

1 Perspectives on Endoscopic Functional Photoacoustic Microscopy

2 Shuo Yang¹ and Song Hu^{1,*}

4 ¹*Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA*

5 *Corresponding author: songhu@wustl.edu

7 Abstract

8 Endoscopy, enabling high-resolution imaging of deep tissues and internal organs, plays an important role in basic research and
9 clinical practice. Recent advances in photoacoustic microscopy (PAM), demonstrating excellent capabilities in high-resolution
10 functional imaging, have sparked significant interest in its integration into the field of endoscopy. However, there are challenges
11 in achieving functional PAM in the endoscopic setting. This Perspective article discusses current progress in the development
12 of endoscopic PAM and the challenges related to functional measurements. Then, it points out potential directions to advance
13 endoscopic PAM for functional imaging by leveraging fiber optics, microfabrication, optical engineering, and computational
14 approaches. Finally, it highlights emerging opportunities for functional endoscopic PAM in basic and translational biomedicine.

15 I. Introduction

17 Providing detailed structural, functional, and molecular insights into deep tissues and organs, endoscopy plays a crucial role in
18 both basic research and clinical practice^{1,2}. While non-invasive imaging technologies, including X-ray computed tomography
19 (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography, can also image internal
20 tissues and organs, endoscopy offers higher resolution and more diverse contrasts². Commonly used endoscopic techniques are
21 based on white light, ultrasound (US), optical coherence tomography (OCT), and fluorescence imaging. White-light endoscopy
22 is easy to use, but lacks depth information^{2,3}. Ultrasound endoscopy penetrates centimeters of tissue, but has limited resolution
23 (>100 μm)⁴. OCT endoscopy, conversely, offers microscopic resolution, but penetrates only 1–2 millimeters⁵. Moreover, both
24 US and OCT primarily provide structural information. Multi-photon fluorescence endoscopy, although offering cellular-level
25 resolution and molecular contrast, has limited field of view and imaging speed⁶.

26 Photoacoustic imaging (PAI), combining the advantages of light and ultrasound^{7,8}, holds great potential to bridge the gaps in
27 existing endoscopic techniques and has attracted increasing attention in recent years (Fig. 1a). Optically, PAI provides unique
28 absorption contrasts that reveal the structural, functional, and molecular information of biological tissues. Ultrasonically, PAI
29 benefits from reduced tissue scattering and absorption compared to pure optical imaging, enabling depth-resolved, deep-tissue
30 imaging with improved spatiotemporal resolution and extended field of view. In particular, photoacoustic microscopy (PAM),
31 a major embodiment of PAI, offers multi-contrast imaging at the microscopic level (Fig. 1b)⁹. Recent advances in endoscopic
32 PAM have demonstrated various preclinical (Fig. 1c) and clinical (Fig. 1d) applications². However, only a small fraction of the
33 existing work (~3%) presents functional imaging, highlighting the need for further development in this area.

34 Previous articles have comprehensively reviewed the technical advances^{1,2,10} and applications¹¹ of endoscopic PAM in general.
35 In contrast, this Perspective article focuses on the limitations of current endoscopic PAM techniques in functional imaging and
36 provides insights into future directions. Specifically, the first section summarizes current progress on endoscopic PAM, with
37 an emphasis on the probe design and construction. The second section discusses the technical limitations of functional imaging

38 in endoscopic PAM settings. The third section highlights various strategies that have the potential to address these limitations,
 39 by leveraging recent advances in fiber optics, microfabrication, optical engineering, and computational imaging. Finally, this
 40 article concludes by introducing potential opportunities for endoscopic functional PAM.

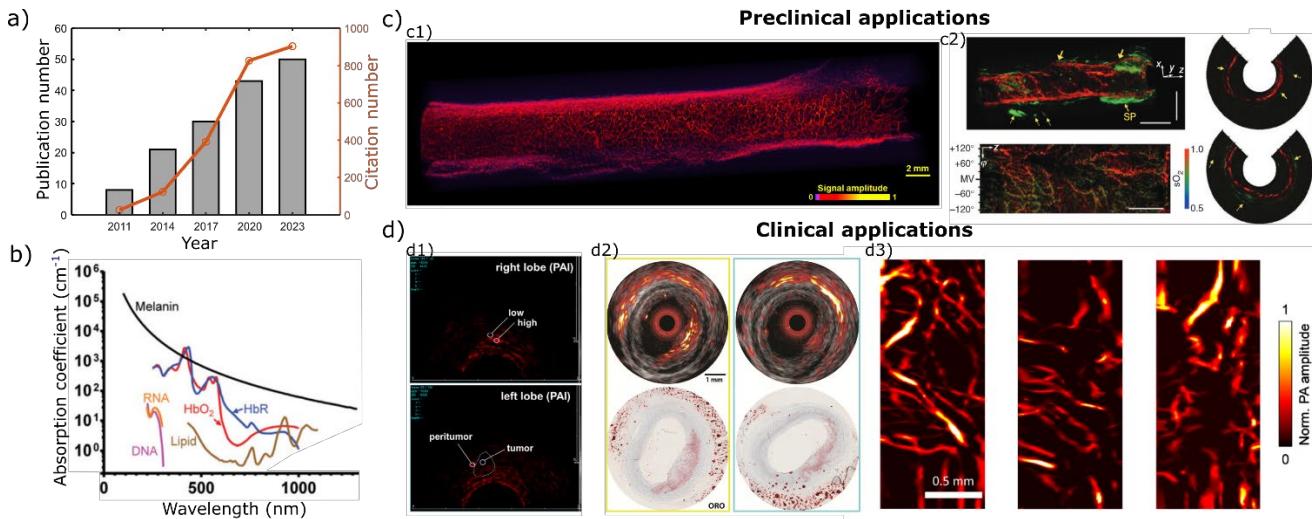


FIG.1. Advances in endoscopic photoacoustic microscopy (PAM). a) Publication and citation numbers from 2011 to 2023, searched with the keywords of “photoacoustic” and “endoscope/endoscopy” on the Web of Science. b) Absorption spectra of representative endogenous chromophores⁹. Reprinted with permission from [9] Copyright 2024 Wiley. c) Representative endoscopic PAM images acquired in animal models: c1) structural image of the 3D microvascular in a rat colorectum¹²; c2) blood oxygenation (sO_2) map in a rat colon¹³. Reprinted with permission from [12] Copyright 2024 Optica Publishing Group. Reprinted with permission from [13] Copyright 2024 Springer Nature. d) Representative clinical applications of endoscopic PAM: d1) differentiating normal and tumor tissues in a patient with prostate cancer¹⁴; d2) detecting atherosclerotic plaque in a human coronary artery with lipid contrast¹⁵; d3) examining the cervical remodeling in patients at different stages of pregnancy¹⁶. Reprinted with permission from [14] Copyright 2024 Elsevier. Reprinted with permission from [15] Copyright 2024 Optica Publishing Group. Reprinted with permission from [16] Copyright 2024 SPIE.

41
 42
 43

II. Current progress on endoscopic PAM

44 i. Biomedical applications of endoscopic PAM

45 Endoscopic PAM has shown great promise in both preclinical and clinical settings (Fig. 1c-d). In gastrointestinal imaging^{13,13,17-}
 46 26,26,27, it enables label-free microvascular imaging, facilitating diagnosis of diseases in the gastrointestinal tract. By visualizing
 47 abnormal angiogenesis, endoscopic PAM enhances the detection of colorectal cancer compared to traditional colonoscopy²⁸.
 48 By assessing blood oxygenation, it provides valuable functional insights into Crohn’s disease, an inflammatory bowel disease²³.
 49 Moreover, endoscopic PAM has shown great promise in assessing the treatment response of rectal cancer²⁹. In intravascular
 50 imaging^{15,30-44}, endoscopic PAM can characterize atherosclerotic plaques by identifying lipid-rich contents, which are prone to
 51 rupture and may lead to cardiovascular events⁴³. In urology^{14,45-47}, endoscopic PAM can detect prostate cancer by measuring
 52 changes in the microvascular density that are typically associated with malignant growth¹⁴ and visualize neurovascular bundles
 53 during radical prostatectomy⁴⁷. In gynecology^{16,48-52}, endoscopic PAM has shown potential in screening the ovarian cancer by
 54 detecting subtle changes in the vascular structure and tissue oxygenation that are indicative of tumor presence or progression^{48,50}.

55 Also, it can examine cervical remodeling by identifying changes in the microvascular density¹⁶. These applications underscore
56 the transformative potential of endoscopic PAM across various medical fields.

57 ii. Application-specific design and construction of endoscopic PAM probe

58 There are two typical configurations of endoscopic PAM, forward viewing and side viewing. The forward-viewing endoscopic
59 PAM is mostly used for surgical guidance, such as laparoscopy⁵³ and breast tumor screening⁵⁴. In contrast, the side-viewing
60 configuration is widely adopted to examine the inner wall of tubular organs, such as the rectum, esophagus, and blood vessel¹.
61 Different applications impose specific requirements on the size of the endoscopic PAM probe to ensure fitness and flexibility.
62 Generally, there is a tradeoff between the probe size and spatial resolution. The transverse resolution of PAM can be determined
63 by either light excitation or ultrasound detection, which correspond to optical- and acoustic-resolution PAM, respectively⁵⁵.
64 Optical-resolution PAM offers 1–2 orders of magnitude better transverse resolution but usually requires a more delicate optical
65 design and thus has a larger footprint (>1 mm)^{12,43,56–59}. This limits its application to larger internal organs with low tortuosity,
66 such as the coronary artery and the gastrointestinal and vaginal tracts. Acoustic-resolution PAM with a relaxed requirement on
67 light focusing is typically adopted for reduced probe size (<1 mm) to enable applications like imaging branches of the coronary
68 artery^{38,60,61}. However, the compromised transverse resolution (>100 μ m) may lead to the miss of crucial pathological features
69 such as the thin fibrous cap, a key precursor of plaque rupture^{43,62}. Also, in both optical- and acoustic-resolution PAM, the axial
70 resolution is limited by the bandwidth of ultrasound detection to tens or hundreds of microns⁵⁵, which prevents cellular-level
71 imaging in 3D. The design and construction of endoscopic PAM probes have two major technical considerations, light delivery
72 and ultrasound detection, both of which are crucial in determining the probe size and spatiotemporal resolution.

73 a. Light delivery

74 The light delivery approaches can be classified into three categories, distal scanning, proximal scanning, and full-field imaging,
75 each of which has advantages and limitations in terms of the probe footprint, spatial resolution, and imaging speed.

- 76 1. Distal scanning (Fig. 2a): This approach involves the physical movement of either a portion or the entire endoscopic
77 probe. For forward-viewing endoscopic PAM, miniaturized micro-electromechanical systems (MEMS) scanners are
78 employed for 2D laser scanning over a field of view (FOV) of 10×10 mm² with a B-scan rate up to 500 Hz. However,
79 the probe size is relatively large (11.5 mm)^{53,59}. Such device can be useful for surgical guidance like tumor resection
80 but is not small enough to image internal organs. Recently, a scanning fiber cantilever, previously introduced in multi-
81 photon fluorescence endoscopy⁶³, was adopted for endoscopic PAM to achieve a reduced diameter of 3 mm (FOV:
82 ~ 3 mm in diameter)⁶⁴. In this design, the fiber tip is driven by a piezo actuator and moves along a spiral trajectory to
83 achieve 2D scanning with a B-scan rate up to 130 Hz. For side-viewing endoscopic PAM^{1,2}, the most common design
84 is to rotate either the internal optics or the entire probe to achieve B-scan at a rate up to 100 Hz³⁴. Further, translating
85 the probe along the axial direction allows the acquisition of multiple B-scans to form a 3D image. Requiring only 1D
86 scan in the cross-sectional plane, the side-viewing endoscopic PAM has the advantage in probe size over the forward-
87 viewing configuration and can be as small as 0.7 mm³⁸.
- 88 2. Proximal scanning (Fig. 2b): Unlike distal scanning that integrates a scanner inside the probe, proximal scanning uses
89 light steering units in the remote interrogation system and thus enables a more compact design. This is particularly

beneficial for the forward-viewing configuration, which is more difficult to miniaturize. Fiber bundles or multi-core fibers, which have thousands of light-guiding cores distributed over the cross-section, have been adopted for proximal scanning in endoscopic PAM^{58,65-67}. In this approach, the fiber's cross-section is projected onto the imaging plane via relay optics, enabling 2D scan by steering the laser beam into individual cores at the input end. The probe size is 2.4 mm with a FOV of >3.5 mm in diameter⁵⁸. Although the reported A-line rate is only 1 kHz, it is possible to increase it to 1 MHz by using high-pulse-repetition-rate lasers⁶⁸. A major drawback of this approach is the image pixelization and resolution impairment caused by gaps between the cores⁶⁹. Recently, endoscopic imaging via a single multimode optical fiber (MMF) without additional optics has gained considerable interest, owing to the small footprint and free of image pixelization⁷⁰. An endoscopic PAM probe with a diameter of 0.25 mm (FOV~0.1 mm in diameter) has been demonstrated by using a MMF⁷¹. In this approach, the transmission matrix of the MMF is measured to establish the relationship between the input and output fields⁷²⁻⁷⁶, enabling 2D laser scanning through the modulation of the input field. This approach usually requires a delicate setup for measuring the complex optical field, and the A-line rate is limited by the refresh rate of the spatial light modulator (<47 kHz⁷²). To simplify the design and enhance the speed, another approach is to use a set of speckle patterns from the MMF for illumination and perform imaging reconstruction by solving the inverse problem^{71,77,78}. It has been shown that an image with 300×300 pixels can be formed through 4,096 patterns, resulting in an A-line rate of 483 kHz⁷¹. Despite the advantages of the MMF-based endoscopic PAM, its *in-vivo* performance and practical utility remain to be demonstrated (see additional discussions in Section IV).

3. Full-field imaging (Fig. 2c): In PAI, 3D imaging over the entire FOV can be achieved with a single, stationary laser pulse based on array-based ultrasound detection and tomographic image reconstruction⁵⁵. The same principle has been adopted in endoscopic PAM^{27,79-81}, where an ultrasound array based on either piezoelectric transducers^{27,80} or optical sensors^{79,81} is used to detect the photoacoustic signals excited by an unfocused laser beam. This approach offers single-pulse 3D imaging and thus enhances imaging speed. However, the spatial resolution is limited by acoustic focusing, which is 1–2 orders of magnitude worse than the optically defined transverse resolution in the scanning-based PAM⁵⁵. Also, the probe size is larger than 2 mm due to the need for an ultrasound array⁸².

114 b. Ultrasound detection

1. Piezoelectric transducers (Fig. 2d): piezoelectric transducers are widely used for ultrasound detection in PAI, including endoscopic PAM⁸³. Miniaturized piezoelectric transducers, including focused, un-focused, and transparent ones, have been adopted for endoscopic PAM¹. Although focused ultrasound detection improves sensitivity, the limited aperture size in endoscopic PAM makes it difficult to achieve tight acoustic focus⁸⁴. Thus, miniaturized unfocused transducers, which are easier to fabricate, are widely used in endoscopic PAM. To reduce the probe size, coaxial arrangement of the light delivery and ultrasound detection is desired. Although ring-shaped transducers offer a convenient means for such arrangement, the detection sensitivity is compromised because of the central opening⁸⁵. As an alternative solution, transparent transducers have attracted increasing attention in endoscopic PAM⁸⁶. However, a common limiting factor of piezoelectric transducers is that the sensitivity is proportional to the surface area. As a result, reducing the transducer size inevitably compromises the sensitivity if other factors (e.g., material and electrical circuit) remain unchanged⁸⁷.
2. Optical ultrasound sensors (Fig. 2e): Owing to the size-independent sensitivity, optical detection of ultrasonic waves has gained increasing attention⁸⁷. It has been shown that optical ultrasound sensors offer a superior noise-equivalent pressure density over piezoelectric transducers when placed near the photoacoustic source⁸⁷, which well aligns with

128 the endoscopic application. Moreover, a detection bandwidth more than 200 MHz has been demonstrated⁸⁸, enhancing
129 the axial resolution. Among various optical ultrasound sensors, including active fiber lasers²⁰ and passive microring⁸⁹
130 and Fabry–Pérot resonators^{58,74,76,79,81}, have shown great promise for endoscopic PAM. However, the optical resonator-
131 based ultrasound detection has several limitations. First, the need for low-noise lasers and optoelectronics makes the
132 interrogation system more complex than conventional transducers. Second, it is challenging to form an array of optical
133 resonators for full-field imaging, due to the limited integrability and the low speed of interrogating multiple resonators
134 concurrently^{81,90}. Third, unlike piezoelectric transducers, existing optical ultrasound sensors can detect but not emit
135 ultrasonic waves. This prevents the integration of endoscopic photoacoustic and ultrasound imaging, which has shown
136 great promise in the detection of gastrointestinal cancer¹¹. In addition, the robustness and stability of optical ultrasound
137 detection *in vivo*, which is crucial for functional imaging, remains to be demonstrated (see additional discussion in
138 Section III). More detailed information on optical ultrasound detection in PAM can be found in recent reviews^{91,92}.

139 3. Micromachined ultrasound transducers (MUT): Recent advances in the semiconductor and MEMS technologies have
140 led to an emerging alternative to conventional ultrasound transducers: micromachined ultrasound transducer (MUT)⁸³.
141 Piezoelectric and capacitive MUTs (PMUT and CMUT, respectively) are the two primary types used in PAI. PMUTs
142 incorporate a piezoelectric thin film clamped between two electrodes and mounted above a cavity. Unlike conventional
143 transducers that operate in the thickness mode, PMUTs typically function in the flexural vibration mode, allowing for
144 a reduction in the element thickness. However, PMUTs exhibit a relatively low electromechanical coupling coefficient
145 (1–6%) compared to conventional piezoelectric transducers (~18%)⁹³. In contrast, CMUTs have two parallel plates: a
146 fixed bottom electrode and a suspended membrane with a top electrode. Ultrasonic waves impacting the top electrode
147 induce vibrations in the membrane and alter the capacitance of the device, which is monitored over time for ultrasound
148 detection. CMUTs demonstrate high electromechanical coupling coefficients (~70%) and sensitivity. However, they
149 require high voltages (>80 V) to provide bias charges, posing a practical challenge for endoscopic applications^{82,93}.

150 Overall, MUTs have several advantages. Compared to conventional piezoelectric transducers, they offer reduced size
151 and weight while maintaining relatively high sensitivity. Compared to optical ultrasound sensors, they offer the facile
152 integration of a large number of elements and electrical interconnections to construct ultrasound arrays for full-field
153 imaging^{93,94}. A single-element size as small as 40 μ m and a 103-element 2D array within a 2.5-mm-diameter footprint
154 have been reported⁹⁵. However, the detection bandwidth of existing MUTs is less than 20 MHz^{82,95–99}, which limits
155 the axial resolution of endoscopic PAM. Moreover, similar to conventional piezoelectric transducers, the sensitivity
156 of MUTs scales with its physical size, thus sharing similar limitations^{93,100}.

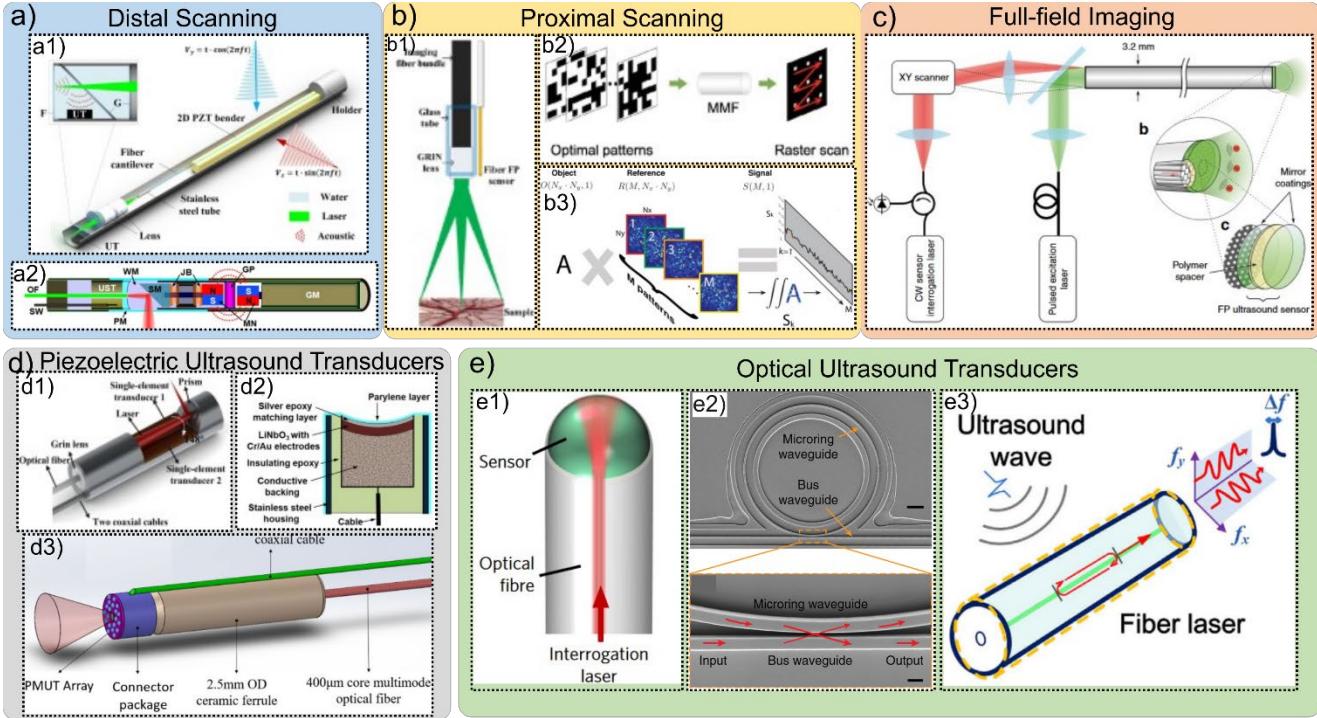


FIG. 2. Examples of the two key components in existing endoscopic PAM devices: light delivery (a)-(c) and ultrasound detection (d)-(e). (a) Distal scanning: a1) fiber catheter⁶⁴; a2) rotor¹⁰¹. Reprinted with permission from [64] Copyright 2024 AIP Publishing. Reprinted with permission from [101] Copyright 2024 Optica Publishing Group. (b) Proximal scanning: b1) core-by-core scanning over a multi-core fiber⁵⁸; b2) wavefront shaping⁷²; b3) speckle illumination⁷¹. Reprinted with permission from [58] Copyright 2024 IEEE. Reprinted with permission from [72] Copyright 2024 Elsevier. Reprinted with permission from [71] Copyright 2024 AIP Publishing. (c) Full-field imaging based on an ultrasound array⁸¹. Reprinted with permission from [81] Copyright 2024 Springer Nature. (d) Piezoelectric ultrasound transducers: d1) unfocused transducer⁴²; d2) focused transducer¹⁰²; d3) PMUT transducer array⁸². Reprinted with permission from [42] Copyright 2024 Optica Publishing Group. Reprinted with permission from [82, 102] Copyright 2024 SPIE. (e) Optical ultrasound sensors: e1) fiber Fabry-Pérot sensor¹⁰³; e2) microring resonator¹⁰⁴; e3) fiber laser¹⁰⁵. Reprinted with permission from [103-105] Copyright 2024 Springer Nature.

157
158

III. Challenges for endoscopic functional PAM

159

i. Functional imaging of the vasculature

160 A distinctive capability of PAI is label-free functional imaging of the vasculature, including blood oxygenation (sO_2) and flow.
161 Based on these functional measurements, the oxygen extraction fraction (OEF) and metabolic rate of oxygen (MRO₂), which
162 reflect tissue and organ viability, can be assessed¹⁰⁶. Here, we discuss the technical requirements for quantifying each of these
163 functional parameters and the corresponding challenges in the endoscopic setting.

164

a. Blood oxygenation

165 Reflecting blood oxygen supply, sO_2 is an important biomarker for detecting cancer and inflammation²⁰. It can be quantified
166 by measuring the concentrations of oxy- and deoxy-hemoglobin (HbO_2 and HbR , respectively), using either spectroscopic or
167 nonlinear PAM. For the spectroscopic approach, the relative concentrations of HbO_2 and HbR are derived by performing least-
168 squares fitting on the photoacoustic signals acquired at multiple optical wavelengths¹⁰⁷. For accurate quantification of sO_2 using

169 this approach, the point spread functions at all wavelengths need to be identical. It has been shown that spatially mismatched
170 multi-color light foci can cause significant errors in the sO_2 measurement¹⁰⁸. To date, spectroscopic measurements for sO_2 have
171 been achieved only in acoustic-resolution endoscopic PAM, where light is weakly focused^{13,60,109,110}, and only in gastrointestinal
172 imaging, where the requirement of the probe size is relaxed²⁰. In addition to the achromatic requirement, the signal-to-noise
173 ratio (SNR) is another key factor. It has been shown that SNR plays a critical role in the sO_2 quantification¹¹¹. When SNR is
174 insufficient, noises measured at different wavelengths can be miscounted as ‘fake’ signals and affect the accuracy. Due to the
175 lower collection efficiency of the photoacoustic signal in endoscopic PAM compared to the bench-top counterpart, higher laser
176 fluence is often required to achieve a similar SNR ($>40\text{ mJ/cm}^2$ vs. $<10\text{ mJ/cm}^2$ for middle-size vessels with an average diameter
177 of tens of micrometers)¹³. However, high laser fluence can induce nonlinear absorption due to the saturation effect and affect
178 the accuracy of the spectroscopic measurement¹¹². Also, there is no explicit guidance for the laser safety in internal organs¹².
179 Thus, it is desirable to use the minimum light dosage possible to avoid affecting normal physiology or causing tissue damage.
180 Nonlinear methods that capitalize on either intensity saturation¹¹³ or variable pulse width¹¹⁴ have also been developed for sO_2
181 quantification. These methods distinguish HbO_2 and HbR based on their saturation characteristics¹¹². Specifically, the intensity
182 saturation method exploits the nonlinear response of the photoacoustic signal to high pulse energy, whereas the variable pulse
183 width technique relies on the differential responses of the photoacoustic signal to picosecond and nanosecond laser excitations.
184 Notably, these nonlinear methods require only a single wavelength, simplifying the design and construction of the endoscopic
185 probe by eliminating the need for achromatic components. However, the intensity saturation method requires relatively high
186 pulse energy, which might cause safety concerns. The variable pulse width approach necessitates the use of a picosecond laser.
187 In the context of endoscopic PAM, where optical fibers are commonly employed, transmitting picosecond pulses can lead to
188 nonlinear effects, such as stimulated Raman scattering and four-wave mixing, within the fiber¹¹⁵. These effects may produce
189 unwanted additional wavelengths and complicate sO_2 quantification¹¹².

190 b. Blood flow

191 Blood flow is another essential functional parameter of the vasculature¹¹⁶. PAM has demonstrated superb capability to measure
192 blood flow owing to its high sensitivity to the optical absorption of red blood cells^{106,117}; however, translating this measurement
193 to the endoscopic setting faces challenges¹¹⁸. Various methods have been developed for blood flow measurements in PAM¹⁰⁶,
194 where a common strategy is to extract the relation among the sequentially measured photoacoustic signals, such as the temporal
195 correlation¹¹⁹⁻¹²¹ and amplitude evolution^{122,123}. Therefore, consistent and reliable measurements of photoacoustic signals over
196 time are crucial for flow quantification, posing a challenge for endoscopic PAM. As discussed in the previous sections, current
197 endoscopic PAM has a limited SNR especially for applications like intravascular imaging where the probe size is small. This
198 constraint is expected to compromise the accuracy of flow measurements, as noise may confound the correlation analysis of
199 photoacoustic signals. Optical ultrasound detectors, especially optical microresonators, hold great promise for endoscopic PAM
200 of blood flow because their potential to achieve a high SNR with minimal physical size. However, there is a caveat. The optical
201 microresonators are typically interrogated by tuning the wavelength of a narrow-bandwidth continuous-wave (CW) laser to the
202 deflection point on the edge of the resonant peak/dip to maximize sensitivity⁹². Fluctuations in the ambient temperature can
203 shift the resonant wavelength and induce a drift in the sensitivity of the microresonator at a fixed laser wavelength. For a decent
204 polymer-based microresonator (SU8, $Q = 1 \times 10^5$, thermo-optic dependence: $-95\text{ pm/}^\circ\text{C}$ near 1550 nm)¹²⁴, as small as a 0.32°C
205 fluctuation can completely shift the resonant peak away from the intended interrogation wavelength and nullify its acoustic
206 response. This issue may be exacerbated in the endoscopic setting because the sensor is placed inside living tissues that naturally

experience temperature fluctuations. Indeed, studies in different animal species have shown noticeable temperature fluctuations in the brain ($\pm 2-3$ °C)¹²⁵. Moreover, the close proximity of the endoscopic probe to the photoacoustic source can lead to rapid temperature changes due to light absorption, especially when a high-repetition-rate laser is used for high-speed imaging¹²⁶. In addition, strains imposed on the microresonator due to its physical contact with local tissues can also shift in the resonant peak. These fluctuations in the sensitivity of optical ultrasound sensors may affect the correlation analysis of sequentially measured photoacoustic signals for blood flow quantification.

c. Oxygen extraction fraction and metabolic rate of oxygen

Derived from sO_2 , OEF is a critical parameter that reflects tissue's ability to extract oxygen from the blood stream to maintain functional and morphological integrity¹²⁷. It is indicative of oxygen utilization efficiency in the tissue and serves as an important biomarker in cancer¹²⁸ and ischemia¹²⁹. Additionally, MRO_2 , which can be derived from blood flow and OEF, provides a direct measure of tissue's oxygen consumption and can be used for monitoring tissue viability and assessing treatment responses¹⁰⁶. Therefore, the accuracy of sO_2 and blood flow measurements by endoscopic functional PAM determines its capability for the quantification of OEF and MRO_2 .

ii. Multi-contrast imaging

Co-registered, multi-contrast imaging provides a more comprehensive assessment of the tissue, holding great promise in areas such as intraoperative tumor detection for surgery guidance¹²⁸. Combining the abundant contrasts of endogenous chromophores (Fig. 1a) and exogenous contrast agents¹³⁰⁻¹³² with the excellent multiplexing capability of light, PAM is well suited for multi-contrast imaging. Indeed, benchtop PAM has demonstrated simultaneous imaging of the tumor vasculature and tumor-contrast-enhancing agents using visible and near-infrared excitations¹²⁸. However, achieving multi-contrast imaging in endoscopic PAM faces a significant challenge: the device needs to operate in a wide spectral range with minimal chromatic dispersion¹²⁸. Despite the broad transparent window (200-2400 nm), fused silica fibers (i.e., step-index or graded-index fibers), which is widely used in endoscopic PAM, are subject to pronounced chromatic dispersion¹³³. Single-mode fibers, which are required for tight light focusing, can only operate within a wavelength range of a few hundred nanometers without becoming few-mode or lossy¹³³. In addition, conventional designs of an apochromatic optical system require multiple optical elements¹³⁴, posing challenges for miniaturization into an endoscopic device. Moreover, GRIN lens, which is widely used in endoscopic PAM to achieve strong light focusing, exhibits strong chromatic and spherical aberration¹³⁵. As a result, most existing endoscopic PAM devices are only capable of providing a single contrast.

Table I summarizes the challenges for endoscopic PAM to achieve functional and multi-contrast imaging. There are three main considerations for addressing these unmet challenges, including (1) compact, achromatic, and aberration-free light delivery; (2) sufficient SNR for accurate functional measurements at low-light conditions with minimum physiological perturbation; and (3) miniature, high-sensitivity, and stable ultrasound detection. In the following section, we highlight recent technical advances in five areas that, in our perspective, hold the potential to address the current limitations of endoscopic PAM towards functional imaging. Table 1 also summarizes how the five areas can facilitate specific functional measurements.

TABLE I. Challenges and strategies towards endoscopic functional PAM

Parameters	Methods	Requirements	Challenges	Strategies
sO_2 , OEF, and MRO ₂	Multi-wavelength spectroscopic method	<ul style="list-style-type: none"> • Low chromatic aberration • High SNR 	<ul style="list-style-type: none"> • Bulky optical elements for achromatic design • High-sensitivity, robust ultrasound detection 	<ul style="list-style-type: none"> • 3D printed micro-optics • Wavefront shaping • Robust optical sensing of ultrasound • Computational approaches
	Single-wavelength nonlinear methods	<ul style="list-style-type: none"> • Transmit picosecond pulse 	• Optical nonlinearity in fiber	<ul style="list-style-type: none"> • Microstructured fiber
Blood flow and MRO ₂	Temporal correlation or amplitude evolution	<ul style="list-style-type: none"> • High SNR • Stable ultrasound detection 	• High-sensitivity, robust ultrasound detection	<ul style="list-style-type: none"> • Robust optical ultrasound sensing • Computational approaches
Multi-contrast	Multi-spectral excitation	<ul style="list-style-type: none"> • Broadband light delivery • Low chromatic aberration 	<ul style="list-style-type: none"> • Chromatic dispersion in fiber • Limited spectral range for single-mode operation in fiber • Bulky optical elements for apochromatic design 	<ul style="list-style-type: none"> • Microstructured fiber • 3D printed micro-optics

IV. Strategies towards endoscopic functional PAM

246 i. Microstructured optical fibers

247 Microstructured optical fibers are distinguished by their ability to tailor light propagation properties, such as dispersion, modal
 248 profile, and nonlinearity¹³⁶. Although their use in endoscopic PAM remains largely unexplored, these fibers have shown great
 249 promise in multi-photon endoscopy by reducing nonlinear pulse broadening^{137–139}. Specifically, endless-single-mode photonic
 250 crystal fibers (PCFs), capable of maintaining single-mode operation across a wide spectral range from visible to near-infrared,
 251 are well suited for multi-contrast imaging where consistent performance over varying wavelengths is crucial¹⁴⁰. Moreover, both
 252 large-mode-area¹⁴¹ and hollow-core PCFs^{142–144} significantly reduce the optical nonlinearity. This is particularly important for
 253 enhancing the accuracy of sO_2 quantification using nonlinear methods, where ultrashort laser pulses are used and nonlinearity-
 254 induced pulse distortions could compromise the measurement accuracy. The adaptation of the various PCFs, which are broadly
 255 available, in endoscopic PAM is expected to help address current challenges in sO_2 measurements and multi-contrast imaging.

256 ii. 3D printed micro-optics

257 Recent emergence of ultrafast laser-based 3D printing, also known as two-photon polymerization and laser direct writing, has
 258 revolutionized the fabrication of micro-optical elements, stacked components, and integrated devices¹⁴⁵. In-depth reviews on
 259 this topic are available^{146–148}. In this technique, ultrafast laser pulses (typically 100–300 fs) are used to selectively irradiate a
 260 photosensitive material, resulting in the removal or retention of the laser-irradiated region after post-chemical processing to
 261 form desired 3D microstructures¹⁴⁸. By shaping the light field into any desired geometry, such as point-to-point scanning¹⁴⁹ or
 262 patterned illumination¹⁵⁰, this method enables 3D freeform fabrication on various substrates, including optical fibers (Fig. 3a-
 263 b). Ultrafast laser 3D print has been applied to fabricate micro-lenses^{151–154} and diffractive micro-optics^{155–159}, showing promise
 264 in mitigating the aberration issues associated with existing off-the-shelf micro-optics such as ball or GRIN lenses. Moreover,
 265 laser 3D printing of achromatic optics has been reported^{160–162}, potentially benefiting endoscopic PAM-based sO_2 and multi-
 266 contrast imaging that use multiple excitation wavelengths. Going beyond proof-of-concept, 3D printed micro-optics have been

267 used by other modalities, including OCT and fluorescence imaging, for endoscopic applications *in vivo*^{163–165}. Thus, ultrafast
268 laser 3D printing presents a promising solution for compact, achromatic, and aberration-free light delivery in endoscopic PAM.

269 iii. Wavefront shaping

270 Compact light delivery can also be achieved by controlling the output light field of a MMF through wavefront shaping^{70,166}.
271 Here, we focus on the specific aspects of wavefront shaping that are relevant to endoscopic PAM. There are two advantages of
272 using wavefront shaping for endoscopic imaging. First, it eliminates the need for additional optics in the probe construction,
273 resulting in a reduced footprint and simplified fabrication. Second, it enables the generation of arbitrary light fields without
274 modifying the probe design, enhancing the imaging capability. For example, axial scanning can be achieved by modulating the
275 wavefront to focus at different depths¹⁶⁷. Typically, the wavefront shaping is performed by a phase-only liquid-crystal spatial
276 light modulator (LC-SLM), due to the high modulation efficiency¹⁶⁸. However, the low frame rate (<1 kHz) of existing LC-
277 SLMs limits the image speed (<0.5 Hz for an image containing 2,500 pixels) and is insufficient for the dense spatial sampling
278 required by certain functional measurements, such as the correlation-based blood flow quantification^{169,170}. Recent applications
279 of the Lee-hologram¹⁷¹ or real-valued intensity transmission matrix¹⁷² have enabled the use of high-speed intensity modulators,
280 such as the digital micromirror device (DMD; >30 kHz frame rate), to overcome this limitation. Using this approach, forward-
281 view endoscopic PAM with a speed as high as 57 frames/second has been demonstrated^{72–74}. Even faster modulation has been
282 achieved using a 1D modulator with a 350-kHz frame rate and 1D-to-2D transform¹⁷³, but its applicability in MMF imaging is
283 yet to be explored. DMD can also produce a high power ratio (the ratio between the power carried by the primary light focus
284 at the distal end of the MMF and the total power exiting the MMF) up to 75%¹⁶⁸, which can boost the image contrast. Despite
285 the promise, wide adoption of wavefront shaping for *in-vivo* endoscopic imaging still faces a major challenge—the transmission
286 matrix of a MMF is highly sensitive to perturbations, such as fiber bending, twisting, and temperature fluctuations⁷⁰. Deriving
287 the transmission matrix typically requires access to both ends of the fiber, which is largely impractical *in vivo*. The challenge
288 is exacerbated in intravascular and gastrovascular imaging, where the probe is maneuvered inside a tortuous structure and its
289 shape changes constantly. Several approaches have been developed for single-end calibration^{174–179}. In particular, an adaptive
290 tracking method based on a pre-calculated database and dimension reduction allows recalibration of the transmission matrix at
291 a 1 kHz with single-end access, enabling endoscopic fluorescence imaging in live mice¹⁷⁸. Another approach to achieve stable
292 light field propagation through the MMF is to intentionally introduce random fluctuations of the refractive index in the fiber,
293 leading to field localization in the transversal plane during light propagation¹⁸⁰. The disordered optical fibers have been shown
294 to facilitate image transfer with low cross-talk^{181–184}; however, the *in-vivo* performance remains to be tested. With advances in
295 fast wavefront modulation, single-end calibration, and specially designed optical fibers, wavefront shaping is expected to play
296 an increasingly significant role in endoscopic PAM.

297 iv. Robust optical sensing of ultrasound

298 Although optical microresonator-based ultrasound sensors hold great potential in endoscopic PAM, their practical usage has
299 been hindered by issues in reliability and stability. One solution is to actively tune the laser wavelength to the sensor's resonance
300 through the Pound-Drever-Hall (PDH) frequency-locking technique¹⁸⁵. In this approach, the phase of the interrogation laser is
301 modulated to introduce an interference between the carrier and sideband with a frequency identical to the frequency difference
302 between the laser and the microresonator's resonance, from which a PDH error signal can be derived. By minimizing this error,

303 the laser frequency can be locked to the resonant peak. However, further development is needed to extend the dynamic range
304 for *in-vivo* applications¹⁸⁶. Alternatively, methods based on broadband interrogation have been developed to resolve the entire
305 resonant peak, which do not require spectral overlap between the laser and the microresonator's resonance and therefore are
306 insensitive to the drift of the resonant wavelength^{90,186–188}. In this approach, high-repetition-rate laser pulses are used to generate
307 a coherent broadband source (i.e., frequency comb), whose spectral envelope is modulated by the microresonator's resonance.
308 An interferometer is then used to extract the mean shift of the resonance for deriving the photoacoustic signal. Although this
309 approach is more complex because of the need for pulse interferometry, recent advances in integrated photonics, such as on-
310 chip frequency comb and photonic circuits, may simplify the system and facilitate its adoption in PAM¹⁸⁹. Compared to passive
311 microresonators, active microresonators (e.g., lasing cavity) may exhibit a better sensing stability. Fiber-laser-based ultrasound
312 sensors, which detect the beating between two orthogonally polarized lasing modes induced by the acoustic-pressure-generated
313 birefringence, have been applied in endoscopic PAM^{20,105}. Primarily sensitive to asymmetric perturbations, this technique, in
314 principle, is less susceptible to ambient temperature fluctuations¹⁹⁰. Overall, future efforts should focus on the development of
315 robust and effective interrogation schemes to facilitate the practical usage of optical ultrasound sensors in endoscopic PAM.

316 Another promising strategy for endoscopic PAM is non-contact optical detection of ultrasound, where the photoacoustic signal
317 is derived by extracting its modulation of the local optical phase^{191,192} or reflectance^{193,194}. In this approach, a CW laser is used
318 to probe the phase or intensity modulation induced by the photoacoustic pressure. Compared to phase modulation, reflectance-
319 intensity modulation is less susceptible to the background oscillations of the tissue and has enabled *in-vivo* imaging of the mouse
320 ear microvasculature with an SNR comparable to bench-top PAM using a piezoelectric transducer¹⁹⁴. This approach holds great
321 promise for endoscopic PAM because it eliminates the need for an ultrasound sensor, allowing the delivery of both the pulsed
322 photoacoustic excitation light and the CW interrogation light through the same fiber. This greatly simplifies the probe design
323 and reduces its size¹⁹⁵. Moreover, since no acoustic coupling is required, the endoscopic probe can be physically isolated from
324 the targeted tissues and hosed inside a biocompatible housing. This not only minimizes the risk of infection but also broadens
325 the range of material options for the design.

326 v. Computational approaches

327 In addition to advancing the device itself, computational methods can be highly complementary for enhancing the performance
328 of endoscopic PAM. Specifically, machine learning has shown considerable promise in improving the SNR^{111,196–198}. Recently,
329 a two-step sparse coding-based method was developed to denoise images acquired with low-fluence bench-top PAM, leading
330 to significant improvements in microvascular visualization and quantitative accuracy of sO₂ and blood flow measurements¹¹¹.
331 This method capitalizes on the fact that unfeatured noise patterns have less correlation and sparsity compared to photoacoustic
332 signals, allowing them to be separated using sparse coding. The results show that at one-fifth of the normal laser fluence, this
333 approach reduces the errors in functional measurements of microvascular sO₂ and flow from 20% to less than 5%. Overall, the
334 development of computational methods for post-processing can enhance image quality, thereby relaxing requirements on the
335 device and serving as a parallel direction to realize the potential of endoscopic PAM for functional imaging.

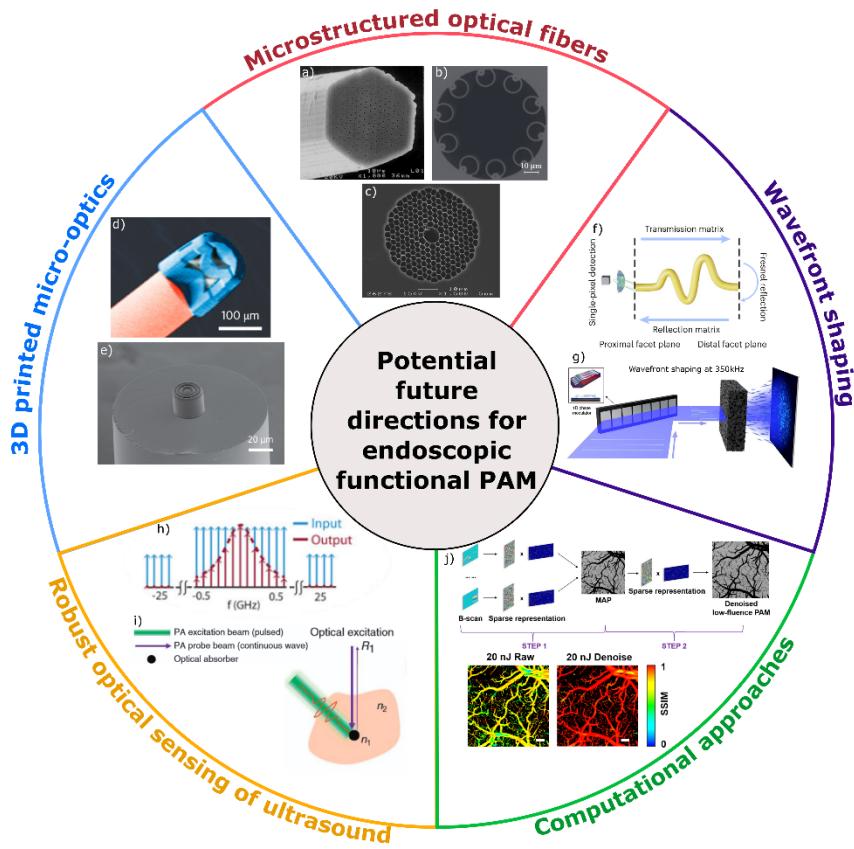


FIG. 3. Potential future directions for endoscopic functional PAM. Microstructured optical fibers: a) endless-single-mode photonic crystal fibers¹⁴⁰; b) anti-resonant hollow-core fibers¹⁹⁹; c) hollow-core photonic crystal fibers¹⁴⁴. Reprinted with permission from [140] Copyright 2024 Optica Publishing Group. Reprinted with permission from [199] Copyright 2024 IOP Publishing. Reprinted with permission from [144] Copyright 2024 Optica Publishing Group. 3D printed micro-optics on the fiber tip: d) multi-element micro-objective lens¹⁵⁴; e) inverse-designed metasurface¹⁵⁹. Reprinted with permission from [154] Copyright 2024 Springer Nature. Reprinted with permission from [159] Copyright 2024 American Chemical Society. Robust, fast wavefront shaping: f) measurement of the transmission matrix of a multimode fiber at 1 kHz using single-end access and dimension-reduction strategy¹⁷⁸; g) wavefront shaping with a 1D spatial light modulator and 1D-2D transform at 350 kHz¹⁷³. Reprinted with permission from [178] Copyright 2024 Springer Nature. Reprinted with permission from [173] Copyright 2024 Springer Nature. Optical photoacoustic detection: h) resolving the entire resonant peak of an optical micro-resonator with pulse interferometry¹⁸⁷; i) non-contact detection of initial photoacoustic pressure with light²⁰⁰. Reprinted with permission from [187] Copyright 2024 Wiley. Reprinted with permission from [200] Copyright 2024 Springer Nature. Computational imaging: j) two-step sparse coding-based denoising to improve image quality and quantitative accuracy in low-fluence benchtop PAM¹¹¹. SSIM: structural Similarity Index Measure. Scale bar: 200 μ m. Reprinted with permission from [111] Copyright 2024 IEEE.

336

337 V. Emerging opportunities for endoscopic functional PAM

338 Future advances in endoscopic PAM to enable functional imaging and further miniaturization will not only enhance its efficacy
 339 in existing applications but also open additional avenues in both clinical research and basic science.

340 On the clinical front, a promising application lies in intravascular imaging of cerebral arteries. Endovascular interventions have
341 become increasingly important for treating cerebrovascular conditions such as aneurysm, ischemic occlusion, and intracranial
342 atherosclerotic disease^{201,202}. Accurate diagnosis of intracranial artery pathology and identification of perioperative events are
343 crucial for effective treatment, propelling the growing interest in intravascular imaging in the brain^{203,204}. However, challenges
344 persist due to the small diameter and high tortuosity of cerebral vessels, necessitating highly flexible probes with minimal size.
345 Endoscopic OCT with a probe size as small as 0.4 mm is suitable for this purpose, but only allows structural imaging^{205,206}. By
346 providing functional insights, endoscopic PAM has the potential to advance the diagnosis and management of cerebrovascular
347 disease. Another promising area is intrathecal spinal cord imaging. Pathologies affecting the spinal cord, such as trauma, tumors,
348 and infections, exhibit distinct hemodynamic and metabolic characteristics²⁰⁷. However, imaging the spinal cord is challenging
349 due to the surrounding bony anatomy and limited space. Non-invasive modalities, such as CT, MRI, and US, suffer from limited
350 spatial resolution^{208,209}. Surgical exposure, while providing access, is too invasive for diagnostic purposes^{210,211}. Achieving high
351 resolution in a minimally invasive manner, endoscopy is preferable. To minimize lumbar drains, the probe diameter should be
352 less than 1 mm^{212,213}. A recent study using a 0.9-mm endovascular OCT probe reported high-resolution, artifact-free structural
353 imaging of epidural veins, pial lining, and nerve rootlets²¹³, showcasing the promise of endoscopic imaging of the spinal cord.
354 By adding functional contrasts, endoscopic PAM is poised to better assist clinicians in identifying pathologies, guiding surgical
355 procedures, and assessing treatment outcomes.

356 In basic research using animal models, endoscopic PAM can help advance our understanding of microvascular physiology and
357 pathology in deep brain. Cerebral microvascular dysfunction has been linked to neurodegeneration, such as that in Alzheimer's
358 disease, which often begins in deep-brain regions (e.g., hippocampus)^{214,215}. Understanding microvascular impairments in the
359 early stage of neurodegeneration may reveal additional insights into pathogenesis and promote early detection or treatment.
360 Benchtop PAM, although enabling comprehensive assessment of microvascular function and tissue oxygen metabolism, cannot
361 penetrate the superficial cortex²¹⁶. Endoscopic implementation is thus needed to extend the success of PAM in functional
362 microvascular imaging to deep brain. Another potential application lies in intravital imaging of the beating heart.
363 Microcirculatory dysfunction in cardiovascular disease can result in fatal outcomes, such as septic shock and heart failure,
364 irrespective of alterations in the broader systemic circulation²¹⁷. *In-vivo* functional imaging of the heart microvasculature can
365 reveal the much needed insights into the underlying disease mechanisms, but it is difficult to access due to the ribs and lungs
366 surrounding the heart²¹⁸. Although non-invasive modalities²¹⁸ and open-chest procedures²¹⁹ have been explored, they either
367 cannot provide sufficient resolution to image the microvasculature or cause significant perturbations to heart physiology.
368 Advances in fluorescence micro-endoscopy, by inserting a 1.25-mm-diameter probe through the rib cage, have enabled
369 intravital imaging of the beating heart with minimum disturbance to normal physiology, reduced motion artifacts, and
370 longitudinal access^{220,221}. Following this approach, endoscopic PAM holds the potential to further advance cardiovascular
371 research by providing extra functional insights into the heart.

372 VI. Conclusion

373 In this Perspective, we have assessed the current state of endoscopic PAM, with a particular emphasis on its functional imaging
374 capability. We have identified critical gaps to be addressed, including the need for miniaturized and achromatic light delivery,
375 robust, compact, and high-sensitivity ultrasound detectors, and improved SNR to reduce light exposure and ensure quantitative

376 accuracy. Also, we have highlighted recent advances in microstructured optical fibers, ultrafast laser 3D printing, wavefront
377 shaping, optical sensing of ultrasound, and computational imaging, which hold significant promise for addressing the existing
378 challenges in endoscopic functional PAM and are poised to shape the future of this rapidly evolving field. In addition, we have
379 suggested future opportunities for functional endoscopic PAM in both clinical applications and basic science research.

380 **Acknowledgments**

381 The authors appreciate the supports from the National Institutes of Health (NS120481, AG079503, NS125677, AT012283, and
382 AG07772001), National Science Foundation (NSF CAREER 202988), and McDonnell Center of Systems Neuroscience Small
383 Grants Program (FY24).

384 **References**

385 ¹ Y. Li, G. Lu, Q. Zhou, and Z. Chen, “Advances in Endoscopic Photoacoustic Imaging,” *Photonics* **8**(7), 281 (2021).

386 ² H. Guo, Y. Li, W. Qi, and L. Xi, “Photoacoustic endoscopy: A progress review,” *Journal of Biophotonics* **13**(12), e202000217
387 (2020).

388 ³ R. Banerjee, and D.N. Reddy, “Advances in endoscopic imaging: Advantages and limitations,” *Journal of Digestive
389 Endoscopy* **03**(S 5), 7–12 (2012).

390 ⁴ T. Rösch, “Endoscopic ultrasonography: imaging and beyond,” *Gut* **52**(8), 1220–1226 (2003).

391 ⁵ M.J. Gora, M.J. Suter, G.J. Tearney, and X. Li, “Endoscopic optical coherence tomography: technologies and clinical
392 applications [Invited],” *Biomed. Opt. Express*, **BOE** **8**(5), 2405–2444 (2017).

393 ⁶ V. Kučikas, M.P. Werner, T. Schmitz-Rode, F. Louradour, and M.A.M.J. van Zandvoort, “Two-Photon Endoscopy: State of
394 the Art and Perspectives,” *Mol Imaging Biol* **25**(1), 3–17 (2023).

395 ⁷ V.G. Andreev, A.A. Karabutov, and A.A. Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic
396 tomography,” *IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control* **50**(10), 1383–1390 (2003).

397 ⁸ I.G. Calasso, W. Craig, and G.J. Diebold, “Photoacoustic Point Source,” *Phys. Rev. Lett.* **86**(16), 3550–3553 (2001).

398 ⁹ J. Yao, and L.V. Wang, “Photoacoustic microscopy,” *Laser & Photonics Reviews* **7**(5), 758–778 (2013).

399 ¹⁰ T. Zhao, A.E. Desjardins, S. Ourselin, T. Vercauteren, and W. Xia, “Minimally invasive photoacoustic imaging: Current
400 status and future perspectives,” *Photoacoustics* **16**, 100146 (2019).

401 ¹¹ K. Zhang, J. Qiu, F. Yang, J. Wang, X. Zhao, Z. Wei, N. Ge, Y. Chen, and S. Sun, “Photoacoustic endoscopy and EUS:
402 Shaking the future of multimodal endoscopy,” *Endoscopic Ultrasound* **11**(1), 1 (2022).

403 ¹² J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K.K. Shung, and L.V. Wang,
404 “Optical-resolution photoacoustic endomicroscopy in vivo,” *Biomed. Opt. Express*, **BOE** **6**(3), 918–932 (2015).

405 ¹³ J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K.K. Shung, and L.V. Wang, “Simultaneous functional
406 photoacoustic and ultrasonic endoscopy of internal organs in vivo,” *Nat Med* **18**(8), 1297–1302 (2012).

407 ¹⁴ A. Horiguchi, M. Shinchi, A. Nakamura, T. Wada, K. Ito, T. Asano, H. Shinmoto, H. Tsuda, and M. Ishihara, “Pilot Study
408 of Prostate Cancer Angiogenesis Imaging Using a Photoacoustic Imaging System,” *Urology* **108**, 212–219 (2017).

409 ¹⁵ M. Wu, G. Springeling, M. Lovrak, F. Mastik, S. Iskander-Rizk, T. Wang, H.M.M. van Beusekom, A.F.W. van der Steen,
410 and G.V. Soest, “Real-time volumetric lipid imaging in vivo by intravascular photoacoustics at 20 frames per second,” *Biomed.
411 Opt. Express*, **BOE** **8**(2), 943–953 (2017).

412 ¹⁶ Y. Qu, C. Li, J. Shi, R. Chen, S. Xu, H. Rafsanjani, K. Maslov, H. Krigman, L. Garvey, P. Hu, P. Zhao, K. Meyers, E.
413 Diveley, S. Pizzella, L. Muench, N. Punyamurthy, N. Goldstein, O. Onwumere, M. Alisio, K. Meyenburg, J. Maynard, K.
414 Helm, J. Slaughter, S. Barber, T. Burger, C. Kramer, J. Chubiz, M. Anderson, R. McCarthy, S.K. England, G.A. Macones, Q.
415 Zhou, K.K. Shung, J. Zou, M.J. Stout, M. Tuuli, and L.V. Wang, “Transvaginal fast-scanning optical-resolution photoacoustic
416 endoscopy,” *JBO* **23**(12), 121617 (2018).

417 ¹⁷ R. Lin, S. Lv, W. Lou, X. Wang, Z. Xie, S. Zeng, R. Chen, W. Gao, T. Jiang, K.-W.E. Cheng, K.-H. Lam, and X. Gong, “In-
418 vivo assessment of a rat rectal tumor using optical-resolution photoacoustic endoscopy,” *Biomed. Opt. Express*, **BOE** **15**(4),
419 2251–2261 (2024).

420 ¹⁸ H. He, L. Englert, and V. Ntziachristos, “Optoacoustic Endoscopy of the Gastrointestinal Tract,” *ACS Photonics* **10**(3), 559–
421 570 (2023).

422 ¹⁹ Y. Zhu, L. Ni, G. Hu, L.A. Johnson, K.A. Eaton, X. Wang, P.D.R. Higgins, and G. Xu, “Prototype endoscopic photoacoustic-
423 ultrasound balloon catheter for characterizing intestinal obstruction,” *Biomed. Opt. Express*, **BOE** **13**(6), 3355–3365 (2022).

424 ²⁰ Y. Liang, W. Fu, Q. Li, X. Chen, H. Sun, L. Wang, L. Jin, W. Huang, and B.-O. Guan, “Optical-resolution functional
425 gastrointestinal photoacoustic endoscopy based on optical heterodyne detection of ultrasound,” *Nat Commun* **13**(1), 7604
426 (2022).

427 ²¹ Z. Ali, C. Zakian, Q. Li, J. Gloriod, S. Crozat, F. Bouvet, G. Pierre, V. Sarantos, M. Di Pietro, K. Flisikowski, P. Andersen,
428 W. Drexler, and V. Ntziachristos, “360° optoacoustic capsule endoscopy at 50 Hz for esophageal imaging,” *Photoacoustics* **25**,
429 100333 (2022).

430 ²² X. Li, K. Xiong, and S. Yang, “Large-depth-of-field optical-resolution colorectal photoacoustic endoscope,” *Applied Physics
431 Letters* **114**(16), 163703 (2019).

432 ²³ H. Lei, L.A. Johnson, K.A. Eaton, S. Liu, J. Ni, X. Wang, P.D.R. Higgins, and G. Xu, “Characterizing intestinal strictures
433 of Crohn’s disease in vivo by endoscopic photoacoustic imaging,” *Biomed. Opt. Express*, **BOE** **10**(5), 2542–2555 (2019).

434 ²⁴ H. He, A. Stylogiannis, P. Afshari, T. Wiedemann, K. Steiger, A. Buehler, C. Zakian, and V. Ntziachristos, “Capsule
435 optoacoustic endoscopy for esophageal imaging,” *Journal of Biophotonics* **12**(10), e201800439 (2019).

436 ²⁵ D. Jin, F. Yang, Z. Chen, S. Yang, and D. Xing, “Biomechanical and morphological multi-parameter photoacoustic
437 endoscope for identification of early esophageal disease,” *Applied Physics Letters* **111**(10), 103703 (2017).

438 ²⁶ J.M. Yang, C. Favazza, J. Yao, R. Chen, Q. Zhou, K.K. Shung, and L.V. Wang, “Three-Dimensional Photoacoustic
439 Endoscopic Imaging of the Rabbit Esophagus,” *PLOS ONE* **10**(4), e0120269 (2015).

440 ²⁷ Y. Yuan, S. Yang, and D. Xing, “Preclinical photoacoustic imaging endoscope based on acousto-optic coaxial system using
441 ring transducer array,” *Opt. Lett.*, **OL** **35**(13), 2266–2268 (2010).

442 ²⁸ J. Jiang, C. Yuan, J. Zhang, Z. Xie, and J. Xiao, “Spectroscopic photoacoustic/ultrasound/optical-microscopic multimodal
443 intrarectal endoscopy for detection of centimeter-scale deep lesions,” *Front. Bioeng. Biotechnol.* **11**, (2023).

444 ²⁹ X. Leng, K.M.S. Uddin, W. Chapman, H. Luo, S. Kou, E. Amidi, G. Yang, D. Chatterjee, A. Shetty, S. Hunt, M. Mutch, and
445 Q. Zhu, “Assessing Rectal Cancer Treatment Response Using Coregistered Endorectal Photoacoustic and US
446 Imaging Paired with Deep Learning,” *Radiology* **299**(2), 349–358 (2021).

447 ³⁰ Y. Yuan, G. Zhang, Y. Chen, H. Ni, M. Li, M. Sturek, and J.-X. Cheng, “A high-sensitivity high-resolution intravascular
448 photoacoustic catheter through mode cleaning in a graded-index fiber,” *Photoacoustics* **29**, 100451 (2023).

449 ³¹ R. Lin, Q. Zhang, S. Lv, J. Zhang, X. Wang, D. Shi, X. Gong, and K. Lam, “Miniature intravascular photoacoustic endoscopy
450 with coaxial excitation and detection,” *Journal of Biophotonics* **16**(4), e202200269 (2023).

451 32 K. Zhan, L. Wang, Z. Chen, and D. Xing, “Intravascular Photoacoustic and Autofluorescence Imaging for Detecting
452 Intraplaque Hemorrhage: A Feasibility Study,” *IEEE Journal of Selected Topics in Quantum Electronics* **27**(4), 1–5 (2021).

453 33 J. Leng, J. Zhang, C. Li, C. Shu, B. Wang, R. Lin, Y. Liang, K. Wang, L. Shen, K. Lam, Z. Xie, X. Gong, J. Ge, and L. Song,
454 “Multi-spectral intravascular photoacoustic/ultrasound/optical coherence tomography tri-modality system with a fully-
455 integrated 0.9-mm full field-of-view catheter for plaque vulnerability imaging,” *Biomed. Opt. Express, BOE* **12**(4), 1934–1946
456 (2021).

457 34 Z. Xie, C. Shu, D. Yang, H. Chen, C. Chen, G. Dai, K.H. Lam, J. Zhang, X. Wang, Z. Sheng, D. Gao, C. Liu, L. Song, and
458 X. Gong, “In vivo intravascular photoacoustic imaging at a high speed of 100 frames per second,” *Biomed. Opt. Express, BOE*
459 **11**(11), 6721–6731 (2020).

460 35 X. Wen, P. Lei, K. Xiong, P. Zhang, and S. Yang, “High-robustness intravascular photoacoustic endoscope with a
461 hermetically sealed opto-sono capsule,” *Opt. Express, OE* **28**(13), 19255–19269 (2020).

462 36 Y. Cao, M. Alloosh, M. Sturek, and J.-X. Cheng, “Highly sensitive lipid detection and localization in atherosclerotic plaque
463 with a dual-frequency intravascular photoacoustic/ultrasound catheter,” *Translational Biophotonics* **2**(3), e202000004 (2020).

464 37 L. Wang, P. Lei, X. Wen, P. Zhang, and S. Yang, “Tapered fiber-based intravascular photoacoustic endoscopy for high-
465 resolution and deep-penetration imaging of lipid-rich plaque,” *Opt. Express, OE* **27**(9), 12832–12840 (2019).

466 38 P. Lei, X. Wen, L. Wang, P. Zhang, and S. Yang, “Ultrafine intravascular photoacoustic endoscope with a 0.7 mm diameter
467 probe,” *Opt. Lett., OL* **44**(22), 5406–5409 (2019).

468 39 P. Wang, Z. Chen, F. Yang, S. Yang, and D. Xing, “Intravascular tri-modality system: Combined ultrasound, photoacoustic,
469 and elasticity imaging,” *Applied Physics Letters* **113**(25), 253701 (2018).

470 40 S.J. Mathews, C. Little, C.D. Loder, R.D. Rakhit, W. Xia, E.Z. Zhang, P.C. Beard, M.C. Finlay, and A.E. Desjardins, “All-
471 optical dual photoacoustic and optical coherence tomography intravascular probe,” *Photoacoustics* **11**, 65–70 (2018).

472 41 Z. Piao, T. Ma, J. Li, M.T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C.-S. Kim, and Z. Chen, “High speed
473 intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm ,” *Applied Physics Letters* **107**(8),
474 083701 (2015).

475 42 X. Ji, K. Xiong, S. Yang, and D. Xing, “Intravascular confocal photoacoustic endoscope with dual-element ultrasonic
476 transducer,” *Opt. Express, OE* **23**(7), 9130–9136 (2015).

477 43 X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular Optical-Resolution
478 Photoacoustic Tomography with a 1.1 mm Diameter Catheter,” *PLOS ONE* **9**(3), e92463 (2014).

479 44 B. Wang, A. Karpouk, D. Yeager, J. Amirian, S. Litovsky, R. Smalling, and S. Emelianov, “Intravascular photoacoustic
480 imaging of lipid in atherosclerotic plaques in the presence of luminal blood,” *Opt. Lett., OL* **37**(7), 1244–1246 (2012).

481 45 A. Wiacek, K.C. Wang, H. Wu, and M.A.L. Bell, “Photoacoustic-Guided Laparoscopic and Open Hysterectomy Procedures
482 Demonstrated With Human Cadavers,” *IEEE Transactions on Medical Imaging* **40**(12), 3279–3292 (2021).

483 46 C. Miranda, J. Barkley, and B.S. Smith, “Intrauterine photoacoustic and ultrasound imaging probe,” *JBO* **23**(4), 046008
484 (2018).

485 47 A. Horiguchi, K. Tsujita, K. Irisawa, T. Kasamatsu, K. Hirota, M. Kawaguchi, M. Shinchi, K. Ito, T. Asano, H. Shinmoto,
486 H. Tsuda, and M. Ishihara, “A pilot study of photoacoustic imaging system for improved real-time visualization of
487 neurovascular bundle during radical prostatectomy,” *The Prostate* **76**(3), 307–315 (2016).

488 48 H.S. Salehi, P.D. Kumavor, H. Li, U. Alqasemi, T. Wang, C. Xu, and Q. Zhu, “Design of optimal light delivery system for
489 co-registered transvaginal ultrasound and photoacoustic imaging of ovarian tissue,” *Photoacoustics* **3**(3), 114–122 (2015).

490 ⁴⁹ M. Basij, Y. Yan, S. Alshahrani, I. Winer, J. Burmeister, M. Dominello, and M. Mehrmohammadi, “Development of an
491 Ultrasound and Photoacoustic Endoscopy System for Imaging of Gynecological Disorders,” in *2018 IEEE International
492 Ultrasonics Symposium (IUS)*, (2018), pp. 1–4.

493 ⁵⁰ S. Nandy, A. Mostafa, I.S. Hagemann, M.A. Powell, E. Amidi, K. Robinson, D.G. Mutch, C. Siegel, and Q. Zhu, “Evaluation
494 of Ovarian Cancer: Initial Application of Coregistered Photoacoustic Tomography and US,” *Radiology* **289**(3), 740–747
495 (2018).

496 ⁵¹ Y. Lin, P. Andreae, Z. Li, J. Cai, and H. Li, “Real-time co-registered photoacoustic and ultrasonic imaging for early
497 endometrial cancer detection driven by cylindrical diffuser,” *J. Innov. Opt. Health Sci.* **12**(02), 1950002 (2019).

498 ⁵² Y. Lin, R. Zheng, X. Zhang, Z. Li, and H. Li, “Image enhancement of photoacoustic imaging for early endometrial cancer
499 detection by employing a filtered delay multiply and sum beamforming algorithm,” *AIP Advances* **9**(12), 125303 (2019).

500 ⁵³ C. Lu, K. Xiong, Y. Ma, W. Zhang, Z. Cheng, and S. Yang, “Electrothermal-MEMS-induced nonlinear distortion correction
501 in photoacoustic laparoscopy,” *Opt. Express, OE* **28**(10), 15300–15313 (2020).

502 ⁵⁴ L. Xi, S.R. Grobmyer, L. Wu, R. Chen, G. Zhou, L.G. Gutwein, J. Sun, W. Liao, Q. Zhou, H. Xie, and H. Jiang, “Evaluation
503 of breast tumor margins in vivo with intraoperative photoacoustic imaging,” *Opt. Express, OE* **20**(8), 8726–8731 (2012).

504 ⁵⁵ L.V. Wang, and S. Hu, “Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs,” *Science* **335**(6075),
505 1458–1462 (2012).

506 ⁵⁶ K. Xiong, W. Wang, T. Guo, Z. Yuan, and S. Yang, “Shape-adapting panoramic photoacoustic endomicroscopy,” *Opt. Lett.,
507 OL* **44**(11), 2681–2684 (2019).

508 ⁵⁷ K. Xiong, S. Yang, X. Li, and D. Xing, “Autofocusing optical-resolution photoacoustic endoscopy,” *Opt. Lett., OL* **43**(8),
509 1846–1849 (2018).

510 ⁵⁸ G. Li, Z. Guo, and S.-L. Chen, “Miniature Probe for Forward-View Wide-Field Optical-Resolution Photoacoustic
511 Endoscopy,” *IEEE Sensors Journal* **19**(3), 909–916 (2019).

512 ⁵⁹ L. Xi, J. Sun, Y. Zhu, L. Wu, H. Xie, and H. Jiang, “Photoacoustic imaging based on MEMS mirror scanning,” *Biomed. Opt.
513 Express, BOE* **1**(5), 1278–1283 (2010).

514 ⁶⁰ Y. Li, X. Gong, C. Liu, R. Lin, W. Hau, X. Bai, and L. Song, “High-speed intravascular spectroscopic photoacoustic imaging
515 at 1000 A-lines per second with a 0.9-mm diameter catheter,” *JBO* **20**(6), 065006 (2015).

516 ⁶¹ B. Wang, A. Karpouk, D. Yeager, J. Amirian, S. Litovsky, R. Smalling, and S. Emelianov, “*In vivo* Intravascular Ultrasound-
517 guided Photoacoustic Imaging of Lipid in Plaques Using an Animal Model of Atherosclerosis,” *Ultrasound in Medicine &
518 Biology* **38**(12), 2098–2103 (2012).

519 ⁶² R. Virmani, A.P. Burke, F.D. Kolodgie, and A. Farb, “Pathology of the thin-cap fibroatheroma: a type of vulnerable plaque,”
520 *J. Interv. Cardiol.* **16**(3), 267–272 (2003).

521 ⁶³ M.T. Myaing, D.J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” *Opt. Lett., OL* **31**(8),
522 1076–1078 (2006).

523 ⁶⁴ D. Ke, L. Wang, E. Wang, H. Xin, S. Yang, and K. Xiong, “Miniature fiber scanning probe for flexible forward-view
524 photoacoustic endoscopy,” *Applied Physics Letters* **122**(12), (2023).

525 ⁶⁵ A. Seki, K. Iwai, T. Katagiri, and Y. Matsuura, “Forward-viewing photoacoustic imaging probe with bundled ultra-thin
526 hollow optical fibers,” *J. Opt.* **18**(7), 074015 (2016).

527 ⁶⁶ A. Seki, K. Iwai, T. Katagiri, and Y. Matsuura, “Sensitivity improvement of optical fiber acoustic probe for all-optical
528 photoacoustic imaging system,” *Appl. Phys. Express* **10**(7), 072503 (2017).

529 ⁶⁷ Y. Miida, and Y. Matsuura, “All-optical photoacoustic imaging system using fiber ultrasound probe and hollow optical fiber
530 bundle,” *Opt. Express*, **OE** **21**(19), 22023–22033 (2013).

531 ⁶⁸ F. Zhong, and S. Hu, “Thin-film optical-acoustic combiner enables high-speed wide-field multi-parametric photoacoustic
532 microscopy in reflection mode,” *Opt. Lett.*, **OL** **48**(2), 195–198 (2023).

533 ⁶⁹ G. Oh, E. Chung, and S.H. Yun, “Optical fibers for high-resolution *in vivo* microendoscopic fluorescence imaging,” *Optical
534 Fiber Technology* **19**(6, Part B), 760–771 (2013).

535 ⁷⁰ H. Cao, T. Čižmár, S. Turtaev, T. Tyc, and S. Rotter, “Controlling light propagation in multimode fibers for imaging,
536 spectroscopy, and beyond,” *Adv. Opt. Photon.*, **AOP** **15**(2), 524–612 (2023).

537 ⁷¹ Antonio M. Caravaca-Aguirre, Sakshi Singh, Simon Labouesse, Michael V. Baratta, Rafael Piestun, and Emmanuel Bossy,
538 “Hybrid photoacoustic-fluorescence microendoscopy through a multimode fiber using speckle illumination,” *APL Photonics*
539 **4**(9), 096103 (2019).

540 ⁷² T. Zhao, M.T. Ma, S. Ourselin, T. Vercauteren, and W. Xia, “Video-rate dual-modal photoacoustic and fluorescence imaging
541 through a multimode fibre towards forward-viewing endomicroscopy,” *Photoacoustics* **25**, 100323 (2022).

542 ⁷³ T. Zhao, M. Zhang, S. Ourselin, and W. Xia, “Wavefront Shaping-Assisted Forward-Viewing Photoacoustic
543 Endomicroscopy Based on a Transparent Ultrasound Sensor,” *Applied Sciences* **12**(24), 12619 (2022).

544 ⁷⁴ T. Zhao, T.T. Pham, C. Baker, M.T. Ma, S. Ourselin, T. Vercauteren, E. Zhang, P.C. Beard, and W. Xia, “Ultrathin, high-
545 speed, all-optical photoacoustic endomicroscopy probe for guiding minimally invasive surgery,” *Biomed. Opt. Express* **13**(8),
546 4414–4428 (2022).

547 ⁷⁵ Ioannis N. Papadopoulos, Olivier Simandoux, Salma Farahi, Jean Pierre Huignard, Emmanuel Bossy, Demetri Psaltis, and
548 Christophe Moser, “Optical-resolution photoacoustic microscopy by use of a multimode fiber,” *Appl. Phys. Lett.* **102**(21),
549 211106 (2013).

550 ⁷⁶ S. Mezil, A.M. Caravaca-Aguirre, E.Z. Zhang, P. Moreau, I. Wang, P.C. Beard, and E. Bossy, “Single-shot hybrid
551 photoacoustic-fluorescent microendoscopy through a multimode fiber with wavefront shaping,” *Biomed. Opt. Express* **11**(10),
552 5717–5727 (2020).

553 ⁷⁷ A.M. Caravaca-Aguirre, F. Poisson, D. Bouchet, N. Stasio, P. Moreau, I. Wang, E. Zhang, P. Beard, C. Prada, C. Moser, D.
554 Psaltis, O. Katz, and E. Bossy, “Single-Pixel Photoacoustic Microscopy with Speckle Illumination,” *Intelligent Computing* **2**,
555 0011 (2023).

556 ⁷⁸ A. Meiri, E.M. Strohm, M.C. Kolios, and Z. Zalevsky, “Spatial interference encoding patterns based photoacoustic
557 microscopy,” *Optics Communications* **401**, 23–28 (2017).

558 ⁷⁹ R. Ansari, E.Z. Zhang, A.E. Desjardins, and P.C. Beard, “Miniature all-optical flexible forward-viewing photoacoustic
559 endoscopy probe for surgical guidance,” *Opt. Lett.*, **OL** **45**(22), 6238–6241 (2020).

560 ⁸⁰ M. Basij, Y. Yan, S.S. Alshahrani, H. Helmi, T.K. Burton, J.W. Burmeister, M.M. Dominello, I.S. Winer, and M.
561 Mehrmohammadi, “Miniaturized phased-array ultrasound and photoacoustic endoscopic imaging system,” *Photoacoustics* **15**,
562 100139 (2019).

563 ⁸¹ R. Ansari, E.Z. Zhang, A.E. Desjardins, and P.C. Beard, “All-optical forward-viewing photoacoustic probe for high-
564 resolution 3D endoscopy,” *Light Sci Appl* **7**(1), 75 (2018).

565 ⁸² A. Dangi, S. Agrawal, S. Tiwari, S. Jadhav, C. Cheng, G.R. Datta, S. Trolier-McKinstry, R. Pratap, and S.-R. Kothapalli,
566 “Ring PMUT array based miniaturized photoacoustic endoscopy device,” in *Photons Plus Ultrasound: Imaging and Sensing
567 2019*, (SPIE, 2019), pp. 46–53.

568 ⁸³ D. Ren, C. Li, J. Shi, and R. Chen, “A Review of High-Frequency Ultrasonic Transducers for Photoacoustic Imaging
569 Applications,” *IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control* **69**(6), 1848–1858 (2022).

570 ⁸⁴ Q. Zhou, X. Xu, E.J. Gottlieb, L. Sun, J.M. Cannata, H. Ameri, M.S. Humayun, P. Han, and K.K. Shung, “PMN-PT single
571 crystal, high-frequency ultrasonic needle transducers for pulsed-wave Doppler application,” *IEEE Transactions on Ultrasonics,
572 Ferroelectrics, and Frequency Control* **54**(3), 668–675 (2007).

573 ⁸⁵ W. Qi, R. Li, T. Ma, K. Kirk Shung, Q. Zhou, and Z. Chen, “Confocal acoustic radiation force optical coherence elastography
574 using a ring ultrasonic transducer,” *Applied Physics Letters* **104**(12), 123702 (2014).

575 ⁸⁶ D. Ren, Y. Sun, J. Shi, and R. Chen, “A Review of Transparent Sensors for Photoacoustic Imaging Applications,” *Photonics*
576 **8**(8), 324 (2021).

577 ⁸⁷ D.C. Garrett, and L.V. Wang, “Acoustic sensing with light,” *Nature Photonics*, (2021).

578 ⁸⁸ R. Shnaiderman, G. Wissmeyer, O. Ülgen, Q. Mustafa, A. Chmyrov, and V. Ntziachristos, “A submicrometre silicon-on-
579 insulator resonator for ultrasound detection,” *Nature* **585**(7825), 372–378 (2020).

580 ⁸⁹ B. Dong, S. Chen, Z. Zhang, C. Sun, and H.F. Zhang, “Photoacoustic probe using a microring resonator ultrasonic sensor
581 for endoscopic applications,” *Opt. Lett., OL* **39**(15), 4372–4375 (2014).

582 ⁹⁰ J. Pan, Q. Li, Y. Feng, R. Zhong, Z. Fu, S. Yang, W. Sun, B. Zhang, Q. Sui, J. Chen, Y. Shen, and Z. Li, “Parallel interrogation
583 of the chalcogenide-based micro-ring sensor array for photoacoustic tomography,” *Nat Commun* **14**(1), 3250 (2023).

584 ⁹¹ B. Dong, C. Sun, and H. F. Zhang, “Optical Detection of Ultrasound in Photoacoustic Imaging,” *IEEE Transactions on
585 Biomedical Engineering* **64**(1), 4–15 (2017).

586 ⁹² G. Wissmeyer, M.A. Pleitez, A. Rosenthal, and V. Ntziachristos, “Looking at sound: optoacoustics with all-optical ultrasound
587 detection,” *Light: Science & Applications* **7**(1), 53 (2018).

588 ⁹³ J. Jung, W. Lee, W. Kang, E. Shin, J. Ryu, and H. Choi, “Review of piezoelectric micromachined ultrasonic transducers and
589 their applications,” *J. Micromech. Microeng.* **27**(11), 113001 (2017).

590 ⁹⁴ K. Brenner, A.S. Ergun, K. Firouzi, M.F. Rasmussen, Q. Stedman, and B. (Pierre) Khuri-Yakub, “Advances in Capacitive
591 Micromachined Ultrasonic Transducers,” *Micromachines* **10**(2), 152 (2019).

592 ⁹⁵ A.K. Ilkhechi, C. Ceroici, Z. Li, and R. Zemp, “Transparent capacitive micromachined ultrasonic transducer (CMUT) arrays
593 for real-time photoacoustic applications,” *Opt. Express, OE* **28**(9), 13750–13760 (2020).

594 ⁹⁶ S. Vaithilingam, T.-J. Ma, Y. Furukawa, I.O. Wygant, X. Zhuang, A. De La Zerda, O. Oralkan, A. Kamaya, S. s. Gambhir,
595 R.B. Jeffrey, and B.T. Khuri-yakub, “Three-dimensional photoacoustic imaging using a two-dimensional CMUT array,” *IEEE
596 Transactions on Ultrasonics, Ferroelectrics, and Frequency Control* **56**(11), 2411–2419 (2009).

597 ⁹⁷ A. Dangi, C.Y. Cheng, S. Agrawal, S. Tiwari, G.R. Datta, R.R. Benoit, R. Pratap, S. Trolier-Mckinstry, and S.-R. Kothapalli,
598 “A Photoacoustic Imaging Device Using Piezoelectric Micromachined Ultrasound Transducers (PMUTs),” *IEEE Transactions
599 on Ultrasonics, Ferroelectrics, and Frequency Control* **67**(4), 801–809 (2020).

600 ⁹⁸ Q. Zheng, H. Wang, H. Yang, H. Jiang, Z. Chen, Y. Lu, P.X.-L. Feng, and H. Xie, “Thin ceramic PZT dual- and multi-
601 frequency pMUT arrays for photoacoustic imaging,” *Microsyst Nanoeng* **8**(1), 1–12 (2022).

602 ⁹⁹ J. Cai, Y. Wang, D. Jiang, S. Zhang, Y.A. Gu, L. Lou, F. Gao, and T. Wu, “Beyond fundamental resonance mode: high-
603 order multi-band ALN PMUT for in vivo photoacoustic imaging,” *Microsyst Nanoeng* **8**(1), 1–12 (2022).

604 ¹⁰⁰ M.S. Salim, M.F. Abd Malek, R.B.W. Heng, K.M. Juni, and N. Sabri, “Capacitive Micromachined Ultrasonic Transducers:
605 Technology and Application,” *Journal of Medical Ultrasound* **20**(1), 8–31 (2012).

606 ¹⁰¹ J.-M. Yang, R. Chen, C. Favazza, J. Yao, C. Li, Z. Hu, Q. Zhou, K.K. Shung, and L.V. Wang, “A 2.5-mm diameter probe
607 for photoacoustic and ultrasonic endoscopy,” Opt. Express, OE **20**(21), 23944–23953 (2012).

608 ¹⁰² J.-M. Yang, C. Li, R. Chen, Q. Zhou, K.K. Shung, and L.V. Wang, “Catheter-based photoacoustic endoscope,” JBO **19**(6),
609 066001 (2014).

610 ¹⁰³ J.A. Guggenheim, J. Li, T.J. Allen, R.J. Colchester, S. Noimark, O. Ogunlade, I.P. Parkin, I. Papakonstantinou, A.E.
611 Desjardins, E.Z. Zhang, and P.C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nature
612 Photonics **11**(11), 714–719 (2017).

613 ¹⁰⁴ H. Li, B. Dong, X. Zhang, X. Shu, X. Chen, R. Hai, D.A. Czaplewski, H.F. Zhang, and C. Sun, “Disposable ultrasound-
614 sensing chronic cranial window by soft nanoimprinting lithography,” Nature Communications **10**(1), 4277 (2019).

615 ¹⁰⁵ Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B.-O. Guan, “Fiber-Laser-Based Ultrasound Sensor for Photoacoustic
616 Imaging,” Scientific Reports **7**(1), 40849 (2017).

617 ¹⁰⁶ C. Liu, and L. Wang, “Functional photoacoustic microscopy of hemodynamics: a review,” Biomed. Eng. Lett. **12**(2), 97–
618 124 (2022).

619 ¹⁰⁷ H.F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L.V. Wang, “Imaging of hemoglobin oxygen saturation
620 variations in single vessels *in vivo* using photoacoustic microscopy,” Applied Physics Letters **90**(5), 053901 (2007).

621 ¹⁰⁸ Z. Xu, N. Sun, R. Cao, Z. Li, Q. Liu, and S. Hu, “Cortex-wide multiparametric photoacoustic microscopy based on real-
622 time contour scanning,” NPh **6**(3), 035012 (2019).

623 ¹⁰⁹ K. Jansen, A.F.W. van der Steen, M. Wu, H.M.M. van Beusekom, G. Springeling, X. Li, Q. Zhou, K.K. Shung, D.P. de
624 Kleijn, and G. van Soest, “Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis,” JBO **19**(2), 026006
625 (2014).

626 ¹¹⁰ J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of Lipid-Rich Aortic Plaques by Intravascular
627 Photoacoustic Tomography: Ex Vivo and In Vivo Validation in a Rabbit Atherosclerosis Model With Histologic Correlation,”
628 Journal of the American College of Cardiology **64**(4), 385–390 (2014).

629 ¹¹¹ Z. Wang, Y. Zhou, and S. Hu, “Sparse Coding-Enabled Low-Fluence Multi-Parametric Photoacoustic Microscopy,” IEEE
630 Transactions on Medical Imaging **41**(4), 805–814 (2022).

631 ¹¹² A. Danielli, C.P. Favazza, K. Maslov, and L.V. Wang, “Picosecond absorption relaxation measured with nanosecond laser
632 photoacoustics,” Applied Physics Letters **97**(16), 163701 (2010).

633 ¹¹³ A. Danielli, C.P. Favazza, K. Maslov, and L.V. Wang, “Single-wavelength functional photoacoustic microscopy in
634 biological tissue,” Opt. Lett., OL **36**(5), 769–771 (2011).

635 ¹¹⁴ J. Yao, L. Wang, J.-M. Yang, K.I. Maslov, T.T.W. Wong, L. Li, C.-H. Huang, J. Zou, and L.V. Wang, “High-speed label-
636 free functional photoacoustic microscopy of mouse brain *in action*,” Nat Methods **12**(5), 407–410 (2015).

637 ¹¹⁵ G.P. Agrawal, “Nonlinear Fiber Optics,” in *Nonlinear Science at the Dawn of the 21st Century*, edited by P.L. Christiansen,
638 M.P. Sørensen, and A.C. Scott, (Springer, Berlin, Heidelberg, 2000), pp. 195–211.

639 ¹¹⁶ C. Liu, J. Chen, Y. Zhang, J. Zhu, and L. Wang, “Five-wavelength optical-resolution photoacoustic microscopy of blood
640 and lymphatic vessels,” AP **3**(1), 016002 (2021).

641 ¹¹⁷ S. Mirg, K.L. Turner, H. Chen, P.J. Drew, and S.-R. Kothapalli, “Photoacoustic imaging for microcirculation,”
642 Microcirculation **29**(6–7), e12776 (2022).

643 ¹¹⁸ S. Kou, X. Leng, H. Luo, H. Nie, and Q. Zhu, “Acoustic resolution photoacoustic Doppler flowmetry for assessment of
644 patient rectal cancer blood perfusion,” JBO **29**(S1), S11517 (2024).

645 ¹¹⁹ J. Yao, and L.V. Wang, “Transverse flow imaging based on photoacoustic Doppler bandwidth broadening,” JBO **15**(2),
646 021304 (2010).

647 ¹²⁰ S.-L. Chen, T. Ling, S.-W. Huang, H.W. Baac, and L.J. Guo, “Photoacoustic correlation spectroscopy and its application to
648 low-speed flow measurement,” Opt. Lett., OL **35**(8), 1200–1202 (2010).

649 ¹²¹ J. Brunker, and P. Beard, “Pulsed photoacoustic Doppler flowmetry using time-domain cross-correlation: Accuracy,
650 resolution and scalability,” The Journal of the Acoustical Society of America **132**(3), 1780–1791 (2012).

651 ¹²² C. Liu, Y. Liang, and L. Wang, “Single-shot photoacoustic microscopy of hemoglobin concentration, oxygen saturation,
652 and blood flow in sub-microseconds,” Photoacoustics **17**, 100156 (2020).

653 ¹²³ W. Liu, B. Lan, L. Hu, R. Chen, Q. Zhou, and J. Yao, “Photoacoustic thermal flowmetry with a single light source,” JBO
654 **22**(9), 096001 (2017).

655 ¹²⁴ D. Zhang, L. Men, and Q. Chen, “Femtosecond laser fabricated polymer microring resonator for sensing applications,”
656 Electronics Letters **54**(14), 888–890 (2018).

657 ¹²⁵ E.A. Kiyatkin, “Brain temperature and its role in physiology and pathophysiology: Lessons from 20 years of
658 thermorecording,” Temperature **6**(4), 271–333 (2019).

659 ¹²⁶ Y. Zhou, M. Li, W. Liu, G. Sankin, J. Luo, P. Zhong, and J. Yao, “Thermal memory based photoacoustic imaging of
660 temperature,” Optica, OPTICA **6**(2), 198–205 (2019).

661 ¹²⁷ S. Xie, “Chapter Twenty-One - MR OEF Imaging in MELAS,” in *Methods in Enzymology*, edited by A.N. Murphy and
662 D.C. Chan, (Academic Press, 2014), pp. 433–444.

663 ¹²⁸ J. Chen, Y. Zhang, X. Li, J. Zhu, D. Li, S. Li, C.-S. Lee, and L. Wang, “Confocal visible/NIR photoacoustic microscopy of
664 tumors with structural, functional, and nanoprobe contrasts,” Photon. Res., PRJ **8**(12), 1875–1880 (2020).

665 ¹²⁹ S. Hu, E. Gonzales, B. Soetikno, E. Gong, P. Yan, K. Maslov, J.-M. Lee, and L.V. Wang, “Optical-resolution photoacoustic
666 microscopy of ischemic stroke,” in *Photons Plus Ultrasound: Imaging and Sensing 2011*, (SPIE, 2011), pp. 41–45.

667 ¹³⁰ A. Farooq, S. Sabah, S. Dhou, N. Alsawaftah, and G. Husseini, “Exogenous Contrast Agents in Photoacoustic Imaging: An
668 In Vivo Review for Tumor Imaging,” Nanomaterials **12**(3), 393 (2022).

669 ¹³¹ G.P. Luke, D. Yeager, and S.Y. Emelianov, “Biomedical Applications of Photoacoustic Imaging with Exogenous Contrast
670 Agents,” Ann Biomed Eng **40**(2), 422–437 (2012).

671 ¹³² Z. Chen, I. Gezginer, Q. Zhou, L. Tang, X.L. Deán-Ben, and D. Razansky, “Multimodal optoacoustic imaging: methods
672 and contrast materials,” Chem. Soc. Rev., (2024).

673 ¹³³ G. Keiser, *Optical Fiber Communications* (McGraw-Hill, 2000).

674 ¹³⁴ R. Kingslake, *Lens Design Fundamentals* (Elsevier, 2012).

675 ¹³⁵ D.C. Leiner, and R. Prescott, “Correction of chromatic aberrations in GRIN endoscopes,” Appl. Opt., AO **22**(3), 383–386
676 (1983).

677 ¹³⁶ C. Markos, J.C. Travers, A. Abdolvand, B.J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys.
678 **89**(4), 045003 (2017).

679 ¹³⁷ L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, “Nonlinear optical endoscopy based on a double-clad photonic crystal fiber
680 and a MEMS mirror,” Opt. Express, OE **14**(3), 1027–1032 (2006).

681 ¹³⁸ D. Septier, V. Mytskaniuk, R. Habert, D. Labat, K. Baudelle, A. Cassez, G. Brévalle-Wasilewski, M. Conforti, G.
682 Bouwmans, H. Rigneault, and A. Kudlinski, “Label-free highly multimodal nonlinear endoscope,” Opt. Express, OE **30**(14),
683 25020–25033 (2022).

684 ¹³⁹ V. Kučikas, M.P. Werner, T. Schmitz-Rode, F. Louradour, and M.A.M.J. van Zandvoort, “Two-Photon Endoscopy: State
685 of the Art and Perspectives,” *Mol Imaging Biol* **25**(1), 3–17 (2023).

686 ¹⁴⁰ T.A. Birks, J.C. Knight, and P.S.J. Russell, “Endlessly single-mode photonic crystal fiber,” *Opt. Lett.*, **OL 22**(13), 961–963
687 (1997).

688 ¹⁴¹ J.C. Knight, T.A. Birks, R.F. Cregan, P.S.J. Russell, and J.P. de Sandro, “Large mode area photonic crystal fibre,”
689 *Electronics Letters* **34**(13), 1347–1348 (1998).

690 ¹⁴² C. Wei, R.J. Weible, C.R. Menyuk, and J. Hu, “Negative curvature fibers,” *Adv. Opt. Photon.*, **AOP 9**(3), 504–561 (2017).

691 ¹⁴³ F. Benabid, and P.J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” *Journal of*
692 *Modern Optics* **58**(2), 87–124 (2011).

693 ¹⁴⁴ G. Humbert, J.C. Knight, G. Bouwmans, P.S.J. Russell, D.P. Williams, P.J. Roberts, and B.J. Mangan, “Hollow core
694 photonic crystal fibers for beam delivery,” *Opt. Express*, **OE 12**(8), 1477–1484 (2004).

695 ¹⁴⁵ K.-S. Lee, R.H. Kim, D.-Y. Yang, and S.H. Park, “Advances in 3D nano/microfabrication using two-photon initiated
696 polymerization,” *Progress in Polymer Science* **33**(6), 631–681 (2008).

697 ¹⁴⁶ D. Gonzalez-Hernandez, S. Varapnickas, A. Bertoncini, C. Liberale, and M. Malinauskas, “Micro-Optics 3D Printed via
698 Multi-Photon Laser Lithography,” *Advanced Optical Materials* **11**(1), 2201701 (2023).

699 ¹⁴⁷ H. Wang, W. Zhang, D. Ladika, H. Yu, D. Gailevičius, H. Wang, C.-F. Pan, P.N.S. Nair, Y. Ke, T. Mori, J.Y.E. Chan, Q.
700 Ruan, M. Farsari, M. Malinauskas, S. Juodkazis, M. Gu, and J.K.W. Yang, “Two-Photon Polymerization Lithography for
701 Optics and Photonics: Fundamentals, Materials, Technologies, and Applications,” *Advanced Functional Materials* **33**(39),
702 2214211 (2023).

703 ¹⁴⁸ P. Somers, A. Münchinger, S. Maruo, C. Moser, X. Xu, and M. Wegener, “The physics of 3D printing with light,” *Nat Rev
704 Phys.*, 1–15 (2023).

705 ¹⁴⁹ K. Obata, J. Koch, U. Hinze, and B.N. Chichkov, “Multi-focus two-photon polymerization technique based on individually
706 controlled phase modulation,” *Opt. Express*, **OE 18**(16), 17193–17200 (2010).

707 ¹⁵⁰ P. Somers, Z. Liang, J.E. Johnson, B.W. Boudouris, L. Pan, and X. Xu, “Rapid, continuous projection multi-photon 3D
708 printing enabled by spatiotemporal focusing of femtosecond pulses,” *Light Sci Appl* **10**(1), 199 (2021).

709 ¹⁵¹ C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. De Angelis, and E. Di Fabrizio, “Micro-Optics Fabrication on
710 Top of Optical Fibers Using Two-Photon Lithography,” *IEEE Photonics Technology Letters* **22**(7), 474–476 (2010).

711 ¹⁵² R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang, “Micro lens fabrication by means of femtosecond two photon
712 photopolymerization,” *Opt. Express*, **OE 14**(2), 810–816 (2006).

713 ¹⁵³ M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs,
714 A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-
715 optical elements and their characterization,” *J. Opt.* **12**(12), 124010 (2010).

716 ¹⁵⁴ T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens
717 objectives,” *Nature Photon* **10**(8), 554–560 (2016).

718 ¹⁵⁵ U.T. Sanli, H. Ceylan, I. Bykova, M. Weigand, M. Sitti, G. Schütz, and K. Keskinbora, “3D Nanoprinted Plastic Kinoform
719 X-Ray Optics,” *Advanced Materials* **30**(36), 1802503 (2018).

720 ¹⁵⁶ S. Thiele, C. Pruss, A.M. Herkommer, and H. Giessen, “3D printed stacked diffractive microlenses,” *Opt. Express*, **OE**
721 **27**(24), 35621–35630 (2019).

722 ¹⁵⁷ H. Wang, H. Wang, W. Zhang, and J.K.W. Yang, “Toward Near-Perfect Diffractive Optical Elements via Nanoscale 3D
723 Printing,” *ACS Nano* **14**(8), 10452–10461 (2020).

724 ¹⁵⁸ L. Yan, D. Yang, Q. Gong, and Y. Li, “Rapid Fabrication of Continuous Surface Fresnel Microlens Array by Femtosecond
725 Laser Focal Field Engineering,” *Micromachines* **11**(2), 112 (2020).

726 ¹⁵⁹ W. Hadibrata, H. Wei, S. Krishnaswamy, and K. Aydin, “Inverse Design and 3D Printing of a Metalens on an Optical Fiber
727 Tip for Direct Laser Lithography,” *Nano Lett.* **21**(6), 2422–2428 (2021).

728 ¹⁶⁰ F. Balli, M.A. Sultan, A. Ozdemir, and J.T. Hastings, “An ultrabroadband 3D achromatic metalens,” *Nanophotonics* **10**(4),
729 1259–1264 (2021).

730 ¹⁶¹ C.-F. Pan, H. Wang, H. Wang, P.N. S, Q. Ruan, S. Wredh, Y. Ke, J.Y.E. Chan, W. Zhang, C.-W. Qiu, and J.K.W. Yang,
731 “3D-printed multilayer structures for high-numerical aperture achromatic metalenses,” *Science Advances* **9**(51), eadj9262
732 (2023).

733 ¹⁶² M. Schmid, F. Sterl, S. Thiele, A. Herkommer, and H. Giessen, “3D printed hybrid refractive/diffractive achromat and
734 apochromat for the visible wavelength range,” *Opt. Lett.*, *OL* **46**(10), 2485–2488 (2021).

735 ¹⁶³ J. Li, P. Fejes, D. Lorenser, B.C. Quirk, P.B. Noble, R.W. Kirk, A. Orth, F.M. Wood, B.C. Gibson, D.D. Sampson, and R.A.
736 McLaughlin, “Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes,”
737 *Sci Rep* **8**(1), 14789 (2018).

738 ¹⁶⁴ J. Li, S. Thiele, B.C. Quirk, R.W. Kirk, J.W. Verjans, E. Akers, C.A. Bursill, S.J. Nicholls, A.M. Herkommer, H. Giessen,
739 and R.A. McLaughlin, “Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical
740 use,” *Light Sci Appl* **9**(1), 124 (2020).

741 ¹⁶⁵ J. Li, S. Thiele, R.W. Kirk, B.C. Quirk, A. Hoogendoorn, Y.C. Chen, K. Peter, S.J. Nicholls, J.W. Verjans, P.J. Psaltis, C.
742 Bursill, A.M. Herkommer, H. Giessen, and R.A. McLaughlin, “3D-Printed Micro Lens-in-Lens for In Vivo Multimodal
743 Microendoscopy,” *Small* **18**(17), 2107032 (2022).

744 ¹⁶⁶ S. Gigan, O. Katz, H.B. de Aguiar, E.R. Andresen, A. Aubry, J. Bertolotti, E. Bossy, D. Bouchet, J. Brake, S. Brasselet, Y.
745 Bromberg, H. Cao, T. Chaigne, Z. Cheng, W. Choi, T. Čižmár, M. Cui, V.R. Curtis, H. Defienne, M. Hofer, R. Horisaki, R.
746 Horstmeyer, N. Ji, A.K. LaViolette, J. Mertz, C. Moser, A.P. Mosk, N.C. Pégard, R. Piestun, S. Popoff, D.B. Phillips, D. Psaltis,
747 B. Rahmani, H. Rigneault, S. Rotter, L. Tian, I.M. Vellekoop, L. Waller, L. Wang, T. Weber, S. Xiao, C. Xu, A. Yamilov, C.
748 Yang, and H. Yilmaz, “Roadmap on wavefront shaping and deep imaging in complex media,” *J. Phys. Photonics* **4**(4), 042501
749 (2022).

750 ¹⁶⁷ S.-Y. Lee, V.J. Parot, B.E. Bouma, and M. Villiger, “Confocal 3D reflectance imaging through multimode fiber without
751 wavefront shaping,” *Optica*, *OPTICA* **9**(1), 112–120 (2022).

752 ¹⁶⁸ S. Turtaev, I.T. Leite, K.J. Mitchell, M.J. Padgett, D.B. Phillips, and T. Čižmár, “Comparison of nematic liquid-crystal and
753 DMD based spatial light modulation in complex photonics,” *Opt. Express*, *OE* **25**(24), 29874–29884 (2017).

754 ¹⁶⁹ B. Ning, M.J. Kennedy, A.J. Dixon, N. Sun, R. Cao, B.T. Soetikno, R. Chen, Q. Zhou, K.K. Shung, J.A. Hossack, and S.
755 Hu, “Simultaneous photoacoustic microscopy of microvascular anatomy, oxygen saturation, and blood flow,” *Opt. Lett.*, *OL*
756 **40**(6), 910–913 (2015).

757 ¹⁷⁰ R. Cao, J. Li, B. Ning, N. Sun, T. Wang, Z. Zuo, and S. Hu, “Functional and oxygen-metabolic photoacoustic microscopy
758 of the awake mouse brain,” *NeuroImage* **150**, 77–87 (2017).

759 ¹⁷¹ S. Turtaev, I.T. Leite, T. Altwegg-Boussac, J.M.P. Pakan, N.L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-
760 based endoscopy for deep brain *in vivo* imaging,” *Light: Science & Applications* **7**(1), 92 (2018).

761 ¹⁷² T. Zhao, S. Ourselin, T. Vercauteren, and W. Xia, “Seeing through multimode fibers with real-valued intensity transmission
762 matrices,” *Opt. Express* **28**(14), 20978–20991 (2020).

763 ¹⁷³ O. Tzang, E. Niv, S. Singh, S. Labouesse, G. Myatt, and R. Piestun, “Wavefront shaping in complex media with a 350 kHz
764 modulator via a 1D-to-2D transform,” *Nature Photonics* **13**(11), 788–793 (2019).

765 ¹⁷⁴ S. Farahi, D. Ziegler, I.N. Papadopoulos, D. Psaltis, and C. Moser, “Dynamic bending compensation while focusing through
766 a multimode fiber,” *Opt. Express*, *OE* **21**(19), 22504–22514 (2013).

767 ¹⁷⁵ G.S.D. Gordon, M. Gataric, A.G.C.P. Ramos, R. Mouthaan, C. Williams, J. Yoon, T.D. Wilkinson, and S.E. Bohndiek,
768 “Characterizing Optical Fiber Transmission Matrices Using Metasurface Reflector Stacks for Lensless Imaging without Distal
769 Access,” *Phys. Rev. X* **9**(4), 041050 (2019).

770 ¹⁷⁶ H. Chen, N.K. Fontaine, R. Ryf, D.T. Neilson, and P. Winzer, “Remote Spatio-Temporal Focusing Over Multimode Fiber
771 Enabled by Single-Ended Channel Estimation,” *IEEE Journal of Selected Topics in Quantum Electronics* **26**(4), 1–9 (2020).

772 ¹⁷⁷ S. Li, S.A.R. Horsley, T. Tyc, T. Čižmár, and D.B. Phillips, “Memory effect assisted imaging through multimode optical
773 fibres,” *Nat Commun* **12**(1), 3751 (2021).

774 ¹⁷⁸ Z. Wen, Z. Dong, Q. Deng, C. Pang, C.F. Kaminski, X. Xu, H. Yan, L. Wang, S. Liu, J. Tang, W. Chen, X. Liu, and Q.
775 Yang, “Single multimode fibre for in vivo light-field-encoded endoscopic imaging,” *Nat. Photon.* **17**(8), 679–687 (2023).

776 ¹⁷⁹ Y. Zheng, T. Wright, Z. Wen, Q. Yang, and G.S.D. Gordon, “Single-ended recovery of optical fiber transmission matrices
777 using neural networks,” *Commun Phys* **6**(1), 1–12 (2023).

778 ¹⁸⁰ A. Mafi, J. Ballato, K.W. Koch, and A. Schülzgen, “Disordered Anderson Localization Optical Fibers for Image Transport—
779 A Review,” *Journal of Lightwave Technology* **37**(22), 5652–5659 (2019).

780 ¹⁸¹ S. Karbasi, R.J. Frazier, K.W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical
781 fibre mediated by transverse Anderson localization,” *Nat Commun* **5**(1), 3362 (2014).

782 ¹⁸² B. Abaie, M. Peysokhan, J. Zhao, J.E. Antonio-Lopez, R. Amezcuia-Correa, A. Schülzgen, and A. Mafi, “Disorder-induced
783 high-quality wavefront in an Anderson localizing optical fiber,” *Optica*, *OPTICA* **5**(8), 984–987 (2018).

784 ¹⁸³ J. Zhao, J.E.A. Lopez, Z. Zhu, D. Zheng, S. Pang, R.A. Correa, and A. Schülzgen, “Image Transport Through Meter-Long
785 Randomly Disordered Silica-Air Optical Fiber,” *Sci Rep* **8**(1), 3065 (2018).

786 ¹⁸⁴ X. Hu, J. Zhao, J.E. Antonio-Lopez, R.A. Correa, and A. Schülzgen, “Unsupervised full-color cellular image reconstruction
787 through disordered optical fiber,” *Light Sci Appl* **12**(1), 125 (2023).

788 ¹⁸⁵ X. Zhan, Z. Wang, S. Kumar, C. Marques, X. Li, and R. Min, “The Application of Pound–Drever–Hall Technology in High-
789 Resolution Sensing—A Review,” *IEEE Sensors Journal* **23**(7), 6427–6438 (2023).

790 ¹⁸⁶ A. Rosenthal, D. Razansky, and V. Ntziachristos, “Wideband optical sensing using pulse interferometry,” *Opt. Express*, *OE*
791 **20**(17), 19016–19029 (2012).

792 ¹⁸⁷ A. Rosenthal, S. Kellnberger, D. Bozhko, A. Chekkoury, M. Omar, D. Razansky, and V. Ntziachristos, “Sensitive
793 interferometric detection of ultrasound for minimally invasive clinical imaging applications,” *Laser & Photonics Reviews* **8**(3),
794 450–457 (2014).

795 ¹⁸⁸ G. Wissmeyer, D. Soliman, R. Shnaiderman, A. Rosenthal, and V. Ntziachristos, “All-optical optoacoustic microscope
796 based on wideband pulse interferometry,” *Opt. Lett.* **41**(9), 1953–1956 (2016).

797 ¹⁸⁹ A.L. Gaeta, M. Lipson, and T.J. Kippenberg, “Photonic-chip-based frequency combs,” *Nature Photon* **13**(3), 158–169
798 (2019).

799 ¹⁹⁰ X. Bai, Y. Liang, H. Sun, L. Jin, J. Ma, B.-O. Guan, and L. Wang, “Sensitivity characteristics of broadband fiber-laser-
800 based ultrasound sensors for photoacoustic microscopy,” *Opt. Express* **25**(15), 17616–17626 (2017).

801 ¹⁹¹ Y. Wang, C. Li, and R.K. Wang, “Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as
802 the acoustic detector,” *Opt. Lett.*, **OL** **36**(20), 3975–3977 (2011).

803 ¹⁹² A. Hochreiner, J. Bauer-Marschallinger, P. Burgholzer, B. Jakoby, and T. Berer, “Non-contact photoacoustic imaging using
804 a fiber based interferometer with optical amplification,” *Biomed. Opt. Express*, **BOE** **4**(11), 2322–2331 (2013).

805 ¹⁹³ P. Hajireza, W. Shi, K. Bell, R.J. Paproski, and R.J. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,”
806 *Light: Science & Applications* **6**(6), e16278–e16278 (2017).

807 ¹⁹⁴ P.H. Reza, K. Bell, W. Shi, J. Shapiro, and R.J. Zemp, “Deep non-contact photoacoustic initial pressure imaging,” *Optica*
808 **5**(7), 814–820 (2018).

809 ¹⁹⁵ J. Zhou, J. Zhou, W. Wang, S. Liang, L. Jing, S.-H. Bo, and S.-L. Chen, “Miniature non-contact photoacoustic probe based
810 on fiber-optic photoacoustic remote sensing microscopy,” *Opt. Lett.*, **OL** **46**(22), 5767–5770 (2021).

811 ¹⁹⁶ H. Zhao, Z. Ke, F. Yang, K. Li, N. Chen, L. Song, C. Zheng, D. Liang, and C. Liu, “Deep Learning Enables Superior
812 Photoacoustic Imaging at Ultralow Laser Dosages,” *Advanced Science* **8**(3), 2003097 (2021).

813 ¹⁹⁷ P. Farnia, E. Najafzadeh, A. Hariri, S.N. Lavasani, B. Makkiabadi, A. Ahmadian, and J.V. Jokerst, “Dictionary learning
814 technique enhances signal in LED-based photoacoustic imaging,” *Biomed. Opt. Express* **11**(5), 2533–2547 (2020).

815 ¹⁹⁸ I. Ul Haq, R. Nagaoka, S. Siregar, and Y. Saijo, “Sparse-representation-based denoising of photoacoustic images,”
816 *Biomedical Physics & Engineering Express* **3**(4), 045014 (2017).

817 ¹⁹⁹ A.F. Kosolapov, G.K. Alagashov, A.N. Kolyadin, A.D. Pryamikov, A.S. Biryukov, I.A. Bufetov, and E.M. Dianov,
818 “Hollow-core revolver fibre with a double-capillary reflective cladding,” *Quantum Electron.* **46**(3), 267 (2016).

819 ²⁰⁰ J. Yao, “When pressure meets light: detecting the photoacoustic effect at the origin,” *Light Sci Appl* **6**(6), e17062–e17062
820 (2017).

821 ²⁰¹ Chimowitz Marc I., Lynn Michael J., Derdeyn Colin P., Turan Tanya N., Fiorella David, Lane Bethany F., Janis L. Scott,
822 Lutsep Helmi L., Barnwell Stanley L., Waters Michael F., Hoh Brian L., Hourihane J. Maurice, Levy Elad I., Alexandrov
823 Andrei V., Harrigan Mark R., Chiu David, Klucznik Richard P., Clark Joni M., McDougall Cameron G., Johnson Mark D.,
824 Pride G. Lee, Torbey Michel T., Zaidat Osama O., Rumboldt Zoran, and Cloft Harry J., “Stenting versus Aggressive Medical
825 Therapy for Intracranial Arterial Stenosis,” *New England Journal of Medicine* **365**(11), 993–1003 (2011).

826 ²⁰² W. Brinjikji, M.H. Murad, G. Lanzino, H.J. Cloft, and D.F. Kallmes, “Endovascular Treatment of Intracranial Aneurysms
827 With Flow Diverters,” *Stroke* **44**(2), 442–447 (2013).

828 ²⁰³ C.R. Pasarikovski, J.C. Ku, S.M. Priola, L. da Costa, and V.X.D. Yang, “Endovascular optical coherence tomography
829 imaging in cerebrovascular disease,” *Journal of Clinical Neuroscience* **80**, 30–37 (2020).

830 ²⁰⁴ V. Anagnostakou, G.J. Ughi, A.S. Puri, and M.J. Gounis, “Optical Coherence Tomography for Neurovascular Disorders,”
831 *Neuroscience* **474**, 134–144 (2021).

832 ²⁰⁵ V.M. Pereira, P. Lylyk, N. Cancelliere, P.N. Lylyk, I. Lylyk, V. Anagnostakou, C. Bleise, H. Nishi, M. Epshtein, R.M.
833 King, M.S. Shazeeb, A.S. Puri, C.W. Liang, R.A. Hanel, J. Spears, T.R. Marotta, D.K. Lopes, M.J. Gounis, and G.J. Ughi,
834 “Volumetric microscopy of cerebral arteries with a miniaturized optical coherence tomography imaging probe,” *Science
835 Translational Medicine* **16**(747), eadl4497 (2024).

836 ²⁰⁶ G.J. Ughi, M.G. Marosfoi, R.M. King, J. Caroff, L.M. Peterson, B.H. Duncan, E.T. Langan, A. Collins, A. Leporati, S.
837 Rousselle, D.K. Lopes, M.J. Gounis, and A.S. Puri, “A neurovascular high-frequency optical coherence tomography system
838 enables *in situ* cerebrovascular volumetric microscopy,” *Nat Commun* **11**(1), 3851 (2020).

839 ²⁰⁷ C.S. Ahuja, J.R. Wilson, S. Nori, M.R.N. Kotter, C. Druschel, A. Curt, and M.G. Fehlings, “Traumatic spinal cord injury,”
840 *Nat Rev Dis Primers* **3**(1), 1–21 (2017).

841 ²⁰⁸ V. Hubertus, L. Meyer, L. Roolfs, L. Waldmann, M. Nieminen-Kelhä, M.G. Fehlings, and P. Vajkoczy, “*In vivo* imaging
842 in experimental spinal cord injury – Techniques and trends,” *Brain and Spine* **2**, 100859 (2022).

843 ²⁰⁹ P.W. Stroman, C. Wheeler-Kingshott, M. Bacon, J.M. Schwab, R. Bosma, J. Brooks, D. Cadotte, T. Carlstedt, O. Ciccarelli,
844 J. Cohen-Adad, A. Curt, N. Evangelou, M.G. Fehlings, M. Filippi, B.J. Kelley, S. Kollias, A. Mackay, C.A. Porro, S. Smith,
845 S.M. Strittmatter, P. Summers, and I. Tracey, “The current state-of-the-art of spinal cord imaging: Methods,” *NeuroImage* **84**,
846 1070–1081 (2014).

847 ²¹⁰ D.W. Cadotte, A. Mariampillai, A. Cadotte, K.K.C. Lee, T.-R. Kiehl, B.C. Wilson, M.G. Fehlings, and V.X.D. Yang,
848 “Speckle variance optical coherence tomography of the rodent spinal cord: *in vivo* feasibility,” *Biomed. Opt. Express, BOE*
849 **3**(5), 911–919 (2012).

850 ²¹¹ S.A. Figley, Y. Chen, A. Maeda, L. Conroy, J.D. McMullen, J.I. Silver, S. Stapleton, A. Vitkin, P. Lindsay, K. Burrell, G.
851 Zadeh, M.G. Fehlings, and R.S. DaCosta, “A Spinal Cord Window Chamber Model for *In Vivo* Longitudinal Multimodal
852 Optical and Acoustic Imaging in a Murine Model,” *PLOS ONE* **8**(3), e58081 (2013).

853 ²¹² T.Y.E. Ahmadieh, E.M. Wu, B. Kafka, J.P. Caruso, O.J. Neeley, A. Plitt, S.G. Aoun, D.M. Olson, R.A. Ruchinskas, C.M.
854 Cullum, S. Barnett, B.G. Welch, H.H. Batjer, and J.A. White, “Lumbar drain trial outcomes of normal pressure hydrocephalus:
855 a single-center experience of 254 patients,” *Journal of Neurosurgery* **132**(1), 306–312 (2019).

856 ²¹³ C.R. Pasarikovski, J.C. Ku, J. Ramjist, Y. Dobashi, S.M. Priola, L. da Costa, A. Kumar, and V.X.D. Yang, “Minimally
857 invasive intrathecal spinal cord imaging with optical coherence tomography,” *JBO* **26**(5), 056002 (2021).

858 ²¹⁴ J. Raskin, J. Cummings, J. Hardy, K. Schuh, and R.A. Dean, “Neurobiology of Alzheimer’s Disease: Integrated Molecular,
859 Physiological, Anatomical, Biomarker, and Cognitive Dimensions,” *Curr Alzheimer Res* **12**(8), 712–722 (2015).

860 ²¹⁵ F. Han, “Cerebral microvascular dysfunction and neurodegeneration in dementia,” *Stroke Vasc Neurol* **4**(2), (2019).

861 ²¹⁶ R. Cao, J. Li, C. Zhang, Z. Zuo, and S. Hu, “Photoacoustic microscopy of obesity-induced cerebrovascular alterations,”
862 *NeuroImage* **188**, 369–379 (2019).

863 ²¹⁷ A.P. Slovinski, L.A. Hajjar, and C. Ince, “Microcirculation in Cardiovascular Diseases,” *J Cardiothorac Vasc Anesth* **33**(12),
864 3458–3468 (2019).

865 ²¹⁸ L. Lin, X. Tong, S. Cavallero, Y. Zhang, S. Na, R. Cao, T.K. Hsiai, and L.V. Wang, “Non-invasive photoacoustic computed
866 tomography of rat heart anatomy and function,” *Light Sci Appl* **12**(1), 12 (2023).

867 ²¹⁹ J. Chen, Y. Zhang, J. Zhu, X. Tang, and L. Wang, “Freehand scanning photoacoustic microscopy with simultaneous
868 localization and mapping,” *Photoacoustics* **28**, 100411 (2022).

869 ²²⁰ K. Jung, P. Kim, F. Leuschner, R. Gorbatov, J.K. Kim, T. Ueno, M. Nahrendorf, and S.H. Yun, “Endoscopic time-lapse
870 imaging of immune cells in infarcted mouse hearts,” *Circ Res* **112**(6), 891–899 (2013).

871 ²²¹ S. Lee, C. Vinegoni, P.F. Feruglio, L. Fexon, R. Gorbatov, M. Pivorovov, A. Sbarbati, M. Nahrendorf, and R. Weissleder,
872 “Real-time *in vivo* imaging of the beating mouse heart at microscopic resolution,” *Nat Commun* **3**(1), 1054 (2012).