o.query("create
(:`Person`
{ ĄrstName:ŠCŠ })")

▶ Rule 3.6 (Create without pre-defined schema).

L /∈ Γ τ = ntype(L, (“p” : type(v))♢) o = new(τ) o[p/v]

⟨o.query(“create {:L {p : v}}”), Ξ, Γ⟩ ⇓ ⟨o.capture(o), Ξ, Γ ∪ ¶τ♢⟩

The create without pre-defined schema is used to create an object of non-existing type and

capture it into the ϵStore instance. The query used is similar to create with pre-defined

schema except, now the type L is assumed to not exist in the set of available runtime types

ECOOP 2025
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Γ. We use the same example used in create-with-pre-defined-schema rule to describe the

semantics. In the premise, we first create a type L with a field named p with type matching

that of the primitive value v. Next, we create an instance o of type L and update its field

named p with value v. Finally, in the conclusion, we invoke the previously defined capture

rule on the ϵStore instance with o as the argument, to capture it into the store. The newly

created type is unioned into the set of available runtime types Γ. This ensures that new

objects of this type can now be created by applying the create-with-pre-defined-schema rule

instead. In the example below, the store is initially empty. On applying the rule under the

assumption that the Person type does not yet exist, the store now contains an instance of

type Person and the object o is non-null.

Before:
o.store = ø
o= null

After:
o.store = {o}
o{ id:1, ĄrstName:"A", LIKES:null}

o.query("create
(:`Person`{ ĄrstName:ŠAŠ
})")

Person /∈ Γ

We will now use the operations we formalized to prove 2 properties about ϵStore. In the

theorems that follow, σ represents the state of the ϵStore. σ(o) = ⊥ denotes that the

object o is absent from the store. We use the configuration ⟨operation, σ, Γ⟩ in our formal

description of the theorems and their proofs.

▶ Theorem 1 (Idempotency of Insertions). Repeated insertions of the same object o into an

ϵStore instance o yields an ϵStore instance state identical to inserting the object just once.

We can formally state the theorem as ∀ o, σ and σ0(o) ̸= ⊥:

n∧

i=0

(⟨o.capture(o), σi, Γ⟩ ⇓ ⟨_, σi+1, Γ⟩) =⇒ σn+1 = σ0

Equality of the states is defined using the standard definition for set equality i.e., σn+1 =

σ0 ⇐⇒ (σn+1 ⊆ σ0 ∧ σ0 ⊆ σn+1).

Proof. We will use mathematical induction to prove this theorem.

1. Base Case (i = 0): Prior to capture, o is present in the store, i.e., σ0(o) ̸= ⊥. When a

capture operation is executed, the state transitions as follows:

⟨o.capture(o), σ0, Γ⟩ ⇓ ⟨_, σ1, Γ⟩ where σ1 = σ0 ∪ ¶o♢ by rule capture

σ1 denotes the updated state. We know that σ0 ∪ ¶o♢ = σ0 since σ0(o) ̸= ⊥. Therefore,

σ1 = σ0 and the theorem holds for the base case.

2. Inductive Step (i = n): Consider an (n− 1)th transition:

⟨o.capture(o), σn−1, Γ⟩ ⇓ ⟨_, σn, Γ⟩

Lets assume that the theorem holds for i = (n − 1) i.e., σn = σ0. Now for the nth

transition, by the semantics defined in rule capture, σn+1 = σn ∪ ¶o♢. However, by our

assumption of the theorem holding for i = (n − 1), σn+1 = σ0 ∪ ¶o♢. By base case,

we know that σ0 ∪ ¶o♢ = σ0. Therefore, we can claim by mathematical induction that

σn+1 = σ0 as required by the theorem. ◀

▶ Theorem 2 (Persistence of Inserted Objects). If an object o is inserted into the store at

state σ, then o remains in the store in all subsequent states unless explicitly removed via a

deletion operation. We can formally state the theorem as ∀ o, σ and σ0(o) = ⊥:

(⟨o.capture(o), σ0, Γ⟩ ⇓ ⟨_, σ1, Γ⟩)
n∧

i=1

(⟨Si, σi, Γi⟩ ⇓ ⟨S
′

i, σi+1, Γi+1⟩) =⇒ σn+1(o) ̸= ⊥

where Si (evaluates to S′i) is any ϵStore supported operation excluding the delete operation.
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Table 2 Mapping of Cypher constructs to Java in ϵStore. ŞŮŤ indicates unsupported features.

Group Cypher Construct Cypher Syntax
Class

Dynamically created Existing

S
tr

u
c
t. Node () Object Object

Relation
()-[]-(),()-[]->(),()<-[]-() Object[] Object, Object[]
()<-[]->() Ů Ů

M
is

c
. Node Label (:<label>) Fully qualiĄed class name Fully qualiĄed class name

Relation Label ()-[:<label>]-() Reference Ąeld name Reference Ąeld name
Node Properties ({<name>:<value>,...}) Primitive, String Ąelds Primitive, String Ąelds
Relation Properties ()-[{<name>:<value>,...}]-() Ů Ů

P
ro

p
er

ty
V

a
lu

e
s

Decimal Literal [Long.MIN_VALUE, Long.MAX_VALUE] long byte, short, int, long
Float Literal [-Double.MAX_VALUE, Double.MAX_VALUE] double float, double
Boolean Literal TRUE, FALSE boolean boolean
String Literal "<string>" java.lang.String java.lang.String

Proof. We will use structural induction on the defined semantic rules to prove this theorem.

1. Base Case (i = 0): Prior to capture, o is not present in the store, i.e., σ0(o) = ⊥.

When a capture operation is executed, the state transitions as follows:

⟨o.capture(o), σ0, Γ⟩ ⇓ ⟨_, σ1, Γ⟩ where σ1 = σ0 ∪ ¶o♢ by rule capture

σ1 denotes the updated state. Thus, immediately after execution, o is present in the store

or in other words σ1(o) ̸= ⊥. Therefore, the theorem holds for the base case.

2. Inductive Step (i = n): Consider an (n− 1)th transition:

⟨Sn−1, σn−1, Γn−1⟩ ⇓ ⟨S
′

n−1, σn, Γn⟩

Lets assume that the theorem holds for i = (n − 1) i.e., σn(o) ̸= ⊥. Now for the nth

transition, the arbitrary statement Sn must be chosen from set of operations including

capturing, creating or matching as per the requirements of the theorem. Since these rules

do not specify any removal condition and were the same choice of operations available for

the (n−1)th transition. We can claim by structural induction on the operational semantics,

o persists in all transitions unless explicitly removed through deletion. Therefore we can

conclude that σn+1(o) ̸= ⊥ as required by the theorem. ◀

3.2 Mappings

The mapping of semantics between Cypher and Java in ϵStore, is given in Table 2. The first

column (Group) shows Cypher features [29] supported by ϵStore. The Cypher Construct

and the Cypher Syntax columns describe the Cypher feature and its corresponding syntax

when querying. We show the mapping between Cypher features and Java classes in two cases:

(1) classes that are dynamically created by ϵStore (i.e., schema absent), and (2) already

existing classes written by developers (i.e., pre-defined schema present). These are given by

columns Dynamically created and Existing, respectively.

A Cypher node maps to any object in ϵStore for both dynamic and existing classes. If a

label is specified for the node, then it maps to objects that are instances of the class with a

fully qualified name matching the label.

For existing classes, a relation with a label maps to objects referred to by other objects

with the reference field name matching the label. These referee objects can be elements of an

array. For dynamic classes, relations always refer to the elements of an array of objects with

the array reference field name matching the label. This allows an object to have relations

with the same label to different objects. Relationships also support directionality which

enforces a referrer-referee relation. ϵStore supports non-directional and uni-directional

relations but not bi-directional owing to the limitation of its implementation language (Java).
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1 public void capture(Object obj) throws EpsilonStoreException
2 public void captureAll(Object obj) throws EpsilonStoreException
3 public ResultSet query(String cQuery) throws EpsilonStoreException

Figure 4 ϵStoreŠs API available via the EpsilonStore class. The capture method in Line 1 is

used to capture a single object into ϵStore. The captureAll method in Line 2 is used to transitively

capture all objects reachable from, and including, the argument obj into ϵStore. Line 3 shows the

method to query ϵStore with the given Cypher query string cQuery.

Node properties map to an object’s primitive or java.lang.String fields in ϵStore.

The property values can be a decimal, floating point, string or boolean literal. To handle

the range of values supported by Cypher, ϵStore defaults to mapping decimal and float

properties to long and double fields for dynamic classes. Whereas for existing classes, these

properties may map to byte, short, int, long, float, and double fields.

Finally, for an instance (o) of a class C (C extends A), we treat all the fields (those from

C and A) in o the same.

3.3 API

ϵStore’s API has three methods: (1) capture, (2) captureAll, and (3) query as shown

in Figure 4. It is our intentional design choice to keep the interface simple. Furthermore,

the architecture of ϵStore and the expressivity of Cypher allows most operations to be

performed through queries.

Inserting data. The captureAll method given in Figure 4 line 2 is used to insert data

into ϵStore by capturing all objects reachable from the given argument object obj under

reflexive transitive closure. We use a Breadth First Search (BFS) [10] strategy to traverse

the graph of object references reachable from the root object obj. capture method inserts

only the given object into ϵStore.

Semantically, to capture an object in ϵStore translates to storing references to the object

in the EpsilonStore instance’s labelObjectMap and datastore fields as well as to store

its primitive and reference field information (name and type) in ClassInfo instance present

inside the labelClassInfoMap field.

The algorithm for capturing objects into ϵStore is given in Algorithm 1. We use a

FIFO queue inside a loop to collect all the objects directly and indirectly reachable from

the argument object through its reference fields during each iteration. In each iteration, we

pop an object o′ from the head of the queue (line 4), compute its hash (ID) (line 8) to check

if it already exists in the ϵStore instance (lines 9-11), and add it to datastore if absent

(line 12). We then get the fully qualified class name of the object’s class (line 13), check if its

mapped to a list in labelObjectMap, and append the object to the list if mapped (line 18).

If not mapped, we then insert a new empty list for this key in labelObjectMap (line 15)

and append the object. In addition, we also create a ClassInfo instance for the class of this

object to cache its field information and insert it into the labelClassInfoMap field (line 16).

Following this, we get the reference field objects of o′ and insert them into the queue (line 22).

The loop terminates when the queue is empty.

Querying. The query method is shown in Figure 4 line 3 and is used to query the ϵStore

instance. It takes the Cypher query string cQuery as an argument and returns a ResultSet

containing the result of the query: references to objects in the ϵStore instance.
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Algorithm 1 Capturing objects.

Input: An object o to be inserted into ϵStore

Require: An empty FIFO queue q
1: procedure captureAll(o)
2: Append o to q
3: while q is not empty do

4: o′
← Pop head of q

5: if o′ is null then

6: continue

7: end if

8: h← getHashCode(o′)
9: if datastore[h] is not null then

10: continue

11: end if

12: datastore[h]← o′

13: c← getClassName(o′)
14: if labelObjectMap[c] is null then

15: labelObjectMap[c]← []
16: labelClassInfoMap[c]← new

ClassInfo(c)
17: end if

18: Append o′ to labelObjectMap[c]
19: cInfo← labelClassInfoMap[c]
20: for all r := getRefFields(cInfo) do

21: o′′
← getRefObject(cInfo, r, o′)

22: Append o′′ to q
23: end for

24: end while

25: end procedure

Algorithm 2 Creating objects.

Require: Cypher query string query and list of Java classloaders
cList

1: for all x := in Nodes of query do

2: l← Label of x
3: pNames← Property names of x
4: pV alues← Property values of x
5: pT ypes← inferTypes(pNames, pV alues)
6: c← GETORMAKECLASS(l, pNames, pT ypes)
7: o← CreateAndSetFields(c, pNames, pV alues, pT ypes)
8: capture(o)
9: end for

10: procedure getOrMakeClass(l, pNames, pT ypes)
11: if labelClassInfoMap[l] is not null then

12: return getClass(labelClassInfoMap[l])
13: else

14: for all loader := cList do

15: c← ĄndClassWithLoader(l, loader)
16: if c is not null then

17: labelClassInfoMap[l]← new ClassInfo(l)
18: return c
19: end if

20: end for

21: c← ASMCreateClass(l, pNames, pT ypes)
22: labelClassInfoMap[l]← new ClassInfo(l)
23: return c
24: end if

25: end procedure

Data can also be inserted into ϵStore through Cypher CREATE queries. The algorithm for

data insertion through queries is given in Algorithm 2. We describe the case when the Cypher

query specifies the creation of a multiple single node pattern (CREATE (n:label1 {...}),

(m:label2), ...). We start by iterating through all the node definitions in the Cypher

query string and collect their labels, property names, property values, and their outgoing

edge labels. For each property name and value pair, we infer the property type (line 5) using

the mapping given in Table 2. Next, for each node definition, we invoke GETORMAKECLASS

which either finds a class with a fully qualified name matching that node label or dynamically

creates a class with the name matching the label and with its field definitions matching the

node’s property names and types. The GETORMAKECLASS procedure first checks (line 11) the

labelClassInfoMap field for the class, matching the passed in label argument l and returns

it if present (line 12). If absent, we attempt to find the class corresponding to the label by

iterating through all the classes loaded into the JVM by all the available classloaders [12, 48]

and return it if found (line 18). If this also fails, then ϵStore proceeds with dynamic class

creation at runtime (line 21). We use the bytecode manipulation and analysis framework

ASM [7] to dynamically generate the class. Once the class is found or created, we instantiate

it (line 7) and set the fields of the instance to the collected property values. The instance is

then captured into ϵStore.

The class instantiation procedure CreateAndSetFields checks for consistency of the

inferred property types and the field definitions present in the class. An exception is thrown

if the checks fail due to a type mismatch.

3.4 Implementation

Field access. Cypher queries may specify patterns in their clauses that require matching

a node’s properties (MATCH (n {a:10})) or its relationships (MATCH ()-[:label]->()).

Executing these queries requires accessing the fields of objects. To optimize query execution

and avoid the overhead of repeatedly retrieving the field name and type for every object,
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we cache these field information in ϵStore’s ClassInfo instances. Since fields are defined

in an object’s class in Java, it is sufficient to have one ClassInfo instance to cache the

field information for all objects of that class. These ClassInfo instances are stored in

ϵStore’s labelClassInfoMap field. This field is a hashmap that maps a label to its

corresponding ClassInfo instance. ClassInfo is an abstract class. We have two concrete

implementations of it based on the approach used to retrieve the field values. We refer to

these two implementations of ϵStore as ϵStorer and ϵStoreu.

ϵStorer uses Java reflection [53] to retrieve the field values. This implementation contains

a hashmap mapping field names to their corresponding java.lang.reflect.Field [50]

instances, obtained using reflection. These Field instances are used to retrieve the field

values.

ϵStoreu uses Java’s unsafe [41] API to retrieve the field values. This implementation

contains a hashmap mapping field names to field offsets (type long values). These field

offsets are used to retrieve the field values.

Storage. ϵStore stores inserted objects using their unique ID’s and their labels (types).

Storing by label. Every object in Java is an instance of a class which defines its type

and the fully qualified name of this class is the label of the object. The labelObjectMap

field is used for storing inserted objects based on their label. This field is a hashmap

that maps labels to ordered lists of objects belonging to the corresponding labels. During

query execution, if the query string specifies a label for a node to be matched, then since

labelObjectMap stores objects by their labels, we can use it to efficiently search only a

subset of the stored objects.

Storing by ID. The ID is assumed to be unique for every inserted object and is by

default computed internally by invoking the identityHashCode [46] method provided

by java.lang.System package on the object. The datastore field is used for storing

objects based on their ID. This field is a hashmap that maps the ID of an inserted object

to itself. If the ID of an object being inserted is found to already exist in the datastore

then the old object reference mapped to that ID in the datastore is replaced with the

new object reference. During query execution, if the query string specifies a node and

its ID then the datastore can be used to reduce the search space of stored objects and

hence optimize query performance.

Our storage schemes are designed such that the storage structures require minimal update

on insertion or removal of objects from ϵStore.

3.5 Code Rewriting

The vanilla version of ϵStore parses input queries and generates a query plan at runtime.

We notice the overhead is significant, even multiple times greater than the time to actually

execute the query. To reduce overhead, we introduce a code rewriting technique in ϵStore.

The basic idea is to parse the query at compile time, then when building the query plan at

compile time, we inject the query plan execution code directly into the query call site.

Specifically, we introduce a Java annotation to support this feature. When a method

is annotated with this annotation, all the queries (passed as arguments to the query API

described in Section 3.3) inside the method will be preprocessed by a handler. The handler

reuses most part of the ϵStore engine; however, instead of executing the query plan and

returning the result, it will aggregate imperative Java code of the query plan needed to be

executed for the query and replace the query with corresponding imperative code at the call

site. At runtime, only plain imperative Java code is executed. This way, we translate the

declarative query into imperative code at compile time, and there is no overhead for parsing

and building the query plan at runtime.
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1 public class LinkedList<E>...{
2 transient Node<E> first; ...
3 private static class Node<E> {
4 ...
5 Node<E> next;
6 Node<E> prev; ...
7 } ...
8 }

(a) Snippet of the LinkedList class.

1 public void testAcyclicity(){
2 List<Long> list = new LinkedList<Long>(); ...
3 EpsilonStore db = new EpsilonStore ("dbname");
4 db.captureAll(list);
5 assertTrue(db.query(
6 "MATCH (n:‘LinkedList$Node‘)-[:next*]->(n)"
7 +" RETURN COUNT(n) = 0").getBoolean(0));
8 }

(b) Checking acyclicity invariant on the LinkedList with
ϵStore.

Figure 5 An example showing complex assertions with ϵStore.

4 Use Cases

We describe 3 use cases that are made possible as the result of our design. These examples

showcase the unique programming style of equating objects (instances of classes) and nodes

in ϵStore. Our examples include: (1) writing complex assertions for checking structural

invariants, (2) implementing methods, and (3) using ϵStore as a lightweight graph store.

4.1 Runtime invariant checking with complex assertions

Structural invariants can be easily checked by writing complex assertions using ϵStore

queries. We demonstrate this by checking the acyclicity invariant of a linked list.

A snippet of the java.util.LinkedList [13] class definition is given in Figure 5a. It

contains an inner-class Node, whose instances are the LinkedList instance’s nodes. The

fully qualified class name of this inner-class in Java is LinkedList$Node. An instance of

Node has a field next that holds a reference to its successor node in the list. The next field

of a node can be null if it is the last node in the list. It also contains a field prev that holds

a reference to its predecessor node.

The acyclicity invariant of a LinkedList imposes the condition that no node can be

reachable from itself by strictly following only its successor or predecessor nodes. In other

words, a LinkedList must be free of cycles. Figure 5b shows how such an invariant can

be checked with ϵStore. The LinkedList instance list is first captured into an ϵStore

instance using its captureAll API method (line 4). Next, we assert on the result of the

Cypher query (lines 6-7), that checks for acyclicity of the captured list. The query contains

a MATCH clause that matches a pattern in the captured graph of objects, where a Node

instance contains a path to itself through 1 or more next edges. The RETURN clause returns

true if such a pattern does not exist.

In this manner, an otherwise complex assertion can be concisely expressed using Cypher

queries with ϵStore.

4.2 Implementing methods with Cypher queries

H2 is an open-source, lightweight relational database implemented in Java. H2 supports

embedded in-memory mode, where it runs within the same JVM as the application. Thus, all

the objects related to an H2 instance are on the heap. As a result, we can insert an instance

of H2 into an instance of ϵStore. We can then query anything related to the H2 instance or

data within that instance. Here, we show a way to query the metadata of an H2 instance.

Figure 6a shows how to get the schemas in an H2 database using the API provided by

JDBC [52, 25]. Figure 6d shows the actual implementation of the getSchemas API by H2.

It imperatively setups result, iterates over the schemas and insert them into the result.
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1 Connection conn = DriverManager.getConnection(
2 "jdbc:h2:mem:h2TestDb",
3 "sa",
4 ""
5 );
6 DatabaseMetaData meta = conn.getMetaData();
7 ResultSet schemas = meta.getSchemas();

(a) Getting schemas using JDBC API.

1 EpsilonStore db = new EpsilonStore ("name");
2 Class h2db =
3 Class.forName("org.h2.engine.Engine");
4 db.captureAll(h2db);
5 /* schemas names are the keys of
6 * a ConcurrentHashMap
7 */
8 ResultSet schemas = db.query(
9 "MATCH (db: ‘org.h2.engine.Database‘)"

10 +"-[:schemas]->()-[:table]->()-[:key]->(k)"
11 +"RETURN k");

(b) Getting schemas using ϵStore query.

1 ResultSet users = db.query(
2 "MATCH (db: ‘org.h2.engine.Database‘)"
3 +"-[:usersAndRoles]->()-[:table]->()"
4 +"-[:key]->(k) "
5 +"RETURN k");

(c) Getting users using ϵStore query.

1 public ResultInterface getSchemas() {
2 return getSchemas(null, null);
3 }
4 public ResultInterface getSchemas(String catalog,
5 String schemaPattern) {
6 checkClosed();
7 SimpleResult result = new SimpleResult();
8 result.addColumn(
9 "TABLE_SCHEM", TypeInfo.TYPE_VARCHAR);

10 result.addColumn(
11 "TABLE_CATALOG", TypeInfo.TYPE_VARCHAR);
12 if (!checkCatalogName(catalog)) {return result;}
13 CompareLike schemaLike = getLike(schemaPattern);
14 Collection<Schema> allSchemas =
15 session.getDatabase().getAllSchemas();
16 Value cValue =
17 getString(session.getDatabase().getShortName());
18 if (schemaLike == null) {
19 for (Schema s : allSchemas)
20 result.addRow(getString(s.getName()), cValue);
21 } else {
22 for (Schema s : allSchemas)
23 if (schemaLike.test(s.getName()))
24 result.addRow(getString(s.getName()),
25 cValue);
26 }
27 // we ignore sorting for a fair comparison
28 // result.sortRows(
29 // new SortOrder(session, new int[] { 0 }));
30 return result;
31 }

(d) H2 implementation for getSchemas JDBC API.

Figure 6 Querying metadata of H2. (a) Querying schemas using JDBC getSchemas API, (b)

Querying schemas of a captured H2 instance with ϵStore, (c) Querying users of a captured H2

instance with ϵStore, and (d) H2Šs implementation of getSchemas.

Figure 6b shows how to get the same result by inserting the embedded H2 database into

ϵStore and querying its metadata using Cypher. The idea here is to show how ϵStore

can be easily used to implement some API methods in a concise and readable way, allowing

developers to quickly experiment with new ideas and move fast. As another example, figure 6c

shows how we can query all the users in an H2 database while JDBC only provide an API

for getting current username.

4.3 Lightweight in-memory Graph Store

The ability to insert, delete, update and query objects in ϵStore and the support for the

Cypher query language makes ϵStore a good candidate for testing when a graph database is

needed. We demonstrate in section 5.4 that ϵStore can be used as a light-weight alternative

in-place of graph databases by evaluating it on the LDBC SNB benchmark.

5 Evaluation

We evaluated ϵStore in three ways. First, we benchmarked ϵStore on the LDBC SNB [1]

benchmark using Neo4j graph database as reference. Second, we re-implemented a number

of imperative library methods of data structures using Cypher in ϵStore and compared its

performance with OGO. Finally, we compared the query execution times of ϵStore with and

without code rewriting, on the LDBC SNB benchmark. We answer the following questions:

RQ1: How does ϵStore perform as a lightweight graph store?

RQ2: How does ϵStore, when used for implementing methods, compare with OGO?

RQ3: How does ϵStore’s code rewriting improve its performance?



A. Thimmaiah, Z. Yi, J. Kenis, C. J. Rossbach, and M. Gligoric 30:17

We describe environment setup (§5.1), existing systems we use as baselines (§5.2), and the

benchmarks (§5.3). Finally, we answer the research questions (§5.4-§5.6).

5.1 Experiment Setup

We built a Docker image for each system used in the evaluation (e.g., OGO) to ensure ease of

repeatability of our evaluation experiments. All experiments are run inside Docker containers

and averaged over 5 runs. We modified each system used in the evaluation to collect the same

profile data. We use a single machine to run the experiments; the machine has an x86_64

11th Gen Intel(R) Core(TM) i7-11700K @ 3.60GHz server with 64GB of RAM and running

a 64-bit Ubuntu 20.04.1 operating system. We use Java 17 throughout our experiments.

5.2 Existing Systems

We briefly describe the existing systems that we used in our evaluations.

Neo4j. Neo4j [28] is a graph database and arguably, the most popular one in the industry

at the moment. It uses the LPG data model. Neo4j has two modes.

Server Mode (Neo4js): In this mode, Neo4j operates as a database server and runs in

a JVM separate from the test JVM which contains the benchmarking queries. We use

the Neo4j Java driver [35] version 4.3.3 in the test JVM to send the benchmarking query

strings to the Neo4j server. The driver implements the Bolt [30] protocol (similar to

JDBC) to communicate with the server. We build Neo4j from source inside docker and

load it with the LDBC SNB benchmark dataset. The loading of the datasets (CSVs

describing nodes and relations) is done using Neo4j’s batch import tool neo4j-admin [34].

Impermanent Mode (Neo4ji): In this mode, all data inserted into the database are stored

in-memory and is non-persistent, and the database runs inside the JVM running the

LDBC benchmark queries. This mode is only available in internal test-suites of Neo4j.

The Docker image used for evaluation is the same as that built for the server mode.

We first create an impermanent database by instantiating GraphDatabaseService [31]

through dependency injection with ImpermanentDbmsExtension [32]. We then insert the

LDBC SNB benchmark datasets into the database by using CREATE Cypher queries to

create the corresponding nodes and relations through database transactions.

We include both, Neo4js and Neo4ji as a point of reference in our evaluation of ϵStore on

the LDBC SNB benchmark. We use Neo4j version 5.13.0 and default configuration for all

modes of Neo4j in our experiments.

OGO. OGO [57], similar to LINQ [42], combines imperative and declarative (via Cypher)

styles of programming. Namely, OGO sees the entire JVM heap (i.e., object graph) as a

single graph and enables developers to query the heap (or a subset of it) using queries. We

compare it with ϵStore for writing methods using queries on several data structures by

replacing existing imperative implementations.

Table 3 shows some major differences between the existing systems we used in our evaluation

and ϵStore. We categorize the feature differences into Programmability and Database

features. Programmability features broadly include capabilities such as schema creation,

querying runtime program state, manipulating objects on the heap and quickly implementing

methods of library classes. These are (partially) supported by OGO and ϵStore. However,

most graph databases lack all or most of these features. The database features include some
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Table 3 Differences between traditional graph databases, OGO and ϵStore.

Feature GDBs OGO ϵStore

P
ro

g
ra

m
-

m
a
b

il
it

y

Schema creation ✓ ✗ ✓

Query program state ✗ ✓ ✓

Heap manipulation ✗ ✓ ✓

Method implementation ✗ ✓ ✓

Code Rewriting ✗ ✗ ✓

D
a
ta

b
a
se

fe
a
tu

re
s Views [43] ✓ ✗ ✓

Multi-tenancy [8] ✓ ✗ ✓

In-memory ✓ ✓ ✓

ACID [24] ✓ ✗ ✗

features found in traditional databases such as support for multiple views, multi-tenancy,

in-memory or non-persistent storage, and ACID compliancy. Most graph databases support

all or most of these features, while ϵStore focuses on support for multiple views, in-memory

and multi-tenancy features. This table serves to highlight the differences in the design of

traditional graph databases and ϵStore and thus their area of applicability.

5.3 Benchmarks

This section provides a brief description of the benchmarks used in our evaluation.

ϵStore as a graph store. To evaluate ϵStore as a graph store and answer RQ1, we use

the SNB benchmark from LDBC [56]. LDBC provides both, various sized datasets for its

benchmarks and the Cypher queries. The size of a dataset is measured using scale factor

which is its uncompressed disk space (e.g., an uncompressed dataset that requires 10GB of

disk space would have a scale factor of 10). The LDBC SNB was designed with the aim to

model a snapshot of the activity in a realistic social network during a period of time. Table 4

shows the nodes and relationships that appear in the LDBC SNB benchmark and their

variation with scale factors used in our evaluation namely, 0.1, 0.3, 1, 3 and 10. Higher scale

factors can be supported since ϵStore is only limited by the memory available to the JVM

which can be increased with the JVM option -Xmx. We observe that the frequency of some

nodes (Comment) and relationships (Person Likes Comment) scale by order of magnitude for

an order of magnitude increase in scale factor whereas that of others such as Tagclass and

Tagclass IsSubclassOf Tagclass do not change with scale factor. Query execution time

is affected by these different occurrence frequencies depending on the node and relationship

labels appearing in it. We use all the queries from the LDBC SNB benchmark that are

currently supported by ϵStore. Many queries use Cypher language features which are not

implemented in ϵStore yet (§6). Table 5 gives a brief description of the used queries. The

name of the query as it appears in the LDBC SNB benchmark documentation is shown in

column 1. The queries all contain either a read (MATCH) clause or a read and an update

(CREATE) clause. These read and update clauses contain either single node or two-node

patterns. The pattern contained in the queries is given by columns 3, 4 and 5. Finally, a

brief description of the queries is given in column 6. Generally, ignoring indexing schemes,

we should expect the query execution time to scale with the number of operations performed

and the frequency of occurrence of labels in its patterns. For example, QG
SNB contains the

most occurring label (Comment) in the benchmark in its patterns and 2 clauses, and would

be expected to take more time to execute than QD
SNB that involves less frequently occurring

labels and just 1 clause.
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Table 4 Node and relationship statistics for LDBC SNB benchmark across evaluated scale factors.

Type Name 0.1 0.3 1 3 10

N
o
d

e

Comment 151043 523222 2052169 6413095 21865475
Forum 13750 31097 90492 221792 595453
Person 1528 3514 9892 24328 65645
Post 135701 324825 1003605 2597141 7435696
Organisation 7955 7955 7955 7955 7955
Place 1460 1460 1460 1460 1460
Tag 16080 16080 16080 16080 16080
Tagclass 71 71 71 71 71

R
el

a
ti

o
n

sh
ip

Comment HasCreator Person 151043 523222 2052169 6413095 21865475
Comment HasTag Tag 191303 680738 2698393 8426418 28740194
Comment IsLocatedIn Place 151043 523222 2052169 6413095 21865475
Comment ReplyOf Comment 76787 265931 1040749 3251228 11089373
Comment ReplyOf Post 74256 257291 1011420 3161867 10776102
Forum ContainerOf Post 135701 324825 1003605 2597141 7435696
Forum HasMember Person 123268 404952 1611869 4982242 17168614
Forum HasModerator Person 13750 31097 90492 221792 595453
Forum HasTag Tag 47697 108649 309766 767382 2065319
Person HasInterest Tag 35475 81066 229166 569918 1535511
Person IsLocatedIn Place 1528 3514 9892 24328 65645
Person Knows Person 14073 44760 180623 565247 1938516
Person Likes Comment 62225 291590 1438418 5281725 19949360
Person Likes Post 47215 177064 751677 2498139 8839875
Person StudyAt Organisation 1209 2792 7949 19497 52632
Person WorkAt Organisation 3313 7697 21654 53023 143553
Post HasCreator Person 135701 324825 1003605 2597141 7435696
Post HasTag Tag 51118 179499 713258 2229757 7599701
Post IsLocatedIn Place 135701 324825 1003605 2597141 7435696
Organisation IsLocatedIn Place 7955 7955 7955 7955 7955
Place IsPartOf Place 1454 1454 1454 1454 1454
Tagclass IsSubclassOf Tagclass 70 70 70 70 70
Tag HasType Tagclass 16080 16080 16080 16080 16080

ϵStore as a heap manipulation engine. To evaluate ϵStore as an engine to modify objects

on the heap and answer RQ2, we use data structures from three sources: Java Collections

Framework (JCF) [49], Google Guava [21], and the Eclipse Collections [17] projects. We

rewrote on average 2 library methods from each of these data structures to use Cypher

queries (rather than the imperative implementation). Simply, for ϵStore, we insert the data

structure into an instance of ϵStore and run a query that implements the same functionality

as exiting imperative code.

5.4 ϵStore as a Lightweight Graph Store (RQ1)

We use query execution time and memory consumption during benchmarking on LDBC SNB

benchmark to motivate ϵStore as a lightweight graph store.

Query execution time. In our early experiments, we noticed substantial variations in query

execution times across several runs, which we attribute to the JVM environment. To stabilize

the time, we perform the following steps. We first load the dataset for a given scale factor

into the systems used in our evaluation. Next, we execute all the chosen LDBC queries

for that benchmark in a randomized order. We call this as the 1st set. Following this, we

once again execute the same set of queries in another randomized order. We call this as the

2nd set. The sets are executed back-to-back in the same JVM process. The profile data for

an evaluation run is collected for every query execution in both the sets. However, when
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Table 5 Description of the LDBC SNB benchmark queries used in our evaluation.

Query Abbrv. Start Node Relation End Node Description

interactive-delete-query2 QA
SNB Person Likes Post Matches a pattern with a Person node

pointing to a Post node through a rela-
tion Likes, deletes the relation and re-
turns the count of Likes relation between
the two nodes.

interactive-delete-query3 QB
SNB Person Likes Comment Matches a pattern with a Person node

pointing to a Comment node through a
relation Likes, deletes the relation and re-
turns the count of Likes relation between
the two nodes.

interactive-delete-query5 QC
SNB Forum HasMember Person Matches a pattern with a Forum node

pointing to a Person node through a re-
lation HasMember, deletes the relation
and returns the count of HasMember re-
lation between the two nodes.

interactive-short-query1 QD
SNB Person IsLocatedIn Place Matches a pattern with a Person node

pointing to a Post node through a rela-
tion IsLocatedIn and returns properties
of the two nodes.

interactive-short-query5 QE
SNB Comment HasCreator Person Matches a pattern with a Comment node

pointing to a Person node through a rela-
tion HasCreator and returns properties
of the Person node.

interactive-update-query2 QF
SNB Person Likes Post Matches a Person and Post, creates a

relation Likes from Person to Post node
and returns the count of Likes relation
between the two nodes.

interactive-update-query3 QG
SNB Person Likes Comment Matches a Person and Comment, creates

a relation Likes from Person to Com-

ment node and returns the count of Likes

relation between the two nodes.

interactive-update-query5 QH
SNB Forum HasMember Person Matches a Forum and Person, creates a

relation HasMember from Forum to Per-

son node and returns the count of Has-

Member relation between the two nodes.

interactive-update-query8 QI
SNB Person Knows Person Matches a Person and Person, creates a

relation Knows from Person to Person

node and returns the count of Knows

relation between the two nodes.

reporting the profile data for a query for an evaluation run, we use the data from the 2nd set

and discard the 1st set. Figure 7 shows a boxplot of the query execution time for the queries

in the 1st and 2nd sets for ϵStorer across 10 evaluation runs. It is observable that profile

data for the queries collected from the 2nd set has substantially lower variance than that

collected from the 1st set, and, hence, the query profile data are more stable across runs.

The collected profile data breaks down the total query execution time (Ttot) into the

query parsing time (tPa), query plan generation time (tPl), and query plan execution time

(tEx). We compute the sum breakdown time (tBd) from the profile data as tBd=tP a+ tP l+

tEx. All times are reported in milliseconds unless otherwise stated.

Table 6 shows the results for LDBC SNB. Column 1 shows the query abbreviation.

Column 2 shows the scale factor of the dataset. Columns 3-5 show the results for Neo4js,

Neo4ji, and ϵStorer respectively. We initially hypothesized that using reflection to retrieve

field values may degrade performance due to excessive runtime type-checking. To test our

hypothesis, we decided to implement field access using reflection (ϵStorer) and the unsafe

API (ϵStoreu). However, we observed no significant performance difference between these

two modes of ϵStore. Hence, for brevity, we omit showing ϵStoreu results in Table 6.

For each system, we show the query parsing time (tP a), query planning time (tP l), query

plan execution time (tEx), sum breakdown time (tBd), and the total query execution (Ttot).

We use bold text for Ttot, and we use gray background to show the best value (smallest Ttot)

in each row. OOM indicates out of memory (when the physical memory requirement exceeds

∼64GB). The Ttot of queries in general scales with scale factor of the datasets with the

exception of some queries (e.g., QA
SNB ,QB

SNB), that operate on node labels containing very
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Figure 7 Query execution times for 1st and 2nd randomized sequence runs of ϵStore
r.

M

O

O

(a) SNB virtual memory usage in GB.

M

O

O

(b) SNB physical memory usage in GB.

Figure 8 Virtual and Physical memory usage in GB for LDBC SNB evaluation across scale

factors. Query failures for exceeding memory are indicated by OOM.

few nodes. We can see that the Ttot of ϵStore is comparable or better than the production

graph database for most of the queries. The graph database outperforms ϵStore for query

QE
SNB because, QE

SNB matches referrer node with label containing the highest amount of

nodes in the benchmark (20 million+ for SF 10). This shows that for testing purposes, where

datasets are relatively smaller, ϵStore can be used as a lightweight graph store instead of a

full fledged production graph database.

Memory usage. In addition to time, we also measured memory consumption for all the

systems. We used pidstat [39] to collect memory consumption during evaluation runs.

Figure 8 shows the peak memory usage for each system (one bar per system). The virtual

and physical memory consumption in GB during running all the selected queries on the

SNB for different scale factors is shown in Figure 8a and Figure 8b, respectively. We allow

Neo4ji and Neo4js to manage their own memory requirements [33], e.g., allocating page

cache. We observe that the virtual memory usage of a system does not change significantly

across scale factors of the SNB benchmarks. The physical memory usage, on the other hand,

increases with increasing scale factors for all the systems. Neo4ji requires the most physical

and virtual memory and is OOM for the SNB scale factor 10 dataset. ϵStorer consumes the

least amount of virtual memory across the systems and is second only to Neo4js in terms of

the least physical memory consumed. This is to be expected since ϵStorer being in-memory,
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Table 6 Total query execution time (Ttot) and its breakdown in milliseconds, for queries and

datasets from the LDBC SNB benchmark. All reported times lower than 0.5 milliseconds are shown

as 0. The maximum allocated physical memory for each evaluation run is 63GB.

Query SF
Neo4js Neo4ji ϵStorer

tPa tPl tEx tBd Ttot tPa tPl tEx tBd Ttot tPa tPl tEx tBd Ttot

QA
SNB

0.1 11 29 0 40 46 1 33 3 37 38 0 0 0 0 0

0.3 11 28 0 39 44 1 33 5 39 40 0 1 1 2 3

1 10 24 0 34 38 0 31 24 55 55 0 0 1 1 1

3 12 24 0 36 40 2 32 40 75 76 0 1 4 4 5

10 11 23 0 35 39 OOM 0 0 4 5 5

QB
SNB

0.1 10 24 0 34 39 0 32 2 35 36 0 0 0 0 0

0.3 12 27 0 39 43 0 33 5 38 39 0 0 1 1 2

1 11 26 0 37 41 1 34 9 44 45 0 0 0 1 1

3 10 23 0 33 37 0 33 52 86 87 0 1 4 5 6

10 11 24 0 35 39 OOM 0 0 4 4 4

QC
SNB

0.1 11 25 0 36 41 0 32 2 34 35 0 0 1 1 1

0.3 10 27 0 37 41 0 32 4 37 37 0 0 3 3 4

1 10 24 0 34 38 0 30 18 49 50 0 0 3 3 3

3 10 24 0 34 38 0 31 21 52 53 0 0 8 8 9

10 11 25 0 36 41 OOM 0 0 19 19 19

QD
SNB

0.1 16 30 0 46 51 1 34 0 36 36 0 0 0 0 1

0.3 15 30 0 45 50 1 34 0 35 36 0 1 2 2 4

1 13 25 0 38 43 0 34 0 34 35 0 0 1 1 1

3 16 26 0 43 47 3 34 0 37 38 0 1 2 3 4

10 15 26 0 42 46 OOM 0 0 4 4 5

QE
SNB

0.1 10 23 0 33 38 1 30 0 31 31 0 0 7 7 7

0.3 11 21 0 32 36 2 34 0 36 37 0 0 29 29 30

1 11 22 0 34 38 4 29 0 33 33 0 0 114 115 115

3 11 20 0 31 36 6 29 0 36 37 0 1 319 320 321

10 11 20 0 31 35 OOM 0 0 866 866 867

QF
SNB

0.1 10 15 29 54 58 0 24 44 67 68 0 0 5 6 6

0.3 10 16 66 92 97 1 25 107 133 134 0 1 15 16 16

1 9 16 212 237 241 1 24 286 311 312 0 0 35 35 35

3 8 16 530 554 559 0 23 754 777 778 0 0 87 87 88

10 11 18 1531 1559 1564 OOM 0 0 258 258 259

QG
SNB

0.1 9 16 31 57 61 2 26 59 88 88 0 0 6 6 7

0.3 9 16 102 128 133 0 24 206 230 231 0 0 30 31 31

1 10 15 423 448 453 1 24 728 753 754 0 0 74 75 75

3 9 15 1298 1322 1326 3 25 2484 2511 2512 0 0 244 244 245

10 10 15 4393 4418 4422 OOM 0 0 915 915 915

QH
SNB

0.1 10 16 3 29 33 0 24 7 31 32 0 0 1 1 1

0.3 10 16 6 33 38 0 24 16 40 41 0 1 4 4 5

1 9 16 18 44 48 0 23 40 63 63 0 0 3 3 3

3 9 16 45 70 74 0 23 105 128 129 0 1 10 11 11

10 10 16 112 137 143 OOM 0 0 22 22 22

QI
SNB

0.1 9 17 2 28 32 0 24 3 27 27 0 0 0 0 0

0.3 10 16 3 29 34 0 24 6 30 31 0 1 1 2 2

1 9 16 8 33 38 0 24 14 38 39 0 0 1 1 1

3 10 16 14 39 43 0 24 33 57 57 0 1 4 5 5

10 9 15 40 64 69 OOM 0 0 6 6 7

stores all inserted data on RAM whereas Neo4js can store part of it on disk and can page

it into RAM as and when required. We once again see that for smaller datasets, which is

generally the case during testing, ϵStore’s memory consumption is comparable or better

than a production graph database.

In summary, the query execution times and memory consumption of ϵStore is on

par or better than that of a production graph database for small datasets. Since,

smaller datasets are typically the norm in testing environments, ϵStore provides an

excellent light-weight alternative to a full fledged graph database for testing.

5.5 Data-structure Performance (RQ2)

We reuse 5 of the data structures from Thimmaiah et al. [57] that were used to evaluate

OGO. We also introduce 4 additional data structures from the Eclipse Collections project in

our evaluation.

OGO supports two modes of operation, OGONeo and OGOMem. In both modes, the first

step is to identify a subset of the heap that is relevant to the query. The 2 modes differ in

the query engine used. OGONeo uses an external query engine (Neo4j) and OGOMem uses

an in-memory query engine. We compared the 2 different modes of OGO with ϵStore by

executing Cypher queries implementing imperative methods from data-structure libraries.

We evaluated these queries for varying workloads (number of elements present inside the

data structure). The results are shown in Table 7. We only report the total query execution

time Ttot (in milliseconds) for each system. The data-structures are given in the first column.
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Table 7 Total query execution time (Ttot) in milliseconds, for the contains or equivalent method

reimplemented as Cypher query, on data structures for different modes of OGO and ϵStore. The

time out (TO) duration used is 1 minute .

Data-structure #Elements OGONeo OGOMem ϵStorer ϵStoreu

JCF v17.0

ArrayList

102 2231 264 89 81
103 8169 486 97 90
104 40261 888 133 116
105 TO TO 166 162

ArrayDeque

102 1632 399 88 86
103 3377 497 105 89
104 41301 1540 128 120
105 TO TO 156 166

HashMap

102 2391 315 78 77
103 9479 516 88 100
104 TO 2753 136 126
105 TO TO 356 394

LinkedList

102 24831 420 85 79
103 TO TO 83 88
104 TO TO 125 133
105 TO TO 232 216

Guava v32.1.3-jre

ArrayTable

102 1711 358 82 76
103 2742 415 94 90
104 23298 1031 125 140
105 TO TO 237 228

Eclipse v11.1.0

UniĄedSet

102 1592 514 78 76
103 2916 595 87 90
104 55464 3373 158 149
105 TO TO 223 239

UniĄedMap

102 1997 489 88 83
103 5079 865 102 109
104 TO TO 111 113
105 TO TO 210 200

FastList

102 1637 453 80 77
103 2750 540 89 87
104 40243 1255 130 143
105 TO TO 172 161

ArrayStack

102 1820 411 78 82
103 3538 741 87 84
104 TO 2461 127 129
105 TO TO 153 153

The second column shows the workload, and finally, columns three through six give the

total query execution times for OGO and ϵStore. We fixed the query execution time out

(TO) duration to be 1 minute. We clearly see that both the modes of ϵStore consistently

outperform those of OGO by at least an order of magnitude. Larger workloads for most of

the considered data structures result in TO for OGO.

OGONeo is significantly slower than ϵStore because of using an external query engine

which incurrs a heavy overhead due to repeated serialization and deserialization of the heap

subset. This overhead increases for higher workloads due to increase in the heap subset

size. ϵStore is also faster than OGOMem by an order of magnitude on average. This is

primarily due to 3 factors. The first is that both the modes of OGO rely on tagging [45] of

objects (assigning a long identifier) in the heap to identify those relevant to the query. Since

other JVM processes such as the garbage collector (GC) also use tagging, both modes of
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We further evaluate the execution time when each query runs in a separate JVM process

and the result is shown in Figure 9b. This result is consistent with our previous conclusion.

In summary, parsing and generation of query plans adds nearly an order of magnitude

to the execution time. We can significantly speed up query execution by removing this

overhead by injecting query plan execution code into the query call site at compile

time.

6 Limitations and Future Work

We document potential future directions in this section.

Query optimization. Our current implementation of the query engine only generates the

physical plan and directly executes it. In the future, we could introduce a logical plan and

construct a physical plan from it. This could allow us to reason about query execution

strategies at a more abstract level.

ID collisions. ϵStore stores references to captured objects using their class names and

their IDs. The object’s hash code is used as its ID. However, it is possible for two or more

distinct objects to share the same hash code. Currently, ϵStore does not support retaining

multiple objects with identical hash codes; if a newly captured object shares a hash code

with an existing object, the existing reference is overwritten by the new one. Although such

situations are theoretically possible, we did not encounter them during our evaluation.

Programming languages. We implemented ϵStore in Java due to our familiarity with the

language. Modifying types of fields or number of fields in Java is hard. Class redefinition

would require bytecode modification and loading in the class with a different classloader and

then managing two different versions of the same class within a single JVM. This restricts

the types of queries we can support in eStore (e.g., we cannot add new edges, we cannot

add new node properties etc.). Other languages like Python or Smalltalk might allow eStore

implementations to be more flexible and versatile. We leave design of an in-memory object

graph store for other languages as future work.

Concurrency semantics. We defined semantics assuming sequential program execution. It

would be interesting to define semantics for concurrent programs when an object might be

accessed both inside and outside a store (or multiple stores simultaneously). However, that

is outside the scope of the current work.

Query languages. ϵStore currently supports a subset of Cypher, which is the most popular

query language. Future work could explore supporting other known graph query languages,

e.g., GraphQL [19], Gremlin, SPARQL, and AQL [5]. Integration with languages that support

both imperative and declarative traversals, such as Gremlin, could be especially well suited

for ϵStore’s data representation.

Cache layer for graph databases. The efficient in-memory graph store model of ϵStore

makes it suitable to be used as a cache layer for persistent graph databases like Neo4j. The

new programming style brought by ϵStore can further enrich the interoperability between

the applications and the graph databases. We leave for future work the exploration of this

direction.
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7 Related Work

In this section, we cover the most closely related work, which we organize into: (1) graph

databases storage, (2) language integrated queries, (3) object relational/graph mappers.

Graph databases storage. Graph databases [3, 60, 2, 9] are a type of NoSQL database. One

of the most popular graph databases is Neo4j, which we discussed in this paper. Many other

(proprietary) options are available including TigerGraph [58], Neptune [27], Nebula [37],

JanusGraph [38], VelocityDB [36], Kùzu [16] and Memgraph [40]. VelocityDB is an in-memory

object database integrated with C# and can be extended as a graph database, but it still

introduces extra layer(s) of storage model abstraction and uses a specific set of APIs instead

of a query language like Cypher.

Language integrated queries. [11, 42, 20, 54] Microsoft LINQ [42] is an integration of

query capabilities directly into C# language. LINQ supports various data sources, including

collections (e.g., List), SQL database, XML documents, and streams. Unlike LINQ, ϵStore

is an in-memory graph backed object store. Including an object into ϵStore enables queries

on it similar to those on data structures using LINQ. Apache Commons OGNL [18] is an

open-source Expression Language (EL) for Java. It provides its own expression syntax to

navigate and manipulate Java object graphs. However, it is not designed as a graph store,

and does not provide the same level of expressiveness as graph query languages. OGO

generalizes the idea behind LINQ’s data structure queries and enables querying the entire

Java heap. Unlike OGO that supports querying the state of the heap, ϵStore focuses on

implementing an in-memory graph backed object store.

Object relational/graph mappers. Object-relational mapping (ORM) [59] is used to convert

data between a (relational) database and the heap. In a way, object relational mapping

techniques create an object database that can be directly manipulated within the program.

Example of ORM include Hibernate [26]. There are also Object-graph mappers (OGM) for

graph databases, such as Neomodel [15] and Renesca [14] for Neo4j. ϵStore is a graph

backed object store and thus requires no additional mapping into memory objects.

8 Conclusions

We presented ϵStore, the first in-memory graph backed object store. ϵStore brings a

programming paradigm shift, as it equates nodes in a graph with objects on the heap and

relations among nodes with reference fields. It uses dynamic class generation and loading to

create necessary schema (classes) to represent nodes and their properties. A subset of Cypher

is used for querying the store, and each query returns a table of references. Additionally,

ϵStore can transitively include an object already on the heap into a store, which enables

complex queries for data and relations on already existing object graphs. Our evaluation

shows the benefit of our approach. Besides being used as an object graph store, we expect

that the combination of graph store features, object store features, implementation of a

graph as an object graph, and ability to capture object graphs into a store will introduce

new programming styles.
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