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Abstract
Machine learning algorithms in high-dimensional settings are highly susceptible to the influence of
even a small fraction of structured outliers, making robust optimization techniques essential. In
particular, within the ‘-contamination model, where an adversary can inspect and replace up to an
‘-fraction of the samples, a fundamental open problem is determining the optimal rates for robust
stochastic convex optimization (SCO) under such contamination. We develop novel algorithms that
achieve minimax-optimal excess risk (up to logarithmic factors) under the ‘-contamination model.
Our approach improves over existing algorithms, which are not only suboptimal but also require
stringent assumptions, including Lipschitz continuity and smoothness of individual sample functions.
By contrast, our optimal algorithms do not require these stringent assumptions, assuming only
population-level smoothness of the loss. Moreover, our algorithms can be adapted to handle the
case in which the covariance parameter is unknown, and can be extended to nonsmooth population
risks via convolutional smoothing. We complement our algorithmic developments with a tight

information-theoretic lower bound for robust SCO.
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1 Introduction

Machine learning models are increasingly deployed in security-critical applications, yet they
remain vulnerable to data manipulation. A particular threat is data poisoning, where adver-
saries deliberately insert malicious points into training data to degrade model performance [1].
Even in non-adversarial settings, naturally occurring outliers can significantly impact learning
algorithms, especially in high-dimensional settings. These challenges motivate our study of
optimization algorithms for training machine learning models in the presence of outliers,
both natural and adversarial.

Motivation for our work traces to Tukey’s pioneering research on robust estimation [17].
Recent breakthroughs have produced e�cient algorithms for high-dimensional robust estima-
tion under the ‘-contamination model, where an adversary can arbitrarily replace up to an
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9:2 Optimal Rates for Robust Stochastic Convex Optimization

‘-fraction of the samples. Notable advances include polynomial-time algorithms for robust
mean estimation in high dimensions [5, 3]. See [6] for a comprehensive survey of recent
developments in high-dimensional robust estimation.

These developments in robust estimation naturally lead to a fundamental question: Can

we solve stochastic optimization problems, under the ‘-contamination model? Stochastic
optimization is used in machine learning to find the parameter that minimizes the population
risk using training samples. We focus specifically on robust stochastic optimization with
convex objective functions whose gradients exhibit bounded covariance, a standard assumption
in robust mean estimation [7]. While our goal aligns with the classical use of stochastic
convex optimization in minimizing population risk, the presence of adversarial contamination
introduces significant new challenges.

Prior research in robust optimization has concentrated primarily on narrow domains.
One line of work focuses on robust linear regression [13, 8, 2]. While [12, 16] have explored
general problems, they focus on robust regression. To our best knowledge, SEVER [4]
is the only work that considers general stochastic optimization problems. However, this
approach has several limitations that restrict the applicability of SEVER. First, it focuses
only on achieving dimension-independent error due to corruption, with only a suboptimal
sample complexity. Second, the results for SEVER depend on several stringent assumptions,
including Lipschitzness and smoothness conditions on individual sample functions. Because

of these limitations, optimal excess risk bounds for robust stochastic convex optimization, and

under what conditions they can be achieved, remain unknown.

In this work, we develop e�cient algorithms for robust stochastic convex optimization that
achieve optimal excess risk bounds (up to logarithmic factors) under the ‘-contamination
model. Notably, Algorithm 1 assumes only the smoothness of the population risk. Moreover,
we prove a matching lower bound to show the minimax-optimality of our algorithms.

Due to space limitations, we omit some details and proofs. These appear in the full
version, available at https://arxiv.org/abs/2412.11003.

1.1 Problem Setup and Motivation
Notation. For a vector v œ Rd, ÎvÎ denotes the ¸2 norm of v. For a matrix A œ Rd◊d, ÎAÎ

denotes the spectral norm of A. For symmetric matrices A and B, we write A ∞ B if B ≠ A

is positive semidefinite (PSD). We use Õ and �̃ to hide logarithmic factors in our bounds.
Let W µ Rd be a closed convex set. Consider a distribution p

ú over functions f : W æ R.
Stochastic optimization aims to find a parameter vector w

ú
œ W minimizing the population

risk f(w) := Ef≥pú [f(w)]. For example, function f can take the form of a loss function
fx(w) dependent on the data point x, and the data distribution on x induces the function
distribution p

ú. In robust stochastic optimization, some data samples may be corrupted.
Following [4], we adopt the strong ‘-contamination model, which allows the adversary to
replace up to ‘ fraction of samples.

I Definition 1 (‘-contamination model). Given ‘ > 0 and a distribution p
ú

over functions

f : W æ R, data is generated as follows: first, n clean samples f1, . . . , fn are drawn from p
ú
.

An adversary is then permitted to examine the samples and replace up to ‘n of them with

arbitrary samples. The algorithm is subsequently provided with this modified set of functions,

which we refer to as ‘-corrupted samples (with respect to p
ú
).

This model is strictly stronger than the Huber contamination model [11], in which the
samples are drawn from a mixture of the clean and adversarial distributions of the form
p

ú = (1 ≠ ‘)p + ‘q, where p is the clean distribution and q is the adversarial distribution.

https://arxiv.org/abs/2412.11003
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Our objective is to develop an e�cient algorithm that minimizes the population risk f(w),
even when the data is ‘-corrupted. The following is assumed throughout the paper.

I Assumption 2.
1. W µ Rd

is a compact convex set with diameter D, that is, supw,wÕœW Îw ≠ w
Õ
Î Æ D.

2. f is di�erentiable almost surely. The population risk f(w) is convex.

3. The regularity condition holds Ef≥pú [Òf(w)] = Òf(w).1

We also assume in most results that the gradients of the functions have bounded covariance
as in [4], which is a typical assumption used in robust mean estimation.

I Assumption 3. There is ‡ > 0 such that for all w œ W and all unit vectors v, we have

Ef≥pú [(v · (Òf(w) ≠ Òf(w)))2] Æ ‡
2
.

An equivalent form of this assumption is that for every w œ W, the covariance matrix of the
gradients, defined by �w := Ef≥pú [(Òf(w) ≠ Òf(w))(Òf(w) ≠ Òf(w))T ] satisfies �w ∞ ‡

2
I.

(See Section E for a proof.)
We will additionally assume that the population risk f(w) satisfies certain properties, or

that certain properties are satisfied almost surely for functions f from distribution p
ú, as

needed.
To our best knowledge, SEVER [4] is the only work that studies robust stochastic

optimization for general convex losses. While SEVER focuses on finding approximate critical
points, our work focuses on minimizing the population risk f(w), and we measure the
performance of our algorithm in terms of the excess risk f(ŵ) ≠ minw f(w), where ŵ is the
output of the algorithm.

We remark that SEVER also derives excess risk bounds. To contrast with SEVER, we
decompose the excess risk of a stochastic optimization algorithm as follows2:

Excess risk = Error due to corruption + Statistical error,

where “error due to corruption” refers to the error due to the presence of corruption in the
data, while “statistical error” denotes the error that accrues even when there is no corruption.
SEVER [4] focuses only on the error due to corruption. The statistical error term is implicit
in their requirement on the sample complexity n, that is,

Excess risk = Error due to corruption, if n Ø [sample complexity].

Specifically, they design a polynomial-time algorithm that achieves O(D‡
Ô

‘) error due to
corruption term for n = �̃

1
dL2

‘‡2 + dL4

‡4

2
, provided that f ≠ f is L-Lipschitz and —-smooth

almost surely for f œ p
ú, and that f is smooth almost surely. (Their analysis has an incorrect

sample complexity result, which we fix in the appendix of the full version of this paper.) This
sample complexity can be huge (even infinite), as some functions in the distribution may
have a very large (possibly unbounded) Lipschitz constant. Moreover, SEVER implicitly
requires f to be smooth almost surely.

Consider functions of the form fx(w) = ≠
1

2
x · ÎwÎ

2 for w such that ÎwÎ Æ D, where
x ≥ P for a probability distribution P with bounded mean and variance but with unbounded
values, e.g. the normal distribution. We have Òfx(w) = ≠x · w. Since x is unbounded,

1 This technical assumption allows us to exchange the expectation and the gradient. See discussions in
Section E.2

2 We omit the term due to optimization error that depends on the number of iterations of the algorithm,
since it will be dominated by the other terms when we run the optimization algorithm for a su�cient
number of iterations.

FORC 2025



9:4 Optimal Rates for Robust Stochastic Convex Optimization

the worst-case Lipschitz parameter and smoothness of f are both infinite. However, the
population risk f(w) = ≠

1

2
ÎwÎ

2
· E[x] is smooth and Lipschitz. This example demonstrates

that the assumptions in SEVER that assume properties uniformly for individual functions
f ≥ p

ú can be too stringent. In this paper, we aim to answer the following question:

Can we design computationally e�cient algorithms that achieve the optimal excess

risk for robust SCO, under much milder conditions?

We give positive answers to this question and summarize our contributions below.

1.2 Our Contributions
1. Optimal Rates for Robust SCO (Section 3): We develop algorithms that achieve the

following minimax-optimal (up to logarithmic factors) excess risk:

f(ŵT ) ≠ min
wœW

f(w) = Õ

A
D

A
‡

Ô
‘ + ‡

Ú
d log(1/·)

n

BB
.

Compared with SEVER, we achieve the same error due to corruption O(D‡
Ô

‘) provided
n = �̃(d/‘), a significant improvement in sample complexity.3

2. Much Weaker Assumptions for Robust SCO: Algorithm 1 achieves the optimal rates while
only assuming the smoothness of the population risk, which is significantly weaker than
the assumptions used in SEVER. By contrast, SEVER requires f ≠ f to have bounded
worst-case Lipschitz and smoothness parameter, and that individual functions f are
smooth almost surely.

3. Handling unknown ‡ and extensions to nonsmooth case: Simple adaptations allow our
algorithm to handle the case in which the covariance parameter ‡ is unknown. We also
extend our algorithm to nonsmooth population risks using convolutional smoothing. The
resulting algorithm achieves the minimax-optimal excess risk.

4. A Matching Lower Bound for Robust SCO: We show a matching lower bound, demon-
strating that our excess risk bound is minimax-optimal (up to logarithmic factors).
Consequently, our sample complexity for achieving the error due to corruption O(D‡

Ô
‘)

is also minimax-optimal.
5. A Straightforward Algorithm for Robust SCO (Section 4): Algorithm 3 is an elementary

algorithm that achieves the same optimal excess risk, with more stringent assumptions
compared to Algorithm 1. Our approach builds on the “many-good-sets” assumption,
which SEVER briefly introduced without providing a concrete analysis.

Our results might be surprising, as net-based approaches (e.g., uniform convergence)
typically su�ers from suboptimal error. Our results, however, imply that the net-based
approach can indeed achieve the optimal excess risk under the ‘-contamination model. We
discuss this further in Section E.3. A high-level summary of our results appears in Table 1.

2 Revisiting SEVER

In this section, we revisit SEVER [4] to motivate our work. Below we fix the corruption
parameter ‘ and the covariance boundedness parameter ‡ > 0. Given ‘-corrupted function
samples f1, . . . , fn, we say a subset of functions is “good” with respect to w if their sample
mean and covariance at w are close to those of the true distribution, as defined below.

3 We remark that in excess risk bounds, Õ always hides logarithmic factors only in the statistical error
term, and the robust term is always O(D‡

Ô
‘).
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Table 1 Comparison of assumptions, rates, and sample complexity of SEVER and our two algo-
rithms. The parameters —, L, etc are all assumed to be finite. All algorithms assume Assumption 2,
and bounded covariance of the gradients, that is, the covariance matrix �w satisfies �w ∞ ‡

2
I for

all w. Optimality is up to logarithmic factors. For the case when f is nonsmooth but Lipschitz (see
Section 3.2), the excess risk is optimal (up to logarithmic factors) under the noncentral moment
assumption.

Algorithm Assumptions Excess Risk Sample Complexity

SEVER [4] 1. f ≠ f is L-Lipschitz a.s.
2. f is —-smooth a.s. suboptimal �̃

1
dL2

‘‡2 + dL4

‡4

2

Algorithm 1 f is —̄-smooth or L̄-Lipschitz. optimal �̃ (d/‘)

Algorithm 3 1. f ≠ f is L-Lipschitz a.s. and —-smooth a.s.
2. f is —̄-smooth or L̄-Lipschitz. optimal �̃ (d/‘)

I Definition 4 (“Good” set). We say a set Sgood ™ [n] with |Sgood| Ø (1 ≠ ‘)n is “good” w.r.t.

w if the functions {fi}iœSgood satisfy the following,

......
1

|Sgood|

ÿ

iœSgood

!
Òfi(w) ≠ Òf̄(w)

"!
Òfi(w) ≠ Òf̄(w)

"T

......
Æ O(‡2),

......
1

|Sgood|

ÿ

iœSgood

(Òfi(w) ≠ Òf̄(w))

......
Æ O(‡

Ô
‘).

(1)

A “good” set w.r.t. w allows us to robustly estimate the gradient at w. SEVER requires the
existence of a set that is uniformly good for all w, which we refer to as the “uniform-good-set”
assumption.

I Assumption 5 (“Uniform good set”, [4, Assumption B.1]). There exists a set Sgood ™ [n]
with |Sgood| Ø (1 ≠ ‘)n such that Sgood is “good” w.r.t. w, for all w œ W.

SEVER operates through an iterative filtering framework built around a black-box learner.
Its core algorithm consists of three main steps: (1) The black-box learner processes the
current set of functions to find approximate critical points. (2) A filtering mechanism
identifies and removes outlier functions. (3) The algorithm updates its working set with the
remaining functions. This process repeats until convergence. Crucially, SEVER’s theoretical
guarantees rely on its “uniform-good-set” assumption. Without this assumption (as opposed
to “many-good-sets” assumption introduced later), the set of “good” functions can change at
each iteration, potentially preventing the iterative filtering process from converging.

We argue that the “uniform-good-set” assumption can be too strong. Recall that SEVER
requires a sample complexity of n = �̃

1
dL2

‘‡2 + dL4

‡4

2
. When n = �̃(d/‘), the “uniform-good-

set” assumption can no longer be guaranteed to hold. In contrast, the “many-good-sets”
assumption introduced below is weaker, and aligns with the general framework of robustly
estimating gradients in each iteration.

SEVER also assumes the existence of a black box approximate learner.

I Definition 6 (“-approximate learner). A learning algorithm L is called “-approximate if,

for any functions f1, . . . , fm : W æ R, each bounded below on a closed domain H, the output

w of L is a “-approximate critical point of f̂(x) := 1

m

qm
i=1

fi(x), that is, there exists ” > 0
such that for all unit vectors v where w + ”v œ W, we have that v · Òf̂(w) Ø ≠“.

FORC 2025



9:6 Optimal Rates for Robust Stochastic Convex Optimization

I Remark 7. We remark that the existence of a “-approximate learner implies that the learner
can find a “-approximate critical point of any function f by choosing f1 = . . . = fm = f . To
our best knowledge, any polynomial-time algorithm that finds approximate critical points
requires smoothness of the objective. Therefore, SEVER does not apply to problems where
some functions in the distribution are nonsmooth. For example, consider a distribution p

ú

consisted of two functions with equal probability, h + g and h ≠ g, where h is smooth but g

is nonsmooth. The population risk is smooth, but the individual functions are not.
In the appendix of [4], the authors consider the “many-good-sets” assumption, an alter-

native weaker assumption that allows the good set to depend on the point w.

I Assumption 8 (“Many good sets”, [4, Assumption D.1]). For every w, there exists a set

Sgood(w) ™ [n] with |Sgood(w)| Ø (1 ≠ ‘)n such that Sgood(w) is “good” with respect to w.

We remark that the “many-good-sets” assumption allows us to do robust gradient estimation
in each iteration. The SEVER paper mentions (without going into detail) that under the
“many-good-sets” assumption, projected gradient descent can be used to find a O(‡

Ô
‘)-

approximate critical point. It is unclear that under what conditions “many-good-sets”
assumption can be satisfied, and no excess risk bound or sample complexity is provided.

In this paper, we utilize a further relaxed assumption stated below, which only requires
the existence of good sets at points in a fine net of the domain. For these purposes, we define
a ›-net of W (for some small › > 0) to be a set C such that for any w œ W, there exists
w

Õ
œ C with Îw ≠ w

Õ
Î Æ ›.

I Assumption 9 (“Dense good sets”). For a given › > 0, there exists a ›-net C of the domain

W such that for every w œ C, there exists a set Sgood(w) ™ [n] with |Sgood(w)| Ø (1 ≠ ‘)n
such that Sgood(w) is “good” with respect to w.

When the “dense good sets” assumption holds, we can approximate the gradient at any point
in the domain W by robustly estimating the gradient at the nearest point in the net. The
approximation error will be small, provided that the population risk is smooth and the net is
fine enough. (The parameter › will depend on ‡, as we will see in Algorithm 1.) This relaxed
assumption allows us to circumvent the technical di�culties of dealing with infinitely many
w, thus removing the requirements of uniform Lipschitzness and smoothness of f ≠ f for all
f that are used in SEVER. As a consequence, we are able to achieve the same corruption
error as SEVER with a significantly reduced sample complexity. The next section presents
our algorithm that achieves this result.

3 Optimal Rates for Robust SCO under Weak Distributional
Assumptions

We now present a net-based algorithm that achieves the minimax-optimal excess risk under
the weak assumption that the population risk f is smooth.

I Assumption 10. Given the distribution p
ú

over functions f : W æ R with f = Ef≥pú [f ],
we have that f is —̄-smooth.

Here, the —-smoothness requirement only applies to the population risk. Each individual
function f can have di�erent smoothness parameters.

We outline our algorithm below, see Algorithm 1. The algorithm is based on projected
gradient descent with a robust estimator. Here, we treat the robust gradient estimator
RobustEstimator as a black box, which can be any deterministic stability-based algorithm.
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For completeness, we provide an instantiation of the robust gradient estimator due to [7],
outlined in Algorithm 2, which at a high level iteratively filters out points that are “far” from
the sample mean in a large variance direction. Algorithm 2 runs in polynomial time.

The key innovation lies in its gradient estimation strategy. Rather than computing
gradients at arbitrary points, it makes use a dense net of the domain W, estimating the
gradient at the current iterate w by the gradient at the nearest point w

Õ in the net to w.
The smoothness of the population risk ensures that this approximation remains accurate.
As mentioned at the end of Section 2, this strategy helps us avoid the technical challenges
of handling infinitely many w with a net argument, thereby achieving optimal rates under
significantly weaker distributional assumptions compared to SEVER.

Algorithm 1 Net-based Projected Gradient Descent with Robust Gradient Estimator.

1: Input: ‘-corrupted set of functions f1, . . . , fn, stepsize parameters {÷t}tœ[T ], robust
gradient estimator RobustEstimator, (‡

Ô
‘/—̄)-net of W denoted by C.

2: Initialize w0 œ W and t = 1.
3: for t œ [T ] do

4: Let w
Õ
t≠1

:= arg minwœC Îw ≠ wt≠1Î denote the closest point to wt≠1 in the net.
5: Robustly estimate gradient at w

Õ
t≠1

by running the RobustEstimator on samples)
Òfi(wÕ

t≠1
)
*n

i=1
, which outputs g̃t.

6: wt Ω ProjW(wt≠1 ≠ ÷tg̃t).
7: end for

8: Output: ŵT = 1

T

qT
t=1

wt.

Algorithm 2 An Instantiation of the Robust Gradient Estimator: Iterative Filtering [7].

1: Input: ‘-corrupted set S µ Rd of n samples.
2: Initialize weight function h : S æ RØ0 with h(x) = 1/|S| for all x œ S.
3: while ÎhÎ1 Ø 1 ≠ 2‘ do

4: Compute µ(h) = 1

ÎhÎ1

q
xœS h(x)x.

5: Compute �(h) = 1

ÎhÎ1

q
xœS h(x)(x ≠ µ(h))(x ≠ µ(h))Õ.

6: Compute approximate largest eigenvector v of �(h).
7: Define g(x) = |v · (x ≠ µ(h))|2 for all x œ S.
8: Find largest t such that

q
xœS:g(x)Øt h(x) Ø ‘.

9: Define gØt(x) =
I

g(x) if g(x) Ø t

0 otherwise
.

10: Let m = max{gØt(x) : x œ S, h(x) ”= 0}.
11: Update h(x) Ω h(x)(1 ≠ gØt(x)/m) for all x œ S.
12: end while

13: Output: µ(h).

E�cient Implementation. For implementation e�ciency, we propose a grid-based net
construction. Let › = ‡

Ô
‘/—̄. We use grid points spaced ›/

Ô
d apart in each dimension, i.e.,

;
›

Ô
d

· z =
3

›
Ô

d
· z1,

›
Ô

d
· z2, . . . ,

›
Ô

d
· zd

4
: z = (z1, z2, . . . , zd) œ Zd

,

....
›

Ô
d

· z

....
2

Æ D

<

FORC 2025



9:8 Optimal Rates for Robust Stochastic Convex Optimization

to construct a ›-net.4 Given a point w, we can find a net point within › distance in O(d)
time through: (1) Scaling: Divide w by ›/

Ô
d. (2) Rounding: Convert to the nearest integral

vector in Zd. (3) Rescaling: Multiply by ›/
Ô

d.

This construction yields a net of size |C| = O

1
D

Ô
d/›

2d
, which is larger than the optimal

covering number O((D/›)d). While this introduces an extra log d factor in the excess risk
bound (due to union bound over net points), it o�ers two significant practical advantages:
(1) Implicit net: No need to explicitly construct and store the net. (2) E�cient computation:
O(d) time for finding the nearest net point. An exponential-time algorithm that achieves the
excess risk without the log d factor is described in Section F.

Polynomial runtime. The robust gradient estimator in Algorithm 2 runs in polynomial
time, when used with the grid-based construction above. As can be seen in Section A, the
required number of iterations is also polynomial in parameters. Therefore, the algorithm
runs in polynomial time overall.

Convergence of Algorithm 1 is described in the following result.

I Theorem 11. Suppose that Assumption 2, Assumption 3, and Assumption 10 hold. There

are choices of stepsizes {÷t}
T
t=1

and T such that, with probability at least 1 ≠ · , we have

f(ŵT ) ≠ min
wœW

f(w) = Õ

A
‡D

Ô
‘ + ‡D

Ú
d log(1/·)

n

B
.

As a consequence, the algorithm achieves excess risk of O(D‡
Ô

‘) with high probability

whenever n = �̃(d/‘).

I Remark 12. Theorem 11 is minimax-optimal (up to logarithmic factors). Our sample
complexity n = �̃(d/‘), significant improves over the sample complexity of SEVER, which is
n = �̃

1
dL2

‘‡2 + dL4

‡4

2
.

The following matching lower bound can be established, showing the minimax-optimality
(up to logarithmic factors) of Algorithm 1. A proof of the lower bound, drawing in part on
an adaptation of [15], is provided in the appendix of the full version of the paper.

I Theorem 13. For d Ø 140 and n Ø 62500, there exist a closed bounded set W µ Rd

with diameter at most D and a distribution p
ú

over functions f : W æ R that satisfy

the following: Let f = Ef≥pú [f ]. We have that for every w œ W and unit vector v that

Ef≥pú [(v · (Òf(w) ≠ Òf(w)))2] Æ ‡
2
. Both f (almost surely) and f are convex, Lipschitz

and smooth. The output ŵ of any algorithm with access to an ‘-corrupted set of functions

f1, . . . , fn sampled from p
ú

satisfies the following with probability at least 1/2:

f(ŵ) ≠ min
wœW

f(w) = �
A

D‡
Ô

‘ + D‡

Ú
d

n

B
. (2)

3.1 Proof Sketch of Theorem 11
We defer the full proof to Section A and sketch the proof below. In each iteration of
Algorithm 1, we estimate the gradient at the current iterate w by applying the robust
gradient estimator to its nearest point in the net w

Õ. We can decompose the error as follows:

Îg̃(wÕ) ≠ Òf(w)Î Æ Îg̃(wÕ) ≠ Òf(wÕ)Î + ÎÒf(wÕ) ≠ Òf(w)Î,

4 Technically, we can choose a grid spaced ›/
Ô

4d apart in each dimension, and add additional points to
cover the boundary of the feasible set. This would reduce the size of grid points by almost a factor of 2d.
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where the first term measures the bias of the robust gradient estimator, and the second term
is due to the approximation error due to the net.

We will show that there exist good sets for all net (grid) points (cf. Assumption 9) with
high probability, so that we can robustly estimate gradients for all points in the net. This
gives a bound for the first term in the equation above, whereas the second term can be
bounded using smoothness of the population risk f .

Once we establish the gradient estimation bias in each iteration (with high probability),
we use the projected biased gradient descent analysis framework (Section 4) to establish an
upper bound on the excess risk.

3.2 Handling Nonsmooth but Lipschitz Population Risks
We now consider a setting in which Assumption 2 and Assumption 3 hold, but f is nonsmooth
in the sense that Assumption 10 is not satisfied. That is, there is no —̄ < Œ such that f is
—̄-smooth. We assume instead that f is L̄-Lipschitz for some finite L̄. In this setting, we can
use convolutional smoothing and run Algorithm 1 on the smoothed objective. Our algorithm
works as follows:
1. For every index i œ [n], we independently sample a perturbation ui ≥ Us, where Us is

the uniform distribution over the d-dimensional L
2-norm ball of radius s centered at the

origin. We replace samples {fi}
n
i=1

by the smoothed samples {fi(· + ui)}n
i=1

.
2. We run Algorithm 1 on the smoothed samples with — replaced by L̄

Ô
d

s and ‡ replaced by
‡2 + 4L̄2.

The modified algorithm has the following convergence guarantees.

I Proposition 14. Suppose that Assumption 2 and Assumption 3 hold and that f is L̄-

Lipschitz. There are choices of algorithmic parameters such that, with probability at least

1 ≠ · , the output ŵT of the modified algorithm satisfies the following excess risk bound:

f(ŵT ) ≠ min
wœW

f(w) = Õ

A
(‡ + L̄)D

Ô
‘ + (‡ + L̄)D

Ú
d log(1/·)

n

B
.

I Remark 15. Compared to the smooth case, the excess risk bound has an extra L̄ term.
Using this result, we can show that under the alternative noncentral moment assumption,
that is, instead of Assumption 3, assume that for every w œ W and unit vector v, Ef≥pú [(v ·

Òf(w))2] Æ G
2, our modified algorithm (with ‡ and L̄ both replaced by G) achieves the

following excess risk bound.

I Theorem 16. Suppose that Assumption 2 holds, and that for every w œ W and unit

vector v, we have Ef≥pú [(v · Òf(w))2] Æ G
2

for some G. There are choices of algorithmic

parameters such that, with probability at least 1 ≠ · , the output ŵT of the modified algorithm

(with ‡ and L̄ both replaced by G) satisfies the following excess risk bound:

f(ŵT ) ≠ min
wœW

f(w) = Õ

A
GD

Ô
‘ + GD

Ú
d log(1/·)

n

B
.

See Section B for proofs of both results above.
We can show that the excess risk bound in Theorem 16 is minimax-optimal (up to

logarithmic factors) under the noncentral moment assumption, as a matching lower bound
can be established.
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I Theorem 17. For d Ø 140 and n Ø 62500, there exist a closed bounded set W µ Rd

with diameter at most D, and a distribution p
ú

over functions f : W æ R that satisfy

the following: Let f = Ef≥pú [f ]. We have that for every w œ W and unit vector v that

Ef≥pú [(v · Òf(w))2] Æ G
2
. Both f (almost surely) and f are convex, Lipschitz and smooth.

The output ŵ of any algorithm with access to an ‘-corrupted set of functions f1, . . . , fn

sampled from p
ú

satisfies the following with probability at least 1/2,

f(ŵ) ≠ f
ú = �

A
DG

Ô
‘ + DG

Ú
d

n

B
. (3)

The proof is essentially the same as that of Theorem 13 (available in the full version
of the paper), since the same hard instances that are used to establish Theorem 13 can be
reused to establish Theorem 17.

3.3 Handling Unknown Covariance Parameter ‡

In Algorithm 1, ‡ primarily a�ects the fineness of the net through › = ‡
Ô

‘/—̄. When ‡ is
unknown, we can adapt our algorithm with a preprocessing step to estimate ‡: (1) Run
iterative filtering (Algorithm 2) to obtain a lower bound ‡̂ of ‡, and (2) Run Algorithm 1
with the modified fineness parameter › = ‡̂

Ô
‘/—̄. This adaptation preserves the optimal

excess risk guarantees for the known ‡ case. Full details are provided in Section G.

4 Projected Gradient Descent with Robust Gradient Estimator

Algorithm 1 uses a net-based approach to estimate gradients robustly. A more naïve approach
is to directly estimate gradients at arbitrary points using a robust gradient estimator. We
will show that the simple projected gradient descent algorithm can achieve the same optimal
rate as Algorithm 1 under stronger assumptions. Even so, our new assumptions are still
slightly weaker than those used in SEVER [4]. Concretely, following assumptions on the
distribution over functions are assumed.

I Assumption 18. Let p
ú

be a distribution over functions f : W æ R with f = Ef≥pú [f ] so

that:

1. f ≠ f is L-Lipschitz and —-smooth almost surely, where
5

L Ø ‡.

2. f is —̄-smooth or L̄-Lipschitz.

We use bars on the constants —̄ and L̄ to emphasize that they reflect properties of f .
Algorithm 3 follows the “many-good-sets” assumption. We are able to robustly estimate

the gradient of the population risk f at any point w with high probability, at the cost of
requiring additional almost-sure assumptions on f ≠ f compared to Algorithm 1.

5 Without loss of generality, see Section E.
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Algorithm 3 Projected Gradient Descent with Robust Gradient Estimator.

1: Input: ‘-corrupted set of functions f1, . . . , fn, stepsize parameters {÷t}tœ[T ], robust
gradient estimator RobustEstimator(w).

2: Initialize w0 œ W and t = 1.
3: for t œ [T ] do

4: Apply robust gradient estimator to get g̃t = RobustEstimator(wt≠1).
5: wt Ω ProjW(wt≠1 ≠ ÷tg̃t).
6: end for

7: Output: ŵT = 1

T

qT
t=1

wt.

Algorithm 3 achieves the same optimal excess risk bounds as in Theorem 11.

I Theorem 19. Suppose that Assumption 2, Assumption 3, and Assumption 18 hold. There

are choices of stepsizes {÷t}
T
t=1

and T such that, with probability at least 1 ≠ · , we have

f(ŵT ) ≠ min
wœW

f(w) = Õ

A
‡D

Ô
‘ + ‡D

Ú
d log(1/·)

n

B
.

As a consequence, the algorithm achieves excess risk of O(D‡
Ô

‘) with high probability

whenever n = �̃(d/‘). The expected excess risk is bounded by Õ

1
‡D

Ô
‘ + ‡D


d/n

2
.

The proof is based on the net argument, similar to that of Lemma C.5 in [14]. The
high level idea is as follows: For simplicity, we say w is “good” if there exists a good set of
functions at w. We will show that with high probability, there exists a good set for all w (cf.
Assumption 8), so that we can robustly estimate the gradient at all w. To show this, we
employ a net argument, based on the claim that if w is “good”, then all points in a small
neighborhood of w are also “good.” By the union bound, with high probability, all points in
the net are “good”. Then it follows that all w are “good”. The full proof can be found in
Section C.

5 Conclusion and Future Work

In this work, we have advanced robust stochastic convex optimization under the ‘-contamina-
tion model. While the prior state of the art SEVER [4] focused on finding approximate
critical points under stringent assumptions, we have developed algorithms that directly
tackle population risk minimization, obtaining the optimal excess risk under more practical
assumptions. Our first algorithm (Algorithm 1) achieves the minimax-optimal excess risk by
leveraging our relaxed “dense-good-sets” assumption and estimating gradients only at points
in a net of the domain, relaxing the stringent distributional conditions as required in SEVER.
Our second algorithm (Algorithm 3) provides a simple projected gradient descent approach
that achieves the same optimal excess risk, making use of the “many-good-sets” assumption
briefly noted in [4]. Both of our algorithms significantly reduce sample complexity compared
to SEVER.

For future work, it would be interesting to explore following directions: (1) Our excess
risk bound is tight up to logarithmic factors. Can we improve the bound to remove the
logarithmic factors? (2) Our lower bound is with constant probability. Is it possible to
derive a lower bound that the includes log(1/·) term with probability ·? (3) Robustness
has been shown to be closely related to di�erential privacy [10]. Can we design optimization
algorithms that are both robust and di�erentially private?

FORC 2025
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A Proof of Theorem 11

We start with the robust estimation result from [7], then proceed with the proof of Theorem 11.

I Lemma 20 ([7, Proposition 1.5]). Let S be an ‘-corrupted set of n samples from a distribution

in Rd
with mean µ and covariance � such that � ∞ ‡

2
I. Let ‘

Õ = �(log(1/·)/n + ‘) Æ c be

given, for a constant c > 0. Then any stability-based algorithm (e.g. Algorithm 2) on input

S and ‘
Õ
, e�ciently computes ‚µ such that with probability at least 1 ≠ · , we have

Î‚µ ≠ µÎ = O(‡ · ”(·)), where ”(·) =
Ô

‘ +


d/n +


log(1/·)/n. (4)

Proof of Theorem 11. 1. Bound the bias of the gradient estimator at w. For given w, let
w

Õ = arg minzœC Îz ≠ wÎ. Applying Lemma 20 to samples Òf1(wÕ), Òf2(wÕ), . . . , Òfn(wÕ),
we have that with probability at least 1 ≠ ·

Õ, the robust gradient estimator g̃(wÕ) satisfies

Îg̃(wÕ) ≠ Òf(wÕ)Î = ‡ · Õ

1Ô
‘ +


d/n +


log(1/· Õ)/n

2
.

We have Îw ≠ w
Õ
Î Æ ‡

Ô
‘/—̄ by definition of the net. By —̄-smoothness of the population

risk f , we have

ÎÒf(w) ≠ Òf(wÕ)Î Æ —̄Îw ≠ w
Õ
Î Æ ‡

Ô
‘. (5)

Combining the two bounds, we have

Îg̃(wÕ) ≠ Òf(w)Î = ‡ · Õ

1Ô
‘ +


d/n +


log(1/· Õ)/n

2
. (6)

2. Apply the union bound over all points in the net C. By union bound, setting ·
Õ = ·/|C|,

we have that with probability at least 1 ≠ · , (6) simultaneously holds for all w
Õ
œ C. Recall

|C| = O
!
D

Ô
d/›

"d. We have log |C| = Õ(d). It follows that, with probability at least 1 ≠ · ,
simultaneously for all w œ W, let w

Õ = arg minzœC Îz ≠ wÎ, we have

Îg̃(wÕ) ≠ Òf(w)Î = ‡ · Õ

1Ô
‘ +


d/n +


d log(1/·)/n

2
. (7)

Therefore, with probability at least 1 ≠ · , the bias of the gradient estimator at w is bounded
by the above expression, simultaneously for all w œ W.

3. Apply the projected biased gradient descent analysis. By Lemma 27, choosing a
constant step size ÷ = 1/—̄, the excess risk of the algorithm is bounded by

f(ŵT ) ≠ min
wœW

f(w) = Õ

A
—̄D

2

T
+ D ·

A
‡

Ô
‘ + ‡

Ú
d log(1/·)

n

BB
. (8)

Choosing T = �̃
3

—̄D

‡
Ô

‘+‡


d log(1/·)
n

4
gives the optimal rate. J
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B Analysis of Convolutional Smoothing for Nonsmooth but Lipschitz
Population Risk

Before proving Proposition 14, we need some properties of the convolutional smoothing.

I Lemma 21 ([18]). Suppose {f(w)} is convex and L-Lipschitz over W + B2(0, s), where

B2(0, s) is the d-dimensional L
2

ball of radius s centered at the origin. For w œ W, the

convolutional smoother with radius s, f̃s(w) := Eu≥Us [f(w + u)], where Us is the uniform

distribution over B2(0, s), has the following properties:

1. f(w) Æ f̃s(w) Æ f(w) + Ls;

2. f̃s(w) is convex and L-Lipschitz;

3. f̃s(w) is
L

Ô
d

s -smooth.

Proof of Proposition 14. Let fs(w) = Eu≥Us [f(w + u)] be the smoothed population risk.
1. By properties of convolutional smoothing (part 3 of Lemma 21), we know that since f is

L̄-Lipschitz, fs is (L̄
Ô

d/s)-smooth.
As f1, f2, . . . , fn are ‘-corrupted samples from p

ú, we know f1(·+u1), f2(·+u2), . . . , fn(·+
un) are ‘-corrupted samples from the product distribution of p

ú and Us. Below, we
show that in expectation, perturbed gradient (clean) samples Òf(w + u) is equal to the
smoothed gradient Òfs(w).
By the law of total expectation, we have

Ef≥pú, u≥Us

#
Òf(w + u)

$
= Eu≥Us

Ë
Ef≥pú

#
Òf(w + u)

$È
,

and using the regularity condition to interchange the gradient with the expectation, we
obtain

Ef≥pú, u≥Us

#
Òf(w + u)

$
= Eu≥Us

Ë
Òf(w + u)

È
.

Below we drop the distributions and write Ef , Eu for simplicity. Since f is L̄-Lipschitz,
we can exchange the order of expectation and gradient, that is,

Eu

Ë
Òf(w + u)

È
= ÒEu

Ë
f(w + u)

È
= Òfs(w), (9)

which shows that Ef,u

Ë
Òf(w + u)

È
= Òfs(w).

2. Next, we bound the covariance of the perturbed gradient Covf,u(Òf(w + u)).
Using law of total covariance, that is, Cov(X, Y ) = E(Cov(X, Y | Z)) + Cov(E(X |

Z),E(Y | Z)), conditioned on u, we can write the covariance of the perturbed gradient as

Covf,u(Òf(w + u)) = Eu [Covf (Òf(w + u))] + Covu [Ef [Òf(w + u)]]
= Eu [Covf (Òf(w + u))]

¸ ˚˙ ˝
Term 1

+ Covu

#
Òf(w + u)

$
¸ ˚˙ ˝

Term 2

, (10)

In the first term, for all u, the covariance inside the expectation is bounded by ‡
2
I by

assumption. Therefore, we have (Term 1) ∞ Eu[‡2
I] = ‡

2
I. We bound the second term

using the boundedness of the gradient. Consider the following fact: for any random vector
u, we have E[uu

€] Æ C
2
I if ÎuÎ Æ C almost surely, and consequently, Cov(u) Æ 4C

2
I. It

follows that, (Term 2) ∞ 4L̄
2
I. Therefore, the covariance parameter increases from ‡

2 to
‡

2 + 4L̄
2 due to smoothing.

We have verified the conditions to apply the original algorithm, with ‡ replaced by
‡2 + 4L̄2 = O(‡ + L̄) and —̄ = L̄

Ô
d/s.
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3. By applying Theorem 11 to the smoothed function fs, we know there are choices of
{÷t}

T
t=1

and T such that, with probability at least 1 ≠ · , the output ŵT satisfies,

fs(ŵT ) ≠ min
wœW

fs(w) = Õ

A
(‡ + L̄)D

Ô
‘ + (‡ + L̄)D

Ú
d log(1/·)

n

B
.

By properties of convolutional smoothing, we have

f(ŵT ) Æ fs(ŵT ) and min
wœW

fs(w) Æ min
wœW

f(w) + L̄s.

It follows that, choosing s = Õ

1
D(‡/L̄ + 1)(

Ô
‘ +


d log(1/·)/n)

2
, we have

f(ŵT ) ≠ min
wœW

f(w) Æ fs(ŵT ) ≠ min
wœW

fs(w) + L̄s

= Õ

A
(‡ + L̄)D

Ô
‘ + (‡ + L̄)D

Ú
d log(1/·)

n

B
.

(11)

J
As a corollary, the result under the noncentral moment condition (Theorem 16) follows using
the lemma below, which the relates noncentral second moment to the mean.

I Lemma 22. For a d-dimensional random vector u that satisfies E[uu
€] ∞ G

2
Id, we have

that ÎE[u]Î Æ G.

Proof. Let v be any fixed unit vector in Rd. By Jensen’s inequality, we have
!
v

€E[u]
"2 =

!
E[v€

u]
"2

Æ E[(v€
u)2] = v

€E[uu
€]v Æ G

2 (12)

Since this inequality holds for any unit vector v, we can choose v = E[u]

ÎE[u]Î when E[u] ”= 0,
which gives ÎE[u]Î2

Æ G
2, and thus ÎE[u]Î Æ G. If E[u] = 0, inequality ÎE[u]Î Æ G holds

trivially. J

Proof of Theorem 16. For any random vector u, we have for any unit vector v,

E[(v€ (u ≠ E[u]))2] = E[(v€
u)2] ≠ Îv

€E[u]Î2
.

Substituting u = Ef [Òf(w)], we have E[u] = Òf(w). So for every w, we have E[(v ·(Òf(w)≠

Òf(w)))2] Æ E[(v · Òf(w))2] Æ G
2 for any unit vector v. We know that E[Òf(w)Òf(w)€] ∞

G
2
Id is equivalent to E[(v · Òf(w))2] Æ G

2 holding for every unit vector v. By Lemma 22,
we have ÎÒf(w)Î Æ G for every w. Therefore, applying Proposition 14 with ‡ = G and
L̄ = G, we obtain the desired result. J

C Analysis of Algorithm 3

Before proving Theorem 19, we need some results from robust estimation literature.

C.1 Results from Robust Mean Estimation
Recall Definition 4. The “good” set property is a special case of stability, defined as follows:

I Definition 23 (Stability [3]). Fix 0 < ‘ < 1/2 and ” Ø ‘. A finite set S µ Rd
is (‘, ”)-

stable with respect to mean µ œ Rd
and ‡

2
if for every S

Õ
™ S with |S

Õ
| Ø (1 ≠ ‘)|S|,

the following conditions hold: (i) ÎµSÕ ≠ µÎ Æ ‡”, and (ii) Î�SÕ ≠ ‡
2
IÎ Æ ‡

2
”

2
/‘, where

µSÕ = (1/|S
Õ
|)

q
xœSÕ x and �SÕ = (1/|S

Õ
|)

q
xœSÕ(x ≠ µ)(x ≠ µ)€

.

FORC 2025
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The following due to [7] establishes stability of samples from distributions with bounded
covariance.

I Lemma 24 ([7]). Fix any 0 < ·
Õ

< 1. Let S be a multiset of n i.i.d. samples from a

distribution on Rd
with mean µ and covariance � such that � ∞ ‡

2
I. Let ‘

Õ = �(log(1/·
Õ)/n+

‘) Æ c, for a su�ciently small constant c > 0. Then, with probability at least 1 ≠ ·
Õ
, there

exists a subset S
Õ

™ S such that |S
Õ
| Ø (1 ≠ ‘

Õ)n and S
Õ

is (2‘
Õ
, ”

Õ)-stable with respect to µ

and ‡
2
, where ”

Õ = ”(· Õ) depends on ·
Õ

as ”(· Õ) = O(


(d log d)/n +
Ô

‘ +


log(1/· Õ)/n).

With the stability condition, we can robustly estimate the mean of a distribution with
bounded covariance.

I Lemma 25 (Robust Mean Estimation Under Stability [3]). Let T µ Rd
be an ‘-corrupted

version of a set S with the following stability properties: S contains a subset S
Õ

™ S such

that |S
Õ
| Ø (1 ≠ ‘)|S| and S

Õ
is (C‘, ”) stable with respect to µ œ Rd

and ‡
2
, for a su�ciently

large constant C > 0. Then there is a polynomial-time algorithm (e.g. Algorithm 2), that on

input ‘, T , computes ‚µ such that Î‚µ ≠ µÎ = O(‡”).

C.2 Proof of Theorem 19
As long as the stability condition holds, we can use deterministic stability-based algorithms
(e.g. Algorithm 2) to robustly estimate the mean. Using union bound over the net, it
su�ces to argue that at a given point w, given the existence of a stable subset of the
form {Òfi(w)}iœI , where I denotes the index set of the stable subset at w, such subset is
also stable within a small neighborhood of w, that is, {Òfi(wÕ)}iœI is stable for all w

Õ in
a small neighborhood of w. We have the following stability result, which corresponds to
“many-good-sets” Assumption 8.

I Lemma 26. Under Assumption 3 and Assumption 18, let f1, . . . , fn denote an ‘-corrupted

set of functions sampled from p
ú
. Let ‘

Õ = �(log(1/·)/n+‘) Æ c be given, for a constant c > 0.

With probability at least 1 ≠ · , for all w œ W, there exists index set I ™ [n] (here I depends

on the choice of w) such that |I| Ø (1 ≠ ‘
Õ)n and {Òfi(w)}iœI is (2‘

Õ
, ”(· Õ))-stable with

respect to Òf(w) and ‡
2
, where ·

Õ = ·/ exp(Õ(d)) and ”(· Õ) = Õ

1
Ô

‘ +


d log(1/·)/n

2
.

Proof. We use a net argument to show that the stability condition holds for all w, following
similar proof techniques used in [14]. For fixed w, by Lemma 24, with probability at least
1≠·

Õ, there exists a subset I ™ [n] such that |I| Ø (1≠‘
Õ)n and {Òfi(w)}iœI is (2‘

Õ
, ”

Õ)-stable
where ”

Õ = ”(· Õ), with respect to Òf(w) and ‡
2, that is

.....
1

|I|

ÿ

iœI
Òfi(w) ≠ Òf(w)

..... Æ ‡”
Õ
, (13a)

.....
1

|I|

ÿ

iœI
(Òfi(w) ≠ Òf(w))(Òfi(w) ≠ Òf(w))€

≠ ‡
2
I

..... Æ ‡
2
”

Õ2
/‘

Õ
. (13b)

By —-smoothness of fi ≠ f , we have
.....

1
|I|

ÿ

iœI
Òfi(wÕ) ≠ Òf(wÕ)

..... Æ

.....
1

|I|

ÿ

iœI
(Òfi(wÕ) ≠ Òfi(w))

..... +
..Òfi(w) ≠ Òf(w)

..

Æ —Îw
Õ
≠ wÎ + ‡”

Õ
.

(14)

Therefore, (13a) holds (up to a constant factor) for all w
Õ such that Îw ≠ w

Õ
Î Æ ‡”

Õ
/—.
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Next, Equation (13b) is equivalent to the following: for any unit vector v, we have
-----

1
|I|

ÿ

iœI
(v · (Òfi(w) ≠ Òf(w)))2

≠ ‡
2

----- Æ ‡
2
”

Õ2
/‘

Õ
.

By L-Lipschitzness and —-smoothness of fi ≠ f , for any unit vector v, we have
---
)

v ·
!
Òfi(w) ≠ Òf(w)

"*2

≠
)

v ·
!
Òfi(wÕ) ≠ Òf(wÕ)

"*2
---

=
)

v ·
!
Òfi(w) ≠ Òf(w)

"
+ v ·

!
Òfi(wÕ) ≠ Òf(wÕ)

"*

·
)

v ·
!
Òfi(w) ≠ Òf(w)

"
≠ v ·

!
Òfi(wÕ) ≠ Òf(wÕ)

"*
Æ 2L · —Îw ≠ w

Õ
|,

(15)

It follows that (13b) holds (up to a constant factor) for w
Õ such that Îw ≠w

Õ
Î Æ ‡

2
”

Õ2
/(‘Õ

L—).
Let › = min

!
‡”

Õ
/—, ‡

2
”

Õ2
/(‘Õ

L—)
"
. Then, for all w

Õ such that Îw≠w
Õ
Î Æ ›, {Òfi(wÕ)}iœI

is (2‘
Õ
, 2”

Õ)-stable with respect to Òf(wÕ) and ‡
2. It su�ces to choose a ›-net C of W , where

the optimal size of the net is |C| = O((D/›)d), and choose ·
Õ = ·/|C|. By union bound, with

probability at least 1 ≠ |C|·
Õ, the stable subset exists for all w œ C simultaneously. Since

we have argued that for fixed w, the same stable subset applies for all w
Õ within distance ›

from w, the subset stability holds simultaneously for all w with probability at least 1 ≠ · , as
claimed. J

Proof of Theorem 19. Combining Lemma 26 and Lemma 25, with probability at least 1≠· ,
in each iteration, we can estimate the gradient up to a bias as follows:

Îg̃(wt) ≠ Òf(wt)Î = O(‡ · ”(· Õ)) = Õ

1
‡

Ô
‘ + ‡


d log(1/·)/n

2
.

Note that the probability is simultaneously for all w, so it does not matter how many
iterations we run. Conditioned on the gradient estimation bias bound being held, the excess
risk bound then follows by applying Lemma 27 for smoothness loss, or Lemma 28 for Lipschitz
loss with corresponding choices of stepsizes and large enough T . J

D Projected Biased Gradient Descent

In this section, we analyze the convergence of the projected gradient descent algorithm with
a biased gradient estimator. We assume the loss function is convex throughout this section.

Both Algorithm 1 and Algorithm 3 can be viewed as instances of the following algorithm.

Algorithm 4 Projected Gradient Descent with Biased Gradient Estimator.

1: Input: Convex function F , stepsize parameters {÷t}tœ[T ], biased gradient estimator
BiasedEstimator(w), feasible set W

2: Initialize w0 œ W and t = 1.
3: for t œ [T ] do

4: Let g̃t = BiasedEstimator(wt).
5: wt Ω �W(wt≠1 ≠ ÷tg̃t).
6: end for

7: Output: ŵT = 1

T

qT
t=1

wt.

Here, �W(·) denotes the projection operator onto the feasible set W, that is,

�W(y) = arg min
wœW

Îw ≠ yÎ
2
.

FORC 2025
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The projection operation ensures that the iterates wt remain within the feasible set W

throughout the optimization process. The projection step is crucial when the optimization
problem is constrained, as it guarantees that the updates do not violate the constraints
defined by W.

Let us assume that the biased gradient estimator g̃t has a bias bounded by B, that is,
Îg̃t ≠ F (wt)Î Æ B for all t, and the diameter of the feasible set W is bounded by D, that is,
Îw ≠ w

Õ
Î Æ D for all w, w

Õ
œ W . We have the following convergence results for the algorithm.

I Lemma 27. Suppose F is convex and —-smooth. Running Algorithm 4 with constant step

size ÷ = 1

— , we have

F

A
1
T

Tÿ

t=1

wt

B
≠ min

wœW
F (w) Æ

—D
2

2T
+ BD. (16)

Alternatively, we can consider the case where the loss function F (w) is convex and
L-Lipschitz. The following lemma holds.

I Lemma 28. Suppose F is convex and L-Lipschitz. Running Algorithm 4 with constant

step size ÷ = 1

— , we have

F

A
1
T

Tÿ

t=1

wt

B
≠ min

wœW
F (w) Æ

DL
Ô

T
+

3
1

Ô
T

+ 1
4

BD. (17)

The proof of the two convergence results above can be found in the full version.

E Discussions on the Assumptions

E.1 On the bounded covariance assumption
Without loss of generality, we can assume ‡ Æ L. The reason is as follows: By Lipschitzness,
we have ÎÒf(w) ≠ Òf(w)Î Æ L almost surely. By Cauchy-Schwarz Inequality, we have
Ef≥pú [(v · (Òf(w) ≠ Òf(w)))2] Æ L

2 holds for any unit vector v. On the other hand, L can
be as larger as

Ô
d · ‡ (e.g. consider standard multivariate normal).

The condition E[(v · (Òf(w) ≠ Òf(w)))2] Æ ‡
2 for every unit vector v is equivalent to

requiring that the covariance matrix �w of the gradients Òf(w) satisfies �w ∞ ‡
2
I.

I Proposition 29. Let �w denote the covariance matrix of the gradients Òf(w). For given

w, the following two assumptions are equivalent:

1. For every unit vector v, we have Ef≥pú [(v · (Òf(w) ≠ Òf(w)))2] Æ ‡
2
.

2. The covariance matrix satisfies �w ∞ ‡
2
I.

Furthermore, since �w is positive semidefinite, by definition of the spectral norm, the latter

assumption can be equivalently written as Î�wÎ Æ ‡
2
.

Proof. By definition,

�w = Ef≥pú [(Òf(w) ≠ Òf(w))(Òf(w) ≠ Òf(w))€]. (18)

We have

Ef≥pú
#
(v · (Òf(w) ≠ Òf(w)))2

$
= Ef≥pú

#
v · (Òf(w) ≠ Òf(w))(Òf(w) ≠ Òf(w))€

· v
$

= v
€

· Ef≥pú
#
(Òf(w) ≠ Òf(w))(Òf(w) ≠ Òf(w))€$

· v

= v
€�wv.

(19)

Therefore, the two assumptions are equivalent. J
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E.2 On the regularity condition
For technical reasons, we need to assume regularity conditions such that we can exchange
the gradient and expectation, that is, for any w,

Ef≥pú [Òf(w)] = Òf(w). (20)

A necessary condition6 due to dominated convergence theorem for the regularity condition is
that there exists some functional (mapping of functions) g(f) such that Ef≥pú [g(f)] < Œ,
and for all w, ÎÒf(w)Î Æ g(f) almost surely.

Consider the following example, where f takes the form fX(w) = 1

2
(X€

w)2 where X is a
random vector in Rd with distribution P . The distribution P of X induces the distribution p

ú

of functions f . Let P be such that EX [ÎXX
T

Î2] Æ M for some M > 0, but X has unbounded
support (e.g., X ≥ N (0, Id) is multivariate Gaussian). Note that ÒfX(w) = XX

€
w. So

we have ÎÒfX(w)Î Æ ÎXX
€

Î2 · ÎwÎ. In this case, we can take g(X) = D · ÎXX
€

Î so that
ÎÒfX(w)Î Æ g(X) almost surely. We have that EX [g(X)] Æ ÎXX

€
Î2 · ÎwÎ Æ MC < Œ. In

this case, we can exchange the order of expectation and gradient.

E.3 Comparing bounded covariance assumption with bounded variance
assumption

Net-based approaches (e.g. uniform convergence) often su�er from suboptimal error [9].
However, Algorithm 1 indeed achieves the minimax-optimal rate. We believe the reason is
due to the bounded covariance assumption � ∞ ‡

2
I. Below, we provide a discussion on the

bounded covariance assumption and compare it with the bounded variance assumption.
The bounded covariance assumption � ∞ ‡

2
I is di�erent from the bounded variance

assumption E
..Òf(w) ≠ Òf(w)

..2

Æ �2 as commonly used in optimization literature without
corruption. Using the property tr (AB) = tr (BA), this is equivalent to tr (�) Æ �2.

We comment that neither assumption implies the other. For isotropic Gaussian distri-
bution, where the covariance matrix is � = ‡

2
I, we have tr (�) = d‡

2. On the other hand,
consider the distribution where the variance is concentrated in one direction, i.e., � = �2

·vv
€

for some unit vector v. We have tr (�) = �2 and Î�Î = �2. In general, we only know that
Î�Î Æ tr (�) Æ dÎ�Î.

Recall Lemma 24. The complete version of the lemma is as follows:

I Lemma 30 ([7]). Fix any 0 < · < 1. Let S be a multiset of n i.i.d. samples from a

distribution on Rd
with mean µ and covariance �. Let ‘

Õ = �(log(1/·
Õ)/n + ‘) Æ c, for a

su�ciently small constant c > 0. Then, with probability at least 1 ≠ · , there exists a subset

S
Õ
™ S such that |S

Õ
| Ø (1 ≠ ‘

Õ)n and S
Õ

is (2‘
Õ
, ”(· Õ))-stable with respect to µ and Î�Î, where

”(· Õ) = O(


(r(�) log r(�))/n +
Ô

‘ +


log(1/· Õ)/n). Here we use r(M) to denote the stable

rank (or intrinsic dimension) of a positive semidefinite matrix M , i.e., r(M) := tr(M)/ÎMÎ.

Following identical proof steps (recall proofs for our algorithms), we can express our
excess risk bound in terms of the covariance matrix � as follows:

D · Õ

1
Î�Î‘ +


tr (�)/n +


dÎ�Î log(1/·)/n

2
. (21)

6 Technically, we need to be more precise about the distribution p
ú over functions. In this paper, we

follow the same convention as used by [4]. To be more concrete, we can just think of f parameterized by
some random variable X and the distribution p

ú is induced by the distribution of X. See the example.

FORC 2025



9:20 Optimal Rates for Robust Stochastic Convex Optimization

In our paper, we consider the bounded covariance assumption � ∞ ‡
2
I, which is a standard

assumption in robust optimization literature. Otherwise, we cannot control the error term
Î�Î‘ due to corruption. In the worse case (e.g. isotropic Gaussian), we have Î�Î = ‡

2

and tr (�) = d‡
2, so the bound reduces to

‡ · O

1Ô
‘ +


d/n +


d log(1/·)/n

2
. (22)

We see that the second term already contains the dependence on d. Therefore, the d factor
in the last term due to our net-based approach in conjunction with the use of the union
bound over the net points, does not a�ect the rate.

F An exponential time algorithm that achieves the minimax-optimal
excess risk bound without log d factor

Both of our two algorithms achieve the minimax-optimal excess risk bound up to logarithmic
factors. In this section, we show that the minimax-optimal excess risk bound can be
achieved without the log d factor, but at the cost of exponential time complexity. Based
on Lemma 24, we can remove the log d factor when estimating the gradients, by using the
following framework, as shown in [7].
1. Set k = Â‘

Õ
nÊ. Randomly partition n samples S into k buckets of size Ân/kÊ (remove the

last bucket if n is not divisible by k).
2. Compute the empirical mean within each bucket and denote the means as z1, . . . , zk.
3. Run stability-based robust mean estimation over the set {z1, . . . , zk}.
Here, the first two steps serve as preprocessing before feeding the data into the robust mean
estimation algorithm. We now restate the robust estimation result without log d factor below.

I Lemma 31. Let S be an ‘-corrupted set of n samples from a distribution in Rd
with mean

µ and covariance � ∞ ‡
2
I. Let ‘

Õ = �(log(1/·)/n + ‘) Æ c be given, for a constant c > 0.

Then any stability-based algorithm on input S and ‘
Õ
, e�ciently computes ‚µ such that with

probability at least 1 ≠ · , we have Î‚µ ≠ µÎ = ‡ · O

1
Ô

‘ +


d/n +


log(1/·)/n

2
.

We recall that our e�cient implementation using grid points cost a log d factor due to
the suboptimal net size. Using a net with a size matching the covering number O((D/›)d)
will remove the log d factor, but at the cost of exponential time complexity for constructing
the net and finding a point within O(›) distance for a given point.

Following the same proof steps, as in Section A, we can derive the excess risk bound
without the log d factor, at the cost of exponential time complexity.

G Dealing with Unknown ‡

We adapt Algorithm 1 to work without knowing ‡ by first getting a lower bound on ‡ using
the filtering algorithm (Algorithm 2) and then using this lower bound to set the fineness
parameter › of the net in Algorithm 1.

The modified algorithm is as follows: (1) Estimate ‡: Choose a point w and run
Algorithm 2 with input S = {Òfi(w)}n

i=1
to obtain a lower bound ‡̂. (2) Then, we run

Algorithm 1 with › = ‡̂”/—̄.
In Algorithm 1, we use ‡ only to determine the fineness of the net via › = ‡

Ô
‘/—̄. A

smaller › results in a finer net and consequently reduces the error when evaluating gradients
at the net point w

Õ instead of w, that is, (5) still holds with a smaller ›. Since the excess
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risk depends on › only through logarithmic terms, the same analysis (see Section A) holds
with a smaller ›. It then su�ces to choose › = ‡̂”/—̄, where ‡̂ is a lower bound on ‡. We

also need to choose T = �̃
3

—D

‡̂
Ô

‘+‡̂


d log(1/·)
n

4
where we use ‡̂ in place of ‡. When using

smoothing to handle nonsmooth losses, we can choose — similarly by replacing ‡ with ‡̂.
Recall that Algorithm 2 works even when ‡ is unknown. Moreover, the output h satisfies

Î�(h)Î Æ ‡
2(1+O(”2

/‘)) (see [7]). It follows that we can use Î�(h)Î to obtain a lower bound
on ‡. Using Lemma 24, at any fixed w, we can run Algorithm 2 with input S = {Òfi(w)}n

i=1

to obtain a lower bound ‡̂ on ‡. We have that (plugging in ”(· Õ) in Lemma 24), with
probability at least 1 ≠ ·

Õ,

Î�(h)Î Æ ‡
2(1 + O(”2

/‘)), (23)

where ” = Õ

1
Ô

‘ +


d/n +


log(1/· Õ)/n

2
. Therefore, ‡̂ :=


Î�(h)Î/


1 + O(”2/‘) is a

lower bound on ‡ with probability at least 1 ≠ ·
Õ.
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