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Abstract—The use of advanced machine learning techniques to 
detect AI-generated text is a very practical application. The 
ability to distinguish human-written content from machine-
generated text while identifying the source generative model 
helps address growing concerns about authenticity and ac-
countability in digital communication. The differentiation of 
human-generated and AI-generated text is highly relevant to 
several applications, from news media to academic integrity, 
and is key to ensuring transparency and trust in content-driven 
environments. However, existing models are often insufficient 
to accurately detect AI-generated text and determine the spe-
cific AI source due to the complex nature of machine-generated 
content. To address this, it is essential to leverage state-of-
the-art machine learning models and embedding techniques 
that can capture the subtle linguistic and contextual patterns 
of AI-generated text. In this study, experiments involving 
text classification were conducted to develop models capable 
of distinguishing AI-generated content from human-written 
text and identifying the specific AI model used, offering a 
multilayered approach to detection. The results demonstrate 
that the Long Short-Term Memory (LSTM) model with Bidi-
rectional Encoder Representations from Transformers (BERT) 
embeddings outperformed other embedding techniques at the 
task of binary classification, achieving a score of 97% for both 
accuracy and F1 metrics. Additionally, this study illustrates the 
superior performance of pretrained transformer-based models 
compared to Recurrent Neural Network (RNN)-based models 
for four-class source identification, with Robustly optimized 
BERT approach (RoBERTa) achieving a score of 88% for 
both accuracy and F1 metrics. This highlights the advantage 
of leveraging powerful Large Language Models (LLMs) for the 
complex task of source identification, offering a more robust 
and scalable solution compared to traditional approaches.

Keywords—AI-generated text, Bidirectional Encoder Rep-
resentations from Transformers (BERT) model, Bidirectional 
Long Short-Term Memory (BiLSTM), Deep Learning (DL), 
Large Language Models (LLMs), Long Short-Term Memory 
(LSTM), Machine Learning (ML), Robustly optimized BERT 
approach (RoBERTa) model, word embeddings

I. INTRODUCTION

We live in an era where Artificial Intelligence (AI) writing
tools can generate almost anything imaginable, from news
articles and academic papers to poetry and novels. As
researchers who are working at the intersection of AI and
Natural Language Processing (NLP), we have witnessed
generative capabilities evolve from crude text to sophis-
ticated writing that even keen readers cannot distinguish
from work by humans. This rapid advancement brings both
excitement and concern. Although AI writing tools offer
unprecedented possibilities for content creation, they also
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raise critical questions about authenticity and trust in our
digital world [1].

Text classification has long been a central challenge in
NLP, with AI models applied to a wide range of tasks from
traditional problems such as phishing email detection [2]
and fake review [3] identification to more complex issues
like lie and deception detection [4]. These tasks not only
test the limits of model accuracy but also underscore the
importance of nuanced, context-aware understanding, which
is highly relevant to the emerging challenges posed by AI-
generated content.

Our study addresses a fundamental problem: how to
reliably detect the difference between human-written and
AI-generated text; and more importantly, determine which
specific AI model generated the artificial text. Our research
indicates that human readers, including highly qualified
educators and content moderators, are unable to consistently
classify human- and AI-authored content [5]. This challenge
is further complicated by the rapid evolution of Large
Language Models (LLMs), such as Generative Pre-trained
Transformer (GPT) [6], Large Language Model Meta AI
(LLaMA) [7], and Gemini [8] , which are capable of produc-
ing increasingly sophisticated and human-like content [9],
[10]. As traditional detection methods struggle to keep pace
with these advancements, our work aims to bridge this
widening gap with more robust and precise identification
techniques.

This problem becomes more complex when considering
the nuances of different AI models. Each model has a
fingerprint, that is, subtle patterns in how it constructs
sentences, selects words, and maintains consistency [11].
These patterns are too subtle for human detection, but they
may be identifiable with the proper computational approach.
Therefore, our research focuses on developing frameworks
that can not only separate human-written from AI-generated
text, but also identify which particular AI model generated
the content.

We employed machine learning techniques to address
these challenges of AI-generated text detection. We uti-
lized advanced neural network architectures such as Long
Short-Term Memory (LSTM) and Bidirectional Long Short-
Term Memory (BiLSTM), along with transformer mod-
els including Bidirectional Encoder Representations from
Transformers (BERT) and Robustly optimized BERT ap-
proach (RoBERTa), to capture linguistic patterns that can
be used to distinguish AI-generated text [12]–[15]. We also
incorporated various processing techniques, including BERT
and RoBERTa embeddings, to analyze textual patterns and
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characteristics to aid in the detection of AI-generated text
and source model identification.

The main points of this study are as follows:
– Exploring embedding techniques (Word2Vec, one-hot,

and pretrained embeddings) and analyzing their impact
on model performance for binary AI-generated text
detection

– Evaluating and comparing transformer models with
traditional Recurrent Neural Networks (RNNs) for
multiclass AI-generated text source identification

– Achieving high performance in four-class AI-generated
text source identification using pretrained transformer-
based models

This study is distinguished by its practical focus. While
previous research treats AI text detection as solely a binary
problem (human vs. AI), we tackle the more nuanced
challenge of identifying specific AI sources. This is highly
relevant, as different AI models may be used for varying
purposes, some legitimate and others potentially malicious.
Our system helps attribute text to its source, whether it is
a human writer or a specific AI model, to assign context,
authorship, and responsibility to each text.

This paper is structured as follows. Section II reviews
existing research in the field of AI-generated text detection.
Section III describes the datasets used in our experiments.
Section IV outlines the step-by-step approach we followed
to detect AI-generated text and identify the source model.
Section V presents the experimental setup for the binary
classification and multiclass classification models, along
with their performance, and our analysis. Section VI in-
cludes a discussion of the results of our experiments, with
insight on the effectiveness of different approaches and
reasoning behind their performances. Finally, Section VII
concludes the paper and suggests future work on this topic.

II. RELATED WORK

This section reviews related studies on both binary and
multiclass classification tasks regarding AI-generated text.
A summary of the papers that involve binary classification
is provided in Tables I, while Table II presents those that
focus on multiclass classification.

A. Binary Classification

1) Classic machine learning models: Shijaku et al. [16]
developed a model to detect ChatGPT-generated text using
a dataset of human-written and ChatGPT-generated essays.
They extracted various lexical features from the text, in-
volving characters, words, sentences, digits, and part-of-
speech tags. Feature selection was conducted using both
the Term Frequency-Inverse Document Frequency (TF-IDF)
technique and a set of handcrafted features to identify the
most informative attributes. These features were then used
to train an XGBoost classifier, achieving an accuracy of 0.96
with custom features and 0.98 with TF-IDF.

Luo et al. [17] developed a framework for AI-Generated
Review Detection using Cumulative Probability (AGRDCP)
for e-commerce reviews. The dataset they used contains
human-written reviews from Yelp.com and AI-generated
reviews generated by GPT-3 [18]. The AGRDCP framework
leverages traditional and novel linguistic features such as

perplexity and burstiness, along with two existing mod-
els, “roberta-large-openai-detector” and “chatgpt-detector-
roberta,” to produce a probability score indicating the
likelihood that a review is AI-generated. This approach
utilizes cumulative probability density and machine learning
classifiers including k-Nearest Neighbors (KNN), Logistic
Regression (LR), Random Forest (RF), Support Vector
Machine (SVM), and AdaBoost for analysis. The results
show that the proposed method significantly outperforms
the existing baseline methods in detecting AI-generated
reviews, with an F1-score of roughly 0.85.

Corizzo et al. [19] discussed using one-class machine
learning models and linguistic features to detect AI-
generated essays, focusing on the English and Spanish
languages. The authors experimented with the following
models: one-class SVMs, local outlier factor, and isolation
forest, which were trained to differentiate between human-
and AI-written content. The chosen dataset includes essays
written by English and Spanish learners and their AI-
generated counterparts. Their results demonstrated the ef-
fectiveness of this approach in identifying essays generated
by AI, showing the strong potential of linguistic analysis
and one-class models for this purpose, even without AI-
generated examples during training.

Bao et al. [20] applied an efficient zero-shot method for
detecting machine-generated text using conditional proba-
bility curvature. This probability is a new metric that can
highlight word choice discrepancies between LLMs and
humans. It was tested on diverse datasets and models and
showed superior performance.

Deng et al. [21] proposed a detection framework for
LLM-generated texts through a Gaussian Process (GP)
Bayesian surrogate model. This approach enhanced their
previous DetectGPT method, as it reduced the number of
queries required for detection and thus improved efficiency
without compromising accuracy. The experiments were
performed on several datasets including XSum, SQuAD,
and WritingPrompts, and using the GPT-2 [22] and LLaMA-
65B [23] language models. Their results demonstrated
the efficiency of this new approach, which required fewer
queries yet achieved a better performance than DetectGPT.

2) Advanced machine learning models: Bhattachar-
jee [24] proposed a new direction in the detection of AI-
generated news as an unsupervised task. Their idea relies
on the Contrastive Domain Adaptation (ConDA) framework,
which combines the power of standard domain adaptation
with contrastive learning. Domain adaptation is a process
of fine-tuning a model, which was previously trained on
a source dataset, to be effective when applied to a target,
usually unlabeled, dataset. Contrastive learning is a method
that learns the characteristics that make two samples similar
or dissimilar by directly comparing them. The authors aimed
to apply this approach to identify domain invariant features,
which can be effective for performing unsupervised detec-
tion. They used a dataset containing human-written news
articles and AI-generated ones from various large language
models. The results showed that ConDA outperformed all
the baseline methods, with an improved 31.7% enhancement
over the highest-performing existing approaches.

Gaggar et al. [25] evaluated models such as SVM,
RoBERTa-base, and RoBERTa-large on the task of AI-
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TABLE I: Similar Works in Binary Classification of AI-Generated Text
Paper Dataset Features Model Metrics Results
[16] ChatGPT (TOEFL essays) Lexical Features XGBoost Accuracy 0.96
[17] Online Review Dataset LIWC, Readability, Linguistic features AdaBoost F1 Score 0.83
[19] ChatGPT Essays Textual, Repetitiveness, Semantic, POS OneClassSVM F1 Score 0.7283
[20] XSum, SQuAD, WritingPrompts, WMT16 Conditional Probability Curvature FAST-GPT Accuracy 0.78
[21] XSum, Wikipedia paragraphs Conditional Probabilities of Tokens Zero-shot Conditional Probabilities AUC-ROC 0.929
[24] TuringBench4 (news articles) RoBERTa Embeddings RoBERTa + MLP F1 Score 0.92
[25] Twitter, PubMedQA, SQuAD Byte-level BPE Tokenizer RoBERTa-large AUC-ROC 0.9576
[26] ChatGPT on various topics Perplexity, Semantic, Document, Readability Random Forest Accuracy, F1 Score 0.95, 0.95
[27] ALTA Shared Task 2023 Various Pretrained Embeddings Ensemble(ALBERT, ELECTRA, RoBERTa, XLNet) Accuracy 0.9694
[28] M4 (multi-lingual corpus) GLTR, BERT Embeddings, Semantic features XLM-R Classifier F1 Score 0.82
[29] OpenLLMText (GPT3.5, PaLM, LLaMA, GPT2) Next Token Probabilities T5 Accuracy 0.96
[30] TweepFake (real Twitter posts) TF-IDF, BERT, Char Embeddings RoBERTa Accuracy 0.896
[31] Wikipedia (SQuAD), XSum, HC3 Proxy Perplexities from N-gram Token Probabilities t LLMDet Precision 0.98

TABLE II: Similar Works in Multiclass Classification of AI-Generated Text

Paper Dataset Features Model Metrics Target Classes
[32] DIALOG-22 RuATD Textual Features, Embeddings Ensemble(Various authors) Accuracy = 0.829 4
[33] Essays, Poems, Stories, Code CountVectorizer, Tfidf Random Forest Accuracy = 0.9574, F1 = 0.83 3

generated text detection. They used various datasets in-
cluding Twitter Sentiment, Football Commentary, Project
Gutenberg, PubMedQA, and SQuAD. The study found
that detection effectiveness is significantly influenced by
sentence length.

Chen et al. [29] proposed a method to detect text gen-
erated by LLMs by reframing the classification task as a
next-token prediction problem instead. Instead of adding
a separate classification layer, they simply fine-tuned a
base language model, specifically the Text-to-Text Transfer
Transformer (T5), to perform this task. Their dataset, Open-
LLMText, comprises approximately 340,000 text samples
from humans and various LLMs, including GPT-3.5 [18],
Pathways Language Model (PaLM) [34], LLaMA [7], and
GPT-2 [22]. The proposed framework, T5-Sentinel, outper-
formed an alternative variant that uses an attached classifier
(T5-Hidden) in terms of weighted F1 score. The authors
found that T5-Sentinel effectively distinguishes between
texts from different LLMs and human-written texts, show-
ing improvements in AUC, accuracy, and F1 scores over
baseline detectors.

Fagni et al. [30] presented a comprehensive approach
for identifying machine-generated text on social networks,
namely Twitter. The authors formed the TweepFake dataset
by collecting deepfake tweets posted on Twitter by 23 bots
imitating 17 human accounts using methods such as Markov
chains, RNN, LSTM, and GPT-2. The dataset contains
25,572 tweets in all, and contains equal parts human- and
bot-generated samples. The study evaluates 13 deepfake
text detection methods, which leverage techniques including
basic machine learning classifiers like bag of words with
TF-IDF, deep learning models, and fine-tuning transformer-
based classifiers. Among all of the methods, the RNN-based
detector was the best-performing model.

Wu et al. [31] presented LLMDet, a tool for detecting
text generated by LLMs such as GPT-2, OPT, and LLaMA.
LLMDet utilizes the next-token probabilities of n-grams
to calculate a proxy perplexity for each LLM. This helps
to identify the source model of a given text. The authors
used various datasets such as Wikipedia, SQuAD, and
XSum, with 32,000 samples per model. LLMDet achieved
a precision of 0.98 and demonstrated high performance
in differentiating human- and AI-generated texts, thereby
outperforming existing methods.

B. Multiclass Classification

Maloyan et al. [32] focused on the binary task of identify-
ing AI-generated text, and also the multiclass classification
task of determining the origin of the generated text in the
context of the DIALOG-22 RuATD challenge. They used
an ensemble method of different pretrained models such
as RoBERTa, Decoding-enhanced BERT with disentangled
attention (DeBERTa), and RuBERT, along with attention
mechanisms, and achieved an accuracy of 0.62 for multi-
class classification.

Hayawi et al. [33] presented a comprehensive study
on techniques for distinguishing human-written and AI-
generated texts by GPT and BARD across multiple genres,
including essays, stories, poetry, and Python code. The study
analyzed texts for classification based on the source by
utilizing Machine Learning (ML) such as Random Forest,
Support Vector Machine, and Logistic Regression, and Deep
Learning (DL) models such as Long Short-Term Mem-
ory networks. Results indicated varying levels of accuracy
across models, with SVM performing best, with an F1 score
of 0.74 on the essays dataset, 0.81 on the stories dataset,
and 0.89 on the poetry dataset.

III. DATASET DESCRIPTION

This section will describe the two datasets used in this
study: one for the task of binary classification and one for
the task of multiclass classification.

A. Binary Classification Dataset

The GPT-Wiki-Intro Dataset [35] was specifically cu-
rated to benchmark the performance of models in differenti-
ating between human-authored and machine-generated text.
This dataset involves the domain of Wikipedia introductions,
which implies that the textual topics are extensive and
varied.

Composition: The GPT-Wiki-Intro dataset contains two
types of text: authentic Wikipedia introductions and syn-
thetic introductions generated by the GPT3 Curie model.
This dataset consists of 150,000 samples spanning a diverse
range of subjects. Each sample is represented by both a
human-written Wikipedia introduction and a corresponding
AI-generated counterpart.

Generation Methodology: A specific prompt structure
was used for the generation of artificial samples for the
dataset. Each prompt begins with a directive to produce
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a 200-word Wikipedia-style introduction on a given topic,
followed by the first seven words of the actual Wikipedia
introduction for that topic. This prompt structure ensures
consistency in the starting point of the generated content.
It also provides a controlled variable for comparing human
and AI-generated text.

Data Schema: The GPT-Wiki-Intro dataset was struc-
tured for ease of use and analysis. Important columns
include Wikipedia URLs, titles, both the Wikipedia and
generated introductions, and various length metrics, such
as the number of words in the title and introduction. This
detailed schema allowed for granular analysis and compar-
ison between human-written and AI-generated texts. Fig. 1
illustrates the word count distributions for human-written
and AI-generated texts within the dataset.

B. Multiclass Classification Dataset

The OpenLLMText Dataset [29] was designed for mul-
ticlass classification, consisting of approximately 300,000
text entries distributed across four target classes: Human,
GPT2-XL, LLaMA, and PaLM. This dataset integrates binary
classification datasets from [29] into a unified multiclass
dataset for the identification of AI-generated text sources.
The dataset was stored in JSONL (JSON Lines) format.
Table III provides an overview of the dataset’s composition.

TABLE III: OpenLLMText Dataset Composition
Source Target Class Entries Description
OpenWebText Human 68,984 Human-written text randomly selected from user-

generated content on Reddit prior to 2019.
PaLM PaLM 57,410 Paragraph-by-paragraph rephrasing of human-written

data by Pathway Language Model (PaLM).
LLaMA-7B LLaMA 65,991 Paragraph-by-paragraph rephrasing of human-written

data by LLaMA-7B.
GPT2-XL GPT2 82,932 Data adapted from the GPT-2 output dataset released

by OpenAI (GPT2-XL).

Fig. 2 illustrates the distribution of classes in the multi-
class classification dataset.

Fig. 3 showcases the word count distributions for texts
generated by the different models (GPT2, PaLM, and
LLaMA) and the human-generated texts. Each histogram
represents the density of word counts, providing insight into
the variation in lengths of the generated and written texts.
For instance, the human-generated texts appear to have a
relatively uniform distribution while the generative models,
especially LLaMA and PaLM, exhibit notable peaks.

IV. METHODOLOGY

This section outlines the step-by-step approach followed
in this study to detect AI-generated text and identify the
source model. We divided the methodology into the follow-
ing stages: data collection, embedding techniques, model
selection and implementation, training and hyperparameter
tuning, and evaluation metrics.

A. Data Collection

Datasets: Two datasets were used in this study: GPT-
Wiki-Intro and OpenLLMText.

• GPT-Wiki-Intro: Used for binary classification,
contains human-written and GPT3 Curie-generated
Wikipedia-style introductions.

• OpenLLMText: Used for multiclass classification, en-
compasses texts generated by GPT2, LLaMA, PaLM,
and human authors.

B. Embedding Techniques

We employed three embedding methods to represent the
textual data: one-hot, Word2Vec, and BERT.

• One-Hot Embeddings: Simple binary representations
used as a baseline.

• Word2Vec Embeddings: Dense vector representations
that capture semantic relationships between words [36].

• BERT Embeddings: Contextual embeddings gener-
ated using the pretrained Bidirectional Encoder Rep-
resentations from Transformers (BERT) [37] model,
specifically bert-base-uncased from Hugging
Face.

C. Model Selection and Implementation

We utilized the following frameworks to perform the
task of classification: RNNs and transformer-based models.

1) Recurrent Neural Networks (RNNs): We utilized
LSTM and BiLSTM for their ability to capture sequential
dependencies in text.

LSTM networks incorporate cell-level gating mechanisms
to control the flow of information through time steps,
helping them capture long-term dependencies in sequences.
Eq. (1) describe how the LSTM selectively forgets, updates,
and outputs information at each time step using these gating
mechanisms.

LSTM Cell Equations:

ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ft · Ct−1 + it · C̃t

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot · tanh(Ct)

(1)

The Bidirectional LSTM (BiLSTM) extends the LSTM
architecture by processing the input sequence in both
forward and backward directions. This allows the model to
capture context from both past and future tokens, which
is especially useful for tasks like text classification and
named entity recognition.

2) Transformer-based models: We chose to fine-tune
the BERT [37] and RoBERTa [38] in order to leverage
their pretrained contextual embeddings and self-attention
mechanisms for this domain-specific task. Transformers rely
on self-attention mechanisms to compute contextualized
token representations by attending to all positions in the
input sequence. Eqs. (2) and (3) describe scaled dot-product
and multi-head attention, which are instrumental in these
models.

Scaled Dot-Product Attention:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (2)

where:
• Q, K, V are the query, key, and value matrices derived

from the input embeddings.
• dk is the dimensionality of the keys (used for scaling).
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Fig. 1. Distribution of word counts in human-written and AI-generated Texts in the binary GPT-Wiki-Intro dataset.

Fig. 2. Distribution of target values in the multiclass OpenLLMText dataset.

Multi-Head Attention:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO (3)

Where: headi = Attention(QWQ
i ,KWK

i , V WV
i )

BERT, which stands for Bidirectional Encoder Repre-
sentations from Transformers, is trained using Masked
Language Modeling (MLM) and Next Sentence Prediction
(NSP). In contrast, RoBERTa, which stands for A Robustly
Optimized BERT Pretraining Approach, improved upon
BERT by removing NSP and using longer sequences for
training, larger batch sizes, and a larger dataset. RoBERTa
also dynamically changes the masking pattern during train-
ing, making it better suited to capture richer contextual
information.

D. Training and Hyperparameter Tuning

Training Process: We split the datasets into training,
validation, and test sets to support the training of robust
models.

Hyperparameter Tuning: Model hyperparameters such
as batch size, learning rate, number of layers, and dropout
rate were optimized using grid search to further enhance
model performance.

E. Evaluation Metrics

We evaluated the models based on the following standard
classification metrics: accuracy, precision, recall, and F1-
score. Note that in the following metric equations, TP, TN,
FP, and FN stand for True Positives, True Negatives, False
Positives, and False Negatives, respectively.

• Accuracy: Measures the proportion of correctly clas-
sified samples (Eq. (4)).

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

• Precision: Evaluates the correctness of positive predic-
tions ( Eq. (5)).

Precision =
TP

TP + FP
(5)

• Recall: Measures the ability to identify all relevant
(positive) samples (Eq. (6)).

Recall =
TP

TP + FN
(6)

• F1-Score: Represents the harmonic mean of precision
and recall to balance their trade-offs (Eq. (7)).

F1-Score = 2 · Precision · Recall
Precision + Recall

(7)
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Fig. 3. Distribution of word counts in the multiclass OpenLLMText dataset.

V. EXPERIMENTS AND RESULTS

This section will describe experiments aimed at achieving
the detection of AI-generated text (binary classification
experiments) and identifying the source model used for
generation (multiclass classification experiments).

A. Experimental Setup

All experiments were conducted using Google Colab
Pro+, equipped with an NVIDIA A100 GPU.

System specifications:
• RAM: 83 GB
• GPU Memory: 40 GB
• Disk Space: 200 GB
Training Time:
• LSTM and BiLSTM models were trained in approxi-

mately 60–80 min, with an average of 3 min per epoch.
• BERT and RoBERTa models required significantly

more computation, taking 20–30 min per epoch, with
total training times ranging from 1 h to 1 h and 40
min.

Libraries and Frameworks:
• Data preprocessing and handling: datasets,
pandas, nltk, numpy, scikit-learn

• Embedding generation: gensim (for Word2Vec em-
beddings)

• Model development and training:
tensorflow.keras, PyTorch

These computational resources and software tools pro-
vided a robust and scalable environment for conducting ex-
periments involving the binary classification and multiclass
source identification tasks.

B. Binary Classification Experiments

For the binary classification experiments, we utilized the
GPT-Wiki-Intro dataset, which contains human-generated
and LLM-generated text. Although the full dataset includes
approximately 100,000 samples, we used a balanced subset
of 40,000 samples for training, which is comprised of
20,000 human-generated and 20,000 AI-generated texts.
Additionally, to ensure a fair comparison, we equalized
the number of words in each sample by removing extra
sentences from longer records.

Several experiments were conducted as part of this
stage: an initial experiment to determine the effect of data
preprocessing on this task, and three primary experiments
evaluating LSTM’s performance at binary classification
using different embedding techniques.

1) Initial experiment——Effect of preprocessing: For the
initial experiment, the necessity of preprocessing was inves-
tigated by evaluating its impact on the performance of two
representative models:

• LSTM: A traditional recurrent neural network model.
• BERT Classifier: A pretrained transformer-based lan-

guage model.
The objective was to determine whether preprocessing

(e.g., tokenization, stop-word removal, lemmatization) im-
proves the detection of AI-generated text in the GPT-Wiki-
Intro dataset. These experiments did not include hyperpa-
rameter tuning or cross-validation, as the focus was solely
on evaluating the effect of preprocessing.

The results of the experiments are summarized in Ta-
ble IV. Accuracy, precision, recall, and F1-score were mea-
sured for each model, both with and without preprocessing.
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TABLE IV: Performance Metrics for LSTM and BERT with
and without Preprocessing

Model Preprocessing Accuracy Precision Recall F1-Score
LSTM Without 0.89 0.89 0.90 0.89
LSTM With 0.79 0.75 0.88 0.81
BERT Without 0.90 0.89 0.91 0.91
BERT With 0.82 0.80 0.83 0.81

Based on these results, it is evident that both LSTM
and BERT performed better without preprocessing. For each
metric, the score was higher when the model was trained
using the non-preprocessed dataset. For example, LSTM
experienced a performance drop of approximately 9% in
F1-score with preprocessing, and BERT saw a performance
drop of approximately 11% in F1-score with preprocessing.

The decrease in performance when preprocessing was
used may be attributed to the loss of contextual and stylistic
features that are crucial for distinguishing between human-
written and AI-generated text.

Based on these results, we conclude that preprocessing
was counterproductive in AI-generated text detection.
Therefore, we conducted all subsequent experiments
without data preprocessing.

2) LSTM experiments with different embeddings: For
the next experiments, we evaluated the performance of
the LSTM model using different embedding techniques:
one-hot embeddings, Word2Vec, and BERT embeddings.
For each experiment, we performed hyperparameter tuning
and cross-validation to ensure a robust evaluation. The
performance was measured using accuracy, precision,
recall, and F1-score. Additionally, the best hyperparameters
that were identified during tuning are reported for each
embedding method.

a) LSTM with one-hot embeddings: We first trained
the LSTM model using one-hot embeddings and tuned the
model hyperparameters to improve performance.

Fig. 4. Confusion matrix for binary classification of
AI-generated text using LSTM with one-hot embeddings.

The final best-performing hyperparameters for this 
experiment were:

• Vocabulary Size: 10,000
• Input Dimension: 10,000

• Hidden Dimension: 128
• Number of Layers: 1
• Dropout Rate: 0.15
• Batch Size: 64
• Learning Rate: 0.001
• Optimizer: Adam
• Number of Epochs: 32

When using one-hot embeddings, the LSTM model
achieved decent performance, as it scored around 75% for
all four metrics. While the model captured basic patterns
in the text, the confusion matrix in Fig. 4 shows that it
still struggled to separate human-written from AI-generated
content, with many false positive and false negative classi-
fications. These results highlight the limitations of one-hot
representations and serve as a baseline for comparing more
advanced embeddings in the next experiments.

b) LSTM with Word2Vec embeddings: We also trained
the LSTM model using Word2Vec embeddings, and tuned
the model hyperparameters to improve performance.

The final best-performing hyperparameters for this exper-
iment were:

• Hidden Dimension: 128
• Dropout Rate: 0.3
• Batch Size: 32
• Learning Rate: 0.001
• Loss Function: Binary Cross-Entropy Loss (BCELoss)
• Optimizer: Adam
• Number of Epochs: 42

When using Word2Vec embeddings, the LSTM model
achieved a better performance than the previous experiment
using one-hot embeddings, with an accuracy of 87% and
an F1-score of 89%. As shown in the confusion matrix
in Fig. 5, the model was especially good at identifying
AI-generated text with very few false negative misclassi-
fications. However, it was less accurate when identifying
human-written text, as there were a significant number of
false positives where the model labeled a human-written text
as AI. This indicates a bias towards predicting that a text
is AI-generated. Nonetheless, these results still demonstrate
the effectiveness of Word2Vec at capturing richer semantic
patterns for improved binary classification.

Fig. 5. Confusion matrix for binary classification of AI-
generated text using LSTM with Word2Vec embeddings.
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c) LSTM with BERT embeddings: For the third exper-
iment, we trained the LSTM model using BERT (bert-base-
uncased) embeddings, and tuned the model hyperparameters
to improve performance. The final best-performing hyper-
parameters for this experiment were:

• Embedding Size: 100
• Hidden Dimension: 64
• Dropout Rate: 0.2
• Batch Size: 64
• Learning Rate: 0.001
• Optimizer: Adam
• Number of Epochs: 34
The LSTM model with BERT embeddings achieved 97%

accuracy and an F1-score of 97%. As shown in the con-
fusion matrix in Fig. 6, the model was highly accurate
at identifying both human-written and AI-generated text,
with very few misclassifications. This result highlights the
power of contextual embeddings from BERT for capturing
the subtle differences in language that simpler embedding
methods might miss.

Fig. 6. Confusion matrix for binary classification of
AI-generated text using LSTM with BERT embeddings.

d) Comparative analysis of embedding techniques for 
binary classification: To summarize, we compared the 
performance of the LSTM model using three different 
embedding techniques, as shown in Table V. Among the 
techniques, BERT embeddings delivered the highest overall 
performance across all metrics, followed by Word2Vec, 
which produced average results, then one-hot embeddings, 
which showed the weakest results.

TABLE V: Comparison of Performance Metric Scores 
for LSTM using Different Embedding Techniques

for Binary Classification

Embedding Type Accuracy Precision Recall F1-Score
One-Hot 0.74 0.76 0.73 0.75

Word2Vec 0.87 0.80 0.99 0.89
BERT 0.97 0.94 0.96 0.97

These results indicate that the choice of embedding
method significantly impacts the performance of the LSTM
model for this application. BERT embeddings outperformed
the other techniques across all metrics, likely due to BERT’s
ability to capture deep contextual information. Word2Vec
embeddings also performed well, but did not achieve as

strong results due to a possible bias towards positive pre-
dictions. One-hot embeddings produced the lowest perfor-
mance, reflecting their inability to capture deep semantic
and contextual relationships. Additionally, the different hy-
perparameters used for each experiment shows that optimal
configurations vary depending on the embedding technique,
emphasizing the importance of individual fine-tuning for
each experiment.

C. Multiclass Classification Experiments

For the multiclass classification experiments, we utilized
the OpenLLMText dataset, which contains text generated
by three models (GPT, PaLM, and LLaMA) and human-
written text. The dataset includes a large number of samples;
however, for training purposes, we used a subset of 80,000
samples for training, which is comprised of 20,000 samples
from each category (GPT, PaLM, LLaMA, and Human).
Additionally, to ensure a balanced comparison across all
categories, we equalized the word count in each record
by removing extra sentences to maintain the word count
close to 200. The updated word count distribution for each
category is visualized in Fig. 7.

Two types of models were experimented with as part
of this stage: traditional RNN-based models (LSTM
and BiLSTM) and transformer-based LLMs (BERT and
RoBERTa). Each experiment evaluated the selected model’s
performance at multiclass classification of generative AI
sources.

1) LSTM with Word2Vec embeddings: We trained the
LSTM model using Word2Vec embeddings generated from
the multiclass OpenLLMText dataset. We also performed
hyperparameter tuning with a focus on embedding size,
number of LSTM units, learning rate, batch size, and
dropout rate, and evaluated the model’s performance at the
task of distinguishing the sample texts between the four
classes: Human, GPT2, LLaMA, and PaLM. The final best-
performing hyperparameters for this experiment were:

• Embedding Size: 100
• Hidden Dimension: 128
• Dropout Rate: 0.2
• Batch Size: 32
• Learning Rate: 0.001
• Optimizer: Adam
• Number of Epochs: 39
The LSTM model trained with Word2Vec embeddings

achieved a score of 55% for both accuracy and F1 when
evaluated on the multiclass classification task. As shown
in the confusion matrix in Fig. 8, the model was fairly
successful in identifying the text generated by LLaMA and
PaLM, but struggled to distinguish between the Human
and GPT-2 outputs, as it often misclassified one as the
other. For example, a significant number of human-written
samples (895) were incorrectly predicted as GPT-2, and
a considerable number of GPT2-generated samples (387)
were incorrectly predicted as Human. This confusion
suggests that while Word2Vec embeddings are able to
capture basic semantic patterns, they may not provide
enough contextual depth to differentiate subtle stylistic
features.
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Fig. 7. Balanced distribution of word counts in the multiclass OpenLLMText dataset.

Fig. 8. Confusion matrix for multiclass classification of texts by different 
AI sources using LSTM with Word2Vec embeddings.

2) BiLSTM with Word2Vec embeddings: We trained the 
BiLSTM model using Word2Vec embeddings generated 
from the multiclass OpenLLMText dataset, and tuned the 
model hyperparameters to improve performance. The final 
best-performing hyperparameters for this experiment were:

• Embedding Size: 100
• Hidden Dimension: 128
• Dropout Rate: 0.3
• Batch Size: 32
• Learning Rate: 0.0005

• Optimizer: Adam
• Number of Epochs: 34

Fig. 9. Confusion matrix for multiclass classification of texts by different 
AI sources using BiLSTM with Word2Vec embeddings.

The BiLSTM model trained with Word2Vec embeddings 
achieved an accuracy of 57% and an F1-score of 56%. The 
confusion matrix in Fig. 9 shows that the model performed 
well on the LLaMA and PaLM classes, but struggled with 
GPT2. The model misclassified 848 GPT2 texts as Human 
and 407 GPT2 texts as LLaMA, with only 701 correct GPT2 
classifications. Although the bidirectional structure helped
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improve classification of human-written samples, the static
Word2Vec embeddings still limited the model’s ability to
capture fine-grained differences between sources.

3) BERT: For a different approach, we trained the
transformer-based LLM BERT (bert-base-uncased) for this
multiclass text classification task. We fed BERT the Open-
LLMText dataset, and trained it while performing hyper-
parameter tuning to improve performance. The final best-
performing hyperparameters for this experiment were:

• Batch Size: 8
• Learning Rate: 5e-5
• Weight Decay: 0.01
• Number of Epochs: 5
• Loss Function: Cross-Entropy Loss
• Optimizer: AdamW
The BERT model performed well on the multiclass clas-

sification task, achieving 87% for accuracy, precision, and
recall, along with an F1-score of 86%. As shown in the
confusion matrix in Figure 10, BERT accurately classified
most samples across all four categories, with a particu-
larly high accuracy for LLaMA and PaLM outputs. While
BERT still had a few hundred misclassifications for Human
and GPT2, it was a major improvement compared to the
traditional LSTMs. The low number of misclassifications
demonstrates BERT’s effectiveness at capturing the distinct
language patterns of each source.

Fig. 10. Confusion matrix for multiclass classification of texts by 
different AI sources using BERT.

4) RoBERTa: We also trained RoBERTa (roberta-base-
uncased), an optimized version of BERT, for multiclass 
classification. Like with BERT, we fed RoBERTa the Open-
LLMText dataset, and trained it while performing hyper-
parameter tuning to improve performance. The final best-
performing hyperparameters for this experiment were:

• Base Model: RoBERTa-base
• Max Sequence Length: 200
• Batch Size: 8
• Learning Rate Scheduler: Warmup Steps: 500
• Weight Decay: 0.01
• Number of Epochs: 4
The RoBERTa model performed slightly better than

BERT on the multiclass classification task, achieving an

accuracy of 88%, a precision of 89%, a recall of 88%, and
an F1-score of 88%. The confusion matrix in Figure 11
reveals that the model classified most samples correctly
across all four categories, with an especially high accuracy
for LLaMA and PaLM texts. A few hundred GPT-2 and
Human samples were misclassified, yet this still reflects
RoBERTa’s superior ability to capture nuanced differences
in writing style across sources.

Fig. 11. Confusion matrix for multiclass classification of texts by 
different AI sources using RoBERTa.

5) Comparative analysis of multiclass classification mod-
els: As shown in Table VI, the performance metrics across 
different models reveal key insights into their effectiveness 
for the multiclass classification task of identifying the source 
behind a generated text.

TABLE VI: Performance Comparison and Analysis of Mul-
ticlass Classifiers

Model Accuracy Precision Recall F1
Word2Vec + LSTM 0.55 0.58 0.55 0.55
Word2Vec + BiLSTM 0.57 0.59 0.57 0.56
BERT 0.87 0.87 0.87 0.86
RoBERTa 0.88 0.89 0.88 0.88

Traditional RNN-based Models (LSTM and BiL-
STM):

LSTM and BiLSTM, both using Word2Vec embeddings,
yielded accuracies of 55% and 57%, respectively. The
BiLSTM model showed a modest improvement over LSTM,
likely due to its ability to process input in both forward and
backward directions, yet it was not a sufficient enhancement.
These results highlight the limitations of RNN-based ar-
chitectures when tasked with capturing complex contextual
relationships in multiclass textual data.

Transformer-based Models (BERT and RoBERTa):
The transformer-based models outperformed the RNN-

based models by a large margin. BERT achieved an accu-
racy of 87%, benefiting from its self-attention mechanism
that enables a deeper understanding of context. RoBERTa
slightly surpassed BERT with an accuracy of 88%, as well
as higher scores for precision, recall, and F1. This subtle
improvement can be attributed to RoBERTa’s more exten-
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sive pretraining, larger model size, and better-optimized
hyperparameters during fine-tuning.

VI. RESULTS ANALYSIS AND DISCUSSION

The experimental results underscore the critical role of
embedding techniques and model architectures in the perfor-
mance of text classification tasks, particularly in distinguish-
ing AI-generated content and identifying its source model.

For the binary classification task, the LSTM model com-
bined with BERT embeddings significantly outperformed
its counterpart configurations, which used Word2Vec and
one-hot embedding methods. The superior performance of
BERT embeddings (accuracy and F1-scores of 97%) can
be attributed to BERT’s ability to capture deep contextual
and semantic relationships within text. In contrast, LSTM
with Word2Vec achieved a moderately high performance
(accuracy of 87% and F1-score of 89%). This configuration
benefited from learned word relationships but lacked the
contextual depth of transformer-based representations. One-
hot embeddings, which lack semantic richness and context-
awareness, delivered the weakest performance (accuracy of
74% and F1-score of 75%). These findings highlight the
importance of leveraging contextualized embeddings for
tasks involving nuanced distinctions such as human vs. AI-
generated content.

In the multiclass classification setting, the difference be-
tween traditional RNN-based models and transformer-based
models is even more pronounced. LSTM and BiLSTM mod-
els, both using Word2Vec embeddings, yielded relatively
low accuracies (55% and 57%, respectively), revealing
their deep limitations when handling complex and subtle
multiclass scenarios. The slight advantage of BiLSTM over
LSTM suggests some benefit from bidirectional context, but
this gain was minimal.

On the other hand, transformer-based LLMs, particularly
BERT and RoBERTa, delivered significantly better results,
with RoBERTa achieving the highest accuracy and F1-Score
(both 88%). This improvement stems from transformer
models’ attention mechanisms and large-scale pretraining,
which enable richer contextual understanding across long
sequences. RoBERTa’s edge over BERT likely results from
its enhanced pretraining strategy and architectural optimiza-
tions.

Overall, model architecture and input representation are
both decisive factors in AI-generated text detection and
source identification. Traditional RNNs, even with quality
embeddings, are insufficient for fine-grained classification.
In contrast, transformer models not only excel in accu-
racy but also offer more robust generalization capabilities,
making them well suited for real-world deployment in AI
content detection systems.

VII. CONCLUSION AND FUTURE WORK

This research focused on detecting AI-generated text
in two settings: binary classification (AI vs. Human)
and source model identification (Human, PaLM, LLaMA,
GPT2). As predicted, RNN-based models performed well at
binary classification. The best-performing configuration was
LSTM trained using BERT embeddings, which achieved
accuracy and F1-scores of 97%. However, identifying the
source of AI-generated text proved to be a more challenging

task. The best performing model was the RoBERTa LLM,
with an accuracy of 88%, which suggests that its enhanced
pretraining strategies are well-suited for handling diverse
and nuanced datasets. Our findings indicate that transformer
models are highly suitable for AI-generated text detec-
tion tasks, and offer superior performance across various
standard evaluation metrics. This research also lays the
groundwork for further advancements in AI-generated text
identification, paving the way for real-world applications of
more scalable and robust models.

For our future work, we plan to explore dataset diversifi-
cation by including data from various other domains, such
as news articles, social media, and academic papers, as well
as incorporating multilingual sources to enhance the gener-
alizability and robustness of the proposed models. Also, we
strive to investigate optimization techniques such as model
quantization, pruning, Low-Rank Adaptation (LoRA), and
efficient inference frameworks (e.g., ONNX or TensorRT)
to optimize the models for real-time deployment scenarios,
such as live content moderation systems.

This research holds significant potential for real-world
applications. As generative AI continues to advance, our
framework can assist in identifying AI-generated content in
fields such as education and journalism, where maintaining
authenticity is essential. Our technology may also support
plagiarism detection in academic and professional settings.
Furthermore, our source model identification system will
help increase the accountability of LLMs.
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