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We present the experimental finding of multiple simultaneous two-fold degeneracies
in the spectrum of a Kerr oscillator subjected to a squeezing drive. This squeezing
drive resulting from a three-wave mixing process, in combination with the Kerr
interaction, creates an effective static two-well potential in the phase space rotating
at half the frequency of the sinusoidal drive generating the squeezing. Remarkably,
these degeneracies can be turned on-and-off on demand, as well as their number by
simply adjusting the frequency of the squeezing drive. We find that when the detuning
A between the frequency of the oscillator and the second subharmonic of the drive
equals an even multiple of the Kerr coefficient K, A/K = 2m, the oscillator displays
m —+ 1 exact, parity-protected, spectral degeneracies, insensitive to the drive amplitude.
These degeneracies can be explained by the unusual destructive interference of tunnel
paths in the classically forbidden region of the double well static effective potential that
models our experiment. Exploiting this interference, we measure a peaked enhancement
of the incoherent well-switching lifetime, thus creating a protected cat qubit in the
ground state manifold of our oscillator. Our results illustrate the relationship between
degeneracies and noise protection in a driven quantum system.
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Energy level degeneracies and their connection to symmetries play a pivotal role in
physics. For instance, atoms like the hydrogen atom present energy level degeneracies
connected to spherical symmetry of the attractive potential of the nucleus. In quantum
information, such symmetry favors the emergence of a noise-protected manifold of two
states, if the symmetry of the states prevents the environment to distinguish between
them. For example, topological quantum systems exhibit global symmetries that result
in degenerate ground states with inherent protection against local noise (1). The pursuit
of noise protection in qubits has led to the proposal and investigation of complex novel
circuits, such as the 0 — z qubit (2) and the cos 2¢ qubit (3, 4), whose near-degenerate
qubit states are endowed with inherent resilience to decay and dephasing. However, the
realization of such protected qubits often demands finely tuned circuit parameters that
tend to drift, like the flux through a superconducting loop (5, 6).

Encoding a protected qubit in a driven system provides a means of tuning the
protection in situ by adjusting the drive parameters. A driven Kerr oscillator readily
provides such a degenerate manifold of ground states that are stabilized under dissipation.
This can be shown (7) by taking a Kerr nonlinear oscillator, subject to a two-
photon squeezing drive and finding that its Hamiltonian in the rotating frame of the
oscillator H/h = —Ka'2# + e3(2" + #*) can be written into a factorizable form as
H/h = —K (2" — e2/K)(2* — €2/K) + €3/K, where 4 is the annihilation operaror,
K is the Kerr coefficient, and €, the strength of the squeezing interaction. The coherent
states |a = £4/€2/K), which are the eigenstates of the annihilation operator associated
with photon-loss, are degenerate eigenstates of the Hamiltonian. This property was key
for the proposal of the Kerr-cat qubit (7, 8), which was realized experimentally (9, 10).

It is worthwhile to ask whether the protection associated with the Hamiltonian
factorization is a special feature or just one instance of a more general phenomenon.
For instance, how would the introduction of a simple parameter such as a detuning,

H/h = Aa'a— Ka'& + (2" + 22) (1]

affect the degeneracy. At first glance, introducing A # 0 seems to be a terrible idea since
the beautiful factorization, leading to the exponentially small sensitivity of its spectrum
to drive frequency fluctuations, is broken.
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However, in this paper, we experimentally demonstrate that
introducing detuning actually improves the attractiveness of the
Kerr-cat qubit. We identify a counterintuitive phenomenon: a
family of tunable parity-protected degeneracies that occur not
only in the ground state manifold, but also in the excited state
manifolds of our system. Specifically, we observe that when the
harmonic term controlled by the parameter A in Eq. 1 equals an
even multiple of the Kerr coefficient K, A/K = 2m, the oscillator
displays 7 + 1 exact, parity-protected, spectral degeneracies
that are insensitive to the amplitude of the squeezing drive
€2. Remarkably, these degeneracies correspond to the complete
suppression of tunneling, not only for the ground state (11),
but also for excited states (12) below the finite height barrier in
the double-well potential. Our experiment realizes an elementary
quantum system previously investigated only theoretically (11—
15), and illustrates a means of fighting decoherence. Specifically,
we show that the quantum states at the bottom of the double
well form a qubit manifold with interwell transition lifetime
that peaks when varying the drive frequency, while remaining
addressable. This stems from the qubit manifold being not only
protected from photon losses, but also from photon gain. This
type of driven qubit could be useful as an ancilla for fault-tolerant
syndrome measurement in quantum error correction (15-17).

Experimental Implementation. We implement the Hamiltonian
Eq. 1 in a microwave-driven superconducting circuit that we
now introduce. This setup was first introduced in ref. 9,
with package first introduced in ref. 10 and summarized here
for the sake of completeness. Fig. 14 shows a schematic of
the superconducting circuit package. The package consists of

A B C

two rectangular waveguide cavites (18) and the package an
Aluminum top part and a Copper bottom. This arrangement
results from a compromise between cavity quality factor and
control of magnetic flux bias of the superconducting circuit.
Each rectangle on the bottom-half of the package schematic
represents a Sapphire chip clamped to two copper posts and
shows three electron-beam-lithographically patterned structures
corresponding to the three modes of interest for each cavity:
a Superconducting Nonlinear Asymmetric Inductive eLement
(SNAIL)-transmon (9, 19), a readout resonator, and a Purcell
filter. Since only one rectangular cavity and its modes of interest
are individually addressed in this work, we neglect the presence of
the other “spectator” cavity and the second superconducting chip
within. Fig. 1B shows a zoom-in to the chip of used in this work.

Fig. 1C shows a zoom-in schematic of the SNAIL-transmon
array, and Fig. 1D shows a scanning electron micrograph further
zooming in on the Josephson junctions. A SNAIL consists of
a Josephson junction shunted by an array of larger Josephson
junctions (9). While an ordinary Josephson junction is the circuit
analog of a rigid pendulum, which has a cosine potential with the
phase across the junction and the charge through the islands anal-
ogous to the angular position and angular momentum of the pen-
dulum (see S/ Appendix, Table 1 for expansion on the analogy), in
the present case, the loop introduced by the shunting junctions,
when threaded with an external magnetic field, provides an
asymmetry of the potential. Therefore, the SNAIL-transmon
should be understood as the circuit implementation of an
asymmetric pendulum. Importantly, the SNAIL-transmon func-
tions as a weakly nonlinear oscillator with three, and four-wave
mixing which can be seen by expanding the Taylor series potential

m
o
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Fig. 1. Experimental device overview. (A) Superconducting circuit package that houses two chips each containing a SNAIL-transmon circuit oscillator, readout
mode, and Purcell filter. The blue and green arrows represent the microwave drives for squeezing and readout respectively. (B) Schematic zooming into a single
chip containing lithographically embedded structures corresponding to a SNAIL transmon (pink rectangle), readout resonator (red rectangle), and a Purcell
filter. (C) Schematic zooming in further to the SNAIL transmon which houses the bosonic mode in Eq. 1. (D) Scanning electron micrograph of the array of two
SNAILs. (E) Effective potential at p = 0 associated with the Kerr-parametric oscillator and potential of the readout resonator, with the arrows representing the
engineered beam splitter operation to transfer excitations from the SNAIL transmon to the readout resonator. (F) Readout histogram of the resonator output
field demonstrating high-fidelity discrimination of the localized well-states. Package and device are reproduced from ref. 10 for reader convenience.
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of an asymmetric cosine potential. We model the nonlinear
oscillator associated with the SNAIL Hamiltonian as

ﬂm:wﬁ%+§@+ﬂﬁ+%@+ﬁv. 2]

In Eq. 2, the classical small oscillation frequency of the
oscillator is @,, and the three-wave and four-wave mixing
nonlinear coefficients are characterized by g3, g4. The parameters,
@y, g3, and g4 can be tuned in situ by varying the external
magnetic field.

The squeezing operation is facilitated by applying a microwave
drive to a weakly coupled pin shown in Fig. 14. In the presence
of the drive, Eq. 2 is modified as

(o) /h = wpita+ LG+ aty + &G+ ity
3 4 (3]

—iQu(a—4") coswyt.

The squeezing of the oscillator can be understood as emerging
from the down-conversion of one drive excitation into two
oscillator excitations (Fig. 1D) and its conjugate process. To
make this interaction resonant, the drive is configured so that

A . B

its second subharmonic w,/2 lies in the vicinity of the SNAIL
transmon resonance at , = @, +3g; — 20g3 /3w, + O (g3 /®?).
Thus, taking into account the quantum correction to the small
oscillation frequency of the oscillator is important. For our
device, we measure @,/2n = 6.035 GHz. The squeezing drive
amplitude in Eq. 1 is related to the oscillator nonlinearity in Eq.
3 as e; = g3ll, where |II| = |ded/(a)621 — @?)] is the linear
response of the oscillator to the drive (20), and €, has been taken
to be real-valued without loss of generality. Furthermore, the
Kerr coefficient in Eq. 1 is related to the oscillator’s nonlinear
coefficients as K = 10g§/3a)0 —3g4/2+ O(gg/a)f) (20). In our
experiment, we measure it to be K /27 = 316.8 kHz (Fig. 2).
By directly measuring K and the w, as a function of the external
magnetic flux, we can fit the nonlinear constant of our sample
using the model for a SNAIL-array in ref. 10. Since the model has
many free parameters that we can only infer from design, our best
estimate for the nonlinear coefficient is g3 /27 = 3 x (—5) MHz
+50% and g4 /27 = 4 x (—32) kHz +£50%.

Note that this value of the Kerr coefficient is about three
orders of magnitude lower than a regular transmon (21). This
intentional design choice (10) avoids the effect of nonlinear
resonances which are well-known to plague transmon (22-24)
while retaining the sought-after low-order squeezing process.
Thus, in Eq. 1 we tune €; and A independently with the
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Fig. 2. Tunnel-driven Rabi oscillations in the ground state manifold and their periodic cancellation. (A) Energy surface associated with Eq. 1 in the classical limit
for A/K =3 and e, /K = 0.11. The orbits shown with black lines are obtained by semiclassical action quantization and represent the ground states (S/ Appendix).
Bidirectional arrows represent the two interfering WKB tunneling paths. (B) Cut of the energy surface in A at p = 0 (S/ Appendix). The classically forbidden region
is marked in gray. The Left and Right localized wavefunctions are indicated in red and blue. (C) Pulse sequence for D. The pink line represents the squeezing
drive at frequency wy and the purple lines represent the preparation and readout drives at frequency wy/2 — wr. (D) Time-domain Rabi oscillation measurement
of interwell tunneling probability (color) as a function of Abare taken here as A (Text), for e/K =0.11,0.22, 0.44, and 0.88. The extracted tunneling amplitudes
from D are shown as open circles in (E). The black lines in (E) correspond to the transition energy between the lowest eigenstates obtained from an exact
diagonalization of Eq. 1. A comparison of the extracted tunneling rate with a semiclassical WKB calculation is presented in S/ Appendix. Green arrows in E denote
the condition for constructive interference of tunneling and correspond to the measurements shown in Fig. 3. We extract the value of the Kerr coefficient K
from this data and note that it is consistent, within experimental inaccuracies, with an independent saturation spectroscopy measurement of the Fock qubit in
the absence of the squeezing drive (S/ Appendix). (F) Decay time of the tunnel-driven Rabi oscillations for different values of A and ¢ in D. Sharp peaks in the
decay time are clearly visible for A/K = 2m, m being a nonnegative integer.
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amplitude and frequency of the squeezing drive. Furthermore,
since K only provides an overall scale factor, we have independent
real-time control of all the parameters of Eq. 1. Due to the
relatively small K compared to a standard transmon (21), our
experiment has a negligible ac Stark shifts for e,/K < 1, so

that in this regime 6*°/K < 1%. Therefore, in this regime, A

can be approximated by AP = @, — w,/2. To complete the

characterization of our SNAIL transmon, we measure the single-
photon lifetime of the undriven SNAIL transmon is 77 = 20 ps
and the Ramsey coherence between its lowest-lying eigenstates is
TzR = 3.8 us.

The readout is facilitated by a Beryllium Copper pin inserted
into the cavity, which serves as the readout port and defines the
linewidths of the readout resonator and Purcell filter. In our
experiment, we measure the readout frequency to be w,/27 =
8.5 GHz. We perform readout by adding an additional drive at
the difference frequency between the readout resonator and the
second subharmonic of the drive. This second drive activates
a parametric beam splitter that swaps the down-converted
photon into the resonator leaking into our quantum-limited
(25) readout chain (Fig. 1E). The linewidth of the resonator
is k/27 = 0.4 MHz. By this means we achieve over 99.5%
single-shot, quantum nondemolition readout fidelity of which-
well information. See ref. 10 for a more detailed characterization
of the readout chain.

Experimental Results. We first experimentally demonstrate the
cancellation of tunneling in the ground state manifold. In Fig.
24, we show the classical limit of the energy surface, called the
metapotential, associated with Eq. 1 for A/K = 3,6,/K =
0.11, as a function of phase-space coordinates. The arrows
under the two saddle points indicate the two WKB tunneling
paths in between the two wells (11). At these saddle points, the
momentum is nonzero. By contrast, for a massive particle moving
in a quadratic + quartic potential, tunneling through the barrier
is associated with only one path under the barrier maximum,
corresponding to zero momentum. In the more elaborate
situation of Fig. 24, the two tunneling paths can interfere. In
this case, oscillations accompany the decay of the wavefunction
in the classically forbidden region. This interference can even
lead to the coherent cancellation of the tunneling amplitude
altogether. This is especially interesting since this may occur
for finite barrier height, allowing the tunneling to be restored
when the interference is constructive. Whether the interference
is destructive or constructive is decided by a combination of the
barrier height and the well-distance. This is illustrated in Fig. 28
where we show the wavefunctions corresponding to the ground
state manifold. In the general case, that these are not the energy
eigenstates but their even and odd superpositions, which are
localized in the left and right wells. Importantly, in the classically
forbidden region, marked in gray, oscillations accompany the
expected decay of the wavefunctions (11). To observe coherent
cancellation of tunneling in the ground state manifold, we prepare
a localized well state and measure its tunneling probability as a
function of time for different values of A and e;. We present
the measurement protocol in Fig. 2C. The preparation is done
by rapidly turning on the squeezing drive until an amplitude of
€2/K = 8.7 is reached. We subsequently wait 577 for the system
to relax to its steady state in the presence of the squeezing drive
and measure, in a quantum nondemolition (QND) manner,
the quadrature containing the which-well information. This
measurement projects the system into one of the wells. This read-
out protocol yields a stabilized fluorescence signal revealing the
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quadrature measurement outcome, the squeezing drive sustaining
the circuit oscillation. After the preparation, we adiabatically
lower the squeezing drive amplitude in a duration 1.6 s 2 7 /K.
The depth of the wells, which increases with €3/ K (S Appendix),
is then reduced so that the tunnel effect becomes observable.
We then wait for a variable amount of time before adiabatically
raising the squeezing drive amplitude to its initial value. Finally,
we measure which well the system has adopted.

The data for this tunneling measurement is shown in Fig.
2D, where we interpret the oscillating color pattern as tunnel-
driven Rabi oscillations. The transition probability shown in
Fig. 2D is measured by preparing the system in one well and
letting it evolve freely, as explained previously (see Fig. 2C for
the experimental sequence). We then measured the probability as
a function of the time the system have been left to evolve under
the tunneling Hamiltonian. The frequency of this oscillation
yields measurement of ground-state tunneling (11).

The periodic cancellation of tunneling at A/K = 2m, where
m is a nonnegative integer, is clearly visible as a divergence of the
Rabi period. We extract the tunneling amplitude [§E] from our
data by fitting the oscillation frequency with an exponentially
decaying sinusoid and plot this frequency in Fig. 2E, where
the data-point color corresponds to the value of e, (see S/
Appendix for calibration of €3). The black lines, obtained from
an exact diagonalization of the static effective Hamiltonian Eq.
1, correspond to the energy difference between levels in the
ground state manifold. The cancellation of tunneling for the
ground state manifold in a parametrically modulated oscillator
was predicted by Marthaler and Dykman (11) where, using a
semiclassical WKB method, the authors found that this multipath
interference effect is due to, and accompanied by, oscillations of
the wavefunction crossing zero in the classically forbidden region.
Here, we find good agreement between our experiment and their
WKB prediction (S Appendix). Note that, across the zero of the
tunneling amplitude, the bonding and antibonding superposition
of well states alternate as the ground state. Specifically, for
A/K = 4m+ 1, the ground state is the bonding superposition of
well states (S Appendix). In Fig. 2F, we further plot the extracted
decay time of the tunneling oscillations as a function of A, and
find sharp peaks when A/K = 2m, besides an overall continuous
increase of the decay time with A and €. The peaksat A/K = 2m
arise from the degeneracies in the excited state spectrum at this
condition and are discussed later in the text.

Importantly, the dynamics of the two-level system in Fig.
2D suggest a type of bosonic encoding of information that we
call the A-Kerr-cat qubit. The north and south poles of the
corresponding Bloch sphere, a generalization of the A = 0 one
(7,9, 10), is defined by the cat states formed by the lowest pair
of eigenstates of Eq. 1. In this picture, a tunnel-Rabi cycle in
Fig. 2D for a fixed A/K # 2m corresponds to a travel along
the equator. For A/K = 2m, this travel is prohibited. Note that
when A/K = 2m+1, the tunneling amplitude is maximum and
is first-order insensitive to fluctuations of A.

From Fig. 2E, we also see that, besides the discrete cancellation
of tunneling at A/K = 2m, tunneling in the ground state
manifold is overall continuously reduced with both A and e;.
This reflects the well-known symmetry of the double well, which
is broken by tunnel coupling. The approximate symmetry is
restored with increasing A and €, because both parameters
explicitly control the barrier height and thus exponentially

*Note that this adiabaticity condition pertains to the gap between the ground and first
excited pair of states. We do not need to be adiabatic with respect to the two tunnel split
states within the ground state manifold since they have opposite parity and the parity
preserving squeezing drive will not couple them.
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control the tunneling amplitude |6 E|. Theory predicts that the
larger the detuning A, the faster the tunneling reduction with the
squeezing drive amplitude €3 (S/ Appendix). We have observed
this effect by measuring the tunneling amplitude as a function of
€ for different constructive tunneling conditions corresponding
to A/K = 2m + 1. The data are presented in Fig. 3. The
exponential insensitivity, around A = 0, to fluctuations of
A due to a noisy w,, as a function of €3, was predicted and
thus proposed as a resource for quantum information (7). This
insensitivity was a key motivation for realizing the Kerr-cat qubit
(9). The insensitivity of the ground state manifold to detuning as
a function of e; is directly observed here. Note from Fig. 2F that
for A < 0, in the parameter regime €;/K < 1, the tunneling
amplitude |6E| is weakly dependent on €3, whereas for A > 0,
it is strongly dependent on €. This weak dependence for A < 0
is expected since the barrier height vanishes for small values of
e2/K.T Our finding shows that new operating points at even,
positive values of A/K increase the resilience of ground-state
qubit encoding to detuning-like noise.

Moving to the pairs of excited states above the ground
state manifold, do they also present observable degeneracies
as a function of A/K? In order to deepen our understanding
of this problem, we first examine the classical energy surface
associated with Eq. 1 via the period doubling phase diagram
(27) shown in Fig. 44. In the classical limit (S/ Appendix), the
parameter space spanned by A/K and €;/K is divided by two
phase transitions located at A = =£2e;. The different phases
are characterized by the number of stable nodes (attractors) in
the metapotential referred to later as the single-, double-, and
triple-node phases. These phases correspond to different metapo-
tential topologies. We show them as contour line /nsets in Fig.
4A, representing classical orbits. The single-node phase occurs
for A < —2¢3, and presents only one well. For A > —2e¢,, the
oscillator has bifurcated and the classical metapotential acquires
two wells. In the presence of dissipation, these wells house
stable nodes. The emergent ground state manifold has been
exploited, for A = 0, in the Kerr-cat qubit (9, 10). In the
interval —2€; < A < 2¢3, an unstable extremum (saddle point)
appears at the origin. For A > 2e, the saddle point at the origin

0
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Fig. 3. Exponential reduction of tunnel splitting as a function of ¢, in the
ground state manifold. Extracted tunnel splitting (open circles) for the first five
local maxima in Fig. 2E as marked by the color-coded arrows. Experimental
sequence as in Fig. 2E. For the raw color data, see S/ Appendix, Fig. 3. Black lines
are obtained from a Hamiltonian diagonalization of Eq. 1 with no adjustable
parameters. For comparison with a semiclassical WKB calculation, S/ Appendix.
Note that for small tunneling amplitude, dissipation plays a relevant role and
the Hamiltonian model used here is insufficient.

Tin the absence of dissipation, the metapotential acquires two wells as soon as ¢, A > 0,
i.e., there is no threshold for bifurcation of the driven oscillator. In our quantum
experiment, this threshold is finite but is, relatively speaking, extremely small since and is

setby €3 > (A2 4 T;2/4)/4 (see ref. 26).
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splits into two saddle points and an attractor reappears at the
origin. The barrier height of the classical metapotential is given by
(A+26)?/4K in the double-node phase and by 2e;A/K in the
triple-node phase (S/ Appendix). To count the number of excited
states that have sunk under the barrier, we further introduce
in Fig. 4B a semiclassical phase diagram of the squeeze-driven
Kerr oscillator. Following the Einstein-Brillouin-Keller method,
which generalizes the notion of Bohr orbits, we quantize the
action enclosed in the metapotential well below the height of the
barrier and obtain the number of in-well excited states. In Fig.
4C, we present the corresponding orbits in the energy surface
for a fixed value of €;/K = 2.17 and four values of A/K. We
validate this simple, semiclassical picture with a fully quantum
mechanical calculation of the Wigner functions of localized states
in the ground and excited state manifold (S/ Appendix). It is clear
from this analysis that, by increasing €, and A, and therefore the
barrier height, not only the ground state manifold but even the
excited state manifolds become progressively ensconced in the
wells, and we thus expect the tunneling between the wells to be
drastically reduced.

Besides the overall continuous reduction of tunneling, the
excited state manifold of the squeeze-driven Kerr oscillator
experiences a discrete cancellation of tunneling when A/K =
2m. Since the squeezing interaction preserves photon parity,
levels belonging to the even and odd sector of the Kerr
Hamiltonian remain decoupled and repeatedly cross at values
of A/K corresponding to even integers. This braiding induces
m + 1 perfect degeneracies at A/K = 2m. Moreover, the
corresponding eigenstates have a closed-form expression in the
Fock basis. Remarkably, these features are independent of the
value of €3, reflecting a particular, unappreciated symmetry of
our Hamiltonian Eq. 1 (S8 Appendix).

Both the discrete cancellation and the overall continuous
reduction of tunneling now in the excited state manifold of
the squeeze-driven Kerr oscillator is accessed by performing
spectroscopy measurements as a function of A, which we show in
Fig. 4F for €;/K = 2.17. The measurement protocol is shown
in Fig. 4D. We prepare a localized well state in a manner that is
similar to the protocols of Figs. 2 and 3. To locate the frequency
of the excited states, we apply a probe tone at variable frequency
in the vicinity of the SNAIL transmon resonance @, and measure
the well-switching probability. When the probe is resonant with a
transition to a state close to the barrier maximum, this probability
is increased. The experimental results are shown in Fig. 4F. The
colored dashed lines (orange and blue) in the lower panel are
obtained from an exact diagonalization of the static effective
Hamiltonian Eq. 1 with no adjustable parameters. The crossings
of levels are marked with circles. The data also shows that the
level crossings are accompanied by a continuous reduction of
the braiding amplitude with A. The corresponding reduction
of the tunnel splitting is the manifestation associated with a
generic double-well Hamiltonian, while the braiding reflects
interference specific to our particular Hamiltonian, resulting
from its underlying driven character. The level of experimental
control achieved allows us to observe in this data the joint
presence of the exact discrete symmetry and the approximate
continuous symmetry in our bosonic system.

An important consequence of the cancellation of tunneling
in the excited state spectrum is the periodic enhancement of
the well-switching time under incoherent environment-induced
evolution. This time scale corresponds to the transverse relaxation
time, T, of a new bosonic qubit: a A-variant of the Kerr-cat
qubit (7, 26) as mentioned earlier. To measure 7, we prepare
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Fig. 4. Spectroscopic measurements of coherent and periodic cancellation of tunnel splitting in the excited state spectrum. (A) Classical phase diagram for
the Kerr oscillator with parametric squeezing, also called the period-doubling bifurcation diagram. (B) Quantum phase diagram to count in-well excited states.
Colors represent contours of constant action on the energy surface associated with Eqg. 1. The dashed pink line corresponds to e;/K = 0.88, the maximum
value of squeezing drive amplitude in Fig. 2. The dashed black line corresponds to e, /K = 2.17, the value of squeezing drive amplitude used in Fig. 3 F and G.
(C) Energy surfaces for e; /K = 2.17 and i) A/K = 0.5, ii) A/K = 3, iii) A/K = 5, and iv) A/K = 7. Bohr-like obits are indicated as black curves (see S/ Appendix for
more details). (D) Pulse sequence for (F). The green line represents the weak spectroscopic probe tone at frequency wpr. The pink line represents the squeezing
drive at frequency wy and the purple lines represent the preparation and readout drives at frequency wy/2 — wr. (E) Pulse sequence for (G). (F) (Upper panel)
Frequency-domain measurement of well-transition probability (color) via excited states as a function of A for e;/K = 2.17. The power of the perturbative
spectroscopic probe is increased as wpr is decreased to compensate for the lower matrix element connecting the ground state with the higher excited levels,
yet is kept weak enough to preserve the parity conservation rules of Eq. 1. (F) (Lower panel) Dashed lines plotted on Top of experimental data (same as in
Upper panel) correspond to transition energies obtained by performing an exact diagonalization of Eq. 1 with no adjustable parameters. The Kerr coefficient is
calibrated via time-domain measurements in Fig. 2E. (G) Measured well-switching time under incoherent environmental-induced evolution as a function A for

€5 /K ~ 2.17. Background color in (G) marks the number of excited states per well following semiclassical orbit quantization.

a localized well state by measurement, and wait for a variable
amount of time before measuring the which-well information.
We show the pulse sequence in Fig. 4E. We obtain 7x by fitting
a decaying exponential function to the measured well-transition
probability for each value of A and plot the result in Fig. 4G.
Note that we have chosen the squeezing drive amplitude identical
to that of Fig. 4F, as /K = 2.17. Around values of A/K
corresponding to even integers, the variation of T presents sharp
peaks. The location of the peaks corresponds to the degeneracy
condition in the excited state spectrum, associated with coherent
cancellation of tunneling and the blocking of noise-induced well-
switching pathways via the excited states. The systematic right-
offset 5/K of each peak from an even integer, is 15%. About 5%
can be attributed to the ac Stark shift §* for the photon number
corresponding to €3, given the accuracy of our knowledge of the
experimental parameters. We do not have a firm explanation for
the remaining 10%, but we suspect higher-order terms in our
static effective Hamiltonian. Note that this explanation is still
compatible with the perfect alignment of the cancellation points
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with even integers in Fig. 2F for €,/K < 1, since for that case
the ac Stark shift is negligible. Note also that this offset could
provide access, within experimental accuracy, via the ac Stark
shift, to the nonlinear coefficients of Eq. 2.

The data in Fig. 4G also shows that the discrete peaks
are accompanied by a monotonic baseline increase, a direct
manifestation of the overall continuous tunneling reduction
in the spectrum versus A. The background colored stripes
represent the number of in-well excited states found via the
action quantization method discussed above and in S7 Appendix.
Continuing with this semiclassical picture, we interpret the
slowdown in the growth of Ty for A/K 2 5 as resulting from
the increase of the barrier height as one crosses over from the
double-node, where the barrier height o< (A + 262)2, to the
triple-node phase, where the barrier height o Ae;. Indeed, this is
the quantum manifestation of the classical phase transition from
the double-node to the triple-node phase. The heights and widths
of the peaks should be quantitatively compared with theory, but
this subject is beyond the scope of this article.
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Fig. 5. Color plot of Ty as a function of A/K and e5/K. The white line marks
the transition from a two-node to a three-node metapotential. Black solid
lines mark contours of constant barrier height. Increasing both A/K and e, /K
yields fastest enhancement in Ty as predicted by Fig. 4B. The additional
enhancement by the coherent cancellation of excited state tunneling at
A/K = 2m stands out. The pulse sequence for the measurement is shown in
Fig. 4E.

Thus, whether the theoretical framework is classical, semi-
classical, or quantum, the predicted 7x will increase with
both €y and A. While € and A contribute via the overall
continuous reduction of tunneling (10), only A controls the
discrete cancellation of tunneling. We verify this prediction by
measuring 7x while varying simultaneously both Hamiltonian
parameters. We present the result of this experiment in Fig. 5.
We further plot contours of constant barrier height in black, and
the expected separation between the double-node and triple-node
metapotential as a white line. We do not expect any sharp features
along this line since the system lies deeply in the quantum regime.
Following the gradient of the barrier height, one observes as
expected the fastest gain in T, with a maximum of 7x = 1.3 ms
forA/K = 6ande;/K = 4.Increasing the lifetime by increasing
€, presents limitations, since strong drives are known to cause
undesired effects in driven nonlinear systems (see refs. 23 and 28
and ST Appendix).

One could argue that A = 0 provides an important factor-
ization condition that guarantees that the ground state manifold
is spanned by exact coherent states (see ref. 7 and SI Appendix).
Indeed, this is an asset for quantum information, since these
states are eigenstates of the single-photon loss operator 2 (29).
However, this desirable property is traded for the advantages
discussed earlier when A/K = 2m, m > 1. Even if the A-
variant of the Kerr-cat qubit suffers from quantum heating and
quantum diffusion (14, 30-33) at zero temperature resulting
from the squeezed nature of its ground states, these effects are
small (16) and, as we show in the experiments reported here and
in ref. 10, the well-states of the Kerr-cat live longer than its A = 0
parent, even at finite temperature.

Discussion

Although quantum tunneling was discovered nearly a century
ago (34) and observed since in a variety of natural and synthetic
systems, the treatment of tunneling is usually limited to the
ground states of the system and has rarely been discussed in
the literature for excited states, as we elaborate in the following
survey. The phenomenology of ground state tunneling has been
studied in cold atoms (35) in three-dimensional optical lattices
(36), optical tweezers (37), ion traps (38) and in quantum dots
(39). In Josephson tunnel circuits, quantum tunneling of the
PNAS 2024 Vol. 121
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phase variable was first observed by Devoret et al. (40) and since
then exploited in several other experiments (41). Furthermore,
the tunnel effect has been involved in quantum simulation (42),
in Floquet engineering of topological phases of matter and to
generate artificial gauge fields with no static analog (43, 44). The
quantum interference of tunneling for the ground states of a
large spin system was measured previously in a cluster of eight
iron atoms by Wernsdorfer and Sessoli (45) (see also ref. 46).

Weilinga and Milburn (13) first identified that the quantum
optical model in Eq. 1 exhibits ground state tunneling for
a particular value of A. Marthaler and Dykman (11, 14)
developed a WKB treatment for a range of the A parameter, and
predicted that, for this model, the tunnel splitting of the ground
state manifold crosses zero periodically and is accompanied by
oscillation of the wavefunction in the classically forbidden region.

Our work is an experimental realization of the longstanding
theoretical proposals of the last paragraph. It is similar, but
different, to the phenomenology of the “coherent destruction
of tunneling”, discovered theoretically by Grossmann et al. (47)
and observed experimentally in cold atoms (48, 49). Indeed, the
dynamical tunneling in our experiment is in sharp contrast with
photon-assisted or suppressed tunneling in weakly driven double-
well potentials. First, our tunneling is completely dynamical, i.c.,
the tunneling barrier vanishes in the absence of the drive and
the drive operates in a completely different regime of frequency
and it belongs to a different class of physical effects: Grossmann
et al’s theory (47) requires a drive resonant with the first
two levels within the wells, here ~ 4¢;, <« w, . Second, and
most importantly, our work extends the coherent cancellation
of tunneling to all the excited states in the well. The periodic
resonance condition A/K = 2m, shared for the m+1 first pairs of
excited levels, is independent of the drive amplitude. Remarkably,
under this multistate resonance condition, the first 2(m + 1)
oscillator states have a closed-form expression in the Fock basis (57
Appendix). We further emphasize that the dynamical tunneling
in our work is distinct from chaos-assisted dynamical tunneling
(50) observations made in ultracold atoms over three decades
ago (50, 51); remarkably our strongly driven nonlinear system
remains integrable and well described by a static effective model.
Our work corresponds to the experimental finding of the exact
simultaneous cancellation of the tunnel splitting for the ground
and excited states. Our data featuring the incoherent dynamics
can be qualitatively modeled by a Lindbladian treatment that we
present in S/ Appendix, yet more research on the decoherence of
driven nonlinear driven systems is needed to get a quantitative
agreement (see ref. 28).

As a resource for quantum information, the squeeze-driven
Kerr oscillator for A = 0, was identified in theory proposals by
Cochrane et al. (8) for trapped ions in 1999 and Puri, Boutin,
and Blais (7) for superconducting circuits in 2017 due to its
exponential resilience to low frequency noise and was proposed
for a bosonic code. The theory of bistability for the non-zero
A case was studied by Zhang and Dykman in (12) and Roberts
and Clerk in (15), and their qubit operation was investigated
in (16). Our work demonstrates this bistability experimentally
through the lifetime peaks in Fig. 4G and explains the peaks as
a fingerprint of the observed spectral degeneracies in Fig. 4F.
Furthermore, the resilience to noise in the case of nonzero A is

demonstrated through Figs. 2F and 3.

Conclusion

We have observed multiple degeneracies between pairs of states
in a quantum double-well system, resulting from the interplay
of quantum tunneling and quantum interference. Our results
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provide experimental evidence of the cancellation of tunneling
due to interference in the classically forbidden region (11).

Our work showcases the tunability of these degeneracies in
number and the ability to rapidly activate or deactivate them.
Furthermore, we have identified the drive frequency as a critical
control parameter, governing not only a discrete exact symmetry
in Eq. 1, manifested as exact degeneracies as a function of
A, but also a continuous approximate symmetry as a function
of € that leads to an overall exponential reduction of tunnel
splitting in both ground and excited states of our oscillator. This
degree of quantum control a significant reduction of incoherent
well-flip dynamics, leads to enabling a protected cat-qubit: the
A-Kerr-cat qubit. Our demonstration of the continuous Z-
gate (17, 52) adds valuable capability to the single qubit gate-
set for cat qubits, offering tools for quantum computation
(7,9, 10, 15, 29, 52-56).

After our experiments were performed, we learned that the
degeneracies in our squeeze-driven Kerr oscillator were studied
theoretically by our colleagues in the QUANTIC group in
INRIA, Paris (16).

Data, Materials, and Software Availability. The data that support the
findings of this work are openly available in Zenodo at ref. 57. All other data are
included in the manuscript and/or S/ Appendix.
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