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Abstract: The imidophosphorane ligand, [NPtBu3]– (tBu = tert-butyl), 
enables isolation of a pseudo-tetrahedral, tetravalent praseodymium 
complex [Pr4+(NPtBu3)4], 1-Pr, which is characterized by a suite of 
physical characterization methods including single-crystal X-ray 
diffraction, electron paramagnetic resonance, and L3-edge X-ray 
near-edge spectroscopies. Variable-temperature direct-current 
magnetic susceptibility data, supported by multiconfigurational 
quantum chemical calculations, demonstrate that the electronic 
structure diverges from the isoelectronic Ce3+ analogue due to 
increased crystal field. The four-coordinate environment around Pr4+ 
in 1-Pr, which is unparalleled in reported extended solid systems, 
provides a unique opportunity to study the interplay between crystal 
field splitting and spin-orbit coupling in a molecular tetravalent 
lanthanide within a pseudo-tetrahedral coordination geometry. 

An imidophosphorane ligand framework provided one of the 
first structurally authenticated examples of molecular Tb4+,[1] and 
the in situ characterization of Pr4+.[2] The tetravalent oxidation 
state in molecular lanthanide (Ln) complexes has been 
documented in Tb[1, 3] and Pr,[2, 4] but remains largely confined to 
examples of Ce4+.[5] Despite the similar thermodynamic 
accessibility of Pr4+ and Tb4+,[5a] multiple ligand systems which 
support isolable Tb4+ complexes yield fleeting Pr4+ complexes, 
precluding thorough physical characterization.[2, 3d, 4b] The open-
shell electronic configuration of Pr4+, in contrast to 4f0 Ce4+ 
systems, provides unique opportunities in the context of quantum 
information science and molecular magnetism.[4a, 4c, 6] We recently 
established[6-7] the intermediate coupling regime in extended 
solids containing Pr4+ units in near-octahedral oxide coordination 
environments, highlighting the consequences of the similar 
magnitude of crystal-field and spin-orbit coupling (SOC) effects on 
the electronic structure. Herein, we describe a rare example of an 
isolable molecular complex of Pr4+, [Pr4+(NPtBu3)4] (1-Pr, where 
tBu = tert-butyl), which has been structurally characterized by 

single-crystal X-ray diffraction (SC-XRD), and further studied by a 
suite of physical methods, including L3-edge X-ray near-edge 
absorption spectroscopy (XANES) and SQUID magnetometry 
(SQUID = superconducting quantum interference device). 
Magnetic data and electron paramagnetic resonance (EPR) 
spectroscopy, supported by second-order multireference 
methods, demonstrate divergence between the electronic 
structures of the isoelectronic (4f1) Pr4+ and Ce3+ complexes. 

1-Pr and [Ce4+(NPtBu3)4] (1-Ce), are both synthesized in one-
pot, two-step reactions, consisting of a three-day reaction 
between [LnI3(THF)4] (Ln = Ce, Pr), HNPtBu3, and benzyl 
potassium (KBn), followed by the addition of finely ground AgI 
(Scheme 1). Transmetallation of the [NPtBu3]1-via the sequential 
addition of HNPtBu3 and KBn was employed due to the poor 
solubility of K[NPtBu3]. An in situ oxidation was determined to be 
key for the isolation of monomeric species of tetravalent 
complexes 1-Pr and 1-Ce, as metathesis between LnI3(THF)4, 

Scheme 1. Synthetic overview.  
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KBn, and HNPtBu3, without sequential addition of AgI, did not 
cleanly afford [KLn3+(NPtBu3)4]. The trivalent complexes are 
isolated as THF adducts of the Cs salts, ([Cs(THFx)Ln3+(NPtBu3)4], 
Ln = Pr, 2-PrCs, Ln = Ce, 2-CeCs; x = 1.5 after subjection to 
vacuum, x = 2 in single-crystal X-ray diffraction (SC-XRD) 
structures) via reduction of 1-Ln with CsC8 in THF. Cesium 
enabled isolation of well-defined single-crystal materials for 
structural analysis, as initial results of K+ supported complexes 
prepared via KC8 reduction of 1-Ln provided crystals poorly suited 
for SC-XRD structural determination. 

1-Pr is remarkably thermally robust, with no detectable 
degradation observed via 31P{1H} NMR spectroscopy after 72 h in 
a C6D6 solution at ambient temperature (~25 °C) inside a 
glovebox. After storage of the solution for 8 days, a resonance 
around 300 ppm (ostensibly a Pr3+ degradation product) is 
observed that integrates to a ratio of 0.1:1 (“Pr3+”:1-Pr). Mazzanti 
and co-workers report degradation of [Pr4+(OSiPh3)4(MeCN)2] 
(MeCN = acetonitrile) by 60% in toluene after 24 h (quantified by 
UV-Vis),[4b] however, by replacing one MeCN with 
triphenylphosphine oxide (OPPh3), only 20% of 
[Pr4+(OSiPh3)4(OPPh3)(MeCN)] degrades in 24 h.[4a] Further 
improvement (43% degradation after 7 d) was recently reported 
by Zheng and co-workers, by replacing both MeCN molecules in 
[Pr4+(OSiPh3)4(MeCN)2] with a substituted bipyridine chelate.[4c] 
The thermal stability of 1-Pr is in stark contrast to that of 
previously reported[2] [Pr4+(N=P(1,2-di-tBu-
ethylenediamide)(diethylamide))4] (1-Pr*), which has limited 
thermal stability and precluded its isolation as a pure solid. 

1-Pr and 2-PrCs were structurally characterized by SC-XRD 
(Fig. 1). The average Pr4+–N distance in 1-Pr is 2.179(3) Å, 
compared to the average Pr3+–N distance of 2.329(14) Å in 2-PrCs, 
consistent with the 0.14 Å difference in Shannon ionic radii 
between Pr4+ and Pr3+.[8] 1-Pr is pseudo-tetrahedral , with an 
average N–Pr4+–N angle of 109.5(21) Å, and τ4 index[9] of 0.97, 
indicating near-tetrahedral coordination geometry (Table S7). The 
average Ce4+–N distance in 1-Ce (2.176(4) Å) is statistically 
equivalent from that of 1-Pr, consistent with the similar Shannon 
ionic radii of the neighboring lanthanides (0.87 Å for Ce4+ vs 0.85 
Å for Pr4+).[8] The trivalent complexes also have statistically 
equivalent structural parameters in line with the small changes in 
ionic radii; 2-CeCs has an average Ln3+–N distance of 2.345(13) Å 
vs. 2.329(14) Å in 2-PrCs.  

Electronic absorption spectroscopy (ultraviolet-visible-near-
infrared, UV-vis-NIR) complements the structural data in 
validating oxidation state assignments. For the Pr complexes, the 
UV-vis-NIR spectra are particularly diagnostic, as 2-PrCs is 
practically transparent in the visible region, save the exceptionally 
weak (ε ≤ 10 M-1cm-1) f-f transitions (Fig. S16). In contrast, the 
spectrum of 1-Pr exhibits a strong, broad absorption (~400-1500 
nm), with λmax = 550 nm (ε = 8000 M-1 cm-1), as well as a 
secondary feature at 299 nm (ε = 3600 M-1 cm-1, Fig. S14, S15), 
resembling the spectrum of 1-Pr*.[2] The excitations were 
determined to be ligand-to-metal charge-transfer (LMCT) bands, 
from N 2p to Pr 4f orbitals, and were assigned from the spin-orbit 
states computed via state-interaction of restricted active space 
self-consistent field calculations[10] with an active space including 
Pr 4f, 5d, and ligand N 2p orbitals (Fig. S37, S38). The spectrum 
of 2-CeCs is consistent with reported examples for Ce3+ 
imidophosphorane complexes, with a 4f-5d transition observed at 
375 nm (ε = 1300 M-1cm-1, Fig. S18).[11] The 4f-5d transition of 2-

CeCs (λmax = 375 nm, 26,700 cm-1) is similar to previously reported 
complexes (Fig. S18).[11-12] Notably, the 4f-5d transition energy is 
consistent with the extended multistate complete active space 
second-order perturbation theory (XMS-CASPT2)[13] computed 
spin-free energy gap calculated between the 4f and 5d orbitals of 
2-CeCs (~28,000 cm-1, vide infra). The spectrum of 1-Ce is also 
consistent with similar reported complexes,[11b, 11c, 12] featuring a 
broad LMCT feature with λmax = 371 nm (ε = 15000 cm-1, Fig. S17).  

1-Pr was characterized by L3-edge X-ray near-edge 
spectroscopy (XANES), which probes the Ln 2p3/2→5d core 
electron excitation. 1-Pr exhibits a white line “doublet” feature that 
is characteristic of tetravalent lanthanides (Fig. 2A).[14] The 
spectrum of 1-Pr is best modeled using three pseudo-Voigt 
functions, similar to the previously reported[11b, 11c] L3-edge spectra 
of Ce4+ imidophosphorane complexes, including 1-Ce (Fig. S22). 
The origin of multiple features is due to differing final states, one 
consisting of a ligand hole (L) and formal Ln3+ configuration, 
denoted as 4fn+1L5d1, and a higher energy feature associated with 
a formally tetravalent metal oxidation state (4fn5d1).[14a, 14c, 15] The 
ratio of the integrated area of fitted peaks is denoted as 
A3+/(A3++A4+), where An+ is the integrated area corresponding to 
the peaks attributed to the Lnn+ final state configuration. For 1-Pr, 
A3+/(A3++A4+) is calculated to be 0.73(5), with a value of 0.63(5) 
for 1-Ce (Table S1). The similarity between 1-Pr and 1-Ce is 
consistent with studies of LnO2 (Ln = Ce, Pr, Tb),[14a, 16] where Ce 
and Pr exhibit similar A3+/(A3++A4+) values and is indicative, in 
context of this model, of a similar degree Ln 4f/N 2p mixing in 1-
Pr and 1-Ce. The previously reported[1] L3-edge XANES spectrum 
of the related Tb4+ imidophosphorane complex, [Tb4+(N=P(1,2-di-
tBu-ethylenediamide)(diethylamide))4] (1-Tb*), contrasts 1-Ce 
and 1-Pr, and is satisfactorily modeled with only two peaks, with 
a lower A3+/(A3++A4+) value of 0.39(4). The trends observed 
between 1-Ce, 1-Pr, and 1-Tb* are consistent with those 
observed for the LnO2 series.[14a, 14b]  

Figure 1. SC-XRD determined molecular structures of 1-Pr and 2-PrCs. 
Thermal ellipsoids displayed at 50% probability. Average nitrogen-metal 
bond lengths displayed below with comparison to isotypic Ce congeners, 
1-Ce and 2-CeCs. Legend: Purple = Cs, Lilac = Pr, Orange = P, Red = O, 
Blue = N, Black = C. Ligand disorder and H atoms omitted for clarity. 
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Electron paramagnetic resonance (EPR) spectroscopy was 
performed on the isoelectronic 4f1 compounds, 1-Pr and 2-CeCs. 
The X-band spectrum of 1-Pr at 5 K in a 2-methyl-THF glass 
exhibits a spectrum (Fig. 2B) similar to the previously reported, in 
situ characterization of 1-Pr*.[2] The spectrum is complicated by 
strong hyperfine coupling to the 100% abundant 141Pr nucleus (I 
= 5/2), and significant g-anisotropy.[6, 17] Similar to previous 
studies, spectral simulation was used to show that the complex 
spectrum of 1-Pr can be qualitatively reproduced with spin 
Hamiltonian parameters consistent with those expected for a Pr4+ 
ion. The simulation of the experimental spectrum of 1-Pr used an 
effective spin-1/2 Hamiltonian to avoid over parameterization. 
This contrasts with other studies that use more sophisticated 
Hamiltonians to model the G8 quartet ground state of an ideal 
tetrahedral (Td) crystal field.[18] This choice is justified by the lower 
symmetry of 1-Pr and the energies of the ground state 2F5/2 
manifold predicted by the (SO)-XMS-CASPT2 calculations.[13] 
This simulation yielded the following parameters: gz = 2.74, gy = 
1.43, gx = 0.96, Az = 4170 MHz, Ay = 2240 MHz, and Ax = 1720 
MHz. The EPR data support the previous[2] assignment of the 
spectrum of 1-Pr* as indeed originating from a Pr4+ complex in 
solution (see Fig. S24 for co-plot of 1-Pr and 1-Pr*). The spectrum 
of 2-CeCs (Fig. S25) is similar to a previously reported[11c] 
spectrum of a Ce3+ imidophosphorane complex, with one main 
transition, as expected for a Kramers doublet without hyperfine 
coupling. 

Direct-current (DC) magnetic susceptibility measurements 
demonstrate that the molar susceptibility (χM) of 1-Pr is lower 
compared to isoelectronic 2-CeCs at all temperatures from 1.8–
300 K, indicating a smaller Landé g-factor, (Fig. 2C) in agreement 
with the theoretical models of 1-Pr and 2-CeCs (vide supra). The 
300 K data for 2-CeCs (χMT = 0.79 emu K mol-1) agrees with the 
free ion 4f1 expected value[19] of 0.80 emu K mol-1, while 1-Pr (χMT 
= 0.64 emu K mol-1) is notably below the predicted value. Similarly 
to 2-CeCs, the χMT value of 2-PrCs at room temperature is in 
agreement with the calculated value (χMT = 1.58 emu K mol-1 vs. 
1.60 emu K mol-1 expected). The lower χMT value of 0.64 emu K 
mol-1 for 1-Pr is attributed to partial quenching of orbital angular 
momentum, driven by increased formal charge of Pr4+, resulting 
in larger splitting of the crystal field.[7] The observation of reduced 
χMT for 1-Pr vs. 2-CCs from T = 1.8–300 K contrasts with the data 
reported for Pr4+ supported by a siloxide ligand framework in a 

pseudo-octahedral coordination environment (e.g. 
[Pr4+(OSiPh3)4(MeCN)2]), wherein isoelectronic Pr4+ and Ce3+ 
display nearly identical magnetic susceptibility data.[4b] However, 
it was recently reported that replacement of MeCN ligands in 
[Pr4+(OSiPh3)4(MeCN)2] with a substituted bipyridine chelate was 
reported to reduce χMT[4c] to values consistent with the low χMT 
values that are characteristic of solid-state Pr4+ complexes in 
cubic oxide coordination environments.[7, 17a, 20] 

An ab initio investigation of the g-tensors was carried out for 
both 1-Pr and 2-CeCs, using spin-orbit (SO)-XMS-CASPT2 with 
an active space including a single electron distributed over the 4f 
and 5d orbitals, denoted (1e, 12o) (Table S11). Inclusion of the 
5d orbitals in the active space resulted in g-tensor values closer 
to experimental values for 1-Pr, while the g-tensor values for 2-
CeCs were rather insensitive to inclusion of the 5d orbitals (Table 
S11). Calculated values for 1-Pr were in agreement with those 
derived from EPR, with gz = 2.52(2.74 exp.), and gy = 1.26(1.43 
exp.), and gx = 0.69(0.96 exp.), supporting the theoretical model. 

The crystal field splitting in the Ce3+ and Pr4+ systems was 
evaluated with (SO)-XMS-CASPT2,[13b] as the effectively low site 
symmetry of the ions preclude a physically meaningful fit to a 
cubic Hamiltonian.[18] In the case of 1-Pr, the energy levels arising 
from the 4f-4f transitions span 141 to 4905 cm-1 cm-1, but spans 
up to 2719 cm-1 for 2-CeCs. We note that the energy range of the 
4f-4f excitations slightly varies depending on the choice of active 
space, (i.e., with or without 5d orbitals, Table S8, S9), but remain 
consistent with the larger crystal-field splitting of the 4f orbitals in 
1-Pr. Furthermore, the calculated relative energy separation 
between the states originating from the lowest energy 4f orbital 
and the lowest 5d orbitals of 2-CeCs is 29,500 cm-1. This result is 
in good agreement with the UV-vis spectrum, which shows a 4f-
5d transition at 26,700 cm-1. 

While 4f covalency is increased in the Ln4+ oxidation state 
versus Ln3+,[7, 14a, 14c, 16, 21] the crystal field splitting of the 4f orbitals 
is demonstrated to be higher in 1-Pr than in the isoelectronic 4f1 
congener, 2-CeCs. The effect of the increased charge of the ion is 
apparent even in these 4-coordinate complexes, where a lower 
crystal field is expected due to a reduced number of donors, inter 
alia, compared to cubic oxide supported ions.[7, 17a, 20] This lower 
coordinate complex, 1-Pr, demonstrates the utility of coordination 

Figure 2. (A) Transmission L3-edge XANES spectra of 1-Pr and 2-PrCs. (B) X-band EPR spectrum of 1-Pr in a 2-methyl-THF glass at 5 K. (C) χMT vs. temperature 
for 1-Pr, 2-PrCs, and 2-CeCs under DC field of 1 T. Dotted lines represent calculated χMT values for 4f1 (0.80 emu K mol-1 ) and 4f2 (1.6 emu K mol-1) configurations. 
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chemistry in tuning the crystal field experienced by Pr4+ and the 
relative quenching of orbital angular momentum. 

In comparison to Ce3+, the orbital angular momentum of the 
Pr4+ ion f1 configuration is sensitive to the magnitude and 
symmetry of the crystal field (as determined by ligand type, 
coordination number, symmetry). The tetravalent oxidation state 
is critical: in the nearly isotypic Ce3+ and Pr4+ complexes 
examined here, Ce3+ exhibits free-ion magnetic behavior. 
Specifically, the χMT value observed for 1-Pr is slightly lower than 
that of 2-CeCs at all temperatures, which is consistent with g 
values determined by EPR and computational analysis. This 
decrease in g is attributed to partial quenching of orbital angular 
momentum at Pr4+ in 1-Pr in comparison to Ce3+ in 2-CeCs, which 
is expected as the crystal field strength increases. As the crystal 
field increases at Pr4+, competition between crystal field and SOC 
grows, and the Pr4+ single-ion properties can resemble those of 
high-valent actinides.[7, 22] The unique susceptibility of 1-Pr, in 
between that of solid-state oxides and other molecular examples, 
demonstrates the tuning of the magnetic properties of Ln4+ 
systems by modification of the coordination environment. Direct 
measurement of the crystal field transitions via inelastic neutron 
scattering and far-infrared magnetospectroscopy (FIRMS) studies 
will further delineate the magnitude of the pseudo-tetrahedral 
crystal field at molecular Pr4+ and the competing interactions 
driving the deviation from the idealized G8 ground state. 
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A crystallographically characterized Pr4+ imidophosphorane 
complex of is presented, [Pr4+(NPtBu3)4] (where tBu = C(CH3)3), 
which exhibits a pseudo-tetrahedral coordination geometry in the 
solid state. The complex exhibits remarkable thermal stability, 
facilitating rigorous physical characterization that demonstrates 
the isoelectronic Ce3+ and Pr4+ ions exhibit divergent magnetic 
properties. 


