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Abstract: The imidophosphorane ligand, [NPBus]™ (‘Bu = tert-butyl),
enables isolation of a pseudo-tetrahedral, tetravalent praseodymium
complex [Pr**(NPBus)s], 1-Pr, which is characterized by a suite of
physical characterization methods including single-crystal X-ray
diffraction, electron paramagnetic resonance, and Ls-edge X-ray
near-edge spectroscopies. Variable-temperature direct-current
magnetic susceptibility data, supported by multiconfigurational
quantum chemical calculations, demonstrate that the electronic
structure diverges from the isoelectronic Ce®* analogue due to
increased crystal field. The four-coordinate environment around Pr#*
in 1-Pr, which is unparalleled in reported extended solid systems,
provides a unique opportunity to study the interplay between crystal
field splitting and spin-orbit coupling in a molecular tetravalent
lanthanide within a pseudo-tetrahedral coordination geometry.

An imidophosphorane ligand framework provided one of the
first structurally authenticated examples of molecular Tb**,[1 and
the in situ characterization of Pr**.[? The tetravalent oxidation
state in molecular lanthanide (Ln) complexes has been
documented in Tbl"- 3 and Pr,? 4l but remains largely confined to
examples of Ce*.Pl Despite the similar thermodynamic
accessibility of Pr** and Tb**,%3 multiple ligand systems which
support isolable Tb* complexes yield fleeting Pr** complexes,
precluding thorough physical characterization.? 3¢ 41 The open-
shell electronic configuration of Pr**, in contrast to 4f° Ce*
systems, provides unique opportunities in the context of quantum
information science and molecular magnetism.“2 4c. 6l We recently
established!®”! the intermediate coupling regime in extended
solids containing Pr** units in near-octahedral oxide coordination
environments, highlighting the consequences of the similar
magnitude of crystal-field and spin-orbit coupling (SOC) effects on
the electronic structure. Herein, we describe a rare example of an
isolable molecular complex of Pr**, [Pr**(NPBus)] (1-Pr, where
Bu = tert-butyl), which has been structurally characterized by
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Scheme 1. Synthetic overview.

single-crystal X-ray diffraction (SC-XRD), and further studied by a
suite of physical methods, including Ls-edge X-ray near-edge
absorption spectroscopy (XANES) and SQUID magnetometry
(SQUID = superconducting quantum interference device).
Magnetic data and electron paramagnetic resonance (EPR)
spectroscopy, supported by second-order multireference
methods, demonstrate divergence between the electronic
structures of the isoelectronic (4f') Pr** and Ce®* complexes.

1-Pr and [Ce**(NPBus)4] (1-Ce), are both synthesized in one-
pot, two-step reactions, consisting of a three-day reaction
between [Lnls(THF)s] (Ln = Ce, Pr), HNPBus, and benzyl
potassium (KBn), followed by the addition of finely ground Agl
(Scheme 1). Transmetallation of the [NP'Bus]'"via the sequential
addition of HNPBus and KBn was employed due to the poor
solubility of KINPBus]. An in situ oxidation was determined to be
key for the isolation of monomeric species of tetravalent
complexes 1-Pr and 1-Ce, as metathesis between Lnl3(THF)as,



KBn, and HNPBus, without sequential addition of Agl, did not
cleanly afford [KLn®*(NPBus)]. The trivalent complexes are
isolated as THF adducts of the Cs salts, ([Cs(THFx)Ln**(NPBus)4],
Ln = Pr, 2-Pr®s, Ln = Ce, 2-Ce®; x = 1.5 after subjection to
vacuum, x = 2 in single-crystal X-ray diffraction (SC-XRD)
structures) via reduction of 1-Ln with CsCs in THF. Cesium
enabled isolation of well-defined single-crystal materials for
structural analysis, as initial results of K* supported complexes
prepared via KCs reduction of 1-Ln provided crystals poorly suited
for SC-XRD structural determination.

1-Pr is remarkably thermally robust, with no detectable
degradation observed via 3'P{'H} NMR spectroscopy after 72 h in
a CeDe solution at ambient temperature (~25 °C) inside a
glovebox. After storage of the solution for 8 days, a resonance
around 300 ppm (ostensibly a Pr®* degradation product) is
observed that integrates to a ratio of 0.1:1 (“Pr**”:1-Pr). Mazzanti
and co-workers report degradation of [Pr**(OSiPhs)s(MeCN)2]
(MeCN = acetonitrile) by 60% in toluene after 24 h (quantified by
UV-Vis),“  however, by replacing one MeCN with
triphenylphosphine oxide (OPPhz), only 20% of
[Pr**(OSiPhs)s(OPPhs)(MeCN)] degrades in 24 h.Fa Further
improvement (43% degradation after 7 d) was recently reported
by Zheng and co-workers, by replacing both MeCN molecules in
[Pr**(OSiPhs)s(MeCN)2] with a substituted bipyridine chelate.c!
The thermal stability of 1-Pr is in stark contrast to that of
previously reported? [Pr**(N=P(1,2-di-Bu-
ethylenediamide)(diethylamide))s] (1-Pr*), which has limited
thermal stability and precluded its isolation as a pure solid.

1-Pr and 2-Pr® were structurally characterized by SC-XRD
(Fig. 1). The average Pr**—N distance in 1-Pr is 2.179(3) A,
compared to the average Pri*—N distance of 2.329(14) A in 2-Pr®s,
consistent with the 0.14 A difference in Shannon ionic radii
between Pr** and Pr**.®l 1.Pr is pseudo-tetrahedral , with an
average N-Pr**—N angle of 109.5(21) A, and 14 index® of 0.97,
indicating near-tetrahedral coordination geometry (Table S7). The
average Ce*—N distance in 1-Ce (2.176(4) A) is statistically
equivalent from that of 1-Pr, consistent with the similar Shannon
ionic radii of the neighboring lanthanides (0.87 A for Ce** vs 0.85
A for Pr**).Bl The trivalent complexes also have statistically
equivalent structural parameters in line with the small changes in
ionic radii; 2-Ce®s has an average Ln**—N distance of 2.345(13) A
vs. 2.329(14) A in 2-PrCs.

Electronic absorption spectroscopy (ultraviolet-visible-near-
infrared, UV-vis-NIR) complements the structural data in
validating oxidation state assignments. For the Pr complexes, the
UV-vis-NIR spectra are particularly diagnostic, as 2-PrCs is
practically transparent in the visible region, save the exceptionally
weak (¢ < 10 M'em™) f-f transitions (Fig. S16). In contrast, the
spectrum of 1-Pr exhibits a strong, broad absorption (~400-1500
nm), with Amax = 550 nm (¢ = 8000 M cm), as well as a
secondary feature at 299 nm (¢ = 3600 M' cm™, Fig. S14, S15),
resembling the spectrum of 1-Pr*.@ The excitations were
determined to be ligand-to-metal charge-transfer (LMCT) bands,
from N 2p to Pr 4f orbitals, and were assigned from the spin-orbit
states computed via state-interaction of restricted active space
self-consistent field calculations!' with an active space including
Pr 4f, 5d, and ligand N 2p orbitals (Fig. S37, S38). The spectrum
of 2-Ce®s is consistent with reported examples for Ce®
imidophosphorane complexes, with a 4f-5d transition observed at
375 nm (¢ = 1300 M-'cm™!, Fig. S18).'1 The 4f-5d transition of 2-
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Figure 1. SC-XRD determined molecular structures of 1-Pr and 2-Prcs,
Thermal ellipsoids displayed at 50% probability. Average nitrogen-metal
bond lengths displayed below with comparison to isotypic Ce congeners,
1-Ce and 2-Ce®s. Legend: Purple = Cs, Lilac = Pr, Orange = P, Red = O,
Blue = N, Black = C. Ligand disorder and H atoms omitted for clarity.
Ce®® (Amax = 375 nm, 26,700 cm™") is similar to previously reported
complexes (Fig. S18).I'"'2 Notably, the 4f-5d transition energy is
consistent with the extended multistate complete active space
second-order perturbation theory (XMS-CASPT2)'¥l computed
spin-free energy gap calculated between the 4f and 5d orbitals of
2-Ce®s (~28,000 cm™, vide infra). The spectrum of 1-Ce is also
consistent with similar reported complexes,['"> ¢ 12 featuring a
broad LMCT feature with Amax = 371 nm (¢ = 15000 cm', Fig. S17).

1-Pr was characterized by Ls-edge X-ray near-edge
spectroscopy (XANES), which probes the Ln 2p32—5d core
electron excitation. 1-Pr exhibits a white line “doublet” feature that
is characteristic of tetravalent lanthanides (Fig. 2A)."1 The
spectrum of 1-Pr is best modeled using three pseudo-Voigt
functions, similar to the previously reported!"" 'l | s-edge spectra
of Ce** imidophosphorane complexes, including 1-Ce (Fig. S22).
The origin of multiple features is due to differing final states, one
consisting of a ligand hole (L) and formal Ln3" configuration,
denoted as 4f"*'L5d", and a higher energy feature associated with
a formally tetravalent metal oxidation state (4f"5d").[14a. 14¢. 151 The
ratio of the integrated area of fitted peaks is denoted as
A/(A%+A%), where A™ is the integrated area corresponding to
the peaks attributed to the Ln"* final state configuration. For 1-Pr,
A/(A%+A*) is calculated to be 0.73(5), with a value of 0.63(5)
for 1-Ce (Table S1). The similarity between 1-Pr and 1-Ce is
consistent with studies of LnO2 (Ln = Ce, Pr, Tb),['* '8 where Ce
and Pr exhibit similar A%*/(A%*+A*") values and is indicative, in
context of this model, of a similar degree Ln 4f/N 2p mixing in 1-
Pr and 1-Ce. The previously reported!"! Ls-edge XANES spectrum
of the related Tb** imidophosphorane complex, [Tb**(N=P(1,2-di-
Bu-ethylenediamide)(diethylamide))s] (1-Tb*), contrasts 1-Ce
and 1-Pr, and is satisfactorily modeled with only two peaks, with
a lower A%*/(A%*+A*") value of 0.39(4). The trends observed
between 1-Ce, 1-Pr, and 1-Tb* are consistent with those
observed for the LnO2 series.[14a. 14b]
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Figure 2. (A) Transmission Ls-edge XANES spectra of 1-Pr and 2-Pr®s. (B) X-band EPR spectrum of 1-Pr in a 2-methyl-THF glass at 5 K. (C) xuT vs. temperature
for 1-Pr, 2-Pr®s, and 2-CeCs under DC field of 1 T. Dotted lines represent calculated ymT values for 4f' (0.80 emu K mol' ) and 4f2 (1.6 emu K mol') configurations.

Electron paramagnetic resonance (EPR) spectroscopy was
performed on the isoelectronic 4f' compounds, 1-Pr and 2-Ce®s.
The X-band spectrum of 1-Pr at 5 K in a 2-methyl-THF glass
exhibits a spectrum (Fig. 2B) similar to the previously reported, in
situ characterization of 1-Pr*.[? The spectrum is complicated by
strong hyperfine coupling to the 100% abundant 'Pr nucleus (/
= 5/2), and significant g-anisotropy.l® ' Similar to previous
studies, spectral simulation was used to show that the complex
spectrum of 1-Pr can be qualitatively reproduced with spin
Hamiltonian parameters consistent with those expected for a Pr**
ion. The simulation of the experimental spectrum of 1-Pr used an
effective spin-1/2 Hamiltonian to avoid over parameterization.
This contrasts with other studies that use more sophisticated
Hamiltonians to model the T's quartet ground state of an ideal
tetrahedral (Tq) crystal field.['® This choice is justified by the lower
symmetry of 1-Pr and the energies of the ground state 2Fspq
manifold predicted by the (SO)-XMS-CASPT2 calculations.[']
This simulation yielded the following parameters: g: = 2.74, g, =
1.43, gx = 0.96, A; = 4170 MHz, Ay = 2240 MHz, and Ax = 1720
MHz. The EPR data support the previous!? assignment of the
spectrum of 1-Pr* as indeed originating from a Pr** complex in
solution (see Fig. S24 for co-plot of 1-Pr and 1-Pr*). The spectrum
of 2-Ce® (Fig. S25) is similar to a previously reported!''
spectrum of a Ce® imidophosphorane complex, with one main
transition, as expected for a Kramers doublet without hyperfine
coupling.

Direct-current (DC) magnetic susceptibility measurements
demonstrate that the molar susceptibility (ym) of 1-Pr is lower
compared to isoelectronic 2-Ce®s at all temperatures from 1.8—
300 K, indicating a smaller Landé g-factor, (Fig. 2C) in agreement
with the theoretical models of 1-Pr and 2-Ce®s (vide supra). The
300 K data for 2-Ce®® (ymT = 0.79 emu K mol™") agrees with the
free ion 4f' expected valuel'® of 0.80 emu K mol!, while 1-Pr (ymT
= 0.64 emu K mol ) is notably below the predicted value. Similarly
to 2-Ce®s, the xmT value of 2-Pr® at room temperature is in
agreement with the calculated value (ymT = 1.58 emu K mol™ vs.
1.60 emu K mol! expected). The lower ywT value of 0.64 emu K
mol™' for 1-Pr is attributed to partial quenching of orbital angular
momentum, driven by increased formal charge of Pr**, resulting
in larger splitting of the crystal field.["! The observation of reduced
xuT for 1-Pr vs. 2-C® from T = 1.8-300 K contrasts with the data
reported for Pr** supported by a siloxide ligand framework in a

pseudo-octahedral coordination environment (e.g.
[Pr**(OSiPhs)s(MeCN)2]), wherein isoelectronic Pr** and Ce®
display nearly identical magnetic susceptibility data.l*! However,
it was recently reported that replacement of MeCN ligands in
[Pr**(0SiPhs)s(MeCN)] with a substituted bipyridine chelate was
reported to reduce ymT? to values consistent with the low ymT
values that are characteristic of solid-state Pr** complexes in
cubic oxide coordination environments.[”: 172 201

An ab initio investigation of the g-tensors was carried out for
both 1-Pr and 2-Ce®s, using spin-orbit (SO)-XMS-CASPT2 with
an active space including a single electron distributed over the 4f
and 5d orbitals, denoted (1e, 120) (Table S11). Inclusion of the
5d orbitals in the active space resulted in g-tensor values closer
to experimental values for 1-Pr, while the g-tensor values for 2-
CeCs were rather insensitive to inclusion of the 5d orbitals (Table
S11). Calculated values for 1-Pr were in agreement with those
derived from EPR, with g- = 2.52(2.74 exp.), and gy = 1.26(1.43
exp.), and gx = 0.69(0.96 exp.), supporting the theoretical model.

The crystal field splitting in the Ce®* and Pr** systems was
evaluated with (SO)-XMS-CASPT2,['3! as the effectively low site
symmetry of the ions preclude a physically meaningful fit to a
cubic Hamiltonian.["® In the case of 1-Pr, the energy levels arising
from the 4f-4f transitions span 141 to 4905 cm™ cm™, but spans
up to 2719 cm™' for 2-Ce®s. We note that the energy range of the
4f-4f excitations slightly varies depending on the choice of active
space, (i.e., with or without 5d orbitals, Table S8, S9), but remain
consistent with the larger crystal-field splitting of the 4f orbitals in
1-Pr. Furthermore, the calculated relative energy separation
between the states originating from the lowest energy 4f orbital
and the lowest 5d orbitals of 2-Ce®s is 29,500 cm™. This result is
in good agreement with the UV-vis spectrum, which shows a 4f-
5d transition at 26,700 cm™™.

While 4f covalency is increased in the Ln*" oxidation state
versus Ln3* [7: 14, 14c,16. 211 the crystal field splitting of the 4f orbitals
is demonstrated to be higher in 1-Pr than in the isoelectronic 4f!
congener, 2-Ce®s. The effect of the increased charge of the ion is
apparent even in these 4-coordinate complexes, where a lower
crystal field is expected due to a reduced number of donors, inter
alia, compared to cubic oxide supported ions.[” 172 20 This lower
coordinate complex, 1-Pr, demonstrates the utility of coordination



chemistry in tuning the crystal field experienced by Pr** and the
relative quenching of orbital angular momentum.

In comparison to Ce®*, the orbital angular momentum of the
Pr** ion f' configuration is sensitive to the magnitude and
symmetry of the crystal field (as determined by ligand type,
coordination number, symmetry). The tetravalent oxidation state
is critical: in the nearly isotypic Ce® and Pr** complexes
examined here, Ce® exhibits free-ion magnetic behavior.
Specifically, the xuT value observed for 1-Pr is slightly lower than
that of 2-Ce®® at all temperatures, which is consistent with g
values determined by EPR and computational analysis. This
decrease in g is attributed to partial quenching of orbital angular
momentum at Pr** in 1-Pr in comparison to Ce®" in 2-Ce®®, which
is expected as the crystal field strength increases. As the crystal
field increases at Pr**, competition between crystal field and SOC
grows, and the Pr** single-ion properties can resemble those of
high-valent actinides.[” 22 The unique susceptibility of 1-Pr, in
between that of solid-state oxides and other molecular examples,
demonstrates the tuning of the magnetic properties of Ln*
systems by modification of the coordination environment. Direct
measurement of the crystal field transitions via inelastic neutron
scattering and far-infrared magnetospectroscopy (FIRMS) studies
will further delineate the magnitude of the pseudo-tetrahedral
crystal field at molecular Pr** and the competing interactions
driving the deviation from the idealized I's ground state.
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A crystallographically characterized Pr** imidophosphorane
complex of is presented, [Pr**(NPBus)s] (where Bu = C(CHs)s),
which exhibits a pseudo-tetrahedral coordination geometry in the
solid state. The complex exhibits remarkable thermal stability,
facilitating rigorous physical characterization that demonstrates
the isoelectronic Ce® and Pr** ions exhibit divergent magnetic
properties.



