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Abstract Recently, there has been a growing interest among researchers in the auto-
matic detection of deceptive behavior, actions, and contents. This surge in attention is 
driven by the wide-ranging applications of deception detection, particularly in crim-
inology and cybersecurity. To advance this line of research, this study investigates 
both text and audio data derived from speeches in natural languages. We evaluate 
traditional linguistic models alongside deep models and advanced Large Language 
Models (LLMs), utilizing Natural Language Processing (NLP) techniques to model 
deception detection. Furthermore, we employ various feature selection methods to 
determine the significance of linguistic features. Through extensive experimenta-
tion, we assess the effectiveness of both conventional and advanced deep models 
on transcribed data while also applying deep models to audio data, thus leverag-
ing both types of data to build a multimodal model for deception and lie detection. 
Our findings indicate that the Bidirectional Long Short-Term Memory (BiLSTM) 
model excels in processing textual data. On the other hand, the ResNet50 model 
performs best with audio data. By combining these models in a late fusion approach, 
we achieve a model that outperforms individual text and audio models. 
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1 Introduction 

Attackers have always used deception to manipulate or take advantage of the trust 
of others for their own benefit. It can be used to scam people out of their money 
or mislead a criminal investigation. This deceptive behavior can lead to serious 
consequences, such as innocent people being wrongly convicted or losing money. 
With that motivation in mind, finding out when someone is not telling the truth 
could help avoid damage in both interpersonal and work relationships. Developing 
effective techniques to know when people are deceiving is crucial to supporting fair 
judgment in court cases. The ability to recognize dishonest claims is a solution to the 
dilemma our society faces every day. Applications of such deception detection are not 
limited to legal and criminal contexts but can extend to areas such as financial fraud 
prevention, corporate security, and safeguarding personal interactions where trust is 
crucial. Additionally, deception detection from speech can be particularly valuable in 
cybersecurity, such as identifying phishing calls and other forms of verbal deception. 

Traditionally, authorities have performed polygraph tests on suspect individu-
als [ 18]. This test uses a device to measure and record physiological indicators such 
as heartbeat, blood pressure, and skin conductivity, based on the assumption that 
deceptive answers trigger involuntary physiological reactions [ 18]. Although the 
polygraph has long been considered a standard method for detecting lies, experi-
mental studies show that these tests are not always accurate. They are prone to errors 
and biases that arise from both the equipment used and human misinterpretation [ 10]. 
In addition, many factors can affect physiological responses, which may not neces-
sarily indicate deception. An alternative approach, as proposed in this work, is the 
use of multimodal lie detection techniques that integrate multiple data sources, such 
as speech and facial expressions, to enhance the accuracy of lie detection tasks and 
address the limitations of traditional polygraph tests. Specifically, analyzing speech 
data can provide a wealth of information to identify instances of deceitfulness [ 4, 15]. 
One potential approach is to examine the characteristics in the audio of the speech, 
often referred to as “audio features”, also known as Mel-frequency cepstral coef-
ficients (MFCC), such as changes in pitch, speaking rate, and intensity, which can 
occur when someone is untruthful [ 4, 28, 31]. Another potential approach involves 
analyzing transcribed data of speech, which is often referred to as “textual or tran-
scribed features”, such as word choice and sentence structure, which can also serve 
as indicators of deception [ 6, 14, 24]. In addition, considering nonverbal cues, often 
referred to as “behavioral features”, such as expressions, body language, and eye 
movements, is another feasible approach to detecting deceptive behavior [ 6, 31]. 

The recent advancement in machine learning and deep learning algorithms enables 
the creation of classification schemes trained on these multimodal features to accu-
rately classify people’s truthfulness in a given case or scenario. The use of machine 
learning in lie detection has gained significant attention in recent years, with many 
researchers achieving promising results in accurately detecting deception from 
speech by combining these features and using machine learning algorithms [ 3, 27]. 

This work aims to create a multimodal model that uses both transcribed text and 
audio/speech data to detect deceptive behavior more accurately. Recognizing the
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potential of multimodal approaches, we research and conduct experiments to develop 
models that can better identify deception. By focusing on both linguistic and audio 
cues, our objective is to reduce the risk of wrongful convictions and financial fraud, 
ultimately improving the fairness and reliability of legal and investigative processes. 
One of our key contributions is the integration of text and audio models using a late 
fusion technique. This approach takes advantage of the strengths of both modalities, 
resulting in a more robust detection system. We also test our models on the Real-
Life Trial dataset to ensure that our findings are grounded in practical, real-world 
scenarios. By experimenting with conventional models, LLMs, and deep learning 
models, we provide a comprehensive and reliable method for deception detection. 

This paper is structured as follows. Section 2 reviews existing research in the 
field of deception detection. Section 3 presents the technical background of the con-
ventional and deep models we studied. Section 4 outlines the experimental setup, 
giving details on the dataset, preprocessing, feature selection, and evaluation met-
rics. Section 5 discusses the setup of the detection models, and Sect. 6 explains the 
performance of these models. Section 7 discusses these results, providing insight 
into the effectiveness and alignment of various approaches with existing literature. 
Lastly, Sect. 8 concludes the paper and suggests future work. 

2 Related Work 

This section will review the datasets and models used and implemented in previous 
research on deception detection. A summary of the reviewed papers is provided in 
Table 1. 

2.1 Existing Public Datasets 

In the process of training models that are capable of detecting deception, a variety of 
datasets are utilized, such as Real-life trial [ 4], Columbia X-Cultural Deception [ 20], 
or H Wolf [ 8] dataset. These datasets are typically sourced from different contexts 
and scenarios, providing a wide range of data from which models can learn. Each 
dataset can fall into three main categories: (1) The first category is any data collected 
from real-life situations where deception is common, such as legal proceedings; (2) 
Data can also be generated artificially by asking people questions designed to force 
deception; and (3) Finally, data can also be collected while playing games, where 
deception can also commonly and naturally occur. 

The first category of data comes from various real-life situations. This type of 
dataset provides authentic examples of deception and truth-telling. Instead of staged 
setups, these datasets can provide more realistic scenarios for lie detection. Some 
research papers [ 4, 13, 23, 24] have used data collected from actual court trials. 
The dataset includes 121 videos divided into 61 clips that show deceptive behavior
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and 60 clips that feature truthful interactions [ 24]. The individuals featured in these 
videos, who are either defendants or witnesses, range in age from 16 to 60. On 
average, the videos are approximately 28 s long, and the transcripts of these videos 
have an average of around 66 words, amounting to a total of over 8,000 words of 
speech data. Another notable dataset is used by Kopev et al. [ 15]. This dataset is 
for real-world political debate and offers a wider range of realistic situations for lie 
detection, including claims labeled as true, half-true, or false. This dataset consists 
of 94 training claims and 192 test claims, providing substantial data for the models 
to learn from. 

The second type of dataset is generated by asking actors questions to generate false 
and true responses. In a study by Sarzynska-Wawer et al. [ 22], 400 participants were 
invited to create four statements on a given topic: two of these statements were to be 
delivered orally, while the other two were to be written. This method resulted in 1,600 
statements, 1,498 of which were selected for the final analysis. Mendels et al. [ 20] 
used the CXD corpus, which comprises deceptive and non-deceptive speech from 
native English and Mandarin speakers, all communicating in English. It includes 
170 conversations involving 340 participants. This data was gathered using a fake 
resume setup where subjects alternated between interviewer and interviewee roles, 
answering 24 biographical questions. Participants had financial incentives to both 
lie convincingly and accurately detect lies. During the interviews, the interviewees 
labeled each response as true or false. 

The third type of dataset was collected from playing games. Tao et al. [ 28] used  
the IDIAP WOLF dataset developed by the Swiss IDIAP Research Institute. This 
study collected vocal signals from the “werewolf killing game” that involved 12 
participants, four of whom played werewolves to create confusion through deception 
while the rest of the players played honest characters. The werewolves are expected 
to lie, while the other players need to guess who the werewolves are. Similarly, 
Fu et al. [ 8] created the H-Wolf corpus, a self-built dataset constructed from the 
Idiap Wolf and Killer datasets. They gathered approximately 70 h of video from the 
“Werewolves of Miller’s Hollow” competitions available online, selecting clips that 
contained truthful and deceptive interactions based on the players’ ID cards and the 
rules of each game. 

2.2 Conventional Models in Deception Detection 

This section will review some of the conventional models used in previous work for 
deception detection. Researchers have explored a variety of methodologies, rang-
ing from traditional statistical models to advanced machine-learning techniques for 
this problem. Sarzynska-Wawer et al. [ 22] implemented a Support Vector Machine 
(SVM) and XGBoost model with 20-fold cross-validation. Their best model, SVM, 
gave an accuracy of 58.9%. 

Bareeda et al. [ 4] built SVM-based classifiers using Gaussian and polynomial 
kernels. Based on their experiments, they found that using polynomial or Gaussian
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kernels resulted in an overall classification accuracy of 81 and 78% for the lie and 
truth classes, respectively. 

Tao et al. [ 28] extracted different acoustic features from audio datasets to detect 
deception using SVM as the classifier. The experimental results showed that SVM 
could effectively detect deception with an accuracy of over 80%. 

Chebbi et al. [ 6] created K Nearest Neighbour (KNN) models for each modality 
(visual, audio, transcription) separately using feature selection techniques to select 
the most relevant features. They combined the modalities using a decision-level 
fusion approach based on belief theory. The approach was studied using the real-life 
trial dataset [ 24]. The deception detection accuracy rate reached 97% using only 19 
combined features. 

Şen et al. [ 24] collected videos from a set of actual court trials and built models 
that used verbal, acoustic, and visual modalities to detect deception. Initially, they 
conducted experiments with each set of features separately using SVM, Randon For-
est (RF), and Neural Network (NN) classifiers. Then, they tried various combinations 
of features using early and late fusion. Their results showed that late fusion achieved 
better performance with 84.18% accuracy with combined text, visual, and acoustic 
features. 

Venkatesh et al. [ 31] introduced a novel deception detection approach that used dif-
ferent types of data, including audio, text, and nonverbal characteristics, to build their 
deception detection models. The method combined the results of each of these fea-
tures using majority voting. Specifically, the audio component was based on Cepstral 
Coefficients (CC) and Spectral Regression Kernel Discriminant Analysis (SRKDA). 
On the other hand, the text model used bag-of-n-gram features and a linear SVM 
classifier, whereas the nonverbal component employed the AdaBoost classifier. The 
results showed that the proposed method outperformed both existing state-of-the-art 
techniques and human performance, achieving a deception detection accuracy of 
97% in the entire dataset during a 25-fold cross-validation. 

2.3 Deep Learning Models for Deception Detection 

Deep learning models have significantly impacted deception detection, resulting 
in a level of complexity that can detect certain details in the data. This section 
reviews previous work using deep models. Sehrawat et al. [ 23] proposed a model 
that combined Long-Short Term Memory (LSTM), Bidirectional Long-Short Term 
Memory (BiLSTM) networks, Convolutional Neural Network (CNN), and ResNet50 
to detect deception. They first extracted text, audio, and video features from the “Real 
Life Court Trial” dataset. To process audio data, they transformed them into Mel 
spectrograms to create a visual representation that captured key audio characteristics. 
ResNet50 was then used to analyze these Mel Spectrograms. The proposed model, 
which used audio and text features, achieved an accuracy of 80%. 

Unlike Sehrawat et al. [ 23], who used an existing dataset, Marcolla et al. [ 19] 
created their own dataset by interviewing subjects to capture the subject’s answers,
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labeled lying or truthful. To get the audio features, the researchers used Librosa library 
functions to extract the Mel-Frequency Cepstral Coefficients (MFCC) characteristics. 
The researchers then normalized the features through the padding to match the length 
of the longest sequence, ensuring uniformity for neural network processing [ 19]. 
Their LSTM neural network model resulted in an overall classification accuracy of 
72.5%. Hsiao and Sun [ 13] also used MFCC for their audio feature. But instead of 
normalizing MFCC features to match the longest sequence, they calculated average 
MFCC values per second. This method reduced MFCC length, which helped train 
their BiLSTM model more effectively. They also extracted features from text and 
transcript. Lastly, they proposed an ensemble model that combined the outputs of 
the audio, visual, and transcription models using BiLSTM. Their ensemble model 
achieved 96% accuracy when used on the “Real Life Court Trial” dataset. 

Gallardo-Antoln and Montero [ 9] developed an automatic deception detection 
model based on gaze and speech characteristics using attention-based LSTM. The 
feature extraction procedure from gaze data involved selecting channels from the 
Gazepoint GP3 Eye Tracker for fixations, saccades, and pupil size, which are known 
as indicators of deceptive behavior. For speech, features were derived from Log-
Mel Spectrograms using Python’s package LibROSA. The researchers trained their 
models on the Bag-of-Lies dataset and achieved an accuracy of 70.5%. 

Zhang et al. [ 33] created a Graph-based Cross-modal Fusion Model (GCFM) 
along with a Cross-modal Attention Mechanism to detect deception in the Real-Life 
Trial dataset [ 24]. They extracted visual, textual, and audio features by using a 
pre-trained ResNet50 and LSTM neural network with attention mechanisms. The 
proposed GCFM method achieved an accuracy of 88.14% as well as an F1-score of 
78.50%. Additionally, using association learning increased the accuracy by 1.87% 
while the cross-modal attention mechanism improved the accuracy by 2.44%. 

3 Background on Conventional and Deep Models Studied 

3.1 Conventional Models 

We explore Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and 
Logistic Regression (LG) for deception detection using textual data. SVM is a 
supervised learning algorithm commonly used for classification tasks. SVM aims to 
identify a hyperplane in an n-dimensional space, where n represents the number of 
features, to effectively separate data points into different classes [ 12]. KNN is a non-
parametric algorithm that stores all training data and then classifies new data points 
based on the “k” closest training points, where k is some constant number of points. 
LG is a statistical model commonly used for classification tasks. It outputs proba-
bilities from 0 to 1 for different classes and classifies data based on continuous and 
discrete measurements. The model finds a line or a hyperplane in higher-dimensional 
spaces that best separates the data into classes. After trying various lines, the one 
with the maximum likelihood is selected.
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3.2 Convolutional Neural Networks (CNNs) 

CNNs are powerful tools in deep learning, particularly for analyzing visual and 
image data. The CNNs architecture, as shown in Fig. 1, contains many layers that 
perform different tasks to convert input data into important features. The first layer, 
called the convolutional layer, uses many filters on the input image. The filter out-
put is put on a feature map (Fig. 2). After that, the feature maps are run through 
an activation function such as ReLU. Next, these feature maps enter the pooling 
layers. The purpose is to decrease the spatial dimensions of the data while keep-
ing important information intact. The pooled layers are converted to columns of the 
input nodes. Finally, fully connected layers take the input nodes and compute the 
final classification task. CNN’s architecture for visual recognition tasks is power-
ful because it can learn complex features hierarchically. This method demonstrates 
impressive accuracy in image classification, object detection, and other fields of 
application. 

Fig. 1 A simple architecture of CNNs 

Fig. 2 Process of applying filter on input image and the results onto feature map
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3.3 Long Short-Term Memory (LSTM) 

Recurrent Neural Networks (RNNs) are neural networks that process data sequences 
such as time series or natural language. They have looped connections that let them 
keep information over time. This makes RNNs good for tasks needing context from 
earlier data. But RNNs have a big problem: vanishing or exploding gradients. During 
training, the gradients used to update weights can get too small (vanishing) or too big 
(exploding). This makes it hard for RNNs to learn long-term patterns. The LSTM 
is an advanced RNN that can solve RNNs’ vanishing/exploding gradient problem. 
The memory cell of the LSTM network contains three different gates: the input gate, 
the forget gate, and the output gate. The input gate determines what information we 
should store in the memory cell, while the forget gate chooses which information to 
remove from the memory cell [ 30]. The function of the forget gate is to manage and 
control what is output from the memory cell. Figure 3 describes the architecture of 
an LSTM block. 

3.4 Bidirectional LSTM 

The BiLSTM model leverages complete sequential information by considering both 
past and future data points for each position in the sequence, thereby enhancing 
the original LSTM designed for sequence learning [ 32]. BiLSTM consists of two 
LSTMs, and both of them return a probability vector. Their combination forms the 
final output. This ability of BiLSTMs to process in both directions is especially 
useful for intricate sequence prediction tasks such as examining speech and text. 
Figure 4 describes the architecture of a BiLSTM block. 

Fig. 3 Architecture of an LSTM block. Adapted from [ 17]
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Fig. 4 Architecture of a BiLSTM block. Adapted from [ 5] 

3.5 Residual Network 50 (ResNet50) 

ResNet50 is a convolutional neural network (CNN) with 50 layers. ResNet50 is useful 
for complex tasks that involve image processing and analysis. It contains 48 convo-
lution layers, one MaxPooling layer, and one AveragePooling layer. The main idea 
behind the ResNet50 model is its unique design using residual blocks. These resid-
ual blocks help to solve the vanishing gradient problem. The blocks with residuals 
have “skip” connections. This lets the layers learn residual mappings, which means 
that the network can understand these mappings instead of only direct feature map-
pings [ 11]. This way of building makes it possible to create deeper networks without 
losing performance and helps to improve the flow of gradients during training, making 
learning more efficient and stable. This proven CNN is especially useful for feature 
extraction in complex datasets, including audio spectrograms. Figure 5 describes the 
architecture of a RetNes50 block. 

3.6 Late Fusion 

We also apply a late fusion method, combining audio and text data characteristics. 
Each data type is processed using its own specialized neural network architecture. The 
results of both models are combined into one vector after being processed separately. 
Afterward, this combined vector is fed into a fusion layer. Figure 6 describes a high 
level of late fusion model. In this layer, the weights that can be trained are used to 
find the best weight for each model. The weights have a softmax function applied 
to them. Softmax will force all outputs to sum up to one. The output of this layer is 
then processed by a last dense layer with sigmoid activation. Each output provides 
a probability score showing the possibility of deception. This method, called late
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Fig. 5 Architecture of a RetNes50. Adapted from [ 23] 

Fig. 6 A high level of late fusion model
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fusion, makes our model flexible and adjustable; it learns which features from every 
data type are more telling about deceitful behavior. 

3.7 Additional Pretrained Models 

In addition to the models that are fine-tuned throughout the research, several pre-
trained models are applied for comparative analysis. We choose to use pre-trained 
models because they offer a strong starting point, having already learned from large 
datasets. These models are known for capturing complex patterns in text and audio 
data, which are crucial for deception detection. Using these models, we aim to ben-
efit from their proven effectiveness in various tasks and expect them to enhance the 
accuracy of our detection system. These include BERT, a language model developed 
by Google that uses a bidirectional approach and transformer architecture to create 
context-aware word representations, enabling strong performance in various natural 
language processing [ 7]. We also use GPT-2, developed by OpenAI, which gener-
ates coherent and contextually relevant text based on extensive pre-training on large 
datasets [ 26]. Furthermore, RoBERTa, an improved version of BERT developed by 
Facebook AI Research, optimizes the pretraining process through hyperparameter 
adjustments and other enhancements [16]. Lastly, the VGG-16 model, a convolutional 
neural network with 16 weight layers, is utilized for its effectiveness in image classifi-
cation tasks, focusing on.3 × 3 convolution layers and a simplified architecture [ 29]. 

4 Experimental Setup 

4.1 Methodology 

We conducted our experiment as follows: We started with conventional models that 
use linguistic features extracted from the textual data, then progressed to deep models 
such as BiLSTM and pre-trained models that we covered in our previous work [ 21]. 
These text-only experiments yield relatively good results, indicating that deep models 
work well. In this work, we add audio data using a similar analysis. We use deep 
models like ResNet50 and VGG16 to analyze speech Mel spectrograms. Finally, a 
late fusion technique is employed to combine the outputs of the best-performing 
textual and audio models. The details of all the steps completed prior to and included 
in this work are outlined in this section. 

4.2 Dataset Description 

Our research uses a unique and valuable dataset from public court trials created 
by researchers at the University of Michigan [ 24]. This dataset contains 121 video
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Table 2 Example of deceptive and truthful content 

Deceptive 

And he told me that, ammm ... he was trying to figure some stuff out, and ammm ... I asked him 
Like what? and he will ... I mean I will never forget it, he was smoking a cigarette, and he was 
like really calm, and he looked at me and he said What would you say if I said ... if I told you 
Laura was dead? And I was like, you know, I was like What? And ... basically he told me that, 
ammm ... the night that Laura had come over to the house, that she had died, and that whenever 
I left that he just panicked and freaked out, and I got ... I started freaking out, and I was asking 
him why he didn’t call the cops [stutters] ... call for help like he told me he was going to, and 
he told me that, ammm ... he got scared that he was a black man with a dead white woman and 
nobody was gonna believe him that it was an accident 

Truthful 

I have no idea. A police officer I presume. You’d have to ask my mother or my brother. Nope. 
They said they didn’t know where he was being taken. Yep. Went to the house, I was in a fairly 
catatonic state, my dad and my brother started making phone calls to all the local hospitals, and 
they eventually got a hold of... I don’t know, whatever the hospital is, Atlanta Medical Center. 
And they wouldn’t tell my dad anything but that he was being taken there. So we got in the car, 
and we left. That’s correct. Yes, he was and I had, I – that was instructed that that was the best 
idea was to keep him at the day care. The, uh ... Donna. The woman that runs the day care. Yep. 
That’s the safest place ... uh for him to be 

recordings, evenly split between deceptive and truthful statements. Each video is 
about 28 s long and features defendants or witnesses speaking in different trial sce-
narios. The dataset includes not only the video content but also transcripts of each 
video, allowing us to analyze textual information alongside audio/visual cues. Addi-
tionally, the research group has annotated each video with gestures such as smiles, 
laughs, etc. In this work, we primarily focus on the textual and audio data for building 
a multimodal deception detection model. Table 2 provides examples of both deceptive 
and truthful content from the dataset. 

4.3 Transcribed Data 

4.3.1 Preprocessing and Cleaning 

Our text processing pipeline varies depending on the model. For conventional models, 
we remove non-alphabetic characters from the text to eliminate noise that could 
interfere with later processing stages. This step ensures that only alphabetic letters 
remain, which helps the models focus on relevant linguistic features. We accomplish 
this using Python packages such as re for regular expression operations and NLTK 
for text processing tasks. The cleaned text is then used to extract features, which will 
be discussed in the next section. 

In contrast, for deep models, we do not remove non-alphabetic characters, allow-
ing the model to retain as much of the original text as possible. We apply stemming 
to each word, reducing it to its root form by removing suffixes, which helps reduce
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the number of unique words for more efficient analysis. After stemming, we perform 
one-hot encoding, where each word is assigned a unique integer index from a vocab-
ulary size of 5000. Additionally, each sequence is padded with zeros to a uniform 
length of 221 words, which is the maximum sentence length in our dataset. (221). 
Padding is necessary because machine learning algorithms require input data with a 
consistent shape. It ensures all sequences have the same feature count, which helps 
the machine learning algorithms function correctly. 

4.3.2 Linguistic Features Extraction 

After preprocessing textual data, we extract 16 key textual features relevant to lie 
detection, detailed in Table 3. Specifically, to understand the speaker’s perspective, 
discourse structure, and temporal references, we compute the number of pronouns, 
conjunctions, and verb tenses (i.e., past, present, future). The sentiment score aggre-
gates the emotional valence of words into a compound score ranging from.−1 to 1, 
indicating negative, neutral, or positive emotion. We also use part-of-speech tagging 
to get the frequency of adjectives and adverbs, which helps provide insights into 
the descriptive language used. Additionally, we count the frequency of filler words 
like ‘um,’ ‘uh,’ and ‘like,’ as well as repetitions, negations, and self-references to 
evaluate the speaker’s fluency, rhetorical style, and persuasive attempts. Together, 
these features provide a comprehensive framework for detecting deception through 
linguistic patterns in textual data. 

Table 3 Description for extracted linguistic features [ 21] 

Feature name Description 

Word count The total number of words in the text 

Sentence count The total number of sentences in the text 

Sentiment score A numerical score indicating the overall sentiment of the text 

Average word length The average length of words in the text 

Vocabulary diversity The ratio of unique words to the total number of words in the text 

Adjective frequency The proportion of adjectives in the text 

Adverb frequency The proportion of adverbs in the text 

Pronoun frequency The proportion of pronouns in the text 

Conjunction frequency The proportion of conjunctions in the text 

Past tense frequency The proportion of verbs in the past tense in the text 

Present tense frequency The proportion of verbs in the present tense in the text 

Future tense frequency The proportion of verbs in the future tense in the text 

Filler word count The number of common filler words in the text 

Repetition count The proportion of words that appear more than once in the text 

Negation count The number of negations in the text 

Self-reference count The number of self-referential words in the text (e.g., “I,” “me,” “myself”)
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4.3.3 Feature Selection for Conventional Models 

We use two main methods to choose important features from the textual data: (1) over-
lapping coefficient (OVL) and (2) stepwise regression. The OVL method assesses 
the significance of specific features by comparing the probability density functions 
(PDFs) of features between “Lie” and “Truth” categories [ 1]. Features with lower 
OVL scores, indicating less overlap, are deemed more effective for distinguishing 
between these categories. On the other hand, higher OVL scores suggest more over-
lap, which implies that the feature is less effective at distinguishing between the cat-
egories because the distributions are more similar. The stepwise regression method, 
a greedy approach, iteratively adds or removes features based on their impact on 
model performance [ 2]. Typically, this evaluation involves training the model with 
the selected features and measuring its performance using accuracy or F1 score met-
rics. Based on these performance metrics, a decision is made to include or exclude 
a feature, and the process continues until a predefined stopping condition is met. 

4.4 Audio Data 

We convert MP4 video files into WAV audio format using the movies library. Our 
approach is to transform the audio into images of the type of Mel spectrograms using 
the Librosa library. We use a Mel spectrogram, a visual representation of sound that 
aligns frequencies to the Mel scale (corresponding to human auditory perception). 
This is achieved by segmenting the audio, performing a Fourier transform on each 
segment to identify frequency content, and then applying Mel scale filters to empha-
size perceptually important frequencies. Finally, the Mel spectrograms are converted 
into the RGB color space using matplotlib library and resized to a uniform dimen-
sion of 224. × 224 pixels to ensure consistent input size. Once the Mel spectrogram 
images are generated, we use them as input data for training deep learning models. 
Examples of deception and truth images are shown in Figs. 7 and 8. The Mel spec-
trogram’s x-axis represents time in seconds, while the y-axis shows frequency in 
Hertz on the Mel scale, which emphasizes frequencies important to human hearing. 
The color scheme indicates sound intensity, with lighter colors representing louder 
sounds and darker colors indicating quieter ones. The color bar, in decibels (dB), 
provides a reference for these intensity levels. 

4.5 Model Evaluation 

We evaluate the models using 5-fold cross-validation. It divides the dataset into five 
subsets and iteratively creates the training and test sets. During each iteration, one 
subset is used as the test set, while the remaining four subsets form the training set. 
This process is repeated five times, with each subset taking a turn as the test set. This
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Fig. 7 Deception image example 

ensures robustness and minimizes overfitting. The model’s performance is evaluated 
using metrics such as accuracy and the F1 score, where the following metrics are 
used for the computation: 

• TP: true positives (classifier correct; classifier guessed 1). 
• FP: false positives (classifier incorrect; classifier guessed 1). 
• TN: true negative (classifier correct; classifier guessed 0). 
• FN: false negative (classifier incorrect; classifier guessed 0). 
• Accuracy measures the percentage of correct predictions out of the total instances. 

.Accuracy = T P + T N

T P + FP + T N + FN
(1) 

• The F1 score is the harmonic mean of the precision and recall metrics. Precision 
measures the percentage of times the classifier was correct when it was predict-
ing the true (1) class. Recall is the percentage of times that the model correctly 
predicted 1 when the label was, in fact, 1. 

. Recall = T P

T P + FN
Precision = T P

T P + FP
(2)
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Fig. 8 Truthful image example 

.F1 score = 2 ∗ (Precision ∗ Recall)

Precision + Recall
(3) 

5 Deception Detection Models 

5.1 Conventional Models for Textual Data Only 

To train our deception detection models, we explore various conventional algorithms 
such as: 

1. Support Vector Machines (SVM) (called Model 1), and 
2. K-Nearest Neighbors (KNN) (called Model 2), and 
3. Logistic Regression (LG) (called Model 3). 

To optimize their performance, we conduct a grid search to fine-tune the hyperpa-
rameters of each model. This thorough parameter tuning significantly improves the 
predictive power of our models. Table 4 lists parameters and their values obtained 
through the grid search. Bold values represent parameters selected by the stepwise
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Table 4 Parameter lists of for grid search 

Model Parameters 

SVM C: 0.001, 0.1, 1, 10, 100, 1000 
Kernel: linear, poly, rbf, sigmoid  

Gamma: scale, auto  

LG C: 0.001, 0.01, 0.1, 1,  10, 100 

KNN n neighbors: 3, 5, 7 
Weights:.uniform, distance  

p: 1, 2 

Table 5 Explanation of parameters used in grid search 

Model Parameter explanation 

SVM C: Controls the trade-off between fitting the training data and generalizing to new 
data. Smaller values lead to a smoother decision boundary 

Kernel: Specifies the function used to transform the data (e.g., linear, polynomial, 
RBF, sigmoid) for better decision boundaries 

Gamma: Defines how far the influence of a single training example reaches, 
affecting the complexity of the model 

LG C: Controls the regularization strength, balancing between fitting the data closely 
and preventing overfitting 

KNN n_neighbors: Number of neighbors considered for making predictions 

Weights: Determines if all neighbors contribute equally (uniform) or if closer 
neighbors have more influence (distance) 

p: Defines the distance metric (Manhattan for.p = 1, Euclidean for.p = 2) 

approach, and underlined values represent parameters selected by the OVL approach. 
Table 5 explains the parameters used in grid search for each model. 

5.2 Deep Models and Pre-trained Models for Textual Data 
Only 

5.2.1 Model 4: 1 BiLSTM 

For textual models, we focus on improving deception detection using the BiLSTM 
model. The BiLSTM model includes three primary layers. The first layer is an embed-
ding layer that transforms integer encoded words into dense fixed-sized vectors. The 
second layer is a BiLSTM layer that processes these vectors into a sequence of 
outputs. The output from this layer is then passed to a Dense layer with a sigmoid 
activation function, which outputs a single value. This value predicts the likelihood 
of the input text being deceptive or truthful, interpreting it as a probability between 0 
and 1. We compile the model using binary cross-entropy as the loss function, utilize 
Adam as the optimizer, and measure performance with the accuracy metric.
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5.2.2 Model 5: 1 BiLSTM . + Dropout Layer 

We build Model 5 on top of Model 4. We add architectural features to improve the 
performance of the detection of deception. A key addition is the GlobalMaxPool1D 
layer and the Dropout layer. The GlobalMaxPool1D layer reduces the LSTM output 
to a single maximum value per feature, highlighting the most important signals for 
classification. The model includes a Dense layer with 64 ReLU-activated neurons to 
analyze these reduced features. Furthermore, a Dropout layer is added with a 20% 
rate to prevent overfitting by randomly skipping some neuron activations during 
training. The model ends with a Dense output layer. It uses a sigmoid activation to 
give a probability estimate of deception. Like Model 4, the model still uses binary 
cross-entropy loss and the Adam optimizer. 

5.2.3 Model 6: 1 BiLSTM . + Early Stopping 

Model 6 builds on the architecture used in previous models by incorporating an 
Early Stopping mechanism to optimize training efficiency and prevent overfitting. 
Early Stopping monitors the validation loss during training and stops the process 
if no improvement is observed for five consecutive epochs. This approach ensures 
that the model does not continue to learn from the training data beyond the point of 
beneficial returns. Therefore, the model maintains its generalizability and prevents 
it from learning noise and irrelevant details from the training set. 

5.2.4 Model 7: BERT . + Early Stopping . + Dropout 

Model 7 utilizes the TFBertForSequenceClassification, which is a TensorFlow 2.0 
adaptation of the BERT model for sequence classification tasks. This model pro-
cesses sequences of tokens, outputting a probability distribution across various labels 
using the ‘bert-base-uncased’ configuration. This version of BERT is pre-trained on 
uncased English text, enhancing its applicability to diverse text inputs. To optimize 
performance and handle multiclass classification, we employ Sparse Categorical 
Cross Entropy as the loss function and an Adam optimizer with a learning rate of 
2e-5 and epsilon of 1e-08. Additionally, Early Stopping and Dropout techniques are 
integrated to prevent overfitting and ensure efficient training, with the model’s config-
uration finalized with the chosen loss function, optimizer, and performance metrics. 

5.2.5 Model 8: Pretrained GPT-2 Model 

Model 8 is built using a pre-trained GPT-2 architecture. We initialize it with 
GPT2Model.from. _pretrained() to use its existing weights and increase learning effi-
ciency. We added a linear layer (self.fc1) to the model to convert it for sequence 
classification. This layer takes the hidden states from GPT-2 and transforms them
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for classification. During the . f orward() method process, input IDs and masks are 
processed by the GPT-2 model. The outputs are reshaped using. gpt_out.view(batch
si ze,−1) and then passed through the linear layer to get the final class predictions. 
Basically, we use GPT-2 as a feature extractor to transform its complex linguistic 
features into class predictions. 

5.2.6 Model 9: Pretrained RoBERTa Model 

Model 9 employs the RoBERTa architecture, configured for sequence classifica-
tion using the robust PyTorch framework alongside the Hugging Face Transformers 
library. We utilize the ‘RoBERTa-base’ model along with its associated tokenizer 
to prepare our input corpus. Each input sequence is tokenized and then uniformly 
padded to maintain consistent dimensions across all data, ensuring efficient process-
ing. These tokenized sequences, along with their respective labels, are transformed 
into tensors. For training, the model is optimized using an Adam optimizer with a 
learning rate of 2e-5. The optimization is guided by the cross-entropy loss function, 
which is particularly suited for classification tasks involving multiple classes. 

5.3 Deep Models for Audio Data 

5.3.1 Model 10: ResNet50 . + Dropout 

We have modified the ResNet model from its original design to suit binary classifi-
cation tasks. The base ResNet50 model, with weights pre-trained on ImageNet, uses 
transfer learning to take advantage of features learned from visually rich datasets. We 
hypothesize that this approach will improve the model’s ability to recognize subtle 
patterns in audio spectrogram data. These audio data share similarities with the image 
data due to their time-frequency representation. The model uses the ResNet50 base. 
Its top layer is removed for customization, adjusting the input shape for the task. 
The last 20 layers are trainable, while earlier layers keep their ImageNet weights. It 
includes a Global Average Pooling 2D layer, a 0.5 rate Dropout layer, and Early Stop-
ping to prevent overfitting. A Dense layer with 1024 neurons using ReLU activation 
learns non-linear combinations of features. The final layer is a Dense layer with a sin-
gle neuron for binary classification. With a 0.0001 learning rate, the Adam optimizer 
optimizes for binary cross-entropy loss, ensuring learning and generalization. 

5.3.2 Model 11: VGG-16 

We employ a VGG16 base pre-trained on ImageNet, excluding its top layers. All 
VGG16 layers are initially non-trainable, except those in the final block. Custom 
layers are added on top, starting with an Input layer, then passing through a Glob-
alAveragePooling2D layer, a Dropout layer, and a Dense layer with 1024 units and
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ReLU activation. The final output layer uses a single Dense layer with sigmoid acti-
vation. The model is compiled with an Adam optimizer (learning rate of 0.00001), 
binary cross-entropy loss, and accuracy as a metric. 

5.4 Model 12: Late Fusion Model for Audio Data 
and Textual Data 

We use the ResNet50 (model 10) for audio data and the BiLSTM model (model 6) 
for textual data to create a late fusion model (Fig. 9). We chose these models because 
they provide the highest scores for their respective modalities when we experiment 
with different models. We change the last layers of both models so they will produce 
a feature vector with 128 dimensions, making sure that features from different types 
are represented in the same way. The vectors for each model are put together. It makes 
a combined feature vector with 256 dimensions. A specially created LinearW layer 
takes this vector and works to balance and mix the features coming from both the 
audio and text paths. The LinearW layer uses a group of weights that can be adjusted 
and which get better during training. This lets it give each set of features a certain 
level of importance based on what it has learned. After this fusion layer’s output 
is ready, it goes through another thick layer with sigmoid activation to develop the 
ultimate prediction. 

Fig. 9 Late fusion model for textual and audio data
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6 Results 

6.1 Overlapping Probability Density Functions for Linguistic 
Features 

PDFs are initially plotted for a selected set of features to better understand the dif-
ferences in data distribution between the “Lie” and “Truth” categories. These visu-
alizations, presented as PDFs, offer an intuitive comparison of the data distribution 
shapes. Smoothed PDFs are generated using Kernel Density Estimation (KDE) with 
a Gaussian kernel. They provide continuous representations of data distributions. 
These visualizations are useful for identifying features with distinct patterns that can 
potentially enhance the effectiveness of lie detection based on linguistic analysis. 

Both PDF plots (Figs. 10, 11 and 12 in the appendix) and Table 6 visualize and 
report the quantitative results of the Overlapping Probability Density Functions 

Fig. 10 PDF plots for “Lie” and “Truth” data across multiple features (part 1)
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Fig. 11 PDF plots for “Lie” and “Truth” data across multiple features (part 2)
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Fig. 12 PDF plots for “Lie” and “Truth” data across multiple features (part 3)
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Table 6 Feature significance analysis using OVL [ 21] 

Features OVL score 

filler. _word. _count 0.5471 

future. _tense. _frequency 0.5517 

negation_count 0.6097 

adverb_frequency 0.7367 

present. _tense. _frequency 0.7512 

sentence. _count 0.7811 

self. _reference. _count 0.8106 

sentiment. _score 0.8159 

adjective. _frequency 0.8182 

word. _count 0.8214 

pronoun. _frequency 0.8299 

past. _tense. _frequency 0.8345 

avg. _word_length 0.8479 

repetition. _count 0.8497 

conjunction. _frequency 0.9001 

vocabulary. _diversity 0.9119 

analysis. This analysis provides a more precise measure of the discriminatory power 
of individual features in distinguishing between the “Lie” and “Truth” categories. 
By calculating the OVL scores, we can determine how much the probability density 
functions of different features overlap between the two categories. 

As Table 6 reports, features such as “vocabulary diversity” and “conjunction fre-
quency” exhibit high OVL scores. This indicates a substantial overlap in their prob-
ability density functions between the “Lie” and “Truth” categories. This suggests 
that these features may not be strong indicators on their own when it comes to dis-
tinguishing between lies and truths. On the other hand, features like “filler word 
count” and “negation count” display lower OVL scores, implying less overlap in 
their probability density functions. This indicates a higher potential for effectively 
distinguishing between “Lie” and “Truth” instances using these features. However, 
it is important to note that feature interactions and analysis context can significantly 
influence their discriminatory power. 

6.2 The Performance of Deception Detection Models 

6.2.1 Conventional Models for Textual Data 

From the initial set of 16 features shown in Table 3, OVL and stepwise feature selec-
tion select different sets of features. For the OVL feature selection approach, we 
choose the threshold of 0.8, so features with an OVL score lower than 0.8 will be 
selected. Therefore, we have six features in total, which are (1) filter work count,
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Table 7 Accuracy and F1 scores of conventional models for textual data only. All results are 
presented as percentages 

Model Train accuracy Test accuracy F1 score 

Model 1a: SVM.+ OVL 61.12 59.37 70.44 

Model 1b: SVM.+ Stepwise 64.46 63.77 69.8 

Model 2a: KNN.+ OVL 70.65 63.6 65.47 

Model 2b: KNN.+ Stepwise 71.69 62.83 63.07 

Model 3a: LR.+ OVL 66.12 63.63 67.89 

Model 3b: LR + Stepwise 66.11 68.53 71.69 

(2) future tense frequency, (3) negation count, (4) adverb frequency, (5) present 
tense frequency, and (6) sentence count. In contrast, the stepwise approach carefully 
chose five features that showed the strongest discriminatory potential: (1) average 
word length, (2) vocabulary diversity, (3) frequency of adjectives, (4) frequency of 
adverbs, and (5) the count of filler words. These features played a crucial role in our 
efforts to detect deception. 

Table 7 presents an evaluation of conventional models for both the OVL and the 
stepwise feature selection approach in terms of accuracy and F1 scores. Among the 
three convention models with the OVL approach, the SVM (Model 1a) has the lowest 
test accuracy but the highest F1 score. SVM (Model 1b) achieves a relatively lower 
test precision and F1 score for the stepwise approach. KNN (Model 2b) shows a 
reasonable training accuracy but faces challenges in generalization, with a lower test 
accuracy and an F1 score. Among the three different models evaluated, LR (Model 
3b) stands out with its test accuracy of 68.53% and F1 score of 71.69%. These results 
highlight the strong potential of this model in distinguishing deceptive actions. 

6.2.2 Deep Learning Models for Textual Data 

Table 8 summarizes the performance of different deep models with various archi-
tectures and techniques. Model 4, with only one BiLSTM layer, shows improve-
ments in precision (67.73%) and the F1 score (69.83%), indicating the importance 

Table 8 Accuracy and F1 scores of deep models for textual data only [ 21]. All results are presented 
as percentages 

Model Train accuracy Test accuracy F1 score 

Model 4: 1 BiLSTM 100 67.73 69.83 

Model 5: 1 BiLSTM.+ Dropout 100 66.9 66.18 

Model 6: 1 BiLSTM + Early stopping 100 93.57 94.48 

Model 7: BERT.+ Early stopping.+ Dropout 83.54 68.73 64.63 

Model 8: Pretrained GPT2 model 99.79 58.73 60.12 

Model 9: Pretrained RoBERTa model 88.18 71.2 73.71
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Table 9 Accuracy and F1 scores of deep models for audio data only. All results are presented as 
percentages 

Model Train accuracy Test accuracy F1 score 

Model 10: ResNet50 96.04 93.57 92.16 

Model 11: VGG16 96.01 87.63 89.25 

of simplifying the model structure. Model 5 incorporates a Dropout layer along-
side a single BiLSTM layer, demonstrating the impact of regularization techniques. 
However, its accuracy (66.9%) and F1 score (66.18%) are slightly lower than Model 
5. Model 6 introduces Early Stopping and significantly enhances predictive perfor-
mance. Model 6 achieves an impressive accuracy of 93.57% and an F1 score of 
94.48%. This finding highlights the importance of monitoring validation loss during 
training to prevent overfitting. Among the three pre-trained models, Model 9 applies 
pre-trained Roberta, giving the highest scores. Table 8 reveals the performance vari-
ations among different models and emphasizes the importance of carefully selecting 
architecture and techniques. The findings further show that regularization techniques, 
such as Early Stopping, can help prevent overfitting and improve generalization 
capabilities. 

6.2.3 Deep Models for Audio Data 

Table 9 shows the performance of the audio models. Model 10, which employs the 
ResNet50 structure, gets good training and test accuracy results with 96.04% and 
95.57%, respectively. It also achieves an F1 score of 92.17%. It shows it can general-
ize well when finding lies in audio. However, Model 11 with VGG16 structure also 
has good accuracy in training at 96.01% but a slight drop in test accuracy to 87.63%, 
and an F1 score of 89.25%. This decrease might show that even though VGG16 is 
very good for pulling out features, it could be worse at making these features more 
general than ResNet50. 

6.2.4 Late Fusion Models for Both Textual and Audio Data 

As mentioned earlier, we combined ResNet50 (model 10) for audio data and BiLSTM 
(model 6) for textual data to create the late fusion model (Fig. 9). We chose these 
models based on their outstanding performance in their respective modalities during 
our experiments. Table 10 presents how our late fusion model performed on five 
cross-validation folds. On average, the late fusion model obtains a test accuracy of 
90.9% and an F1 score of 91.07%. The second fold shows the best results for test 
accuracy and F1 score, with both around 96%. On the other hand, performance is 
not as good in the fifth fold; it has an accuracy of about 79.12% and an F1 score near 
82.76%.
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Table 10 Late fusion model weights and performance across 5-fold cross validation. All results 
are presented as percentages 

Fold Audio weight Text weight Test accuracy F1 score 

1 0.49731752 0.50268245 92 90.9 

2 0.5032117 0.49678826 95.83 96 

3 0.516298 0.4837021 91.67 88.89 

4 0.5161787 0.48382124 95.83 96.77 

5 0.49938968 0.5006103 79.12 82.76 

Average 0.5064791 0.4935209 90.9 91.07 

7 Discussion 

7.1 Textual Models 

7.1.1 Conventional Models 

The stepwise method selects a variety of linguistic features. They are the average 
word length, the diversity of the vocabulary used, the frequency of adjective and 
adverb usage, and the count of filler words. These features are chosen because they 
can provide valuable information on speech patterns indicative of deception. On the 
other hand, the OVL method focuses on a different set of features. These include the 
count of filler words, the frequency of adverb usage, the usage of the future tense, 
the frequency of negations, and the usage of the present tense. Interestingly, filler 
words and adverb frequency are selected by both methods. Filler words, which are 
often used as hesitations or distractions in speech, may be indicative of deceptive 
tendencies, as they could suggest that the speaker is trying to buy time or divert 
attention. The consistent selection of adverb frequency across both methods further 
suggests that the manner or intensity with which expressions are made might hold 
significant weight in identifying deceptive behavior. This shared focus on filler words, 
and adverb frequency highlights their potential importance in the study of deceptive 
speech patterns. 

For conventional models using the OVL feature selection method, SVM (Model 
1a) scores the highest F1 score at 70.44%. In contrast, when using features from the 
stepwise method, LG (Model 3b) achieves the best F1 score. This suggests that the 
performance of the models can vary according to the selected features. LG (Model 
3b) attains the highest test accuracy and F1 score among all conventional models 
with both feature selection methods. However, LR (model 3b) also shows signs of 
underfitting in our analysis. The relatively low train accuracy of 66.11% implies that 
the model struggles to fit the training data adequately. However, the test accuracy 
is even higher at 68.53%. This difference between the accuracy of the train and 
the test is a classic indicator of inadequate fitting. This underfitting issue may be 
attributed to the simplicity of the LR model, which may not be able to capture 
complex, nonlinear relationships within the data. Consequently, the LR model’s
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limited capacity to capture these complex patterns ultimately compromises its overall 
performance and prevents it from achieving higher accuracy on both the train and 
test sets. By exploring more sophisticated models, such as deep models, we could 
strive to improve our models’ accuracy and generalization capabilities, ultimately 
enhancing our analysis’s overall performance. 

Şen et al. [ 24] also conducted a study in which they implemented conventional 
classifiers such as SVM and RF. They reported that their RF model achieved the 
highest accuracy of 64.41% using the Linguistic Inquiry and Word Count (LIWC) 
lexicon. When comparing it to our conventional model, our LG model (Model 3b) 
uses a smaller feature set and outperforms their RF model in terms of accuracy. 
This indicates that our feature selection approach plays a crucial role in enhancing 
models’ performance by eliminating noise and irrelevant data. 

7.1.2 Deep Models 

We start building a simple model (i.e., Model 4), which consists of a single BiLSTM 
layer. Since its test accuracy is much lower than its train accuracy, this Model 4 shows 
signs of overfitting. This means that Model 4 does not perform well on new data. To 
improve and manage overfitting more effectively, we progressively integrate addi-
tional layers and techniques, such as Dropout and Early Stopping, into subsequent 
models. Dropout and Early Stopping are important techniques in deep learning for 
managing overfitting and improving model performance. Dropout randomly removes 
certain units during training to balance network weights [ 25]. However, when we add 
Dropout to Model 5, it does not perform better than Model 4. It has similar training 
accuracy but lower test accuracy and F1 score. This means Dropout does not suc-
cessfully control overfitting or help Model 5 generalize to the test data. Model 6, 
which is Model 4 with added early stopping, performs much better than Models 4 
and 5. It has a test accuracy of 93.57% and an F1 score of 94.48%. While it keeps 
the high training accuracy of Model 4, Model 6 has much better test accuracy and 
F1 score because of early stopping. Early Stopping adjusts the number of epochs 
in backpropagation and forward propagation to prevent overfitting and find the best 
point for model performance [ 25]. These results show that the right regularization 
techniques are key to managing overfitting and getting the best performance from a 
model. Model 6’s success shows how useful early stopping can be in deep learning. 
It is a good choice for applications that need simple, high-performing models. Pre-
trained models are not the best option for this task. The value of a model, whether 
it’s pretrained or not, depends on the dataset and the nature of the task. 

7.2 Audio Models 

After looking at the study by Sehrawat et al. [ 23] on finding deception with CNNs, 
we realize that when comparing ResNet50 and VGG16 structures, ResNet50 does 
a better job working with audio data. Our experimental findings match this result,
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showing the ResNet50 model works better than the VGG16. Another reason we 
chose ResNet50 instead of VGG16 is because it takes much considerably less time 
to train. These findings imply that the ResNet50 model outperforms the VGG16 
model in terms of accuracy and computational efficiency. Therefore, we decide to 
use the ResNet50 architecture in our late fusion model. 

7.3 Late Fusion Model 

Table 1 includes a broader range of referenced works, including those using video 
data. Since our study focuses only on text and audio, we limit comparisons in 
Table 11 to models using text and audio. Table 11 shows that our late fusion model 
outperforms the previous model in both test accuracy and F1 scores. With 90.9% in 
accuracy and an F1 number of 91.1%, our model does better compared to Sehrawat et 
al.’s method with 80% accuracy, and Zhang et al.’s work has a correct rate of 84.40%. 
Given that the dataset is nearly balanced, we expect minimal differences between 
accuracy and F1 score, and our model’s performance aligns with this expectation. 

We see a consistent balance between audio and text inputs when we carefully look 
at how the last layer of fusion gives weights over five validation folds (as shown in 
Table 10). There is only a small change around an almost equal division. This shows 
that our model is strong because even little changes in the weights, which go from 
about 49.7–51.6% for audio and then similar for text, are good enough to handle the 
slight differences in each fold’s information. The balance that is always the same 
makes sure one way of getting information does not take over so the model can 
use what was good about both audio and textual data. This careful way of deciding 
importance really helps make the model work very well and be trusted with different 
kinds of information because it mixes ways to get knowledge together in a smart way 
to find deception. 

Table 11 Comparison of test accuracy and F1 score for models with different modalities 

Modality Previous research Accuracy (%) F1 score (%) 

Text Venkatesh et al. [ 31] 84 N/A 

Hsiao and Sun [ 13] 84 82.64 

Zhang et al. [ 33] 82.26 65.87 

Our model (BiLSTM) 93.57 94.48 

Audio Venkatesh et al. [ 31] 76 N/A 

Hsiao and Sun [ 13] 88 87.92 

Zhang et al. [ 33] 84.59 70.53 

Our model (ResNet50) 93.57 92.16 

Text.+ Audio Sehrawat et al. [ 23] 80 N/A 

Zhang et al. [ 33] 84.40 70.80 

Our model (late fusion) 90.9 91.1
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8 Conclusion and Future Work 

This work aims to create a multimodal model that uses both transcribed text and audio 
data to detect deceptive behavior more accurately. We extracted a total of 16 textual 
features and identified five highly significant ones using both the stepwise method 
and the Overlapping Coefficient (OVL) method. Through our experiments, Logistic 
Regression (LR) achieves the highest accuracy among conventional models with an 
accuracy of 68.53% and an F1 score of 71.69%. However, our deep learning model, 
a BiLSTM with Early Stopping, outperforms all other textual models, achieving an 
accuracy of 93.57% and an F1 score of 94.48%. For the audio data, the ResNet50 
model performs exceptionally well, achieving an accuracy of 93.57% and an F1 
score of 92.16%. Furthermore, by combining text and audio data through a late-
fusion approach, we achieve an accuracy of 90.9% and an F1 score of 91.07%, 
outperforming previous research on similar datasets. 

While this project focused on creating textual and audio models, further analysis 
is needed to explore the interactions between features from both modalities, such 
as the correlation between high pitch and increased wordiness with deception. In 
future work, we plan to add behavioral features from video and images to provide a 
more comprehensive understanding of deceptive behavior. It is important to note that 
the Real Life Trial dataset is relatively small, and while the results are promising, 
experiments with larger datasets will enhance the robustness and generalizability of 
the model. Expanding the dataset will help ensure that our findings are applicable 
across different contexts and populations. 
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