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Abstract. The false confidence theorem establishes that, for any data-
driven, precise-probabilistic method for uncertainty quantification, there
exists (both trivial and non-trivial) false hypotheses to which the method
tends to assign high confidence. This raises concerns about the reliability
of these widely-used methods, and shines promising light on the conso-
nant belief function-based methods that are provably immune to false
confidence. But an existence result alone leaves much to be desired. To-
wards an answer to the title question, I show that, roughly, complements
of convex hypotheses are a✏icted by false confidence.
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1 Introduction

In Logic of Statistical Inference, Hacking (1976) writes: “Statisticians want nu-
merical measures of the degree to which data support hypotheses.” One such
measure is a Bayesian posterior probability, but imprecise probabilists—the be-
lief function community specifically—are well aware that precise probability the-
ory is not the only mode of uncertainty quantification. Indeed, in a statistical
inference problem, where prior information is at best incomplete and data speaks
only indirectly through a model, there’s good reason to question the appropriate-
ness and/or reliability of a precise probability as statisticians’ go-to quantitative
expression of the degree to which data supports hypotheses.

Balch et al. (2019) expressed this concern in terms of false confidence. Roughly,
in the context described in Section 2.1, false confidence corresponds to the ex-
istence of false hypotheses to which, say, a default-prior Bayesian posterior dis-
tribution tends to assign high probability, support, or confidence. Their result
also applies to (generalized) fiducial inference (Dawid 2020; Fisher 1935; Hannig
et al. 2016), confidence distributions (Xie and Singh 2013), etc., so it highlights a
risk of unreliability inherent in all precise-probabilistic approaches to statistical
uncertainty quantification. Since reliability is obviously a top priority, there’s
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an exciting opportunity for imprecise probability theory to make a fundamen-
tal contribution to statistics, a domain in which imprecise-probabilistic methods
are greatly under-appreciated and largely unused. Along these lines, I’ve recently
shown (Martin 2019, 2021, 2022a,b) that a suitable possibilistic, or consonant

belief framework for statistical inference is immune to false confidence; that is,
this framework is reliable in the sense that it provably doesn’t tend to assign
high support to any false hypotheses!

Unfortunately, the false confidence theorem, as stated in Balch et al. (2019),
is only an existence result. In a certain sense, the existence of hypotheses that
are a✏icted with false confidence is “obvious,” and it’s partly for this reason that
statisticians largely haven’t taken this too seriously (Carmichael and Williams
2018; Cunen et al. 2020; Martin et al. 2021). But the extent of false confidence
a✏iction goes well beyond the hypotheses for which it’s obvious: this has been
demonstrated empirically in a number of specific examples, but no theoretical
characterizations have been put forward. To my knowledge, all that’s currently
known is, for location-scale and other group transformation models, linear hy-
potheses about the uncertain ⇥ of the form “a>⇥  b” are safe from false con-
fidence (Martin 2023a). So, theoretically, we currently know e↵ectively nothing
about which hypotheses are a✏icted with false confidence, but the present makes
some progress in this direction. In particular, under a simple model that (ap-
proximately) represents most practical cases, I show that a class of (non-linear)
hypotheses which includes those that are co-convex, i.e., complements of convex
sets, are a✏icted with false confidence. This is not a complete characterization,
but it provides some insight as to what structure breeds false confidence.

Admittedly, the present paper says very little about belief functions and
imprecise probability, but I still expect this investigation to make a significant
contribution. Indeed, once the extent and implications of false confidence are
understood, statisticians who care about reliable uncertainty quantification will
have no choice but to use certain imprecise-probabilistic ideas and methods.

2 Background

2.1 Problem setup

Let X denote the data taking values in a general sample space X. A statistical
model consists of a family of probability distributions {P✓ : ✓ 2 T} on X indexed
by a general parameter space T. As is commonly assumed, suppose there is an
uncertain “true” parameter value ⇥ such that X has distribution P⇥. I’ll assume
throughout that prior information about ⇥ is vacuous. The high-level goal is to
quantify uncertainty about ⇥, given X = x, à la Hacking.

2.2 Inferential models

Following Martin (2021), an inferential model (IM) is a map from data x 2 X
to a lower probability ⇧

x
supported on subsets of T, which depends implic-

itly on the statistical model and perhaps other things, e.g., prior information
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about ⇥. The interpretation is that ⇧
x
(H) measures the degree of support for

or belief/confidence in the truthfulness of the hypothesis “⇥ 2 H” given data
X = x. Examples of precise IMs include Bayes’s posterior probabilities, Fisher’s
fiducial distributions, and Hannig’s generalized fiducial distributions; examples
of imprecise IMs include Dempster’s seminal proposal (Dempster 1966, 1968,
2008), Walley’s generalized Bayes (Walley 1991), consonant likelihood-based be-
lief functions (Denœux 2014; Shafer 1982; Wasserman 1990), and what’s briefly
described in Section 2.4 below.

Bayesian- and fiducial-like frameworks quantify uncertainty about ⇥, given
X = x, with a precise (countably additive) “posterior distribution”

⇧x(H) =

R
H
Lx(✓)⇧(d✓)R

T Lx(✓)⇧(d✓)
, H ✓ T, (1)

where ⇧ is like a “prior distribution” for the uncertain parameter ⇥ and ✓ 7!
Lx(✓) is the model’s likelihood function given X = x. The quotation marks
are intended to highlight the point that, since prior information is assumed
vacuous, these are “prior” and “posterior” distributions only in a formal sense.
As Je↵reys (1946) explains, ⇧ is a default measure that gets updated to ⇧x by
formally following Bayes’s rule when X = x. In certain contexts (e.g., Hannig
et al. 2016), ⇧ itself might depend on data, hence can’t represent genuine prior
information. In any case, the map H 7! ⇧x(H) is often used in applications to
quantify uncertainty about ⇥, given X = x. But “[Bayes’s rule] does not create
real probabilities from hypothetical probabilities” (Fraser 2014), so a practically
and theoretically important question is if this brand of (precise) probabilistic
uncertainty quantification is reliable.

2.3 False confidence

The false confidence theorem (Balch et al. 2019; Martin 2019) says that, for any
precise IM, i.e., a mapping x 7! ⇧x, with ⇧x a probability measure on T, there
exists a hypothesis–threshold pair (H,↵) such that

H 63 ⇥ and P⇥{⇧X(H) � 1� ↵} > ↵. (2)

That is, there exists false hypotheses H to which the posterior tends to assign a
relatively large probability/confidence, shedding light on a lurking unreliability.
That is, the statistician would tend to be confident in a hypothesis based on
data X if its ⇧X -probability is relatively large, but this is unreliable if ⇧X(H)
tends to be relatively large even if H is false.

Martin (2023b) shows that false confidence implies an incoherence-like risk
of monetary loss to statisticians who quantify uncertainty using precise IMs. To
see this, consider the following class of (contingent) gambles

f
H,↵

✓
(x) =

(
1(✓ 2 H)� (1� ↵) if ⇧x(H) > 1� ↵

0 otherwise,



4 R. Martin

where 1(·) is the indicator function. For every (↵, H, x, ✓), this gamble would be
acceptable to the statistician who quantifies his uncertainty with ⇧x when he
observes X = x; that is, the expected value of fH,↵

⇥
(x), with respect to ⇧x for

any fixed x, is positive. Now imagine another agent, a scrutinizer, who doubts
the reliability of the statistician’s claims. False confidence creates an opportunity
for this scrutinizer—through careful considerations, background knowledge, or
simply luck—to force the statistician into a systematic loss. If (H,↵) is one
of the hypothesis–threshold pairs that satisfies (2), then, as a function of X

for fixed ⇥ 62 H, the statistician’s winnings f
H,↵

⇥
(X) are either negative (with

probability ↵) or zero. Therefore, his “long-run” earnings are negative, hence
a systematic loss. Note that “long-run” doesn’t require replications of a given
experiment under the same settings or even by the same statistician. If groups
of statisticians quantify their uncertainty using a precise IM, then scrutinizers
can, in principle, make the statisticians collectively systematic losers. Also, the
scrutinzers don’t need to know the unknown ⇥ to force this systematic loss, they
only need to find, even just by luck, hypotheses a✏icted by false confidence. If,
as I claim, hypotheses a✏icted by false confidence aren’t uncommon, then the
above points ought to raise concern.

2.4 Consonant beliefs to the rescue

Fisher (1930) writes: “...[the likelihood function] does not obey the laws of prob-
ability; it involves no di↵erential element.” The default prior ⇧ also has no
meaningful di↵erential element “d✓”—with vacuous prior information, there’s no
reason to think that measure-theoretically larger hypotheses are “more likely”
than smaller ones. However, if neither the likelihood nor the prior have a mean-
ingful di↵erential element, then there’s no sense in which the di↵erential ele-
ment on the right-hand side of (1) could be meaningful. Indeed, it’s easy to find
(measure-theoretically) large hypotheses that are false, hence the trivial cases of
false confidence. More generally, I claim that the meaningless di↵erential element
is at the heart of false confidence (Martin 2023c).

If there exists an IM that protects all hypotheses from false confidence, then it
must be imprecise; the remarks in the previous paragraph suggest that it should
also be di↵erential element free. The simplest example of this is a consonant belief
function (Shafer 1976), one whose conjugate plausibility function is a maxitive
possibility measure (Dubois and Prade 1988; Hose 2022). To my knowledge, the
first IMs shown to be valid, i.e.,

sup
⇥ 62H

P⇥{⇧X
(H) � 1� ↵}  ↵, for all (H,↵), (3)

were those put forward in Martin and Liu (2015) based on nested random sets;
see, also, Balch (2012) and Denœux and Li (2018). The condition (3) implies,
among other things, that there’s no false confidence. The valid IM construction
has been generalized and streamlined in Martin (2015, 2018, 2022b), but those
specific details won’t be needed in what follows.
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3 Co-convexity breeds false confidence

Without much loss of generality, I’ll focus here on the D-dimensional Gaussian
case X ⇠ ND(⇥,⌃), where ⇥ 2 T = RD is the uncertain parameter and the
D ⇥D covariance matrix ⌃ is fixed and known. Then the likelihood is

LX(✓) / exp{� 1
2 (X � ✓)>⌃�1(X � ✓)}, ✓ 2 T.

I say “without much loss of generality” because, in most of the statistical models
used in practical applications, there’s a corresponding Gaussian limit experiment
(e.g., van der Vaart 1998, Chapter 9). That is, if the sample size is large, then
the maximum likelihood estimator (say) is an approximately minimal su�cient
statistic whose sampling distribution is approximately Gaussian with mean ⇥

and covariance matrix a multiple of the inverse Fisher information. In this case,
with vacuous prior information, the go-to precise IM for ⇥ is

⇧X = ND(X,⌃). (4)

The precise IM in (4) has a number of desirable properties, e.g, highest posterior
density credible sets are minimum volume confidence sets. But it still su↵ers from
the inherent unreliability exposed by the false confidence theorem.

To develop some intuition, consider a function � : T ! R, and define

H� = {✓ 2 T : �(✓) > �(⇥)}. (5)

Clearly, hypothesis H� is false, i.e., H� 63 ⇥. If � is (non-linear) convex, which
makes H� co-convex—the complement of a convex set—then Jensen’s inequality
immediately gives the bound E⇥{�(X)} > �(⇥). Consequently, there must be
non-negligible probability that X, the ⇧X -posterior mean, is contained in the
false H�; and, if the posterior mean is in H�, then the corresponding posterior
probability, ⇧X(H�), can’t be small, hence an ample opportunity for false confi-
dence in H�. Interestingly, this apparently has little to do with the size/measure
of H� or of Hc

�
: something else is driving false confidence.

The more general, albeit less intuitive, result is presented next. I’ll start
with a definition. A set G ⇢ T will be called non-linear, locally convex at #, or
#-noloco, if it satisfies the following three properties:

– if G contains # on its boundary,
– if it has a supporting hyperplane at #, and
– if the intersection of Gc with the half-space determined by the supporting

hyperplane that contains G has non-zero Lebesgue measure.

To connect this to the more intuitive discussion above, if � is a non-linear convex
function, then the complement of H� in (5) is ⇥-noloco. More generally, if G
is convex, then a supporting hyperplane exists at each of its boundary points
(e.g., Boyd and Vandenberghe 2004, Sec. 2.5.2). But G could be non-convex and
have a supporting hyperplane at some of its boundary points—Figure 1 shows a
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#

G

Fig. 1. A non-convex G that’s #-noloco; gray line defines the supporting hyperplane.

non-convex G that’s still #-noloco. The aforementioned supporting hyperplane
at # is determined by a vector g#, i.e., that hyperplane is

{✓ 2 T : g>
#
(✓ � #) = 0},

and the half-space that contains G is

halfsp
#
(G) = {✓ 2 T : g>

#
(✓ � #)  0}.

If the boundary of G was linear, then its boundary would coincide with the
boundary of the half-space defined above. The analysis below requires that there
is some room (having non-zero Lebesgue measure) between the boundary of G
and the boundary of the half-space, which is enforced by the third condition
above. This non-linearity and boundary separation is shown in Figure 1.

Proposition 1. For any ⇥ 2 T, if G is ⇥-noloco, then the hypothesis H = G
c

is a✏icted by false confidence. In particular, the random variable ⇧X(H), as a

function of X ⇠ ND(⇥,⌃), is stochastically larger than Unif(0, 1).

Proof. Let g⇥ denote the vector that defines the supporting hyperplane of G at
⇥. Since G is contained in the half-space halfsp

⇥
(G), we get

H � Hlin := {✓ 2 T : g>
⇥
(✓ �⇥) > 0},

and, consequently, ⇧X(H) > ⇧X(Hlin). The last inequality is strict because ⇧X

is absolutely continuous with respect to Lebesgue measure and, by assumption,
H \Hlin has positive Lebesgue measure. The lower bound, ⇧X(Hlin), satisfies

⇧X(Hlin) = 1� F

⇣
� g

>
⇥
(X �⇥)

{g>
⇥
⌃ g⇥}1/2

⌘
, (6)

where F is the standard normal distribution function. As a function of X ⇠
ND(⇥,⌃), the right-hand side of (6) is Unif(0, 1). Therefore, ⇧X(H) is (strictly)
lower-bounded by a Unif(0, 1) random variable, completing the proof.

By no means is this a complete characterization of false confidence. For
one thing, it’s absolutely not necessary for ⇥ to sit on the boundary of the
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hypothesis—I imposed this constraint just to make the analysis tractable. Sim-
ilar results are expected for hypotheses that miss ⇥ but not by too much. More
generally, I don’t believe that noloco is fundamental to false confidence. My
conjecture is that all non-linear hypotheses about ⇥, e.g., “�(⇥)  b” for a non-
linear map �, have at least a mild case of false confidence—the reason being that
non-linear mapping can warp the parameter space in such a way that probabil-
ity assignments get pushed in one direction or another systematically. Precisely
diagnosing the existence and severity of a✏iction remains an open question.

4 Illustrations

In this section, I present two examples showing the existence and severity of false
confidence. Both illustrations are rather simple, but they’re still forceful. Indeed,
if the manifestation of false confidence is relatively easy to spot in these simple
examples, then we can be sure that it’s present in complex, modern applications
too. It’s for precisely this reason that the statistical community shouldn’t ignore
these warnings, assume that false confidence is too rare to be concerned about,
and stick with the (Bayesian) status quo.

Example 1. Non-linear hypotheses. Inference on the squared length of a normal
mean vector is a classically challenging statistical problem, originating in Stein
(1959) and appearing as the late D. R. Cox’s Challenge Question E (Fraser
et al. 2018). It’s also closely related to the motivating satellite collision example
in Balch et al. (2019). In the present context, if �(✓) = k✓k2, then the set H�

defined in (5) determines a (false) hypothesis about the mean vector’s squared
length; this set is also co-convex and, therefore, by Proposition 1, is a✏icted with
false confidence. To see the extent of a✏iction, the cdf ⇡ 7! P⇥{⇧X(H�)  ⇡} is
shown in Figure 2(a), where the dimension is D = 2 and ⇥ is length 1. Note that,
in this case, ⇧X(H�) is always greater than 0.6, even though H� is false. For
comparison, Figure 2(a) also displays the cdf of the valid IM’s lower probability
⇧

X
(H�) and, since it lies above the diagonal line corresponding to the Unif(0, 1)

cdf, there’s clearly no false confidence.

Example 2. Non-linear parameter space. Fraser (2011) considers a normal mean
model X ⇠ N(⇥, 1) but with the side information that ⇥ has a known lower
bound, which I take to be 0 without loss of generality. This is motivated by
relevant high-energy particle physics applications, but I’ll simply point the reader
to, e.g., Mandelkern (2002) for these details. Consider the (false) hypothesis H =
(⇥,1)—but note that the parameter constraint makes H

c bounded. What’s
interesting about this example is that, apparently, the bounded and, hence,
non-linear parameter space forces non-linearity in an otherwise linear hypothesis,
which induces false confidence. So, this example o↵ers a glimpse into the breadth
and diversity of cases where false confidence can emerge, perhaps unexpectedly.
The cdfs of the (flat-prior) Bayesian posterior probability, ⇧X(H), and of the
valid IM’s lower probability, ⇧

X
(H), are shown in Figure 2(b), based on true
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(a) Example 1
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(b) Example 2

Fig. 2. Black lines are cdfs for the (flat-prior) Bayes posterior probabilities and red
lines are the cdfs for the corresponding valid IM’s lower probabilities.

⇥ = 1. Note that the Bayes posterior assigns probability 1 to the false hypothesis
50% of the time, while the valid IM does the polar opposite, rightfully assigning
0 (or small) support to the false hypothesis most of the time.

5 Conclusion

The present paper is concerned with the following question: which statistical

hypotheses are a✏icted by false confidence? My collaborators and I have had
intuition about how to answer this question for some time, but only now have I
been able to formulate this intuition in a way that’s conducive to mathematical
analysis. The result that I proved here is quite simple, perhaps unremarkable, but
I’d argue that simplicity is a virtue. After all, false confidence is the rule, rather
than the exception, so it should be easy to identify hypotheses that are a✏icted.
What’s interesting is that a property slightly more general than co-convexity is
what makes the hypothesis vulnerable to false confidence.

The result presented here provides a su�cient condition for false confidence,
but I seriously doubt that the same condition is necessary. As above, my conjec-
ture is that non-linearity is enough to create at least a susceptibility to false con-
fidence. Non-linearlity alone may not be severe enough to cause false confidence-
level problems as defined here; but maybe to cause the milder but still concern-
ing “fluke confidence” that my friend and collaborator, Michael Balch, has been
telling me about recently. In any case, the advancements made in the present
paper make me optimistic that we’ll soon be able to settle these questions.
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