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Abstract 

Some microscopic samples of zirconia-based shape memory ceramics (SMCs) have 
shown full martensitic phase transformation (MPT) over multiple loading cycles without 
cracking. However, the occurrence of MPT is strongly influenced by grain orientation. 
Depending on the specific grain orientation relative to the loading direction, alternative 
mechanisms such as plastic slip and fracture may emerge. This study introduces a phase-field 
(PF) based framework that integrates a PF-MPT model, a PF fracture model, and a crystal 
viscoplasticity model to investigate the effects of grain orientation on MPT, plastic slip, and 
fracture mechanisms in SMC micropillars. Single crystal micropillars are created to distinguish 
the orientations that facilitate each mechanism. A wide range of grain orientations are found to 
predominantly exhibit MPT. Micropillars with grain orientations close to the (100) and (001) 
directions primarily experience fracture, with minimal plastic slip. Additionally, samples 
oriented along the (110) direction show a significant amount of plastic slip. A pole figure is 
constructed to elucidate the interplay between MPT, cracking, and slip under compressive 
loading conditions. This research provides valuable insights into the intricate behavior of SMCs 
under different loading scenarios, crucial for optimizing their performance in practical 
applications. 
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1.  Introduction 

Zirconia-based SMCs are intelligent materials known for their capacity of demonstrating 
either superelasticity or shape memory effect as a result of martensitic phase transformation 
(MPT). MPT arises from phase change mainly between tetragonal (T) and monoclinic (M) 
phases. The shape change induced by MPT is large and due to the inherent brittleness of these 
ceramics, they are often unable to accommodate such significant transformation expansions. This 
is the main reason for their low fracture toughness and short cyclic life. Multiple experimental 
studies on microscopic samples of these ceramics have consistently highlighted grain boundaries 
(GBs) as critical sites for crack initiation [1-3]. These investigations have demonstrated that by 
reducing the number of grains and consequently minimizing the presence of GBs and even 
generating single crystal samples, these ceramics can undergo complete MPT over numbers of 
loading cycles before experiencing fracture. For example, Lai et al. [1] produced micropillars 
with low number of grains and they observed that some samples can handle up to 55 cycles 
before they fractured. In addition, experimental studies have identified plastic slips as one 
primary irreversible mechanism in these ceramics. In a different study, Du et al. [2] showed that 
single crystal spherical samples of 16mol%Ce-ZrO2 are able to handle up to about 110 cycles 
before they showed fracture. Zeng et al. [3] observed that depending on the crystal orientation in 
single crystal micropillars, these ceramics can exhibit MPT, plastic slip, fracture, or a 
combination of these three mechanisms.  

MPT, plastic slip, and fracture are highly dependent on microstructural features [3], and 
comprehensively understanding how these features influence the interplay between these 
mechanisms can be challenging, if not impossible, solely through experimental methods. In this 
case, numerical studies can be a reliable alternative to experiments. There have been a few 
atomistic simulation studies which investigated the crystal orientation [4] and grain boundary [5, 
6] effects on superelastic and shape memory behaviors [7] in zirconia-based nanopillars. These 
studies, although valuable in providing some fundamental understanding of mechanisms and 
behaviors in the nanoscale, due to their time and length scale limits are unbale to compare with 
the actual experiments. At the microscale, the PF method has emerged as a powerful approach 
for modeling both MPT and fracture. The first PF method to model the transformation from T to 
M phase observed in zirconia-based SMCs was developed more than a decade ago [8]. The 
model could successfully capture the crystal alternation between the two phases and accurately 
predicted the experimentally observed microstructures. Similar models were used later on to 
study transformation toughening [9] and shape memory behaviors [10] in SMCs. The PF method 
has also been utilized to model the interaction between MPT and cracking in SMCs [11-16]. For 
instance, Moshkelgosha and Mamivand conducted studies on fracture propagation in both single 
crystal [13] and polycrystalline [14] zirconia-based SMCs using the PF method. They employed 
stress-controlled loading conditions. In a separate investigation by the same authors [15], they 
explored phase transformation and fracture in a three-dimensional single crystal SMC, observing 
the initiation and propagation of MPT from the crack tip. They predicted crack deflection due to 
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MPT, consistent with experimental reports. Notably, none of these studies reported an ultimate 
stress or final stress drop in their stress-strain curves, primarily because of applying stress-
controlled loading conditions. Additionally, these studies focused only on shape memory effect  
behavior and none studied the superelastic behavior. Furthermore, these models did not include 
plasticity, therefore they were not able to study the interplay between MPT, fracture, and plastic 
slip.  

Recently, Lotfolahpour et al. [16] proposed a PF model to investigate the interaction 
between MPT and cracking in the SE regime. They addressed a common issue of the most PF-
MPT models that underestimate the elastic modulus. They successfully established an ultimate 
strength for the material under investigation by applying displacement-controlled loadings. Their 
work studied the effects of grain orientation on MPT and crack path and captured reverse MPT 
behind the crack tip. In another research, Cisse and Asle Zaeem [17], coupled the PF-MPT 
model with a Von Mises based plasticity model to study the interaction between MPT and 
plasticity in SMCs under monolithic loading conditions. They identified GBs as critical sites 
with the highest plastic strain. In addition, they observed that plastic deformation impedes MPT 
and compromises the functionality of SMCs. There are additional studies that focus on coupling 
PF-MPT with plasticity, either general plasticity or crystal plasticity models, to examine the 
interaction between MPT and plastic deformation in shape memory materials, with a primary 
focus on NiTi [18-21]. However, none of these previous studies have investigated MPT, 
plasticity, and fracture simultaneously, and consequently, they have not been able to establish a 
comprehensive understanding of the interaction between these mechanisms. In this study, for the 
first time, we integrate MPT, plastic slip, and fracture models to investigate the interplay 
between these mechanisms in 3D micropillars. We utilize the PF method to model both MPT and 
fracture, while adopting a crystal viscoplasticity model to accurately represent plastic slip 
behavior in SMCs crystals. The aim is to predict the orientation-dependent deformation and 
failure of micropillar SMCs. To better present our findings, we illustrate the results in a pole 
figure comparable to those created by micropillar explements of SMCs. 

 

2. Mathematical Formulation 

In this section, we first describe the integration of the elasticity, PF-MPT and PF-fracture 
models. Then, we add plastic strains from slip systems to the inelastic strain expression and 
discuss the calculation of the plastic strains based on a crystal viscoplasticity model. We start the 
formulation by expressing the total energy of the system as: 

𝐹"#"(𝑢&, 𝜂), 𝜂*, … , 𝜂,) = 𝐹/0 + 𝐹23 + 𝐹45	 + 𝐹78 (1) 

where 𝐹/0 is the elastic strain energy, 𝐹23 is the chemical free energy,  𝐹45 is the gradient energy 
of the tetragonal-monoclinic or monoclinic-monoclinic interfaces, and 𝐹78 is the fracture energy. 
These energies are explained in detail in the following.  
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• Elastic strain energy (F/0): 
𝐹/0 can be written as: 

𝐹/0(𝑢&) = :
1
2
g(𝜙)𝐶&@AB𝜀AB/0𝜀&@/0

D

𝑑𝑉, (2) 

where 𝑢& is the displacement, 𝐶&@AB is the elastic tensor, and g(𝜙) is the degradation function to 
account for the effects of fracture on the elastic energy. It should be noted we use g(𝜙) =
(1 − 𝜙)* in this work, which is one of the widely used degradation functions. In addition, 𝜀&@/0 is 
the elastic strain which is defined as the difference between the total strain (𝜀&@"#"), transformation 

strain (𝜀&@"8), and plastic strain (𝜀&@
H0): 

𝜀&@/0 = 𝜀&@"#" − 𝜀&@"8 − 𝜀&@
H0. (3) 

The calculation of plastic strain is explained later in this section. Considering a linear 
relation between PF order parameters (𝜂I) and strains [16, 22-24], 𝜀&@"8 is defined as: 

𝜀&@"8 = 	J 𝜀&@KK(𝑝)𝜂I

,

IM)

, (4) 

where 𝜀&@KK is the stress-free strain tensor which represents the change in microstructure between 
parent and product phases [17]. It should be noted that 𝜂I takes the value of unity in the 
monoclinic phase and zero in the tetragonal phase, and 𝑚 is the number of monoclinic variants. 

The small strain assumption is considered and is defined as: 

𝜀&@"#" =
)
*
	O𝑢&,@ + 𝑢@,&P. (5) 

The difference between elastic constants in tetragonal and monoclinic phase is 
represented by the following linear relation [17]: 

𝐶&@AB(𝜂), 𝜂*, … , 𝜂,) = 	𝐶&@ABR +	J𝜂IO𝐶&@ABS − 𝐶&@ABR P,
,

IM)

 (6) 

where 𝐶&@ABR  and 𝐶&@ABS  are elastic constants of the tetragonal and monoclinic phase, respectively. 
The elastic energy defined in Eq. (2) is based on the Hooke’s law, therefore the stress tensor is 
related to the elastic strain tensor through the following equation: 

𝜎&@O𝑢&, 𝜂IP = 𝐶&@AB(𝜂), 𝜂*, … , 𝜂,)𝜀AB/0. (7) 

 
• Chemical free energy (𝐹23): 

𝐹23 determines the system’s energy dissipation due to MPT. The 2-3-4 or 2-4-6 Landau 
polynomials defined in terms of order parameters are the most common types of 𝐹23 [25]. 
However, these chemical energies underestimate the elastic response in the beginning of the 
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stress-strain curve. Lotfolahpour et al. [16] proposed a modification to the 2-3-4 polynomial to 
address the elastic modulus underestimation, which is applied in this work as well: 

𝐹23(𝜂), 𝜂*, … , 𝜂,) = :|∆𝐺|X𝑎J𝜂I*
,

IM)

− 𝑏J𝜂I[
,

IM)

+ 	𝑐 ]J𝜂I*
,

IM)

^

*

+ 𝑑J_𝜂I_
`

,

IM)

a𝑑𝑉
D

; 

1 < 𝑛 ≪ 2, 

(8) 

where ∆𝐺 is the chemical driving force and is the difference in the specific 𝐹23 between the 
parent and the product. The following equation can be used to calculate ∆𝐺 for 3Y-STZ at 
different temperatures [17, 26]:  

∆𝐺(𝑇 → 𝑀) = −6159.18 + 6.98T,  (9) 

where the energy is in Jmolr)(or Jmr[) and the temperature (T) is in Kelvin (K). In addition, 𝑎, 
𝑏, 𝑐, 𝑑, and 𝑛 are coefficients that should be chosen in a way that maintain the value of the 
interfacial energy within the physical reasonable range [16] and at 𝜂I = 1 result in 𝐹23 =
	∆𝐺(𝑇 → 𝑀). 
 
• Gradient free energy (𝐹45): 

𝐹45 represents the interfacial energy between the tetragonal and monoclinic phases and 
ensures a smooth transition of the PF order parameters between different phases. It is expressed 
as: 

𝐹45(𝜂), 𝜂*, … , 𝜂,) = 	:
𝛣&@
2
J∇&𝜂I∇@𝜂I𝑑𝑉
,

IM)D

, (10) 

where ∇ is the gradient operator and 𝐵&@ is gradient energy tensor. We assume that the gradient 
energy coefficient is isotropic (𝐵&@ = 𝐵𝛿&@) [17]. Therefore the Eq. (10) becomes: 

𝐹45(𝜂), 𝜂*, … , 𝜂,) = 	:
𝐵
2
J(∇
,

IM)D

𝜂I)*𝑑𝑉. (11) 

 
• Fracture energy (𝐹78): 

𝐹78 presents the fracture energy in the system and is defined as [27-29]: 

𝐹78(𝜙) = ∫ 𝐺x y
z{

*A
+ A

*
|∇𝜙|*|D 𝑑𝑉,   (12) 

where 𝐺x is the fracture surface energy in Griffith’s theory, and 𝑘 is a positive regularization 
parameter with the dimension of length to regulate the width of the crack PF. 𝜙 is the PF fracture 
order parameter that takes value of unity in cracked regions and zero in intact regions. In this 
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paper, we use the method proposed by Miehe et al. [30] to ensure irreversibility of crack (crack 
healing prevention): 

𝐹/0(𝑢&, 𝑡) = max𝐹/0(𝑢&, 𝑠),				𝑠 ∈ [0, 𝑡]. (13) 

2.1.  Governing equations of MPT and Fracture 

The evolution of both MPT and PF fracture are obtained by Ginzburg-Landau equation 
[31]. This equation relates the rate of each order parameter to the variational derivative of total 
free energy with respect to the same order parameter. Using Ginzburg-Landau equation for MPT 
yields the following evolution equation for PF order parameters: 
𝜕𝜂I
𝜕𝑡

= 𝐿 �
𝛿𝐹"#"
𝛿𝜂I

� = 	𝐿	 �
𝛿𝐹/0
𝛿𝜂I

+
𝛿𝐹23
𝛿𝜂I

+
𝛿𝐹45	
𝛿𝜂I

+
𝛿𝐹78	
𝛿𝜂I

�, (14) 

where 𝐿 is the kinetic coefficient. The extended equations are presented in appendix A.  
In addition, using the Ginzburg-Landau equation for PF fracture leads to: 

𝜕𝜙
𝜕𝑡

= 𝑀�
𝛿𝐹"#"
𝛿𝜙 � = 	𝑀	 �

𝛿𝐹/0
𝛿𝜙

+
𝛿𝐹23
𝛿𝜙

+
𝛿𝐹45	
𝛿𝜙

+
𝛿𝐹78	
𝛿𝜙

�,	 (15) 

where 𝑀 is called the fracture mobility coefficient. More details are provided in appendix A. 
     In addition, by neglecting the body forces, the equilibrium equations become: 

div	𝝈(𝑢&, 𝜙) = 0.	 (16) 

2.2. Crystal viscoplasticity 

Atomistic simulations [4] and experimental observations [3] have established plastic slip 
as the predominant irreversible deformation mechanism in single crystal zirconia-based SMCs 
oriented in particular directions. To incorporate plastic slip in our formulation, we employ crystal 
viscoplasticity. Slip systems are defined by two vectors: normal vector of the slip plane (𝑝⃗) and 
the slip direction vector (𝑑). Plastic strain tensor of the nth slip system is expressed as [32]: 

𝜀&@
H0 = J𝛾̇

�

`M)

𝑃 �� (17) 

where 𝑁 is the total number of slip systems,  𝛾 ̇  is the plastic slip evolution rate, and 𝑃&@ are the 
components of the orientation tensor (𝑷`), also knowns as symmetrized Schmid tensor, of the 
nth slip system and is calculated as: 

𝑷` =
1
2
(𝑝`����⃗ ⊗ 𝑑`����⃗ + 𝑑`����⃗ ⊗ 𝑝`����⃗ ) (18) 

In addition, the accumulated plastic slip and the magnitude of plastic slip at time 𝑡 are 
defined by [32]: 
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𝛾̇ = 	J|𝛾̀̇ |
�

`M)

 (19) 

|𝛾| = 	: 𝛾̇𝑑𝑡
�

K

 
(20) 

A slip system becomes active when the resolved shear stress on the slip plane and in the 
slip direction reaches a critical or yield stress threshold (𝜏x�). The resolved shear stress in the slip 
direction, a scalar quantity, is computed as follows [33]: 

𝜏` = 𝝈(𝑢&, 𝜙) ⋅ 𝑷` (21) 

There are various flow rules to calculate the 𝛾 ̇ . In this study, we adopt a Chaboche-type 
potential defined as follows [32]: 

𝛾 ̇ = 𝜗	sgn(𝜏`) 〈
|𝜏`| − 𝜏x�£

𝜏¤£
〉¦
,£ (22) 

where 𝜗 is the viscosity coefficient, 𝑚 and 𝜏¤ are model constants, and the Macaulay brackets is 
defined as 〈∗〉¦ = max	(0,∗). In addition, 𝜏x�` is a function of |𝛾| and is defined to take the 
following form: 

		¨	𝜏x�£ = 𝜎©ª£ + 𝐻`|𝛾|
¬£

	𝜏x�£ = 𝜎©ª­�££
														 

if 𝜏x�£ > 𝜎©ª­�££
 

if 𝜏x�` ≤ 𝜎©ª­�££
 

(23) 

where 𝜎©ª£ is the initial yield, 𝐻` is the hardening modulus, and 𝜎©ª­�££
 is the lowest yield 

stress of nth slip system.  
 

2.3. Solution scheme and boundary conditions 

The governing equations presented in the previous section are solved in a finite element 
framework using the solid mechanics and mathematics modulus of COMSOL Multiphysics. All 
simulations are under load-controlled loading conditions unless otherwise stated. The boundary 
conditions and sample dimensions are shown in Fig. 1. For all models, quadrilateral 3D elements 
are generated by the swept mesh algorithm feature in COMSOL. A mesh study was conducted 
where we found that a mesh size of 0.07 µm (or 18200 quadrilateral elements in the domain) 
were sufficient to resolve the interface of different phases and PF fracture profile, and a smaller 
mech size does not provide a noticeably different result. The displacements are solved using the 
Solid Mechanics module. The crack PF and Martensite PF are solved using the General Form 
PDE module of COMSOL. In addition, the crystal plasticity strains are calculated using the 
Domain ODEs module. The staggered scheme [34] is used to solve the governing equations and 
the time step of 0.05s is used for all simulations. In the staggered method, the governing 
equations are solved sequentially rather than simultaneously. During each iteration, one equation 



8 
 

is solved while the others remain fixed. The system alternates between equations, updating each 
field in turn. This iterative process continues until convergence is achieved, with the error in 
each equation minimized to an acceptable level. By updating one physical field at a time, the 
staggered method simplifies the solution of complex multiphysics problems, making the process 
more efficient and manageable, especially when direct coupling is computationally demanding. 

 

 
Fig. 1. Micropillar dimensions and boundary conditions. 

2.4. Material properties and model parameters 

3Y-STZ (3 mol% yttria-stabilized tetragonal zirconia), which is a SMC [35, 36], is the 
material of study in this work. The equilibrium temperature of 3Y-STZ is reported to be ~883 K 
[17]. We consider the temperature of the system is constant and equal to 820 K and we use this 
temperature to calculate ΔG in Eq. (9) which yields ΔG = −433	Jmolr) (−20 × 10µ	Jmr[). It is 
worth noting that the considered temperature is lower than the equilibrium temperature, 
therefore, the system is in SME regime (full strain recovery does not occur after unloading). Eq. 
(24) and Eq. (25) show the stiffness tensor of tetragonal and monoclinic phases, respectively [37, 
38]. In addition, 3Y-STZ has 12 different M variants, and the stress-free strain tensor of each 
variant is expressed in appendix A [15].  

𝑪&@ABR = 	

⎣
⎢
⎢
⎢
⎢
⎡
361
100
62
0
0
0

	

100
361
62
0
0
0

	

62
62
264
0
0
0

	

0
0
0
59
0
0

	

0
0
0
0
59
0

	

0
0
0
0
0
64⎦
⎥
⎥
⎥
⎥
⎤

GPa, 

 

(24) 
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𝑪&@ABS = 	

⎣
⎢
⎢
⎢
⎢
⎡
327
142
55
0
0
−21

	

142
408
196
0
0
31

	

55
196
258
0
0
−18

	

0
0
0
100
−23
0

	

0
0
0
−23
81
0

	

−21
31
−18
0
0
126⎦

⎥
⎥
⎥
⎥
⎤

GPa. 

 

(25) 

Table 1. Model parameters. 
Parameters  Values  

𝒂, 𝒃, 𝒄, 𝒅, and 𝒏 2.15, 11.95, 7.5, 1.25, and 1.1 [17] 

𝝈𝒚𝟎𝒏, 𝝈𝒚𝒐𝒎𝒊𝒏𝒏, 𝑯𝒏, 𝝃𝒏, 𝝉𝑫𝒏,	and	𝒎𝒏	 0.550 GPa, 0.275 GPa, −150 GPa, 1, 1, and 1 

B 1 × 10rµ	Jmr)  

𝑳 1 × 10rÎ	Par)sr) [16] 

M 1 Ï
Ð

ÑÒ
 [16] 

𝝑 					1 × 10Ô	Par)sr) 

𝑮𝒄, 𝒌 200	Nmr)[39], 0.15	µm 

 
Table 1 shows the model parameters used in the simulations. 𝑎, 𝑏, 𝑐, 𝑑, and 𝑛 are 

calculated in a way that the 𝐹23 plot is a double-well [17] and the value of 𝐹23 is equal to 
−20 × 10µ	Jmr[ at 𝜂I = 1. Plastic slip, similar to MPT, forms localized small bands. 
Incorporating stress softening into the yield stress is crucial for accurately modeling this 
phenomenon, which necessitates selecting a negative value for the hardening coefficient 𝑯𝒏 [40]. 
The chosen value is notably large and negative, a decision informed by molecular dynamics 
(MD) findings that report a sharp decline in the stress-strain curve upon slip initiation [41]. In 
addition, it is important to note that the yield stress never reaches zero or becomes negative, after 
slip initiation. Consequently, we must establish a minimum yield stress (𝜎©ª­�££

) to account for 

this behavior. Based on the observed trend in MD simulations, we set 𝜎©ª­�££
 to be 50% of the 

initial slip yield stress [41]. Also, the approach to find 𝜎©K` value is discussed in later sections. 

We chose 𝐵 = 	1 × 10rµ Ñ
Ï
	 which gives a reasonable interface thickness between different 

phases and choosing a smaller value does not affect the results noticeably. We considered the 
family of {110}<110> as the slip systems of the tetragonal phase [42]. This system encompasses 
four distinct slip systems, therefore 𝑁 in Eq. (17) and Eq. (19) is 4. In addition, the Euler angles 
of the studied micropillars are given in Table 2. It is important to highlight that the orientation of 
(100) indicates alignment of the a-axis, b-axis, and c-axis of the tetragonal phase with the z-axis, 
y-axis, and x-axis of the global coordinate system, respectively (Fig. 1), while an orientation of 
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(001) denotes alignment of the a-axis, b-axis, and c-axis  of the tetragonal phase with the x-axis, 
y-axis, and z-axis of the global coordinate system, respectively. 
 

 
 

Table 2. Pillar IDs and orientations. 

Pillar ID 
Euler Angles (in degrees) 

E1 E2 E3 
p1 0 0 0 
p2 190 45 230 
p3 285 45 320 
p5 300 60 350 
p6 30 75 340 
p7 0 90 45 
p8 0 90 0 
p9 68 104 305 
p10 245 35 200 
p11 265 63 16 

 

3. Results and Discussion 

We investigated 11 grain orientations, as detailed in Table 2. To visually represent our 
findings, we constructed a pole figure with three vertices corresponding to orientations of (100), 
(110), and (001) as shown in Fig. 2. To differentiate between MPT, slip, and crack, we followed 
a systematic approach. Initially, a load ranging between 1.5mN to 2mN was applied, and 
simulations were run for one cycle. If MPT occurred, we classified the pillar as a transforming 
pillar. It is worth noting that there are no initial monoclinic seeds to trigger MPT, and the 
occurrence of MPT depends on grain orientation, which will be discussed later. In cases where 
MPT did not occur, we increased the load to approximately 3mN and observed the results after 
one cycle. If plastic slip was observed, we designated the pillar accordingly. And, if plastic slip 
was not observed, we further increased the load to approximately 5mN or higher until cracking 
was observed. This step-by-step process allowed us to categorize the behavior of each pillar 
accurately.  

Fig. 2 illustrates that a broad range of tested pillars exhibit full MPT. However, pillar p8 
displays fracture with minimal amount of MPT or slipping. In pillar p1, a combination of MPT 
and fracture is observed with a minor plastic slip. In this pillar, MPT initiates at a higher load, 
explaining the extended plateau before complete fracture development.  
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Fig. 2. Pole figure presenting the effects of grain orientation on the interplay between MPT, 
cracking, and slip in micropillars. 

Furthermore, pillar p7 demonstrates a considerable amount of plastic slip and a very 
small amount of MPT. Our findings highlight that the slip systems characterized by these normal 
vectors of the slip plane (𝑝⃗) and the slip direction vectors (𝑑) 𝑝⃗ = <110> and 𝑑 = <110> and 𝑝⃗ = 
<11Ù0> and 𝑑 = <110> exhibit the highest accumulation of plastic slip among all the considered 
slip systems. The plastic slip is particularly pronounced at the bottom edge of the pillar. This can 
be attributed to the fully fixed boundary conditions, which induce high stress concentrations, 
consequently leading to significant plastic deformation at this region. However, it is worth noting 
that plastic slip also occurs within the middle section of the pillar, as depicted in Fig. 2. It is 
worth mentioning that in an experimental report, pillars with similar grain orientations were also 
observed to exhibit only plastic slip [3]. The pole figure presented in Fig. 2, agrees well with a 
similar experimental test conducted on zirconia-based SMCs [3]. The discrepancy in MPT start 
load and residual displacement between p7 in this study and the experimental data could be due 
to the variations in the mechanical properties of the materials under examination. While we 
utilized properties of 3-YSZ, the material in [3] the material was 2Y2O3-5TiO2-ZrO2 (mol%).  

In addition, similar to experimental observations [3], our simulations revealed that in 
pillars exhibiting MPT, only two monoclinic variants out of the 12 possible variants from; 
specifically, variant 2 (𝜂*) and variant 6 (𝜂µ), with a predominant occurrence of 𝜂*. This 
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observation can be explained based on the deformation conditions described by its stress-free 
strain, 𝜀&@KK	(2). A deformation exerting contraction along the c-axis and expansion along the a-
axis and b-axis of the tetragonal crystal structure favors the formation of 𝜂*. This deformation 
pattern aligns with the effects induced by a compressive load applied along the z-axis. Formation 
of a monoclinic variant depends on different factors such as grain orientation, loading direction, 
and boundary conditions, making it a complex and unpredictable phenomenon. 

Fig. 3 depicts the load-displacement plots of selected pillars with full MPT. From this 
figure, it can be deduced that grain orientation significantly impacts the elastic modulus in both 
loading and unloading paths, the critical stress for MPT initiation, and the duration of the 
plateau. Based on Fig. 3, the critical MPT load (MPT start load) ranges from 0.9 mN (790 MPa) 
to 1.3 mN (1150 MPa). In addition, the residual displacement is also highly dependent on the 
grain orientation and ranges from 105 nm (3% strain) to 190 nm (5.4% strain). 

 

 

Fig. 3. Load-displacement curve for selected pillars with full MPT. 

It is important to note that simulations featuring fracture do not exhibit a final drop and 
diverge once the crack is fully developed, due to the applied force-controlled loading condition. 
To observe the ultimate strength and achieve a final drop in the stress-strain curve, a 
displacement-controlled loading must be applied [16]. To obtain a final drop and establish an 
ultimate strength, displacement-controlled loading was applied to pillar p1, and the outcomes are 
presented in Fig. 4.  
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Fig. 4. The crack path, MPT, and mechanical response of p1 under load-controlled and 
displacement-controlled loading conditions. 

In Fig. 4, after the first drop in load, another plateau is observed. This is due to the MPT 
occurrence after crack initiation. This observation explains transformation toughening [9]. In 
other words, when crack initiates, since stress becomes very high in front of the crack tip(s), 
MPT triggers and becomes a source of energy dissipation in addition to cracking. The energy 
dissipation due to MPT slows down the crack propagation. This phenomenon reflects as a 
plateau or strain hardening in the load-displacement plot. This result is also consistent with MD 
observations on single crystal 3-YSZ [41]. Furthermore, the distinction in the nature of these two 
boundary conditions leads to differences in the crack path. While load-controlled simulations 
exhibit the occurrence of 𝜂Ú in displacement-controlled conditions, 𝜂)) emerges as the only 
monoclinic phase. This observation can be explained by recognizing that cracks significantly 
affect the stress distribution within the domain, ultimately affecting the occurrence of different 
monoclinic variants. Therefore, variations in stress distribution resulting from different crack 
paths can lead to the occurrence of different monoclinic variants in the material. 

 

3.1.  Identification of 𝝈𝒚𝟎𝒏 in the crystal viscoplasticity model 

The grain orientation of (110) (or Euler angles of (0°, 90°, 45°)) yields the highest 
resolved shear in the slip system of {110}<110>, as the slip direction is closely aligned with the 
loading direction. To determine the critical resolved shear stress (𝜎©K`), we first selected the 

average plastic yield stress to be 3 GPa [17]. To generate this average stress, a load of 3.4 mN 
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was applied to the micropillar with the radius of 1.2µm. The load was applied to the micropillar 
p7, and the values for 𝜎©K` was decreased from 3000 MPa until a slip band was observed. 

Throughout this process, the objective was to identify the maximum values of  𝜎©K` that induce 

the plastic slip, therefore the MPT function is turned off. The critical value of 𝜎©K` was 

determined to be around 550 MPa. Fig. 5 depicts the slip band and the load-displacement curve 
obtained during the identification of 𝜎©K`. This figure shows that plastic slip localizes to a small 

band similar to the experimental observations. Furthermore, once slip band forms, the viscosity 
coefficient (𝜗) influences the deformation and the residual displacement. In Fig. 5, the residual 
displacement falls within a reasonable and acceptable range, indicating that the value selected for 
𝜗 is suitable. 

 

Fig. 5. Slip band formation and load-displacement curve for the micropillar p7 with 𝜎©K` =

550	MPa and no MPT. 

Conclusion 

We presented a 3D numerical framework integrating PF-MPT, PF-fracture, and crystal 
viscoplasticity models to investigate the effects of grain orientation on the interplay of 
mechanisms of MPT, fracture, and plastic slip in deformation of SMCs under compressive 
loading conditions.  

Our findings revealed that single crystal 3-YSZ micropillars exhibit complete MPT for a 
wide range of crystal orientations without experiencing irreversible mechanisms of fracture or 
plastic slip. We observed that the initiation load for MPT ranges between 0.9 mN (790 MPa) to 
1.3 mN (1150 MPa) which is in good agreement with experimental data. Moreover, when the 
pillar's a-axis aligns with the loading direction (z-axis of the global coordinate), fracture emerged 
as the predominant mechanism, while both MPT and slip occurred minimally.  
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For the micropillar with the (001) orientation, we observe a combination of both MPT 
and fracture mechanisms. In the simulation performed under displacement-controlled loading 
condition, we observed that fracture initiated first in this pillar, followed by the occurrence of 
MPT. The MPT induced a transformation toughening effect before the pillar experienced 
complete cracking. Such complex phenomena are challenging, if not impossible, to fully capture 
through experiments alone. Additionally, this outcome shows the necessity of employing 
displacement-controlled loading for simulating fracture, capturing the complete process of crack 
propagation, and establishing the ultimate strength of materials. Unlike load-controlled loading, 
displacement-controlled loading enables a more comprehensive understanding of fracture 
mechanisms and facilitates the observation of the entire crack propagation process, which could 
involve other mechanisms, such as transformation toughening in the case of superplastic or shape 
memory materials.   

For micropillars oriented along the (110) direction, we observed a significant amount of 
plastic slip and a small amount of MPT. Our model predicted that the plastic slip accumulates 
predominantly on the slip systems with a normal vector 𝑝 = <110> and along the slip direction of 
𝑑 = <110> as well as 𝑝⃗ = <11Ù0> and along 𝑑 = <110>. While other slip systems may also be 
activated, the amount of plastic slip observed in those slip systems is minimal. 

The results of this investigation demonstrate the predictability and accuracy of the 
proposed 3D numerical framework in studying the deformation and failure of micropillars made 
of transformable materials. Our results illustrate that the proposed numerical approach yields 
predictions in good agreement with experimental findings with respect to both mechanisms and 
quantitative mechanical responses. Moreover, it enables the capture of phenomena that are 
challenging, if not impossible, to observe solely through experimental studies. The insights 
provided by this work is crucial for optimizing the performance SMCs in practical applications. 
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Appendix A 
 

Eq. A1 through A4 show the derivatives of each energy term in Eq. (14) with respect to OP 𝜂I: 

 

𝛿𝐹/0
𝛿𝜂I

=
1
2
g(𝜙)𝜀&@/0O𝐶&@ABÝ − 𝐶&@ABÞ P𝜀AB/0 −

1
2
g(𝜙)𝐶&@AB(𝜂), 𝜂*, … , 𝜂,)𝜀ABKK(𝑝)𝜀&@/0

−
1
2
g(𝜙)𝐶&@AB(𝜂), 𝜂*, … , 𝜂,)𝜀&@KK(𝑝)𝜀AB/0,	 

(A1) 

𝛿𝐹23
𝛿𝜂I

= ∆𝐺(2𝑎𝜂I − 3𝑏𝜂I* + 4𝑐𝜂IJ𝜂I*
,

IM)

), (A2) 

𝛿𝐹45	
𝛿𝜂I

= 	−𝐵∇*𝜂I,	 
(A3) 

𝛿𝐹78	
𝛿𝜂I

= 	0. (A4) 
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Eq. A5 through A8 show the derivatives of each energy term in Eq. (15) with respect to OP 𝜙: 

𝛿𝐹/0
𝛿𝜙

= −(1 − 𝜙)𝐶&@AB(𝜂), 𝜂*, … , 𝜂,)𝜀AB/0𝜀&@/0, (A5) 

𝛿𝐹23
𝛿𝜙

= 	0, (A6) 

𝛿𝐹45	
𝛿𝜙

= 	0, (A7) 

𝛿𝐹78	
𝛿𝜙

= 	𝐺x �
𝜙
𝑘
− 𝑘∇*𝜙�. (A8) 

 

The following tensors are the stress-free strain tensors of 12 M variants: 

𝜀&@KK(1) = 	 ß

	
0.0418		
−0.0769

0

	
−0.0769			
0.0048		

0

	
0
0

−0.0114
à 𝜀&@KK(2) = 	 ß
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0

	
0
0
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à 

 

𝜀&@KK(3) = 	 ß
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