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Abstract. Diffuse domain methods (DDMs) have garnered significant attention for approxi-
mating solutions to partial differential equations on complex geometries. These methods implicitly
represent the geometry by replacing the sharp boundary interface with a diffuse layer of thickness
ε, which scales with the minimum grid size. This approach reformulates the original equations
on an extended regular domain, incorporating boundary conditions through singular source terms.
In this work, we conduct a matched asymptotic analysis of a DDM for a two-sided problem with
transmission-type Robin boundary conditions. Our results show that, in the one dimensional space,
the solution of the diffuse domain approximation asymptotically converges to the solution of the orig-
inal problem, with exactly first-order accuracy in ε. Furthermore, we provide numerical simulations
that validate and illustrate the analytical result.
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1. Introduction. Partial differential equations (PDEs) are foundational tools
for modeling diverse phenomena across physical, biological, and engineering sciences,
including fluid flow, material behavior, tissue dynamics, and phase transitions. In
many practical scenarios, these problems arise within domains that are complex, ir-
regular, or time-dependent, such as evolving interfaces in phase transitions or intricate
geometries in biological systems. Traditional PDE solution methods often require do-
mains with simple, specific geometric boundaries, posing challenges in mesh genera-
tion and driving up computational costs. To address these limitations, diffuse domain
methods (DDMs) have emerged as versatile approaches for solving PDEs on irregular
or dynamically evolving domains.

The fundamental principles of DDMs involve (i) embedding the original complex
domain into a larger, simpler computational domain, like a square or a cube, (ii)
creating a simple, structured mesh for the larger domain that resolves the shape of
the complex domain without fitting it precisely, and (iii) solving an approximate PDE
problem on the larger computational domain. This approach eliminates the need for
intricate, boundary-conforming meshes that conventional methods typically require.
This is especially important in the time-dependent setting where the shape of the
complex domain is constantly changing, requiring expensive re-meshing. A smooth
phase-field function is employed to approximate the characteristic function of the
complex domain, while a parameter ε, typically related to the grid size, defines the
width of the diffuse interfacial region, influencing the accuracy of the approximation.
The original PDE is reformulated with additional source terms to enforce boundary
conditions. For small values of ε, DDMs are especially efficient when paired with
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adaptive mesh refinement, which allows for fine grid cells in the narrow transition
layer and coarser cells in the extended, non-physical regions of the domain. DDMs
offer the advantage of flexible application to a broad range of equations and can be
solved using standard discretization methods, both uniform and adaptive, along with
fast iterative solvers based, for example, on geometric multigrid methods.

The concept of the DDM was first introduced by Kockelkoren and Levine [23] for
studying diffusion within a cell with zero Neumann boundary conditions at the cell
boundary. A related approach, known as the fictitious domain method, was earlier
employed by Glowinski et al. [12, 22] to compute numerical solutions to Dirichlet prob-
lems for a class of elliptic operators. Since then, DDMs have been subsequently applied
to model electrical waves in the heart [19] and membrane-bound Turing patterns [24].
More recent developments have expanded DDMs to solve PDEs on both stationary [30]
and evolving surfaces (e.g., [11, 13, 14, 15, 16, 17]). The analysis of DDM approach
to solving elliptic PDEs in domains with complex boundaries subject to Dirichlet,
Neumann, and Robin boundary conditions is provided in [7, 6, 20, 26, 31]. DDMs
have gained wide use in applications such as phase-field modeling, where they support
simulations of complex phenomena in fields like biology (e.g., [8, 23, 19, 10, 28, 2]),
fluid dynamics (e.g., [3, 34, 4, 1, 5, 33]), and materials science (e.g., [35, 28, 29, 9]).

1.1. The One-sided Diffuse Domain Problem. Let Ω1 be a bounded open
subset of Rn. We consider the reaction-diffusion equation in Ω1:

−∆u+ u = f, in Ω1, (1.1)

−∇u · n1 = κu+ g, on ∂Ω1, (1.2)

where n1 denotes the outward-pointing unit normal vector on ∂Ω1. Here, κ ≥ 0 is a
given constant. Observe that Neumann boundary conditions hold when κ = 0, and
Robin boundary conditions hold when κ > 0.

To approximate this problem using a diffuse domain approach, we define an ex-
tended domain Ω, a larger cuboidal region containing Ω1 (see Figure 1.1). In this
extended domain Ω, the diffuse domain approximation equation is

−∇ · (ϕε∇uε) + ϕεuε +BC = ϕεf, (1.3)

where ϕε(x) approximates the characteristic function χΩ1
(x) of Ω1, given by

χΩ1
(x) =

{︄
1, if x ∈ Ω1,

0, if x /∈ Ω1.

A common approximation for χΩ1 is the phase-field function

ϕε(x) :=
1

2

[︃
1 + tanh

(︃
r(x)

ε

)︃]︃
≈ χΩ1

(x),

where ε > 0 is small, defining the interface thickness. Here, r(x) is the signed distance
function from x ∈ Rn to ∂Ω1, which is assumed to be positive within Ω1 and negative
outside Ω1. There are different choices for the boundary term BC in (1.3) [25, 21].
For instance, we may choose either

BC = BC1 = (κuε + g)|∇ϕε|, (1.4)
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Fig. 1.1: A domain Ω1 is covered by a larger cuboidal domain Ω, with Ω2 := Ω \ Ω1.

or

BC = BC2 = (κuε + g)ε|∇ϕε|2, (1.5)

where |∇ϕε(x)| and ε|∇ϕε(x)|2 approximate the surface delta function δ∂Ω1
of ∂Ω1.

Using asymptotic analysis for the Neumann boundary condition case (κ = 0),
Lerv̊ag and Lowengrub [21] argued that Equation (1.3) with either BC1 or BC2 is
second-order accurate in ε. Specifically, in the expansion of the solution,

uε(x) = u0(x) + εu1(x) + ε2u2(x) + · · · ,

they argued that u1 ≡ 0, and u0 solves (1.1)–(1.2), so that

uε(x)− u0(x) = O(ε2).

However, their asymptotic analysis was limited to the interior domain Ω1. Our ob-
jective is to extend their matched asymptotic analysis to encompass both the interior
domain Ω1 and the exterior domain Ω2 := Ω \ Ω1.

In the exterior domain Ω2, the function ϕε decays exponentially, which intro-
duces significant challenges for both theoretical and numerical analyses. Specifi-
cally, the stiffness matrices in the numerical methods would have diagonal entries
that are exponentially small, making numerical approximation impractical. To avoid
ill-conditioning in practical numerical simulations, Lerv̊ag and Lowengrub [21] in-
troduced a modified phase-field approximation for the highest-order term, replacing
−∇ · (ϕε∇uε) with

−∇ · (Dε∇uε), Dε(x) := α+ (1− α)ϕε(x),

where α is a very small fixed positive constant (specifically, α = 10−6), converting
the problem into what is effectively a two-sided formulation. Note that, with this
change, some further information about what problem uε should satisfy in Ω2 is
needed. For one thing, boundary conditions are required on the outer boundary ∂Ω.
We emphasize that, while they used this two-sided formulation in their numerical
simulations, their asymptotic analysis covers only the one-sided problem, thus leaving
a gap between the analysis and the practical implementation. Our ultimate goal is to
perform asymptotic analyses on the two-sided approximation with respect to smallness
of both ε and the stabilizing parameter α, leading to a more complete understanding
of the approximation of the one-sided problem. In this paper, however, we only take a
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preliminary step by performing asymptotic analyses and numerical simulations for the
two-sided problem, for the fixed finite α case, though in a slightly more generalized
form, described in Section 1.2. See also the discussion section, Section 5, at the end
of the paper.

1.2. The Two-sided Diffuse Domain Problem. Let Ω1 be a bounded open
subset of Rn with a sufficiently smooth boundary ∂Ω1. Let Ω be an open cuboidal
domain such that Ω ⊃ Ω1 and ∂Ω ∩ ∂Ω1 = ∅. Define Ω2 := Ω \ Ω1. We consider the
following two-sided boundary value problem in Ω: Find a pair of functions, u1 : Ω1 →
R and u2 : Ω2 → R, that satisfy

−∆u1 + γu1 = q, in Ω1, (1.6)

−α∆u2 + βu2 = h, in Ω2, (1.7)

u1 = u2, on ∂Ω1, (1.8)

−n1 · ∇(u1 − αu2) = κu1 + g, on ∂Ω1, (1.9)

αn2 · ∇u2 = 0, on ∂Ω. (1.10)

The boundary conditions across the interface ∂Ω1 are called transmission-type bound-
ary conditions. These guarantee that the function values are continuous across the in-
terface, and the fluxes have a jump discontinuity owing to some physical phenomenon.
For example, in electrostatics problems, excess charge on the interface can result in
such jump conditions for the flux.

Here, we assume the following:
(1) h, q ∈ L2(Ω) and g ∈ H1(Ω) are given functions;
(2) α, β, γ are given positive constants, and κ is a given nonnegative constant;
(3) n1 denotes the outward-pointing unit normal vector on ∂Ω1, and n2 denotes

the outward-pointing unit normal vector on ∂Ω (see Figure 1.1).
A solution to the two-sided problem (1.6)–(1.10) is understood in the weak sense.

If (u1, u2) ∈ H1(Ω1)×H1(Ω2) is a solution pair to the two-sided problem (1.6)–(1.10),
then u0 : Ω → R, defined as

u0(x) :=

{︄
u1(x), if x ∈ Ω1,

u2(x), if x ∈ Ω2,
(1.11)

belongs to H1(Ω) and solves the following weak formulation:∫︂
Ω

(D0∇u0 · ∇w + c0u0w − f0w) dx+

∫︂
∂Ω1

(κu0 + g)w dS = 0, (1.12)

for any w ∈ H1(Ω), where

D0(x) := χΩ1(x) + αχΩ2(x),

c0(x) := γχΩ1(x) + βχΩ2(x),

f0(x) := q(x)χΩ1(x) + h(x)χΩ2(x).

Equivalently, u0 minimizes the energy functional, E0, given by

E0[u] =
∫︂
Ω

[︃
1

2
(D0|∇u|2 + c0u

2)− f0u

]︃
dx+

∫︂
∂Ω1

(︃
1

2
κu2 + gu

)︃
dS, u ∈ H1(Ω),
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Conversely, if u0 minimizes E0 over H1(Ω), then u1 := u0|Ω1
and u2 := u0|Ω2

solve
the two-sided problem (1.6)–(1.10).

Since E0 is coercive and strictly convex, it has a unique minimizer u0 ∈ H1(Ω),
which implies that the two-sided problem (1.6)–(1.10) has a unique solution, which is
identified by u0 via (1.11).

For each ε ∈ (0, 1), using the boundary term BC1 defined by (1.4), the diffuse
domain approximation of the problem (1.6)–(1.10) is then given by: Find a function
uε : Ω → R that satisfies

−∇ · (Dε∇uε) + cεuε + (κuε + g)|∇ϕε| = fε, in Ω, (1.13)

Dε∇uε · n2 = 0, on ∂Ω, (1.14)

where

Dε(x) := α+ (1− α)ϕε(x) ≈ D0(x),

cε(x) := β + (γ − β)ϕε(x) ≈ c0(x),

fε(x) := h(x) + [q(x)− h(x)]ϕε(x) ≈ f0(x).

For each ε, a solution uε of the problem (1.13)–(1.14) minimizes the associated energy
functional, Eε, defined by

Eε[u] =
∫︂
Ω

[︃
1

2
(Dε|∇u|2 + cεu

2)− fεu+

(︃
1

2
κu2 + gu

)︃
|∇ϕε|

]︃
dx, u ∈ H1(Ω).

Since Eε is coercive and strictly convex, it has a unique minimizer, which implies that
the diffuse domain problem (1.13)–(1.14) has a unique solution uε ∈ H1(Ω).

1.3. A Singular α → 0 Limit of the Two-Sided Problem. One may ask
How is the one-sided problem related to the two-sided version? It is not a simple
matter of setting α = 0. Indeed, the limit α → 0 in the two-sided problem is, in
general, singular. However, there is a setting for which the singular limit makes sense
and yields a meaningful solution.

Suppose that β = 0 and h ≡ 0. Then we claim that the following decoupled
problem emerges in the α → 0 limit: Find a pair of functions, u1 : Ω1 → R and
u2 : Ω2 → R, that satisfy

−∆u1 + γu1 = q, in Ω1, (1.15)

−∆u2 = 0, in Ω2, (1.16)

u1 = u2, on ∂Ω1, (1.17)

−n1 · ∇u1 = κu1 + g, on ∂Ω1, (1.18)

n2 · ∇u2 = 0, on ∂Ω. (1.19)

This is just the one-sided problem coupled to a Laplace-type problem on an annular
domain. The interior problem involving u1 can be solved first. Subsequently, u2 can be
obtained by solving a Laplace’s equation, with Dirichlet boundary conditions on ∂Ω1,
namely, u2 = u1, and homogeneous Neumann conditions on ∂Ω2. This realization will
lead us to a new diffuse-domain approximation method for the one-sided problem, as
we explain in Section 5. The rigorous justification of the claim above is reserved for
a future paper. For now, we will focus on the two-sided problem.

5



2. Main Result. In this paper, we study the asymptotic convergence of the
diffuse domain approximation problem (1.13)–(1.14) in the one dimensional space.
Let u0 be the solution of the two-sided problem (1.6)–(1.10) defined by (1.11), and let
uε be the solution to the diffuse domain approximation problem (1.13)–(1.14), for each
ε ∈ (0, 1). Assuming that the functions h(x) and q(x) are analytic, and the function
g(x) remains constant in the normal direction to the boundary ∂Ω1 of Ω1 within a
narrow strip around ∂Ω1, we perform a matched asymptotic analysis for the problem
(1.13)–(1.14) in 1D, leading to the main result presented below. Additionally, we
provide numerical simulations and discuss their outcomes in relation to our analytical
result.

Main Result 2.1 (Asymptotic convergence of uε). In one dimension, uε con-
verges asymptotically and uniformly to u0, as ε → 0. Moreover, the diffuse domain
approximation is precisely first-order accurate in ε, as expressed in (3.9).

Remark 2.2. We conjecture that the main result can be generalized to higher-
dimensional spaces, provided the interface is sufficiently smooth. However, the analy-
sis will become more intricate, as it involves the interface curvature and the Laplace-
Beltrami operator.

Remark 2.3. The asymptotic analysis in Section 3 considers the case where
g(x) is constant in the normal direction to ∂Ω1 within a narrow strip around ∂Ω1. In
one dimension, this simply means that g(x) is constant in some neighborhood of ∂Ω1,
as we shall see. Nonetheless, we expect that the asymptotic analysis can be adjusted
to accommodate the case where g(x) varies in the normal direction within this strip.
Additionally, our numerical experiments for this more general setting suggest that the
convergence rate remains first-order.

3. Asymptotic Analysis for the Diffuse Domain Problem in 1D. In this
section, we demonstrate a matched asymptotic analysis for the diffuse domain approx-
imation problem (1.13)–(1.14) in 1D, which establishes the main result in Section 2.
Without loss of generality, we can simplify the structure of the domains. In particular,
we consider the domains as follows:

Ω = (−1, 1), Ω1 = ΩR = (0, 1), Ω2 = ΩL = (−1, 0).

The phase-field function is then defined as

ϕε(x) =
1

2

[︂
1 + tanh

(︂x
ε

)︂]︂
≈ χΩR

(x),

for each ε ∈ (0, 1) (see Figure 3.1).

We assume that the functions h(x) and q(x) are analytic. For convenience, we
further assume that g(x) ≡ λ in a small interval (−ζ, ζ) around x = 0, where λ is a
constant. Let uR : ΩR → R and uL : ΩL → R be the pair of functions that satisfy the
following two-sided problem in 1D:

−u′′
R + γuR = q, in ΩR, (3.1)

−αu′′
L + βuL = h, in ΩL, (3.2)

uR(0) = uL(0), (3.3)

u′
R(0)− αu′

L(0) = κuR(0) + λ, (3.4)

u′
L(−1) = 0 = u′

R(1). (3.5)
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Fig. 3.1: The domains Ω = (−1, 1), ΩL = (−1, 0), ΩR = (0, 1), and the graph of ϕε(x) in 1D.

We define the solution u0 to (3.1)–(3.5) over Ω as

u0(x) :=

{︄
uR(x), if x ∈ ΩR,

uL(x), if x ∈ ΩL.

Let uε be the solution to the corresponding diffuse domain approximation problem

−(Dεu
′
ε)

′ + cεuε + (κuε + λ)ϕ′
ε = fε, in Ω, (3.6)

u′
ε(−1) = 0 = u′

ε(1). (3.7)

Assuming that u0 and uε are globally continuous across Ω, we will show that uε

asymptotically converges to u0, using the method of matched asymptotic expansions.
To demonstrate asymptotic analysis, we examine the expansions of the diffuse

domain solution uε as series in powers of the interface thickness, ε, in two distinct
regions: near x = 0 (inner expansion) and far from x = 0 (outer expansion). These
inner and outer expansions are then matched in overlapping regions where both are
valid (see Figure 3.2), providing boundary conditions for the outer variables.

x
−1 0 1

Left
outer region

Inner
region

Right
outer region

Matching regions

Fig. 3.2: A sketch of the regions used for the matched asymptotic expansions.

3.1. Matched Asymptotics for Corner Layer Problems. The phenomenon
that we will encounter herein is what is called a corner layer [27]. To be more precise,
uε experiences a corner layer at x = 0. See, for example, Figure 3.3. The idea
of asymptotic analysis is to build a uniformly-valid composite solution, uc,0(x; ε) by
combining the zeroth-order outer solution, u0, and the zeroth-order inner solution,
U0, in a process called matching. Then, we can show that, formally, as ε → 0,

∥uε( · )− uc,0( · ; ε)∥L∞(−1,1) ≤ C1ε, (3.8)
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Fig. 3.3: An example of a corner layer. The translucent blue curve is the zeroth-order outer approxi-
mation, u0, and the translucent red curve represents the zeroth-order inner approximation, U0. The
solid black line is the diffuse-domain solution uε(x). Not shown is the composite approximation,
uc,0(x; ε), obtained by combining u0 and U0 via a process known as matching. See estimate (3.8)
and associated discussion.

for some C1 > 0. For corner layer phenomena, the zeroth-order approximation is
continuous, that is, u0 ∈ C0([−1, 1]), in contrast with the boundary layer case. Fur-
thermore, for corner layer problems specifically, we typically expect that, as ε → 0,

∥u0( · )− uc,0( · ; ε)∥L∞(−1,1) ≤ C2ε,

for some C2 > 0. (Note that the last estimate is not generally true for traditional
boundary layer problems.) If this is the case, using the triangle inequality, the desired
estimate follows: as ε → 0,

∥u0( · )− uε( · )∥L∞(−1,1) ≤ C3ε, (3.9)

for some C3 > 0, where, precisely, it will be shown that u0 is the solution of (3.1)–(3.5)
over Ω = (−1, 1).

Finally, it is possible to argue that, in fact, as ε → 0,

∥u0( · )− uε( · )∥L∞(−1,1) ≤ C4ε
2,

for some C4 > 0, only if u1 ≡ 0, where u1 is the first-order correction term in the outer
expansion. The arguments are formal and are omitted for the sake of brevity. Herein
we will show definitively that u1 ̸≡ 0, so that asymptotic convergence is, at best,
only first order for the two-sided problem. This fact will be reinforced by numerical
experiments.

3.2. Outer expansions. We define uε,L := uε|ΩL
and uε,R := uε|ΩR

. The outer
expansion for the function uε,L(x) in the left outer region is

uε,L(x) = uL,0(x) + εuL,1(x) + ε2uL,2(x) + · · · (3.10)

Since ϕε(x) and ϕ′
ε(x) exponentially converge to 0 as ε → 0 in the left outer region,

by substituting the expansion (3.10) into Equation (3.6), we get

−α(u′′
L,0 + εu′′

L,1 + ε2u′′
L,2 + · · · ) + β(uL,0 + εuL,1 + ε2uL,2 + · · · ) = h. (3.11)
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Combining the equation above with the boundary condition u′
ε,L(−1) = 0, we obtain:

O(1) : − αu′′
L,0 + βuL,0 = h, u′

L,0(−1) = 0, (3.12)

O(εj) : − αu′′
L,j + βuL,j = 0, u′

L,j(−1) = 0, for any j = 1, 2, . . . (3.13)

On the other hand, the outer expansion for the function uε,R(x) in the right outer
region is

uε,R(x) = uR,0(x) + εuR,1(x) + ε2uR,2(x) + · · · (3.14)

Since ϕε(x) exponentially converges to 1 and ϕ′
ε(x) exponentially converges to 0 as ε →

0 in the right outer region, by substituting the expansion (3.14) into Equation (3.6),
we get

−(u′′
R,0 + εu′′

R,1 + ε2u′′
R,2 + · · · ) + γ(uR,0 + εuR,1 + ε2uR,2 + · · · ) = q. (3.15)

Combining the equation above with the boundary condition u′
ε,R(1) = 0, we obtain:

O(1) : − u′′
R,0 + γuR,0 = q, u′

R,0(1) = 0, (3.16)

O(εj) : − u′′
R,j + γuR,j = 0, u′

R,j(1) = 0, for any j = 1, 2, . . . (3.17)

Remark 3.1. If the pair (uR,0, uL,0) satisfies (3.1)–(3.5), then uε converges
asymptotically to u0. Furthermore, if (uR,1, uL,1) ̸= (0, 0), the diffuse domain approx-
imation is asymptotically first-order accurate. However, if (uR,1, uL,1) = (0, 0), then
the diffuse domain approximation is asymptotically second-order accurate.

3.3. Supporting Lemmas. Before analyzing the inner expansions, we prove
the following technical lemmas.

Lemma 3.1. If F (z) = P (z) + o(1) and G(z) = A + o(z−m) as z → ∞ (or
z → −∞), where P (z) is a polynomial, A ̸= 0 is a constant, and m > deg(P ) is an
integer, then

F (z)

G(z)
=

P (z)

A
+ o(1) as z → ∞ (or z → −∞).

Proof. We will give the proof for the case z → ∞. The proof for the case z → −∞
is similar. Assume that

P (z) = B0 +B1z +B2z
2 + · · ·+Bpz

p, (3.18)

where 0 ≤ p < m is an integer, and B0, B1, . . . , Bp are constants. By the hypothesis,
we have

F (z) = P (z) + F̃ (z), where lim
z→∞

F̃ (z) = 0, (3.19)

G(z) = A+ G̃(z), where lim
z→∞

zmG̃(z) = 0. (3.20)

Thus,

F (z)

G(z)
− P (z)

A
=

P (z) + F̃ (z)

A+ G̃(z)
− P (z)

A
=

AF̃ (z)− P (z)G̃(z)

A2 +AG̃(z)
. (3.21)
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Since m > 0 and limz→∞ zmG̃(z) = 0, then limz→∞ G̃(z) cannot equal −A. Hence,
limz→∞(A2 +AG̃(z)) ̸= 0. On the other hand,

P (z)G̃(z) =

p∑︂
j=0

Bjz
jG̃(z) =

p∑︂
j=0

Bj

zm−j
zmG̃(z) → 0 as z → ∞. (3.22)

Therefore, we obtain

lim
z→∞

(︃
F (z)

G(z)
− P (z)

A

)︃
= lim

z→∞

AF̃ (z)− P (z)G̃(z)

A2 +AG̃(z)
= 0, (3.23)

which implies that

F (z)

G(z)
=

P (z)

A
+ o(1) as z → ∞.

Lemma 3.2. If F (z) and G(z) are continuous functions on (−∞,∞), and F (z) =
G(z) + o(1) as z → ∞ (or z → −∞), then∫︂ z

0

F (s)ds =

∫︂ z

0

G(s)ds+ o(z) as z → ∞ (or z → −∞).

Proof. Again, we will give the proof for the case z → ∞, and the proof for the
case z → −∞ is similar. Pick an arbitrary number ξ > 0. By the hypothesis, we have

lim
z→∞

(F (z)−G(z)) = 0. (3.24)

Hence, there exists a number z0 > 0, depending on ξ, such that, for any z > z0,

|F (z)−G(z)| < ξ

2
. (3.25)

Therefore, for any z > z0 > 0, we have⃓⃓⃓⃓
1

z

∫︂ z

0

(F (s)−G(s)) ds

⃓⃓⃓⃓
≤ 1

z

∫︂ z

0

|F (s)−G(s)| ds

≤ 1

z

∫︂ z0

0

|F (s)−G(s)| ds+ 1

z

∫︂ z

z0

|F (s)−G(s)| ds

≤ M0

z
+

ξ

2z
(z − z0)

≤ ξ

2
+

1

z

(︃
M0 −

ξ

2
z0

)︃
, (3.26)

where M0 :=
∫︁ z0
0

|F (s)−G(s)| ds < ∞. If M0 − ξ
2z0 ≤ 0, then⃓⃓⃓⃓

1

z

∫︂ z

0

(F (s)−G(s)) ds

⃓⃓⃓⃓
≤ ξ

2
< ξ, (3.27)
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for any z > z0. If M0 − ξ
2z0 > 0, define z1 := max

{︂
z0,

2
ξ

(︂
M0 − ξ

2z0

)︂}︂
> 0. Thus,

for any z > z1, we have⃓⃓⃓⃓
1

z

∫︂ z

0

(F (s)−G(s)) ds

⃓⃓⃓⃓
≤ ξ

2
+

1

z

(︃
M0 −

ξ

2
z0

)︃
≤ ξ

2
+

ξ

2
(︂
M0 − ξ

2z0

)︂ (︃
M0 −

ξ

2
z0

)︃
≤ ξ. (3.28)

In both cases, we have ⃓⃓⃓⃓
1

z

∫︂ z

0

(F (s)−G(s)) ds

⃓⃓⃓⃓
≤ ξ, (3.29)

for z > 0 sufficiently large. Therefore,

lim
z→∞

1

z

∫︂ z

0

(F (s)−G(s)) ds = 0, (3.30)

which implies that ∫︂ z

0

F (s)ds =

∫︂ z

0

G(s)ds+ o(z) as z → ∞.

3.4. Inner expansions. We introduce a stretched variable

z =
x

ε
,

and transform the derivatives as

d

dx
=

1

ε

d

dz
,

d2

dx2
=

1

ε2
d2

dz2
.

Furthermore, we define the functions

U(z, ε) := uε(εz), (3.31)

ϕ(z) := ϕε(εz) =
1

2
[1 + tanh(z)], (3.32)

D(z) := Dε(εz) = α+ (1− α)ϕ(z), (3.33)

c(z) := cε(εz) = β + (γ − β)ϕ(z), (3.34)

F (z, ε) := fε(εz). (3.35)

Then, Equation (3.6) becomes

− 1

ε2
d

dz

(︃
D(z)

d

dz
U(z, ε)

)︃
+ c(z)U(z, ε) +

1

ε
(κU(z, ε) + λ)ϕ′(z) = F (z, ε), (3.36)

which is equivalent to

− d

dz

(︃
D(z)

d

dz
U(z, ε)

)︃
+ c(z)U(z, ε)ε2 + (κU(z, ε) + λ)ϕ′(z)ε = F (z, ε)ε2. (3.37)
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Since h(x) and q(x) are analytic functions, we can expand them as

h(x) = h0 + h1x+ h2x
2 + · · · , (3.38)

q(x) = q0 + q1x+ q2x
2 + · · · , (3.39)

where hj and qj are constants, for j = 0, 1, 2, . . . Hence,

F (z, ε) = fε(εz) = h(εz) + [q(εz)− h(εz)]ϕ(z)

=

∞∑︂
j=1

[hj + (qj − hj)ϕ(z)]z
jεj . (3.40)

The inner expansion for the function U(z, ε) in the inner region is

U(z, ε) = U0(z) + εU1(z) + ε2U2(z) + · · · (3.41)

We assume that U0(z), U1(z), U2(z), . . . are continuous functions on (−∞,∞), which
is consistent with the assumption that uε(x) is globally continuous across Ω. Substi-
tuting the expansions (3.40) and (3.41) into Equation (3.37), we get

−
∞∑︂
j=1

(D(z)U ′
j(z))

′εj +

∞∑︂
j=1

c(z)Uj(z)ε
j+2 +

⎛⎝ ∞∑︂
j=1

κUj(z)ε
j+1 + λε

⎞⎠ϕ′(z)

=

∞∑︂
j=1

[hj + (qj − hj)ϕ(z)]z
jεj+2. (3.42)

Hence, we obtain

O(1) : − (D(z)U ′
0(z))

′ = 0, (3.43)

O(ε) : − (D(z)U ′
1(z))

′ + (κU0(z) + λ)ϕ′(z) = 0, (3.44)

O(εj) : − (D(z)U ′
j(z))

′ + c(z)Uj−2(z) + κUj−1(z)ϕ
′(z)

= [hj + (qj − hj)ϕ(z)]z
j−2, j = 2, 3, . . . (3.45)

3.4.1. Equation (3.37) at O(1). From (3.43), we get

(D(z)U ′
0(z))

′ = 0. (3.46)

Then, there exists a constant C0,1 such that

D(z)U ′
0(z) = C0,1. (3.47)

There exists another constant C0,0 such that

U0(z) = C0,1

∫︂ z

0

1

D(s)
ds+ C0,0. (3.48)

We define

I0(z) :=

∫︂ z

0

1

D(s)
ds. (3.49)
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Using the definition of D(z), given by

D(z) = α+ (1− α)ϕ(z) =
ez + αe−z

ez + e−z
, (3.50)

we obtain

I0(z) =

∫︂ z

0

es + e−s

es + αe−s
ds

=
(α− 1) log(α+ e2z) + 2z

2α
− (α− 1) log(α+ 1)

2α
. (3.51)

We will use the Taylor series to expand log(α+ e2z).
Remark 3.2. The Taylor series expansion of log(1+ y), for |y| < 1, is given by:

log(1 + y) = y − 1

2
y2 +

1

3
y3 − 1

4
y4 + · · · (3.52)

For z > 0 sufficiently large, applying (3.52) with y = αe−2z, we obtain

log(α+ e2z) = log[e2z(αe−2z + 1)]

= 2z + log(αe−2z + 1)

= 2z + αe−2z − 1

2

(︁
αe−2z

)︁2
+

1

3

(︁
αe−2z

)︁3 − 1

4

(︁
αe−2z

)︁4
+ · · · ,

which implies that

log(α+ e2z) = 2z + o(1) as z → ∞. (3.53)

Substituting the equation above into (3.51), we get

I0(z) =
(α− 1)(2z + o(1)) + 2z

2α
− (α− 1) log(α+ 1)

2α

= z − (α− 1) log(α+ 1)

2α
+ o(1) as z → ∞. (3.54)

For z < 0 with |z| sufficiently large, applying (3.52) with y = e2z/α, we obtain

log(α+ e2z) = log

[︃
α

(︃
1 +

e2z

α

)︃]︃
= logα+ log

(︃
1 +

e2z

α

)︃
= logα+

e2z

α
− 1

2

(︃
e2z

α

)︃2

+
1

3

(︃
e2z

α

)︃3

− 1

4

(︃
e2z

α

)︃4

+ · · · ,

which implies that

log(α+ e2z) = logα+ o(1) as z → −∞. (3.55)

Substituting the equation above into (3.51), we get

I0(z) =
(α− 1)(logα+ o(1)) + 2z

2α
− (α− 1) log(α+ 1)

2α

=
1

α
z +

α− 1

2α
log

(︃
α

α+ 1

)︃
+ o(1) as z → −∞. (3.56)
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Since U0(z) = C0,1I0(z) + C0,0, from (3.54) and (3.56), we obtain

U0(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C0,1z − C0,1

(α− 1) log(α+ 1)

2α
+ C0,0 + o(1) as z → ∞,

C0,1

α
z − C0,1

α− 1

2α
log

(︃
α

α+ 1

)︃
+ C0,0 + o(1) as z → −∞.

(3.57)

Then, using the matching conditions

U0(z) + o(1) = uR,0(0) as z → ∞, (3.58)

U0(z) + o(1) = uL,0(0) as z → −∞, (3.59)

we conclude that

C0,1 = 0 and uR,0(0) = C0,0 = uL,0(0). (3.60)

As a consequence, the zeroth-order inner approximation is a constant function,

U0(z) ≡ uR,0(0) = uL,0(0),

and, using the standard construction [27], the uniformly-valid, zeroth-order composite
asymptotic approximation is simply

uc,0(x; ε) :=

{︄
uR,0(x), if x ∈ (−1, 0],

uL,0(x), if x ∈ (0, 1),

which is generally only a C0([−1, 1]) function.
Looking ahead, we next intend to show that uR,0 and uL,0 satisfy the Robin-type

boundary condition in (3.4). Going a little further in the analysis, we will observe
that the composite approximation, uc,0 is at best only first-order, by observing that
the outer first-order corrections, uR,1 and uL,1, are not identically zero, in the general
setting.

3.4.2. Equation (3.37) at O(ε). Since U0(z) ≡ C0,0, from (3.44) we have

−(D(z)U ′
1(z))

′ + (κC0,0 + λ)ϕ′(z) = 0. (3.61)

Then, here exists a constant C1,1 such that

−D(z)U ′
1(z) + (κC0,0 + λ)ϕ(z) = C1,1. (3.62)

There exists another constant C1,0 such that

U1(z) = (κC0,0 + λ)

∫︂ z

0

ϕ(s)

D(s)
ds+ C1,1

∫︂ z

0

1

D(s)
ds+ C1,0. (3.63)

We define

I1(z) :=

∫︂ z

0

ϕ(s)

D(s)
ds. (3.64)

Using the definitions of ϕ(z) and D(z), given by

ϕ(z) =
ez

ez + e−z
and D(z) =

ez + αe−z

ez + e−z
, (3.65)
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we obtain

I1(z) =

∫︂ z

0

es

es + αe−s
ds

=
1

2
log(α+ e2z)− 1

2
log(α+ 1). (3.66)

From (3.53) and (3.55), we have

log(α+ e2z) = 2z + o(1) as z → ∞, (3.67)

log(α+ e2z) = logα+ o(1) as z → −∞. (3.68)

Therefore,

I1(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2
(2z + o(1))− 1

2
log(α+ 1) as z → ∞,

1

2
(logα+ o(1))− 1

2
log(α+ 1) as z → −∞,

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z − 1

2
log(α+ 1) + o(1) as z → ∞,

1

2
log

(︃
α

α+ 1

)︃
+ o(1) as z → −∞.

(3.69)

Since U1(z) = (κC0,0 + λ)I1(z) + C1,1I0(z) + C1,0, we obtain

U1(z) = (κC0,0 + λ+ C1,1)z +

(︃
−1

2
(κC0,0 + λ)− C1,1

α− 1

2α

)︃
log(α+ 1)

+ C1,0 + o(1) as z → ∞, (3.70)

and

U1(z) =
C1,1

α
z +

(︃
1

2
(κC0,0 + λ) + C1,1

α− 1

2α

)︃
log

(︃
α

α+ 1

)︃
+ C1,0 + o(1) as z → −∞, (3.71)

Then, using the matching conditions

U1(z) + o(1) = uR,1(0) + u′
R,0(0)z as z → ∞, (3.72)

U1(z) + o(1) = uL,1(0) + u′
L,0(0)z as z → −∞, (3.73)

we obtain

κC0,0 + λ+ C1,1 = u′
R,0(0) and

C1,1

α
= u′

L,0(0). (3.74)

Combining the two equations above with C0,0 = uR,0(0), we get

u′
R,0(0)− αu′

L,0(0) = κuR,0(0) + λ. (3.75)
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From (3.12), (3.16), (3.60) and (3.75), we see that uR,0(x) and uL,0(x) are determined
by the following boundary value problem

−u′′
R,0 + γuR,0 = q, in ΩR, (3.76)

−αu′′
L,0 + βuL,0 = h, in ΩL, (3.77)

uR,0(0) = uL,0(0), (3.78)

u′
R,0(0)− αu′

L,0(0) = κuR,0(0) + λ, (3.79)

u′
L,0(−1) = 0 = u′

R,0(1), (3.80)

which means, (uR,0, uL,0) is a pair of solutions to the two-sided problem (3.1)–(3.5).
Therefore, the solution uε of the diffuse domain approximation problem (3.6)–(3.7)
converges asymptotically to the solution u0 of the two-sided problem (3.1)–(3.5), since
this problem has a unique solution u0.

Moreover, using the matching conditions (3.72) and (3.73) again, from (3.70) and
(3.71), we obtain

uR,1(0) =

(︃
−1

2
(κC0,0 + λ)− C1,1

α− 1

2α

)︃
log(α+ 1) + C1,0, (3.81)

uL,1(0) =

(︃
1

2
(κC0,0 + λ) + C1,1

α− 1

2α

)︃
log

(︃
α

α+ 1

)︃
+ C1,0. (3.82)

Hence,

uL,1(0)− uR,1(0) =

(︃
1

2
(κC0,0 + λ) + C1,1

α− 1

2α

)︃
logα. (3.83)

Substituting C0,0 = uR,0(0) and C1,1 = αu′
L,0(0) into Equation (3.83), and simplifying

the resulting expression, we obtain

uL,1(0)− uR,1(0) =
logα

2
[u′

R,0(0)− u′
L,0(0)]. (3.84)

3.4.3. Equation (3.37) at O(ε2). Since U0(z) = C0,0, from (3.45) we have

−(D(z)U ′
2(z))

′ + C0,0c(z) + κU1(z)ϕ
′(z) = h0 + (q0 − h0)ϕ(z). (3.85)

Then, there exists a constant C2,1 such that

D(z)U ′
2(z) = C0,0

∫︂ z

0

c(s) ds+ κ

∫︂ z

0

U1(s)ϕ
′(s) ds− h0z

+ (h0 − q0)

∫︂ z

0

ϕ(s) ds+ C2,1. (3.86)

We define

I2(z) :=

∫︂ z

0

ϕ(s) ds. (3.87)

Using the definition of ϕ(z), given by

ϕ(z) =
ez

ez + e−z
, (3.88)
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we obtain

I2(z) =

∫︂ z

0

es

es + e−s
ds

=
1

2
log(1 + e2z)− 1

2
log 2. (3.89)

Since U1(z) = (κC0,0 + λ)I1(z) + C1,1I0(z) + C1,0 and

I0(z) =
α− 1

α
I1(z) +

z

α
, (3.90)

we have ∫︂ z

0

U1(s)ϕ
′(s) ds =

(︃
κC0,0 + λ+

α− 1

α

)︃∫︂ z

0

I1(s)ϕ
′(s) ds

+
C1,1

α

∫︂ z

0

ϕ′(s)s ds+ C1,0

∫︂ z

0

ϕ′(s) ds

=

(︃
κC0,0 + λ+

α− 1

α

)︃∫︂ z

0

I1(s)ϕ
′(s) ds

+
C1,1

α

∫︂ z

0

ϕ′(s)s ds+ C1,0

(︃
ϕ(z)− 1

2

)︃
. (3.91)

Substituting (3.34) and (3.91) into (3.86), we obtain

D(z)U ′
2(z) = C0,0[βz + (γ − β)I2(z)]− h0z + (h0 − q0)I2(z)

+

[︃
(κ2C0,0 + κλ) +

α− 1

α
κC1,1

]︃ ∫︂ z

0

I1(s)ϕ
′(s) ds

+
κC1,1

α

∫︂ z

0

ϕ′(s)s ds+ κC1,0ϕ(z)−
κC1,0

2
+ C2,1. (3.92)

• Case 1: α ̸= 1.
Using integration by parts, we get∫︂ z

0

ϕ′(s)s ds = ϕ(s)s

⃓⃓⃓⃓z
0

−
∫︂ z

0

ϕ(s) ds

= ϕ(z)z − I2(z), (3.93)

and ∫︂ z

0

I1(s)ϕ
′(s) ds = I1(s)ϕ(s)

⃓⃓⃓⃓z
0

−
∫︂ z

0

ϕ(s)I ′1(s) ds

= I1(z)ϕ(z)−
∫︂ z

0

ϕ(s)
ϕ(s)

D(s)
ds. (3.94)

Since D(s) = α+ (1− α)ϕ(s), then

ϕ(s)

D(s)
=

1

1− α
− α

1− α

1

D(s)
. (3.95)
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Thus,

ϕ(s)
ϕ(s)

D(s)
=

1

1− α
ϕ(s)− α

1− α

ϕ(s)

D(s)

=
1

1− α
ϕ(s)− α

1− α

(︃
1

1− α
− α

1− α

1

D(s)

)︃
=

1

1− α
ϕ(s)− α

(1− α)2
+

α2

(1− α)2
1

D(s)
. (3.96)

Combining the equation above with (3.90), we get∫︂ z

0

ϕ(s)
ϕ(s)

D(s)
ds =

1

1− α
I2(z)−

α

(1− α)2
z +

α2

(1− α)2
I0(z)

=
1

1− α
I2(z)−

α

(1− α)2
z +

α2

(1− α)2

(︃
α− 1

α
I1(z) +

z

α

)︃
=

−1

α− 1
I2(z) +

α

(1− α)2
I1(z). (3.97)

Therefore, ∫︂ z

0

I1(s)ϕ
′(s) ds = I1(z)ϕ(z) +

1

α− 1
I2(z)−

α

(1− α)2
I1(z). (3.98)

Substituting (3.93) and (3.98) into (3.92), and simplifying the resulting expression,
we get

U ′
2(z) = (C0,0β − h0)

z

D(z)
+

(︃
C0,0(γ − β) + h0 − q0 +

κ2C0,0 + κλ

α− 1

)︃
I2(z)

D(z)

+

(︃
κ2C0,0 + κλ+

α− 1

α
κC1,1

)︃
I1(z)ϕ(z)

D(z)

+

(︃
−(κ2C0,0 + κλ)

α

α− 1
+ κC1,1

)︃
I1(z)

D(z)
+

κC1,1

α

ϕ(z)z

D(z)

+ κC1,0
ϕ(z)

D(z)
+

(︃
−κC1,0

2
+ C2,1

)︃
1

D(z)
. (3.99)

Using (3.95), we obtain

I1(z)ϕ(z)

D(z)
=

−I1(z)

α− 1
+

α

α− 1

I1(z)

D(s)
, (3.100)

ϕ(z)z

D(z)
=

−z

α− 1
+

α

α− 1

z

D(s)
. (3.101)

Substituting the two equations above into (3.99) and simplifying the resulting expres-
sion, we get

U ′
2(z) =

(︃
C0,0β − h0 +

κC1,1

α− 1

)︃
z

D(z)
+

(︃
−(κ2C0,0 + κλ)

α− 1
+

−κC1,1

α

)︃
I1(z)

+

(︃
C0,0(γ − β) + h0 − q0 +

κ2C0,0 + κλ

α− 1

)︃
I2(z)

D(z)

+
−κC1,1

α(α− 1)
z +

−κC1,0

α− 1
+

(︃
α+ 1

2(α− 1)
κC1,0 + C2,1

)︃
1

D(z)
. (3.102)
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We examine the asymptotic limit of U ′
2(z) as z → ∞ first. From (3.69), we have

I1(z) = z − 1

2
log(α+ 1) + o(1) as z → ∞. (3.103)

Since z + ze−2z = z + o(1), 1 + e−2z = 1 + o(1), and 1 + αe−2z = 1 + o(z−10) as
z → ∞, applying Lemma 3.1, we get

z

D(z)
=

z + ze−2z

1 + αe−2z
= z + o(1) as z → ∞, (3.104)

1

D(z)
=

1 + e−2z

1 + αe−2z
= 1 + o(1) as z → ∞. (3.105)

On the other hand,

I2(z)

D(z)
=

(log(1 + e2z)− log 2)(1 + e−2z)

2(1 + αe−2z)
. (3.106)

For z > 0 sufficiently large, applying (3.52) with y = e−2z, we obtain

log(1 + e2z) = log[e2z(e−2z + 1)]

= 2z + log(e−2z + 1)

= 2z +

(︃
e−2z − 1

2
(e−2z)2 + · · ·

)︃
. (3.107)

Hence,

(log(1 + e2z)− log 2)(1 + e−2z) = log(1 + e2z) + e−2z log(1 + e2z)− log 2− e−2z log 2

= 2z +

(︃
e−2z − 1

2
(e−2z)2 + · · ·

)︃
+ 2ze−2z + e−2z

(︃
e−2z − 1

2
(e−2z)2 + · · ·

)︃
− log 2− e−2z log 2, (3.108)

which implies that

(log(1 + e2z)− log 2)(1 + e−2z) = 2z − log 2 + o(1) as z → ∞. (3.109)

Applying Lemma 3.1 again, we get

I2(z)

D(z)
= z − log 2

2
+ o(1) as z → ∞. (3.110)

Substituting (3.103), (3.104), (3.105) and (3.110) into (3.102), and simplifying the
resulting expression, we obtain

U ′
2(z) = (C0,0γ − q0)z +

(︃
κ2C0,0 + κλ

α− 1
+

κC1,1

α

)︃
log(α+ 1)

2
+

κC1,0

2

+ C2,1 −
(︃
C0,0(γ − β) + h0 − q0 +

κ2C0,0 + κλ

α− 1

)︃
log 2

2

+ o(1) as z → ∞. (3.111)
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Applying Lemma 3.2, we get

U2(z) =
C0,0γ − q0

2
z2 +

[︃(︃
κ2C0,0 + κλ

α− 1
+

κC1,1

α

)︃
log(α+ 1)

2
+

κC1,0

2

+ C2,1 −
(︃
C0,0(γ − β) + h0 − q0 +

κ2C0,0 + κλ

α− 1

)︃
log 2

2

]︃
z

+ o(z) as z → ∞. (3.112)

Then, using the matching condition

U2(z) + o(1) = uR,2(0) + u′
R,1(0)z +

1

2
u′′
R,0(0)z

2 as z → ∞, (3.113)

we obtain

u′
R,1(0) =

(︃
κ2C0,0 + κλ

α− 1
+

κC1,1

α

)︃
log(α+ 1)

2
+

κC1,0

2
+ C2,1

−
(︃
C0,0(γ − β) + h0 − q0 +

κ2C0,0 + κλ

α− 1

)︃
log 2

2
. (3.114)

Next, we examine the asymptotic limit of U ′
2(z) as z → −∞. From (3.69), we

have

I1(z) =
1

2
log

(︃
α

α+ 1

)︃
+ o(1) as z → −∞. (3.115)

Since z + ze2z = z + o(1), 1 + e2z = 1+ o(1), and α+ e2z = α+ o(z−10) as z → −∞,
applying Lemma 3.1, we get

z

D(z)
=

z + ze2z

α+ e2z
=

z

α
+ o(1) as z → −∞, (3.116)

1

D(z)
=

1 + e2z

α+ e2z
=

1

α
+ o(1) as z → −∞. (3.117)

On the other hand,

I2(z)

D(z)
=

(log(1 + e2z)− log 2)(1 + e2z)

2(α+ e2z)
. (3.118)

For z < 0 with |z| sufficiently large, applying (3.52) with y = e2z, we obtain

log(1 + e2z) = e2z − 1

2
(e2z)2 +

1

3
(e2z)3 − 1

4
(e2z)4 + · · · (3.119)

Hence,

(log(1 + e2z)− log 2)(1 + e2z)

= log(1 + e2z)− log 2 + e2z log(1 + e2z)− e2z log 2

=

(︃
e2z − 1

2
(e2z)2 + · · ·

)︃
− log 2 + e2z

(︃
e2z − 1

2
(e2z)2 + · · ·

)︃
− e2z log 2, (3.120)

which implies that

(log(1 + e2z)− log 2)(1 + e−2z) = − log 2 + o(1) as z → −∞. (3.121)
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Applying Lemma 3.1 again, we get

I2(z)

D(z)
=

− log 2

2α
+ o(1) as z → −∞. (3.122)

Substituting (3.115), (3.116), (3.117) and (3.122) into (3.102), and simplifying the
resulting expression, we obtain

U ′
2(z) =

C0,0β − h0

α
z +

(︃
−κ2C0,0 + κλ

α− 1
− κC1,1

α

)︃
1

2
log

(︃
α

α+ 1

)︃
− κC1,0

2α

+
C2,1

α
−
(︃
C0,0(γ − β) + h0 − q0 +

κ2C0,0 + κλ

α− 1

)︃
log 2

2α

+ o(1) as z → ∞. (3.123)

Applying Lemma 3.2, we get

U2(z) =
C0,0β − h0

2α
z2 +

[︃(︃
−κ2C0,0 + κλ

α− 1
− κC1,1

α

)︃
1

2
log

(︃
α

α+ 1

)︃
− κC1,0

2α

+
C2,1

α
−
(︃
C0,0(γ − β) + h0 − q0 +

κ2C0,0 + κλ

α− 1

)︃
log 2

2α

]︃
z

+ o(z) as z → −∞. (3.124)

Then, using the matching condition

U2(z) + o(1) = uL,2(0) + u′
L,1(0)z +

1

2
u′′
L,0(0)z

2 as z → ∞, (3.125)

we obtain

u′
L,1(0) =

(︃
−κ2C0,0 + κλ

α− 1
− κC1,1

α

)︃
1

2
log

(︃
α

α+ 1

)︃
− κC1,0

2α
+

C2,1

α

−
(︃
C0,0(γ − β) + h0 − q0 +

κ2C0,0 + κλ

α− 1

)︃
log 2

2α
. (3.126)

From (3.114) and (3.126), we get

u′
R,1(0)− αu′

L,1(0)

=

(︃
κ2C0,0 + κλ

α− 1
+

κC1,1

α

)︃
1

2
[α logα+ (1− α) log(α+ 1)] + κC1,0. (3.127)

Using (3.75) and (3.83), and recalling that C1,1 = αu′
L,0(0), we obtain

1

2

(︃
κ2C0,0 + κλ

α− 1
+

κC1,1

α

)︃
=

κ

α− 1

(︃
κC0,0 + λ

2
+ C1,1

α− 1

2α

)︃
=

κ

α− 1

uL,1(0)− uR,1(0)

logα
. (3.128)

Moreover, from (3.81) and (3.83), we get

C1,0 = uR,1(0) + [uL,1(0)− uR,1(0)]
log(α+ 1)

logα
. (3.129)
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Substituting (3.128) and (3.129) into (3.127), and simplifying the resulting expression,
we obtain

u′
R,1(0)− αu′

L,1(0) =
κ

α− 1
[uR,1(0)− αuL,1(0)]. (3.130)

From (3.13), (3.17), (3.84) and (3.130), we see that: When α ̸= 1, uR,1(x) and uL,1(x)
are determined by the following two-sided problem

−u′′
R,1 + γuR,1 = 0, in ΩR, (3.131)

−αu′′
L,1 + βuL,1 = 0, in ΩL, (3.132)

uL,1(0)− uR,1(0) =
logα

2
[u′

R,0(0)− u′
L,0(0)] (3.133)

u′
R,1(0)− αu′

L,1(0) =
κ

α− 1
[uR,1(0)− αuL,1(0)], (3.134)

u′
L,1(−1) = 0 = u′

R,1(1). (3.135)

This shows that, when α ̸= 1, the diffuse domain problem is first-order accurate, as
the solution pair (uR,1, uL,1) of the problem (3.131)–(3.135) is generally not equal to
(0, 0).

• Case 2: α = 1.
In this case, D(z) ≡ 1 and I1(z) = I2(z). Hence, Equation (3.92) becomes

U ′
2(z) = C0,0[βz + (γ − β)I2(z)]− h0z + (h0 − q0)I2(z)

+ (κ2C0,0 + κλ)

∫︂ z

0

I2(s)ϕ
′(s) ds+ κC1,1

∫︂ z

0

ϕ′(s)s ds

+ κC1,0ϕ(z)−
κC1,0

2
+ C2,1. (3.136)

Using integration by parts, we get∫︂ z

0

I2(s)ϕ
′(s) ds = I2(s)ϕ(s)

⃓⃓⃓⃓z
0

−
∫︂ z

0

ϕ(s)I ′2(s) ds

= I2(z)ϕ(z)−
∫︂ z

0

(ϕ(s))2 ds

= I2(z)ϕ(z)−
∫︂ z

0

e2s

(es + e−s)2
ds

= I2(z)ϕ(z)−
1

2
log(e2z + 1)− 1

2(e2z + 1)
+

log 2

2
+

1

4
. (3.137)

Substituting (3.93) and (3.137) into (3.136), and simplifying the resulting expression,
we get

U ′
2(z) = (C0,0β − h0)z + [C0,0(γ − β) + h0 − q0 − κC1,1]I2(z)

+ (κ2C0,0 + κλ)

(︃
I2(z)ϕ(z)−

1

2
log(e2z + 1)− 1

2(e2z + 1)
+

log 2

2
+

1

4

)︃
+ κC1,1ϕ(z)z + κC1,0ϕ(z)−

κC1,0

2
+ C2,1. (3.138)
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Again, we examine the asymptotic limit of U ′
2(z) as z → ∞ first. From (3.107),

we have

log(e2z + 1) = z + o(1) as z → ∞. (3.139)

Using (3.69) with α = 1, we get

I2(z) = z − log 2

2
+ o(1) as z → ∞. (3.140)

Combining the equation above with 1 + e−2z = 1+ o(z−10) as z → ∞, then applying
Lemma 3.1, we get

I2(z)ϕ(z) =
I2(z)

1 + e−2z
= z − log 2

2
+ o(1) as z → ∞. (3.141)

Similarly, we obtain

ϕ(z) =
1

1 + e−2z
= 1 + o(1) as z → ∞, (3.142)

ϕ(z)z =
z

1 + e−2z
= z + o(1) as z → ∞, (3.143)

1

e2z + 1
=

e−2z

1 + e−2z
= 0 + o(1) as z → ∞. (3.144)

Substituting (3.139), (3.140), (3.141), (3.142), (3.143) and (3.144) into (3.138), and
simplifying the resulting expression, we get

U ′
2(z) = (C0,0γ − q0)z − [C0,0(γ − β) + h0 − q0 − κC1,1]

log 2

2
+ κC1,0

+
1

4
(κ2C0,0 + κλ)− κC0,0

2
+ C2,1 + o(1) as z → ∞. (3.145)

Therefore, applying Lemma 3.2, we obtain

U2(z) =
1

2
(C0,0γ − q0)z

2 +

[︃
−[C0,0(γ − β) + h0 − q0 − κC1,1]

log 2

2
+ κC1,0

+
1

4
(κ2C0,0 + κλ)− κC0,0

2
+ C2,1

]︃
z + o(z) as z → ∞. (3.146)

Then, using the matching condition

U2(z) + o(1) = uR,2(0) + u′
R,1(0)z +

1

2
u′′
R,0(0)z

2 as z → ∞, (3.147)

we get

u′
R,1(0) =− [C0,0(γ − β) + h0 − q0 − κC1,1]

log 2

2
+ κC1,0

+
1

4
(κ2C0,0 + κλ)− κC0,0

2
+ C2,1. (3.148)

Next, we examine the asymptotic limit of U ′
2(z) as z → −∞. From (3.119), we

have

log(e2z + 1) = 0 + o(1) as z → −∞. (3.149)

23



Using (3.69) with α = 1, we get

I2(z) = − log 2

2
+ o(1) as z → −∞. (3.150)

From (3.89), we have

I2(z)ϕ(z) =
[log(e2z + 1)− log 2]e2z

2(e2z + 1)
. (3.151)

Using (3.119) for z < 0 with |z| sufficiently large, we get

[log(e2z + 1)− log 2]e2z = −(log 2)e2z + (e2z)2 − 1

2
(e2z)3 +

1

3
(e2z)4 − · · · ,

which implies that

[log(e2z + 1)− log 2]e2z = 0 + o(1) as z → −∞. (3.152)

Combining the equation above with 1+ e2z = 0+ o(z−10) as z → −∞, then applying
Lemma 3.1, we get

I2(z)ϕ(z) = 0 + o(1) as z → −∞. (3.153)

Similarly, we obtain

ϕ(z) =
e2z

e2z + 1
= 0 + o(1) as z → −∞, (3.154)

ϕ(z)z =
ze2z

e2z + 1
= 0 + o(1) as z → −∞, (3.155)

1

e2z + 1
= 1 + o(1) as z → −∞. (3.156)

Substituting (3.149), (3.150), (3.153), (3.154), (3.155) and (3.156) into (3.138), and
simplifying the resulting expression, we get

U ′
2(z) = (C0,0β − h0)z − [C0,0(γ − β) + h0 − q0 − κC1,1]

log 2

2

+

(︃
log 2

2
− 1

4

)︃
(κ2C0,0 + κλ)− κC0,0

2
+ C2,1 + o(1) as z → −∞. (3.157)

Therefore, applying Lemma 3.2, we obtain

U2(z) =
1

2
(C0,0β − h0)z

2 +

[︃
−[C0,0(γ − β) + h0 − q0 − κC1,1]

log 2

2

+

(︃
log 2

2
− 1

4

)︃
(κ2C0,0 + κλ)− κC0,0

2
+ C2,1

]︃
z

+ o(z) as z → −∞. (3.158)

Then, using the matching condition

U2(z) + o(1) = uL,2(0) + u′
L,1(0)z +

1

2
u′′
L,0(0)z

2 as z → −∞, (3.159)
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we get

u′
L,1(0) =− [C0,0(γ − β) + h0 − q0 − κC1,1]

log 2

2

+

(︃
log 2

2
− 1

4

)︃
(κ2C0,0 + κλ)− κC0,0

2
+ C2,1. (3.160)

Combining (3.148) and (3.160), we obtain

u′
R,1(0)− u′

L,1(0) = κC1,0 +

(︃
1

2
− log 2

2

)︃
(κ2C0,0 + κλ). (3.161)

Using (3.75) and (3.81) with α = 1, we have

κuR,0(0) + λ = u′
R,0(0)− u′

L,0(0), (3.162)

C1,0 = uR,1(0) + (κC0,0 + λ)
log 2

2
. (3.163)

Since C0,0 = uR,0(0), by substituting (3.162) and (3.163) into (3.161), we get

u′
R,1(0)− u′

L,1(0) = κuR,1(0) +
κ

2
[u′

R,0(0)− u′
L,0(0)]. (3.164)

On the other hand, using (3.84) with α = 1, we have

uR,1(0)− uL,1(0) = 0. (3.165)

Combining the equation above with (3.13), (3.17) and (3.164), we see that: When
α = 1, uR,1(x) and uL,1(x) are determined by the following two-sided problem

−u′′
R,1 + γuR,1 = 0, in ΩR, (3.166)

−u′′
L,1 + βuL,1 = 0, in ΩL, (3.167)

uR,1(0) = uL,1(0), (3.168)

u′
R,1(0)− u′

L,1(0) = κuR,1(0) +
κ

2
[u′

R,0(0)− u′
L,0(0)], (3.169)

u′
L,1(−1) = 0 = u′

R,1(1). (3.170)

This shows that, when α = 1, the diffuse domain problem is first-order accurate, as
the solution pair (uR,1, uL,1) of the problem (3.166)–(3.170) is generally not equal to
(0, 0).

4. Numerical Simulations. To assess the order of convergence of the diffuse
domain method, we generate reference solutions for the corresponding sharp interface
problems and perform error analyses.

4.1. Numerical Simulations in 1D. For a 1D problem, we define the domains
as

Ω := (−1, 1), Ω1 = ΩR := (0, 1), Ω2 = ΩL := (−1, 0),

and choose the function

u0(x) =

{︄
uR(x) = (4x2 − 8x+ 6) cos (4πx), if x ∈ ΩR,

uL(x) = 8(x+ 1)2 − 2, if x ∈ ΩL,
(4.1)
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which is a solution to the two-sided problem (3.1)–(3.5), where

α = 0.5, β = γ = 1, κ = 1.6, λ = −25.6, (4.2)

q(x) = (16π2 + 1)(4x2 − 8x+ 6) cos(4πx) + 64π(x− 1) sin(4πx), (4.3)

h(x) = 8(x+ 1)2 − 10. (4.4)

The functions uL(x) and uR(x) are continuous in ΩL and ΩR, respectively, and match
at x = 0, ensuring that u0(x) is globally continuous across Ω. Additionally, we have

u′
R(0)− αu′

L(0) = −16,

indicating a non-zero jump in the flux across the interface x = 0.
To numerically solve the diffuse domain approximation problem (3.6)–(3.7), we

implement a second-order cell-centered finite difference approximation with a multi-
grid solver [18]. The plots of the true solution u0 and the approximation solution
uε, for various ε values, are presented in Figure 4.1. We observe that, as ε → 0, uε

converges to u0. To analyze the L2 convergence rate, we fix the grid size of the finite
difference method to N = 2.0 × 105, run the solver for progressively smaller values
of ε, and compute the discrete L2 error for each case. The log-log plot of the error
is shown in Figure 4.2. We compute a numerical convergence rate of O(ε1.1784) as
measured in a discrete L2 norm. This is consistent with the first-order convergence
rate suggested by the asymptotic analysis.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-5

0

5

10

u
"
(x

)

True Solution
Epsilon = 0.2
Epsilon = 0.1
Epsilon = 0.05
Epsilon = 0.001

Fig. 4.1: Plots of the true solution u0 specified by (4.1) and the diffuse domain approximation
solution uε over Ω = (−1, 1), for various values of ε, with the parameters given in (4.2)–(4.4).

Next, we investigate a coupled refinement strategy where the grid size h and the
interface parameter ε are related via h = rε, 0 < r < 1. Choosing r sufficiently small
ensures the computational grid resolves the diffuse interface region as ε decreases. For
this study, we consider the 1D two-sided problem defined by the PDE system (3.1)–
(3.5). We construct a test case with a known exact solution u0(x), given in (4.1),
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Fig. 4.2: Log-log plot of the L2 Error versus ε for the 1D problem described by (4.2)–(4.4).

over the domain Ω = (−1, 1) with the interface at x = 0. This solution corresponds
to the specific parameter choices and function definitions detailed in (4.2)–(4.4). We
present numerical results for two specific refinement paths: r = 1/10 (corresponding
to ε = 10h) and r = 1/20 (corresponding to ε = 20h). Figure 4.3 displays the L2 and
L∞ error norms ∥uε − u0∥ versus ε for the ε = 10h case, while Figure 4.4 shows the
corresponding results for ε = 20h. In both scenarios, the observed convergence rate is
clearly first-order (O(ε)), consistent with theoretical expectations and demonstrating
the stability and accuracy of the diffuse domain method with these refinement paths
when compared against the exact solution.

(a) L2 Error for ε = 10h. (b) L∞ Error for ε = 10h.

Fig. 4.3: Log-log plot of errors versus ε using the ε = 10h refinement path. First-order convergence
is observed.
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(a) L2 Error for ε = 20h. (b) L∞ Error for ε = 20h.

Fig. 4.4: Log-log plot of errors versus ε using the ε = 20h refinement path. First-order convergence
is maintained.

4.2. Numerical Simulations in 2D. To analyze the algorithm for a 2D prob-
lem, we define the domains as

Ω1 :=
{︁
(x1, x2) : x

2
1 + 4x2

2 < 4
}︁
,

Ω := (−3, 3)× (−3, 3), Ω2 := Ω \ Ω1,

and choose the function

u0(x1, x2) =

{︄
u1(x1, x2) = −x2

1 − 4x2
2 + 6, if (x1, x2) ∈ Ω1,

u2(x1, x2) = 2, if (x1, x2) ∈ Ω2,
(4.5)

which solves the two-sided problem (1.6)–(1.10), with the parameters

α = 0.5, β = γ = κ = 1, (4.6)

q(x1, x2) = −x2
1 − 4x2

2 + 16, h(x1, x2) = 2, (4.7)

g(x1, x2) = x2
1 + 4x2

2 − 6 + 2
√︂

x2
1 + 16x2

2. (4.8)

The plot of u0 is presented in Figure 4.6. The functions u1 and u2 are smooth in
Ω1 and Ω2, respectively, and match on the boundary ∂Ω1 of Ω1, ensuring that u0 is
globally continuous across Ω. Furthermore, we have

−∇(u1 − αu2) · n1 = 2
√︂

x2
1 + 16x2

2,

which indicates a non-zero jump in the flux accross the interface ∂Ω1.
To numerically solve the diffuse domain approximation problem (1.13)–(1.14) in

2D, first, we need to compute the signed distance function r(x1, x2) from (x1, x2) ∈ Ω
to ∂Ω1 using a numerical approach. We use a fast-marching algorithm [32] to solve
the following Eikonal equation in 2D:

|∇r| = 1 in Ω, r = 0 on ∂Ω1.
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Figure 4.5 illustrates the plot of the interface ∂Ω1 alongside the level curves of the
signed distance function r(x1, x2).

We use a second-order, cell-centered 2D finite difference method to approximate
the DDM approximation, and we employ an efficient linear multigrid method to solve
the resulting system of linear equations. The details for both the discretization and
the multigrid solver are similar to those in [18]; we suppress the details for the sake
of brevity. The plot of uε, for ε = 0.05, is presented in Figure 4.7.

To analyze the L2 convergence rate, we fix the grid size of the finite difference
method to N = 1.0 × 106, run the solver for progressively smaller values of ε, and
compute the discrete L2 error for each case. The log-log plot of the error is shown in
Figure 4.8. We compute a numerical convergence rate of O(ε1.1982) as measured in a
discrete L2 norm. This is consistent with the first-order convergence rate suggested
by the asymptotic analysis.

Finally, to test the robustness of the algorithm for a complex interface ∂Ω1, we
consider the following “starfish” problem, which is the problem (1.13)–(1.14) over the
following domains:

Ω1 := {(r, θ) : r < 0.9(1.2 + 0.7 sin(5θ)), 0 ≤ θ < 2π} , (4.9)

Ω := (−2, 2)× (−2, 2), Ω2 := Ω \ Ω1, (4.10)

with the parameters

α = 3, β = 2, γ = 1, κ = 0.01, (4.11)

q(x1, x2) = −x2
1 + 15, h(x1, x2) = 2.5 sin(x1) + ecos(x2), (4.12)

g(x1, x2) = 4. (4.13)

Here, (r, θ) are polar coordinates, determined by

x1 = r cos θ, x2 = r sin θ.

The plot of the interface ∂Ω1 and the approximation solution uε to the “starfish”
problem, computed for ε = 0.05, are presented in Figures 4.9 and 4.10, respectively.

A common concern for numerical PDE solvers is how boundary smoothness af-
fects the rate of convergence. Corners or non-smooth features in the boundary can
sometimes degrade the accuracy of traditional methods. To test whether the presence
of corners impacts our diffuse domain method, we construct a test case using a convex
pentagonal domain Ω1 embedded in [−2, 2]2. The vertices of the pentagon are chosen
as

(0.8, 0), (0.3, 0.9), (−0.5, 0.7), (−0.9,−0.2), (0.2,−0.8).

We define the computational domain Ω := [−2, 2] × [−2, 2] and the outer domain
Ω2 := Ω \ Ω1. The parameters used for the diffuse domain BVP (1.13)–(1.14) are:

α = 1, β = 1, γ = 2, κ = 0.5, λ = 4.5, (4.14)

q(x1, x2) = x2
1 + 5, h(x1, x2) = − sin (x1)− ecos (x2). (4.15)

Since constructing an exact analytical solution for this domain is challenging,
we define a high-accuracy numerical ground truth solution, denoted by ug. This
ug is obtained by solving the system with a very small interface width parameter,
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Fig. 4.5: Plot of the interface ∂Ω1 =
{︁
(x1, x2) : x2

1 + 4x2
2 = 4

}︁
and the level curves of the signed

distance function r(x1, x2) in 2D.

Fig. 4.6: Plot of the true solution u0 specified by (4.5).

specifically ε = 0.004. We then compute the L2 and L∞ errors of the solutions uε

(obtained with larger ε values) with respect to ug.

Figure 4.11 illustrates the pentagonal boundary (∂Ω1) and the level curves of
the corresponding signed distance function r(x1, x2). The numerical ground truth
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Fig. 4.7: Plot of the diffuse domain approximation solution uε, for ε = 0.05, with the parameters
given in (4.6)–(4.8).

Fig. 4.8: Log-log plot of the L2 Error versus ε for the 2D problem described by (4.6)–(4.8).

solution ug (i.e., uε for ε = 0.004) is displayed in Figure 4.12, showing the solution’s
behavior near the pentagon boundary. The convergence results, plotting the error
against ε on a log-log scale, are presented in Figure 4.13 (L∞ error) and Figure 4.14
(L2 error). In contrast to some discretization methods where boundary singularities
can significantly reduce the order of convergence, we do not observe such degradation
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Fig. 4.9: Plot of the boundary ∂Ω1 of the domain Ω1 defined by (4.9), and the level curves of the
signed distance function r(x1, x2).

Fig. 4.10: Plot of the solution uε to the “starfish” problem, for ε = 0.05, with the parameters given
in (4.11)–(4.13).

here compared to results on smoother domains. This suggests that, for this problem
and parameter regime, boundary smoothness plays a relatively minor role in the
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convergence behavior of the diffuse domain method with respect to ε. However, more
testing and analysis needs to be done to determine the limitations of the method.

Fig. 4.11: Plot of the pentagon domain Ω1 embedded in [−2, 2]2, defined by the five vertices (0.8, 0),
(0.3, 0.9), (−0.5, 0.7), (−0.9,−0.2), (0.2,−0.8). The level curves show the signed distance function
r(x1, x2).

5. Discussion. In this work, we performed a matched asymptotic analysis of
the diffuse domain approximation for the two-sided reaction-diffusion equation with
general transmission boundary conditions. The two-sided problem is interesting and
useful on its own merits. Indeed, many physical processes have different physical
parameters on different sides of a dividing interface.

But, the one-sided problem is, arguably, much more interesting, and it is the
reason the diffuse domain method was developed. Clearly, to compute the solution
to the one-sided problem, one must solve a well-posed problem on the whole of the
cuboid Ω, such that the portion of the approximation in the exterior domain, Ω2, has
a negligible effect on the approximation in Ω1. The two-sided problem we examined
here was derived from the one-sided problem by introducing a modified cutoff phase-
field function

Dε(x) = α+ (1− α)ϕε(x),

where the constant α is independent of ε to avoid degeneracy in the exterior domain
Ω2. Lerv̊ag and Lowengrub [21] took α > 0 to be small, but still positive, and indepen-
dent of ε. While this did not seem to spoil the second-order asymptotic convergence
that they predicted, their analysis does not, strictly speaking, cover this case. Our
present analysis does cover this case, as long as α > 0 is finite and independent of ε.
Moreover, our analysis shows that this choice degrades the asymptotic convergence
to exactly first-order.
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Fig. 4.12: Plot of the diffuse domain approximation solution uε for ε = 0.004 (defined as ug) in the
pentagon domain.

Fig. 4.13: Log-log plot of the L∞ error ∥uε − ug∥L∞ versus ε for the pentagon domain test. The
observed order of convergence as ε → 0 is approximately O

(︁
ε1.14

)︁
. No significant degradation in

the convergence rate is observed compared to smoother domains.
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Fig. 4.14: Log-log plot of the L2 error ∥uε − ug∥L2 versus ε for the pentagon domain test. The
observed order of convergence as ε → 0 is approximately O

(︁
ε1.49

)︁
. No significant degradation in

the convergence rate is observed compared to smoother domains.

To verify this numerically, we perform the following experiments in the one-
dimensional space. Specifically, we define the domains as

Ω := (−1, 1), Ω1 = ΩR := (0, 1), Ω2 = ΩL := (−1, 0),

and choose the function

u0(x) =

{︄
uR(x) = (4x2 − 8x+ 6) cos (4πx), if x ∈ ΩR,

uL(x) = 6, if x ∈ ΩL,
(5.1)

which is a solution to the two-sided problem (3.1)–(3.5), where

α > 0, β = 0, γ = 1, κ = 1.6, λ = −17.6, (5.2)

q(x) = (16π2 + 1)(4x2 − 8x+ 6) cos(4πx) + 64π(x− 1) sin(4πx), (5.3)

h(x) = 0. (5.4)

In this particular problem, the flux across the interface x = 0 exhibits a nonzero jump,
satisfying

u′
R(0)− αu′

L(0) = −8.

Picking α = 0.01, taking the number of cell centered finite difference points to be
N = 215, and setting ε = 0.001, our numerical results approximate solution matches
u0(x) very well in the eyeball norm. See Figure 5.1.

To quantify the error of our approximation, we pick two small values of α, α = 0.01
and α = 0.001, and we run the solver for several small ε values. The log-log plots
of the L2 errors for uR against ε are shown in Figures 5.2a and 5.2b. Note that the
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sudden spikes in the errors for very small values of ε are due to the finite accuracy of
the numerical approximation via the finite difference method. Otherwise, we clearly
observe that the convergence behavior transitions from order second-order, when ε
is relatively large compared to α, to first-order, when ε is relatively small compared
to α. Lerv̊ag and Lowengrub [21] took α = 10−6, a much smaller value than the α
values we have chosen. Consequently, they may not have observed this trend if the
values of ε they selected were not sufficiently small relative to α. However, this trend
will be observed as long as α > 0 is finite and independent of ε.

Now, some open questions arise: What if α depends on ε? More specifically, can
the asymptotic convergence analysis be extended to the case that α = εm, where m is
some positive number? Our preliminary computations suggest that, setting α = εm,
with m ≥ 2, β = 0, and h ≡ 0 results in an approximation method for the one-sided
problem that is numerically well-posed and well-conditioned, and one that converges
to the solution of the one-sided problem at the rate of O(ε2).

In Figures 5.3a and 5.3b, we plot the errors for the problem described above, where
the only difference is that we take α = ε2 and α = ε3, respectively. Full second-order
convergences are observed in both cases. What happens to the solution in the exterior
domain, Ω2, in this case? Our preliminary tests suggest that the solution converges
to a non-trivial function, one that is straightforward to characterize. In one space
dimension, and using the setup described above, the solution u2 over Ω2 will simply
be a constant function, similar to what is shown in Figure 5.1. However, rigorously
proving that this limit is unique and well-defined is much more challenging.

When we make such an alteration — that is, when we take α = εm, m ≥ 2,
β = 0, and h ≡ 0 — while we ensure that Dε does not decay exponentially rapidly
in the exterior domain Ω2, we introduce significant, new mathematical difficulties for
the asymptotic analysis. We will report on this challenging and intriguing one-sided
problem in a forthcoming paper.
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Fig. 5.1: Plots of the true solution u0 specified by (5.1) and the diffuse domain approximation
solution uε to the 1D problem, for ε = 0.05, with the parameters given in (5.2)–(5.4).
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Fig. 5.2: The log-log plots of the L2 Error for uR against ε when α is independent of ε.

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

"

10-10

10-8

10-6

10-4

10-2

100

102

L
2

er
ro

r

slope = 2.00

slope = 2.02

(a) α = ε2.

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

"

10-10

10-8

10-6

10-4

10-2

100

102

L
2

er
ro

r

slope = 2.00

slope = 2.02

(b) α = ε3.

Fig. 5.3: The log-log plots of the L2 Error for uR against ε when α depends on ε.
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