A DIFFUSE DOMAIN APPROXIMATION WITH
TRANSMISSION-TYPE BOUNDARY CONDITIONS II:
GAMMA CONVERGENCE

TOAI LUONG *, TADELE MENGESHA f, STEVEN M. WISE ¥, AND MING HEI WONG §

Abstract. Diffuse domain methods (DDMs) have gained significant attention for solving partial
differential equations (PDEs) on complex geometries. These methods approximate the domain by
replacing sharp boundaries with a diffuse layer of thickness e, which scales with the minimum grid
size. This reformulation extends the problem to a regular domain, incorporating boundary conditions
via singular source terms. In this work, we analyze the convergence of a DDM approximation problem
with transmission-type Neumann boundary conditions. We prove that the energy functional of the
diffuse domain problem I'-converges to the energy functional of the original problem as ¢ — 0.
Additionally, we show that the solution of the diffuse domain problem strongly converges in H! (1),
up to a subsequence, to the solution of the original problem, as € — 0.

Key words. partial differential equations, phase-field approximation, diffuse domain method,
diffuse interface approximation, transmission boundary conditions, gamma-convergence, reaction-
diffusion equation.

1. Introduction. This work is a follow-up to [I6] in which we applied formal
asymptotics to analyze the approximation of solutions of partial differential equations
(PDEs) posed in a domain with complex geometries using a diffuse domain approach.
This paper focuses on the rigorous variational analysis of the approximation process,
where in addition to model approximation, we prove convergence of corresponding
solutions.

PDEs posed in domains with complex geometries arise in various applications,
including materials science, fluid dynamics, and biology. In many practical prob-
lems, these domains may have intricate boundaries, evolving interfaces, or irregular
shapes that complicate numerical discretization and analysis. Traditional numerical
approaches often require conformal meshes that accurately capture domain bound-
aries. Constructing such meshes can be computationally expensive and challenging,
especially in scenarios where the domain evolves over time or has small-scale geometric
features.

To circumvent these difficulties, diffuse domain methods (DDMs) have emerged
as versatile approaches. These methods (i) embed the original complex domain into
a larger, simpler computational domain, like a square or a cube, and (ii) introduce a
phase field function to smoothly approximate the characteristic function of the original
domain. The governing PDEs are then modified with additional penalization terms
that enforce consistency between the diffuse domain approximation and the original
sharp-interface formulation. By avoiding the need for complex meshing and allowing
for efficient numerical implementation, DDMs have become a widely used technique
in various applications, such as phase-field modeling, where they support simulations
of complex phenomena in fields like biology (e.g., [9, 14} 13} 1T}, 17, [3]), fluid dynamics
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(e.g., [, 20, 5l 2, 8, [19]), and materials science (e.g., [21), [T'7, [I8] 10]).

In [I6] we have studied the asymptotic convergence of the diffuse domain approx-
imation problem in one-dimensional space. In addition, we have provided numerical
simulations and discussed their outcomes in relation to our analytical result. In this
paper, we prove the I'-convergence of the energy functional associated with the diffuse
domain approximation and the convergence of corresponding solutions in the strong
H'(Q)-topology, in any dimension. For motivation and background on diffuse domain
problems, as well as asymptotic convergence analysis and numerical experiments, we
refer the readers to [16] and the references therein.

To be precise, we study the following two-sided boundary value problem in an
open cuboidal domain 2: Find a function ug : 2 — R defined as

uo(z) = ui(x), ifxey CQ,
BT N ua(a), ifze Qy =0\ 0,

where u; : Q1 — R and us : Q5 — R satisfy

_Aul +yu1 = ¢, in Qla
—aAus + Bus = h, in Qs
u1 = ug, on I,

—V(u; —aug) -my =kKku; +g, on 094,

A,.\A/.\,.\
— = = ==
[ S S N
- O = =2 O

aVus -ng =0, on 0.

Here, we assume the following;:
(1) ©Q; is a bounded open subset of R" with a compact C3 boundary 9 satis-
fying Q1 C Q and 9Q; NN = @, and Oy := Q\ Q; (see Figure ;
(2) m; denotes the outward-pointing unit normal vector on 9, and ny denotes
the outward-pointing unit normal vector on 0f2.
(3) h,q € L*(Q2) and g € H'(Q) are given functions;
(4) «, B, are given positive constants, and « is a given nonnegative constant.

— T2

2o

Fig. 1.1: A domain ; is covered by a larger cuboidal domain Q. Q2 := Q\ Q.

The boundary conditions across the interface 9€2; are called transmission-type
boundary conditions, ensuring continuity of function values across the interface while
allowing a jump in flux due to underlying physical mechanisms. A solution ug of the
two-sided problem f corresponds to a minimizer of the associated energy
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functional &y, defined by
1 1
Eolu] = / [(D0|Vu|2 + cou?) — fou} dx +/ (&uQ +gu) ds, (1.6)
Q 2 I 2

for u € HY(), where

Do(2) := xa, (z) + axo, (2), (L.7)
co(x) = X0, () + Bxa, (2), (1.8)
folx) = q(@)xa, (2) + h(z)x0, (7). (1.9)

Since & is coercive and strictly convex, it admits a unique minimizer, ensuring that
the two-sided problem 7 has a unique solution ug € H'(Q).

For each € € (0,1), the diffuse domain approximation of the problem f
is given by: Find a function u. : 2 — R that satisfies

=V - (D:Vug) + coue + (kue + 9)|Voe| = fe, in Q, (1.10)
D.Vu,-no, =0, on 09, (1.11)
where
D.(z) :=a+ (1 — a)¢:(z) = Do(x), (1.12)
ce(x) = B+ (v = B)pe(2) = co(), (1.13)
fe(w) := h(z) + [q(z) = h(2)]de(x) = fo(z)- (1.14)

Here, ¢.(x) is a phase-field function that approximates the characteristic function
X6, () of Q1. A common choice for ¢.(x) is

o (z) = % [1 + tanh (’“(j))] ~ xa, (), (1.15)

where r(x) is the signed distance function from z € R™ to 94, which is assumed to
be positive within ; and negative outside ;. With this choice of ¢, (z), we note
that |V¢e(x)| approximates the surface delta function dgq, of 9.

For each € € (0,1), a solution u. of the problem f corresponds to a
minimizer of the associated energy functional &, defined by

el = | [;wwuﬁ T o)~ fout (;fw +gu) m@ dr,  (L16)

for u € H'(Q). Since &, is coercive and strictly convex, it admits a unique minimizer,
ensuring that the diffuse domain problem (|1.10)—(1.11) has a unique solution u. €
HY(Q).

2. Main Results.

2.1. I'-convergence of the Energy Functional for the Neumann Bound-
ary Condition case. In this work, we investigate the sharp interface limit of the
energy functional &, as € — 0, using the framework of I'-convergence. Specifically,
for the Neumann boundary condition case, that is, K = 0, we show that the I'-limit
of the energy &£. as ¢ — 0 with respect to the L?(2)-topology is precisely & in any
dimension. In one dimension, the same result holds true for any x > 0.
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To proceed, we extend the definition of & from (1.16)), for k = 0, to all u € L*(Q)
by defining;:

Fulu] = /Q B(DEIWI2 +cou?) — fou+ gu|V¢E|} dz, we H'(Q),

0, ue L2(Q)\ HY(Q),

where ¢., D, c. and f. are defined by (1.15]), (1.12), (1.13]) and (1.14)), respectively.
Similarly, we extend the definition of & from (1.6)), for x = 0, to all u € L*(2) by
defining:

1
/ {(D0|Vu|2 + cou?) — fou] dr + / gudS, we HY(Q),
Folu] = ¢ Jo [2 o

o, we @)\ H(9),
where Dy, co and fy are defined by (1.7)), (L.8]) and (1.9)), respectively.

THEOREM 2.1 (I'-convergence of F.). As e — 0, F. T'—converges to Fo under
the strong L*())~topology.

2.2. Strong H'(Q))—convergence of the Approximation Solution for the
Neumann Boundary Condition case. We will demonstrate below via a compact-
ness result that the sequence {F.} is equicoercive. As a consequence, in the Neumann
boundary condition case (k = 0), since ug is the unique minimizer of Fy, u. is the
unique minimizer of F., for each ¢, and F. I'-converges to Fy as € — 0, it follows
from the Fundamental Theorem of I'-convergence (see, e.g., [7], Theorem 2.1) that u.
converges strongly to ug in L?(2) as ¢ — 0. While this establishes the convergence
of the solution of diffuse domain problem to that of the two-sided problem in L?(f2),
techniques similar to those used in [I] can further show that u. converges strongly to
ug in H(2), up to a subsequence.

THEOREM 2.2 (Strong convergence of u. in H'(Q)). Let up and u. be the so-
lutions of the two-sided problem - and the diffuse domain approximation
problem 7, respectively, for k = 0. Then, there exists a subsequence of
{ue} that converges strongly to ug in H(Q) as e — 0.

REMARK 2.1. The results of Theorem[2.1] and Theorem[2.4 remain valid for gen-
eral uniformly elliptic quadratic energy functionals. Namely, consider two symmetric,
uniformly elliptic and bounded matrices of coefficients, A(x) and B(zx). Consider also
two functions B(x) and y(zx) that are bounded from below and above by positive con-
stants. Define

De(z) := A(z) + (B(z) — A(2))de(z), ce(x) := B(x) + (v(z) — B(2))de ().

We introduce the sequence of quadratic energy functionals

2
00, u€ L2(Q)\ HY(Q).

/ [1(D5Vu -Vu+ cou?) — fou+ gu|V¢g|} dr, ue€ HY ),
FE[U] = Q

Then, F. T'-converges to Fy under the strong L*(Q))~topology, as € — 0, where

/ [;(DOVU -Vu + couz) - fou} dx + / gudS, ue€ HY (Q),
Q GIoN
00, u€ L*(Q)\ HY(Q).

Fylu] =



Here, Do(x) and co(x) are given by
Do(z) := A(z)xa,(#) + B(z)xa, (2), colz) := (@)X, (x) +7(z)xa, ().

Moreover, the sequence of minimizers u. of F. converges strongly in H*(Q) to the
unique minimizer ug of Fy as € — 0, up to a subsequence.

3. Proof of Theorem I'-convergence of F.. In this section, we prove
Theorem To identify the I'-limit of a sequence of functionals, we require three
essential components (see, e.g., [6, [15]):

(i) A compactness result, which characterizes the limiting functional;

(ii) A liminf inequality, which provides a lower bound for the limiting functional;

(iii) A recovery sequence satisfying a limsup inequality, ensuring that the lower

bound can be achieved.

3.1. Preliminary Lemmas. For each ¢ € (0,1) and each w € H*(Q), we define
the weighted norms:

1/2 1/2
wllo, = [/Q¢E<|Vw|2+w2>dx , ||w||55::(/9 w2|v¢5|dx) |

The following Lemmas and are results established in [I]], corresponding to
Theorem 2.3, Lemma 3.5 and Lemma 3.6 in [I], respectively.
LEMMA 3.1. Assume that {w.} C H'(Q) satisfies

lwell3, + llwell5. < C,

for some constant C > 0 independent of €. Then, there exist a subsequence of {w.}
(not relabeled) and a function w € H'(Qy) such that we|, — @ weakly in H'(Q1) as
e— 0, and

lim/ fwe|Voe| de = fw dS,
e—0 Q 80

for any function f € H'(Q).
LEMMA 3.2. There exists a constant Cy > 0 depending only on Q,Q1 and the
dimension, n, such that, for any e € (0,1) and any w € H(Q), we have

wlls. < Collw|lm1()-

LEMMA 3.3. For any w € WH(Q), we have

lim/ w|Voe| dz :/ w dS.
e—0 80,

We also prove the following elementary result demonstrated in Lemma [3.4] We
recall the definitions of D., ¢, and f. given in -, as well as Dy, ¢o and fo

given in 7.

LEMMA 3.4. For any w € L?(Q), we have

lim D w d:c*/Dow dz, (3.1)
e—0

lim [ cow dx—/cow dz, (3.2)
e—0 Jo

lim fgw dzx = / fow de. (3.3)

e—0



Proof. Let us prove (3.1)) first. The proof for (3.2)) is similar. Since D.w? — Dow?
a.e. in Qas e — 0, |[D.w?| < max{a,1}w?, and w € L*(Q), applying the Dominated
Convergence Theorem, we obtain (3.1)).

Now we proceed to prove (3.3). Since |¢(¢-—xq,)|> = 0a.e. inQ, |g(de—xa,)* <
q?, and ¢ € L?(), applying the Dominated Convergence Theorem, we get

la(6e = xo)l2cey = / 9(6e — xen)[? dz > 0, (3.4)

as ¢ — 0. Similarly, we also obtain that [[A((1 — ¢<) — xa,)llz2(@) — 0 as ¢ — 0.
Therefore,

[fe = folle2(o) < [IA((1 = ¢e) — xa.) 2 (@) + [la(¢e — xa,)llz2(2) — 0, (3.5)

as € — 0, which implies that f. — fo strongly in L?(f2) as ¢ — 0. This convergence
of f. and the fact that w € L?() together imply (3.3)). O
REMARK 3.1. We record that f. — fo strongly in L?(Q) as e — 0, and
1fellzz2ie) < IPllr2@) + llallLz), for any e > 0. (3.6)
In similar fashion, c. — c¢o and D. — Dy strongly in LP(2) as ¢ — 0, for any
p € [1,00).
3.2. Compactness. First, we prove the compactness result for F..
THEOREM 3.5 (Compactness). Let {ex} C (0,1) be a sequence of numbers such
that e, \( 0 as k — oo. Let {u} C L*(Q) be a sequence of functions such that, for
any k =1,2,..., F. [ur] < M < oo, for some M > 0 independent of k. Then, there
exist a subsequence {ug,} of {uy} and a function w € H'(Q) such that
uy,; — u strongly in L*(Q),
ug; — u weakly in H'(Q),
U, = u a.e. in S,

as j — 0.

Proof. For each k = 1,2,..., since F, [ux] < M < oo, by the definition of F,,
we have u, € H'(Q2) and

1

]:Ek [uk] = /Q |:2(D€klvuk|2 + cEk“i) - fakuk + guk‘V(bEk' dz.

Let w := min{a, 8,7,1} > 0. Since Dy, () > min{a, 1} and ¢, () > min{j,~}, for
allz € Qand all £ =1,2,..., then

1 w
[ 5017w + cod)| o> Sl (37)

For any constant b > 0, using Young’s inequality followed by Remark we get

‘ / Foounda| < / o lluglda
Q Q

1
< 2, 1 2
< [ (bt + g5l ) as

1
< bllunlid e + 37 (1120 + lallizq ) - (3.8)
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By Lemma [3:2] there exists a constant Cy > 0, depending only on €, and the
dimension n, such that, for any k = 1,2,... and any w € H(§), we have

[wlls., < Collwlla (- (3.9)

Then, by Young’s inequality, we have, for any k = 1,2, ...,

‘/ gug|Voe, | dx
Q

< [ lollugl| V-] do
Q
2 1 2
< bHukstEk + 47)”9”5%
1
< G (bl + gl ) - (3.10)

Combining (3.7)), (3.8)) and (3.10)) we get

M,y
(C3+ 1) llual sy = 5 (3.11)

w

M > Fe, [u] > (2

for all k = 1,2,..., where M := 2||h|[Z2q) + 2[lll72(q) + [19]F1(q)- Choose b =
w/(4C3 + 4), we obtain

4 (C2 +1)M;
ol < & (304 LD, 3.1

for all k = 1,2,... Thus, using H!(Q) cC L?(Q2) and the weak compactness of H'((2),
there exist a subsequence {ug,} of {ux} and a function v € H'(2) such that

uy,; — u strongly in L*(Q),
ug; — u weakly in H' (1),

u;, — u a.e. in £,

as j —oo. O

REMARK 3.2. The compactness result above establishes the equicoercivity of the
sequence {F.}. Indeed, for any sequence {u.}, if sup.-o Fe(us) < 0o, the same proof
as above shows that {u.} is precompact in L*(Q).

3.3. Liminf Inequality. Now we prove the following Theorem [3.6] which es-
tablishes the liminf inequality for the I'-convergence result.

THEOREM 3.6 (Liminf Inequality). Let {ex} C (0,1) be a sequence of numbers
such that e, \( 0 as k — oo. For any funtion u € L*(Q) and any sequence {uy} C
L2(Q) that satisfies up — u strongly in L*(Q) as k — oo, we have

lim inf F, [uk] > Folul. (3.13)

k—o00

Proof. If liminfy,_, o Fe, [ux] = 0o, then is trivial. Therefore, we only need
to consider the case where liminfy_, o F¢, [ug] = L < co. Since u — u strongly in
L?() as k — oo, there exists a subsquence {k;} of {k} such that uy, — wa.c. in Q and
Fei, [ug;] — L as j — oo. Hence, there exists j; > 0 such that Fer, [ug;] < L +1, for
all j > ji. Consequently, ug; € HY(Q), for all j > j;. Moreover, by the compactness
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result in Theorem [3.5} there exist a further subsequence of {u;}32; (not relabeled)
and a function v € H*(Q) such that

g, — v strongly in L*(€2),
uy;, — v weakly in H'(Q),

U, — v a.e. in
3 b

as j — 0o. Since uy; — u a.e. in Q as j — 0o, we have v = v a.e. in {2, which implies
that v € H'(2) and uy, — u weakly in H'(Q) as j — oo. Therefore, without loss of
generality, we assume the following:

(A1) {ur}>, € H*(Q), which implies that

1
Falinl = [ [500a190P + o) = o+ gl Vo s

forall k =1,2,...
(A2) limp oo Fepur] = L < 00, and Fe fug] < L+ 1, forall k=1,2,...
(A3) v € HY(Q), which implies that

1
Folu] = / {2(D0|VU|2 + cou?) — fou} dx +/ gu dS.
Q (21941

(A4) uy, — u strongly in L?(Q2) and a.e. in Q, and u, — u weakly in H(f2), as
k — oo.

Under Assumptions (A1)—(A4), we will prove the liminf inequality (3.13]). Firstly,
since u? € L'(Q), by Lemma we have [, c.,u*dzr — [, cou®dx as k — co. Hence,

’/ cgkuﬁ—/cou2 dz
Q Q

/ Ce, (U —u?) dx
Q

<

+

/csku2—/cou2 dzx
Q Q

< max{3,7} ‘/ (ui — u?) dx| + / Ce u? —/ cou® dx| — 0, (3.14)
Q Q Q
as k — oo, which implies that
lim [ c., u} dr = / cou? dz. (3.15)
k—o0 Q ) O

Secondly, by Lemma|[3.2] there exists a constant C > 0, depending only on €,
and the dimension n, such that, for any k =1,2,... and any w € H(f2), we have

[wlls., < Collwllm (- (3.16)

Since F, [ug) < L+ 1 for any k =1,2,..., we can apply a similar argument as in the

proof of Theorem for (3.12) to obtain

(3.17)

(Cg +1)M;
w 9

4
2 <—(L+1
loulBe < & (£ 1+
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for any k = 1,2,..., where w = min{«, 8,7,1} and M; = 2||h||2L2(Q) + 2||q||2LQ(Q) +
||g|\12ql(ﬂ). Combining 1) with 1} and using the fact that 0 < ¢., < 1, we

obtain
lurll3,, + lukls, < 1+ C3)llukllF g

2
< (1+02)é L1+ Gt DM
0 w w

, (3.18)

for any k = 1,2,... Hence, by Lemma there exist a subsequence of {uy} (not
relabeled) and a function @ € H'(Q;) such that uy|, — @ weakly in H'(Q;) as
k — oo, and

lim /guk|V¢E|dx:/ gu dS. (3.19)
k—o0 Q 391

Since uy, — u weakly in H'(Q) as k — oo, we have u|, =@ a.e. in Qy, which implies
that

lim /guk|V¢Ek|dx:/ gu dS. (3.20)
k—eo Jo o

Thirdly, using (3.17)), we have

D€k|Vuk|2 dr < max{o, 1}||uk||§{1(9)

Q
4 Ce+1)M
< max{a,1}— (L +1+ (0‘5‘)1) , (3.21)
w w
for any k = 1,2,... Hence, there exist a subsequence of {uy}7>; (not relabeled) and
a function ¥ € L?(Q;R™) such that
/D., Vu — U weakly in L*(;R") as k — oc. (3.22)
On the other hand, since
2
‘\/ng - \/DO‘ < 2(D., + Do) < 4max{a, 1}, (3.23)

for any k =1,2,..., and |\/D;, — \/D0|2 — 0 a.e. in Q as k — 0o, by the Bounded
Convergence Theorem, we have

lim / ‘N/Dak _ \/DO‘2 de =0, (3.24)
Q

k—o0

which implies that /D., — v/Dg strongly in L?(Q) as k — oo. And since Vuy — Vu
weakly in L?(Q;R") as k — oo, we get

\/De, Vuy, — \/DoVu weakly in L'(Q;R™) as k — oco. (3.25)
Combining (3.22) and (3.25)), we have ¥ = /DyVu a.e. in , which implies that

/D¢, Vuy, — \/DoVu weakly in L?(Q;R™) as k — oo. (3.26)
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Hence, by the lower semicontinuity of norms, we have
/ Dy|Vul|* dz < liminf/ D., |Vu|? da. (3.27)
Q k—oo Jo

Finally, applying Remark since f., — fo and u., — u strongly in L2(2) as
k — 00, we obtain

lim / fe ug dz = / fou dx. (3.28)
k—oo Jq Q
Combining (3.15)), (3.20)), (3.27) and (3.28)), we obtain

1
hklginffek [ug] = 1irninf/ [2(D5k|Vuk|2 + cakui) — fe ur + gukV¢5k|] dx
oo Q

k—o0

1 1
> liminf [ =D, |Vug|? dx —|—/ —cou? dx — / fou dx —|—/ gu dS
k—o0 QO 2 9] 2 9] o0

1 1
2/7D0\vu|2d:c+/ —cou? dx—/foudfr+/ gu dS
02 Q2 Q o

> Folu. (3.29)
Theorem [B.6] is established. O

3.4. Limsup Inequality and Recovery Sequence. In this section, we prove
the following Theorem which establishes the existence of a recovery sequence.

THEOREM 3.7 (Limsup Inequality). Let {ex} C (0,1) be a sequence of numbers
such that e \ 0 as k — oo. For any funtion u € L?(Q), there exists a sequence
{ur} C L3(2) such that uy — u strongly in L?(2) as k — oo, and

lim sup Fe, [ug] < Folu].

k—o0

Proof. In the case u € L*(Q) with Fo[u] = oo, any sequence {uy} C L?(2) that
converges strongly to u in L?(Q2) can serve as a recovery sequence. For simplicity, we
choose uy, = u, for all k = 1,2, ..., and it is trivial to get limsupy,_, .o Fe, [ux] < Folul.
Now, assume that u € L?(Q2) and Fo[u] < oo, then u € H(2) and

1
Folu] :/ [Q(D(J|Vu|2 + cou?) — fou} dx—l—/ gu dS.
Q o,

Choose uy = u, for all k = 1,2, ..., then u, € H'(Q2), which implies that

1
Falil = [ [3DalVl + i) = o+ guilVos | o

for all k =1,2,... By Lemma |3.4] we have

lim /Dsk\wkﬁ dr = lim /Dsk\Vu\zdac:/Do\Vu\zdcc, (3.30)
lim [ c,ujdr= lim [ c. u®de= / cou? dz, (3.31)
k—oc0 Q k

lim ferur dz = lim /fsku dx:/fouda:. (3.32)
10



Moreover, since gu € W11(Q2), by Lemma[3.3] we have
lim / gug|Vee, | de = lim / gu|Ve, | dz = / gu dS. (3.33)
k—oo Jq k—oo Jq a0,

Thus, we obtain

. . 1
lim F., [ug] = lim {2(D€k|Vuk2 + cgkuﬁ) — fe,ur + guk|V¢>€k|} dz

k—o0 k—oo Jo
1
= / [Q(DOVU|2 + cou?) — fou] dx Jr/ gu dS
Q (22971
= Folu], (3.34)

which implies that {uy} is a recovery sequence for u. O

4. Proof of Theorem Strong convergence of u. in H'(2). In this
section, we prove Theorem To do that, we let k = 0 and take an arbitrary
sequence of numbers {e;} C (0, 1) such that e \ 0 as k — co. For each k =1,2,...,
let u., € H'(Q) be the solution to the diffuse domain problem

=V - (D, Vue,) + ceptie, + 9|Ve, | = fer, In €, (4.1)
D, Vue, -my =0, on df. (4.2)

Hence, u,, satisfies the weak formulation
/ (De, Vg, - VU4 co e, v + g| Ve, |v) do = / ferv dz, (4.3)
Q Q

for any v € H(Q2). Moreover, u,, is the unique minimizer of F,, that is,
Foplue,] = min{F., [u] : u € L*()} < oco.
Let ug be the solution to the two-sided problem (1.1))—(1.5) for x = 0, that is

( ) ul(a:), ifIGQh
uo(x) =
0 uz(x), if z € Qq,

where u; : Q1 — R and us : Q5 — R satisfy

—AU1 +yu1 =g, in Qla
—aAus + Bus = h, in Qs
up = u2, on 891,

~V(u1 —auz) -ny =g, on oy,

N N N N N
e
0 g O Ut
NN NS N AN

aVus -ny =0, on 0.
Then, ug is the unique minimizer of Fy, that is,
Foluo] = min{Fo[u] : u € L*(Q)} < occ.

Since F. I'-converges to Fy as € — 0, by the Fundamental Theorem of I'-convergence
(see, e.g., [7], Theorem 2.1), we obtain that

ue, — ug strongly in L*(Q) as k — oo,
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and
lim F., [ue,] = Foluol- (4.9)
k—o00
By (4.9), there exists a number k; > 0 such that F., [u., ] < Foluo] +1 < oo, for
any k > ki, which implies that {uc, }32, is bounded in H'(Q). By the compactness
result in Theorem there exist a subsequence of {uc, }72, , which is relabeled as

{uc, }32, and a function @ € H'(Q), such that

ue, — U strongly in L?(9),
u., — @ weakly in H*(Q),

Ue, — U a.e. in €,
as k — oco. Hence, by the uniqueness of limits, & = ug a.e. in §2, which implies that

ue, — up weakly in H'(Q) as k — oo. (4.10)

For each k = 1,2, ..., since u,, — up is an admissible test function for (4.3)), we
have

[ DTy (Vi = V) + 1 (= o) + 61V (e, = 0) o
= /Qfac (ue, — o) dz, (4.11)
which implies that
[ a1V, = Fual + e, — wf?) o
_ /Q(fsk 4|V, ) (ue, — uo) dx+/QDEk(|Vu0|2 V., - Vug) dx
+/chk (ud — uz ug) d. (4.12)

For the first term on the right hand side of (4.12)), since ug,g € H*(f2), applying
Lemmas [3.9] and we get

/(f&k - 9|V¢ek|)uo dr — / fouo dx —/ qgug dS, (4.13)
Q Q o

as k — oco. On the other hand, by applying arguments analogous to those used for

(3.20) and (3.28) in the proof of Theorem we obtain
/(fak = 9|V, e, dz — / Jouo dz _/ guo dS, (4.14)
Q Q o
as k — oo. Therefore,

/(fe;C - g|v¢sk‘)(usk — U()) dxr — 0 ask — oo. (4.15)
Q

12



Now we examine the second term on the right hand side of (4.12). Since Vug €
L?(2), applying Lemma we get

/DE,C|Vu0|2 dx — / Dyo|Vuol? de, (4.16)
Q Q

as k — oo. Furthermore, since |D., Vug — DoVug|? — 0 a.e. in Q, |D., Vug —
DoVuol? < (2max{a, 1}|Vue|)?, and Vug € L?(€), applying the Dominated Conver-
gence Theorem, we obtain

1De, Vug — DoVug||72(q) = / |D., Vug — DoVug|? dx — 0, (4.17)
Q

as k — 0o, which implies that D., Vug — DoVug strongly in L?(Q2) as k — oo. This
convergence of D., Vug and the weak convergence Vu., — Vug in L*(2) together
imply that

/ D,, Vue, - Vug doe = / Ve, - D, Vug dx
Q Q

— / Vug - DoVug de = / Dy|Vug|? dz, (4.18)
Q Q
as k — oo. Combining (4.16]) and (4.18)), we get
/ D., (|Vug|* = Vue, - Vug) dz — 0 as k — oo. (4.19)
Q

Applying a similar argument for the third term on the right hand side of (4.12)), we
also obtain

/ Cep (U —uc up) dz — 0 as k — oo. (4.20)
Q

Using (4.15), (4.19) and (4.20), taking limits on both sides of (4.12)) as k — oo, and
recalling that w = min{a, 8,v,1} > 0, we have

1
e, — UOH%II(Q) < w / (Dey |Vue, — vUO|2 + Cep e, — u0|2) de —0 ask — oo,
Q

which implies that u., converges strongly to ug in H'(Q) as k — oo. Note that
this sequence is merely a subsequence of the original sequence {uc, } chosen at the
beginning of this section.
REMARK 4.1. If we tmpose the Robin boundary condition
—V(uy —auz) -ny = kuy +g, on Iy,

with k > 0, then establishing the liminf inequality poses a significant challenge due to
the presence of the term

1
/ fﬁug\v¢€|d1‘,
Q2

which must be shown to converge, up to a subsequence, to

1
/ —ku?dS,
a0, 2

as e — 0. It is not clear how to show this convergence in general. However, leveraging
the Sobolev Embedding Theorem in 1D, we will demonstrate in Section [5 that, this
convergence does hold in 1D. This, in turn, implies that the I'—convergence and strong
H(Q)-convergence results hold for the Robin boundary condition case in 1D.
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5. I'-convergence and Strong H!(Q))—convergence in 1D. In this section,
we consider the two-sided problem with transmission-type Robin boundary conditions
in 1D. We consider the two-sided problem (1.1)—(1.5) over the following domains in
1D:

Q= (aab)a Ql = (alabl)a QQ = (aaal) U (b17b)u

where a < a; < by < b. Additionally, we extend the definitions of & and &. from
(1.6) and (1.16]), respectively, to all u € L?(£2), by defining:

~ J&lul, u e HY(Q),
]:O[u]_{oo, we L2(Q)\ HY(Q), (5.1)

and

Elul, uvwe HY(Q),

Felu] = L] ) () L (5.2)
00, uwe L*(Q)\ H'(Q).

We will show that, in 1D, the I'-convergence result (similar to that in Theorems

and the strong H!(Q)-convergence result (similar to that in Theorems [2.2)) hold for

any k > 0.

5.1. '-convergence of the Energy Functional in 1D. We will show that
Theorems [:6] and 3.7 hold in 1D, for any x > 0. We only demonstrate the
estimates and convergences related to the term [, 1kuZ|Ve.|dz. The rest of the
proofs will be similar to those in Section [3]

For the compactness result, using the same argument as in Section 3.2} combining
with fQ %Hu%\nggk |dx > 0, we obtain the same compactness result as in Theorem

For the limsup inequality and recovery sequence, with the choice uy = u, for all
k=1,2,..., applying Lemmafor u? € WH1(Q), we get

lim lnui\V@SsIJ dr = lim / 1/-£u2|V(;55k| dzx = / lmﬁ ds.

k—oo Jq 2 k—oo Jq 2 a0, 2

Then, using the same argument as in Section {uy} is a recovery sequence for u.
Now we handle the liminf inequality. Let {e;} C (0, 1) be a sequence of numbers

such that e, \, 0 as k — oo. Making assumptions similar to (A1)—(A4) in Section [3.3]

but with Fy and F. defined by and , respectively, we only need to show

that

1 1
lim [ -kui|Vo.,|dr = / —ru? dS,
k—o00 9] 2 891 2

up to a subsequence. The rest of the argument is similar to that in the proof of
Theorem [3.6l

By Sobolev Embedding Theorem for n = 1 (see, e.g., [12], Section 5.6.3, The-
orem 6), there exists a constant K > 0, depending only on 2, such that, for any
w e HY(Q),

lwllconre @ < Kllwllmg)-
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Combining the above estimate with (3.17)), we have u;, € C%1/2(Q) and
el 2oy < Kok s o
4K? 24+ 1)M
S - <L+1+(CYO+)1) ::MZ’
w w

for any k = 1,2,.... This implies that, for each k =1,2,...,

lurl| Lo () < v/ Ma,

and

lug () — ur(y)| < /Ma|x —y|Y/?,  for any z,y € Q.

Therefore, {ux} is uniformly bounded and equicontinuous. Hence, by the Arzela-
Ascoli Theorem (see, e.g., [12], Appendix C.8), there exist a subsequence of {u;} (not
relabeled) and a function € C(£2) such that u converges uniformly to u, as k — 0o.
Since up — w a.e. in Q as k — oo (by Assumption (A4)), then & = u a.e. in Q.
Hence, u € L*>(Q2) and uy, — u strongly in L> () as k — oc.

Applying Lemma for u? € WhH(Q), we get

. 1 1
Jm /Q §HU2IV¢5k|d:c: /a o imﬂ ds.

Then, using [, |V, |dz = 1, we obtain
L s L
— kUi | Ve, | de — —ku” dS
0?2 00, 2
1 1 1
/ —k(u2 —u?)|Vee,| dx| + ‘/ —ku?| Ve, | da 7/ —ku? dS‘
0?2 o2 00, 2
1 1
5&”16% — ’L[,2||LOO(Q)/ ‘V¢€k| dx + ’/ §nu2|v¢5k| dx —/
Q Q o

1 1
§f<;||ui —u®|| () + ’/ 55u2|v¢5k| dx — /
Q 17}

IN

IN

1/<m2 dS'
Q4 2

IN

1
ﬁuZdS’—>0 as k — oo,
Q, 2

which implies that

. 1 1
klggo/g inui|v¢5k| dx = /891 §HU2 ds.

This completes the proof of the '-convergence result for the Robin boundary condition
case in 1D.

5.2. Strong H'(Q2)—convergence of the Approximation Solution in 1D.
We will show that Theorem [2:2] holds in 1D, for any x > 0. Choose an arbitrary
sequence of numbers {e;} C (0,1) such that e, \, 0 as k — oco. For each k =1,2,..,
let u., € H'() satisfy the weak formulation

/(z(DEkVusk VU cepUe, v+ (Kue, + 9)|Voe, |v) de = /Qfskv dx, (5.3)
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for any v € H'(2), then u,., is the unique minimizer of F, , defined by . Let ug
be the solution to the two-sided problem 7, then ug is the unique minimizer
of Foy, defined by . Using an argument similar to that in Section |7_1|, there exists
a subsequence of {u., } (not relabeled) that is bounded in H'(f2), such that

u., — ug strongly in L*(Q),
— g weakly in H'(Q),

Ue,, — Up a.€. in €,

Ug,,

as k — oo. Then, an argument similar to that in Section gives that {uc, } is
bounded in L%°()), that is,

e, | e () < M3, forallk=1,2,...,

for some M3 > 0 independent of k, and u., — u strongly in L>°(Q) as k — oo.
Similar to the proof in Section @, we use us, — U as a test function for (5.3)),
which implies that

/ (Dﬁkvusk : (vusk - VU’O) T Cep Uey, (UEk - UO) + (K’usk + g)|v¢€k ‘(UEk - UO)) dx
Q
_ / For (e, — ) dz.
Q
The equation above is equivalent to
/ (D., |Vue, — Vuo|* + co, Jue, — uo|?) dz
Q
— [ (foe = 91V6e DMy~ wo) ot | DoVl = Vs, - V) do
Q Q
+/ Cep (U — Uz ug) do —|—/ Kue, (ug — e, )| Ve, | dr. (5.4)
Q Q

We only need to show that the last integral on the right-hand side of (5.4)) approaches
0 as k — oo. The rest of the proof is similar to that in Section [
Since [q, |Vée, |dz =1 and u., — u strongly in L>°(Q) as k — oo, we have

/ tte, (ttp — 112, )|Vbey | d
Q

< illuee [l o (e 10—t =) / Ve, | da
Q
< KMg”UQ — uekHLoo(Q) —0 ask— o,

which implies that

lm [ kue, (ug — ue, )| Ve, | dz = 0.
k— o0 O

This completes the proof of the strong H*(§2)—convergence result for the Robin bound-
ary condition case in 1D.

6. Discussion. In this work, we established the I'-convergence for the diffuse
domain energy functional and the strong H'(Q)-convergence for the diffuse domain
approximation solution. The two-sided problem is both theoretically interesting and
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practically relevant, as many physical processes exhibit different parameters on either
side of an interface.

However, as we discussed in [16], the one-sided problem is arguably more intrigu-
ing and serves as the primary motivation for diffuse domain methods. Some open
questions arise: Can the I'-convergence and H!()—convergence analyses be extended
to cases where o depends on m, specifically, « = £, for some constant m > 07 This
change breaks the established I'-convergence result, as the associated sharp interface
energy functional & over the whole cuboidal domain €2, for the one-sided problem, is
still unknown. In particular, it seems, we need to use a limiting energy in €5 that is
zero. Moreover, what happens to the solution us in the exterior domain, s, in this
case? We refer readers to [16] for further discussion and numerical experiments.
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