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—— Abstract

We present a design and implementation of an in-memory object graph store, dubbed eSTORE. Our
key innovation is a storage model — epsilon store — that equates an object on the heap to a node in
a graph store. Thus any object on the heap (without changes) can be a part of one, or multiple,
graph stores, and vice versa, any node in a graph store can be accessed like any other object on the
heap. Specifically, each node in a graph is an object (i.e., instance of a class), and its properties
and its edges are the primitive and reference fields declared in its class, respectively. Necessary
classes, which are instantiated to represent nodes, are created dynamically by eSTORE. eSTORE
uses a subset of the Cypher query language to query the graph store. By design, the result of any
query is a table (ResultSet) of references to objects on the heap, which users can manipulate the
same way as any other object on the heap in their programs. Moreover, a developer can include
(transitively) an arbitrary object to become a part of a graph store. Finally, eSTORE introduces
compile-time rewriting of Cypher queries into imperative code to improve the runtime performance.
€STORE can be used for a number of tasks including implementing methods for complex in-memory
structures, writing complex assertions, or a stripped down version of a graph database that can
conveniently be used during testing. We implement eSTORE in Java and show its application using
the aforementioned tasks.
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1 Introduction

We present a design and implementation of an in-memory object graph store, dubbed eSTORE,
which enables easy implementation of methods for complex structures, writing assertions
over a set of objects on the heap, and substituting (as a lightweight alternative) a graph
database in an application during the testing process.
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Person X Likes X Post
Person Post personld (firstName personld| postld postld |content
id: long Likes | id: long 1 “Alice” 1 44 33 | “Foo”
firstName: String content: String ) “Bob” 2 33 >< 44 | “Bar”
(a) An example schema. (b) Relational database model.
Person Person
id: 1 id: 2
Node Relationship Node firstName: firstName:
“Alice” “Bob”
getLabels() getEndNode() getLabels() Likes Likes
getRelationships()—— getStartNode()\ getRelationships()\‘ l
name: getProperties() getType() getProperties() name:
“Person” “Post”
J id: 44 id: 33
Label Label content: content:
Key Value R Key Value “Bar” “Foo”
id 1 ‘Likes id 44
firstName | “Alice” RelationshipType content “Bar” Post Post
(c) Traditional graph database model. (d) eSTORE model.

Figure 1 Comparison of different storage models for the schema in (a).

€STORE introduces a novel storage model—epsilon storage-that equates an object on the
heap to a node in a graph store. Figure 1 illustrates the differences among well-known storage
models and epsilon storage; a schema (or class diagram) that is being instantiated is shown
in Figure la. In eSTORE, any object on the heap (without changes) can be a part of a graph
store (or even multiple stores), and vice versa, any node in a graph store can be accessed like
any other object on the heap. Specifically, each node in a graph is an object (i.e., instance of
a class). Its properties and its edges are the primitive and reference fields declared in its
class, respectively. Necessary classes, which are instantiated to represent nodes, are created
dynamically by eSTORE.

€STORE uses a subset of the Cypher query language [22] to query the graph store; Cypher
is a powerful yet concise declarative language popular in the space of graph databases [55].
In our design, the result of any query is a table (ResultSet [51]) of references to objects on
the heap, which users can manipulate the same way as any other object on the heap in their
programs. Moreover, a developer can include (transitively) an arbitrary object to become
a part of a graph store. Processing, e.g., parsing, Cypher queries at runtime can be costly,
thus, eSTORE includes support for query rewriting into imperative code at compile-time. Our
experiments show query rewrites improving query end-to-end execution times by 5x.

We implemented eSTORE in Java. Our primary focus was to enable novel programming
style and propose an efficient storage model. We demonstrate the uniqueness of eSTORE with
three use cases. First, we demonstrate the use of eSTORE for concisely expressing complex
assertions. Second, we show how eSTORE can be used for implementing various methods.
Visualisation of object relations and their fields through graphs can simplify API design.
We write methods for a dozen of widely-used data structures from popular libraries (e.g.,
Guava [21]), as well as methods for H2 [23], an in-memory relational database. We compare
eSTORE with OGO [57] in terms of runtime performance. OGO is a framework for Java that
allows using Cypher to query the heap. Third, we use eSTORE as a lightweight replacement
for graph databases; using an in-memory database (or another form of an object store) is
common during testing to save setup cost and runtime cost incurred if a full-blown database
is used [6]. At the same time, we note that eSTORE is not meant to replace graph databases
in production as that is not the primary intent for eSTORE. To estimate benefits of using
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e€STORE instead of a graph database, if so desired, we use queries and datasets from the
Social Network Benchmark (SNB) [1] of the Linked Data Benchmark Council (LDBC) [56].
LDBC is the most popular benchmark for graph databases. The LDBC SNB was designed
to model a snapshot of the activity in a realistic social network. Finally, we evaluate the
compile-time code rewriting capability of eSTORE, on the LDBC queries, by comparing its
performance with the vanilla version of eSTORE.

Our results show versatility of eSTORE for various tasks and good performance in case a
lightweight store is sufficient in the testing process.

The key contributions of this paper include:
Idea. We introduce a novel storage model. Besides being used as a traditional object
store (manipulated only via queries), our design enables a unique interoperability between
imperative code and objects in a graph store. Results of queries are references to objects
in a graph store, thus enabling further imperative processing of the results. Furthermore,
any object, which is created by imperative code, can be included into a graph store
without any intermediate abstraction and queried for complex relations.
Formalization. We formalize the core of the proposed storage model and the set of
API operations supported by eSTORE. We also define a mapping and describe the way
instances of any existing class, map to nodes and edges, and can be queried.
Implementation. We implemented eSTORE in Java thus using Java features to dynam-
ically create and load classes that are necessary to represent nodes and their properties.
We focus on enabling novel programming models. We also perform compile-time query
rewriting into imperative code to reduce the runtime cost. Our implementation is publicly
available on GitHub!.
Evaluation. We performed a three-pronged evaluation. First, we evaluated eSTORE on
queries and datasets from the LDBC SNB. Second, we evaluated the power of ¢STORE
by comparing its execution of library methods of Java data structures, implemented
as Cypher queries, with OGO. Finally, we evaluated the compile-time code rewriting
capability of eSTORE on the LDBC SNB benchmark queries.

2 Example

€STORE is an in-memory graph store. We demonstrate several aspects of eSTORE using an
example that showcases the following: (1) creation of a graph store, (2) creation of nodes
and edges, (3) querying the graph store, and (4) capturing existing objects into a graph
store. We also use this example to provide a brief introduction to the Cypher graph query
language [22].

Schema. We use a subset of the LDBC SNB schema shown in Figure la to discuss the
example. It contains two entities, Person and Post. The Person entity has two properties:
id of type long and firstName of type String. The Post entity has properties: id of type
long and content of type String. A Person can be in a relation (LIKES) with a Post.

Introduction to Cypher. Cypher is a declarative query language introduced by Neo4j
and designed to be expressive when querying graph stores. The labelled property graph
(LPG) data model uses nodes and relations to model data. A simple LPG modelling

! https://github.com/EngineeringSoftware/eStore
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dynamicClasses

. . . labelObjectMap o
1 /* Instantiate EpsilonStore instance **/
beic
Map

2 EpsilonStore db = new EpsilonStore ("dbname"); <)
o 1Cy,
< “Slatopy

(a) Creating an eSTORE instance with name dbname.

1 /* Add Person and Post nodes to EpsilonStore */ labelObjectMap w
2 db.query(

3 "CREATE (m: Person” {id: 112, firstName: ‘Eve’}" A‘ labelclas

4 +"-[r:LIKES]->" S S “ntor g
5 +"(n: Post™ {id: 481, content: ‘About Databases’})" Pos
6 ); &

“Person’; ’ P 4
¥
©
(b) Insertion of objects without explicit schema (dynamically creating classes Person
and Post at runtime with ASM).
1 public class Person { 1 public class Post {
2 private long id; 2 private long id;
3 private String firstName; 3 private String content;
4 private Post[] LIKES; 4
5} 5 }
(c) Person.java. (d) Post.java.
1 /* Add Person and Post nodes to EpsilonStore */ labelObjectMap w
2 Post post = new Post(481L, "About Databases"); — Edgeremoved ("=
-

3 Person person = new Person(112L, "Eve", post);
4 db.captureAll(person);

(e) Insertion of objects with pre-defined schema (using existing Person and Post

classes).

1 /* Execute Cypher query to remove the LIKES edge */ JabelObjectMap m

2 db.query( ) o /—qe N

3 "MATCH (m: Person” {id: 112})" A ’m iy
4 +"-[r:LIKES]->" ¥ gy ‘A
5 +"(n: Post™ {id: 481}) " Edge removed  «pyg .
6 +"DELETE r" !
7);

(f) Deleting relations using Cypher queries.

Figure 2 An illustrative example to showcase eSTORE for creating a graph store, creating nodes
and relations, capturing existing objects, and querying the state of the graph store. The left side
of each sub-figure will show the code and the right side will show the corresponding state of the
€STORE instance.
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: LIKES
: Person
[ig:112 | id: 481
l firstName : “Eve"’J content : “About Databases”]

Figure 3 An example labelled property graph.

the schema in Figure la is given in Figure 3. In Cypher semantics, the data entities
Person and Post are called nodes, and LIKES is called a relation. Both nodes and relations
can have one or more labels. Labels function as types, and groups similar nodes and
relations. In the example LPG, the Person entity has label Person and the Post entity
has label Post. The relation between these nodes has the label LIKES. Both, nodes and
relations, can have properties, which are a set of key-value pairs. The key-value pairs
describe the property name and value. The Person node has properties id with value
112 and firstName with value “Eve”. A node may have 0 or more relations and can
have relations with the same label to different nodes. A relation may be non-directional,
uni-directional or bi-directional. We now describe Cypher syntax. A node is generally
represented in a Cypher query as () and we can optionally specify a variable to reference it
in later clauses such as (n). To match and return the node with label Person, we would
write the Cypher query as MATCH (n: Person{id:112, firstName:"Eve"}) RETURN n.
In a larger context, we can be more specific with the query: MATCH (n: Person {id:112,
firstName:"Eve"})-[:LIKES]->(m: Post {id:481, content:"About Databases"})
RETURN n.

Creating the graph store. The eSTORE graph store is created by invoking the constructor
of the EpsilonStore class with at least one argument to specify the name for the graph
store as shown in Figure 2a. The constructor call also instantiates several reference fields
of eSTORE. The datastore is a map that maps the ID of an object present in eSTORE to
itself. It can be used to optimize queries through ID based lookups. The dynamicClasses is a
list that stores the java.lang.Class instances created dynamically by eSTORE at runtime.
The labelClassInfoMap is a map that maps fully qualified class names of classes of objects
present in eSTORE to ClassInfo instances. The ClassInfo class of eSTORE is used to cache
primitive and reference field information of a class such as type and name of fields and is used
during query execution to access the fields of objects of that class. Finally, the labelObjectMap
is a map that maps fully qualified names of classes of objects present in eSTORE, to list
instances that store objects of the corresponding classes.

Inserting objects without explicit schema. Nodes in eSTORE can be any Java object. Nodes
can be created using CREATE Cypher queries that instantiate objects of specified classes.
If the specified class cannot be found in the classes loaded by the JVM, it is dynamically
created by eSTORE. An example of such a query is given in Figure 2b. We refer to such
object insertions into eSTORE as insertions without explicit schema.

The Cypher query in Figure 2b, as defined by the Cypher grammar, is a single part
query with an update (CREATE) clause. The CREATE clause, syntactically, is made up of
the token CREATE followed by a pattern. The pattern may be a single node pattern ((n))
or a multi-node pattern with relations ((n)-[J1->(m)-[1->(p)) or multiple single node
patterns ((n), (m), (p)). The pattern in our example is a two node pattern with relations
(:"Person™{...})-[:LIKES]->(: Post™{...}). The objective of the CREATE clause in
€STORE is to create instances and assign references between them based on the nodes and
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relations specified in the pattern. Therefore, the query in Figure 2b creates an instance of
type Person and an instance of type Post with the given properties. It then assigns the
reference field LIKES of the Person instance with the Post instance. Assuming that the
Person and Post classes are not present in the classes loaded by the JVM, eSTORE uses the
byte code manipulation framework, ASM [7], to first dynamically create these classes.

The node properties are mapped to the primitive fields of these classes whereas the
relations are mapped to their reference fields. All reference fields, created using class creation,
are Arrays of type Object with the same name as the relation labels. This design decision
allows support for one-to-many relations with the same label between nodes.

Inserting objects with explicit schema. eSTORE also supports inserting instances of existing
classes using the captureAll API method as shown in Figure 2e. captureAll captures
all references under reflexive transitive closure, and hence, all objects reachable from the
captured object are also inserted into the store. The class definitions of Person and Post are
given in Figure 2c and Figure 2d, respectively. The field dynamicClasses is empty since the
classes of the objects inserted already exist and are not required to be created dynamically.

Data modification through queries. The objects captured into an instance of eSTORE can
be modified using Cypher queries. The query (lines 3-6) in Figure 2f deletes the relation
between two nodes. It is a single part query with two clauses, a reading (MATCH) clause and
an update (DELETE) clause. The MATCH clause identifies a set of objects and their references
that matches the specified pattern. The specified pattern is a two node relation pattern
specifying the labels, properties and relations for the referrer and referee nodes. Since this
pattern exists in our store, the variables m,r, and n, are mapped to the Person instance,
the reference field LIKES of the Person instance, and the Post instance respectively. The
DELETE clause on line 6 deletes all the objects mapped to the variable r. Therefore, the field
LIKES of the referrer node is set to null which is shown as the edge being removed in the
corresponding graph store state.

3 Graph Store

We first formalize our proposed storage model and the core operations supported by eSTORE
(§3.1). We then discuss the mapping between Cypher semantics and Java semantics as
implemented by eSTORE (§3.2), followed by a discussion on the API methods provided by
eSTORE (§3.3). Finally, we highlight the key implementation details (§3.4).

3.1 Semantics

eSTORE requires no changes to the language syntax, compiler, or execution environment.
Thus, we focus on formalizing the core operations of eSTORE such as capturing, deleting, and
querying objects. We use big-step operational semantics in our formalization. This section
clarifies these operations by providing precise definitions and illustrative examples for each
of the rules.

Table 1 shows the key symbols used in our formalization. We define a type (1) as a
(type_name, set_of fields) pair. Each field is a tuple: (name, type_name), and has a unique
name within a type definition. To simplify discussion, we will assume that int and string
are the only primitive types available: (int, #) and (string, #). We define a set type (Set, {}),
as an untyped set of values. We also define a metadata type that will be used to describe a
type: (Meta, {(name, string)}). We use I to denote a set of all available types at runtime.
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Table 1 Definitions of key symbols used in our formalization of eSTORE operations.

Symbol Definition

= The set of all objects available on the heap.
r The set of all available types at runtime.
T A type definition (7 € I'), consisting of a type name and a set of fields.
0 An object on the heap (o € E).
o” A meta-type instance (o7 € E).
9] An instance of eSTORE
fields(o) The set of non-primitive field names belonging to object o.
meta(o) Retrieves the meta-type instance (o”) of the object o.
type(v) Retrieves the type (primitive) of the primitive value v.
new(r) Creates a new object instance of type .

ntype(L, f) Creates a new type named L with a set of fields defined in f which is a
tuple of field names and their types (f = (n1 : t1, ..., 0 : tx)).

o[p/v] Represents an object o with a set of primitive fields p assigned to a set
of values v.
o.name Retrieves the value of the field named name of the object o.
o.*name Set of references reachable under transitive closure from the field named

name of o via non-primitive fields.
Z(o, f < v) Assigns the value v to the field f of object o.

We use = to denote all objects available on the heap, i.e., Z = {01, 09, ..., 0, }. Each object
(0) is an instance of a type (7) and has a unique identifier. An object has a set of values,
each corresponding to one field of the object’s type. An access to a field (o.name) returns its
current value, and a “star” access to a field (0.*name) returns a transitive closure, i.e., set of
objects reachable via non-primitive fields starting from the given field. We use the following
notation to update the field £ of an object o to value v: Z(o, f + v).

For each type (7) in a running program, there is an object (0”) on the heap, created by
the execution environment, which is an instance of the Meta type (analogous to instance of
java.lang.Class [47])).

An instance of eSTORE is simply an object on the heap (o € Z). We define the eSTORE
type as (eSTORE, {(store, Set)}). Thus, objects in a graph store are the objects reachable
via the store field of an eSTORE instance, i.e., db = 0.*store, and we have that db C =. As a
result of our design, it is trivial to have any object on the heap inserted into a graph store,
to share objects across graph stores, and even to embed one graph store into another.

We define the following helper functions: meta(o) returns the metadata object for the
given object; fields(o) returns the set of reference field names for the given object; new(r)
creates a new object (0) of the type 7 on the heap and its corresponding set of primitive
fields p and their values v is denoted by o[p/v]; ntype(L, f) makes a new type (named L)
with field names and types defined in the tuple f (tuple of field names mapping to their
corresponding types). type(v) returns a name of the primitive type for the given primitive
value.

We now formally define the core high-level operations that can be performed on an
€STORE instance. In all cases, o € E A0 € E and we use the following configuration:

(operation, 2, T)

30:7
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For each rule, we first specify its big-step operational semantics, followed by a brief
description of the rule, and finally an example showing the state of 6 and other relevant
objects, before and after rule application. We assume that all objects used in these examples
are instances of type Person and that this type exists in I' unless specified otherwise. For
each of the examples, the relevant changes in the after state are highlighted in blue.

» Rule 3.1 (Capture).

store’ = o.store U {0}

(0.capture(o),Z,T) |} (_,=(0,store + store’), ')

The capture rule defines the operation of inserting a single object o (present on the heap =)
into an eSTORE instance 6. The union in the premise ensures that if o already exists in o,
then no modifications occur to 0. In the example, we see that the eSTORE instance is empty
and there exists an object o on the heap in the before state. After applying the capture
rule, the eSTORE instance contains the the object ol.

Before: After:

o.store = o.capture(ol) o.store = {ol}

ol { id:1, firstName:"A", LIKES:02 } ol { id:1, firstName:"A", LIKES:02 }
02 { id:2, firstName:"B", LIKES:null } 02 { id:2, firstName:"'B", LIKES:null }

» Rule 3.2 (CaptureAll).

C =o.store U {0.* f|f € fields(o)} U {0}
(0.captureAll(o),=,T) |} {_,Z(0,store + C),T)

The captureAll rule is similar to the capture rule but here, the reference fields of the object
o being captured are transitively visited and captured into ¢ in addition to 0. We see that in
the premise of the rule, we first collect all the reference fields of o (fields(o)). Next, for every
reference field (f), we collect the set of references reachable under transitive closure from o
through that field (0.* f). This set is then unioned with o and the existing store of o to get
the new store. In the example, we see that the store of 0 is initially empty and there are
2 instances of Person (01,02) with one referencing the other. On applying the rule to the
referrer instance (o0l), the store now contains both, the referrer and the referee instances.

Before: After:

o.store = o.captureAll(o1) | 5 store = {01,02}

ol { id:1, firstName:"A", LIKES:02 } ol { id:1, firstName:"A", LIKES:02 }
02 { id:2, firstName:"B", LIKES:null } 02 { id:2, firstName:"'B", LIKES:null }

» Rule 3.3 (Delete).

store’ = o.store \ o
(0.delete(0),Z,T) | {_,=(0,store < store’), T)

The delete rule is used to remove contained objects from eSTORE. In the premise, we
remove the object o from the existing store to get the new store (store’). This is then used
to update the store in the conclusion. If the object does not exist in the store then the store
is unmodified after applying the rule. Deleting an object only removes that object from the
store while its references that may be part of the store are not removed. In the example, the
store initially contains two instances (01,02) with one referencing the other. On applying the
rule to the referrer instance, only the referrer instance (0l) is removed in the after state of
the store.
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Before: After:

o.store = {o1,02} o.delete(o1) o.store = {02}

ol {id:1, firstName:"A", LIKES:02 } ol { id:1, firstName:"A", LIKES:02 }
02 { id:2, firstName:"B", LIKES:null } 02 { id:2, firstName:"B", LIKES:null }

» Rule 3.4 (Match).

C = {0 o € 6."store A meta(o).name = L}
(_ =o.query(“match {a:L} return a”),E,T) | (_=C,ET)

The match rule is used to query the store and retrieve stored objects matching one or
more specified predicates. Although this rule supports complex predicates, we use a simple
predicate to simplify its semantic description. We use the predicate of matching and retrieving
all objects in the store whose type matches L. In the premise, we collect the set of all stored
objects whose meta-type name matches L. This set is returned as the result of the query in
the conclusion. In the example, the store initially contains two instances (01,02) both of type
Person. The result is initially empty. On applying the rule to retrieve all stored objects of
type Person, we see that the result now contains ol and 02 which are the stored objects of
type Person.

result = o.quer
?Efore: ("match(n: ‘chr;,on‘ ) éfter:
o.store = {o01,02} return n") o.store = {o0l,02}
ol { id:1, firstName:"A", LIKES:02 } | ——————— | o1 { id:1, firstName:"A", LIKES:02 }
02 { id:2, firstName:"B", LIKES:null } 02 { id:2, firstName:"B", LIKES:null }
result = & result = {01,02}

» Rule 3.5 (Create with pre-defined schema).

Lel o =new(L) o[p/v]
(0.query(“create {:L {p:v}}”),E,T) | (o.capture(o),Z,T)

The create rule with pre-defined schema is used to create and capture an object of a given
existing type into an eSTORE instance. This rule uses the CREATE clause in the Cypher query.
We use a simple example of creating an object of an existing type L with a field p and value v
to describe its semantics. In the premise, we first create the object o of type L and update its
field named p to value v. In the conclusion, we simply invoke the previously defined capture
rule on the eSTORE instance with o as argument to capture it into the store. In the example
below, the store initially contains 2 instances of type Person (o0l, 02). After applying the
rule, we see that the store now contains 3 instances of type Person and 03 is now non-null.
We assign a “name” 03 to this created object only for the purpose of showing the before and
the after states of applying the rule.

Before: (O: 1q;::s{)(n?reate After:

o.store = {ol,02} { firstName:’C’ })") o.store = {01,02,03}

ol {id:1, firstName:"A", LIKES:null} | —————— | ol { id:1, firstName:"A", LIKES:null}
02 { id:2, firstName:"'B", LIKES:null } 02 { id:2, firstName:"B", LIKES:null }
03 = null 03 { id:3, firstName:"C", LIKES:null}

» Rule 3.6 (Create without pre-defined schema).

L¢T 7 = ntype(L, (“p” : type(v))}) 0 = new(T) o[p/v]
(0.query(“create {:L {p:v}}"),E,T) | (0.capture(o),Z, T U{r})

The create without pre-defined schema is used to create an object of non-existing type and
capture it into the eSTORE instance. The query used is similar to create with pre-defined
schema except, now the type L is assumed to not exist in the set of available runtime types

ECOOP 2025
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I". We use the same example used in create-with-pre-defined-schema rule to describe the
semantics. In the premise, we first create a type L with a field named p with type matching
that of the primitive value v. Next, we create an instance o of type L and update its field
named p with value v. Finally, in the conclusion, we invoke the previously defined capture
rule on the eSTORE instance with o as the argument, to capture it into the store. The newly
created type is unioned into the set of available runtime types I'. This ensures that new
objects of this type can now be created by applying the create-with-pre-defined-schema rule
instead. In the example below, the store is initially empty. On applying the rule under the
assumption that the Person type does not yet exist, the store now contains an instance of
type Person and the object 0 is non-null.

o.query("create
(:> Person” { firstName:’A’

Before: HM After:
o.store = & o.store = {o}
o= null Person ¢ T of id:1, firstName:"A", LIKES:null}

We will now use the operations we formalized to prove 2 properties about eSTORE. In the
theorems that follow, o represents the state of the eSTORE. o(0) = L denotes that the
object o is absent from the store. We use the configuration (operation,o,T') in our formal
description of the theorems and their proofs.

» Theorem 1 (Idempotency of Insertions). Repeated insertions of the same object o into an
€STORE instance 0 yields an eSTORE instance state identical to inserting the object just once.
We can formally state the theorem as ¥V o, o and og(0) # L:

n

A((E.capture(o), o, Y (0041, 1)) = 01 = 00

i=0
Equality of the states is defined using the standard definition for set equality i.e., op11 =
00 <= (0ny1 S 00 A 0o C Ong1).

Proof. We will use mathematical induction to prove this theorem.
1. Base Case (i = 0): Prior to capture, o is present in the store, i.e., 0¢(0) # L. When a
capture operation is executed, the state transitions as follows:

(0.capture(0), 09, I') |} {_,01,T) where 01 = 09 U {0} by rule capture

o1 denotes the updated state. We know that o¢ U {o} = oq since o0¢(0) # L. Therefore,
o1 = o and the theorem holds for the base case.
2. Inductive Step (i = n): Consider an (n — 1) transition:

<5'Capture(0)v On—1, F> ‘U’ <—a On, F>

Lets assume that the theorem holds for i = (n — 1) i.e., 0, = 09. Now for the n'”
transition, by the semantics defined in rule capture, 0,41 = 0, U {0o}. However, by our
assumption of the theorem holding for i« = (n — 1), 0,41 = 09 U {0o}. By base case,
we know that o¢ U {o} = g¢. Therefore, we can claim by mathematical induction that
On+1 = 0g as required by the theorem. |

» Theorem 2 (Persistence of Inserted Objects). If an object o is inserted into the store at
state o, then o remains in the store in all subsequent states unless explicitly removed via a
deletion operation. We can formally state the theorem as ¥V o, o and og(0) = L:

=.

((0.capture(o), 00, ) I {_,01,T)) N\ ({(Siyo0, L) I (S}, 0101, Tiz1)) = opnyi1(0) # L

i=1

where S; (evaluates to S}) is any eSTORE supported operation excluding the delete operation.
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Table 2 Mapping of Cypher constructs to Java in eSTORE. “—” indicates unsupported features.

Group Cypher Construct Cypher Syntax Dynamically created CIaSSExisting

8 Node O Object Object

E R : 0-0-0,0-0->0,0<-0-0 Object[] Object, Object[]

1 elation

3 0<-01->0 — —

. Node Label (:<label>) Fully qualified class name  Fully qualified class name

2 Relation Label ()-[:<label>]1-0) Reference field name Reference field name

E Node Properties ({<name>:<value>,...}) Primitive, String fields Primitive, String fields
Relation Properties ()-[{<name>:<value>,...}]-0) — —

2 Decimal Literal [Long.MIN_VALUE, Long.MAX_VALUE] long byte, short, int, long

g 3 Float Literal [-Double.MAX_VALUE, Double.MAX_VALUE] double float, double

° % Boolean Literal TRUE, FALSE boolean boolean

> String Literal "<string>" java.lang.String java.lang.String

Proof. We will use structural induction on the defined semantic rules to prove this theorem.
1. Base Case (i = 0): Prior to capture, o is not present in the store, i.e., gg(0) = L.

When a capture operation is executed, the state transitions as follows:

(0.capture(0), 09, I') | (_,01,T) where 01 = 09 U {0} by rule capture

o1 denotes the updated state. Thus, immediately after execution, o is present in the store
or in other words o1(0) # L. Therefore, the theorem holds for the base case.
2. Inductive Step (i = n): Consider an (n — 1) transition:

<Sn71>0_nflarn71> ‘U’ <S7/171>Un7 FTL>

Lets assume that the theorem holds for i = (n — 1) i.e., 0,(0) # L. Now for the nt"
transition, the arbitrary statement S,, must be chosen from set of operations including
capturing, creating or matching as per the requirements of the theorem. Since these rules
do not specify any removal condition and were the same choice of operations available for
the (n—1)*" transition. We can claim by structural induction on the operational semantics,
o persists in all transitions unless explicitly removed through deletion. Therefore we can
conclude that o,11(0) # L as required by the theorem. <

3.2 Mappings

The mapping of semantics between Cypher and Java in eSTORE, is given in Table 2. The first
column (Group) shows Cypher features [29] supported by eSTORE. The Cypher Construct
and the Cypher Syntax columns describe the Cypher feature and its corresponding syntax
when querying. We show the mapping between Cypher features and Java classes in two cases:
(1) classes that are dynamically created by eSTORE (i.e., schema absent), and (2) already
existing classes written by developers (i.e., pre-defined schema present). These are given by
columns Dynamically created and Existing, respectively.

A Cypher node maps to any object in eSTORE for both dynamic and existing classes. If a
label is specified for the node, then it maps to objects that are instances of the class with a
fully qualified name matching the label.

For existing classes, a relation with a label maps to objects referred to by other objects
with the reference field name matching the label. These referee objects can be elements of an
array. For dynamic classes, relations always refer to the elements of an array of objects with
the array reference field name matching the label. This allows an object to have relations
with the same label to different objects. Relationships also support directionality which
enforces a referrer-referee relation. eSTORE supports non-directional and uni-directional
relations but not bi-directional owing to the limitation of its implementation language (Java).
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1 public void capture(Object obj) throws EpsilonStoreException
2 public void captureAll(Object obj) throws EpsilonStoreException
3 public ResultSet query(String cQuery) throws EpsilonStoreException

Figure 4 ¢STORE’s API available via the EpsilonStore class. The capture method in Line 1 is
used to capture a single object into eSTORE. The captureAll method in Line 2 is used to transitively
capture all objects reachable from, and including, the argument obj into eSTORE. Line 3 shows the
method to query eSTORE with the given Cypher query string cQuery.

Node properties map to an object’s primitive or java.lang.String fields in eSTORE.
The property values can be a decimal, floating point, string or boolean literal. To handle
the range of values supported by Cypher, eSTORE defaults to mapping decimal and float
properties to long and double fields for dynamic classes. Whereas for existing classes, these
properties may map to byte, short, int, long, float, and double fields.

Finally, for an instance (o) of a class C (C extends A), we treat all the fields (those from
C and A) in o the same.

3.3 API

eSTORE’s APT has three methods: (1) capture, (2) captureAll, and (3) query as shown
in Figure 4. It is our intentional design choice to keep the interface simple. Furthermore,
the architecture of eSTORE and the expressivity of Cypher allows most operations to be
performed through queries.

Inserting data. The captureAll method given in Figure 4 line 2 is used to insert data
into eSTORE by capturing all objects reachable from the given argument object obj under
reflexive transitive closure. We use a Breadth First Search (BFS) [10] strategy to traverse
the graph of object references reachable from the root object obj. capture method inserts
only the given object into eSTORE.

Semantically, to capture an object in eSTORE translates to storing references to the object
in the EpsilonStore instance’s labelObjectMap and datastore fields as well as to store
its primitive and reference field information (name and type) in ClassInfo instance present
inside the labelClassInfoMap field.

The algorithm for capturing objects into eSTORE is given in Algorithm 1. We use a
FIFO queue inside a loop to collect all the objects directly and indirectly reachable from
the argument object through its reference fields during each iteration. In each iteration, we
pop an object o’ from the head of the queue (line 4), compute its hash (ID) (line 8) to check
if it already exists in the eSTORE instance (lines 9-11), and add it to datastore if absent
(line 12). We then get the fully qualified class name of the object’s class (line 13), check if its
mapped to a list in labelObjectMap, and append the object to the list if mapped (line 18).
If not mapped, we then insert a new empty list for this key in labelObjectMap (line 15)
and append the object. In addition, we also create a ClassInfo instance for the class of this
object to cache its field information and insert it into the labelClassInfoMap field (line 16).
Following this, we get the reference field objects of o’ and insert them into the queue (line 22).
The loop terminates when the queue is empty.

Querying. The query method is shown in Figure 4 line 3 and is used to query the eSTORE
instance. It takes the Cypher query string cQuery as an argument and returns a ResultSet
containing the result of the query: references to objects in the eSTORE instance.
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Algorithm 1 Capturing objects. Algorithm 2 Creating objects.

Input: An object o to be inserted into eSTORE  Require: Cypher query string query and list of Java classloaders
Require: An empty FIFO queue g cList

1: procedure CAPTUREALL(0) 1: for all z := in Nodes of query do

2 Append o to ¢ 2: | + Label of x

3 while ¢ is not empty do 3 pNames < Property names of x

4 o’ < Pop head of ¢ 4: pValues < Property values of ©

5: if o’ is null then 5: pTypes < inferTypes(pNames, pValues)

6: continue 6: ¢ < GETORMAKECLASS(l,pNames, pTypes)

7 end if 7 0 < CreateAndSetFields(c, pNames, pValues, pTypes)

8 h + getHashCode(o') 8: capture(o)

9 if datastore[h] is not null then 9: end for

10: continue

11: end if 10: procedure GETORMAKECLASS(I, pNames, pTypes)

12: datastore[h] + o 11: if labelClassInfoMapll] is not null then

13: ¢ + getClassName(o) 12: return getClass(labelClassInfoMapll])

14: if labelObjectMap][c] is null then 13: else

15: labelObjectMap|c] « ] 14: for all loader := cList do

16: labelClassInfoMap[c] < new 15: ¢ + findClassWithLoader(l, loader)
ClassInfo(c) 16: if c is not null then

17: end if 17: labelClassInfoMap(l] <— new ClassInfo(l)

18: Append o’ to labelObjectMap|c] 18: return c

19: cInfo <+ labelClassInfoMap|c] 19: end if

20: for all r := getRefFields(cInfo) do 20: end for

21: o' «+ getRefObject(cInfo,r,0’) 21: ¢ < ASMCreateClass(l, pNames, pTypes)

22: Append o to q 22: labelClassInfoMap[l] - new ClassInfo(l)

23: end for 23: return c

24: end while 24: end if

25: end procedure 25: end procedure

Data can also be inserted into eSTORE through Cypher CREATE queries. The algorithm for
data insertion through queries is given in Algorithm 2. We describe the case when the Cypher
query specifies the creation of a multiple single node pattern (CREATE (n:labell {...}),
(m:1label2), ...). We start by iterating through all the node definitions in the Cypher
query string and collect their labels, property names, property values, and their outgoing
edge labels. For each property name and value pair, we infer the property type (line 5) using
the mapping given in Table 2. Next, for each node definition, we invoke GETORMAKECLASS
which either finds a class with a fully qualified name matching that node label or dynamically
creates a class with the name matching the label and with its field definitions matching the
node’s property names and types. The GETORMAKECLASS procedure first checks (line 11) the
labelClassInfoMap field for the class, matching the passed in label argument [ and returns
it if present (line 12). If absent, we attempt to find the class corresponding to the label by
iterating through all the classes loaded into the JVM by all the available classloaders [12, 48]
and return it if found (line 18). If this also fails, then eSTORE proceeds with dynamic class
creation at runtime (line 21). We use the bytecode manipulation and analysis framework
ASM [7] to dynamically generate the class. Once the class is found or created, we instantiate
it (line 7) and set the fields of the instance to the collected property values. The instance is
then captured into eSTORE.

The class instantiation procedure CreateAndSetFields checks for consistency of the
inferred property types and the field definitions present in the class. An exception is thrown
if the checks fail due to a type mismatch.

3.4 Implementation

Field access. Cypher queries may specify patterns in their clauses that require matching
a node’s properties (MATCH (n {a:10})) or its relationships (MATCH ()-[:labell->Q)).
Executing these queries requires accessing the fields of objects. To optimize query execution
and avoid the overhead of repeatedly retrieving the field name and type for every object,
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we cache these field information in eSTORE’s ClassInfo instances. Since fields are defined
in an object’s class in Java, it is sufficient to have one ClassInfo instance to cache the
field information for all objects of that class. These ClassInfo instances are stored in
€STORE’s labelClassInfoMap field. This field is a hashmap that maps a label to its
corresponding ClassInfo instance. ClassInfo is an abstract class. We have two concrete
implementations of it based on the approach used to retrieve the field values. We refer to
these two implementations of eSTORE as eSTORE" and eSTORE".
eStore” uses Java reflection [53] to retrieve the field values. This implementation contains
a hashmap mapping field names to their corresponding java.lang.reflect.Field [50]
instances, obtained using reflection. These Field instances are used to retrieve the field
values.
eStore" uses Java’s unsafe [41] API to retrieve the field values. This implementation
contains a hashmap mapping field names to field offsets (type long values). These field
offsets are used to retrieve the field values.

Storage. €eSTORE stores inserted objects using their unique ID’s and their labels (types).

Storing by label. Every object in Java is an instance of a class which defines its type
and the fully qualified name of this class is the label of the object. The 1abelObjectMap
field is used for storing inserted objects based on their label. This field is a hashmap
that maps labels to ordered lists of objects belonging to the corresponding labels. During
query execution, if the query string specifies a label for a node to be matched, then since
labelObjectMap stores objects by their labels, we can use it to efficiently search only a
subset of the stored objects.
Storing by ID. The ID is assumed to be unique for every inserted object and is by
default computed internally by invoking the identityHashCode [46] method provided
by java.lang.System package on the object. The datastore field is used for storing
objects based on their ID. This field is a hashmap that maps the ID of an inserted object
to itself. If the ID of an object being inserted is found to already exist in the datastore
then the old object reference mapped to that ID in the datastore is replaced with the
new object reference. During query execution, if the query string specifies a node and
its ID then the datastore can be used to reduce the search space of stored objects and
hence optimize query performance.

Our storage schemes are designed such that the storage structures require minimal update

on insertion or removal of objects from eSTORE.

3.5 Code Rewriting

The vanilla version of eSTORE parses input queries and generates a query plan at runtime.
We notice the overhead is significant, even multiple times greater than the time to actually
execute the query. To reduce overhead, we introduce a code rewriting technique in eéSTORE.
The basic idea is to parse the query at compile time, then when building the query plan at
compile time, we inject the query plan execution code directly into the query call site.

Specifically, we introduce a Java annotation to support this feature. When a method
is annotated with this annotation, all the queries (passed as arguments to the query API
described in Section 3.3) inside the method will be preprocessed by a handler. The handler
reuses most part of the eSTORE engine; however, instead of executing the query plan and
returning the result, it will aggregate imperative Java code of the query plan needed to be
executed for the query and replace the query with corresponding imperative code at the call
site. At runtime, only plain imperative Java code is executed. This way, we translate the
declarative query into imperative code at compile time, and there is no overhead for parsing
and building the query plan at runtime.
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public class LinkedList<E>...{ 1 public void testAcyclicity(){
transient Node<E> first; 2 List<Long> list = new LinkedList<Long>(); ...
private static class Node<E> { 3 EpsilonStore db = new EpsilonStore ("dbname");
.. 4 db.captureAll(list);
Node<E> next; 5 assertTrue (db.query (
Node<E> prev; 6 "MATCH (n: ‘LinkedList$Node‘)-[:next*]->(n)"
. 7 +" RETURN COUNT(n) = 0").getBoolean(0));
} 8 }
(a) Snippet of the LinkedList class. (b) Checking acyclicity invariant on the LinkedList with
€STORE.

Figure 5 An example showing complex assertions with ¢STORE.

4 Use Cases

We describe 3 use cases that are made possible as the result of our design. These examples
showcase the unique programming style of equating objects (instances of classes) and nodes
in eSTORE. Our examples include: (1) writing complex assertions for checking structural
invariants, (2) implementing methods, and (3) using eSTORE as a lightweight graph store.

4.1 Runtime invariant checking with complex assertions

Structural invariants can be easily checked by writing complex assertions using eSTORE
queries. We demonstrate this by checking the acyclicity invariant of a linked list.

A snippet of the java.util.LinkedList [13] class definition is given in Figure 5a. It
contains an inner-class Node, whose instances are the LinkedList instance’s nodes. The
fully qualified class name of this inner-class in Java is LinkedList$Node. An instance of
Node has a field next that holds a reference to its successor node in the list. The next field
of a node can be null if it is the last node in the list. It also contains a field prev that holds
a reference to its predecessor node.

The acyclicity invariant of a LinkedList imposes the condition that no node can be
reachable from itself by strictly following only its successor or predecessor nodes. In other
words, a LinkedList must be free of cycles. Figure 5b shows how such an invariant can
be checked with eSTORE. The LinkedList instance list is first captured into an eSTORE
instance using its captureAll API method (line 4). Next, we assert on the result of the
Cypher query (lines 6-7), that checks for acyclicity of the captured 1ist. The query contains
a MATCH clause that matches a pattern in the captured graph of objects, where a Node
instance contains a path to itself through 1 or more next edges. The RETURN clause returns
true if such a pattern does not exist.

In this manner, an otherwise complex assertion can be concisely expressed using Cypher
queries with eSTORE.

4.2 Implementing methods with Cypher queries

H2 is an open-source, lightweight relational database implemented in Java. H2 supports
embedded in-memory mode, where it runs within the same JVM as the application. Thus, all
the objects related to an H2 instance are on the heap. As a result, we can insert an instance
of H2 into an instance of eSTORE. We can then query anything related to the H2 instance or
data within that instance. Here, we show a way to query the metadata of an H2 instance.
Figure 6a shows how to get the schemas in an H2 database using the API provided by
JDBC [52, 25]. Figure 6d shows the actual implementation of the getSchemas API by H2.
It imperatively setups result, iterates over the schemas and insert them into the result.
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Connection conn = DriverManager.getConnection( 1 public ResultInterface getSchemas() {
"jdbc:h2:mem:h2TestDb" g return getSchemas(null, null);
nﬁa ’ 4 public ResultInterface getSchemas(String catalog,

); 5  String schemaPattern) {

DatabaseMetaData meta = conn.getMetaData(); 6 c%xeckClosed(); )

ResultSet schemas = meta.getSchemas(); 7  SimpleResult result = new SimpleResult();

8  result.addColumn(
" " .

(a) Getting schemas using JDBC API. 18 resul?iii‘ciiﬁ}fl(’ TypelInfo.TYPE_VARCHAR) ;

11 "TABLE_CATALOG", TypeInfo.TYPE_VARCHAR);

EpsilonStore db = new EpsilonStore ("name"); 12 if (!checkCatalogName(catalog)) {return result;}

Class h2db = 13 CompareLike schemaLike = getLike(schemaPattern);

Class.forName("org.h2.engine.Engine"); 14  Collection<Schema> allSchemas =
db. captureAll (h2db) ; 15 session.getDatabase() .getAllSchemas();
/* schemas names are the keys of 16 Value cValue =
* a ConcurrentHashMap 17 getString(session.getDatabase () .getShortName());
*/ 18 if (schemalLike == null) {
ResultSet schemas = db.query( 19 for (Schema s : allSchemas)
"MATCH (db: ‘org.h2.engine.Database‘)" 20 result.addRow(getString(s.getName()), cValue);
+"-[:schemas]->()-[:table]->()-[:key]l->(k)" 21 } else {
+"RETURN k"); 22 for (Schema s : allSchemas)
23 if (schemalike.test(s.getName()))
(b) Getting schemas using eSTORE query. 24 result.addRow(getString(s.getName()),
25 cValue);
26}

ResultSet users = db.query'( 27 // we ignore sorting for a fair comparison
"MATCH (db: ‘org.h2.engine.Database‘)" 28 // result.sortRows(
+"-[:usersAndRoles]->()-[:table]->()" 29  // new SortOrder(session, new int[] { 0 }));
+"'-[:key]l->(k) " 30  return result;
+"RETURN k") ; 31 }

(c) Getting users using eSTORE query. (d) H2 implementation for getSchemas JDBC APL

Figure 6 Querying metadata of H2. (a) Querying schemas using JDBC getSchemas API, (b)
Querying schemas of a captured H2 instance with eSTORE, (c¢) Querying users of a captured H2
instance with eSTORE, and (d) H2’s implementation of getSchemas.

Figure 6b shows how to get the same result by inserting the embedded H2 database into
€STORE and querying its metadata using Cypher. The idea here is to show how eSTORE
can be easily used to implement some API methods in a concise and readable way, allowing
developers to quickly experiment with new ideas and move fast. As another example, figure 6¢
shows how we can query all the users in an H2 database while JDBC only provide an API
for getting current username.

4.3 Lightweight in-memory Graph Store

The ability to insert, delete, update and query objects in eSTORE and the support for the
Cypher query language makes eSTORE a good candidate for testing when a graph database is
needed. We demonstrate in section 5.4 that eSTORE can be used as a light-weight alternative
in-place of graph databases by evaluating it on the LDBC SNB benchmark.

5 Evaluation

We evaluated eSTORE in three ways. First, we benchmarked eSTORE on the LDBC SNB [1]
benchmark using Neo4j graph database as reference. Second, we re-implemented a number
of imperative library methods of data structures using Cypher in eSTORE and compared its
performance with OGO. Finally, we compared the query execution times of eSTORE with and
without code rewriting, on the LDBC SNB benchmark. We answer the following questions:
RQ1: How does eSTORE perform as a lightweight graph store?

RQ2: How does eSTORE, when used for implementing methods, compare with OGO?
RQ3: How does eSTORE’s code rewriting improve its performance?
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We describe environment setup (§5.1), existing systems we use as baselines (§5.2), and the
benchmarks (§5.3). Finally, we answer the research questions (§5.4-§5.6).

5.1 Experiment Setup

We built a Docker image for each system used in the evaluation (e.g., OGO) to ensure ease of
repeatability of our evaluation experiments. All experiments are run inside Docker containers
and averaged over 5 runs. We modified each system used in the evaluation to collect the same
profile data. We use a single machine to run the experiments; the machine has an x86_ 64
11th Gen Intel(R) Core(TM) i7-11700K @ 3.60GHz server with 64GB of RAM and running
a 64-bit Ubuntu 20.04.1 operating system. We use Java 17 throughout our experiments.

5.2 Existing Systems

We briefly describe the existing systems that we used in our evaluations.

Neodj. Neodj [28] is a graph database and arguably, the most popular one in the industry

at the moment. It uses the LPG data model. Neo4j has two modes.
Server Mode (Neo4j®): In this mode, Neodj operates as a database server and runs in
a JVM separate from the test JVM which contains the benchmarking queries. We use
the Neodj Java driver [35] version 4.3.3 in the test JVM to send the benchmarking query
strings to the Neodj server. The driver implements the Bolt [30] protocol (similar to
JDBC) to communicate with the server. We build Neo4j from source inside docker and
load it with the LDBC SNB benchmark dataset. The loading of the datasets (CSVs

describing nodes and relations) is done using Neo4j’s batch import tool neo4j-admin [34].

Impermanent Mode (Neo4j®): In this mode, all data inserted into the database are stored
in-memory and is non-persistent, and the database runs inside the JVM running the

LDBC benchmark queries. This mode is only available in internal test-suites of Neo4j.
The Docker image used for evaluation is the same as that built for the server mode.

We first create an impermanent database by instantiating GraphDatabaseService [31]
through dependency injection with ImpermanentDbmsExtension [32]. We then insert the
LDBC SNB benchmark datasets into the database by using CREATE Cypher queries to
create the corresponding nodes and relations through database transactions.

We include both, Neo4j* and Neo4j’ as a point of reference in our evaluation of eSTORE on
the LDBC SNB benchmark. We use Neo4j version 5.13.0 and default configuration for all
modes of Neo4j in our experiments.

0GO. OGO [57], similar to LINQ [42], combines imperative and declarative (via Cypher)
styles of programming. Namely, OGO sees the entire JVM heap (i.e., object graph) as a
single graph and enables developers to query the heap (or a subset of it) using queries. We
compare it with eSTORE for writing methods using queries on several data structures by
replacing existing imperative implementations.

Table 3 shows some major differences between the existing systems we used in our evaluation
and eSTORE. We categorize the feature differences into Programmability and Database
features. Programmability features broadly include capabilities such as schema creation,
querying runtime program state, manipulating objects on the heap and quickly implementing
methods of library classes. These are (partially) supported by OGO and eSTORE. However,
most graph databases lack all or most of these features. The database features include some

30:17

ECOOP 2025



30:18

In-Memory Object Graph Stores

Table 3 Differences between traditional graph databases, OGO and eSTORE.

Feature GDBs OGO eStore

DN Schema creation v X 4
% £ Query program state X v v
go% Heap manipulation X v 4
£ g Method implementation X v v

Code Rewriting X X v
o, Views [43] 4 X v
_‘E ©  Multi-tenancy [§] 4 X v
3 % In-memory v v 4
8 & ACID [24] v X X

features found in traditional databases such as support for multiple views, multi-tenancy,
in-memory or non-persistent storage, and ACID compliancy. Most graph databases support
all or most of these features, while eSTORE focuses on support for multiple views, in-memory
and multi-tenancy features. This table serves to highlight the differences in the design of
traditional graph databases and eSTORE and thus their area of applicability.

5.3 Benchmarks

This section provides a brief description of the benchmarks used in our evaluation.

€Store as a graph store. To evaluate eSTORE as a graph store and answer RQ1, we use
the SNB benchmark from LDBC [56]. LDBC provides both, various sized datasets for its
benchmarks and the Cypher queries. The size of a dataset is measured using scale factor
which is its uncompressed disk space (e.g., an uncompressed dataset that requires 10GB of
disk space would have a scale factor of 10). The LDBC SNB was designed with the aim to
model a snapshot of the activity in a realistic social network during a period of time. Table 4
shows the nodes and relationships that appear in the LDBC SNB benchmark and their
variation with scale factors used in our evaluation namely, 0.1, 0.3, 1, 3 and 10. Higher scale
factors can be supported since eSTORE is only limited by the memory available to the JVM
which can be increased with the JVM option -Xmx. We observe that the frequency of some
nodes (Comment) and relationships (Person Likes Comment) scale by order of magnitude for
an order of magnitude increase in scale factor whereas that of others such as Tagclass and
Tagclass IsSubclassO0f Tagclass do not change with scale factor. Query execution time
is affected by these different occurrence frequencies depending on the node and relationship
labels appearing in it. We use all the queries from the LDBC SNB benchmark that are
currently supported by eSTORE. Many queries use Cypher language features which are not
implemented in eSTORE yet (§6). Table 5 gives a brief description of the used queries. The
name of the query as it appears in the LDBC SNB benchmark documentation is shown in
column 1. The queries all contain either a read (MATCH) clause or a read and an update
(CREATE) clause. These read and update clauses contain either single node or two-node
patterns. The pattern contained in the queries is given by columns 3, 4 and 5. Finally, a
brief description of the queries is given in column 6. Generally, ignoring indexing schemes,
we should expect the query execution time to scale with the number of operations performed
and the frequency of occurrence of labels in its patterns. For example, QgN p contains the
most occurring label (Comment) in the benchmark in its patterns and 2 clauses, and would
be expected to take more time to execute than Q£ 5 that involves less frequently occurring
labels and just 1 clause.
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Table 4 Node and relationship statistics for LDBC SNB benchmark across evaluated scale factors.

Type Name 0.1 0.3 1 3 10
Comment 151043 523222 2052169 6413095 21865475
Forum 13750 31097 90492 221792 595453
o Person 1528 3514 9892 24328 65645
g Post 135701 324825 1003605 2597141 7435696
Z, Organisation 7955 7955 7955 7955 7955
Place 1460 1460 1460 1460 1460
Tag 16080 16080 16080 16080 16080
Tagclass 71 71 71 71 71
Comment HasCreator Person 151043 523222 2052169 6413095 21865475
Comment HasTag Tag 191303 680738 2698393 8426418 28740194
Comment IsLocatedIn Place 151043 523222 2052169 6413095 21865475
Comment ReplyOf Comment 76787 265931 1040749 3251228 11089373
Comment ReplyOf Post 74256 257291 1011420 3161867 10776102
Forum ContainerOf Post 135701 324825 1003605 2597141 7435696
Forum HasMember Person 123268 404952 1611869 4982242 17168614
Forum HasModerator Person 13750 31097 90492 221792 595453
Forum HasTag Tag 47697 108649 309766 767382 2065319
E‘ Person HasInterest Tag 35475 81066 229166 569918 1535511
4 Person IsLocatedIn Place 1528 3514 9892 24328 65645
;% Person Knows Person 14073 44760 180623 565247 1938516
T“j Person Likes Comment 62225 291590 1438418 5281725 19949360
et Person Likes Post 47215 177064 751677 2498139 8839875
Person StudyAt Organisation 1209 2792 7949 19497 52632
Person WorkAt Organisation 3313 7697 21654 53023 143553
Post HasCreator Person 135701 324825 1003605 2597141 7435696
Post HasTag Tag 51118 179499 713258 2229757 7599701
Post IsLocatedIn Place 135701 324825 1003605 2597141 7435696
Organisation IsLocatedIn Place 7955 7955 7955 7955 7955
Place IsPartOf Place 1454 1454 1454 1454 1454
Tagclass IsSubclassOf Tagclass 70 70 70 70 70
Tag HasType Tagclass 16080 16080 16080 16080 16080

€Store as a heap manipulation engine. To evaluate eSTORE as an engine to modify objects
on the heap and answer RQ2, we use data structures from three sources: Java Collections
Framework (JCF) [49], Google Guava [21], and the Eclipse Collections [17] projects. We
rewrote on average 2 library methods from each of these data structures to use Cypher
queries (rather than the imperative implementation). Simply, for eSTORE, we insert the data
structure into an instance of eSTORE and run a query that implements the same functionality
as exiting imperative code.

5.4 €Store as a Lightweight Graph Store (RQ1)

We use query execution time and memory consumption during benchmarking on LDBC SNB
benchmark to motivate eSTORE as a lightweight graph store.

Query execution time. In our early experiments, we noticed substantial variations in query
execution times across several runs, which we attribute to the JVM environment. To stabilize
the time, we perform the following steps. We first load the dataset for a given scale factor
into the systems used in our evaluation. Next, we execute all the chosen LDBC queries
for that benchmark in a randomized order. We call this as the 1%¢ set. Following this, we
once again execute the same set of queries in another randomized order. We call this as the
274 get. The sets are executed back-to-back in the same JVM process. The profile data for
an evaluation run is collected for every query execution in both the sets. However, when
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Table 5 Description of the LDBC SNB benchmark queries used in our evaluation.

Query Abbrv. Start Node Relation End Node Description

interactive-delete-query2 Q?NB Person Likes Post Matches a pattern with a Person node
pointing to a Post node through a rela-
tion Likes, deletes the relation and re-
turns the count of Likes relation between
the two nodes.

interactive-delete-query3 Q?NB Person Likes Comment Matches a pattern with a Person node
pointing to a Comment node through a
relation Likes, deletes the relation and re-
turns the count of Likes relation between
the two nodes.

interactive-delete-query5 QgNB Forum HasMember Person Matches a pattern with a Forum node
pointing to a Person node through a re-
lation HasMember, deletes the relation
and returns the count of HasMember re-
lation between the two nodes.

interactive-short-query1l QgNB Person IsLocatedIn Place Matches a pattern with a Person node
pointing to a Post node through a rela-
tion IsLocatedIn and returns properties
of the two nodes.

interactive-short-query5 QENB Comment HasCreator Person Matches a pattern with a Comment node
pointing to a Person node through a rela-
tion HasCreator and returns properties
of the Person node.

interactive-update-query2 QgNB Person Likes Post Matches a Person and Post, creates a
relation Likes from Person to Post node
and returns the count of Likes relation
between the two nodes.

interactive-update-query3 QgNB Person Likes Comment Matches a Person and Comment, creates
a relation Likes from Person to Com-
ment node and returns the count of Likes
relation between the two nodes.

interactive-update-query5 Q?NB Forum HasMember Person Matches a Forum and Person, creates a
relation HasMember from Forum to Per-
son node and returns the count of Has-
Member relation between the two nodes.

interactive-update-query8 éNB Person Knows Person Matches a Person and Person, creates a
relation Knows from Person to Person
node and returns the count of Knows
relation between the two nodes.

reporting the profile data for a query for an evaluation run, we use the data from the 2"? set
and discard the 1%¢ set. Figure 7 shows a boxplot of the query execution time for the queries
in the 1%* and 2"¢ sets for eSTORE" across 10 evaluation runs. It is observable that profile
data for the queries collected from the 27¢ set has substantially lower variance than that
collected from the 1%t set, and, hence, the query profile data are more stable across runs.

The collected profile data breaks down the total query execution time (Tyot) into the
query parsing time (tpa), query plan generation time (tp), and query plan execution time
(tex). We compute the sum breakdown time (tgq) from the profile data as tpg=tp.+ tpi+
tgs. All times are reported in milliseconds unless otherwise stated.

Table 6 shows the results for LDBC SNB. Column 1 shows the query abbreviation.
Column 2 shows the scale factor of the dataset. Columns 3-5 show the results for Neo4;j®,
Neo4j’, and eSTORE" respectively. We initially hypothesized that using reflection to retrieve
field values may degrade performance due to excessive runtime type-checking. To test our
hypothesis, we decided to implement field access using reflection (eSTORE") and the unsafe
API (eSTORE"). However, we observed no significant performance difference between these
two modes of eSTORE. Hence, for brevity, we omit showing eSTORE" results in Table 6.

For each system, we show the query parsing time (tp,), query planning time (¢p;), query
plan execution time (g, ), sum breakdown time (tp4), and the total query execution (Tit).
We use bold text for T, and we use gray background to show the best value (smallest T}t)
in each row. OOM indicates out of memory (when the physical memory requirement exceeds
~64GB). The T, of queries in general scales with scale factor of the datasets with the
exception of some queries (e.g., Q’S“N B,QEN ), that operate on node labels containing very
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Figure 7 Query execution times for 1st and 2nd randomized sequence runs of eSTORE".
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(a) SNB virtual memory usage in GB. (b) SNB physical memory usage in GB.

Figure 8 Virtual and Physical memory usage in GB for LDBC SNB evaluation across scale
factors. Query failures for exceeding memory are indicated by OOM.

few nodes. We can see that the T},; of eSTORE is comparable or better than the production
graph database for most of the queries. The graph database outperforms eSTORE for query
QE N because, QE ; matches referrer node with label containing the highest amount of
nodes in the benchmark (20 million+ for SF 10). This shows that for testing purposes, where
datasets are relatively smaller, eSTORE can be used as a lightweight graph store instead of a
full fledged production graph database.

Memory usage. In addition to time, we also measured memory consumption for all the
systems. We used pidstat [39] to collect memory consumption during evaluation runs.
Figure 8 shows the peak memory usage for each system (one bar per system). The virtual
and physical memory consumption in GB during running all the selected queries on the
SNB for different scale factors is shown in Figure 8a and Figure 8b, respectively. We allow
Neo4j’ and Neo4j® to manage their own memory requirements [33], e.g., allocating page
cache. We observe that the virtual memory usage of a system does not change significantly
across scale factors of the SNB benchmarks. The physical memory usage, on the other hand,
increases with increasing scale factors for all the systems. Neodj’ requires the most physical
and virtual memory and is OOM for the SNB scale factor 10 dataset. eSTORE" consumes the
least amount of virtual memory across the systems and is second only to Neo4j® in terms of
the least physical memory consumed. This is to be expected since eSTORE"” being in-memory,
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Table 6 Total query execution time (Tio¢) and its breakdown in milliseconds, for queries and
datasets from the LDBC SNB benchmark. All reported times lower than 0.5 milliseconds are shown
as 0. The maximum allocated physical memory for each evaluation run is 63GB.

t

0.1 11 29 0 40 46 1 33 3 37 38 0 0 0 0 o

0.3 11 28 0 39 44 1 33 5 39 40 o 1 1 2 3

QéNB 1 10 24 0 34 38 o 31 24 55 55 o 0 1 1 1
3 12 24 0 36 40 2 32 40 75 76 0 1 4 4 5

10 11 23 0 35 39 OOM 0 0 4 5 5

0.1 10 24 0 34 39 [ 32 2 35 36 [ 0 0 0 o

0.3 12 27 0 39 43 o 33 5 38 39 o 0 1 1 2

Q?NB 1 11 26 0 37 41 1 34 9 44 45 0 0 0 1 1
3 10 23 0 33 37 0 33 52 86 87 o 1 4 5 6

10 11 24 0 35 39 OOM 0 0 4 4 4

0.1 11 25 0 36 41 0 32 2 34 35 o ) 1 1 1

0.3 10 27 0 37 41 0 32 4 37 37 0 0 3 3 4

QgNB 1 10 24 0 34 38 0 30 18 49 50 o 0 3 3 3
3 10 24 0 34 38 0 31 21 52 53 o 0 8 8 9

10 11 25 0 36 41 OOM 0 0 19 19 19

0.1 16 30 0 46 51 1 34 0 36 36 0 0 0 0 1

0.3 15 30 0 45 50 1 34 0 35 36 o 1 2 2 4

QSE')NB 1 13 25 0 38 43 0 34 0 34 35 o 0 1 1 1
3 16 26 0 43 a7 3 34 0 37 38 0 1 2 3 4

10 15 26 0 42 46 OOM 0 0 4 4 5

0.1 10 23 0 33 38 1 30 0 31 31 [ 0 7 7 4

0.3 11 21 0 32 36 2 34 0 36 37 o 0 29 29 30

Q?NB 1 11 22 0 34 38 4 29 0 33 33 0 0 114 115 115
3 11 20 0 31 36 6 29 0 36 37 o 1 319 320 321

10 11 20 0 31 35 OOM 0 0 866 866 867

0.1 10 15 29 54 58 0 24 44 67 68 o 0 5 6 6

0.3 10 16 66 92 97 1 25 107 133 134 0 1 15 16 16

Q};NB 1 9 16 212 237 241 1 24 286 311 312 o 0 35 35 35
b 3 8 16 530 554 559 0 23 754 T 778 0 0 87 87 88
10 11 18 1531 1559 1564 OOM 0 0 258 58 259

0.1 9 16 31 57 61 2 26 59 88 88 0 0 6 6 7

0.3 9 16 102 128 133 0 24 206 230 231 o 0 30 31 31

QgNB 1 10 15 423 448 453 1 24 728 753 754 o 0 74 75 75
3 9 15 1298 1322 1326 3 25 2484 2511 2512 0 0 244 244 245

10 10 15 4393 4418 4422 OOM 0 0 915 915 915

0.1 10 16 3 29 33 0 24 7 31 32 ) 0 1 1 1

0.3 10 16 6 33 38 0 24 16 40 41 0 1 4 4 5

QgNB 1 9 16 18 44 48 0 23 40 63 63 0 0 3 3 3
3 9 16 45 70 74 o 23 105 128 129 o 1 10 11 11

10 10 16 112 137 143 OOM 0 0 22 22 22

0.1 9 17 2 28 32 0 24 3 27 27 o 0 0 0 o

0.3 10 16 3 29 34 0 24 6 30 31 0 1 1 2 2

QéNB 1 9 16 8 33 38 24 14 38 39 o 0 1 1 1
3 10 16 14 39 43 0 24 33 57 57 o 1 4 5 5

10 9 15 40 64 69 OOM 0 0 6 6 7

stores all inserted data on RAM whereas Neo4j® can store part of it on disk and can page
it into RAM as and when required. We once again see that for smaller datasets, which is
generally the case during testing, eSTORE’s memory consumption is comparable or better
than a production graph database.

In summary, the query execution times and memory consumption of eSTORE is on
par or better than that of a production graph database for small datasets. Since,
smaller datasets are typically the norm in testing environments, eSTORE provides an
excellent light-weight alternative to a full fledged graph database for testing.

5.5 Data-structure Performance (RQ2)

We reuse 5 of the data structures from Thimmaiah et al. [57] that were used to evaluate
OGO. We also introduce 4 additional data structures from the Eclipse Collections project in
our evaluation.

OGO supports two modes of operation, OGOV and OGO™M¢™. In both modes, the first
step is to identify a subset of the heap that is relevant to the query. The 2 modes differ in
the query engine used. OGON®° uses an external query engine (Neo4j) and OGOM*™ uses
an in-memory query engine. We compared the 2 different modes of OGO with eSTORE by
executing Cypher queries implementing imperative methods from data-structure libraries.
We evaluated these queries for varying workloads (number of elements present inside the
data structure). The results are shown in Table 7. We only report the total query execution
time Tio (in milliseconds) for each system. The data-structures are given in the first column.
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Table 7 Total query execution time (7%o¢) in milliseconds, for the contains or equivalent method
reimplemented as Cypher query, on data structures for different modes of OGO and eSTORE. The
time out (TO) duration used is 1 minute .

Data-structure  #Elements OGOY¢® 0GOM®™ (Store” Store"

JCF v17.0

102 2231 264 89 81

ArrayList 10° 8169 486 97 90
10* 40261 888 133 116

10° TO TO 166 162

102 1632 399 88 86

ArrayDeque 102 3377 497 105 89
10% 41301 1540 128 120

10° TO TO 156 166

102 2391 315 78 77

HashMap 10° 9479 516 88 100
10% TO 2753 136 126

10° TO TO 356 394

102 24831 420 85 79

3

LinkedList 100 TO TO 83 88
10 TO TO 125 133

10° TO TO 232 216

Guava v32.1.3-jre

102 1711 358 82 76

ArrayTable 10 2742 415 94 90
104 23298 1031 125 140

10° TO TO 237 228

Eclipse v11.1.0

102 1592 514 78 76

UnifiedSet 10 2916 595 87 90
10% 55464 3373 158 149

10° TO TO 223 239

102 1997 489 88 83

UnifiedMap 103 5079 865 102 109
10 TO TO 111 113

10° TO TO 210 200

10? 1637 453 80 77

FastList 10® 2750 540 89 87
104 40243 1255 130 143

10° TO TO 172 161

102 1820 411 78 82

ArrayStack 102 3538 741 87 84
: 10* TO 2461 127 129

10° TO TO 153 153

The second column shows the workload, and finally, columns three through six give the
total query execution times for OGO and eSTORE. We fixed the query execution time out
(TO) duration to be 1 minute. We clearly see that both the modes of eSTORE consistently
outperform those of OGO by at least an order of magnitude. Larger workloads for most of
the considered data structures result in TO for OGO.

OGON¢° is significantly slower than eSTORE because of using an external query engine
which incurrs a heavy overhead due to repeated serialization and deserialization of the heap
subset. This overhead increases for higher workloads due to increase in the heap subset
size. €STORE is also faster than OGOM¢™ by an order of magnitude on average. This is
primarily due to 3 factors. The first is that both the modes of OGO rely on tagging [45] of
objects (assigning a long identifier) in the heap to identify those relevant to the query. Since
other JVM processes such as the garbage collector (GC) also use tagging, both modes of
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Figure 9 Total query execution time (7o) for LDBC SNB queries in milliseconds. In (a), each
query is executed in sequence inside a single JVM process; in (b), each query is executed in a
separate JVM process.

OGO execute every query by first iterating through the entire heap and tagging every object
to 0. This tag initialization time grows linearly with the number of objects in the heap.
The second factor is, eSTORE is implemented purely in Java and thus benefits from Just-In-
Time (JIT) compilation whereas OGOM®™ uses an in-memory query engine implemented
in C++. Finally, the third factor is in the identification of the heap subset in OGO. Both
the modes rely on the JVMTI FollowReferences [44] method to identify the heap subset.
The FollowReferences method takes a user provided callback as one of its arguments and
visits every object starting from JNI roots following its chain of references, reporting them
to the callback. Providing class filters to FollowReferences only controls what objects are
reported but not what objects are visited. This overhead of visiting objects not relevant to
the query increases with increase in heap size. This is unlike eSTORE which stores references
to the objects that might be queried.

We only compare total query execution time and not lines of code (LOC) since, both
OGO and eSTORE use Cypher to implement the data-structure methods.

In summary, eSTORE outperforms both the modes of OGO for Cypher queries re-
implementing imperative methods from data-structure libraries. OGO is on-average
an order of magnitude slower or worse. This is due to eSTORE benefitting from JIT
compilation due to its pure Java implementation and storing references to all the
queryable objects. OGO, on the other hand, incurrs heavy overhead due to its need
to identify the heap subset relevant to the query for every query execution.

5.6 Imperative Code Rewriting Performance (RQ3)

We evaluate the performance of the code rewriting using LDBC SNB queries on the smallest
scale factor dataset (0.1).

Figure 9 shows the evaluation results. In Figure 9a, we run each query sequentially in
the same JVM process. (The order to run these queries is determined by the test runner, we
observe the same trend with other orders). We observe that the code rewriting technique
speeds up the first two queries; and for the subsequent queries the execution time is similar.
There are two main reasons for the results. First, we use ANTLR to parse the query and the
start up takes time [4], thus the first query of eSTORE" takes much longer time than others.
Second, after the warm up, JIT compilation kicks in and the difference becomes negligible.
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We further evaluate the execution time when each query runs in a separate JVM process
and the result is shown in Figure 9b. This result is consistent with our previous conclusion.

In summary, parsing and generation of query plans adds nearly an order of magnitude
to the execution time. We can significantly speed up query execution by removing this
overhead by injecting query plan execution code into the query call site at compile
time.

6 Limitations and Future Work

We document potential future directions in this section.

Query optimization. Our current implementation of the query engine only generates the
physical plan and directly executes it. In the future, we could introduce a logical plan and
construct a physical plan from it. This could allow us to reason about query execution
strategies at a more abstract level.

ID collisions. ¢STORE stores references to captured objects using their class names and
their IDs. The object’s hash code is used as its ID. However, it is possible for two or more
distinct objects to share the same hash code. Currently, eSTORE does not support retaining
multiple objects with identical hash codes; if a newly captured object shares a hash code
with an existing object, the existing reference is overwritten by the new one. Although such
situations are theoretically possible, we did not encounter them during our evaluation.

Programming languages. We implemented eSTORE in Java due to our familiarity with the
language. Modifying types of fields or number of fields in Java is hard. Class redefinition
would require bytecode modification and loading in the class with a different classloader and
then managing two different versions of the same class within a single JVM. This restricts
the types of queries we can support in eStore (e.g., we cannot add new edges, we cannot
add new node properties etc.). Other languages like Python or Smalltalk might allow eStore
implementations to be more flexible and versatile. We leave design of an in-memory object
graph store for other languages as future work.

Concurrency semantics. We defined semantics assuming sequential program execution. It
would be interesting to define semantics for concurrent programs when an object might be
accessed both inside and outside a store (or multiple stores simultaneously). However, that
is outside the scope of the current work.

Query languages. ¢STORE currently supports a subset of Cypher, which is the most popular
query language. Future work could explore supporting other known graph query languages,
e.g., GraphQL [19], Gremlin, SPARQL, and AQL [5]. Integration with languages that support
both imperative and declarative traversals, such as Gremlin, could be especially well suited
for eSTORE’s data representation.

Cache layer for graph databases. The efficient in-memory graph store model of eSTORE
makes it suitable to be used as a cache layer for persistent graph databases like Neo4j. The
new programming style brought by eSTORE can further enrich the interoperability between
the applications and the graph databases. We leave for future work the exploration of this
direction.
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7 Related Work

In this section, we cover the most closely related work, which we organize into: (1) graph
databases storage, (2) language integrated queries, (3) object relational /graph mappers.

Graph databases storage. Graph databases [3, 60, 2, 9] are a type of NoSQL database. One
of the most popular graph databases is Neo4j, which we discussed in this paper. Many other
(proprietary) options are available including TigerGraph [58], Neptune [27], Nebula [37],
JanusGraph [38], VelocityDB [36], Kuzu [16] and Memgraph [40]. VelocityDB is an in-memory
object database integrated with C# and can be extended as a graph database, but it still
introduces extra layer(s) of storage model abstraction and uses a specific set of APIs instead
of a query language like Cypher.

Language integrated queries. [11, 42, 20, 54] Microsoft LINQ [42] is an integration of
query capabilities directly into C# language. LINQ supports various data sources, including
collections (e.g., List), SQL database, XML documents, and streams. Unlike LINQ, eSTORE
is an in-memory graph backed object store. Including an object into eSTORE enables queries
on it similar to those on data structures using LINQ. Apache Commons OGNL [18] is an
open-source Expression Language (EL) for Java. It provides its own expression syntax to
navigate and manipulate Java object graphs. However, it is not designed as a graph store,
and does not provide the same level of expressiveness as graph query languages. OGO
generalizes the idea behind LINQ’s data structure queries and enables querying the entire
Java heap. Unlike OGO that supports querying the state of the heap, eSTORE focuses on
implementing an in-memory graph backed object store.

Object relational /graph mappers. Object-relational mapping (ORM) [59] is used to convert
data between a (relational) database and the heap. In a way, object relational mapping
techniques create an object database that can be directly manipulated within the program.
Example of ORM include Hibernate [26]. There are also Object-graph mappers (OGM) for
graph databases, such as Neomodel [15] and Renesca [14] for Neo4j. eSTORE is a graph
backed object store and thus requires no additional mapping into memory objects.

8 Conclusions

We presented eSTORE, the first in-memory graph backed object store. eSTORE brings a
programming paradigm shift, as it equates nodes in a graph with objects on the heap and
relations among nodes with reference fields. It uses dynamic class generation and loading to
create necessary schema (classes) to represent nodes and their properties. A subset of Cypher
is used for querying the store, and each query returns a table of references. Additionally,
€STORE can transitively include an object already on the heap into a store, which enables
complex queries for data and relations on already existing object graphs. Our evaluation
shows the benefit of our approach. Besides being used as an object graph store, we expect
that the combination of graph store features, object store features, implementation of a
graph as an object graph, and ability to capture object graphs into a store will introduce
new programming styles.
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