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Abstract

Some microscopic samples of zirconia-based shape memory ceramics (SMCs) have
shown full martensitic phase transformation (MPT) over multiple loading cycles without
cracking. However, the occurrence of MPT is strongly influenced by grain orientation.
Depending on the specific grain orientation relative to the loading direction, alternative
mechanisms such as plastic slip and fracture may emerge. This study introduces a phase-field
(PF) based framework that integrates a PF-MPT model, a PF fracture model, and a crystal
viscoplasticity model to investigate the effects of grain orientation on MPT, plastic slip, and
fracture mechanisms in SMC micropillars. Single crystal micropillars are created to distinguish
the orientations that facilitate each mechanism. A wide range of grain orientations are found to
predominantly exhibit MPT. Micropillars with grain orientations close to the (100) and (001)
directions primarily experience fracture, with minimal plastic slip. Additionally, samples
oriented along the (110) direction show a significant amount of plastic slip. A pole figure is
constructed to elucidate the interplay between MPT, cracking, and slip under compressive
loading conditions. This research provides valuable insights into the intricate behavior of SMCs
under different loading scenarios, crucial for optimizing their performance in practical
applications.
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1. Introduction

Zirconia-based SMCs are intelligent materials known for their capacity of demonstrating
either superelasticity or shape memory effect as a result of martensitic phase transformation
(MPT). MPT arises from phase change mainly between tetragonal (7) and monoclinic (M)
phases. The shape change induced by MPT is large and due to the inherent brittleness of these
ceramics, they are often unable to accommodate such significant transformation expansions. This
is the main reason for their low fracture toughness and short cyclic life. Multiple experimental
studies on microscopic samples of these ceramics have consistently highlighted grain boundaries
(GBs) as critical sites for crack initiation [1-3]. These investigations have demonstrated that by
reducing the number of grains and consequently minimizing the presence of GBs and even
generating single crystal samples, these ceramics can undergo complete MPT over numbers of
loading cycles before experiencing fracture. For example, Lai et al. [ 1] produced micropillars
with low number of grains and they observed that some samples can handle up to 55 cycles
before they fractured. In addition, experimental studies have identified plastic slips as one
primary irreversible mechanism in these ceramics. In a different study, Du et al. [2] showed that
single crystal spherical samples of 16mol%Ce-ZrO; are able to handle up to about 110 cycles
before they showed fracture. Zeng et al. [3] observed that depending on the crystal orientation in
single crystal micropillars, these ceramics can exhibit MPT, plastic slip, fracture, or a
combination of these three mechanisms.

MPT, plastic slip, and fracture are highly dependent on microstructural features [3], and
comprehensively understanding how these features influence the interplay between these
mechanisms can be challenging, if not impossible, solely through experimental methods. In this
case, numerical studies can be a reliable alternative to experiments. There have been a few
atomistic simulation studies which investigated the crystal orientation [4] and grain boundary [5,
6] effects on superelastic and shape memory behaviors [7] in zirconia-based nanopillars. These
studies, although valuable in providing some fundamental understanding of mechanisms and
behaviors in the nanoscale, due to their time and length scale limits are unbale to compare with
the actual experiments. At the microscale, the PF method has emerged as a powerful approach
for modeling both MPT and fracture. The first PF method to model the transformation from 7 to
M phase observed in zirconia-based SMCs was developed more than a decade ago [8]. The
model could successfully capture the crystal alternation between the two phases and accurately
predicted the experimentally observed microstructures. Similar models were used later on to
study transformation toughening [9] and shape memory behaviors [10] in SMCs. The PF method
has also been utilized to model the interaction between MPT and cracking in SMCs [11-16]. For
instance, Moshkelgosha and Mamivand conducted studies on fracture propagation in both single
crystal [13] and polycrystalline [14] zirconia-based SMCs using the PF method. They employed
stress-controlled loading conditions. In a separate investigation by the same authors [15], they
explored phase transformation and fracture in a three-dimensional single crystal SMC, observing
the initiation and propagation of MPT from the crack tip. They predicted crack deflection due to
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MPT, consistent with experimental reports. Notably, none of these studies reported an ultimate
stress or final stress drop in their stress-strain curves, primarily because of applying stress-
controlled loading conditions. Additionally, these studies focused only on shape memory effect
behavior and none studied the superelastic behavior. Furthermore, these models did not include
plasticity, therefore they were not able to study the interplay between MPT, fracture, and plastic
slip.

Recently, Lotfolahpour et al. [16] proposed a PF model to investigate the interaction
between MPT and cracking in the SE regime. They addressed a common issue of the most PF-
MPT models that underestimate the elastic modulus. They successfully established an ultimate
strength for the material under investigation by applying displacement-controlled loadings. Their
work studied the effects of grain orientation on MPT and crack path and captured reverse MPT
behind the crack tip. In another research, Cisse and Asle Zaeem [17], coupled the PF-MPT
model with a Von Mises based plasticity model to study the interaction between MPT and
plasticity in SMCs under monolithic loading conditions. They identified GBs as critical sites
with the highest plastic strain. In addition, they observed that plastic deformation impedes MPT
and compromises the functionality of SMCs. There are additional studies that focus on coupling
PF-MPT with plasticity, either general plasticity or crystal plasticity models, to examine the
interaction between MPT and plastic deformation in shape memory materials, with a primary
focus on NiTi [18-21]. However, none of these previous studies have investigated MPT,
plasticity, and fracture simultaneously, and consequently, they have not been able to establish a
comprehensive understanding of the interaction between these mechanisms. In this study, for the
first time, we integrate MPT, plastic slip, and fracture models to investigate the interplay
between these mechanisms in 3D micropillars. We utilize the PF method to model both MPT and
fracture, while adopting a crystal viscoplasticity model to accurately represent plastic slip
behavior in SMCs crystals. The aim is to predict the orientation-dependent deformation and
failure of micropillar SMCs. To better present our findings, we illustrate the results in a pole
figure comparable to those created by micropillar explements of SMCs.

2. Mathematical Formulation

In this section, we first describe the integration of the elasticity, PF-MPT and PF-fracture
models. Then, we add plastic strains from slip systems to the inelastic strain expression and
discuss the calculation of the plastic strains based on a crystal viscoplasticity model. We start the
formulation by expressing the total energy of the system as:

Ftot(uivnl:nzr "-'nm) =Fel+Fch+ng + Fr (1)

where Fg is the elastic strain energy, Fey, is the chemical free energy, Fy

of the tetragonal-monoclinic or monoclinic-monoclinic interfaces, and F. is the fracture energy.

q 1s the gradient energy

These energies are explained in detail in the following.



o FElastic strain energy (Fgq)):

F,) can be written as:
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where u; is the displacement, C; jy; is the elastic tensor, and g(¢) is the degradation function to
account for the effects of fracture on the elastic energy. It should be noted we use g(¢) =
el is
ij
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(1 — ¢)? in this work, which is one of the widely used degradation functions. In addition, &

the elastic strain which is defined as the difference between the total strain (:sl-t]‘-’t
strain (eit;), and plastic strain (sipjl):
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The calculation of plastic strain is explained later in this section. Considering a linear
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relation between PF order parameters (7),,) and strains [16, 22-24], elt]r is defined as:
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where glij is the stress-free strain tensor which represents the change in microstructure between
parent and product phases [17]. It should be noted that 7,, takes the value of unity in the
monoclinic phase and zero in the tetragonal phase, and m is the number of monoclinic variants.

The small strain assumption is considered and is defined as:
tot _ 1
eift =5 (wiy + ). (5)

The difference between elastic constants in tetragonal and monoclinic phase is
represented by the following linear relation [17]:

m
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where C Ekl and Ci’;’kl are elastic constants of the tetragonal and monoclinic phase, respectively.

The elastic energy defined in Eq. (2) is based on the Hooke’s law, therefore the stress tensor is
related to the elastic strain tensor through the following equation:

Uij(ui:np) = Cijkz(mﬂlz, ---'Um)sﬁ%- (7)

o Chemical free energy (Fep):

F.j, determines the system’s energy dissipation due to MPT. The 2-3-4 or 2-4-6 Landau
polynomials defined in terms of order parameters are the most common types of Fg, [25].
However, these chemical energies underestimate the elastic response in the beginning of the



stress-strain curve. Lotfolahpour et al. [16] proposed a modification to the 2-3-4 polynomial to
address the elastic modulus underestimation, which is applied in this work as well:

m m m 2 m
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where AG is the chemical driving force and is the difference in the specific F,, between the
parent and the product. The following equation can be used to calculate AG for 3Y-STZ at
different temperatures [17, 26]:

AG(T » M) = —6159.18 + 6.98T, 9)

where the energy is in Jmol~1(or Jm~3) and the temperature (T) is in Kelvin (K). In addition, a,
b, c, d, and n are coefficients that should be chosen in a way that maintain the value of the
interfacial energy within the physical reasonable range [16] and at 17, = 1 resultin F¢p, =

AG(T - M).

e Gradient free energy (Fgq):
Fgq represents the interfacial energy between the tetragonal and monoclinic phases and

ensures a smooth transition of the PF order parameters between different phases. It is expressed
as:

m
B..
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where V is the gradient operator and B;; is gradient energy tensor. We assume that the gradient

energy coefficient is isotropic (B;; = B&;;) [17]. Therefore the Eq. (10) becomes:
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o Fracture energy (Fg):
F presents the fracture energy in the system and is defined as [27-29]:

Fe(@) = [, Ge (& +519g1%)av, (12)

where G, is the fracture surface energy in Griffith’s theory, and k is a positive regularization
parameter with the dimension of length to regulate the width of the crack PF. ¢ is the PF fracture
order parameter that takes value of unity in cracked regions and zero in intact regions. In this



paper, we use the method proposed by Miehe et al. [30] to ensure irreversibility of crack (crack
healing prevention):

Fer(u;, t) = max Fg(u;,s), s € [0,t]. (13)

2.1. Governing equations of MPT and Fracture

The evolution of both MPT and PF fracture are obtained by Ginzburg-Landau equation
[31]. This equation relates the rate of each order parameter to the variational derivative of total
free energy with respect to the same order parameter. Using Ginzburg-Landau equation for MPT
yields the following evolution equation for PF order parameters:

at — \ ony &n,  6m,  Om, oMy (14)
where L is the kinetic coefficient. The extended equations are presented in appendix A.
In addition, using the Ginzburg-Landau equation for PF fracture leads to:
% _ <5Ft0t> _ o (%Fa OFen , S | OFi) )
ot 5¢ 5¢ | 8¢ | 8¢ 8¢

where M is called the fracture mobility coefficient. More details are provided in appendix A.
In addition, by neglecting the body forces, the equilibrium equations become:

dive(u;, ¢) = 0. (16)

2.2. Crystal viscoplasticity

Atomistic simulations [4] and experimental observations [3] have established plastic slip
as the predominant irreversible deformation mechanism in single crystal zirconia-based SMCs
oriented in particular directions. To incorporate plastic slip in our formulation, we employ crystal
viscoplasticity. Slip systems are defined by two vectors: normal vector of the slip plane (p) and

the slip direction vector (c_i)). Plastic strain tensor of the nth slip system is expressed as [32]:
N
1 :
5= ) VaPuy (a7
n=1

where N is the total number of slip systems, ¥, is the plastic slip evolution rate, and P;; are the
components of the orientation tensor (P,,), also knowns as symmetrized Schmid tensor, of the
nth slip system and is calculated as:

1 — . -5 —
Pnzz(pn®dn+dn®pn) (18)

In addition, the accumulated plastic slip and the magnitude of plastic slip at time t are
defined by [32]:
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A slip system becomes active when the resolved shear stress on the slip plane and in the
slip direction reaches a critical or yield stress threshold (z.,-). The resolved shear stress in the slip
direction, a scalar quantity, is computed as follows [33]:

Tp = 0(uy, @) - Py 21)

There are various flow rules to calculate the ¥,,. In this study, we adopt a Chaboche-type
potential defined as follows [32]:
|TTL| - Tcrn mpy

Y =9 sgn(m) (—— )y (22)

Dn

where 9 is the viscosity coefficient, m and 7, are model constants, and the Macaulay brackets is
defined as (), = max (0,*). In addition, 7., is a function of |y| and is defined to take the

following form:
if Tery > o-yominn

Ter, = Oyo, t Hnlylfn
(23)

Ter, = Oyo. . i
crm YOming if Tcrn < G)’Ominn

where gy,

stress of nth slip system.

is the initial yield, H,, is the hardening modulus, and TYominy, is the lowest yield

2.3. Solution scheme and boundary conditions

The governing equations presented in the previous section are solved in a finite element
framework using the solid mechanics and mathematics modulus of COMSOL Multiphysics. All
simulations are under load-controlled loading conditions unless otherwise stated. The boundary
conditions and sample dimensions are shown in Fig. 1. For all models, quadrilateral 3D elements
are generated by the swept mesh algorithm feature in COMSOL. A mesh study was conducted
where we found that a mesh size of 0.07 um (or 18200 quadrilateral elements in the domain)
were sufficient to resolve the interface of different phases and PF fracture profile, and a smaller
mech size does not provide a noticeably different result. The displacements are solved using the
Solid Mechanics module. The crack PF and Martensite PF are solved using the General Form
PDE module of COMSOL. In addition, the crystal plasticity strains are calculated using the
Domain ODEs module. The staggered scheme [34] is used to solve the governing equations and
the time step of 0.05s is used for all simulations. In the staggered method, the governing
equations are solved sequentially rather than simultaneously. During each iteration, one equation
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is solved while the others remain fixed. The system alternates between equations, updating each
field in turn. This iterative process continues until convergence is achieved, with the error in
each equation minimized to an acceptable level. By updating one physical field at a time, the
staggered method simplifies the solution of complex multiphysics problems, making the process
more efficient and manageable, especially when direct coupling is computationally demanding.

P.=P,=0;P,=F(N)

3.5 um

F(N)
Fmax

.........
.

Fig. 1. Micropillar dimensions and boundary conditions.

2.4. Material properties and model parameters

3Y-STZ (3 mol% yttria-stabilized tetragonal zirconia), which is a SMC [35, 36], is the
material of study in this work. The equilibrium temperature of 3Y-STZ is reported to be ~883 K
[17]. We consider the temperature of the system is constant and equal to 820 K and we use this
temperature to calculate AG in Eq. (9) which yields AG = —433 Jmol™! (—20 x 10° Jm™3). It is
worth noting that the considered temperature is lower than the equilibrium temperature,
therefore, the system is in SME regime (full strain recovery does not occur after unloading). Eq.
(24) and Eq. (25) show the stiffness tensor of tetragonal and monoclinic phases, respectively [37,
38]. In addition, 3Y-STZ has 12 different M variants, and the stress-free strain tensor of each

variant is expressed in appendix A [15].
361100 62 0 0 O
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327142 55 0 0 -21
142 408196 0 0 31

M _ | 55196258 0 0 -18
Cim=1%0 "0 0 100-23 0 |GF=2 55
0 0 0 —2381 0 (25)

—-2131-18 0 0 126

Table 1. Model parameters.

Parameters Values
a,b,c,d,andn 2.15,11.95,7.5,1.25,and 1.1 [17]
Oyo O yomin, Hns $n Tp,, and my, 0.550 GPa, 0.275 GPa, =150 GPa, 1, 1, and 1
B 1x107¢Jm™?
L 1x107°% Pa 1571 [16]
M 1 r]”—: [16]
) 1x10* Pa~1s7t
G. k 200 Nm~1[39], 0.15 pm

Table 1 shows the model parameters used in the simulations. a, b, ¢, d, and n are
calculated in a way that the F, plot is a double-well [17] and the value of F, is equal to
—20 x 10° Jm~3 at ,, = 1. Plastic slip, similar to MPT, forms localized small bands.
Incorporating stress softening into the yield stress is crucial for accurately modeling this
phenomenon, which necessitates selecting a negative value for the hardening coefficient H,, [40].
The chosen value is notably large and negative, a decision informed by molecular dynamics
(MD) findings that report a sharp decline in the stress-strain curve upon slip initiation [41]. In
addition, it is important to note that the yield stress never reaches zero or becomes negative, after
slip initiation. Consequently, we must establish a minimum yield stress (ayominn) to account for

this behavior. Based on the observed trend in MD simulations, we set Ty0min,, 1O be 50% of the

initial slip yield stress [41]. Also, the approach to find Tyo,, value is discussed in later sections.

We chose B = 1 X 10_6é which gives a reasonable interface thickness between different

phases and choosing a smaller value does not affect the results noticeably. We considered the
family of {110}<110> as the slip systems of the tetragonal phase [42]. This system encompasses
four distinct slip systems, therefore N in Eq. (17) and Eq. (19) is 4. In addition, the Euler angles
of the studied micropillars are given in Table 2. It is important to highlight that the orientation of
(100) indicates alignment of the a-axis, b-axis, and c-axis of the tetragonal phase with the z-axis,
y-axis, and x-axis of the global coordinate system, respectively (Fig. 1), while an orientation of



(001) denotes alignment of the a-axis, b-axis, and c-axis of the tetragonal phase with the x-axis,
y-axis, and z-axis of the global coordinate system, respectively.

Table 2. Pillar IDs and orientations.

Euler Angles (in degrees)

Pillar ID

El E2 E3
pl 0 0 0
p2 190 45 230
p3 285 45 320
p5 300 60 350
p6 30 75 340
p7 0 90 45
p8 0 90 0
9 68 104 305
pl0 245 35 200
pll 265 63 16

3. Results and Discussion

We investigated 11 grain orientations, as detailed in Table 2. To visually represent our
findings, we constructed a pole figure with three vertices corresponding to orientations of (100),
(110), and (001) as shown in Fig. 2. To differentiate between MPT, slip, and crack, we followed
a systematic approach. Initially, a load ranging between 1.5mN to 2mN was applied, and
simulations were run for one cycle. If MPT occurred, we classified the pillar as a transforming
pillar. It is worth noting that there are no initial monoclinic seeds to trigger MPT, and the
occurrence of MPT depends on grain orientation, which will be discussed later. In cases where
MPT did not occur, we increased the load to approximately 3mN and observed the results after
one cycle. If plastic slip was observed, we designated the pillar accordingly. And, if plastic slip
was not observed, we further increased the load to approximately SmN or higher until cracking
was observed. This step-by-step process allowed us to categorize the behavior of each pillar
accurately.

Fig. 2 illustrates that a broad range of tested pillars exhibit full MPT. However, pillar p8
displays fracture with minimal amount of MPT or slipping. In pillar p1, a combination of MPT
and fracture is observed with a minor plastic slip. In this pillar, MPT initiates at a higher load,
explaining the extended plateau before complete fracture development.
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Fig. 2. Pole figure presenting the effects of grain orientation on the interplay between MPT,
cracking, and slip in micropillars.

Furthermore, pillar p7 demonstrates a considerable amount of plastic slip and a very
small amount of MPT. Our findings highlight that the slip systems characterized by these normal

vectors of the slip plane () and the slip direction vectors (d) § =<110>and d = <110> and § =

<110> and d = <110> exhibit the highest accumulation of plastic slip among all the considered
slip systems. The plastic slip is particularly pronounced at the bottom edge of the pillar. This can
be attributed to the fully fixed boundary conditions, which induce high stress concentrations,
consequently leading to significant plastic deformation at this region. However, it is worth noting
that plastic slip also occurs within the middle section of the pillar, as depicted in Fig. 2. It is
worth mentioning that in an experimental report, pillars with similar grain orientations were also
observed to exhibit only plastic slip [3]. The pole figure presented in Fig. 2, agrees well with a
similar experimental test conducted on zirconia-based SMCs [3]. The discrepancy in MPT start
load and residual displacement between p7 in this study and the experimental data could be due
to the variations in the mechanical properties of the materials under examination. While we
utilized properties of 3-YSZ, the material in [3] the material was 2Y>03-5T102-ZrO> (mol%).

In addition, similar to experimental observations [3], our simulations revealed that in
pillars exhibiting MPT, only two monoclinic variants out of the 12 possible variants from,;
specifically, variant 2 (1,) and variant 6 (1), with a predominant occurrence of 77,. This
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observation can be explained based on the deformation conditions described by its stress-free
strain, ginO (2). A deformation exerting contraction along the c-axis and expansion along the a-

axis and b-axis of the tetragonal crystal structure favors the formation of n,. This deformation
pattern aligns with the effects induced by a compressive load applied along the z-axis. Formation
of a monoclinic variant depends on different factors such as grain orientation, loading direction,
and boundary conditions, making it a complex and unpredictable phenomenon.

Fig. 3 depicts the load-displacement plots of selected pillars with full MPT. From this
figure, it can be deduced that grain orientation significantly impacts the elastic modulus in both
loading and unloading paths, the critical stress for MPT initiation, and the duration of the
plateau. Based on Fig. 3, the critical MPT load (MPT start load) ranges from 0.9 mN (790 MPa)
to 1.3 mN (1150 MPa). In addition, the residual displacement is also highly dependent on the
grain orientation and ranges from 105 nm (3% strain) to 190 nm (5.4% strain).

1.5

Load (mN)

0.5

0 100 200
Displacement (nm)

Fig. 3. Load-displacement curve for selected pillars with full MPT.

It is important to note that simulations featuring fracture do not exhibit a final drop and
diverge once the crack is fully developed, due to the applied force-controlled loading condition.
To observe the ultimate strength and achieve a final drop in the stress-strain curve, a
displacement-controlled loading must be applied [16]. To obtain a final drop and establish an
ultimate strength, displacement-controlled loading was applied to pillar p1, and the outcomes are
presented in Fig. 4.

12



12
anp d)
p=1

12 1
4
5 6
I C '
2
- 0 0
12 1
11 /=-p1 underdisplacement—con{rolled
——p1 under load-controlled 'I
6 0 ' ' '
0 50 100 150
; Displacement (nm)
-
- 0 0

Fig. 4. The crack path, MPT, and mechanical response of p1 under load-controlled and
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displacement-controlled loading conditions.

In Fig. 4, after the first drop in load, another plateau is observed. This is due to the MPT
occurrence after crack initiation. This observation explains transformation toughening [9]. In
other words, when crack initiates, since stress becomes very high in front of the crack tip(s),
MPT triggers and becomes a source of energy dissipation in addition to cracking. The energy
dissipation due to MPT slows down the crack propagation. This phenomenon reflects as a
plateau or strain hardening in the load-displacement plot. This result is also consistent with MD
observations on single crystal 3-YSZ [41]. Furthermore, the distinction in the nature of these two
boundary conditions leads to differences in the crack path. While load-controlled simulations
exhibit the occurrence of 77, in displacement-controlled conditions, 17y, emerges as the only
monoclinic phase. This observation can be explained by recognizing that cracks significantly
affect the stress distribution within the domain, ultimately affecting the occurrence of different
monoclinic variants. Therefore, variations in stress distribution resulting from different crack
paths can lead to the occurrence of different monoclinic variants in the material.

3.1. Identification of Oy, in the crystal viscoplasticity model

The grain orientation of (110) (or Euler angles of (0°,90°, 45°)) yields the highest
resolved shear in the slip system of {110}<110>, as the slip direction is closely aligned with the
loading direction. To determine the critical resolved shear stress (ayon), we first selected the

average plastic yield stress to be 3 GPa [17]. To generate this average stress, a load of 3.4 mN
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was applied to the micropillar with the radius of 1.2pm. The load was applied to the micropillar
p7, and the values for Oyo  Was decreased from 3000 MPa until a slip band was observed.

Throughout this process, the objective was to identify the maximum values of Tyo,, that induce
the plastic slip, therefore the MPT function is turned off. The critical value of 0yo, Was

determined to be around 550 MPa. Fig. 5 depicts the slip band and the load-displacement curve
obtained during the identification of Oyo, - This figure shows that plastic slip localizes to a small

band similar to the experimental observations. Furthermore, once slip band forms, the viscosity
coefficient (V) influences the deformation and the residual displacement. In Fig. 5, the residual
displacement falls within a reasonable and acceptable range, indicating that the value selected for

pl 4
Etotal = E VnPn
n=1

9 is suitable.

4
1.4
3 L ~ 3000MPa
=
€ 2 r
T 0.8
Sl
-
0 1 1
0 50 100
Displacement (nm) — 0

Fig. 5. Slip band formation and load-displacement curve for the micropillar p7 with Oyo, =
550 MPa and no MPT.

Conclusion

We presented a 3D numerical framework integrating PF-MPT, PF-fracture, and crystal
viscoplasticity models to investigate the effects of grain orientation on the interplay of
mechanisms of MPT, fracture, and plastic slip in deformation of SMCs under compressive
loading conditions.

Our findings revealed that single crystal 3-YSZ micropillars exhibit complete MPT for a
wide range of crystal orientations without experiencing irreversible mechanisms of fracture or
plastic slip. We observed that the initiation load for MPT ranges between 0.9 mN (790 MPa) to
1.3 mN (1150 MPa) which is in good agreement with experimental data. Moreover, when the
pillar's a-axis aligns with the loading direction (z-axis of the global coordinate), fracture emerged
as the predominant mechanism, while both MPT and slip occurred minimally.
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For the micropillar with the (001) orientation, we observe a combination of both MPT
and fracture mechanisms. In the simulation performed under displacement-controlled loading
condition, we observed that fracture initiated first in this pillar, followed by the occurrence of
MPT. The MPT induced a transformation toughening effect before the pillar experienced
complete cracking. Such complex phenomena are challenging, if not impossible, to fully capture
through experiments alone. Additionally, this outcome shows the necessity of employing
displacement-controlled loading for simulating fracture, capturing the complete process of crack
propagation, and establishing the ultimate strength of materials. Unlike load-controlled loading,
displacement-controlled loading enables a more comprehensive understanding of fracture
mechanisms and facilitates the observation of the entire crack propagation process, which could
involve other mechanisms, such as transformation toughening in the case of superplastic or shape
memory materials.

For micropillars oriented along the (110) direction, we observed a significant amount of
plastic slip and a small amount of MPT. Our model predicted that the plastic slip accumulates
predominantly on the slip systems with a normal vector p = <110> and along the slip direction of

d =<110> as well as p =<110> and along d =<110>. While other slip systems may also be
activated, the amount of plastic slip observed in those slip systems is minimal.

The results of this investigation demonstrate the predictability and accuracy of the
proposed 3D numerical framework in studying the deformation and failure of micropillars made
of transformable materials. Our results illustrate that the proposed numerical approach yields
predictions in good agreement with experimental findings with respect to both mechanisms and
quantitative mechanical responses. Moreover, it enables the capture of phenomena that are
challenging, if not impossible, to observe solely through experimental studies. The insights
provided by this work is crucial for optimizing the performance SMCs in practical applications.
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Appendix A

Eq. Al through A4 show the derivatives of each energy term in Eq. (14) with respect to OP 7,,:
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Eq. AS through A8 show the derivatives of each energy term in Eq. (15) with respect to OP ¢:
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The following tensors are the stress-free strain tensors of 12 M variants:
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