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Abstract. Diffuse domain methods (DDMs) have gained significant attention for solving partial
differential equations (PDEs) on complex geometries. These methods approximate the domain by
replacing sharp boundaries with a diffuse layer of thickness ε, which scales with the minimum grid
size. This reformulation extends the problem to a regular domain, incorporating boundary conditions
via singular source terms. In this work, we analyze the convergence of a DDM approximation problem
with transmission-type Neumann boundary conditions. We prove that the energy functional of the
diffuse domain problem Γ–converges to the energy functional of the original problem as ε → 0.
Additionally, we show that the solution of the diffuse domain problem strongly converges in H1(Ω),
up to a subsequence, to the solution of the original problem, as ε → 0.
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1. Introduction. This work is a follow-up to [16] in which we applied formal
asymptotics to analyze the approximation of solutions of partial differential equations
(PDEs) posed in a domain with complex geometries using a diffuse domain approach.
This paper focuses on the rigorous variational analysis of the approximation process,
where in addition to model approximation, we prove convergence of corresponding
solutions.

PDEs posed in domains with complex geometries arise in various applications,
including materials science, fluid dynamics, and biology. In many practical prob-
lems, these domains may have intricate boundaries, evolving interfaces, or irregular
shapes that complicate numerical discretization and analysis. Traditional numerical
approaches often require conformal meshes that accurately capture domain bound-
aries. Constructing such meshes can be computationally expensive and challenging,
especially in scenarios where the domain evolves over time or has small-scale geometric
features.

To circumvent these difficulties, diffuse domain methods (DDMs) have emerged
as versatile approaches. These methods (i) embed the original complex domain into
a larger, simpler computational domain, like a square or a cube, and (ii) introduce a
phase field function to smoothly approximate the characteristic function of the original
domain. The governing PDEs are then modified with additional penalization terms
that enforce consistency between the diffuse domain approximation and the original
sharp-interface formulation. By avoiding the need for complex meshing and allowing
for efficient numerical implementation, DDMs have become a widely used technique
in various applications, such as phase-field modeling, where they support simulations
of complex phenomena in fields like biology (e.g., [9, 14, 13, 11, 17, 3]), fluid dynamics
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(e.g., [4, 20, 5, 2, 8, 19]), and materials science (e.g., [21, 17, 18, 10]).

In [16] we have studied the asymptotic convergence of the diffuse domain approx-
imation problem in one-dimensional space. In addition, we have provided numerical
simulations and discussed their outcomes in relation to our analytical result. In this
paper, we prove the Γ-convergence of the energy functional associated with the diffuse
domain approximation and the convergence of corresponding solutions in the strong
H1(Ω)–topology, in any dimension. For motivation and background on diffuse domain
problems, as well as asymptotic convergence analysis and numerical experiments, we
refer the readers to [16] and the references therein.

To be precise, we study the following two-sided boundary value problem in an
open cuboidal domain Ω: Find a function u0 : Ω → R defined as

u0(x) =

{︄
u1(x), if x ∈ Ω1 ⊂ Ω,

u2(x), if x ∈ Ω2 = Ω \ Ω1,

where u1 : Ω1 → R and u2 : Ω2 → R satisfy

−∆u1 + γu1 = q, in Ω1, (1.1)

−α∆u2 + βu2 = h, in Ω2, (1.2)

u1 = u2, on ∂Ω1, (1.3)

−∇(u1 − αu2) · n1 = κu1 + g, on ∂Ω1, (1.4)

α∇u2 · n2 = 0, on ∂Ω. (1.5)

Here, we assume the following:

(1) Ω1 is a bounded open subset of Rn with a compact C3 boundary ∂Ω1 satis-
fying Ω1 ⊂ Ω and ∂Ω1 ∩ ∂Ω = ∅, and Ω2 := Ω \ Ω1 (see Figure 1.1);

(2) n1 denotes the outward-pointing unit normal vector on ∂Ω1, and n2 denotes
the outward-pointing unit normal vector on ∂Ω.

(3) h, q ∈ L2(Ω) and g ∈ H1(Ω) are given functions;
(4) α, β, γ are given positive constants, and κ is a given nonnegative constant.

Ω1

Ω2

n1

n2

Fig. 1.1: A domain Ω1 is covered by a larger cuboidal domain Ω. Ω2 := Ω \ Ω1.

The boundary conditions across the interface ∂Ω1 are called transmission-type
boundary conditions, ensuring continuity of function values across the interface while
allowing a jump in flux due to underlying physical mechanisms. A solution u0 of the
two-sided problem (1.1)–(1.5) corresponds to a minimizer of the associated energy
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functional E0, defined by

E0[u] =
∫︂
Ω

[︃
1

2
(D0|∇u|2 + c0u

2)− f0u

]︃
dx+

∫︂
∂Ω1

(︃
1

2
κu2 + gu

)︃
dS, (1.6)

for u ∈ H1(Ω), where

D0(x) := χΩ1
(x) + αχΩ2

(x), (1.7)

c0(x) := γχΩ1
(x) + βχΩ2

(x), (1.8)

f0(x) := q(x)χΩ1
(x) + h(x)χΩ2

(x). (1.9)

Since E0 is coercive and strictly convex, it admits a unique minimizer, ensuring that
the two-sided problem (1.1)–(1.5) has a unique solution u0 ∈ H1(Ω).

For each ε ∈ (0, 1), the diffuse domain approximation of the problem (1.1)–(1.5)
is given by: Find a function uε : Ω → R that satisfies

−∇ · (Dε∇uε) + cεuε + (κuε + g)|∇ϕε| = fε, in Ω, (1.10)

Dε∇uε · n2 = 0, on ∂Ω, (1.11)

where

Dε(x) := α+ (1− α)ϕε(x) ≈ D0(x), (1.12)

cε(x) := β + (γ − β)ϕε(x) ≈ c0(x), (1.13)

fε(x) := h(x) + [q(x)− h(x)]ϕε(x) ≈ f0(x). (1.14)

Here, ϕε(x) is a phase-field function that approximates the characteristic function
χΩ1

(x) of Ω1. A common choice for ϕε(x) is

ϕε(x) =
1

2

[︃
1 + tanh

(︃
r(x)

ε

)︃]︃
≈ χΩ1

(x), (1.15)

where r(x) is the signed distance function from x ∈ Rn to ∂Ω1, which is assumed to
be positive within Ω1 and negative outside Ω1. With this choice of ϕε(x), we note
that |∇ϕε(x)| approximates the surface delta function δ∂Ω1

of ∂Ω1.
For each ε ∈ (0, 1), a solution uε of the problem (1.10)–(1.11) corresponds to a

minimizer of the associated energy functional Eε, defined by

Eε[u] =
∫︂
Ω

[︃
1

2
(Dε|∇u|2 + cεu

2)− fεu+

(︃
1

2
κu2 + gu

)︃
|∇ϕε|

]︃
dx, (1.16)

for u ∈ H1(Ω). Since Eε is coercive and strictly convex, it admits a unique minimizer,
ensuring that the diffuse domain problem (1.10)–(1.11) has a unique solution uε ∈
H1(Ω).

2. Main Results.

2.1. Γ–convergence of the Energy Functional for the Neumann Bound-
ary Condition case. In this work, we investigate the sharp interface limit of the
energy functional Eε as ε → 0, using the framework of Γ–convergence. Specifically,
for the Neumann boundary condition case, that is, κ = 0, we show that the Γ–limit
of the energy Eε as ε → 0 with respect to the L2(Ω)–topology is precisely E0 in any
dimension. In one dimension, the same result holds true for any κ ≥ 0.
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To proceed, we extend the definition of Eε from (1.16), for κ = 0, to all u ∈ L2(Ω)
by defining:

Fε[u] =

⎧⎨⎩
∫︂
Ω

[︃
1

2
(Dε|∇u|2 + cεu

2)− fεu+ gu|∇ϕε|
]︃
dx, u ∈ H1(Ω),

∞, u ∈ L2(Ω) \H1(Ω),

where ϕε, Dε, cε and fε are defined by (1.15), (1.12), (1.13) and (1.14), respectively.
Similarly, we extend the definition of E0 from (1.6), for κ = 0, to all u ∈ L2(Ω) by
defining:

F0[u] =

⎧⎨⎩
∫︂
Ω

[︃
1

2
(D0|∇u|2 + c0u

2)− f0u

]︃
dx+

∫︂
∂Ω1

gu dS, u ∈ H1(Ω),

∞, u ∈ L2(Ω) \H1(Ω),

where D0, c0 and f0 are defined by (1.7), (1.8) and (1.9), respectively.
Theorem 2.1 (Γ–convergence of Fε). As ε → 0, Fε Γ–converges to F0 under

the strong L2(Ω)–topology.

2.2. Strong H1(Ω)–convergence of the Approximation Solution for the
Neumann Boundary Condition case. We will demonstrate below via a compact-
ness result that the sequence {Fε} is equicoercive. As a consequence, in the Neumann
boundary condition case (κ = 0), since u0 is the unique minimizer of F0, uε is the
unique minimizer of Fε, for each ε, and Fε Γ–converges to F0 as ε → 0, it follows
from the Fundamental Theorem of Γ–convergence (see, e.g., [7], Theorem 2.1) that uε

converges strongly to u0 in L2(Ω) as ε → 0. While this establishes the convergence
of the solution of diffuse domain problem to that of the two-sided problem in L2(Ω),
techniques similar to those used in [1] can further show that uε converges strongly to
u0 in H1(Ω), up to a subsequence.

Theorem 2.2 (Strong convergence of uε in H1(Ω)). Let u0 and uε be the so-
lutions of the two-sided problem (1.1)–(1.5) and the diffuse domain approximation
problem (1.10)–(1.11), respectively, for κ = 0. Then, there exists a subsequence of
{uε} that converges strongly to u0 in H1(Ω) as ε → 0.

Remark 2.1. The results of Theorem 2.1 and Theorem 2.2 remain valid for gen-
eral uniformly elliptic quadratic energy functionals. Namely, consider two symmetric,
uniformly elliptic and bounded matrices of coefficients, A(x) and B(x). Consider also
two functions β(x) and γ(x) that are bounded from below and above by positive con-
stants. Define

Dε(x) := A(x) + (B(x)− A(x))ϕε(x), cε(x) := β(x) + (γ(x)− β(x))ϕε(x).

We introduce the sequence of quadratic energy functionals

Fε[u] =

⎧⎨⎩
∫︂
Ω

[︃
1

2
(Dε∇u · ∇u+ cεu

2)− fεu+ gu|∇ϕε|
]︃
dx, u ∈ H1(Ω),

∞, u ∈ L2(Ω) \H1(Ω).

Then, Fε Γ–converges to F0 under the strong L2(Ω)–topology, as ε → 0, where

F0[u] =

⎧⎨⎩
∫︂
Ω

[︃
1

2
(D0∇u · ∇u+ c0u

2)− f0u

]︃
dx+

∫︂
∂Ω1

gu dS, u ∈ H1(Ω),

∞, u ∈ L2(Ω) \H1(Ω).
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Here, D0(x) and c0(x) are given by

D0(x) := A(x)χΩ2(x) + B(x)χΩ1(x), c0(x) := β(x)χΩ2(x) + γ(x)χΩ1(x).

Moreover, the sequence of minimizers uε of Fε converges strongly in H1(Ω) to the
unique minimizer u0 of F0 as ε → 0, up to a subsequence.

3. Proof of Theorem 2.1: Γ–convergence of Fε. In this section, we prove
Theorem 2.1. To identify the Γ–limit of a sequence of functionals, we require three
essential components (see, e.g., [6, 15]):

(i) A compactness result, which characterizes the limiting functional;
(ii) A liminf inequality, which provides a lower bound for the limiting functional;
(iii) A recovery sequence satisfying a limsup inequality, ensuring that the lower

bound can be achieved.

3.1. Preliminary Lemmas. For each ε ∈ (0, 1) and each w ∈ H1(Ω), we define
the weighted norms:

∥w∥ϕε :=

[︃∫︂
Ω

ϕε(|∇w|2 + w2)dx

]︃1/2
, ∥w∥δε :=

(︃∫︂
Ω

w2|∇ϕε|dx
)︃1/2

.

The following Lemmas 3.1, 3.2 and 3.3 are results established in [1], corresponding to
Theorem 2.3, Lemma 3.5 and Lemma 3.6 in [1], respectively.

Lemma 3.1. Assume that {wε} ⊂ H1(Ω) satisfies

∥wε∥2ϕε
+ ∥wε∥2δε < C,

for some constant C > 0 independent of ε. Then, there exist a subsequence of {wε}
(not relabeled) and a function w̄ ∈ H1(Ω1) such that wε|Ω1

⇀ w̄ weakly in H1(Ω1) as
ε → 0, and

lim
ε→0

∫︂
Ω

fwε|∇ϕε| dx =

∫︂
∂Ω1

fw̄ dS,

for any function f ∈ H1(Ω).
Lemma 3.2. There exists a constant C0 > 0 depending only on Ω,Ω1 and the

dimension, n, such that, for any ε ∈ (0, 1) and any w ∈ H1(Ω), we have

∥w∥δε ≤ C0∥w∥H1(Ω).

Lemma 3.3. For any w ∈ W 1,1(Ω), we have

lim
ε→0

∫︂
Ω

w|∇ϕε| dx =

∫︂
∂Ω1

w dS.

We also prove the following elementary result, demonstrated in Lemma 3.4. We
recall the definitions of Dε, cε and fε given in (1.12)–(1.14), as well as D0, c0 and f0
given in (1.7)–(1.9).

Lemma 3.4. For any w ∈ L2(Ω), we have

lim
ε→0

∫︂
Ω

Dεw
2 dx =

∫︂
Ω

D0w
2 dx, (3.1)

lim
ε→0

∫︂
Ω

cεw
2 dx =

∫︂
Ω

c0w
2 dx, (3.2)

lim
ε→0

∫︂
Ω

fεw dx =

∫︂
Ω

f0w dx. (3.3)
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Proof. Let us prove (3.1) first. The proof for (3.2) is similar. Since Dεw
2 → D0w

2

a.e. in Ω as ε → 0, |Dεw
2| ≤ max{α, 1}w2, and w ∈ L2(Ω), applying the Dominated

Convergence Theorem, we obtain (3.1).
Now we proceed to prove (3.3). Since |q(ϕε−χΩ1)|2 → 0 a.e. in Ω, |q(ϕε−χΩ1)|2 ≤

q2, and q ∈ L2(Ω), applying the Dominated Convergence Theorem, we get

∥q(ϕε − χΩ1
)∥2L2(Ω) =

∫︂
Ω

|q(ϕε − χΩ1
)|2 dx → 0, (3.4)

as ε → 0. Similarly, we also obtain that ∥h((1 − ϕε) − χΩ2
)∥L2(Ω) → 0 as ε → 0.

Therefore,

∥fε − f0∥L2(Ω) ≤ ∥h((1− ϕε)− χΩ2)∥L2(Ω) + ∥q(ϕε − χΩ1)∥L2(Ω) → 0, (3.5)

as ε → 0, which implies that fε → f0 strongly in L2(Ω) as ε → 0. This convergence
of fε and the fact that w ∈ L2(Ω) together imply (3.3).

Remark 3.1. We record that fε → f0 strongly in L2(Ω) as ε → 0, and

∥fε∥L2(Ω) ≤ ∥h∥L2(Ω) + ∥q∥L2(Ω), for any ε > 0. (3.6)

In similar fashion, cε → c0 and Dε → D0 strongly in Lp(Ω) as ε → 0, for any
p ∈ [1,∞).

3.2. Compactness. First, we prove the compactness result for Fε.
Theorem 3.5 (Compactness). Let {εk} ⊂ (0, 1) be a sequence of numbers such

that εk ↘ 0 as k → ∞. Let {uk} ⊂ L2(Ω) be a sequence of functions such that, for
any k = 1, 2, . . ., Fεk [uk] < M < ∞, for some M > 0 independent of k. Then, there
exist a subsequence {ukj} of {uk} and a function u ∈ H1(Ω) such that

ukj
→ u strongly in L2(Ω),

ukj ⇀ u weakly in H1(Ω),

ukj → u a.e. in Ω,

as j → ∞.
Proof. For each k = 1, 2, . . ., since Fεk [uk] < M < ∞, by the definition of Fεk ,

we have uk ∈ H1(Ω) and

Fεk [uk] =

∫︂
Ω

[︃
1

2
(Dεk |∇uk|2 + cεku

2
k)− fεkuk + guk|∇ϕεk |

]︃
dx.

Let ω := min{α, β, γ, 1} > 0. Since Dεk(x) ≥ min{α, 1} and cεk(x) ≥ min{β, γ}, for
all x ∈ Ω and all k = 1, 2, . . ., then∫︂

Ω

[︃
1

2
(Dεk |∇uk|2 + cεku

2
k)

]︃
dx ≥ ω

2
∥uk∥2H1(Ω). (3.7)

For any constant b > 0, using Young’s inequality followed by Remark 3.1 we get⃓⃓⃓⃓∫︂
Ω

fεkukdx

⃓⃓⃓⃓
≤

∫︂
Ω

|fεk ||uk|dx

≤
∫︂
Ω

(︃
b|uk|2 +

1

4b
|fεk |2

)︃
dx

≤ b∥uk∥2H1(Ω) +
1

2b

(︂
∥h∥2L2(Ω) + ∥q∥2L2(Ω)

)︂
. (3.8)
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By Lemma 3.2, there exists a constant C0 > 0, depending only on Ω,Ω1 and the
dimension n, such that, for any k = 1, 2, . . . and any w ∈ H1(Ω), we have

∥w∥δεk ≤ C0∥w∥H1(Ω). (3.9)

Then, by Young’s inequality, we have, for any k = 1, 2, . . .,⃓⃓⃓⃓∫︂
Ω

guk|∇ϕεk | dx
⃓⃓⃓⃓
≤

∫︂
Ω

|g||uk||∇ϕεk | dx

≤ b∥uk∥2δεk +
1

4b
∥g∥2δεk

≤ C2
0

(︃
b∥uk∥2H1(Ω) +

1

4b
∥g∥2H1(Ω)

)︃
. (3.10)

Combining (3.7), (3.8) and (3.10) we get

M > Fεk [uk] ≥
(︂ω
2
− (C2

0 + 1)b
)︂
∥uk∥2H1(Ω) −

M1

4b
. (3.11)

for all k = 1, 2, . . ., where M1 := 2∥h∥2L2(Ω) + 2∥q∥2L2(Ω) + ∥g∥2H1(Ω). Choose b =

ω/(4C2
0 + 4), we obtain

∥uk∥2H1(Ω) ≤
4

ω

(︃
M +

(C2
0 + 1)M1

ω

)︃
, (3.12)

for all k = 1, 2, . . . Thus, using H1(Ω) ⊂⊂ L2(Ω) and the weak compactness of H1(Ω),
there exist a subsequence {ukj} of {uk} and a function u ∈ H1(Ω) such that

ukj → u strongly in L2(Ω),

ukj
⇀ u weakly in H1(Ω),

ukj
→ u a.e. in Ω,

as j → ∞.
Remark 3.2. The compactness result above establishes the equicoercivity of the

sequence {Fε}. Indeed, for any sequence {uε}, if supε>0 Fε(uε) < ∞, the same proof
as above shows that {uε} is precompact in L2(Ω).

3.3. Liminf Inequality. Now we prove the following Theorem 3.6, which es-
tablishes the liminf inequality for the Γ–convergence result.

Theorem 3.6 (Liminf Inequality). Let {εk} ⊂ (0, 1) be a sequence of numbers
such that εk ↘ 0 as k → ∞. For any funtion u ∈ L2(Ω) and any sequence {uk} ⊂
L2(Ω) that satisfies uk → u strongly in L2(Ω) as k → ∞, we have

lim inf
k→∞

Fεk [uk] ≥ F0[u]. (3.13)

Proof. If lim infk→∞ Fεk [uk] = ∞, then (3.13) is trivial. Therefore, we only need
to consider the case where lim infk→∞ Fεk [uk] = L < ∞. Since uk → u strongly in
L2(Ω) as k → ∞, there exists a subsquence {kj} of {k} such that ukj

→ u a.e. in Ω and
Fεkj

[ukj
] → L as j → ∞. Hence, there exists j1 > 0 such that Fεkj

[ukj
] < L+ 1, for

all j ≥ j1. Consequently, ukj
∈ H1(Ω), for all j ≥ j1. Moreover, by the compactness
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result in Theorem 3.5, there exist a further subsequence of {ukj
}∞j=j1

(not relabeled)

and a function v ∈ H1(Ω) such that

ukj
→ v strongly in L2(Ω),

ukj ⇀ v weakly in H1(Ω),

ukj → v a.e. in Ω,

as j → ∞. Since ukj → u a.e. in Ω as j → ∞, we have u = v a.e. in Ω, which implies
that u ∈ H1(Ω) and ukj

⇀ u weakly in H1(Ω) as j → ∞. Therefore, without loss of
generality, we assume the following:

(A1) {uk}∞k=1 ⊂ H1(Ω), which implies that

Fεk [uk] =

∫︂
Ω

[︃
1

2
(Dεk |∇uk|2 + cεku

2
k)− fεkuk + guk|∇ϕεk |

]︃
dx,

for all k = 1, 2, . . .
(A2) limk→∞ Fεk [uk] = L < ∞, and Fεk [uk] < L+ 1, for all k = 1, 2, . . .
(A3) u ∈ H1(Ω), which implies that

F0[u] =

∫︂
Ω

[︃
1

2
(D0|∇u|2 + c0u

2)− f0u

]︃
dx+

∫︂
∂Ω1

gu dS.

(A4) uk → u strongly in L2(Ω) and a.e. in Ω, and uk ⇀ u weakly in H1(Ω), as
k → ∞.

Under Assumptions (A1)–(A4), we will prove the liminf inequality (3.13). Firstly,
since u2 ∈ L1(Ω), by Lemma 3.4, we have

∫︁
Ω
cεku

2dx →
∫︁
Ω
c0u

2dx as k → ∞. Hence,⃓⃓⃓⃓∫︂
Ω

cεku
2
k −

∫︂
Ω

c0u
2 dx

⃓⃓⃓⃓
≤

⃓⃓⃓⃓∫︂
Ω

cεk(u
2
k − u2) dx

⃓⃓⃓⃓
+

⃓⃓⃓⃓∫︂
Ω

cεku
2 −

∫︂
Ω

c0u
2 dx

⃓⃓⃓⃓
≤ max{β, γ}

⃓⃓⃓⃓∫︂
Ω

(u2
k − u2) dx

⃓⃓⃓⃓
+

⃓⃓⃓⃓∫︂
Ω

cεku
2 −

∫︂
Ω

c0u
2 dx

⃓⃓⃓⃓
→ 0, (3.14)

as k → ∞, which implies that

lim
k→∞

∫︂
Ω

cεku
2
k dx =

∫︂
Ω

c0u
2 dx. (3.15)

Secondly, by Lemma 3.2, there exists a constant C0 > 0, depending only on Ω,Ω1

and the dimension n, such that, for any k = 1, 2, . . . and any w ∈ H1(Ω), we have

∥w∥δεk ≤ C0∥w∥H1(Ω). (3.16)

Since Fεk [uk] < L+ 1 for any k = 1, 2, . . ., we can apply a similar argument as in the
proof of Theorem 3.5 for (3.12) to obtain

∥uk∥2H1(Ω) ≤
4

ω

(︃
L+ 1 +

(C2
0 + 1)M1

ω

)︃
, (3.17)
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for any k = 1, 2, . . ., where ω = min{α, β, γ, 1} and M1 = 2∥h∥2L2(Ω) + 2∥q∥2L2(Ω) +

∥g∥2H1(Ω). Combining (3.16) with (3.17), and using the fact that 0 < ϕεk < 1, we
obtain

∥uk∥2ϕεk
+ ∥uk∥2δεk ≤ (1 + C2

0 )∥uk∥2H1(Ω)

≤ (1 + C2
0 )

4

ω

(︃
L+ 1 +

(C2
0 + 1)M1

ω

)︃
, (3.18)

for any k = 1, 2, . . . Hence, by Lemma 3.1, there exist a subsequence of {uk} (not
relabeled) and a function ū ∈ H1(Ω1) such that uk|Ω1

⇀ ū weakly in H1(Ω1) as
k → ∞, and

lim
k→∞

∫︂
Ω

guk|∇ϕε| dx =

∫︂
∂Ω1

gū dS. (3.19)

Since uk ⇀ u weakly in H1(Ω) as k → ∞, we have u|Ω1
= ū a.e. in Ω1, which implies

that

lim
k→∞

∫︂
Ω

guk|∇ϕεk | dx =

∫︂
∂Ω1

gu dS. (3.20)

Thirdly, using (3.17), we have∫︂
Ω1

Dεk |∇uk|2 dx ≤ max{α, 1}∥uk∥2H1(Ω)

≤ max{α, 1} 4
ω

(︃
L+ 1 +

(C2
0 + 1)M1

ω

)︃
, (3.21)

for any k = 1, 2, . . . Hence, there exist a subsequence of {uk}∞k=1 (not relabeled) and
a function Ψ ∈ L2(Ω;Rn) such that√︁

Dεk∇uk ⇀ Ψ weakly in L2(Ω;Rn) as k → ∞. (3.22)

On the other hand, since⃓⃓⃓√︁
Dεk −

√︁
D0

⃓⃓⃓2
≤ 2(Dεk +D0) ≤ 4max{α, 1}, (3.23)

for any k = 1, 2, . . ., and
⃓⃓√︁

Dεk −
√
D0

⃓⃓2 → 0 a.e. in Ω as k → ∞, by the Bounded
Convergence Theorem, we have

lim
k→∞

∫︂
Ω

⃓⃓⃓√︁
Dεk −

√︁
D0

⃓⃓⃓2
dx = 0, (3.24)

which implies that
√︁
Dεk →

√
D0 strongly in L2(Ω) as k → ∞. And since ∇uk ⇀ ∇u

weakly in L2(Ω;Rn) as k → ∞, we get√︁
Dεk∇uk ⇀

√︁
D0∇u weakly in L1(Ω;Rn) as k → ∞. (3.25)

Combining (3.22) and (3.25), we have Ψ =
√
D0∇u a.e. in Ω, which implies that√︁

Dεk∇uk ⇀
√︁
D0∇u weakly in L2(Ω;Rn) as k → ∞. (3.26)
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Hence, by the lower semicontinuity of norms, we have∫︂
Ω

D0|∇u|2 dx ≤ lim inf
k→∞

∫︂
Ω

Dεk |∇uk|2 dx. (3.27)

Finally, applying Remark 3.1, since fεk → f0 and uεk → u strongly in L2(Ω) as
k → ∞, we obtain

lim
k→∞

∫︂
Ω

fεkuk dx =

∫︂
Ω

f0u dx. (3.28)

Combining (3.15), (3.20), (3.27) and (3.28), we obtain

lim inf
k→∞

Fεk [uk] = lim inf
k→∞

∫︂
Ω

[︃
1

2
(Dεk |∇uk|2 + cεku

2
k)− fεkuk + guk|∇ϕεk |

]︃
dx

≥ lim inf
k→∞

∫︂
Ω

1

2
Dεk |∇uk|2 dx+

∫︂
Ω

1

2
c0u

2 dx−
∫︂
Ω

f0u dx+

∫︂
∂Ω1

gu dS

≥
∫︂
Ω

1

2
D0|∇u|2 dx+

∫︂
Ω

1

2
c0u

2 dx−
∫︂
Ω

f0u dx+

∫︂
∂Ω1

gu dS

≥ F0[u]. (3.29)

Theorem 3.6 is established.

3.4. Limsup Inequality and Recovery Sequence. In this section, we prove
the following Theorem 3.7, which establishes the existence of a recovery sequence.

Theorem 3.7 (Limsup Inequality). Let {εk} ⊂ (0, 1) be a sequence of numbers
such that εk ↘ 0 as k → ∞. For any funtion u ∈ L2(Ω), there exists a sequence
{uk} ⊂ L2(Ω) such that uk → u strongly in L2(Ω) as k → ∞, and

lim sup
k→∞

Fεk [uk] ≤ F0[u].

Proof. In the case u ∈ L2(Ω) with F0[u] = ∞, any sequence {uk} ⊂ L2(Ω) that
converges strongly to u in L2(Ω) can serve as a recovery sequence. For simplicity, we
choose uk = u, for all k = 1, 2, . . ., and it is trivial to get lim supk→∞ Fεk [uk] ≤ F0[u].
Now, assume that u ∈ L2(Ω) and F0[u] < ∞, then u ∈ H1(Ω) and

F0[u] =

∫︂
Ω

[︃
1

2
(D0|∇u|2 + c0u

2)− f0u

]︃
dx+

∫︂
∂Ω1

gu dS.

Choose uk = u, for all k = 1, 2, . . ., then uk ∈ H1(Ω), which implies that

Fεk [u] =

∫︂
Ω

[︃
1

2
(Dεk |∇uk|2 + cεku

2
k)− fεkuk + guk|∇ϕεk |

]︃
dx,

for all k = 1, 2, . . . By Lemma 3.4, we have

lim
k→∞

∫︂
Ω

Dεk |∇uk|2 dx = lim
k→∞

∫︂
Ω

Dεk |∇u|2 dx =

∫︂
Ω

D0|∇u|2 dx, (3.30)

lim
k→∞

∫︂
Ω

cεku
2
k dx = lim

k→∞

∫︂
Ω

cεku
2 dx =

∫︂
Ω

c0u
2 dx, (3.31)

lim
k→∞

∫︂
Ω

fεkuk dx = lim
k→∞

∫︂
Ω

fεku dx =

∫︂
Ω

f0u dx. (3.32)
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Moreover, since gu ∈ W 1,1(Ω), by Lemma 3.3, we have

lim
k→∞

∫︂
Ω

guk|∇ϕεk | dx = lim
k→∞

∫︂
Ω

gu|∇ϕεk | dx =

∫︂
∂Ω1

gu dS. (3.33)

Thus, we obtain

lim
k→∞

Fεk [uk] = lim
k→∞

∫︂
Ω

[︃
1

2
(Dεk |∇uk|2 + cεku

2
k)− fεkuk + guk|∇ϕεk |

]︃
dx

=

∫︂
Ω

[︃
1

2
(D0|∇u|2 + c0u

2)− f0u

]︃
dx+

∫︂
∂Ω1

gu dS

= F0[u], (3.34)

which implies that {uk} is a recovery sequence for u.

4. Proof of Theorem 2.2: Strong convergence of uε in H1(Ω). In this
section, we prove Theorem 2.2. To do that, we let κ = 0 and take an arbitrary
sequence of numbers {εk} ⊂ (0, 1) such that εk ↘ 0 as k → ∞. For each k = 1, 2, . . .,
let uεk ∈ H1(Ω) be the solution to the diffuse domain problem

−∇ · (Dεk∇uεk) + cεkuεk + g|∇ϕεk | = fεk , in Ω, (4.1)

Dεk∇uεk · n2 = 0, on ∂Ω. (4.2)

Hence, uεk satisfies the weak formulation∫︂
Ω

(Dεk∇uεk · ∇v + cεkuεkv + g|∇ϕεk |v) dx =

∫︂
Ω

fεkv dx, (4.3)

for any v ∈ H1(Ω). Moreover, uεk is the unique minimizer of Fεk , that is,

Fεk [uεk ] = min{Fεk [u] : u ∈ L2(Ω)} < ∞.

Let u0 be the solution to the two-sided problem (1.1)–(1.5) for κ = 0, that is

u0(x) =

{︄
u1(x), if x ∈ Ω1,

u2(x), if x ∈ Ω2,

where u1 : Ω1 → R and u2 : Ω2 → R satisfy

−∆u1 + γu1 = q, in Ω1, (4.4)

−α∆u2 + βu2 = h, in Ω2, (4.5)

u1 = u2, on ∂Ω1, (4.6)

−∇(u1 − αu2) · n1 = g, on ∂Ω1, (4.7)

α∇u2 · n2 = 0, on ∂Ω. (4.8)

Then, u0 is the unique minimizer of F0, that is,

F0[u0] = min{F0[u] : u ∈ L2(Ω)} < ∞.

Since Fε Γ–converges to F0 as ε → 0, by the Fundamental Theorem of Γ–convergence
(see, e.g., [7], Theorem 2.1), we obtain that

uεk → u0 strongly in L2(Ω) as k → ∞,
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and

lim
k→∞

Fεk [uεk ] = F0[u0]. (4.9)

By (4.9), there exists a number k1 > 0 such that Fεk [uεk ] < F0[u0] + 1 < ∞, for
any k ≥ k1, which implies that {uεk}∞k=k1

is bounded in H1(Ω). By the compactness
result in Theorem 3.5, there exist a subsequence of {uεk}∞k=k1

, which is relabeled as
{uεk}∞k=1, and a function ũ ∈ H1(Ω), such that

uεk → ũ strongly in L2(Ω),

uεk ⇀ ũ weakly in H1(Ω),

uεk → ũ a.e. in Ω,

as k → ∞. Hence, by the uniqueness of limits, ũ = u0 a.e. in Ω, which implies that

uεk ⇀ u0 weakly in H1(Ω) as k → ∞. (4.10)

For each k = 1, 2, . . ., since uεk − u0 is an admissible test function for (4.3), we
have ∫︂

Ω

(Dεk∇uεk · (∇uεk −∇u0) + cεkuεk(uεk − u0) + g|∇ϕεk |(uεk − u0)) dx

=

∫︂
Ω

fεk(uεk − u0) dx, (4.11)

which implies that∫︂
Ω

(Dεk |∇uεk −∇u0|2 + cεk |uεk − u0|2) dx

=

∫︂
Ω

(fεk − g|∇ϕεk |)(uεk − u0) dx+

∫︂
Ω

Dεk(|∇u0|2 −∇uεk · ∇u0) dx

+

∫︂
Ω

cεk(u
2
0 − uεku0) dx. (4.12)

For the first term on the right hand side of (4.12), since u0, g ∈ H1(Ω), applying
Lemmas 3.3 and 3.4, we get∫︂

Ω

(fεk − g|∇ϕεk |)u0 dx →
∫︂
Ω

f0u0 dx−
∫︂
∂Ω1

gu0 dS, (4.13)

as k → ∞. On the other hand, by applying arguments analogous to those used for
(3.20) and (3.28) in the proof of Theorem 3.5, we obtain∫︂

Ω

(fεk − g|∇ϕεk |)uεk dx →
∫︂
Ω

f0u0 dx−
∫︂
∂Ω1

gu0 dS, (4.14)

as k → ∞. Therefore,∫︂
Ω

(fεk − g|∇ϕεk |)(uεk − u0) dx → 0 as k → ∞. (4.15)
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Now we examine the second term on the right hand side of (4.12). Since ∇u0 ∈
L2(Ω), applying Lemma 3.4, we get∫︂

Ω

Dεk |∇u0|2 dx →
∫︂
Ω

D0|∇u0|2 dx, (4.16)

as k → ∞. Furthermore, since |Dεk∇u0 − D0∇u0|2 → 0 a.e. in Ω, |Dεk∇u0 −
D0∇u0|2 ≤ (2max{α, 1}|∇u0|)2, and ∇u0 ∈ L2(Ω), applying the Dominated Conver-
gence Theorem, we obtain

∥Dεk∇u0 −D0∇u0∥2L2(Ω) =

∫︂
Ω

|Dεk∇u0 −D0∇u0|2 dx → 0, (4.17)

as k → ∞, which implies that Dεk∇u0 → D0∇u0 strongly in L2(Ω) as k → ∞. This
convergence of Dεk∇u0 and the weak convergence ∇uεk ⇀ ∇u0 in L2(Ω) together
imply that∫︂

Ω

Dεk∇uεk · ∇u0 dx =

∫︂
Ω

∇uεk ·Dεk∇u0 dx

→
∫︂
Ω

∇u0 ·D0∇u0 dx =

∫︂
Ω

D0|∇u0|2 dx, (4.18)

as k → ∞. Combining (4.16) and (4.18), we get∫︂
Ω

Dεk(|∇u0|2 −∇uεk · ∇u0) dx → 0 as k → ∞. (4.19)

Applying a similar argument for the third term on the right hand side of (4.12), we
also obtain ∫︂

Ω

cεk(u
2
0 − uεku0) dx → 0 as k → ∞. (4.20)

Using (4.15), (4.19) and (4.20), taking limits on both sides of (4.12) as k → ∞, and
recalling that ω = min{α, β, γ, 1} > 0, we have

∥uεk − u0∥2H1(Ω) ≤
1

ω

∫︂
Ω

(Dεk |∇uεk −∇u0|2 + cεk |uεk − u0|2) dx → 0 as k → ∞,

which implies that uεk converges strongly to u0 in H1(Ω) as k → ∞. Note that
this sequence is merely a subsequence of the original sequence {uεk} chosen at the
beginning of this section.

Remark 4.1. If we impose the Robin boundary condition

−∇(u1 − αu2) · n1 = κu1 + g, on ∂Ω1,

with κ > 0, then establishing the liminf inequality poses a significant challenge due to
the presence of the term ∫︂

Ω

1

2
κu2

ε|∇ϕε|dx,

which must be shown to converge, up to a subsequence, to∫︂
∂Ω1

1

2
κu2dS,

as ε → 0. It is not clear how to show this convergence in general. However, leveraging
the Sobolev Embedding Theorem in 1D, we will demonstrate in Section 5 that, this
convergence does hold in 1D. This, in turn, implies that the Γ–convergence and strong
H1(Ω)–convergence results hold for the Robin boundary condition case in 1D.
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5. Γ-convergence and Strong H1(Ω)–convergence in 1D. In this section,
we consider the two-sided problem with transmission-type Robin boundary conditions
in 1D. We consider the two-sided problem (1.1)–(1.5) over the following domains in
1D:

Ω = (a, b), Ω1 = (a1, b1), Ω2 = (a, a1) ∪ (b1, b),

where a < a1 < b1 < b. Additionally, we extend the definitions of E0 and Eε from
(1.6) and (1.16), respectively, to all u ∈ L2(Ω), by defining:

F0[u] =

{︄
E0[u], u ∈ H1(Ω),

∞, u ∈ L2(Ω) \H1(Ω),
(5.1)

and

Fε[u] =

{︄
Eε[u], u ∈ H1(Ω),

∞, u ∈ L2(Ω) \H1(Ω).
(5.2)

We will show that, in 1D, the Γ–convergence result (similar to that in Theorems 2.1)
and the strong H1(Ω)–convergence result (similar to that in Theorems 2.2) hold for
any κ ≥ 0.

5.1. Γ–convergence of the Energy Functional in 1D. We will show that
Theorems 3.5, 3.6 and 3.7 hold in 1D, for any κ ≥ 0. We only demonstrate the
estimates and convergences related to the term

∫︁
Ω

1
2κu

2
ε|∇ϕε|dx. The rest of the

proofs will be similar to those in Section 3.

For the compactness result, using the same argument as in Section 3.2, combining
with

∫︁
Ω

1
2κu

2
k|∇ϕεk |dx ≥ 0, we obtain the same compactness result as in Theorem 3.5.

For the limsup inequality and recovery sequence, with the choice uk = u, for all
k = 1, 2, . . ., applying Lemma 3.3 for u2 ∈ W 1,1(Ω), we get

lim
k→∞

∫︂
Ω

1

2
κu2

k|∇ϕεk | dx = lim
k→∞

∫︂
Ω

1

2
κu2|∇ϕεk | dx =

∫︂
∂Ω1

1

2
κu2 dS.

Then, using the same argument as in Section 3.4, {uk} is a recovery sequence for u.

Now we handle the liminf inequality. Let {εk} ⊂ (0, 1) be a sequence of numbers
such that εk ↘ 0 as k → ∞. Making assumptions similar to (A1)–(A4) in Section 3.3,
but with F0 and Fε defined by (5.1) and (5.2), respectively, we only need to show
that

lim
k→∞

∫︂
Ω

1

2
κu2

k|∇ϕεk | dx =

∫︂
∂Ω1

1

2
κu2 dS,

up to a subsequence. The rest of the argument is similar to that in the proof of
Theorem 3.6.

By Sobolev Embedding Theorem for n = 1 (see, e.g., [12], Section 5.6.3, The-
orem 6), there exists a constant K > 0, depending only on Ω, such that, for any
w ∈ H1(Ω),

∥w∥C0,1/2(Ω) ≤ K∥w∥H1(Ω).
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Combining the above estimate with (3.17), we have uk ∈ C0,1/2(Ω) and

∥uk∥2C0,1/2(Ω)
≤ K2∥uk∥2H1(Ω)

≤ 4K2

ω

(︃
L+ 1 +

(C2
0 + 1)M1

ω

)︃
:= M2,

for any k = 1, 2, . . .. This implies that, for each k = 1, 2, . . .,

∥uk∥L∞(Ω) ≤
√︁

M2,

and

|uk(x)− uk(y)| ≤
√︁

M2|x− y|1/2, for any x, y ∈ Ω.

Therefore, {uk} is uniformly bounded and equicontinuous. Hence, by the Arzelà-
Ascoli Theorem (see, e.g., [12], Appendix C.8), there exist a subsequence of {uk} (not
relabeled) and a function ū ∈ C(Ω) such that uk converges uniformly to ū, as k → ∞.
Since uk → u a.e. in Ω as k → ∞ (by Assumption (A4)), then ū = u a.e. in Ω.
Hence, u ∈ L∞(Ω) and uk → u strongly in L∞(Ω) as k → ∞.

Applying Lemma 3.3 for u2 ∈ W 1,1(Ω), we get

lim
k→∞

∫︂
Ω

1

2
κu2|∇ϕεk | dx =

∫︂
∂Ω1

1

2
κu2 dS.

Then, using
∫︁
Ω
|∇ϕεk |dx = 1, we obtain⃓⃓⃓⃓∫︂

Ω

1

2
κu2

k|∇ϕεk | dx−
∫︂
∂Ω1

1

2
κu2 dS

⃓⃓⃓⃓
≤

⃓⃓⃓⃓∫︂
Ω

1

2
κ(u2

k − u2)|∇ϕεk | dx
⃓⃓⃓⃓
+

⃓⃓⃓⃓∫︂
Ω

1

2
κu2|∇ϕεk | dx−

∫︂
∂Ω1

1

2
κu2 dS

⃓⃓⃓⃓
≤ 1

2
κ∥u2

k − u2∥L∞(Ω)

∫︂
Ω

|∇ϕεk | dx+

⃓⃓⃓⃓∫︂
Ω

1

2
κu2|∇ϕεk | dx−

∫︂
∂Ω1

1

2
κu2 dS

⃓⃓⃓⃓
≤ 1

2
κ∥u2

k − u2∥L∞(Ω) +

⃓⃓⃓⃓∫︂
Ω

1

2
κu2|∇ϕεk | dx−

∫︂
∂Ω1

1

2
κu2 dS

⃓⃓⃓⃓
→ 0 as k → ∞,

which implies that

lim
k→∞

∫︂
Ω

1

2
κu2

k|∇ϕεk | dx =

∫︂
∂Ω1

1

2
κu2 dS.

This completes the proof of the Γ–convergence result for the Robin boundary condition
case in 1D.

5.2. Strong H1(Ω)–convergence of the Approximation Solution in 1D.
We will show that Theorem 2.2 holds in 1D, for any κ ≥ 0. Choose an arbitrary
sequence of numbers {εk} ⊂ (0, 1) such that εk ↘ 0 as k → ∞. For each k = 1, 2, . . .,
let uεk ∈ H1(Ω) satisfy the weak formulation∫︂

Ω

(Dεk∇uεk · ∇v + cεkuεkv + (κuεk + g)|∇ϕεk |v) dx =

∫︂
Ω

fεkv dx, (5.3)
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for any v ∈ H1(Ω), then uεk is the unique minimizer of Fεk , defined by (5.2). Let u0

be the solution to the two-sided problem (1.1)–(1.5), then u0 is the unique minimizer
of F0, defined by (5.1). Using an argument similar to that in Section 4, there exists
a subsequence of {uεk} (not relabeled) that is bounded in H1(Ω), such that

uεk → u0 strongly in L2(Ω),

uεk ⇀ u0 weakly in H1(Ω),

uεk → u0 a.e. in Ω,

as k → ∞. Then, an argument similar to that in Section 5.1 gives that {uεk} is
bounded in L∞(Ω), that is,

∥uεk∥L∞(Ω) ≤ M3, for all k = 1, 2, . . . ,

for some M3 > 0 independent of k, and uεk → u strongly in L∞(Ω) as k → ∞.
Similar to the proof in Section 4, we use uεk − u0 as a test function for (5.3),

which implies that∫︂
Ω

(Dεk∇uεk · (∇uεk −∇u0) + cεkuεk(uεk − u0) + (κuεk + g)|∇ϕεk |(uεk − u0)) dx

=

∫︂
Ω

fεk(uεk − u0) dx.

The equation above is equivalent to∫︂
Ω

(Dεk |∇uεk −∇u0|2 + cεk |uεk − u0|2) dx

=

∫︂
Ω

(fεk − g|∇ϕεk |)(uεk − u0) dx+

∫︂
Ω

Dεk(|∇u0|2 −∇uεk · ∇u0) dx

+

∫︂
Ω

cεk(u
2
0 − uεku0) dx+

∫︂
Ω

κuεk(u0 − uεk)|∇ϕεk | dx. (5.4)

We only need to show that the last integral on the right-hand side of (5.4) approaches
0 as k → ∞. The rest of the proof is similar to that in Section 4.

Since
∫︁
Ω
|∇ϕεk |dx = 1 and uεk → u strongly in L∞(Ω) as k → ∞, we have⃓⃓⃓⃓∫︂

Ω

κuεk(u0 − uεk)|∇ϕεk | dx
⃓⃓⃓⃓
≤ κ∥uεk∥L∞(Ω)∥u0 − uεk∥L∞(Ω)

∫︂
Ω

|∇ϕεk | dx

≤ κM3∥u0 − uεk∥L∞(Ω) → 0 as k → ∞,

which implies that

lim
k→∞

∫︂
Ω

κuεk(u0 − uεk)|∇ϕεk | dx = 0.

This completes the proof of the strongH1(Ω)–convergence result for the Robin bound-
ary condition case in 1D.

6. Discussion. In this work, we established the Γ–convergence for the diffuse
domain energy functional and the strong H1(Ω)–convergence for the diffuse domain
approximation solution. The two-sided problem is both theoretically interesting and
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practically relevant, as many physical processes exhibit different parameters on either
side of an interface.

However, as we discussed in [16], the one-sided problem is arguably more intrigu-
ing and serves as the primary motivation for diffuse domain methods. Some open
questions arise: Can the Γ–convergence and H1(Ω)–convergence analyses be extended
to cases where α depends on m, specifically, α = εm, for some constant m > 0? This
change breaks the established Γ–convergence result, as the associated sharp interface
energy functional E0 over the whole cuboidal domain Ω, for the one-sided problem, is
still unknown. In particular, it seems, we need to use a limiting energy in Ω2 that is
zero. Moreover, what happens to the solution u2 in the exterior domain, Ω2, in this
case? We refer readers to [16] for further discussion and numerical experiments.
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