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Abstract

Endoscopy, enabling high-resolution imaging of deep tissues and internal organs, plays an important role in basic research and
clinical practice. Recent advances in photoacoustic microscopy (PAM), demonstrating excellent capabilities in high-resolution
functional imaging, have sparked significant interest in its integration into the field of endoscopy. However, there are challenges
in achieving functional PAM in the endoscopic setting. This Perspective article discusses current progress in the development
of endoscopic PAM and the challenges related to functional measurements. Then, it points out potential directions to advance
endoscopic PAM for functional imaging by leveraging fiber optics, microfabrication, optical engineering, and computational

approaches. Finally, it highlights emerging opportunities for functional endoscopic PAM in basic and translational biomedicine.

l. Introduction

Providing detailed structural, functional, and molecular insights into deep tissues and organs, endoscopy plays a crucial role in
both basic research and clinical practice'?. While non-invasive imaging technologies, including X-ray computed tomography
(CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography, can also image internal
tissues and organs, endoscopy offers higher resolution and more diverse contrasts’>. Commonly used endoscopic techniques are
based on white light, ultrasound (US), optical coherence tomography (OCT), and fluorescence imaging. White-light endoscopy
is easy to use, but lacks depth information®*. Ultrasound endoscopy penetrates centimeters of tissue, but has limited resolution
(>100 um)*. OCT endoscopy, conversely, offers microscopic resolution, but penetrates only 1-2 millimeters’. Moreover, both
US and OCT primarily provide structural information. Multi-photon fluorescence endoscopy, although offering cellular-level

resolution and molecular contrast, has limited field of view and imaging speed®.

Photoacoustic imaging (PAI), combining the advantages of light and ultrasound’8, holds great potential to bridge the gaps in
existing endoscopic techniques and has attracted increasing attention in recent years (Fig. 1a). Optically, PAI provides unique
absorption contrasts that reveal the structural, functional, and molecular information of biological tissues. Ultrasonically, PAI
benefits from reduced tissue scattering and absorption compared to pure optical imaging, enabling depth-resolved, deep-tissue
imaging with improved spatiotemporal resolution and extended field of view. In particular, photoacoustic microscopy (PAM),
a major embodiment of PAI, offers multi-contrast imaging at the microscopic level (Fig. 1b)°. Recent advances in endoscopic
PAM have demonstrated various preclinical (Fig. 1¢) and clinical (Fig. 1d) applications®. However, only a small fraction of the

existing work (~3%) presents functional imaging, highlighting the need for further development in this area.

Previous articles have comprehensively reviewed the technical advances'->!° and applications'! of endoscopic PAM in general.
In contrast, this Perspective article focuses on the limitations of current endoscopic PAM techniques in functional imaging and
provides insights into future directions. Specifically, the first section summarizes current progress on endoscopic PAM, with

an emphasis on the probe design and construction. The second section discusses the technical limitations of functional imaging
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in endoscopic PAM settings. The third section highlights various strategies that have the potential to address these limitations,
by leveraging recent advances in fiber optics, microfabrication, optical engineering, and computational imaging. Finally, this

article concludes by introducing potential opportunities for endoscopic functional PAM.
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FIG.1. Advances in endoscopic photoacoustic microscopy (PAM). a) Publication and citation numbers from 2011 to 2023, searched with
the keywords of “photoacoustic” and “endoscope/endoscopy” on the Web of Science. b) Absorption spectra of representative endogenous
chromophores®. Reprinted with permission from [9] Copyright 2024 Wiley. c) Representative endoscopic PAM images acquired in animal
models: c1) structural image of the 3D microvascular in a rat colorectum'?; c2) blood oxygenation (sO2) map in a rat colon'3. Reprinted
with permission from [12] Copyright 2024 Optica Publishing Group. Reprinted with permission from [13] Copyright 2024 Springer
Nature. d) Representative clinical applications of endoscopic PAM: d1) differentiating normal and tumor tissues in a patient with prostate
cancer'4; d2) detecting atherosclerotic plaque in a human coronary artery with lipid contrast'®; d3) examining the cervical remodeling in
patients at different stages of pregnancy'¢. Reprinted with permission from [14] Copyright 2024 Elsevier. Reprinted with permission from
[15] Copyright 2024 Optica Publishing Group. Reprinted with permission from [16] Copyright 2024 SPIE.

1l Current progress on endoscopic PAM

i. Biomedical applications of endoscopic PAM

Endoscopic PAM has shown great promise in both preclinical and clinical settings (Fig. 1¢c-d). In gastrointestinal imaging!>!317-

262627 it enables label-free microvascular imaging, facilitating diagnosis of diseases in the gastrointestinal tract. By visualizing
abnormal angiogenesis, endoscopic PAM enhances the detection of colorectal cancer compared to traditional colonoscopy?®.
By assessing blood oxygenation, it provides valuable functional insights into Crohn’s disease, an inflammatory bowel disease?’.
Moreover, endoscopic PAM has shown great promise in assessing the treatment response of rectal cancer?. In intravascular
imaging'>3%4, endoscopic PAM can characterize atherosclerotic plaques by identifying lipid-rich contents, which are prone to
rupture and may lead to cardiovascular events®. In urology!'**7, endoscopic PAM can detect prostate cancer by measuring
changes in the microvascular density that are typically associated with malignant growth'* and visualize neurovascular bundles
during radical prostatectomy*’. In gynecology'%*-2, endoscopic PAM has shown potential in screening the ovarian cancer by

detecting subtle changes in the vascular structure and tissue oxygenation that are indicative of tumor presence or progression**->°,

2
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Also, it can examine cervical remodeling by identifying changes in the microvascular density'®. These applications underscore

the transformative potential of endoscopic PAM across various medical fields.

ii.  Application-specific design and construction of endoscopic PAM probe

There are two typical configurations of endoscopic PAM, forward viewing and side viewing. The forward-viewing endoscopic
PAM is mostly used for surgical guidance, such as laparoscopy>® and breast tumor screening>*. In contrast, the side-viewing
configuration is widely adopted to examine the inner wall of tubular organs, such as the rectum, esophagus, and blood vessel'.
Different applications impose specific requirements on the size of the endoscopic PAM probe to ensure fitness and flexibility.
Generally, there is a tradeoff between the probe size and spatial resolution. The transverse resolution of PAM can be determined
by either light excitation or ultrasound detection, which correspond to optical- and acoustic-resolution PAM, respectively™.
Optical-resolution PAM offers 1-2 orders of magnitude better transverse resolution but usually requires a more delicate optical
design and thus has a larger footprint (>1 mm)'>*>°¢-3°_ This limits its application to larger internal organs with low tortuosity,
such as the coronary artery and the gastrointestinal and vaginal tracts. Acoustic-resolution PAM with a relaxed requirement on
light focusing is typically adopted for reduced probe size (<1 mm) to enable applications like imaging branches of the coronary
artery>%%%%! However, the compromised transverse resolution (>100 pm) may lead to the miss of crucial pathological features

such as the thin fibrous cap, a key precursor of plaque rupture*>-6?

. Also, in both optical- and acoustic-resolution PAM, the axial
resolution is limited by the bandwidth of ultrasound detection to tens or hundreds of microns>, which prevents cellular-level
imaging in 3D. The design and construction of endoscopic PAM probes have two major technical considerations, light delivery

and ultrasound detection, both of which are crucial in determining the probe size and spatiotemporal resolution.

a. Light delivery

The light delivery approaches can be classified into three categories, distal scanning, proximal scanning, and full-field imaging,

each of which has advantages and limitations in terms of the probe footprint, spatial resolution, and imaging speed.

1. Distal scanning (Fig. 2a): This approach involves the physical movement of either a portion or the entire endoscopic
probe. For forward-viewing endoscopic PAM, miniaturized micro-electromechanical systems (MEMS) scanners are
employed for 2D laser scanning over a field of view (FOV) of 10x10 mm? with a B-scan rate up to 500 Hz. However,
the probe size is relatively large (11.5 mm)3>°. Such device can be useful for surgical guidance like tumor resection
but is not small enough to image internal organs. Recently, a scanning fiber cantilever, previously introduced in multi-
photon fluorescence endoscopy®, was adopted for endoscopic PAM to achieve a reduced diameter of 3 mm (FOV:
~3 mm in diameter)®. In this design, the fiber tip is driven by a piezo actuator and moves along a spiral trajectory to
achieve 2D scanning with a B-scan rate up to 130 Hz. For side-viewing endoscopic PAM!, the most common design
is to rotate either the internal optics or the entire probe to achieve B-scan at a rate up to 100 Hz3*. Further, translating
the probe along the axial direction allows the acquisition of multiple B-scans to form a 3D image. Requiring only 1D
scan in the cross-sectional plane, the side-viewing endoscopic PAM has the advantage in probe size over the forward-

viewing configuration and can be as small as 0.7 mm?®,

2. Proximal scanning (Fig. 2b): Unlike distal scanning that integrates a scanner inside the probe, proximal scanning uses

light steering units in the remote interrogation system and thus enables a more compact design. This is particularly
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beneficial for the forward-viewing configuration, which is more difficult to miniaturize. Fiber bundles or multi-core
fibers, which have thousands of light-guiding cores distributed over the cross-section, have been adopted for proximal
scanning in endoscopic PAM?3¢5-67_In this approach, the fiber’s cross-section is projected onto the imaging plane via
relay optics, enabling 2D scan by steering the laser beam into individual cores at the input end. The probe size is 2.4
mm with a FOV of >3.5 mm in diameter®®. Although the reported A-line rate is only 1 kHz, it is possible to increase
it to 1 MHz by using high-pulse-repetition-rate lasers®®. A major drawback of this approach is the image pixelization
and resolution impairment caused by gaps between the cores®. Recently, endoscopic imaging via a single multimode
optical fiber (MMF) without additional optics has gained considerable interest, owing to the small footprint and free
of image pixelization™. An endoscopic PAM probe with a diameter of 0.25 mm (FOV~ 0.1 mm in diameter) has been
demonstrated by using a MMF’!. In this approach, the transmission matrix of the MMF is measured to establish the
relationship between the input and output fields’>%, enabling 2D laser scanning through the modulation of the input
field. This approach usually requires a delicate setup for measuring the complex optical field, and the A-line rate is
limited by the refresh rate of the spatial light modulator (<47 kHz"?). To simplify the design and enhance the speed,
another approach is to use a set of speckle patterns from the MMF for illumination and perform imaging reconstruction
by solving the inverse problem’!”’-7%, It has been shown that an image with 300x300 pixels can be formed through
4,096 patterns, resulting in an A-line rate of 483 kHz’!. Despite the advantages of the MMF-based endoscopic PAM,

its in-vivo performance and practical utility remain to be demonstrated (see additional discussions in Section IV).

Full-field imaging (Fig. 2¢): In PAI, 3D imaging over the entire FOV can be achieved with a single, stationary laser

pulse based on array-based ultrasound detection and tomographic image reconstruction®. The same principle has been

M27,79—81 27,80

adopted in endoscopic PA , where an ultrasound array based on either piezoelectric transducers*"-*’ or optical

sensors’8!

is used to detect the photoacoustic signals excited by an unfocused laser beam. This approach offers single-
pulse 3D imaging and thus enhances imaging speed. However, the spatial resolution is limited by acoustic focusing,
which is 1-2 orders of magnitude worse than the optically defined transverse resolution in the scanning-based PAM.

Also, the probe size is larger than 2 mm due to the need for an ultrasound array®?.

b. Ultrasound detection

1.

Piezoelectric transducers (Fig. 2d): piezoelectric transducers are widely used for ultrasound detection in PAI, including
endoscopic PAM®®. Miniaturized piezoelectric transducers, including focused, un-focused, and transparent ones, have
been adopted for endoscopic PAM!. Although focused ultrasound detection improves sensitivity, the limited aperture
size in endoscopic PAM makes it difficult to achieve tight acoustic focus®*. Thus, miniaturized unfocused transducers,
which are easier to fabricate, are widely used in endoscopic PAM. To reduce the probe size, coaxial arrangement of
the light delivery and ultrasound detection is desired. Although ring-shaped transducers offer a convenient means for
such arrangement, the detection sensitivity is compromised because of the central opening®®. As an alternative solution,
transparent transducers have attracted increasing attention in endoscopic PAMS¢. However, a common limiting factor
of piezoelectric transducers is that the sensitivity is proportional to the surface area. As a result, reducing the transducer

size inevitably compromises the sensitivity if other factors (e.g., material and electrical circuit) remain unchanged®’.

Optical ultrasound sensors (Fig. 2e): Owing to the size-independent sensitivity, optical detection of ultrasonic waves
has gained increasing attention®’. It has been shown that optical ultrasound sensors offer a superior noise-equivalent

pressure density over piezoelectric transducers when placed near the photoacoustic source®’, which well aligns with
4



128
129
130
131
132
133
134
135
136
137
138

139
140
141
142
143
144
145
146
147
148
149

150
151
152
153
154
155
156

the endoscopic application. Moreover, a detection bandwidth more than 200 MHz has been demonstrated®®, enhancing
the axial resolution. Among various optical ultrasound sensors, including active fiber lasers?® and passive microring®
and Fabry—Pérot resonators®®7+767981 'have shown great promise for endoscopic PAM. However, the optical resonator-
based ultrasound detection has several limitations. First, the need for low-noise lasers and optoelectronics makes the
interrogation system more complex than conventional transducers. Second, it is challenging to form an array of optical
resonators for full-field imaging, due to the limited integrability and the low speed of interrogating multiple resonators
concurrently®*?. Third, unlike piezoelectric transducers, existing optical ultrasound sensors can detect but not emit
ultrasonic waves. This prevents the integration of endoscopic photoacoustic and ultrasound imaging, which has shown
great promise in the detection of gastrointestinal cancer!'. In addition, the robustness and stability of optical ultrasound
detection in vivo, which is crucial for functional imaging, remains to be demonstrated (see additional discussion in

Section III). More detailed information on optical ultrasound detection in PAM can be found in recent reviews®!%.

Micromachined ultrasound transducers (MUT): Recent advances in the semiconductor and MEMS technologies have
led to an emerging alternative to conventional ultrasound transducers: micromachined ultrasound transducer (MUT)®.
Piezoelectric and capacitive MUTs (PMUT and CMUT, respectively) are the two primary types used in PAL. PMUTs
incorporate a piezoelectric thin film clamped between two electrodes and mounted above a cavity. Unlike conventional
transducers that operate in the thickness mode, PMUTs typically function in the flexural vibration mode, allowing for
areduction in the element thickness. However, PMUTs exhibit a relatively low electromechanical coupling coefficient
(1-6%) compared to conventional piezoelectric transducers (~18%). In contrast, CMUTs have two parallel plates: a
fixed bottom electrode and a suspended membrane with a top electrode. Ultrasonic waves impacting the top electrode
induce vibrations in the membrane and alter the capacitance of the device, which is monitored over time for ultrasound
detection. CMUTs demonstrate high electromechanical coupling coefficients (~70%) and sensitivity. However, they

require high voltages (>80 V) to provide bias charges, posing a practical challenge for endoscopic applications®>%3,

Overall, MUTs have several advantages. Compared to conventional piezoelectric transducers, they offer reduced size
and weight while maintaining relatively high sensitivity. Compared to optical ultrasound sensors, they offer the facile
integration of a large number of elements and electrical interconnections to construct ultrasound arrays for full-field
imaging®>**. A single-element size as small as 40 um and a 103-element 2D array within a 2.5-mm-diameter footprint
have been reported®. However, the detection bandwidth of existing MUTs is less than 20 MHz?*%%° which limits
the axial resolution of endoscopic PAM. Moreover, similar to conventional piezoelectric transducers, the sensitivity

of MUTs scales with its physical size, thus sharing similar limitations®>'?°,
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FIG. 2. Examples of the two key components in existing endoscopic PAM devices: light delivery (a)-(c) and ultrasound detection (d)-(e).
(a) Distal scanning: al) fiber catheter®; a2) rotor'?!. Reprinted with permission from [64] Copyright 2024 AIP Publishing. Reprinted with
permission from [101] Copyright 2024 Optica Publishing Group. (b) Proximal scanning: b1) core-by-core scanning over a multi-core
fiber’%; b2) wavefront shaping’?; b3) speckle illumination’!. Reprinted with permission from [58] Copyright 2024 IEEE. Reprinted with
permission from [72] Copyright 2024 Elsevier. Reprinted with permission from [71] Copyright 2024 AIP Publishing. (c) Full-field
imaging based on an ultrasound array®'. Reprinted with permission from [81] Copyright 2024 Springer Nature. (d) Piezoelectric ultrasound
transducers: d1) unfocused transducer*?; d2) focused transducer'®?; d3) PMUT transducer array®?. Reprinted with permission from [42]
Copyright 2024 Optica Publishing Group. Reprinted with permission from [82, 102] Copyright 2024 SPIE. (e) Optical ultrasound sensors:
el) fiber Fabry-Pérot sensor'%*; €2) microring resonator'%; €3) fiber laser!%’. Reprinted with permission from [103-105] Copyright 2024

Springer Nature.

L. Challenges for endoscopic functional PAM

i. Functional imaging of the vasculature

A distinctive capability of PAI is label-free functional imaging of the vasculature, including blood oxygenation (sO,) and flow.
Based on these functional measurements, the oxygen extraction fraction (OEF) and metabolic rate of oxygen (MRO,), which
reflect tissue and organ viability, can be assessed!®. Here, we discuss the technical requirements for quantifying each of these

functional parameters and the corresponding challenges in the endoscopic setting.
a. Blood oxygenation

Reflecting blood oxygen supply, sO; is an important biomarker for detecting cancer and inflammation?. It can be quantified
by measuring the concentrations of oxy- and deoxy-hemoglobin (HbO, and HbR, respectively), using either spectroscopic or

nonlinear PAM. For the spectroscopic approach, the relative concentrations of HbO, and HbR are derived by performing least-

107

squares fitting on the photoacoustic signals acquired at multiple optical wavelengths'®’. For accurate quantification of sO; using

o}
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this approach, the point spread functions at all wavelengths need to be identical. It has been shown that spatially mismatched
multi-color light foci can cause significant errors in the sO, measurement'%. To date, spectroscopic measurements for sO, have
been achieved only in acoustic-resolution endoscopic PAM, where light is weakly focused!36%19%:119 and only in gastrointestinal
imaging, where the requirement of the probe size is relaxed®. In addition to the achromatic requirement, the signal-to-noise
ratio (SNR) is another key factor. It has been shown that SNR plays a critical role in the sO; quantification''!. When SNR is
insufficient, noises measured at different wavelengths can be miscounted as ‘fake’ signals and affect the accuracy. Due to the
lower collection efficiency of the photoacoustic signal in endoscopic PAM compared to the bench-top counterpart, higher laser
fluence is often required to achieve a similar SNR (>40 mJ/cm? vs. <10 mJ/cm? for middle-size vessels with an average diameter
of tens of micrometers)'3. However, high laser fluence can induce nonlinear absorption due to the saturation effect and affect
the accuracy of the spectroscopic measurement''2. Also, there is no explicit guidance for the laser safety in internal organs!'2.

Thus, it is desirable to use the minimum light dosage possible to avoid affecting normal physiology or causing tissue damage.

Nonlinear methods that capitalize on either intensity saturation!!® or variable pulse width!'!* have also been developed for sO,
quantification. These methods distinguish HbO, and HbR based on their saturation characteristics''?. Specifically, the intensity
saturation method exploits the nonlinear response of the photoacoustic signal to high pulse energy, whereas the variable pulse
width technique relies on the differential responses of the photoacoustic signal to picosecond and nanosecond laser excitations.
Notably, these nonlinear methods require only a single wavelength, simplifying the design and construction of the endoscopic
probe by eliminating the need for achromatic components. However, the intensity saturation method requires relatively high
pulse energy, which might cause safety concerns. The variable pulse width approach necessitates the use of a picosecond laser.
In the context of endoscopic PAM, where optical fibers are commonly employed, transmitting picosecond pulses can lead to

115

nonlinear effects, such as stimulated Raman scattering and four-wave mixing, within the fiber''>. These effects may produce

unwanted additional wavelengths and complicate sO, quantification!!2.
b. Blood flow

Blood flow is another essential functional parameter of the vasculature!'°. PAM has demonstrated superb capability to measure
blood flow owing to its high sensitivity to the optical absorption of red blood cells!®!'7; however, translating this measurement
to the endoscopic setting faces challenges''®. Various methods have been developed for blood flow measurements in PAM!'%,
where a common strategy is to extract the relation among the sequentially measured photoacoustic signals, such as the temporal
correlation!!*12! and amplitude evolution!?>!23, Therefore, consistent and reliable measurements of photoacoustic signals over
time are crucial for flow quantification, posing a challenge for endoscopic PAM. As discussed in the previous sections, current
endoscopic PAM has a limited SNR especially for applications like intravascular imaging where the probe size is small. This
constraint is expected to compromise the accuracy of flow measurements, as noise may confound the correlation analysis of
photoacoustic signals. Optical ultrasound detectors, especially optical microresonators, hold great promise for endoscopic PAM
of blood flow because their potential to achieve a high SNR with minimal physical size. However, there is a caveat. The optical
microresonators are typically interrogated by tuning the wavelength of a narrow-bandwidth continuous-wave (CW) laser to the
deflection point on the edge of the resonant peak/dip to maximize sensitivity®?. Fluctuations in the ambient temperature can
shift the resonant wavelength and induce a drift in the sensitivity of the microresonator at a fixed laser wavelength. For a decent
polymer-based microresonator (SUS, O = 1x10°, thermo-optic dependence: -95 pm/°C near 1550 nm)'?*, as small as a 0.32-°C
fluctuation can completely shift the resonant peak away from the intended interrogation wavelength and nullify its acoustic

response. This issue may be exacerbated in the endoscopic setting because the sensor is placed inside living tissues that naturally

7
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experience temperature fluctuations. Indeed, studies in different animal species have shown noticeable temperature fluctuations
in the brain (23 °C)'?>. Moreover, the close proximity of the endoscopic probe to the photoacoustic source can lead to rapid
temperature changes due to light absorption, especially when a high-repetition-rate laser is used for high-speed imaging'?°. In
addition, strains imposed on the microresonator due to its physical contact with local tissues can also shift in the resonant peak.
These fluctuations in the sensitivity of optical ultrasound sensors may affect the correlation analysis of sequentially measured

photoacoustic signals for blood flow quantification.
c. Oxygen extraction fraction and metabolic rate of oxygen

Derived from sO,, OEF is a critical parameter that reflects tissue’s ability to extract oxygen from the blood stream to maintain

functional and morphological integrity'?’

. Itis indicative of oxygen utilization efficiency in the tissue and serves as an important
biomarker in cancer!?® and ischemia'?. Additionally, MRO,, which can be derived from blood flow and OEF, provides a direct
measure of tissue’s oxygen consumption and can be used for monitoring tissue viability and assessing treatment responses'%.
Therefore, the accuracy of sO, and blood flow measurements by endoscopic functional PAM determines its capability for the

quantification of OEF and MRO:..
il. Multi-contrast imaging

Co-registered, multi-contrast imaging provides a more comprehensive assessment of the tissue, holding great promise in areas
such as intraoperative tumor detection for surgery guidance'?®. Combining the abundant contrasts of endogenous chromophores

(Fig. 1a) and exogenous contrast agents'30-132

with the excellent multiplexing capability of light, PAM is well suited for multi-
contrast imaging. Indeed, benchtop PAM has demonstrated simultaneous imaging of the tumor vasculature and tumor-contrast-
enhancing agents using visible and near-infrared excitations'?®. However, achieving multi-contrast imaging in endoscopic PAM

faces a significant challenge: the device needs to operate in a wide spectral range with minimal chromatic dispersion!

. Despite
the broad transparent window (200-2400 nm), fused silica fibers (i.e., step-index or graded-index fibers), which is widely used
in endoscopic PAM, are subject to pronounced chromatic dispersion'3*. Single-mode fibers, which are required for tight light
focusing, can only operate within a wavelength range of a few hundred nanometers without becoming few-mode or lossy'*.

In addition, conventional designs of an apochromatic optical system require multiple optical elements'3*

, posing challenges for
miniaturization into an endoscopic device. Moreover, GRIN lens, which is widely used in endoscopic PAM to achieve strong
light focusing, exhibits strong chromatic and spherical aberration'®. As a result, most existing endoscopic PAM devices are

only capable of providing a single contrast.

Table I summarizes the challenges for endoscopic PAM to achieve functional and multi-contrast imaging. There are three main
considerations for addressing these unmet challenges, including (1) compact, achromatic, and aberration-free light delivery; (2)
sufficient SNR for accurate functional measurements at low-light conditions with minimum physiological perturbation; and (3)
miniature, high-sensitivity, and stable ultrasound detection. In the following section, we highlight recent technical advances in
five areas that, in our perspective, hold the potential to address the current limitations of endoscopic PAM towards functional

imaging. Table 1 also summarizes how the five areas can facilitate specific functional measurements.
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TABLE I. Challenges and strategies towards endoscopic functional PAM

Parameters Methods Requirements Challenges Strategies

o 3D printed micro-
optics

* Bulky optical elements for « Wavefront shaping

Multi-wavelength e Low chromatic aberration achromatic design « Robust ontical .
spectroscopic method ¢ High SNR o High-sensitivity, robust obust optical sensing
sO2, OEF, ultrasound detection of ultrasound
and MROz o Computational
approaches
Slng}e-wavelength e Transmit picosecond pulse e Optical nonlinearity in fiber e Microstructured fiber
nonlinear methods
e Robust optical
Blood flow  Temporal correlation or e High SNR o High-sensitivity, robust ultrasound sensing
and MRO:  amplitude evolution e Stable ultrasound detection ultrasound detection ¢ Computational
approaches
e Chromatic dispersion in fiber
Multi- ' o « Broadband light delivery o lelted spectral range for o Mlcro.structur‘ed fiber
Multi-spectral excitation ; . single-mode operation in fiber e 3D printed micro-
contrast e [ ow chromatic aberration . h
o Bulky optical elements for optics
apochromatic design
IV. Strategies towards endoscopic functional PAM
i Microstructured optical fibers

Microstructured optical fibers are distinguished by their ability to tailor light propagation properties, such as dispersion, modal

136 Although their use in endoscopic PAM remains largely unexplored, these fibers have shown great

profile, and nonlinearity
promise in multi-photon endoscopy by reducing nonlinear pulse broadening'*’'%°. Specifically, endless-single-mode photonic
crystal fibers (PCFs), capable of maintaining single-mode operation across a wide spectral range from visible to near-infrared,
are well suited for multi-contrast imaging where consistent performance over varying wavelengths is crucial'’. Moreover, both
large-mode-area'*! and hollow-core PCFs'#?7144 significantly reduce the optical nonlinearity. This is particularly important for
enhancing the accuracy of sO, quantification using nonlinear methods, where ultrashort laser pulses are used and nonlinearity-
induced pulse distortions could compromise the measurement accuracy. The adaptation of the various PCFs, which are broadly

available, in endoscopic PAM is expected to help address current challenges in sO, measurements and multi-contrast imaging.

ii. 3D printed micro-optics

Recent emergence of ultrafast laser-based 3D printing, also known as two-photon polymerization and laser direct writing, has
revolutionized the fabrication of micro-optical elements, stacked components, and integrated devices!®. In-depth reviews on
this topic are available'**'48, In this technique, ultrafast laser pulses (typically 100-300 fs) are used to selectively irradiate a
photosensitive material, resulting in the removal or retention of the laser-irradiated region after post-chemical processing to
form desired 3D microstructures'*®. By shaping the light field into any desired geometry, such as point-to-point scanning'*® or

patterned illumination'’, this method enables 3D freeform fabrication on various substrates, including optical fibers (Fig. 3a-

151-154 155-159

b). Ultrafast laser 3D print has been applied to fabricate micro-lenses and diffractive micro-optics , showing promise
in mitigating the aberration issues associated with existing off-the-shelf micro-optics such as ball or GRIN lenses. Moreover,
laser 3D printing of achromatic optics has been reported'**®2) potentially benefiting endoscopic PAM-based sO, and multi-
contrast imaging that use multiple excitation wavelengths. Going beyond proof-of-concept, 3D printed micro-optics have been

9
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used by other modalities, including OCT and fluorescence imaging, for endoscopic applications in vivo 19319, Thus, ultrafast

laser 3D printing presents a promising solution for compact, achromatic, and aberration-free light delivery in endoscopic PAM.

iii. Wavefront shaping

Compact light delivery can also be achieved by controlling the output light field of a MMF through wavefront shaping’®!66,

Here, we focus on the specific aspects of wavefront shaping that are relevant to endoscopic PAM. There are two advantages of
using wavefront shaping for endoscopic imaging. First, it eliminates the need for additional optics in the probe construction,
resulting in a reduced footprint and simplified fabrication. Second, it enables the generation of arbitrary light fields without
modifying the probe design, enhancing the imaging capability. For example, axial scanning can be achieved by modulating the

wavefront to focus at different depths!6’

. Typically, the wavefront shaping is performed by a phase-only liquid-crystal spatial
light modulator (LC-SLM), due to the high modulation efficiency'®s. However, the low frame rate (<1 kHz) of existing LC-
SLMs limits the image speed (<0.5 Hz for an image containing 2,500 pixels) and is insufficient for the dense spatial sampling
required by certain functional measurements, such as the correlation-based blood flow quantification'**!7", Recent applications
of the Lee-hologram!™ or real-valued intensity transmission matrix!”> have enabled the use of high-speed intensity modulators,
such as the digital micromirror device (DMD; >30 kHz frame rate), to overcome this limitation. Using this approach, forward-
view endoscopic PAM with a speed as high as 57 frames/second has been demonstrated’>7#. Even faster modulation has been
achieved using a 1D modulator with a 350-kHz frame rate and 1D-to-2D transform'”3, but its applicability in MMF imaging is
yet to be explored. DMD can also produce a high power ratio (the ratio between the power carried by the primary light focus
at the distal end of the MMF and the total power exiting the MMF) up to 75%'%%, which can boost the image contrast. Despite
the promise, wide adoption of wavefront shaping for in-vivo endoscopic imaging still faces a major challenge—the transmission
matrix of a MMF is highly sensitive to perturbations, such as fiber bending, twisting, and temperature fluctuations’. Deriving
the transmission matrix typically requires access to both ends of the fiber, which is largely impractical in vivo. The challenge
is exacerbated in intravascular and gastrovascular imaging, where the probe is maneuvered inside a tortuous structure and its
shape changes constantly. Several approaches have been developed for single-end calibration!’*'7. In particular, an adaptive
tracking method based on a pre-calculated database and dimension reduction allows recalibration of the transmission matrix at
a 1 kHz with single-end access, enabling endoscopic fluorescence imaging in live mice'’®. Another approach to achieve stable
light field propagation through the MMF is to intentionally introduce random fluctuations of the refractive index in the fiber,
leading to field localization in the transversal plane during light progopation'®. The disordered optical fibers have been shown
to facilitate image transfer with low cross-talk'®'-13%; however, the in-vivo performance remains to be tested. With advances in
fast wavefront modulation, single-end calibration, and specially designed optical fibers, wavefront shaping is expected to play

an increasingly significant role in endoscopic PAM.

iv. Robust optical sensing of ultrasound

Although optical microresonator-based ultrasound sensors hold great potential in endoscopic PAM, their practical usage has
been hindered by issues in reliability and stability. One solution is to actively tune the laser wavelength to the sensor’s resonance
through the Pound-Drever-Hall (PDH) frequency-locking technique!®3. In this approach, the phase of the interrogation laser is
modulated to introduce an interference between the carrier and sideband with a frequency identical to the frequency difference

between the laser and the microresonator’s resonance, from which a PDH error signal can be derived. By minimizing this error,
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the laser frequency can be locked to the resonant peak. However, further development is needed to extend the dynamic range
for in-vivo applications'®. Alternatively, methods based on broadband interrogation have been developed to resolve the entire
resonant peak, which do not require spectral overlap between the laser and the microresonator’s resonance and therefore are
insensitive to the drift of the resonant wavelength®®!8-188 [n this approach, high-repetition-rate laser pulses are used to generate
a coherent broadband source (i.e., frequency comb), whose spectral envelope is modulated by the microresonator's resonance.
An interferometer is then used to extract the mean shift of the resonance for deriving the photoacoustic signal. Although this
approach is more complex because of the need for pulse interferometry, recent advances in integrated photonics, such as on-
chip frequency comb and photonic circuits, may simplify the system and facilitate its adoption in PAM'#, Compared to passive
microresonators, active microresonators (e.g., lasing cavity) may exhibit a better sensing stability. Fiber-laser-based ultrasound
sensors, which detect the beating between two orthogonally polarized lasing modes induced by the acoustic-pressure-generated
birefringence, have been applied in endoscopic PAM?*!1%, Primarily sensitive to asymmetric perturbations, this technique, in
principle, is less susceptive to ambient temperature fluctuations'®°. Overall, future efforts should focus on the development of

robust and effective interrogation schemes to facilitate the practical usage of optical ultrasound sensors in endoscopic PAM.

Another promising strategy for endoscopic PAM is non-contact optical detection of ultrasound, where the photoacoustic signal

VL2 or reflectance!®*!%4. In this approach, a CW laser is used

is derived by extracting its modulation of the local optical phase
to probe the phase or intensity modulation induced by the photoacoustic pressure. Compared to phase modulation, reflectance-
intensity modulation is less susceptive to the background oscillations of the tissue and has enabled in-vivo imaging of the mouse
ear microvasculature with an SNR comparable to bench-top PAM using a piezoelectric transducer!®*. This approach holds great
promise for endoscopic PAM because it eliminates the need for an ultrasound sensor, allowing the delivery of both the pulsed
photoacoustic excitation light and the CW interrogation light through the same fiber. This greatly simplifies the probe design
and reduces its size'®>. Moreover, since no acoustic coupling is required, the endoscopic probe can be physically isolated from

the targeted tissues and hosed inside a biocompatible housing. This not only minimizes the risk of infection but also broadens

the range of material options for the design.

v. Computational approaches

In addition to advancing the device itself, computational methods can be highly complementary for enhancing the performance
of endoscopic PAM. Specifically, machine learning has shown considerable promise in improving the SNR!! 11967198 Recently,
a two-step sparse coding-based method was developed to denoise images acquired with low-fluence bench-top PAM, leading
to significant improvements in microvascular visualization and quantitative accuracy of sO and blood flow measurements!!!.
This method capitalizes on the fact that unfeatured noise patterns have less correlation and sparsity compared to photoacoustic
signals, allowing them to be separated using sparse coding. The results show that at one-fifth of the normal laser fluence, this
approach reduces the errors in functional measurements of microvascular sO and flow from 20% to less than 5%. Overall, the

development of computational methods for post-processing can enhance image quality, thereby relaxing requirements on the

device and serving as a parallel direction to realize the potential of endoscopic PAM for functional imaging.
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FIG. 3. Potential future directions for endoscopic functional PAM. Microstructured optical fibers: a) endless-single-mode photonic crystal
fibers'%; b) anti-resonant hollow-core fibers'?’; ¢) hollow-core photonic crystal fibers'#. Reprinted with permission from [140] Copyright
2024 Optica Publishing Group. Reprinted with permission from [199] Copyright 2024 IOP Publishing. Reprinted with permission from
[144] Copyright 2024 Optica Publishing Group. 3D printed micro-optics on the fiber tip: d) multi-element micro-objective lens'>*; €)
inverse-designed metalens'*®. Reprinted with permission from [154] Copyright 2024 Springer Nature. Reprinted with permission from
[159] Copyright 2024 American Chemical Society. Robust, fast wavefront shaping: f) measurement of the transmission matrix of a multi-
mode fiber at 1 kHz using single-end access and dimension-reduction strategy'’®; g) wavefront shaping with a 1D spatial light modulator
and 1D-2D transform at 350 kHz!”>. Reprinted with permission from [178] Copyright 2024 Springer Nature. Reprinted with permission
from [173] Copyright 2024 Springer Nature. Optical photoacoustic detection: h) resolving the entire resonant peak of an optical micro-
resonator with pulse interferometry'®’; i) non-contact detection of initial photoacoustic pressure with light?®, Reprinted with permission
from [187] Copyright 2024 Wiley. Reprinted with permission from [200] Copyright 2024 Springer Nature. Computational imaging: j)
two-step sparse coding-based denoising to improve image quality and quantitative accuracy in low-fluence benchtop PAM!'!!, SSIM:

structural Similarity Index Measure. Scale bar: 200 pm. Reprinted with permission from [111] Copyright 2024 IEEE.

336

337 V. Emerging opportunities for endoscopic functional PAM

338  Future advances in endoscopic PAM to enable functional imaging and further miniaturization will not only enhance its efficacy

339 in existing applications but also open additional avenues in both clinical research and basic science.
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On the clinical front, a promising application lies in intravascular imaging of cerebral arteries. Endovascular interventions have
become increasingly important for treating cerebrovascular conditions such as aneurysm, ischemic occlusion, and intracranial
atherosclerotic disease?®!??2, Accurate diagnosis of intracranial artery pathology and identification of perioperative events are
crucial for effective treatment, propelling the growing interest in intravascular imaging in the brain?*32%, However, challenges
persist due to the small diameter and high tortuosity of cerebral vessels, necessitating highly flexible probes with minimal size.
Endoscopic OCT with a probe size as small as 0.4 mm is suitable for this purpose, but only allows structural imaging?*>2%, By
providing functional insights, endoscopic PAM has the potential to advance the diagnosis and management of cerebrovascular
disease. Another promising area is intrathecal spinal cord imaging. Pathologies affecting the spinal cord, such as trauma, tumors,

and infections, exhibit distinct hemodynamic and metabolic characteristics?’?

. However, imaging the spinal cord is challenging
due to the surrounding bony anatomy and limited space. Non-invasive modalities, such as CT, MRI, and US, suffer from limited
spatial resolution?*®2%_ Surgical exposure, while providing access, is too invasive for diagnostic purposes?'®?!!. Achieving high
resolution in a minimally invasive manner, endoscopy is preferable. To minimize lumbar drains, the probe diameter should be
less than 1 mm?!%213, A recent study using a 0.9-mm endovascular OCT probe reported high-resolution, artifact-free structural

imaging of epidural veins, pial lining, and nerve rootlets?'?

, showcasing the promise of endoscopic imaging of the spinal cord.
By adding functional contrasts, endoscopic PAM is poised to better assist clinicians in identifying pathologies, guiding surgical

procedures, and assessing treatment outcomes.

In basic research using animal models, endoscopic PAM can help advance our understanding of microvascular physiology and
pathology in deep brain. Cerebral microvascular dysfunction has been linked to neurodegeneration, such as that in Alzheimer’s
disease, which often begins in deep-brain regions (e.g., hippocampus)?'“?!°, Understanding microvascular impairments in the
early stage of neurodegeneration may reveal additional insights into pathogenesis and promote early detection or treatment.
Benchtop PAM, although enabling comprehensive assessment of microvascular function and tissue oxygen metabolism, cannot
penetrate the superficial cortex?'®. Endoscopic implementation is thus needed to extend the success of PAM in functional
microvascular imaging to deep brain. Another potential application lies in intravital imaging of the beating heart.
Microcirculatory dysfunction in cardiovascular disease can result in fatal outcomes, such as septic shock and heart failure,

irrespective of alterations in the broader systemic circulation?®!”

. In-vivo functional imaging of the heart microvasculature can
reveal the much needed insights into the underlying disease mechanisms, but it is difficult to access due to the ribs and lungs
surrounding the heart?'8. Although non-invasive modalities?'® and open-chest procedures®'® have been explored, they either
cannot provide sufficient resolution to image the microvasculature or cause significant perturbations to heart physiology.
Advances in fluorescence micro-endoscopy, by inserting a 1.25-mm-diameter probe through the rib cage, have enabled
intravital imaging of the beating heart with minimum disturbance to normal physiology, reduced motion artifacts, and
longitudinal access??*??!, Following this approach, endoscopic PAM holds the potential to further advance cardiovascular

research by providing extra functional insights into the heart.

VI. Conclusion

In this Perspective, we have assessed the current state of endoscopic PAM, with a particular emphasis on its functional imaging
capability. We have identified critical gaps to be addressed, including the need for miniaturized and achromatic light delivery,

robust, compact, and high-sensitivity ultrasound detectors, and improved SNR to reduce light exposure and ensure quantitative
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accuracy. Also, we have highlighted recent advances in microstructured optical fibers, ultrafast laser 3D printing, wavefront
shaping, optical sensing of ultrasound, and computational imaging, which hold significant promise for addressing the existing
challenges in endoscopic functional PAM and are poised to shape the future of this rapidly evolving field. In addition, we have

suggested future opportunities for functional endoscopic PAM in both clinical applications and basic science research.
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