

Dynamically Fusing Python HPC Kernels ISSTA082:3

code. In contrast, custom kernels are likely to be larger in size, longer running, and fewer in number,

so obtaining speedups requires that the fused kernels be optimized properly. In addition to fusing

custom kernels, PyFuser is the only framework that does this dynamically at run-time. This allows

us to detect a larger amount of opportunities for kernel fusion compared to static approaches.

Combining fusion of custom kernels with dynamic lazy evaluation is a novel approach.

We also introduce code transformations during the PyKokkos code generation phase to further

improve the performance of the fused kernels. Since PyKokkos generates Kokkos kernels that

are optimized statically by a C++ compiler, data sharing patterns between kernel arguments are

not known, reducing the compiler’s ability to optimize code. In a typical PyKokkos kernel, the

programmer is expected to hand optimize the code to assist the compiler. For automatically fused

kernels generated by PyFuser, these optimizations must be applied again. We therefore dynamically

analyze arguments passed to kernels to implement code transformations in PyKokkos, enabling

better compiler optimizations.

We assess the benefits and limitations of PyFuser using a number of existing HPC applications

written in PyKokkos, including a Particle-in-cell (PIC) code [7], ExaMiniMD [2], a Gaussian Naive

Bayes classifier, NPBench [38], and benchmarks from the PyKokkos repository. PyFuser achieves

speedups of 3.8× on average across all processors.

The key contributions of this work include the following:

★ Framework. We present PyFuser, a framework for automatic kernel fusion. PyFuser records

traces of kernel calls and fuses them to generate faster kernels. We also introduce dynamic code

transformations to PyKokkos that further improve the performance of fused kernels.

★ Evaluation. We perform an extensive evaluation of PyFuser on a number of PyKokkos kernels.

We assess the benefits of PyFuser using four different processors.

★ Analysis. We perform a deep dive into our results and report our findings for various (kernel,

processor) pairs. The insights gained are broadly applicable to other frameworks, including

Kokkos and its underlying backends.

The source code for PyFuser is available at https://github.com/kokkos/pykokkos/tree/main/pykokkos/

core/fusion.

2 Background

In this Section, we introduce Kokkos [34] and PyKokkos [5]. These frameworks enable programmers

to write performance-portable parallel code, i.e., code that can run efficiently on different hardware

platforms. Kokkos achieves this by providing a portable C++ API for writing parallel kernels that

can be targeted to specific processors at compile-time. Internally, Kokkos contains backends that

implement this API to run on different parallel processors, using frameworks such as OpenMP for

CPUs, CUDA for NVIDIA GPUs, and HIP for AMD GPUs. The Kokkos API includes three main

primitives: a parallel for loop, a parallel reduction, and a parallel scan. Furthermore, each framework

is associated with a default memory layout (e.g., row-major or column-major) to achieve good

performance for each processor. Kokkos also automatically selects kernel launch parameters at

run-time (e.g., grid dimensions for CUDA and HIP).

PyKokkos is a Python framework built around C++ Kokkos that provides many of the same

abstractions through Python. It dynamically (i.e., at run-time) transpiles Python kernels into C++

Kokkos, while also automatically generating language bindings to interface between the two

languages. PyKokkos compiles C++ code it generates using any supported C++ Kokkos compiler

(e.g., GCC, Clang, NVCC, etc.) and imports it into Python. The compiled code is saved so that

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA082. Publication date: July 2025.

ISSTA082:4 Nader Al Awar, Muhammad Hannan Naeem, James Almgren-Bell, George Biros, and Milos Gligoric

1 @pk.workunit

2 def add(tid, A, B, N, S):

3 for i in range(N):

4 A[tid][i] = S + B[tid][i]

5

6 @pk.workunit

7 def mul(tid, A, B, C, N):

8 for i in range(N):

9 C[tid][i] = A[tid][i] * B[tid][i]

10

11 pk.parallel_for(threads, add, A, B, N, S)

12 pk.parallel_for(threads, mul, A, B, C, N)

(a) Example PyKokkos kernels.

1 @pk.workunit

2 def add_mul(tid,A0,B0,N0,S,A1,B1,C,N1):

3 for i in range(N0):

4 A0[tid][i] = S + B0[tid][i]

5 for i in range(N1):

6 C[tid][i] = A1[tid][i] * B1[tid][i]

(b) An example fused kernel.

1 @pk.workunit

2 def add_mul(tid, A, B, C, N, S):

3 for i in range(N):

4 A[tid][i] = S + B[tid][i]

5 C[tid][i] = A[tid][i] * B[tid][i]

(c) An example fused kernel with argument and

loop fusion.

1 ld.global.u32 %r8, [%rd17]; (load B)

2 add.s32 %r9, %r8, %r4;

3 st.global.u32 [%rd18], %r9; (store A)

4 ld.global.u32 %r10, [%rd17]; (load B)

5 mul.lo.s32 %r11, %r10, %r9;

6 st.global.u32 [%rd19], %r11; (store C)

(d) PTX for the fused kernel in Figure 2c.

Fig. 2. Fusion of two simple PyKokkos kernels where the compiler cannot fully optimize the code.

it can be re-used during later runs instead of re-compiling. All of this is done dynamically and

transparently to the programmer by the PyKokkos Runtime.

Figure 2a shows an example of two PyKokkos kernels. Users define kernels using the pk.workunit

decorator. The parameters for each kernel include a thread ID (tid here) followed by the remaining

user-defined parameters. Type annotations are optional, as PyKokkos specializes the kernel defi-

nition by inspecting the types of the arguments passed at run-time. The first kernel, add (line 2),

adds a scalar S to a 2D array B and stores the result in the 2D array A. The second kernel, mul

(line 7), multiplies arrays A and B element-wise and stores the result in C. Kernels are called with

pk.parallel_for() (lines 11-12), which requires the number of threads, the name of the kernel,

and the user provided arguments. When parallel_for() is called, PyKokkos internally transpiles

the code to C++ and Kokkos, compiles it, and calls the kernel.

3 Motivation

In this Section, we discuss the need for kernel fusion in Kokkos and PyKokkos by discussing the

performance benefits (Section 3.1). We then show a concrete example of two PyKokkos kernels a

user might want to fuse, motivating the need for automated kernel fusion in PyKokkos (Section 3.2).

3.1 Benefits

Loop fusion is a classical compiler optimization that fuses multiple loops into one, improving data

locality for arrays accessed in those loops [15]. PyKokkos kernels, which are expressed as parallel

for loops, can be fused similarly.

When fusing multiple parallel kernels into one, we expect the resultant fused kernel to perform

better than the unfused kernels due to better data reuse, improved compiler optimizations, and

lower total kernel launch overhead.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA082. Publication date: July 2025.

Dynamically Fusing Python HPC Kernels ISSTA082:5

Despite the potential benefits of kernel fusion, there is no performance portable automated

solution. It frequently falls to the programmer to decide how to organize parallel code across

kernels. One factor influencing this decision is code reuse i.e., moving code to a separate kernel to

reuse it in different parts of a codebase. Another factor is that smaller kernels are easier to test,

debug, and maintain. Additionally, the availability of existing kernel implementations in libraries

(e.g., NumPy) forces programmers into having their code separated into different kernels at arbitrary

boundaries with little room for customization. Finally, there is also the programmer’s subjective

interpretation of writing modular code with proper separation of concerns [32].

3.2 Example

At present, programmers must refactor their code to fuse Kokkos kernels, as C++ compilers do

not fuse kernels automatically. Figure 2a shows two PyKokkos kernels that a programmer might

want to fuse. These kernels access common data, so we expect fusion to be beneficial: instead of

loading each element of B twice (lines 4 and 9), we only need load it once and reuse the value later.

Similarly, instead of loading each element of A in mul, we can reuse the value produced in add.

However, fusing these two simple kernels and to get good performance proves to be challenging.

The first challenge is to actually write the fused kernel. Figure 2b shows how a programmer might

do this: the fused kernel parameters and body are formed by combining the lists of parameters and

bodies of the unfused kernels and renaming the parameters to avoid name conflicts. In order to

write a functionally correct fused kernel, the programmer must keep the parameters separate (e.g.,

A0 and A1) and the loops unfused, as these optimizations depend on the run-time values of the

arguments. While this is a general-purpose solution, it does not reuse data effectively: the compiler

cannot optimize the memory accesses as they occur in different loops (lines 3 and 5) and the arrays

are accessed through different identifiers (A0 and A1). Even if compilers know that the loop bounds

are the same, we found that they will not consistently fuse loops, so users must do this manually.

Alternatively, the programmer could maintain multiple implementations of each fused kernel

specialized to the run-time arguments. However, this approach will not scale, especially for larger

kernels with more parameters.

Suppose for the particular case in Figure 2a the programmer wrote the specialized fused im-

plementation in Figure 2c, fusing the parameters and loops. Even here, the compiler cannot fully

optimize the memory accesses as a programmer might expect: the second load from array B on

line 5 cannot be safely removed. This can be confirmed by looking at the optimized PTX (low level

NVIDIA ISA) generated by NVCC in Figure 2d (we show PTX instead of SASS as PTX is higher

level and easier to understand, but the generated SASS follows the same pattern). The reason is that

the store to array A on line 4 in Figure 2c prevents the compiler from removing the second load

from B, as it cannot prove that A and B do not alias, and so the store to A invalidates the previously

loaded value from B. The programmer can avoid this issue by removing the redundant load or use

the restrict keyword, which tells the compiler that the arrays do not alias.

The final remaining challenge is that the programmer must then locate all occurrences of

consecutive calls to add and mul in the codebase in order to replace them with a single call to

a fused kernel. The two kernel calls on lines 11 and 12 in Figure 2a are an example of one such

occurrence. In this case, it is straightforward to replace these two calls. However, in larger codebases,

this pattern can occur frequently, so replacing all occurrences by hand will not scale. Programmers

must also be careful not to introduce race conditions in fused kernels, i.e., only fuse kernels that

are safe to fuse.

We will now present PyFuser, an automated kernel fusion framework for PyKokkos which

handles these challenges.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA082. Publication date: July 2025.

Dynamically Fusing Python HPC Kernels ISSTA082:7

Require: 𝑘𝑒𝑟𝑛𝑒𝑙- The kernel being called

Require: 𝑎𝑟𝑔𝑠- The arguments passed to the kernel

Require: 𝑓 𝑢𝑡𝑢𝑟𝑒- The Future associated with the kernel

1: function log(𝑘𝑒𝑟𝑛𝑒𝑙, 𝑎𝑟𝑔𝑠, 𝑓 𝑢𝑡𝑢𝑟𝑒)

2: 𝑟𝑒𝑎𝑑_𝑎𝑟𝑟𝑎𝑦𝑠 ← 𝑔𝑒𝑡_𝑟𝑒𝑎𝑑_𝑠𝑒𝑡 (𝑘𝑒𝑟𝑛𝑒𝑙, 𝑎𝑟𝑔𝑠)

3: 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 ← 𝑔𝑒𝑡_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠(𝑟𝑒𝑎𝑑_𝑎𝑟𝑟𝑎𝑦𝑠)

4: 𝑜𝑝 ←𝑇𝑟𝑎𝑐𝑒𝑟𝑂𝑝(𝑘𝑒𝑟𝑛𝑒𝑙, 𝑎𝑟𝑔𝑠, 𝑓 𝑢𝑡𝑢𝑟𝑒,𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠)

5: 𝑎𝑑𝑑_𝑡𝑜_𝑡𝑟𝑎𝑐𝑒(𝑜𝑝)

6: 𝑤𝑟𝑖𝑡𝑒_𝑎𝑟𝑟𝑎𝑦𝑠 ← 𝑔𝑒𝑡_𝑤𝑟𝑖𝑡𝑒_𝑠𝑒𝑡 (𝑘𝑒𝑟𝑛𝑒𝑙, 𝑎𝑟𝑔𝑠)

7: for 𝑎𝑟𝑟𝑎𝑦 in 𝑤𝑟𝑖𝑡𝑒_𝑎𝑟𝑟𝑎𝑦𝑠 do

8: 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 ← 𝑔𝑒𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑎𝑟𝑟𝑎𝑦)

9: 𝑠𝑒𝑡_𝑑𝑎𝑡𝑎_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑎𝑟𝑟𝑎𝑦, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 + 1)

10: 𝑚𝑎𝑝_𝑎𝑟𝑟𝑎𝑦_𝑡𝑜_𝑜𝑝(𝑜𝑝, 𝑎𝑟𝑟𝑎𝑦, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 + 1)

11: end for

12: end function

Require: 𝑑𝑎𝑡𝑎- The array or Future being requested

Require: 𝑣𝑒𝑟𝑠𝑖𝑜𝑛- Optionally specify the requested version

13: function get_trace(𝑑𝑎𝑡𝑎, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛)

14: if 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 is 𝑁𝑜𝑛𝑒 then

15: 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 ← 𝑔𝑒𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑑𝑎𝑡𝑎)

16: end if

17: 𝑜𝑝 ← 𝑔𝑒𝑡_𝑜𝑝(𝑑𝑎𝑡𝑎, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛)

18: 𝑡𝑟𝑎𝑐𝑒 ← {}

19: for 𝑑 in 𝑜𝑝.𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 do

20: 𝑛𝑒𝑤_𝑜𝑝𝑠 ← 𝑔𝑒𝑡_𝑡𝑟𝑎𝑐𝑒(𝑑.𝑎𝑟𝑟𝑎𝑦,𝑑.𝑣𝑒𝑟𝑠𝑖𝑜𝑛)

21: 𝑡𝑟𝑎𝑐𝑒.𝑒𝑥𝑡𝑒𝑛𝑑(𝑛𝑒𝑤_𝑜𝑝𝑠)

22: end for

23: return 𝑡𝑟𝑎𝑐𝑒

24: end function

Fig. 4. The algorithms to log kernel calls and retrieve kernel calls associated with some data.

implements all the Python arithmetic operators (e.g., __add__()) and so behaves as a Python scalar

type would.

Due to lazy evaluation, a kernel’s output is not immediately visible following a kernel call.

Kernels output data either by writing to arrays or by returning a scalar, which we replace with

a Future when tracing is enabled. Therefore, we must ensure that the programmer receives the

correct data when reading from an array or a Future by actually running the kernels that generate

that data. Therefore, we introduce the flush_data() Runtime method (line 14 in Figure 3a), which

given an array or Future returns the sequence of kernel calls, i.e., the trace, that needs to run

in order to generate that data. We modify the PyKokkos array and Future implementations to

automatically call flush_data() whenever the user reads from them.

When an array or Future calls flush_data(), PyFuser first retrieves the trace associated with

that data from the Tracer (line 15) and generates fused kernels using the Fuser (line 16). It then

resumes the PyKokkos compilation process (i.e., transpilation, compilation, and invocation) for

each fused kernel (lines 18-20). If the kernel returns a future, its value is set at this point (line 21).

This sequence of events is illustrated in Figure 3b for the example in Figure 2a. With tracing

enabled, the PyKokkos Runtime uses PyFuser to log the calls to add and mul (step 1). When the

user reads from the C array, PyFuser retrieves the trace (step 2) and fuses the kernels (step 3).

4.2 Tracing

The Tracer’s purpose is to log kernel calls and retrieve traces when data is requested by the user.

Figure 4 shows the algorithms implemented in the Tracer. The log function (line 1) receives the

kernel being called, the arguments for the kernel, and the Future object associated with that call

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA082. Publication date: July 2025.

Dynamically Fusing Python HPC Kernels ISSTA082:9

calls to add and mul form the trace partition retrieved by the Tracer. The Tracer removes these

kernels from the trace following retrieval.

4.3 Fusion

Given a trace partition, the Fuser selects the kernels that can be fused and generates the code of the

fused kernels. We refer to the process of selecting the kernels to be fused as the fusion strategy. The

current fusion strategy implemented in PyFuser’s Fuser is greedy, i.e., it attempts to fuse as many

kernels as possible. Ideally, this strategy would replace the entire trace partition with a single call

to one fused kernel. However, certain factors prevent that: first, each fused kernel can contain at

most one reduce or scan kernel. Since reduce and scan kernels return a single scalar, fusing more

than one such kernels would require returning multiple scalars, which is currently not supported

in PyKokkos and is left for future work. The second factor is safety, i.e., preserving the semantics

of the original code, which is a similar condition to safely implement loop fusion [15]. In order

to safely fuse two kernel calls, they must run the same number of threads (or iterations in loop

terminology) and there should be no negative distance dependencies between the two kernels, i.e.,

one of the kernels uses a value in a thread that is computed by another thread in the other kernel.

In order to prevent unsafe fusion of kernels, the Fuser runs a safety check that inspects the

current kernel and the next kernel to be fused. In PyKokkos, scalar arguments cannot be modified

by kernels, so only data in arrays can be shared between threads. We consider fusion to be unsafe

if the same threads in different kernels access different elements from the same array when one of

the accesses is a write.

The Fuser first retrieves all indexing expressions of arrays common between the two kernels,

using the parser in PyKokkos to obtain the abstract syntax trees (ASTs). For all common arrays

that at least one of the two kernels writes to, the Fuser looks at the expressions used to index the

array. If the expression is the thread ID or a constant (or a function of the two), i.e., if each element

of the array is accessed by at most one thread, and both kernels use the same expression, then they

are accessing the same element from that array and the kernels are safe to fuse.

The Fuser therefore iterates over the trace partition and partitions it further according to the

above conditions. This process is initiated by the PyKokkos Runtime when data is requested by the

user (line 16 in Figure 3a).

Finally, the Fuser generates a fused kernel from each trace partition in the form of a Python AST

for easy integration with PyKokkos. It first gets the AST of each kernel called in the trace partition.

Each kernel AST contains a list of statements in the kernel’s body and a list of parameters, so the

Fuser forms the fused AST by concatenating all the body and parameter lists from the unfused

ASTs. In order to prevent any naming conflicts in the fused code, the Fuser first pre-processes each

unfused AST’s body and renames all variables by adding a prefix unique to each kernel.

The fused Python AST then proceeds through the typical PyKokkos compilation pipeline: which

transpiles the kernel to C++, generates language bindings to call it, and compiles it using a C++

compiler. This results in a single fused kernel which the PyKokkos Runtime calls (lines 19-20 in

Figure 3a).

4.4 Code Transformations

Looking at the output of the Fuser in Figure 2b, we observe that it suffers from the issues that

prevent the compiler from removing redundant memory instructions and reusing data effectively.

First, the same array object is referred to with different identifiers (e.g., A0 and A1 on line 2), meaning

that the compiler does not know it can reuse data between them. Second, the memory accesses

are in different loops (lines 3 and 5) and therefore scopes, so the compiler cannot optimize them

together. Third, the potential for aliasing between the arrays prevents the compiler from reusing

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA082. Publication date: July 2025.

ISSTA082:10 Nader Al Awar, Muhammad Hannan Naeem, James Almgren-Bell, George Biros, and Milos Gligoric

1 class add_mul {

2 // Kernel arguments as member variables

3 int S0, N0, N1;

4 Kokkos::View<int**> A0, B0, A1, B1, C1;

5

6 // Kernel definition

7 void operator()(int tid) const {

8 for (int i = 0; i < N0; i++) {

9 A0(tid, i) = S0 + B0(tid, i);

10 }

11 for (int i = 0; i < N1; i++) {

12 C1(tid, i) = A1(tid, i) * B1(tid, i);

13 }

14 }

15 };

(a) Generated Kokkos kernel before transforma-

tions.

1 class add_mul {

2 // Kernel arguments as member variables

3 int S0, N0;

4 Kokkos::View<int**> A0, B0, C1;

5

6 // Kernel definition

7 void operator()(int tid) const {

8 for (int i = 0; i < N0; i++) {

9 A0(tid, i) = S0 + B0(tid, i);

10 C1(tid, i) = A0(tid, i) * B0(tid, i);

11 }

12 }

13 };

(b) After argument and loop fusion transformations.

1 class add_mul {

2 int S0, N0;

3 Kokkos::View<int**> A0, B0, C1;

4 // Kokkos function with restrict

5 KOKKOS_FUNCTION void kernel(

6 int tid,

7 int* __restrict__ A0, int A0_S_0, int A0_S_1,

8 int* __restrict__ B0, int B0_S_0, int B0_S_1,

9 int* __restrict__ C1, int C1_S_0, int C1_S_1

10) const {

11 for (int i = 0; i < N0; i++) {

12 A0[tid * A0_S_1 + A0_S_0] = S0 + B0[tid * B0_S_1 + B0_S_0];

13 C1[tid * C1_S_1 + C1_S_0] = A0[tid * A0_S_1 + A0_S_0]*B0[tid * B0_S_1 + B0_S_0];

14 }

15 }

16 // Kernel calling Kokkos function

17 void operator()(int tid) const {

18 kernel(tid,

19 A0.data(), A0.stride_0(), A0.stride_1()),

20 B0.data(), B0.stride_0(), B0.stride_1()),

21 C1.data(), C1.stride_0(), C1.stride_1());

22 }

23 };

(c) After restrict transformation.

Fig. 6. Applying transformations to the fused kernels

loaded values. To account for these issues, we implement three code transformations in PyKokkos

to enable the compiler to optimize the fused kernel code better. Figure 6 shows the transpiled C++

code of the fused kernel before (Figure 6a) and after (Figures 6b-6c) applying the transformations.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA082. Publication date: July 2025.

Dynamically Fusing Python HPC Kernels ISSTA082:11

4.4.1 Argument fusion. The first transformation fuses kernel parameters by identifying the passed

arguments that refer to the same Python object (using the Python built-in id() function). Figure 6b

shows this transformation on lines 3 and 4, where A1, B1, and N1 are all removed from the kernel

arguments (which are listed as member variables in C++ Kokkos kernels). All references to A1, B1,

and N1 in the kernel body are replaced by A0, B0, and N0 respectively (lines 8-10). This is a form of

run-time specialization that depends on the input arguments, so we modify PyKokkos to handle

multiple specialized versions of the same kernel.

This is a necessary code transformation that greatly improves performance when fusing kernels.

Recall that when two kernels are fused, their arguments are renamed to prevent naming conflicts

(Section 4.3). This means that two kernels that operate on the same array or scalar (passed as

an argument) will appear to be operating on different values. This prevents the compiler from

optimizing away redundant code, such as memory loads and stores from the arrays and arithmetic

operations on the scalars. These operations are likely to be common across the original kernels

since kernels within the same trace partition are chosen based on read dependencies, which means

that the same arrays will likely be passed to multiple kernels that will end up being fused. By

fusing arguments that refer to the same object, this allows the compiler to find more instances of

redundant code which can be safely removed to improve performance.

4.4.2 Loop fusion. The second transformation fuses for loops in the kernels to move memory

accesses to the same scope. Since compilers are not guaranteed to always fuse loops, we implement

our own loop fusion code transformation in PyKokkos to fuse for loops in kernels, following the

typical safety requirements [15]. Applying this to our kernel results in a single for loop replacing

the original two loops (line 8 in Figure 6b). After we move all memory accesses to the same scope,

the compiler can reuse the value stored to A0 on line 9, eliminating a redundant load.

We utilize this code transformation to fuse for loops that were originally found in different

kernels prior to fusion. Compilers do not optimize code across different scopes that are conditionally

executed, such as if statements and loops, since they cannot know which of those code blocks will

actually be executed at run-time. Since loop fusion is commonly disabled, this means for loops that

were originally found in different kernels, which might contain common code, will not have their

contents optimized properly. This is crucial since loops are hot spots where most of execution time

is spent. By fusing the for loops in the fused kernel, we ensure that the compiler is able to optimize

away redundant code.

4.4.3 Restrict. The third transformation applies the restrict keyword1 to the arrays in the fused

kernel code, which tells the compiler that the arrays do not point to overlapping regions of memory,

enabling more memory optimizations.

Applying the argument and loop fusion code transformations and compiling the kernel in

Figure 6b results in the PTX shown in Figure 2d, where the same memory location in B0 is loaded

twice. By default, compilers must assume that all function parameters passed as a pointer or

reference could alias. Due to the presence of a store to another array (A0) between the two loads,

the value loaded from B0 on line 9 in Figure 6b cannot be reused on the next line.

We therefore implemented a code transformation to apply the restrict keyword to arrays. As

with argument fusion, it depends on the run-time values of the input arguments. Before adding

restrict, we inspect the input arrays in the PyKokkos Runtime and record those that do not alias.

Kokkos provides the Kokkos::Restrictmemory trait for use as a template argument to its arrays.

However, this information is not used by compilers such as NVCC and HIPCC during optimization,

since the actual array pointer is defined as a member variable in a class (Kokkos::View, the C++

1https://en.cppreference.com/w/c/language/restrict

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA082. Publication date: July 2025.

ISSTA082:12 Nader Al Awar, Muhammad Hannan Naeem, James Almgren-Bell, George Biros, and Milos Gligoric

Kokkos array type). Adding restrict to pointers which are member variables is ignored by most

compilers (likely due to restrict being part of the C but not the C++ standard). The only way to

use restrict reliably across C++ compilers is to apply it to kernel parameters. However, this is

not possible in C++ Kokkos kernels, which are defined as overloaded operator() methods with

no parameters (besides the thread ID and other Kokkos parameters).

We found a workaround to the Kokkos restrict issue by introducing a new Kokkos function

(i.e., a function that can be called from a kernel) which accepts the array arguments as raw pointers,

which we can then add restrict to. This transformation is shown in Figure 6c. The new Kokkos

function is defined on line 5. The parameters of this function are same as the parameters of the

kernel. We replace each array with a raw pointer and stride variables passed as parameters, instead

of a Kokkos::View which would contain all this information. This requires that we replace each

array indexing operation with C-style array indexing (line 12), taking the memory layout into

account to preserve performance portability. This is what the original indexing method does

internally, so this transformation essentially inlines the call to operator() to allow us to use

restrict. Finally, we call the Kokkos function from the kernel, using the View data() method to

access the raw pointer and the stride method for each dimension to get the corresponding stride

value (line 18).

This transformation gives the compiler necessary information to better optimize memory in-

structions. By adding the restrict keyword, we are telling the compiler that writes to one array

cannot interfere with memory operations to other arrays, extending the validity of values loaded

from memory which allows the compiler to reuse them instead of re-loading them from memory.

Together, these transformations enable the compiler to more effectively optimize code. Applying

them manually to C++ Kokkos code is tedious as the run-time specialization transformations

(i.e., argument fusion and restrict) require maintaining multiple implementations of each kernel

and dispatch calls to the appropriate implementation according to run-time conditions. Run-time

systems such as PyKokkos are naturally more suited to apply these transformations.

Following these transformations, the PyKokkos Runtime compiles and calls the fused kernel.

5 Evaluation

In this section we present our evaluation of PyFuser. We answer the following research questions:

RQ1. How does kernel fusion with PyFuser affect the performance of the kernels?

RQ2. In what cases is kernel fusion beneficial?

RQ3.What is the run-time overhead introduced by PyFuser?

First, we describe our evaluation setup (Section 5.1). Second, we introduce our test subjects (Sec-

tion 5.2). Third, we answer our research questions (sections 5.3-5.5).

5.1 Evaluation Setup

We used Python 3.11, the latest version of PyKokkos (commit 3d4afd2), and Kokkos 3.7.02. We ran

our experiments on multiple processors, including NVIDIA and AMD GPUs as well as Intel and

AMD CPUs. Table 1 shows the full list of processors we used, the size of the processor’s memory,

the relevant Kokkos backend, as well as the compilers we used.

All results shown are the arithmetic mean of data collected across five runs. We used the simple

kernel timer from the Kokkos Tools repository [1] to measure kernel execution time. This measures

the execution time of the generated C++ Kokkos kernel, which includes the raw kernel execution

time and any performance overhead introduced by C++ Kokkos, but not Python, PyKokkos, or

PyFuser overheads.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA082. Publication date: July 2025.

Dynamically Fusing Python HPC Kernels ISSTA082:13

Table 1. Processors used in our experiments.

Processor DRAM Backend Compiler

NVIDIA V100 16 GB CUDA 12.0 NVCC 12.0

NVIDIA A100 40 GB CUDA 12.0 NVCC 12.0

AMD MI250X 128 GB HIP 5.4.3 HIPCC 15.0

Intel Xeon E5-2620 128 GB OpenMP GCC 12.2

AMD EPYC 7763 256 GB OpenMP GCC 11.2

Table 2. Fusion speedup over unfused kernels, unoptimized (UO) and optimized (O), for PIC and ExaMiniMD.

Subject Kernel # Kernels Speedup

V100 A100 MI250X Xeon EPYC

UO O UO O UO O UO O UO O

PIC DSMC 3 1.03 1.96 1.16 1.78 0.92 1.77 1.21 1.21 1.35 1.38

ExaMiniMD F + C 2 0.98 0.99 0.87 0.88 0.97 1.02 1.01 1.10 1.03 1.01

ExaMiniMD F + C + FI 3 0.87 0.91 0.94 0.88 0.90 0.96 1.17 1.16 1.04 1.00

ExaMiniMD FI + II 2 1.40 1.52 1.60 1.60 1.28 1.62 1.51 1.43 1.60 1.67

ExaMiniMD FI + II + E 3 1.24 1.61 1.67 1.69 1.18 1.30 1.82 1.69 1.88 1.92

5.2 Test Subjects

Our test subjects include existing examples from the PyKokkos repository that contain multiple

kernel calls, third-party PyKokkos applications, and new code we added to evaluate PyFuser. Much

of these new subjects are ported from existing NumPy implementations by using PyKokkos as a

drop-in replacement for those libraries. Our test subjects include:

• ExaMiniMD: a molecular dynamics mini-application originally in C++ Kokkos [2]. The

PyKokkos version is ∼3k lines of code and has 14 distinct kernels [5].

• Particle-in-cell code: a particle-in-cell (PIC) solver of the electron Boltzmann equation

implemented originally in PyKokkos [7].

• Gaussian Naive Bayes: a PyKokkos implementation of scikit-learn’s Gaussian Naive Bayes

(GNB) classifier, which was originally written in NumPy [10].

• NPBench: a collection of NumPy code samples for evaluating frameworks that accelerate

NumPy [38]. Of the original 52 samples, PyKokkos currently supports 12, of which 7 contain

multiple kernel calls that can be fused. These include adi, covariance, fdtd_2d, jacobi_1d,

mvt, syrk, and syr2k.

• Benchmarks: includes BabelStream, GUPS, GUPS Atomic, NSTREAM, and Transpose. Origi-

nally written in C++ the PyKokkos versions of these benchmarks achieved the same perfor-

mance as Kokkos [5].

We verified that the fused kernels are correct by comparing with the unfused versions.

5.3 Kernel Speedups

RQ1. How does kernel fusion with PyFuser affect the performance of the kernels?

Table 2 and Figure 7 show the speedups we get by fusing the kernels in our test subjects. Table 2

shows speedups for the Particle-in-cell code and ExaMiniMD both with andwithout transformations

applied to evaluate the impact of the compilers’ optimizations. Columns 1 and 2 show the source of

the kernels and the name of the fused kernel respectively. Column 3 shows the number of kernel

calls that PyFuser fused together to form the fused kernel i.e., the size of the trace partition fused

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA082. Publication date: July 2025.

Dynamically Fusing Python HPC Kernels ISSTA082:15

5.3.1 Particle-in-cell Code. The PIC code uses a direct simulation Monte Carlo scheme (DSMC) to

model particle collisions. Originally implemented in three kernels that are called consecutively,

PyFuser fuses them into one kernel. We used 4M particles as the input size for the results in Table 2.

The results in Table 2 show that fusion alone does not always result in a large speedup. On the

V100, A100, and MI250X GPUs, we see a speedup of 1.03×, a speedup of 1.16×, and a slowdown of

0.92× respectively without our transformations. After applying the transformations, we observe

larger speedups of 1.96×, 1.78×, and 1.77× on the V100, A100, and MI250X GPUs, respectively.

In contrast to the GPUs, both CPUs attain their highest speedup without the need for transfor-

mations. Applying them does not result in a noticeable improvement.

In order to understand whywe obtain these results, we examine the improvement in performance-

related profiler metrics shown in Table 3. We first note that on all GPUs, better caching leads to

significant reductions in DRAM traffic.

We initially observe no improvement in the number of arithmetic and memory instructions

executed. The reason becomes apparent when looking at the fused kernel: the bulk of the work

in each of the unfused kernels is done in a sequential for loop. Fusing the three kernels results in

three separate for loops with three separate scopes. This prevents the compilers from effectively

optimizing redundant computations and memory accesses. We even observe a slight increase in

memory instructions executed on the MI250X (-3%) due to increased register pressure, which leads

to register spills to memory. After applying our transformations, we see significant reductions

in the numbers of instructions executed: 28% and 52% for arithmetic and memory instructions

respectively on both NVIDIA GPUs and 40% and 68% reductions on the MI250X GPU.

These metrics indicate that the compiler cannot optimize the code effectively and remove

redundant instructions due to each kernel body being completely wrapped in a different loop.

Prior to applying our transformations, we expect some speedup due to reduced kernel launch

overhead, as PyFuser fuses three kernel calls into one, and to improved caching. While this is true

for the NVIDIA GPUs, we observe a small slowdown on the MI250X due to the slight increase in

memory instructions executed. Enabling our transformations allows the compiler to eliminate a

large number of redundant instructions, leading to large speedups for all GPUs.

In contrast to GPUs, CPUs benefit greatly from improved cache utilization, so reducing memory

operations is not as essential. This explains why we obtained speedups on both CPUs even without

our transformations, which proved to be unnecessary.

5.3.2 ExaMiniMD. Of the original 14 kernels in ExaMiniMD, PyFuser fuses 4 trace partitions into

4 new fused kernels, each represented in a separate row in Table 2.

The first two fused kernels, F + C and F + C + FI, contain the Force (F) and the Compute (C)

kernels and the latter also contains the Final Integrate (FI) kernel, as PyFuser dynamically

creates and fuses trace partitions according to the kernels called, which differ in each time step.

Fusion here has a relatively smaller impact compared to other kernels. For the F + C kernel, we

see slowdowns of 0.98×, 0.87×, and 0.97× on the V100, A100, and MI250X GPUs. Applying our

transformations lead to small improvements on the NVIDIA GPUs, while the MI250X GPU rose to a

1.02× speedup. For the F + C + FI kernel, we see slowdowns of 0.87×, 0.94×, and 0.90× on the V100,

A100, and MI250X GPUs. Applying our transformations lead to improvements on the V100 and

MI250X, rising to 0.91× and 0.96× respectively, but decreased the speedup on the A100 to 0.88×.

Looking at Table 3, for the ExaMiniMD F + C and F + C + FI kernels, we initially see little

improvement or even a small increase in arithmetic and memory instructions executed prior to

applying transformations (the increases are due to register pressure forcing more loads and address

calculations). For both fused kernels, the first kernel they are fused from (Force) initializes three

arrays to zero, while the second kernel (Compute) further updates these arrays. Intuitively, it would

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA082. Publication date: July 2025.

ISSTA082:16 Nader Al Awar, Muhammad Hannan Naeem, James Almgren-Bell, George Biros, and Milos Gligoric

seem that fusing these kernels allows the compiler to optimize the code further: first, the initial

value stored in the arrays (in Force) does not have to be loaded when they are updated later (in

Compute) as it is known at compile-time; second, since this value is zero, the compiler can eliminate

an add instruction; third, the compiler can also eliminate the initial store as the second kernel

overwrites it, making the first kernel’s code completely redundant. Instead, the fused F + C kernel

shows no improvement in arithmetic and memory instructions after fusion (second row in Table 3).

Inspecting the assembly reveals that the compilers cannot perform any of the aforementioned

optimizations due to the potential for aliasing between the three input arrays.

For the F + C kernel, we do not see speedups initially as the compilers’ cannot optimize the

fused code and remove redundant instructions. The slowdowns observed for the F + C kernel on

the A100 compared to the V100 are due to differences in NVCC’s register allocation strategies

across the two generations of GPU, which leads to more register pressure and a slower kernel on

the A100. Applying our transformations is not very effective on the NVIDIA GPUs as NVCC does

not remove the redundant instructions, while HIPCC removes them for the MI250X leading to a

small speedup in the fused kernel. The F + C + FI kernel exhibits similar behavior, although we see

worse performance on the V100 due to Kokkos selecting a sub-optimal CUDA block size. Manually

overriding it gives us similar results to F + C.

Our transformations help on the MI250X but not on the NVIDIA GPUs. Looking at the assembly

with transformations enabled, we see that NVCC is not doing the aforementioned optimizations,

while HIPCC is, resulting in a 1% reduction in memory instructions on the MI250X (Table 3). We

have reached out to NVIDIA asking why that is the case.

The two other kernels in ExaMiniMD are FI + II and FI + II + E. Both contain the Initial

Integrate (II) and Final Integrate (FI) and the latter also contains Exchange Self (E). These

kernels show significant speedups, with the transformations further improving performance.

Table 3 shows large reductions in arithmetic instructions executed on all GPUs prior to applying

our transformations. For FI + II, we see 30%, 24%, and 23% reductions on the V100, A100, and

MI250X GPUs respectively, while for FI + II + E, we see 43%, 39%, and 39%. These kernels do not

have loops so the compiler optimizes the arithmetic operations even without our transformations.

The amount of memory instructions is reduced after applying the restrict optimization, which

further reduces the arithmetic instructions by eliminating memory address calculations.

The large reductions in arithmetic and memory instructions executed is the reason we observe

larger speedups for these two kernels. The further reductions we observe after applying our

transformations improve performance further.

As before, CPUs get large speedups even without our transformations due to better caching.

5.3.3 Gaussian Naive Bayes, NPBench, & Benchmarks. Gaussian Naive Bayes and NPBench [38]

consist of kernels that perform NumPy-style array operations. The Benchmarks include less than 5

(unfused) kernels each, with most being small. In total, PyFuser generates 30 fused kernels.

From Figure 7 we see speedups for all kernels on all processors except for fdtd_2d (F) on the

A100, which is 0.73× slower. On average, across all subjects on all processors, we see a 3.8× speedup.

We observe that the speedups are larger in the cases in which PyFuser is able to fuse large trace

partitions. For example, NSTREAM (NS) and Transpose (T) call all kernels in a loop that runs for

fifty iterations, which PyFuser fuses into one kernel, leading to large reductions in overhead and

the largest speedups among all our benchmarks. In contrast, GUPS (G) and GUPS Atomic (GA) show

relatively smaller speedups due to smaller trace partitions composed of two kernel calls.

We see a slowdown for one kernel: 0.73× for fdtd_2d on the A100. The assembly shows that

NVCC reorders memory instructions in the fused kernel leading to more memory stalls and worse

performance. Interestingly, NVCC selected a different order on the V100, which proved to be better.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA082. Publication date: July 2025.

Dynamically Fusing Python HPC Kernels ISSTA082:17

Table 4. PyFuser overhead from tracing, fusion, and transformations averaged for all subjects on all processors.

Processor Tracing [%] Fusion (U/O) [%] Fusion (O) [%]

V100 2.1 4.5 5.3

A100 2.2 3.9 4.5

MI250X 4.1 7.4 8.2

Xeon 2.8 6.8 7.5

EPYC 7.4 16.1 16.8

Mean 3.7 7.7 8.5

5.4 Kernel Fusion Advantages

RQ2. In what cases is kernel fusion beneficial?

We hypothesized that applying kernel fusion improves performance because first, the compiler

optimizes the code further; second, it leads to better reuse of data loaded from memory; and third,

it reduces kernel launch overhead. In this section, we examine the validity of this hypothesis.

We test the validity of the first point for our GPUs by looking at speedups in Table 2 and reduc-

tions in arithmetic and memory instructions executed in Table 3. Larger reductions in instructions

executed mean that the compiler optimized the code further by eliminating redundant instructions.

We can see that kernel fusion does not always lead to more optimizations, but that our transfor-

mations do assist in this metric. In those cases where the compiler eliminated a larger amount of

redundant instructions, we did see larger speedups. Thus, we can see that kernel fusion does often

lead to improved compiler optimizations, which in turn correlates with improved performance.

To test the validity of the second point, we compare speedups to the reduction in memory traffic

from DRAM. We see that kernel fusion improves this metric, which we attribute to better cache

utilization. However, this does not necessarily correlate to improved performance on our GPUs.

For our CPUs, we were unable to collect these metrics for our kernels due to interference from

other CPU processes running simultaneously. We always observed speedups on our CPUs even

prior to applying our transformations. We therefore attribute the speedups on our CPUs to the

improved cache utilization, which is known to be more impactful compared to GPUs [12].

The third and final point applies to all our processors. We know that fusing larger trace partitions

leads to less kernel calls and less overhead. The largest speedups were in our Benchmarks, where

we fused fifty kernel calls into one. Thus large reductions in overhead lead to the largest speedups.

In summary, we believe that our experiments support our hypothesis with some slight differences

for our GPUs and CPUs. First, kernel fusion does allow the compiler to optimize better; however,

further code transformations are required in some cases. GPUs benefit more from this point than

CPUs since memory accesses on GPUs are relatively more expensive. Second, kernel fusion does

allow for better reuse of data loaded from memory. Conversely to the first point, CPUs benefit more

from this point than GPUs since caching is more effective. Third, fusing larger trace partitions does

mean reduced kernel launch overhead, which also correlates to better performance.

5.5 Run-time Overhead

RQ3.What is the run-time overhead introduced by PyFuser?

In this section, we examine the overhead introduced by PyFuser. Table 4 shows the name of the

processor in the first column. The remaining columns show the overhead of different modes of

PyFuser as a percentage of original running time, averaged across all subjects. The modes shown

are tracing without fusion (only lazy evaluation) in the second column, tracing with fusion in the

third column, and tracing with fusion and transformations in the fourth column.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA082. Publication date: July 2025.

ISSTA082:18 Nader Al Awar, Muhammad Hannan Naeem, James Almgren-Bell, George Biros, and Milos Gligoric

The results show that PyFuser introduces minor overhead. Tracing alone is lightweight, adding

3.7% to running time on average. Adding fusion to tracing increases overhead to 7.7%, largely due

to applying the fusion safety check. Adding transformations on top of fusion is a relatively small

increase to 8.5%, mostly due to applying the restrict transformation.

6 Limitations and Future Work

Recording kernel calls in traces allows us to potentially run these kernels concurrently if no

dependencies exist between them. This is typically done by task scheduling systems such as

Parla [19] and Legate [9]. In the future, we will investigate how kernel fusion and task scheduling

systems can be combined to further improve performance.

Lazy evaluation could lead to out of order execution which makes debugging code harder. For

PyFuser, we expect users to turn off lazy evaluation and kernel fusion when debugging code.

PyFuser implements lazy evaluation and kernel fusion specifically for PyKokkos. The just-in-

time compiler available in PyKokkos allows us to compile the fused kernels we generate dynamically

at run-time and then import them from Python. The techniques presented in this paper can also

be applied to C++ Kokkos, especially the code transformations. However, we would still need to

implement lazy evaluation and dynamic kernel fusion in C++, which is more challenging since

C++ is statically compiled. One possible approach is to generate traces by logging kernel calls in

an initial run, as well as information about the arguments passed, and then subsequently fusing

the kernels and applying code transformations offline following this initial run, so that later

runs can use the fused kernels. However, this approach differs significantly from the current

approach used in PyFuser. As for other kernel frameworks, those that are implemented in dynamic

languages such as Python could use similar techniques such as those in PyFuser, while those

that are implemented in static languages would require an approach similar to the one described

for C++ Kokkos. Furthermore, different languages and frameworks could require different code

transformations to enable better compiler optimizations.

Doing fusion dynamically at run-time requires a run-time system to record traces of kernel

calls. This introduces performance overhead that could offset the performance gains obtained by

kernel fusion, which could be a deterrent to using such systems. In this paper, we focused on the

kernel speedups while also reporting the overhead of PyFuser. Our current implementation of

PyFuser is in Python, an interpreted language, which adds additional overhead compared to a

compiled language (e.g., C++). It is possible to implement some of the analyses done by PyFuser in

a compiled language rather than Python while retaining PyFuser’s dynamic nature, which will

help in improving the performance of PyFuser itself.

Kernel fusion could lead to unpredictable performance and slowdowns in some cases. We used

profilers to explain the characteristics of fused kernels that resulted in speedups and slowdowns. In

the future, we plan on integrating some of this knowledge into our fusion strategy (instead of the

greedy strategy) to anticipate the fused kernels’ performance. Since the fused kernels’ performance

varies across processors, we will incorporate this knowledge into the fusion strategy in the future.

7 Related Work

Kernel fusion is an active research area [13, 20, 24, 25, 35, 37]. An early attempt at CUDA kernel

fusion required users to express code as CPU skeletons which are used to extract dependencies

between kernels [25], while also exploring the effectiveness of different fusion strategies using

a performance model [24]. Kernel Weaver [36] applies fusion to kernels for relational algebra

operators meant for use in data warehousing applications. Examples of these operators includes

SELECT, JOIN, UNION, etc. They use a heuristic that estimates a kernel’s expected resource usage

to decide which operators to fuse. Their evaluation is focused solely on two queries that use some

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA082. Publication date: July 2025.

Dynamically Fusing Python HPC Kernels ISSTA082:19

combination of these operators, through which they show performance speedups with fusion.

Similar work by the authors [37] also experimented with kernel fission, splitting kernels to overlap

computation with data transfer from main memory to GPU memory. [35] formulated kernel fusion

as a combinatorial optimization problem and used a genetic algorithm with performance projection

to explore the space of potential fusions, focusing on memory-bound CUDA kernels. The search

happens offline and the recommended fusions are applied manually to the code base. This approach

scales better than prior approaches and shows performance improvements on a codebase with 142

kernels; however, the search still takes up to twelve minutes. KFCM [13] is a code motion based

kernel fusion technique for CUDA that exposes opportunities for static kernel fusion by moving

kernel calls together across a control flow graph. Unlike PyFuser, these frameworks analyze kernel

calls statically at compile-time, missing opportunities for fusion compared to our run-time approach.

They also employ expensive offline heuristics to make fusion decisions. Also, through PyKokkos,

PyFuser is not restricted to CUDA and can fuse OpenMP and HIP kernels.

Helium [23] is an OpenCL framework that uses lazy evaluation but focuses on kernel reordering

to achieve better performance, while optionally fusing some. The evaluation focuses mainly on

speedups from reordering and does not analyze the impact of fusion. In contrast, PyFuser focuses

on fusion and we do a deep dive to understand where and how we obtain speedups with fusion.

Horizontal fusion [20] is a fusion technique that differs from classical (vertical) fusion. Instead of

concatenating the contents of two consecutive kernel calls, horizontal fusion interleaves execution

of the two kernels it fuses by splitting each thread block to work on each kernel simultaneously.

This fusion technique could be integrated into PyFuser’s Fuser along with classical fusion.

Kernel fusion has been applied to Python NumPy-style frameworks where kernels are simple

array operations [16ś18, 26, 27]. Bohrium [17, 18] is a virtual machine that records array operations

into a bytecode which is JIT-compiled into fused CPU kernels. It models the decision of which

operations to fuse as a partitioning problem. Since the evaluation focuses on CPUs, the authors

use a relatively simple cost function that looks solely at the number of array accesses to evaluate

candidate partitions. DelayRepay [26] is a drop-in replacement for NumPy that builds an AST from

executed universal functions which it maps to CUDA kernels. At every call to a universal function,

DelayRepay adds an AST node corresponding to that function e.g., a unary or binary mathematical

expression. When a certain array’s data is requested, this triggers fusion of the accumulated AST

and generation of CUDA code from that AST. The generated code is then compiled and executed

and the results are returned to the user. Kernel fusion has also been proposed for machine learning

algorithms. [8] identifies a common computational pattern across different ML algorithms and

presents a reusable, manually fused kernel. There are two versions of the fused kernel, one for

sparse and one for dense data. These frameworks specifically fuse kernels that are simple array

operations, while PyFuser fuses arbitrary user-defined kernels.

The increasing popularity of frameworks such as PyTorch [28] has reignited interest in kernel

fusion research for deep learning operators [21, 29]. LazyTensor [29] implements delayed execution

by building traces of operations to generate XLA HLO IR [4], which is then compiled and called

when data is requested by the user. Torchy [21] is a tracing JIT compiler for PyTorch that delays

execution of PyTorch tensor operations and stores them in a trace, which can be further optimized

via the PyTorch neural network compiler, before being flushed when data is requested by the user.

The lazy evaluation approach in PyFuser is similar to Torchy’s, bust since we can define custom

kernels in PyKokkos we add safety checks to ensure correctness. Furthermore, fusing kernels in

deep learning programs leads to speedups mostly due to reduced kernel launch overhead, whereas

for PyFuser, we had to introduce code transformations to allow the compiler to optimize the code

further. Kernel fusion has also been applied to fuse deep learning operators implemented using

the CUTLASS library [30]. This approach statically fuses two GEMM kernels and a tensor kernel,

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA082. Publication date: July 2025.

ISSTA082:20 Nader Al Awar, Muhammad Hannan Naeem, James Almgren-Bell, George Biros, and Milos Gligoric

which is a common pattern in deep learning. These frameworks address fusion of domain-specific

deep learning operators and not custom kernels like PyFuser.

[11] proposes applying kernel fusion to the packing and unpacking GPU kernels found in MPI

applications. In order to move non-contiguous data across processors, MPI adds calls to pack the

data and then unpack it before sending and receiving it. By fusing these kernels, this approach

can speed up existing MPI applications that frequently communicate data across processors and

compute nodes. PyFuser fuses kernels written by users from any domain, and would be able to

fuse packing and unpacking kernels if they were written in PyKokkos.

Task fusion [31] is similar in spirit to kernel fusion, but deals with fusing tasks, which are higher

level than kernels and can contain multiple kernel calls. The goal of task fusion is mainly to reduce

overheads of the tasking system and data movement in a distributed computing environment, while

in kernel fusion the goal is to generate more efficient kernels.

8 Conclusion

We presented PyFuser, a framework for dynamic fusion of Python Kokkos kernels. PyFuser

dynamically traces kernel calls and lazily fuses kernels. Fused kernels are invoked when the

application accesses the result of a sequence of kernel calls. Fused kernels perform better due to

better reuse of loaded data, improved compiler optimizations, and reduced kernel launch overhead.

We also introduced three code transformations to the PyKokkos to enable further optimizations of

fused kernels. These changes provide performance benefits to dynamically generated fused kernels

due to improved compiler optimizations. Our experiments on HPC applications and benchmarks

show that PyFuser achieves substantial speedups on NVIDIA and AMD GPUs, as well as Intel and

AMD CPUs. We believe that PyFuser is a great step towards regaining performance lost due to

language abstractions and common coding patterns.

9 Data Availability

The submitted artifact contains three top-level directories: pykokkos/, which contains PyFuser

and its integration with PyKokkos. The PyFuser specific code is found in pykokkos/core/fusion/

and pykokkos/core/optimizations/. The test subjects are located in another top-level directory,

examples/. Scripts to process the data are found under the third top-level directory, scripts/.

Acknowledgments

We thank Cheng Ding, Ivan Grigorik, Tong-Nong Lin, Yu Liu, Hannan Naeem, Pengyu Nie, Aditya

Thimmaiah, Zhiqiang Zang, Jiyang Zhang, Linghan Zhong, and the anonymous reviewers for

their feedback on this work. This work was partially supported by the US National Science Foun-

dation under Grant Nos. CCF-2107291, CCF-2217696, CCF-2313027, and CCF-2403036, as well

as the Department of Energy, National Nuclear Security Administration under Award Number

DE-NA0003969.

A Appendix: Kernel Speedups

Table 5 shows detailed speedups for all our kernels, including both unoptimized and optimized

results.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA082. Publication date: July 2025.

Dynamically Fusing Python HPC Kernels ISSTA082:21

Table 5. Kernel fusion speedup over unfused kernels both unoptimized (UO) and optimized (O) for all kernels.

Subject Kernel # Kernels Speedup

V100 A100 MI250X Xeon EPYC

UO O UO O UO O UO O UO O

PIC DSMC 3 1.03 1.96 1.16 1.78 0.92 1.77 1.21 1.21 1.35 1.38

ExaMiniMD F + C 2 0.98 0.99 0.87 0.88 0.97 1.02 1.01 1.10 1.03 1.01

ExaMiniMD F + C + FI 3 0.87 0.91 0.94 0.88 0.90 0.96 1.17 1.16 1.04 1.00

ExaMiniMD FI + II 2 1.40 1.52 1.60 1.60 1.28 1.62 1.51 1.43 1.60 1.67

ExaMiniMD FI + II + E 3 1.24 1.61 1.67 1.69 1.18 1.30 1.82 1.69 1.88 1.92

GaussianNB NB 0 3 1.88 1.92 1.65 1.65 1.63 1.91 2.88 2.72 2.33 2.57

GaussianNB NB 1 2 1.41 1.43 1.27 1.29 1.23 1.59 1.59 1.42 1.70 1.80

GaussianNB NB 2 5 4.56 4.65 3.89 4.28 3.35 3.47 3.64 3.76 3.93 4.30

GaussianNB NB 3 2 1.74 1.74 1.60 1.62 1.53 1.81 2.60 2.08 1.47 1.47

GaussianNB NB 4 2 1.96 1.94 1.93 1.92 1.78 1.76 1.63 1.64 1.58 1.73

Microbenchmarks BS 4 1.93 2.03 2.25 2.25 2.14 2.55 3.01 3.07 0.89 2.57

Microbenchmarks G 2 2.02 2.01 1.94 1.88 1.88 1.90 1.56 1.57 1.22 1.22

Microbenchmarks GA 2 1.96 1.96 1.94 1.94 1.86 1.56 6.16 5.90 1.01 1.02

Microbenchmarks NS 50 4.67 27.70 5.12 25.41 3.23 32.86 6.55 24.63 1.25 2.28

Microbenchmarks T 50 2.22 39.32 1.81 45.34 1.41 64.97 7.06 12.62 1.09 3.52

NPBench A 0 5 5.00 5.00 4.28 4.22 4.06 4.29 4.12 3.69 3.63 3.74

NPBench A 1 7 6.30 6.18 5.51 5.43 4.75 5.28 5.71 5.55 6.00 5.68

NPBench A 2 2 2.00 2.00 1.95 1.82 1.80 1.91 1.88 1.69 1.79 1.72

NPBench A 3 2 2.03 2.03 1.91 1.91 1.81 1.81 1.92 1.80 1.95 1.59

NPBench A 4 3 2.73 2.81 2.77 2.72 2.50 2.55 2.64 2.38 2.22 2.71

NPBench A 5 5 5.00 4.95 4.28 4.22 4.04 4.28 4.18 4.02 4.19 4.02

NPBench A 6 7 6.30 6.30 5.45 5.45 4.77 5.25 5.70 5.47 6.15 5.90

NPBench A 7 2 2.00 2.00 1.90 1.80 1.74 1.82 1.87 1.74 1.90 1.74

NPBench A 8 3 2.73 2.87 2.91 2.81 2.53 2.56 2.66 2.31 2.74 2.55

NPBench A 9 2 1.99 2.01 1.95 1.95 1.79 1.81 1.96 1.85 1.93 1.97

NPBench C 3 1.12 1.25 1.24 2.35 1.03 1.20 1.50 1.47 1.01 1.10

NPBench F 2 0.73 1.74 0.82 0.73 1.00 1.01 1.04 1.04 1.36 1.33

NPBench J 0 4 3.86 3.79 3.08 2.99 3.40 3.40 2.25 1.58 1.59 1.22

NPBench J 1 4 3.78 3.78 2.95 2.73 3.36 3.49 2.25 1.56 1.62 1.24

NPBench M 2 1.84 1.79 1.63 1.87 1.63 1.63 2.04 2.12 3.84 3.34

NPBench S 0 2 2.00 2.00 1.72 1.67 1.82 1.84 1.81 1.79 2.73 2.64

NPBench S 1 2 1.76 1.76 1.61 1.57 1.69 1.76 1.85 1.77 6.17 2.31

NPBench S2 0 4 3.64 3.68 3.55 3.49 2.99 3.32 3.54 3.13 2.83 2.85

NPBench S2 1 2 1.94 1.92 1.95 1.95 1.84 1.84 2.18 1.74 1.83 1.87

NPBench S2 2 2 1.71 1.72 1.83 1.69 1.69 1.69 1.49 1.28 1.71 1.77

References

[1] 2016. KokkosP Profiling Tools. https://github.com/kokkos/kokkos-tools.

[2] 2017. ExaMiniMD. https://github.com/ECP-copa/ExaMiniMD.

[3] 2024. Nsight Compute CLI. https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html.

[4] 2024. XLA : Compiling Machine Learning for Peak Performance. https://openxla.org/xla.

[5] Nader Al Awar, Steven Zhu, George Biros, and Milos Gligoric. 2021. A Performance Portability Framework for Python.

In International Conference on Supercomputing. 467ś478. doi:10.1145/3447818.3460376

[6] Nader Al Awar, Steven Zhu, Neil Mehta, George Biros, and Milos Gligoric. 2022. PyKokkos: Performance Portable

Kernels in Python. In International Conference on Software Engineering, Tool Demonstrations Track. 164ś167. doi:10.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA082. Publication date: July 2025.

ISSTA082:22 Nader Al Awar, Muhammad Hannan Naeem, James Almgren-Bell, George Biros, and Milos Gligoric

1145/3510454.3516827

[7] James Almgren-Bell, Nader Al Awar, Dilip S Geethakrishnan, Milos Gligoric, and George Biros. 2022. A Multi-GPU

Python Solver for Low-Temperature Non-Equilibrium Plasmas. In International Symposium on Computer Architecture

and High Performance Computing. 140ś149. doi:10.1109/SBAC-PAD55451.2022.00025

[8] Arash Ashari, Shirish Tatikonda, Matthias Boehm, Berthold Reinwald, Keith Campbell, John Keenleyside, and P.

Sadayappan. 2015. On Optimizing Machine Learning Workloads via Kernel Fusion. In Symposium on Principles and

Practice of Parallel Programming. 173ś182. doi:10.1145/2688500.2688521

[9] Michael Bauer and Michael Garland. 2019. Legate NumPy: accelerated and distributed array computing. In International

Conference for High Performance Computing, Networking, Storage and Analysis. Article 23, 23 pages. doi:10.1145/3295500.

3356175

[10] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel, Vlad Niculae, Peter

Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël

Varoquaux. 2013. API design for machine learning software: experiences from the scikit-learn project. In ECML PKDD

Workshop: Languages for Data Mining and Machine Learning. 108ś122. doi:10.48550/arXiv.1309.0238

[11] Ching-Hsiang Chu, Kawthar Shafie Khorassani, Qinghua Zhou, Hari Subramoni, and Dhabaleswar K. Panda. 2020.

Dynamic Kernel Fusion for Bulk Non-contiguous Data Transfer on GPU Clusters. In International Conference on Cluster

Computing. 130ś141. doi:10.1109/CLUSTER49012.2020.00023

[12] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014. Kokkos: Enabling manycore performance

portability through polymorphic memory access patterns. Journal of Parallel and Distributed Computing 74, 12 (2014),

3202ś3216. doi:10.1016/j.jpdc.2014.07.003

[13] Junji Fukuhara and Munehiro Takimoto. 2022. Automated kernel fusion for GPU based on code motion. In International

Conference on Languages, Compilers, and Tools for Embedded Systems. 151ś161. doi:10.1145/3519941.3535078

[14] Stephen Lien Harrell, Joy Kitson, Robert Bird, Simon John Pennycook, Jason Sewall, Douglas Jacobsen, David Neill

Asanza, Abaigail Hsu, Hector Carrillo Carrillo, Hessoo Kim, and Robert Robey. 2018. Effective Performance Portability.

In International Workshop on Performance, Portability and Productivity in HPC (P3HPC). 24ś36. doi:10.1109/P3HPC.2018.

00006

[15] Ken Kennedy and Kathryn S. McKinley. 1993. Maximizing Loop Parallelism and Improving Data Locality via Loop

Fusion and Distribution. In International Workshop on Languages and Compilers for Parallel Computing. 301ś320.

[16] Andreas Klöckner. 2014. Loo.py: transformation-based code generation for GPUs and CPUs. In Workshop on Libraries,

Languages, and Compilers for Array Programming. doi:10.1145/2627373.2627387

[17] Mads R.B. Kristensen, Simon A.F. Lund, Troels Blum, and James Avery. 2016. Fusion of Parallel Array Operations. In

International Conference on Parallel Architectures and Compilation. 71ś85. doi:10.1145/2967938.2967945

[18] Mads R.B. Kristensen, Simon A.F. Lund, Troels Blum, Kenneth Skovhede, and Brian Vinter. 2014. Bohrium: A Virtual

Machine Approach to Portable Parallelism. In International Parallel and Distributed Processing Symposium Workshops.

312ś321. doi:10.1109/IPDPSW.2014.44

[19] Hochan Lee, William Ruys, Ian Henriksen, Arthur Peters, Yineng Yan, Sean Stephens, Bozhi You, Henrique Fingler,

Martin Burtscher, Milos Gligoric, Karl Schulz, Keshav Pingali, Christopher J. Rossbach, Mattan Erez, and George

Biros. 2022. Parla: a Python orchestration system for heterogeneous architectures. In International Conference on High

Performance Computing, Networking, Storage and Analysis. Article 51, 15 pages.

[20] Ao Li, Bojian Zheng, Gennady Pekhimenko, and Fan Long. 2022. Automatic Horizontal Fusion for GPU Kernels. In

International Symposium on Code Generation and Optimization. 14ś27. doi:10.1109/CGO53902.2022.9741270

[21] Nuno P. Lopes. 2023. Torchy: A Tracing JIT Compiler for PyTorch. In International Conference on Compiler Construction.

98ś109. doi:10.1145/3578360.3580266

[22] Xiaomin Lu, Cole Ramos, Fei Zheng, Karl W. Schulz, Jose Santos, Keith Lowery, Nicholas Curtis, and Cristian Di

Pietrantonio. 2023. AMDResearch/omniperf: v1.1.0-PR1 (13 Oct 2023). doi:10.5281/zenodo.7314631

[23] Thibaut Lutz, Christian Fensch, and Murray Cole. 2015. Helium: a transparent inter-kernel optimizer for OpenCL. In

Workshop on General Purpose Processing Using GPUs. 70ś80. doi:10.1145/2716282.2716284

[24] Jiayuan Meng, Vitali A. Morozov, Kalyan Kumaran, Venkatram Vishwanath, and Thomas D. Uram. 2011. GROPHECY:

GPU performance projection from CPU code skeletons. In International Conference for High Performance Computing,

Networking, Storage and Analysis. 1ś11. doi:10.1145/2063384.2063402

[25] Jiayuan Meng, Vitali A. Morozov, Venkatram Vishwanath, and Kalyan Kumaran. 2012. Dataflow-driven GPU per-

formance projection for multi-kernel transformations. In International Conference on High Performance Computing,

Networking, Storage and Analysis. 1ś11. doi:10.1109/SC.2012.42

[26] John Magnus Morton, Kuba Kaszyk, Lu Li, Jiawen Sun, Christophe Dubach, Michel Steuwer, Murray Cole, and Michael

F. P. O’Boyle. 2020. DelayRepay: Delayed Execution for Kernel Fusion in Python. In International Symposium on

Dynamic Languages. 43ś56. doi:10.1145/3426422.3426980

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA082. Publication date: July 2025.

Dynamically Fusing Python HPC Kernels ISSTA082:23

[27] Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha Thaker, Rahul Palamuttam, Parimajan Negi, Anil

Shanbhag, Malte Schwarzkopf, Holger Pirk, Saman Amarasinghe, Samuel Madden, and Matei Zaharia. 2018. Evaluating

end-to-end optimization for data analytics applications in weld. Proceedings of the VLDB Endowment 11, 9 (may 2018),

1002ś1015. doi:10.14778/3213880.3213890

[28] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: an

imperative style, high-performance deep learning library. In International Conference on Neural Information Processing

Systems. Article 721, 12 pages. doi:10.5555/3454287.3455008

[29] Alex Suhan, Davide Libenzi, Ailing Zhang, Parker Schuh, Brennan Saeta, Jie Young Sohn, and Denys Shabalin.

2021. LazyTensor: combining eager execution with domain-specific compilers. doi:10.48550/arXiv.2102.13267

arXiv:2102.13267

[30] Wei Sun, Ang Li, Sander Stuijk, and Henk Corporaal. 2024. How Much Can We Gain From Tensor Kernel Fusion on

GPUs? IEEE Access 12 (2024), 126135ś126144. doi:10.1109/ACCESS.2024.3411473

[31] Shiv Sundram, Wonchan Lee, and Alex Aiken. 2022. Task Fusion in Distributed Runtimes. In ACM Parallel Applications

Workshop: Alternatives To MPI+X. 13ś25. doi:10.1109/PAW-ATM56565.2022.00007

[32] P. Tarr, H. Ossher, W. Harrison, and S.M. Sutton. 1999. N degrees of separation: multi-dimensional separation of

concerns. In International Conference on Software Engineering. 107ś119.

[33] Christian Trott, Luc Berger-Vergiat, David Poliakoff, Sivasankaran Rajamanickam, Damien Lebrun-Grandie, Jonathan

Madsen, Nader Al Awar, Milos Gligoric, Galen Shipman, and Geoff Womeldorff. 2021. The Kokkos EcoSystem:

Comprehensive Performance Portability for High Performance Computing. Computing in Science Engineering 23, 5

(2021), 10ś18. doi:10.1109/MCSE.2021.3098509

[34] Christian R. Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko, Vinh Dang, Nathan Ellingwood, Rahulkumar

Gayatri, Evan Harvey, Daisy S. Hollman, Dan Ibanez, Nevin Liber, Jonathan Madsen, Jeff Miles, David Poliakoff, Amy

Powell, Sivasankaran Rajamanickam, Mikael Simberg, Dan Sunderland, Bruno Turcksin, and Jeremiah Wilke. 2022.

Kokkos 3: Programming Model Extensions for the Exascale Era. Transactions on Parallel and Distributed Systems 33, 4

(2022), 805ś817. doi:10.1109/TPDS.2021.3097283

[35] Mohamed Wahib and Naoya Maruyama. 2014. Scalable Kernel Fusion for Memory-Bound GPU Applications. In

International Conference for High Performance Computing, Networking, Storage and Analysis. 191ś202. doi:10.1109/SC.

2014.21

[36] Haicheng Wu, Gregory Diamos, Srihari Cadambi, and Sudhakar Yalamanchili. 2012. Kernel Weaver: Automatically

Fusing Database Primitives for Efficient GPU Computation. In International Symposium on Microarchitecture. 107ś118.

doi:10.1109/MICRO.2012.19

[37] Haicheng Wu, Gregory Diamos, Jin Wang, Srihari Cadambi, Sudhakar Yalamanchili, and Srimat Chakradhar. 2012.

Optimizing Data Warehousing Applications for GPUs Using Kernel Fusion/Fission. In International Parallel and

Distributed Processing Symposium Workshops and PhD Forum. 2433ś2442. doi:10.1109/IPDPSW.2012.300

[38] Alexandros Nikolaos Ziogas, Tal Ben-Nun, Timo Schneider, and Torsten Hoefler. 2021. NPBench: a benchmarking suite

for high-performance NumPy. In International Conference on Supercomputing. 63ś74. doi:10.1145/3447818.3460360

[39] Alexandros Nikolaos Ziogas, Timo Schneider, Tal Ben-Nun, Alexandru Calotoiu, Tiziano De Matteis, Johannes de

Fine Licht, Luca Lavarini, and Torsten Hoefler. 2021. Productivity, portability, performance: data-centric Python.

In International Conference for High Performance Computing, Networking, Storage and Analysis. Article 95, 13 pages.

doi:10.1145/3458817.3476176

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA082. Publication date: July 2025.

	Abstract
	1 Introduction
	2 Background
	3 Motivation
	3.1 Benefits
	3.2 Example

	4 Technique
	4.1 PyKokkos Runtime
	4.2 Tracing
	4.3 Fusion
	4.4 Code Transformations

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Test Subjects
	5.3 Kernel Speedups
	5.4 Kernel Fusion Advantages
	5.5 Run-time Overhead

	6 Limitations and Future Work
	7 Related Work
	8 Conclusion
	9 Data Availability
	Acknowledgments
	A Appendix: Kernel Speedups
	References

