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ABSTRACT. We extend Mirzakhani’s conjugacy between the earthquake and horocycle flows to a bijection,
demonstrating conjugacies between these flows on all strata and exhibiting an abundance of new ergodic
measures for the earthquake flow. The structure of our map indicates a natural extension of the earthquake
flow to an action of the upper-triangular subgroup P < SLaR and we classify the ergodic measures for
this action as pullbacks of affine measures on the bundle of quadratic differentials. Our main tool is a
generalization of the shear coordinates of Bonahon and Thurston to arbitrary measured laminations.

1. MAIN RESULTS

1.1. Conjugating earthquake and horocycle flow. This paper deals with two notions of unipotent flow
over the moduli space M, of Riemann surfaces. The first is the Teichmiiller horocycle flow, defined on the
bundle Q' M, of unit area quadratic differentials ¢ by postcomposing the charts of the flat metric |g| by the

parabolic transformation ;) This flow is ergodic with respect to a finite measure induced by Lebesgue

1
(5
in local period coordinates [Mas82, [Vee82] and is a fundamental object of study in Teichmiiller dynamics.

The second is the earthquake flow on the bundle P! M, whose fiber is the sphere of unit-length measured
geodesic laminations on a hyperbolic surface. The earthquake flow is defined as a generalization of twisting
about simple closed curves, or by postcomposing hyperbolic charts by certain piecewise-isometric transfor-
mations. While this flow is more mysterious, earthquakes are a familiar tool in Teichmiiller theory, playing
a central role in Kerckhoff’s proof of the Nielsen realization conjecture [Ker83|, for example.

These two flows are both assembled from families of Hamiltonian flows (extremal length for horocycle
[Pap86] and hyperbolic length for earthquake [Ker83, [Wol83, [SB01]) and exhibit similar non-divergence
properties [MW02], but the horocycle flow belongs properly to the flat-geometric viewpoint and the earth-
quake flow to the hyperbolic one. All the same, in [Mir08] Theorem 1.1] Mirzakhani established a bridge
between the two worlds, demonstrating a measurable conjugacy between the earthquake and horocycle flows.
Consequently, the earthquake flow is ergodic with respect to the measure class of Lebesgue on P M,.

In this article, we deepen this connection between flat and hyperbolic geometry, proving that the corre-
spondence can be further upgraded to yield new results on both the ergodic theory of the earthquake flow
and the structure of Teichmiiller space.

Theorem A. Mirzakhani’s conjugacy extends to a bijection
O:P'M, < Q' M,
that conjugates earthquake flow to horocycle flow.

The moduli space of quadratic differentials is naturally partitioned into strata Q' M, (k), disjoint subsets
parametrizing unit-area differentials with zeros of order k = (K1, ..., k). Similarly, for any £ we may define
the regular locus PlM;eg(ﬁ) to be the set of (X, A) where A cuts X into ideal polygons with (k1+2, ..., k,+2)
many sides, each with a cyclic symmetry of that order.

With this notation, Mirzakhani’s conjugacy can more precisely be stated as the existence of a bijection

1 4g—4 1 4g—4
P MPFE(17%) & QM (17977
taking earthquake flow to horocycle flow, where the superscript nsc specifies the (full-measure) sublocus of
the stratum consisting of those differentials with no horizontal saddle connections.
One of our main applications of Theorem [A]is to produce an analogue of Mirzakhani’s conjugacy for

components of strata (even those coming from global squares of Abelian differentials), confirming a conjecture
of Alex Wright [Wril8, Remark 5.6] (see also [Wri20, Problems 12.5 and 12.6]).

Theorem B. For every k, the map O restricts to a bijection
rle;eg(ﬁ) o QlMESC(ﬁ)
that takes earthquake to horocycle flow and (generalized) stretch rays to Teichmiiller geodesics.
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While strata of holomorphic quadratic differentials are generally not connected, for g # 4 their connected
components are classified by whether or not they consist of squares of abelian differentials and the parity of
the induced spin structure (both of which depend only on the horizontal foliation when there are no horizontal
saddles), as well as hyperellipticity [KZ03] [Lan0§]. E| The bijection O respects both the horizontal direction
and the Mod(S) action, so Theorem E can be refined to describe the preimages of these components.

As an immediate consequence of Theorem [B, the earthquake flow is ergodic with respect to the pushfor-
ward by O~! of the Masur-Veech measure on any component of any stratum of quadratic differentials.

1.2. Geodesic flows and P-invariant measures. Pulling back the Teichmiiller geodesic flow via O allows
us to specify a family of “dilation rays” which serve as a geodesic flow for the earthquake flow’s parabolic
action and in many cases project to geodesics for Thurston’s Lipschitz asymmetric metric. Combining
dilation rays and the earthquake flow therefore gives a action of the upper triangular subgroup P < SL;R
on P! M, by “stretchquakes.” See Sectionm

Due in part to the failure of O to be continuous, the stretchquake action on P! M, is not by homeomor-
phisms but rather by measurable bijections. More precisely, it preserves the o-algebra obtained by pulling
back the Borel o-algebra of Q' M(S) along O. In a forthcoming sequel [CFa), the authors show that O is
actually a measurable isomorphism with respect to the Borel o-algebra on P! M, and that the stretchquake
action restricted to each le;eg (k) is by homeomorphisms; see also Remark

Remark 1.1. In fact, Arana-Herrera and Wright have recently shown that there is mo continuous map
conjugating the earthquake flow to horocycle flow, at least when P* M, and Q' M, are equipped with their
standard topologies [AHW22].

In their foundational work on SLsR-invariant ergodic measures on the moduli space of flat surfaces, Eskin
and Mirzakhani [EMIS8, Theorem 1.4] proved that the support of any P-invariant ergodic measure on Q' M g
is locally an affine manifold cut out by linear equations in period coordinates. Our conjugacy translates this
classification into a classification of ergodic measures for the extension of the earthquake flow defined above:

Theorem C. Every stretchquake-invariant ergodic measure is the pullback of an affine measure.

Proof. 1f v is a stretchquake-invariant ergodic measure on P! M, then O, v is a P-invariant ergodic measure
on Q' M,, which is affine by [EMIS|, Theorem 1.4]. |

Using this correspondence we obtain a geometric rigidity phenomenon for stretchquake-invariant ergodic
measures on P1M,: the generic point is made out of a fixed collection of regular ideal polygons.

Corollary 1.2. For any stretchquake-invariant ergodic probability measure v on P*M,, there is some & so
that v-almost every (X, ) lies in P' M8 (k).

This in particular implies that the dynamics of the stretchquake action with respect to any ergodic
probability measure are measurably the same as its restriction to a stratum, on which we can identify dilation
rays as (directed, unit-speed) geodesics for the Lipschitz asymmetric metric on 7(S) (see Proposition |[15.12)).

Remark 1.3. We note that general ergodic measures for the stretchquake action can look quite different
than the Lebesgue measure class on PlMg, even when pushed down to M.

For example, if v gives full measure to PlM_f]eg(llg — 4) then a v-generic point is obtained by gluing
together a single regular ideal (4g — 2)-gon; in particular, the injectivity radius at the center of the polygon
can be arbitrarily large, allowing g — co. This implies that v gives zero mass to (the restriction of P M,
to) sufficiently thin parts of moduli space, as any (X, A) where X has a very short pants decomposition has
injectivity radius uniformly bounded above.

Remark 1.4. While an important result of [EMI8]| is that any P-invariant ergodic measure on Qlj\/lg is
actually SLyR-invariant, the circle action on Q' M ¢ (corresponding to rotating a quadratic differential) does
not have an obvious geometric interpretation on P'M,. See also [Wri20, Problems 12.3 and 12.4]

n genus 4, there are certain strata whose components have only been characterized via algebraic geometry [CM14].



SHEAR-SHAPE COCYCLES FOR MEASURED LAMINATIONS 3

1.3. Dual foliations from hyperbolic structures. A foundational result of Gardiner and Masur (The-
orem below) states that quadratic differentials are parametrized by their real and imaginary parts;
equivalently, their vertical and horizontal foliations (or laminations). In particular, the real-analytic sub-
manifold F**(\) of all quadratic differentials with horizontal lamination A can be identified with the space
MUF(A) of foliations that bind together with A. See Section [2| for a formal definition. As the horocycle flow
preserves the horizontal foliation, it induces a flow on MF()).

Mirzakhani’s conjugacy and our extension therefore both follow from the construction of flow-equivariant
maps that assign to a hyperbolic surface X and a measured lamination A a “dual” measured foliation.

For maximal laminations A, this dual is the horocyclic foliation Fy(X) introduced by Thurston [Thu9§],
obtained by foliating the spikes of each triangle of X \ A by horocycles and extending across the leaves of A.
The measure of an arc transverse to F)(X) is then the total distance along A between horocycles meeting
the arc at endpoints. As F)(X) necessarily binds S together with A, this defines a map

Fy:T(S) = MF(\).

We endow MF () with the real-analytic structure coming from its identification with F“*(\). The main
engine of Mirzakhani’s conjugacy is the following theorem of Bonahon [Bon96] and Thurston [Thu98|; see
also Section for a discussion of her interpretation of this result.

Theorem 1.5 (Bonahon, Thurston). For any maximal A, the horocyclic foliation map F) is a real-analytic
homeomorphism which takes the earthquake in A to the horocycle flow restricted to MF(X) = F*(\) in a
time-preserving way. Moreover, the family {F\} is equivariant with respect to the Mod(S) action. That is,
Fya(9X) = gF\(X) for all g € Mod(S).

When A is not maximal the horocyclic foliation is no longer defined. The first thing one might try is
to simply choose a completion of A, but this approach is too naive. Indeed, this would require choosing a
completion of every lamination, which necessarily destroys Mod(S)—equivariance because laminations (and
differentials) can have symmetries. E| Such a map will not descend to moduli space and is therefore unsuitable
for our applications. Besides, for our purposes it is important that the geometry of the subsurfaces of X \ A
predicts the singularity structure of the corresponding differential.

If one restricts their attention to the case when A is filling and cuts X into regular ideal polygons then
there is a canonical notion of horocyclic foliation. While this construction is equivalent on the regular locus
to the more general procedure we describe just below, any attempt to prove Theorem [B with this restricted
viewpoint would necessarily rely on (Mod(S)—equivariant) descriptions of the loci of surfaces built from
regular polygons, as well as the intersection of F**(\) with strata, results which (to the knowledge of the
authors) were heretofore unknown. Compare Corollary and Section

We therefore place no restrictions on the topological type or the complementary geometry of A. Following
a suggestion of Yi Huang (communicated to us by Alex Wright), we prove that the correct analogue of the
horocyclic foliation for non-maximal A is the orthogeodesic foliation Oy(X), whose leaves are the fibers of
the closest point projection to A and whose measure is given by length of the projection to A. As in the
maximal case, the orthogeodesic foliation binds together with A, inducing a map

Oy :T(S) = MF(N).
See Section [l for a more detailed discussion of this construction.

Theorem D. For any A € ML(S), the orthogeodesic foliation map O} is a homeomorphism which takes the
earthquake in A to the horocycle flow restricted to MF(A) = F““()) in a time-preserving way. Moreover,
the family {O,} is equivariant with respect to the Mod(S) action. That is, Ogx(¢9X) = g Or(X) for all
g € Mod(S).

Although MF(X) does not have an obvious smooth structure, the map O, still exhibits a surprising
amount of regularity; see Theorem

The proof of Theorem [D] requires generalizing Bonahon’s machinery of transverse cocycles to new com-
binatorial objects called “shear-shape cocycles” which capture the essential structure of the orthogeodesic
foliation; see Section just below. The space of shear-shape cocycles forms a common coordinatization of

2For example, take v to be a simple closed curve; completions of v correspond to triangulations of X \ v where the boundaries
are shrunk to cusps (up to a choice of spiraling about each side of ). The space of such triangulations carries a rich Stab(v)
action, and a computation shows that the horocyclic foliations for two completions in the same Stab(y) orbit need not be equal.
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both 7(S) and MF(X) that is compatible with the map Oy and reveals an abundance of structure encoded
in the orthogeodesic foliation:

e When A cuts X into regular ideal polygons, the orthogeodesic and horocyclic foliations agree.

e The locus of points of X which are closest to at least two leaves of A forms a piecewise geodesic
spine for X \ A which captures the geometry and topology of the complementary subsurfaces (see
Theorem. Moreover, this spine is exactly the diagram of horizontal separatrices for the quadratic
differential with horizontal foliation A and vertical foliation O, (X).

e For every measure p on A, the intersection of 1 and O, (X) is the hyperbolic length of p on X.

e The pullback of Teichmiiller geodesics with no horizontal saddle connections are geodesics with
respect to Thurston’s Lipschitz (asymmetric) metric (Proposition .

A statement similar to Theorem @ is probably also true for any (unmeasured) geodesic lamination, but
for technical reasons regarding compatibility of complementary subsurfaces and the spiraling behavior of A
we have restricted ourselves to the measured setting. See Remark

The orthogeodesic foliation map can also be thought of as relating the hyperbolic and extremal length
functions ¢, (-) and Exty(+) for any fixed A. Indeed, a seminal theorem of Hubbard and Masur [HM79] states
that the natural projection

m: FY(A) = T(S)
that records only the complex structure underlying a differential is a homeomorphism. Combining this with
the fact that the extremal length of A on Y is exactly the area of the differential 7=*(Y"), we deduce that

Corollary 1.6. For every A € ML(S), the map 7 o O, is a Stab(\)—equivariant self-homeomorphism of
T(S) that takes the hyperbolic length function £(-) to the extremal length function Exty(-).
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2. ABOUT THE PROOF

Given Theorem D] which associates to (X, \) a dual foliation O5(X) describing the geometry of the pair, it
is not difficult to prove Theorems [A] and [B. First, we recall the relationship between differentials, foliations,
and laminations in a little more detail.

The space of measured foliations (up to equivalence) on a closed surface S of genus g > 2 is denoted
MUF(S). There is a canonical identification [Lev83] between MF(S) and ML(S), the space of measured
laminations on S; throughout this paper we will implicitly pass between the two notions at will, depending
on our situation. By QT , and Q'7, we mean the bundle of holomorphic quadratic differentials over the
Teichmiiller space and the locus of unit area quadratic differentials, respectively. We similarly denote P7T , =
T(S) x ML(S) and P'T, the locus of pairs (X, \) where A has unit length on X.

To every ¢ € QT, one may associate the real measured foliation |Re(g)| which measures the total
variation of the real part of the holonomy of an arc; the imaginary foliation |Im(q)| is defined similarly.
These foliations have vertical, respectively horizontal, trajectories, and so we will also refer to them as the
vertical and horizontal foliations (or laminations) of ¢ and write

q = q(|Re(q)l,|Im(q)]).

A foundational theorem of Gardiner and Masur implies that the real and imaginary foliations completely
determine ¢, and that given any two foliations which “fill up” the surface, one can integrate against their
measures to recover a quadratic differential.

A pair of measured foliations/laminations (n, \) is said to bind S if for every v € ML(S),

i(y,m) +i(y,A) >0,
where i(- ,-) is the geometric intersection pairing. In the literature, such pairs are sometimes called filling,
though we choose to distinguish the topological notion of filling from the measure-theoretic notion of binding.
Theorem 2.1 ([GM91l, Thereom 3.1]). There is a Mod(S)-equivariant homemomorphism
OT(S) 2 MF(S) x MF(S)\ A

where A is the set of all non-binding pairs (n, ). In particular, the set F“*(\) of all quadratic differentials
with | Im(q)| = A may be identified with MF()), the set of foliations which together bind with A.

Proof of Theorems[A] and[B. By definition, there is a Mod(S)—equivariant projection P74 — ML(S) with
fiber 7(S). Theorem [2.1]implies there is a Mod(S)-equivariant projection QT4 — ML(S) whose fiber over
A may be identified with MF(X). Applying Theorem [D]on the fibers therefore yields an equivariant bijection

O:PT,+ QT
which takes unit-length laminations to unit-area differentials (Corollary [13.14), and quotienting by the
Mod(S) action proves Theorem
Furthermore, we observe that the spine of the orthogeodesic foliation of a regular ideal (k + 2)-gon is just

a star with k + 2 edges, which corresponds to the separatrix diagram of a zero of order k when there are no
horizontal saddle connections. Thus O restricts to the promised conjugacy on strata (Theorem . ]
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Remark 2.2. Mirzakhani’s conjugacy is defined on the Borel subset 777'Tgeg(14g_4) C PT 4 of full Lebesgue
measure and is moreover Borel measurable on its domain of definition. The latter assertion is a consequence
of a stronger result, namely that P78(1497%) — QT is continuous (with respect to the subspace topology
on Pﬂeg(l‘lg*‘l)).

While convergence of measured laminations (in measure) does not typically imply Hausdorff convergence of
the supports, whenever a sequence {\, } of maximal measured laminations converges to a maximal measured
lamination A, then )\, is eventually carried (snugly) on a maximal train track also carrying A. From here,
it is not difficult to deduce that A, — X in the Hausdorff topology [ZB04] and thus the horocyclic foliations
Fy, (X) converge to Fy(x). Intuitively, the leaves of A, intersect the leaves of A with small angle (depending
on the specific surface on which they are realized), so the orthogonal directions become more parallel.

In forthcoming work [CFa], the authors extend these ideas and prove that O is (everywhere) Borel measur-
able with Borel measurable inverse by identifying a countable partition of PT, and QT , into Borel subsets
on which O is homeomorphic. See also Section

In general, the compact edges of the spine of a pair (X, A) correspond exactly to horizontal saddle connec-
tions in the differential O(X, A). This observation allows us to prove that the generic point for a P-invariant
ergodic probability measure on P! M, consists of pairs (X, \) where A cuts X into a fixed set of regular ideal
polygons.

Proof of Corollary[I.2. Using our conjugacy, the desired statement is equivalent to the fact that any P-
invariant ergodic probability measure on Q' M ¢ is (a) supported in a single stratum and (b) gives 0 measure
to the set of differentials with horizontal saddle connections.

The first statement is implied by ergodicity, while the second follows from the fact that the measure is
actually SLoR-invariant [EMMI15]. Indeed, for any quadratic differential ¢, the Lebesgue measure of the set
of directions @ such that e?q has a saddle connection is 0, so Fubini’s theorem implies (b).

O

Refining the proof by considering connected components of strata, we see that we can also conclude that
v-almost every pair has the same orientability, spin, and hyperellipticity properties.

2.1. Shear-shape coordinates. Our strategy to prove Theorem [D] follows Mirzakhani’s intepretation of
Theorem in which she clarifies the relationship between Thurston’s geometric perspective on the horo-
cyclic foliation and Bonahon’s powerful analytic approach in terms of transverse cocycles. Namely, she shows
that the horocyclic foliation map F) is compatible with shearing coordinates for both hyperbolic structures
and measured foliations. To motivate our construction, we give a brief outline of Mirzakhani’s proof below.

A (real-valued) transverse cocycle for X\ is a finitely additive signed measure on arcs transverse to A
that is invariant under isotopy transverse to \; observe that transverse measures are themselves transverse
cocycles. These objects equivalently manifest as transverse Holder distributions, cohomology classes, or
weight systems on snug train tracks [Bon97al [Bon96, Bon97b]. The space H(A) of transverse cocycles forms
a finite dimensional vector space which carries a natural homological intersection pairing which is non-
degenerate when X is maximal. The intersection pairing then identifies a “positive locus” HT(\) C H(A) cut
out by finitely many geometrically meaningful linear inequalities. See also Section [7.1

In [Bon96, Theorem A], Bonahon proved that for any maximal geodesic lamination A there is a real-
analytic homeomorphism o : T(S) — HT()\) that takes a hyperbolic metric to its “shearing cocycle,” which
essentially records the signed distance along \ between the centers of ideal triangles in the complement of A.
Mirzakhani then constructed a homeomorphism I (essentially by a well-chosen system of period coordinates)
that coordinatizes MF(A) by H*(A) and for which the following diagram commutes [Mir08] §§5.2, 6.2]:

T(S) I MF(N)

(1) N i

HT(N)

Since Fy = I, 7! ooy is a composition of homeomorphisms, it is itself a homeomorphism. As the construction
of the horocyclic foliation requires no choices, the family {F)} is necessarily Mod(S)—equivariant. Finally,
a direct computation shows that o) transports the earthquake in A to translation in H*(\) by ), and I
similarly takes horocycle to translation, demonstrating Theorem [1.5
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Shear-shape cocycles. When ) is not maximal, the space of transverse cocycles is no longer suitable to
coordinatize hyperbolic structures (or transverse foliations). Indeed, in this case the vector space H(A) has
dimension less than 6g — 6 and its intersection form may be degenerate; this is a consequence of the fact
that the Teichmiiller space of S\ A now has a rich analytic structure that transverse cocycles cannot see.

In order to imitate Diagram and its concomitant arguments for arbitrary A € ML(S), we therefore
introduce the notion of shear-shape cocycles on A. Roughly, a shear-shape cocyle consists of finitely additive
signed data on certain arcs transverse to A together with a weighted arc system that cuts S\ A into cells;
this pair is also required to satisfy a certain compatibility condition mimicking features of the orthogeodesic
foliation (Definition [7.12). Generalizing results of Luo [Luo07, Theorem 1.2 and Corollary 1.4], we show
that such an arc system is equivalent to a hyperbolic structure on S \ A (Theorem , so shear-shape
cocycles may equivalently be thought of as transverse data together with a compatible hyperbolic structure
on the complementary subsurface(s). Like transverse cocycles, shear-shape cocycles also admit realizations
as cohomology classes or weight systems on certain train tracks (Definition and Proposition .

Remark 2.3. We note that only certain classes of arcs admit consistent weights when measured by a
shear-shape cocycle, whereas transverse cocycles provide a measure to any arc transverse to A. While this
subtlety is exactly what allows us to understand how to relate shear-shape cocycles with the geometry of
complementary subsurfaces, it also presents a number of technical challenges throughout the paper.

Unlike transverse cocycles, the space SH(A) of shear-shape cocycles is not a vector space, instead forming
a principal H(\) bundle over a contractible analytic subvariety of 7(S\ A) (Theorem [8.I). All the same, the
cohomological realization of shear-shape cocycles equips SH(\) with an intersection form
WSH - SH()\) X 7‘[()\) - R

that identifies a “positive locus” SH()) and equips both SH(A) and SHT()\) with piecewise-integral-linear
structures. The positive locus forms a H*()) cone-bundle over the same subvariety of 7(S\ A) (Proposition
and fits into a familiar-looking commutative diagram:

T(S) O MF
2) o
(A)

(M)

SHT(A

where oy and I, record shearing data along A as well as shape data in the complementary subsurfaces.
These maps can be thought of as a common generalization of Bonahon and Mirzakhani’s shear coordinates
as well as Fenchel-Nielsen and Dehn-Thurston coordinates adapted to a pants decomposition (see Section
. In the case when A is orientable, the map I can also be viewed as an extension of Minsky and Weiss’s
description of the set of Abelian differentials with given horizontal foliation [MW14, Theorem 1.2]. E|

The conjugacy of Theorem [D] is then a consequence of the following structural theorem, which is an
amalgam of the main technical results of the paper (compare Theorems [10.15] [12.1} and [13.13]).

Theorem E. For any measured lamination A, Diagram (2)) commutes and all arrows are Stab(\)—equivariant
homeomorphisms. Moreover,

e 0, is (stratified) real-analytic and transports the earthquake flow to translation by A and the hyper-
bolic length of A to wsy (-, A).

e The weighted arc system underlying o (X) records the hyperbolic structure X \ A under the corre-
spondence of Theorem [6.4

e I, is piecewise-integral-linear and transports horocycle flow to translation by A and intersection with
A to wgq.[(~, )\)

e The weighted arc system underlying I (n) records the compact horizontal separatrices of ¢(n, \).

In the course of our proof, we also describe new “shape-shifting deformations” of hyperbolic surfaces
which generalize Bonahon and Thurston’s cataclysms by shearing along a lamination while also varying the
hyperbolic structures on complementary pieces. See Section [15.1]

3Technically, [IMW14] investigates the family of Abelian differentials with a fixed horizontal foliation and fixed topological
type of horizontal separatrix diagram, whereas our map applies to quadratic differentials (whether or not they are globally the
square of an Abelian differential) and packages together all possible types of separatrix diagrams.
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One particularly interesting family of deformations is obtained by dilation. The space SH™*()\) admits
a natural scaling action by Rso, and since both earthquake and horocycle flow are carried to translation
in coordinates, this scaling action indicates extensions of each to P actions. A quick computation (Lemma
shows that the pullback of a dilation ray by I, is (a variant of) the Teichmiiller geodesic flow, so the
P action on the flat side is just the standard P action on Q7.

On the hyperbolic side, these dilation rays define our extension of the earthquake flow, and correspond
to families of hyperbolic metrics on which the length of A is scaled by a uniform factor. They are therefore
natural candidates for (directed, unit-speed) geodesics for the Lipschitz asymmetric metric on 7(.5), and in
some cases we can identify them as such (see Propositions and as well as Remarks and

T510).

Remark 2.4. Over the course of the paper we formalize the notion that shear-shape coordinates for hyper-
bolic structures are essentially the “real part” of period coordinates for PT 4. Interpreting ox(X) + i) as a
complex weight system on a train track, Theorem [C implies that the support of every stretchquake-invariant
ergodic measure on P* M, is locally an affine measure in train track charts. See Lemma

Coordinatizing horospheres. Since the Thurston intersection form wsy captures both the hyperbolic
length of and geometric intersection with A, the coordinate systems of Theorem [E] also allow us to give
global descriptions of the level sets of these functions. In particular, we can recover Gardiner and Masur’s
description of extremal length horospheres [GM91], p.236] as well as Bonahon’s description of the hyperbolic
length ones (which is implicit in the structure of shear coordinates for maximal completions).

Corollary 2.5. Suppose that A supports k ergodic transverse measures A1, ..., A\g. Then forall Ly,... Li €
R~g, the level sets

{X eT(S)]|€x(\i) =L, for all i} and {n € MF(A) |i(n, ;) = L; for all i}
are both homeomorphic to R69—6-F,

Analyzing this coordinatization more closely, we see that in fact both level sets can be described as affine
bundles of dimension dimg H*(\) — k over the same subvariety of 7(S \ A) as underlies SH(\).

From this refinement we are able to describe the intersection of the leaf F“*(\) with strata. The decom-
position of period coordinates into real and imaginary parts shows that this intersection (when not empty)
is locally homeomorphic to R?, where d is the complex dimension of the stratum; our work shows that these
local homeomorphisms patch together to a global one. Compare [MW14, Theorem 1.2].

Corollary 2.6. Suppose that A is a filling measured lamination that cuts a surface into polygons with
K1+2,...,kp+ 2 many sides, and let € = +1 if A is orientable and —1 otherwise. Let Q7 ¢4(k;¢) denote the
union of the components of the stratum Q7 4(k) C QT 4 that either are (¢ = +1) or are not (¢ = —1) global
squares of Abelian differentials. Then

{a€ QT y(kie) | [Im(q)] = A} = HT(A) 2 R
where d is the complex dimension of Q7 4(k;¢).

Proof. Theorem [E| indicates that the metric graph of compact horizontal separatrices of ¢(n, \) is encoded
by the weighted arc system underlying Iy (7). These weighted arc systems are organized in a piecewise-linear
subvariety Z(S \ A) of a product of weighted filling arc complezes that encode the combinatorics of how a
zero of order k; can split up into lower order zeros joined by horizontal saddle connections (see Sections @
and Figure . For differentials in the indicated set, there are no compact horizontal separatrices,
and so the underlying arc system is always the empty (filling) arc system @ € Z(S \ A). In other words,
the image of {¢ € QT 4(k;¢) | |Im(g)] = A} in coordinates is just the fiber over (), where Proposition
identifies SHT(\) as an H*()\)-bundle over Z(S \ A).

The second isomorphism H*(\) = R? is just a dimension count (see Lemmasand in particular). O

In general, we see that F*“(A\)NQT ,4(k; €) forms a H*(A\) bundle over a union of faces of an arc complex of
S\ A. As a consequence we find that the only obstruction to completeness of any such leaf comes from zeros
colliding along a horizontal saddle connection (see also [MW14, Theorem 11.2]). This global description
of F¥(A) N QT 4(k;¢) also allows the import of arguments from homogeneous dynamics to investigate
equidistribution in both Q' M, and P' M, and their strata; see the discussion in Section
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2.2. Generalized Fenchel-Nielsen coordinates. Our shear-shape coordinates for hyperbolic structures
can be thought of as interpolating between the classical Fenchel-Nielsen coordinates adapted to a pants
decomposition and Bonahon and Thurston’s shear coordinates. In both cases, one remembers the shapes of
the complementary subsurfaces (pairs of pants and ideal triangles, respectively) and the space of all hyperbolic
structures with given complementary shapes is parametrized by gluing data (twist/shear parameters).

For general A, there is a map

cuty : T(S) = T(S\ )

that remembers the induced hyperbolic structure on each complementary subsurface. Theorem then
implies that the image of cut) is a real-analytic subvariety #(S\ A) of T(S\ A) consisting of those structures
satisfying a “metric residue condition” (see Lemma . In the case where each component of A is either
non-orientable or a simple closed curve, Z(S\ A) is just the space of hyperbolic structures for which the two
boundary components of the cut surface corresponding to a simple curve component of A have equal length.
Theorem together with the structure of SH™()\) also allows us to identify the fiber cut, ' (V") over any
Y € B(S\ \) with the gluing data H+()\)E| (though not in a canonical way).

We summarize this discussion in the following triptych:

Fenchel-Nielsen Shear-shape Shear
R3973 —— T(9) HT(N) — T(S) HT(N) —— T(S)
® | | |
R B(S\N) {pt}
A a pants decomposition A arbitrary A maximal

In each coordinate system, 7(S) is the total space of a fiber bundle over a base space of allowable shape
data on the subsurface complementary to A, while the fiber consists of gluing data.

A completely analogous picture also holds for foliations transverse to A, demonstrating I, as a common
generalization of both Dehn—Thurston and Mirzakhani’s shear coordinates.

2.3. Fenchel-Nielsen and Dehn—Thurston via shears and shapes. In order to give the reader a
concrete example of shear-shape coordinates, we include here a discussion of our construction for A = P a
pants decomposition. In this case, we see that shear-shape coordinates are just a (mild) reformulation of the
classical Fenchel-Nielsen and Dehn-Thurston ones.

First we consider a hyperbolic structure X. A pair of pants in X \ P is typically parametrized by
its boundary lengths (a,b,c), or equivalently, by the alternating side lengths of either of the right angled
hexagons coming from cutting along seams. The orthogeodesic foliation on a pair of pants picks out either
a pair or triple of seams (those which are realized as leaves of Op (X)), each weighted by the length of a
boundary arc consisting of endpoints of leaves of Op(X) isotopic to the seam. See Figure |l| In this case,
these lengths are just simple (piecewise) linear combinations of the boundary lengths and the metric residue
condition defining Z(S \ P) just states that the boundaries that are glued together must have the same
length. See Figure

The space HT(P) reduces to a sum of the twist spaces for each curve of P, and so Theorem implies
that SHT(P) is a principal R39~3 bundle over (S \ P) = R%% . The transverse data recorded by this twist
space then describes the signed distance between certain reference points in pairs of right-angled hexagons
in X that are adjacent to the same curve of P, which is the same as the twist parameter measured by the
appropriate choice of Fenchel-Nielsen coordinates.

We can similarly recognize Iy : MF(P) — SH(P) as Dehn-Thurston coordinates. Note first that there
are no essential simple closed curves in the complement of P, so MJF(P), the space of measured foliations
that intersect every curve in the support of P, is the same as the space of measured foliations not contained
in the support of P. Now from any integral point ¢ € SH1(P) we can construct a multicurve o with
prescribed intersection and twisting parameters as follows: the weighted arc system describes how strands
of o pass between and meet the components of P, while the transverse data recorded by H*(P) = RF

4Gee the discussion around in regards to the positivity condition for disconnected \; in essence, HT(\) is the product
of Ht()\;) for each non-closed minimal component together with the twisting data around simple closed curves.

5Fenchel-Nielson coordinates always involve some choice of section of the space of twists over the length parameters, and so
have only the structure of a principal R39—3 bundle over Ri_g_s.
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c—a—>b b

FIGURE 1. The orthogeodesic foliation on pairs of pants. Note that the weight of each
bolded arc is a linear combination of the boundary lengths, hence the correspondence be-
tween shear-shape and Fenchel-Nielsen/Dehn—Thurston coordinates. If any of the weights
is zero, the orthogeodesic foliation only picks out the two seams with non-zero weights.

describes the extent that strands of @ wrap around components of P. This procedure is clearly reversible
and can easily be extended to transverse foliations using a family of standard train tracks on each pair of
pants (see [PH92, §2.6]). As in the hyperbolic case, one can easily pass between these coordinates and the
standard Dehn—Thurston ones just by replacing the count of strands of o going from one boundary to the
other with the total intersection of a with each boundary.

3. OUTLINE OF THE PAPER

The rest of this paper is roughly divided into four parts, corresponding to the orthogeodesic foliation,
shear-shape cocycles, and shear-shape coordinates for flat and hyperbolic structures, as well as a collection
of further directions for investigation (Section . While the constructions of Iy and oy both rely on
foundational results established in the first two parts, we have attempted to direct the reader eager to
understand our coordinates to the most important statements of these sections.

We expect that the reader is familiar with many of the standard constructions of Teichmiiller theory, as
well as the definitions of both the earthquake and horocycle flows; we recommend [MWO02, Section 4] for a
particularly lucid overview of the relevant objects. We also refer the reader to [CB88| and [Thu82, Section
8] for more on laminations and to [PH92] for a comprehensive introduction to train tracks.

§ The orthogeodesic foliation. Cutting along a lamination results in a (possibly disconnected)
hyperbolic surface ¥ with crown boundary, and in Section 4| we recall some useful information about the
Teichmitiller spaces of such surfaces. One particularly important definition is that of the “metric residue”
of a crown end, which is a generalization of boundary length and plays an important role in cohomological
constraints on the shape data of shear-shape cocycles (Lemma .

With these preliminaries established, in Section [5]we discuss in more detail the orthogeodesic foliation and
the hyperbolic geometry of X in a neighborhood of A. In this section we also give a geometric interpretation
of the map in Corollary that relates hyperbolic and extremal length.

The most important result of this part occupies Section[6] in which we show that the orthogeodesic foliation
restricted to ¥ completely determines its hyperbolic structure. More explicitly, dual to each compact edge
of the spine of O, (X) is a packet of properly isotopic arcs joining non-asymptotic boundary components of
Y. By assigning geometric weights to each of these packets we can therefore combinatorialize the restriction
of O)(X) to ¥ by a weighted, filling arc system.

Using a geometric limit argument, in Theorem [6.4] we prove that the map which associates to a hyperbolic
structure on ¥ the associated arc system is a Mod(X)—equivariant stratified real-analytic homeomorphism
between 7 (X) and a certain type of arc complex for 3, generalizing a theorem of Luo [Luo07] for surfaces with
totally geodesic boundary (see also [Mon09b, [Do08, [Ush99]). Moreover, by construction this map records
both the combinatorial structure of the spine of O)(X) as well as the metric residue of the crowns of X.

Theorem is used extensively throughout the paper in order to pass between the combinatorial data
of a weighted arc system, the restriction of O)(X) to X, and the corresponding hyperbolic structure on X.
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The proof is independent of the main line of argument; as such, the reader is encouraged to understand the
statement, but may wish only to skim the proof.

§§7H9E The space of shear-shape cocycles. The second part of the paper is devoted to our construction
of shear-shape cocycles for a given )\ and an analysis of the space SH(\) of all shear-shape cocycles. Upon
reaching this section, the reader may find it useful to glance ahead to either Section [10] or [13| to instantiate
our definitions.

After reviewing structural results on transverse cocycles, in Section [7] we give both cohomological and
axiomatic definitions of shear-shape cocycles (Definitions and respectively), both predicated on
some underlying weighted arc system on X. In Proposition we prove these definitions agree. Using
the cohomological description, we observe a constraint on the weighted arc systems that can underlie a
shear-shape cocycle coming from metric residue conditions (Lemma ; this can also be thought of as a
generalization of the fact that one can only glue together totally geodesic boundary components of the same
length (compare Lemma .

Letting Z(S \ A) denote the subvariety of the filling arc complex of ¥ cut out by the aforementioned
residue conditions, we show in Section (8] that the space SH(A) of shear-shape cocycles forms a bundle of
transverse cocycles over (S \ A) with some additional structure (Theorem whose total space is a cell
of dimension 6g — 6 (Corollary . In this section we also introduce the Thurston intersection form on
SH(A) (Section and prove that the positive locus SHT(\) it defines is itself a bundle over Z(S \ \)
(Proposition [8.5).

Finally, in Section [9] we give train track coordinates for the space of shear-shape cocycles. The train tracks
we use give a preferred decomposition of arcs on S into pieces that are measurable by shear-shape cocycles
and as such give a useful way of specifying shear-shape cocycles by a finite amount of data. The weight space
for a train track is also a natural model in which to consider local deformations of a shear-shape cocycle, a
feature which we exploit in Section In Section we discuss how the piecewise integral linear structure
induced by train track charts endows SH™()\) with a well defined integer lattice and preferred measure in
the class of Lebesgue.

The reader willing to accept the structure theorems can adequately navigate the remaining two parts
of the paper using weight systems on (augmented) train tracks as a local description of the structure of
shear-shape space.

§§10] and Coordinates for transverse foliations. At this point, we have established the structure
necessary to coordinatize foliations transverse to A by shear-shape cocycles.

A measured foliation n € MF()\) determines a holomorphic quadratic differential ¢ = g(n, \) € F**()\)
via Theorem and we begin by specifying an arc system a(q) that records the horizontal separatrices
of g. We then build a train track 7 carrying A from a triangulation by saddle connections (Construction
; augmenting 7 by the arc system «a(q) then allows us to realize the periods of the triangulation as
a (cohomological) shear-shape cocycle Iy(n). This identification also gives a useful formula for I)(n) as a
weight system on the augmented train track 7 (Lemma .

We then show that one can rebuild ¢ just from the train track weights defined by I)(7); a similar (but
more technical) argument then gives that I, () € SHT(\) (Proposition. This reconstruction technique
together with the structure of shear-shape space therefore allows to deduce that I is a homeomorphism onto
its image. At the end of this section, we explain how the work done in the fourth and final part of the paper
implies that I surjects onto SHT()\) (Theorem , and why we choose to prove surjectivity this way.
See Remark in particular.

Since I essentially yields period coordinates, it is not surprising that (a variant of) Teichmiiller geodesic
flow is given in coordinates by dilation (Lemma, while the Teichmiiller horocycle flow is translation by
A (Lemmall1.2). We also naturally recover the “tremor deformations” introduced in [CSW20] as translation
by measures p supported on A that are not necessarily absolutely continuous with respect to A (Definition
111.3). Figure 17| details a dictionary between the language of [CSW20] and our own.

§§12H15; Coordinates for hyperbolic structures. In the final part of the paper, we use the geometry
of the orthogeodesic foliation to coordinatize hyperbolic structures via shear-shape cocycles.

From Theorem [6.4] we know that the combinatorialization of Ox(X) on each subsurface S\ by a weighted
arc system completely encodes the geometry of the pieces. Cutting X \ A further along the orthogeodesic
realization of each such arc, we obtain a family of (partially ideal) right-angled polygons. The orthogeodesic
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foliation equips each polygon with a natural family of basepoints, one on each of its sides adjacent to A,
that vary analytically in 7(S \ A). We are thus able to define a “shear” parameter between (some pairs of)
degenerate polygons, and this shear data assembles together with the “shape” data on each subsurface to
give instructions for gluing the polygonal pieces back together to obtain X.

In Sectionwe state the main Theorem that the shear-shape coordinate map oy : 7(S) — SHT(A)
is a homeomorphism, supply an outline of its proof, and derive some immediate corollaries. The construction
of oy is given in Section where we formalize the discussion from the previous paragraph. We also prove
that the central Diagram commutes (Theorem [13.13)), which then implies that o takes hyperbolic length
to the Thurston intersection form (Corollary

Section |14]is the most technical part of the paper. In it, we define the “shape-shifting” cocycles (Propo-
sition along which a hyperbolic structure can be deformed (Theorem ; these deformations are
generalizations of Thurston’s cataclysms or Bonahon’s shear deformations. Although the construction of
a shape-shifting deformation is rather involved, we attempt to keep the reader informed of the geometric
intuition that guides the construction throughout. Finally, in Section [15| we assemble all of the necessary
ingredients to prove Theorem That the earthquake along X is given by translation by A in SHT())
(Corollary is an immediate consequence of the construction of shape-shifting deformations as general-
izations of cataclysms. We then discuss how the action of dilation in coordinates can sometimes be identified
with directed geodesics in Thurston’s asymmetric metric (Propositions and .

4. CROWNED HYPERBOLIC SURFACES

When a hyperbolic surface is cut along a geodesic multicurve, the (completion of the) resulting space is
a compact hyperbolic surface with compact, totally geodesic boundary. When the same surface is cut along
a geodesic lamination, the (completion of the) complementary subsurface can have non-compact “crowned
boundaries.” This section collects results about hyperbolic structures on such “crowned surfaces” as well as
the relationship between properties of the lamination and the topology of its complementary subsurfaces.

Remark 4.1. Throughout this section and the following, we reserve S to denote a closed surface. If A is a
geodesic lamination, then S\ A denotes the metric completion of the complementary subsurfaces to A (with
respect to some auxiliary hyperbolic metric); we will refer to the topological type of a component of S\ A
by ¥. Hyperbolic metrics on S and ¥ will be denoted by X and Y, respectively.

Hyperbolic crowns. While less familiar than surfaces with boundary, crowned hyperbolic surfaces natu-
rally arise by uniformizing surfaces with boundary and marked points on the boundary. They are also intri-
cately related to meromorphic differentials on Riemann surfaces with high order poles (see, e.g., [Gupl7]).

A hyperbolic crown with ¢, spikes is a complete, finite-area hyperbolic surface with geodesic boundary that
is homeomorphic to an annulus with ¢; points removed from one boundary component. In the hyperbolic
metric, the circular boundary component corresponds to a closed geodesic and each interval of the other
boundary becomes a bi-infinite geodesic running between ideal vertices; compare Figure

In general, a hyperbolic surface with crowned boundary is a complete, finite-area hyperbolic surface with
totally geodesic boundary; the boundary components are either compact or hyperbolic crowns. We record
the topological type of a crowned surface of genus g with b closed boundary components and k crowns with
c1,--.,c, many spikes as Z;gb}, where {c} = {c1,..., ¢k}
Remark 4.2. Ideal polygons may be considered as crowned surfaces of genus 0 with a single (crowned)
boundary component. All of the results in this section hold for both crowned surfaces with nontrivial
topology as well as for ideal polygons, but their proofs are slightly different. Our citations of [Gup17] are all
for the case when ¥ is not an ideal polygon; for the corresponding statements for ideal polygons, see [Gup17,
Section 3.3] or [HTTW95].

Every crowned surface Y with non-cyclic (and non-trivial) fundamental group contains a “convex core”
obtained by cutting off its crowns along a geodesic multicurve [CB88, Lemma 4.4]. When Y has type E;gg ,
this core is a subsurface of genus g with b+ k closed boundary components. Since each crown with ¢; spikes

may be decomposed into ¢; ideal hyperbolic triangles by introducing leaves wrapping around the totally
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geodesic boundary component, we have the following expression for the area:
k
1
4 —A Y)=49g—4+2b i+ 2).
(4) —Area (Y) =dg — 4+ +;(c+>
Note that one can triangulate an ideal polygon of ¢ sides into (¢ —2) ideal triangles, and so the above formula
also holds for ideal polygons.

The metric residue. While crown ends (and ideal polygons) do not have well-defined boundary lengths,
one can define a natural generalization when there are an even number of spikes. This turns out to be a
fundamental invariant that controls when crowns can be glued together along a lamination (Lemma |13.1]).

Let C be a hyperbolic crown or an ideal polygon with ¢ spikes, where ¢ is even. One can then orient
C, that is, pick an orientation of the boundary leaves so that the orientations of asymptotic leaves agree.
Truncating each spike of C along a horocycle based at the tip of the spike yields a surface with a boundary
made up of horocyclic segments hy, ..., h. and geodesic segments g1, ..., g.. See Figure

FIGURE 2. Truncating an (oriented) crown to compute its metric residue.

Definition 4.3 (Definition 2.9 of |[Gupl7]). Let C be either an oriented hyperbolic crown or an oriented
ideal polygon with an even number of spikes. Then its metric residue res(C) is

res(C) = Z eil(g:)
i=1

where ¢; is positive if the truncated crown lies on the left of g; and negative if it lies on the right.

Since changing the truncation depth of a spike increases the length of two adjacent sides, the metric
residue evidently does not depend on the choice of truncation [Gupl7, Lemma 2.10]. Observe also that
flipping the orientation of C flips the sign of its metric residue.

Similarly, define the metric residue of an oriented totally geodesic boundary component S of Y to be
+/(B), where the sign depends on whether Y lies to the left of 8 (positive) or right (negative).
Deformation spaces of crowned surfaces. We now record some useful facts about the Teichmiiller
spaces of crowned hyperbolic surfaces.

Given any crowned hyperbolic surface Y, one can obtain a natural compactification Y by adding on an
ideal vertex at the end of each spike of each crown. The corresponding (topological) surface is{fg then has
b + k boundary components with ¢; marked points on the (b + i)' boundary component. A marking of a
crowned hyperbolic surface Y is a homeomorphism

I iégg —Y
which takes boundary marked points to ideal vertices. We think of the boundary marked points as having
distinct labels, so different identifications of the boundary points of Es{fb} with the spikes of Y yield different

markings. The Teichmiiller space of a crowned hyperbolic surface Eé{fg is then defined to be the space of
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all marked hyperbolic metrics on Zé{fg , up to isotopies which fix the totally geodesic boundary components
pointwise and fix each ideal vertex of each crown.

As noted above, any crowned hyperbolic surface Z; g contains an uncrowned subsurface which serves as
its convex core. Therefore, the Teichmiiller space of a crowned hyperbolic surface may be parametrized
by the Teichmiiller space of its convex core together with parameters describing each crown and how it is
attached. A precise version of this dimension count is recorded below.

Lemma 4.4 (Lemma 2.16 of [Gupl7]). Let ¥ = Eg{fb} be a crowned hyperbolic surface or an ideal polygon.
Then 7 (X) = R?, where

k
(5) d=06g—6+3b+ Y (ci+3).

=1

Fixing the length of any closed boundary component of E{ <} cuts out a codimension 1 subvariety of T(X).
Similarly, the subspace of surfaces with fixed metric re&dues at an even—spiked crown has codimension one.
The following proposition ensures that the intersections of the level sets of length and metric residue are
topologically just cells of the proper dimension:

Proposition 4.5 (Corollary 2.17 in [GuplT7]). Let ¥ = E{C} be a crowned surface or an ideal polygon.
Let By, ..., By denote the closed boundary components of 3 and let Cq,...,C. denote the crown ends which
have an even number of spikes. Fix an orientation of each crown end. Then for any (L;) € R%, and any
(Rj) € Re,

{(Y, f) € T(X) | £(B;) = L; and res(C;) = R; for all 4,5} = RI~b~¢
where d is as in .

Topology. When a crowned surface ¥ comes from cutting a closed surface S along a geodesic lamination
A, we can relate the topology of A to the topology of X.

Recall that the Euler characteristic of a lamination is defined to be alternating sum of the ranks of its Cech
cohomology groups, viewing A as a subset of S. Below, we compute the Euler characteristic of a geodesic
lamination in terms of the topological type of its complementary subsurfaces.

Lemma 4.6. Let A be a geodesic lamination on S. Then the total number of spikes of S\ A equals —2x/(\).
We also record the corresponding formula for later use. Suppose that S\ A =%, U...UX,,; then

(© W =335

where {c],... ,c{cj} denotes the crown type of ;.

Proof. Fix some train track 7 which carries A and has the same topological type; in Section below,
this is referred to as snug carrying of A on 7. Lemma 13 of [Bon97b| states that for any such train track,
X(A) = x(7), and so it suffices to compute the Euler characteristic of 7.

Splitting the switches of 7 if necessary, we may assume that 7 is trivalent (observe that this operation
preserves the Euler characteristic). Then each spike of S\ A corresponds to a unique switch of 7, and each
switch corresponds to three half-edges, so

2
# spikes(S \ A) = # switches(7) = 3 # edges(7).
Plugging this into the formula x(7) = # switches(7) — # edges(7) proves the claim. O

In general, the relationship between the boundary components of S\ A and A\ can be rather involved.
For example, one can construct a lamination on a closed surface of genus g > 2 consisting of 3 leaves, two
of which are non-isotopic simple closed curves and one leaf which spirals onto each of the closed leaves. In
this scenario, there is not a precise correspondence between closed leaves of A and totally geodesic boundary
components of its complementary subsurface.

When ) also supports a measure of full support, however, things become much nicer. In particular, each
component of A is minimal (in that every leaf is dense in the component) and so the closed leaves of A are
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all isolated. In this case, there is a natural 1-to-2 correspondence between closed leaves of A and totally
geodesic boundary components of S\ \.

N.B. So that we do not have to deal with possible spiraling behavior of A, we henceforth restrict our
discussion to those laminations that support a measure. See also Remark

5. THE ORTHOGEODESIC FOLIATION

In this section we construct the orthogeodesic foliation Oy (X) € MF(X) of a hyperbolic surface X with
respect to A and describe some of its basic properties.

5.1. The spine of a hyperbolic surface. We begin by describing the othogeodesic foliation restricted to
subsurfaces Y complementary to A\. Let Y be a finite area hyperbolic surface with totally geodesic boundary,
possibly with crowned boundary. As we are most interested in the Y coming from cutting a closed surface
along a lamination, we also assume that Y has no annular cusps.

Definition 5.1. The orthogeodesic foliation Oyy (Y') of Y is the (singular, piecewise-geodesic) foliation of
Y whose leaves are fibers of the closest point projection to 9Y'.

Near 9Y, the leaves of Ogy (V) are geodesic arcs meeting 9Y orthogonally. To understand the global
structure of the foliation, however, we need to determine how the leaves extend into the interior of Y. In
particular, we must understand the locus of points that are closest to multiple points of Y.

To that end, for any point z € Y, define the valence of x to be

val(z) = #{y € Y : d(x,y) = d(z,0Y)}.

The (geometric) spine Sp(Y) of Y is the set of points of Y with valence at least 2, and has a natural partition
into subsets Sp;(Y'), where z € Sp,(Y) if it is equidistant from exactly k points in Y. For the rest of the
section we fix a hyperbolic surface Y and refer to Sp(Y) and Sp,(Y) simply as Sp and Sp,,.

It is not hard to see that Sp is a properly embedded, piecewise geodesic 1-complex with some nodes of
valence 1 removed (equivalently, a ribbon graph with some half-infinite edges). Indeed, Sp decomposes into
a finite core Sp° and a finite collection of open geodesic rays; since we assumed Y had no annular cusps, each
ray corresponds with a spike of a crowned boundary component. See [Mon09b, Section 2] for a discussion of
the structure of the spine of a compact hyperbolic surface with geodesic boundary in which Sp® = Sp.

We record below a summary of this discussion; see also Figure

’(

e
\.‘;

F1GURE 3. The spine of a hyperbolic surface with crowned boundary. Note that the finite
core Sp° (represented in bold) contains a spine for the convex core of the surface.

Lemma 5.2. The finite core Sp is a piecewise geodesically embedded graph, whose edges correspond to
the components of Sp, with finite hyperbolic length and vertex set Uy>3 Sp;,. Each geodesic ray of Sp\Sp0
exits a unique spike of Y.

By definition, the orthogeodesic foliation Opy (Y') has k-pronged singular leaves emanating from Ug>3 Sp,
for k > 3. The nonsingular leaves of Ogy (V) glue along Sp,(Y') (usually at an angle) and can be smoothed
by an arbitrarily small isotopy supported near Sp. As the geometry of Sp interacts nicely with the leaves of
Osy (Y), we generally prefer to think about Ogy (V') as a piecewise geodesic singular foliation rather than as
a smooth one. When convenient, we will pass freely between the orthogeodesic foliation and a smoothing.
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We observe that there is also an isotopy supported in the ends of the spikes of Y and restricting to the
identity on 0Y that maps leaves of the orthogeodesic foliation to horocycles based at the tip of the spike. This
equivalence between the orthogedesic and horocyclic foliations in spikes is of vital importance in Sections
as it allows us to adapt many of Bonahon and Thurston’s arguments to this setting.

Remark 5.3. One can check that, for regular ideal polygons, the isotopy in spikes extends to a global
isotopy between the orthogeodesic foliation and the symmetric partial foliation by horocycles.

Following the leaves of the orthogeodesic foliation in the direction of Sp defines a deformation retraction
of Y onto Sp; let r : Y — Sp be the map fully collapsing Y onto Sp. For x and y in the same component
of Sp,, the leaves r=1(x) and 7~ 1(y) of Oyy (Y) are properly isotopic. We may therefore associate to each
edge e of Sp, the (proper) isotopy class of r~!(z) for x € e; we call this the dual arc a. to e.

There is a distinguished representative of a, that is geodesic and orthogonal to both dY and e; compare
Figure[7] By abuse of notation, we henceforth identify o, with its orthogeodesic representative and define

aY):= U Q.

eCSpJ

Lemma 5.4. The metric completion of the surface with corners Y \ «(Y) is homeomorphic to a union of
closed disks and closed disks with finitely many points on the boundary removed. That is, «(Y) fills Y.

Proof. Each component of Y\ a(Y) deformation retracts onto a component of the metric completion of
Sp\a(Y). By the duality of arcs and edges of Spy, each component of Sp\a(Y) is contractible. a

The orthogeodesic foliation also comes with a natural transverse measure: the measure of an arc k
transverse to (a smoothing of) Ogy (V) is defined on small enough transverse arcs k first by isotoping the arc
into QY transversely to Oyy (Y) and then measuring the hyperbolic length there. Locally, the orthogeodesic
foliation admits a reflection about each edge of Sp, so by restricting k to those leaves of Ogy (Y') that intersect
a given edge, we can use this symmetry to see that the measure of k is the same after a transverse isotopy
onto either boundary component of Y. Extending to all transverse arcs by additivity defines a transverse
measure on Oyy (V).

To each component e of Spg we associate the length c. > 0 of either component of 7=1(e) N 9Y; the
transverse measure of e is exactly c.. Anticipating the contents of the next section (see, e.g., Theorem ,
we define the formal sum

(7) A(Y) = Z CeOle.

eCSpY

5.2. The orthogeodesic foliation. Now that we have described the orthogeodesic foliation on each com-
ponent of S\ A, we can glue these pieces together along the leaves of A to get a foliation of S.

Construction 5.5. Let X € 7(S) and A be a geodesic lamination on X. Cutting X open along A taking
the metric completion of each component, we obtain a union of hyperbolic surfaces with totally geodesic
boundary (possibly with crowned boundary). On each such component Y, we construct the orthogeodesic
foliation Ogy (Y') as described in Section above.

A standard fact from hyperbolic geometry [CEGO06, Lemma 5.2.6] shows that the line field defined by (a
smoothing of) the orthogeodesic foliation forms a Lipschitz line field on X \ A. Since A has measure 0, this
line field is integrable near A, so the partial foliation defined on X \ A extends across the leaves of A. This
defines a measured foliation Oy (X) € MF(S), hence a map Oy : T(S) - MF(S).

Later, we prove Lemma[5.8that A and O (X) bind, allowing us to restrict the codomain of Oy to MF ().
Ultimately, our goal is to show that O is a homeomorphism onto MF()).

Geometric train tracks. We now consider the geometry of O, (X) in a neighborhood of A. The following
is a modification of an important construction of Thurston [Thu82, Chapter 8.9].

Construction 5.6. Let € > 0 be small enough so that the e-neighborhood N (\) is topologically stable.
The orthogeodesic foliation Oy (X) restricts to a foliation of N (\) without singular points, and collapsing
the leaves yields a quotient map m : N (\) — 7 where 7 can be C'-embedded in N,(\) as a train track
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carrying A in X. By changing ¢, we may assume that 7 is trivalent. ﬁ Then 7 = 7(\, X, €) is a geometric
train track.

We sometimes refer to Nc(X) as a train track neighborhood of X and the leaves of Ox(X )|y, () as ties. A
train track neighborhood coming from Construction is a union of bands and annuli foliated by ties glued
together along the ties that collapse to switches of 7. We recall that if A meets every tie of 7 and there is no
path between spikes of S\ N () that is contained in M (A)\ ), then 7 is said to snugly carry A. Equivalently,
7 snugly carries A if and only if S\ A and S\ 7 have the same topological type. With this definition, it is
clear that the geometric train tracks constructed above always carry A snugly.

Using the geometry of  : N(A) — 7, the branches of 7 admit a well defined notion of length. Indeed, let
b C 7 be a branch, and choose a lift b to the universal cover X. Let N X be leaves of the elevation A of
A to X that meet 71"1( ) C N.()) in segments g and ¢'. Since O, (X) is equivalent to a horocyclic foliation
in MV ()\), transporting g along the leaves of OX(X) near b onto ¢’ is isometric, so £x(g) = lx(g'). We may
therefore define the length of b (along \) as

lx(b) == lx(9)
for any g as above. Similarly, for any branch b C 7, the ties of N.(\) collapsing to b all have the same
integral with respect to A. Define
A(D) == A(k)
for any tie k& C Ox(X)|r-1(5); this is equivalently the weight deposited by A on b in its 7 train track
coordinates.

Lemma 5.7. For any hyperbolic structure X and any measure X on A, we have i(A', 05 (X)) = £x(\).

Proof. Using Construction find a geometric train track 7 : N.(\) — 7 snugly carrying A on X. By
definition, the intersection pairing is given by the integral over X of the product measure d\ ® d O, (X),
whose support is contained entirely in the train track neighborhood N (\). For each branch b C 7, the
integral of this measure on 7~1(b) is just ' (b)¢x (b), so

i\, O\(X // dN ® d O\ (X)

//NM AN ® dOx(X t;//ﬂ . AN ® dOx(X)
=Y N(b)ex(d)

bCT
On the other hand, £x()\’) is the integral over X of the measure d\ ® dl,/, locally the product of the
transverse measure A\’ and 1-dimensional Lebesgue measure [y, on the support of \’. Since )\’ is supported in
A, the integral of dX ®dly is equal to the integral of d\ ®dl,, and again the support of the product measure
is contained in N¢(\). On each thickened branch 7=1(b) C N.()), the integral of d\ ® dly is N (b)lx(b),

giving the equality
N) =D N (b)ex(b)

bCt
This completes the proof of the lemma. O

With this computation, we can now show that A and O,(X) together bind S.
Lemma 5.8. For any X € T(S) and A € ML(S), we have Oy (X) € MF(N).

Proof. Suppose that 7 is an measured lamination so that i(n, A\) = 0; without loss of generality, we may
assume that 7 is ergodic. Then one of two things must be true: either n is supported on A or its support is
disjoint from A. In the first case, i(n, Ox(X)) = £x(n) > 0 by Lemma [5.7}

If n is disjoint from A then it is contained in a component Y of X \ A\, and we need only show that
i(n, Ox(X)) > 0. Scaling the measure of 7 as necessary, let us assume that £x(n) = ¢y (n) = 1. Now we
recall that the set of weighted simple closed curves is dense in the space of measured laminations on Y. By

6In the literature, trivalent train tracks are also called “generic.”
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homogeneity and continuity of the intersection pairing, it therefore suffices to find some uniform e > 0 such
that

i(7, Ox(X)) > elx(7)

for every simple closed curve v C Y. Indeed, once we have demonstrated such a bound we may approximate
7 arbitrarily well by weighted curves v/¢x () to deduce the desired bound on i(n, Ox(X)).

So let Yy be the convex hull of ril(SpO); Yy is compact and the inclusion of Y, into Y is a homotopy
equivalence. Any simple closed geodesic v in Y is contained in Y, and since Y deformation retracts onto
the component of Sp contained in Y, 7 is homotopic to a concatenation of edges in Sp°.

Give Sp® a metric making its edges e have length ¢, = i(e, O (X)); then the inclusion Sp® — Y; with this
metric induces an equivariant quasi-isometry on universal covers (this follows because they are both Gromov
hyperbolic and 71 (Y") acts cocompactly and properly discontinuous on each). The geodesic lengths of closed
curves in Sp and in Yj are therefore comparable, so that there is some € > 0 so that

i(7, Oa(X)) = lspo(7) = £x (7)€,

demonstrating the desired uniform bound. O

5.3. Deflation. For a given pair (X, ) € T(S) x ML(S), the pair of laminations O(X) and A bind by
Lemma By Theorem there is a unique quadratic differential ¢ = ¢(Ox(X), A), holomorphic on some
Riemann surface Z, whose real and imaginary foliations are Oy(X) and A, respectively. In this section we
define a deflation map Dy : X — Z that allows us to make direct comparisons between the hyperbolic
geometry of X and the singular flat geometry q.

An informal description of D) is that it “deflates” the subsurfaces of X \ A, retracting them to Sp along
the leaves of O)(X), while it “inflates” along the leaves of A according to the transverse measure. The
orthogeodesic foliation in a neighborhood of A assembles into the vertical foliation of the resulting quadratic
differential metric and Dy maps Sp C X to the horizontal separatrices; compare Figure [4

Q(O)\ (X)’ )‘)

FIGURE 4. Inflating a lamination and deflating its complementary components.

Remark 5.9. This heuristic description of D can be made precise by grafting X along A (see, e.g., [Dum09])
and then collapsing the hyperbolic pieces along the leaves of Oy (X). In particular, Dy is not the grafting
map.

Proposition 5.10. Given a marked hyperbolic structurem [f : S — X] € T(S) and A € ML(S), let
[g:S — Z] € T(S) be the marked complex structure on which ¢(Oy(X), A) is holomorphic. There is a map

Dy:X—=Z

that is a homotopy equivalence restricting to an isometry between Sp° with its metric induced by integrating
the edges against Ox(X) and the graph of horizontal saddle connections of ¢(Ox(X),A) with the induced
path metric. Moreover, Dy o f ~ g and Dy, O5(X) = Re(q) and Dy, A = Im(q) as measured foliations.

Proof. Construction supplies us with a geometric train track 7 : N:(\) — 7. On the preimage 7 *(b)
of each closed branch b of 7 we integrate the two measures Ox(X)|x.(x) and A giving 7~1(b) the structure
of a bi-foliated Euclidean rectangle of length £x (b) and height A(b) These rectangles glue along their ‘short’
sides {m~1(s) : s is a switch of 7} to give N ()) the structure of a bi-foliated Euclidean band complex.

The map 7 extends to a self-homotopy equivalence of X homotopic to the identity preserving the ortho-
geodesic foliation leafwise. This means that the boundary of N.(\) admits a natural retraction onto Sp by

7Throughout the paper we suppress markings in our notation, but reintroduce them here to state the proposition precisely.
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collapsing the leaves of the orthogeodesic foliation in the complement of N;(\), and we take the quotient
generated by this equivalence relation to obtain a new surface Y with its complex structure described below.

On each rectangle 7—1(b), the bi-foliated Euclidean structure gives local coordinates to C away from the
singular points of O, (X) locally mapping O, (X) to |dz| and A to |dy|, thought of as measured foliations on
the plane. These coordinate patches glue together along the spine to give local coordinates away from the
points of valence > 3. Moreover, these charts preserve |dz| and |dy|, so the transitions must be of the form
z+— tz+ « for some o € C. We have therefore built a Riemann surface Z equipped with a half-translation
structure away from the vertices of Sp, which become cone points of cone angle equal to 7 - val(v). Edges of
Sp join vertices along horizontal trajectories representing all horizontal saddle connections on g; their lengths
in the singular flat metric are given by the integral over O,(X). Thus D, induces an isometry of metric
graphs, as claimed. (Il

This explicit description of the quadratic differential associated to the pair (X, \) by the map O from the
introduction will be useful in order to prove in Theorem [13.13|that Diagram commutes.

6. CELLULATING CROWNED TEICHMULLER SPACES

We now define a certain arc complex which combinatorializes the structure the orthogeodesic foliation
on complementary subsurfaces. The main result of this section is Theorem [6.4] which shows that this arc
complex is equivariantly homeomorphic to the Teichmiiller space of the complementary surface. In particular,
this shows that the restriction of the orthogeodesic foliation to each component of S\ A completely determines
the hyperbolic structure on that piece.

Before stating the theorem, we must first set up our combinatorial analogue for Teichmiiller space. This
appears as Definition after a series of auxiliary constructions.

Suppose that ¥ = Z;gb} is a finite-area hyperbolic surface with boundary and without annular cusps. A
properly embedded arc I — ¥ is essential if I cannot be isotoped (through properly embedded arcs) into 9%
or into a spike. The arc complex o7 (X, 0%) of ¥ rel boundary is the (simplicial, flag) complex whose vertices
are isotopy classes of simple essential arcs of ¥. Vertices span a simplex in o/ (X, 9%) if and only if there exist
a collection of pairwise disjoint representatives for each isotopy class. The filling arc complex </ (32, 0%) is
the subset of <7 (X, 9%) consisting only of those arc systems which cut ¥ into a union of topological disks.

The geometric realization |<7 (3, 9%)| of &/ (X, dX) is obtained by declaring every simplex to be a regular
Euclidean simplex of the proper dimension; note that the topology of |27 (X, 93)| obtained from the metric
structure is in general different from the standard simplicial topology (see, e.g., [BE88]). The geometric
realization |of (X, 0%)| is then the subspace of filling arc systems equipped with the subspace topology
induced by the metric structure.

Definition 6.1. The weighted filling arc complex |2Z5;(3, 0%)|r of ¥ rel boundary is the set of all weighted
multi-arcs of the form
A= Z City

where o = |Ja; € (2, 0%) and ¢; > 0 for all 4.

Throughout, we will use « to denote a single arc, and « to denote an (unweighted) multi-arc. The symbol
A will be reserved to denote a weighted multi-arc.

Note. If ¥ is an ideal hyperbolic polygon, then the empty arc system fills ¥ and we consider it as an element
of | (X, 0%)|r. If ¥ is not a polygon, then the empty arc system never fills.

So long as ¥ is not an ideal polygon, |#%n(X,0%)|r is just |“%n (X, 02)] X Rsg. When ¥ is an ideal
polygon, then |e% (X, 0%)|r is homeomorphic to the open cone on the filling arc complex:

(|£fﬁ11(2,62)| X Rzo)/(‘ﬁfﬁu(z,azﬂ X {0})
See Figure [5a for an example of |2 (2, 0X)|r in the case when ¥ is an ideal pentagon.
Remark 6.2. The standard duality between arc systems and ribbon graphs (see, e.g., [Mon09a]) assigns to
every A € | (X, 03)|r a metric ribbon graph spine for ¥ (with some infinitely long edges if ¥ has crowns).

One could of course translate the cell structure of |27 (X, 03)|r into a cellulation of an appropriate space
of marked metric ribbon graphs.
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While the arc complex definition is more practical for our definition of shear-shape cocycles, the dual
ribbon graph picture allows us to immediately understand how to record the geometry of the horizontal
trajectories of a quadratic differential (see Section [10]).

xﬁ’

1
1
5\ a(B) =c1+2co+c3+ca

(A) The weighted arc complex of an ideal (B) The combinatorial length and residue associated to a
pentagon rel its boundary. weighted filling arc system A.

LS,
%
5

FIGURE 5. Arc complexes and combinatorial geometry.

Combinatorial geometry. Now that we have defined our combinatorial analogue of Teichmiiller space, we
can also define combinatorial notions of both length and metric residue.

Suppose that § is a compact boundary component of ¥ and A € |7 (X, 0%)|r; then we define the A-
length £4(8) of B to be the sum of the weights of the arcs of A incident to 8 (counted with multiplicity, so
that if both endpoints of « lie on 8 then its weight is counted twice).

Similarly, let C be an oriented crowned boundary component with an even number of spikes. Then the
edges of C are partitioned into those that that have the surface lying on their left and those which have
the surface on their right; call these edges positively and negatively oriented, respectively. The A-residue
res4(C) of C is then defined to be the sum of the weights of the arcs incident to each positively oriented edge
of C minus the sum of the weights of the arcs incident to the negatively oriented edges (where both sums are
again taken with multiplicity). See Figure [5b|for an example calculation.

We have now come to the most important object of this section, and a foundational result of this paper
that allows us to pass between hyperbolic metrics, orthogeodesic foliations, and metric graphs embedded in
flat structures.

Construction 6.3. Let Y be a crowned hyperbolic surface. As discussed in Section the orthogeodesic
foliation determines a spine for Y together with a dual (filling) arc system a(Y). Weighting each dual arc
by integrating the measure induced by Opy (Y) over the corresponding edge of Sp (compare ) therefore
defines a map

A : T(E) — |dﬁ]](2,82)|ﬂ§.

When ¥ has compact boundary, [Luo07, Theorem 1.2 and Corollary 1.4] states that A(-) is a Mod(%)-
equivariant stratified real-analytic homeomorphism; see also [Mon09b, Do08| [Ush99]. Our aim is to generalize
Luo’s theorem to surfaces with crowned boundary. While the arguments of [Luo07] can probably be adapted
to this setting, we prefer to use some elementary hyperbolic geometry to realize |2 (%, 9X)|r as a subcom-
plex sitting “at infinity” of the weighted filling arc complex of a surface with compact boundary.

Theorem 6.4. Let X be a crowned hyperbolic surface. Then the map
A : T(Z) — ‘ﬁfﬁu(z,az)h}g
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is a Mod(X)—equivariant stratified real analytic homeomorphism. Moreover, let f1,. .., 3, denote the closed
boundary components of ¥ and Cy,...,C. the crown ends which have an even number of spikes. Fix an
orientation of each C;. Then the map above identifies the level sets

{(Y,f) € T(X) [ £(B;) = Li, res(C;) = R;} = {A € | (%, 05)|r : La(Bi) = Li, resa(C;) = R; }
for any (L;) € R%, and any (R;) € R®.

The remainder of this section is devoted to deducing Theorem from [Luo07, Theorem 1.2, Corollary
1.4] and [Mon09b, Section 2.4]. Our plan is to appeal to the aforementioned references to prove that for
a given maximal arc system ¢, the map A(-) extends to a real analytic map A, : T(X) — R that agrees
with A(-) on the locus of hyperbolic surfaces whose spine has dual arc system contained in « (Lemma .
We show that A(-) is a homeomorphism by building a continuous right inverse Y : |« (X, 0%)|r — T(2);
Y (A) is obtained as a geometric limit metrics on a larger compact surface with boundary as some arcs are
pinched to spikes.

Endowing ¥ with an auxiliary hyperbolic metric, we take ¥° to be the surface with geodesic and horocyclic
boundary components obtained by truncating the tips of the spikes. Let 7 be the union of horocyclic
boundary components of ¥° and double X° along  to obtain a (topological) surface DY and an identification
of ¥° with a subsurface of DY taking 0X° \ v into dDY; see Figure @

DY

FIGURE 6. The truncation of a crowned surface 3 along « and its double D¥..

Let A =} c;a; be a weighted filling arc system on ¥ and let 3 be the mirror image of a in D, so that
aU~yU B is a filling arc system on DX.. For each ¢ > 0, define

By =Y cifi+tY i+ Y cio € | (DS, DY)z

Since DY is compact, we can apply [Luo07, Corollary 1.4] which states that there is a unique hyperbolic
structure X; € T (DY) whose natural weighted arc system coincides with B,.

Remark 6.5. It will be convenient to assume that « is maximal, formally adding arcs of weight 0 to A (and
B,) as necessary.

Our goal is now to show that that (X;) converges as t — oo to a surface Y € T(X) such that A(Y) = A.
The convergence is geometric: we take basepoints z; € X lying outside of the “thin parts” of the subsurface
corresponding to X° and extract a geometric limit of (X, x¢) as ¢ — oo. The limit metric Y has spikes
corresponding to v and so defines a point in 7(X). Moreover, Y inherits a filling arc system naturally
identified with ¢, which is necessarily realized orthogeodesically.

We begin with an estimate on the lengths of orthogeodesic arcs.

Lemma 6.6. If X is a hyperbolic metric on a compact surface with totally geodesic boundary and A(X) =

> cia;, then
. _; { tanh(log \/3) 27
1 2tanh ! | ——2 X ) b < Ao (a) <
mm{ 0832 tan ( cosh(c;/2) < bxle) < ¢’

for each 1.

Proof. Any leaf of the orthogeodesic foliation properly homotopic to «; has hyperbolic length at least £x (c;).
Thus the embedded “collar” about «a; consisting of all leaves of the orthogeodesic foliation in the same
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homotopy class of «; has area at least ¢;fx(«;) (see Figure . On the other hand, the Gauss—Bonnet
theorem bounds area of the collar above by 27, so we get a bound

Ci

Now we would like to find a lower bound for £x(«;) in terms of ¢;; for notational convenience we fix i
and set @ = «; and ¢ = ¢;. Assume that {x(a) < log3. Let H be a component of X \ o meeting «; then
there is a unique point u € H equidistant from all boundary components of X meeting H. There is also a
universal lower bound to the distance from u to any such boundary component, given by log v/3, the radius
of the circle inscribed in an ideal triangle. Thus the leaf of Ogx(X) through u has length at least log(3).

Since ¢x («) < log 3, we know that there is a leaf of the orthogeodesic foliation parallel to o with length
log 3. Using a formula relating the lengths of the sides of a hyperbolic tri-rectangle [Busl0, Theorem 2.3.1],
the distance ¢y from « and this leaf is given by

o tanh((x (a)/2) = W

Now this expression is decreasing in ¢y, and x — tanh_l(x) is increasing. We have that ¢ > 2¢g by definition
(see Figure 7)), so the lemma follows. O

FI1GURE 7. A foliated collar of width ¢ about an orthogeodesic arc a. If the arc is shorter
than log 3, then there are (bold green) leaves of this collar of length equal to log3. For a
very short arc -y;, the distance between the longest leaf of its collar and the leaf of length
log 3 is at most log 2. The dashed arc «; has weight 0 and corresponds to one of two possible
choices of maximal completion of a.

For any arc 7; of 7, some elementary estimates similar to those given in the proof of Lemma m (compare
Equation (§)) give £ (v;) = O(e~'/2). If a; appears in B, with coefficient ¢; = 0, then Lemma 6.6| provides
a lower bound of log 3 for the length ¢;(c;) of a; on X;. We also have the following upper bound:

Lemma 6.7. If ¢; = 0 for some j, then for ¢ large enough, we have
1
log3 < f(og) <2 ci+8TY ot 7] log 144.

Proof. We remove all arcs of a U~y U 8 with positive weight from X; and let H; be (the metric completion
of) the right-angled polygon component that contains oj. Our strategy is to find a path of controlled length
contained in 0H; joining the endpoints of «;.

Notice that 0H; alternates between segments of dX; and arcs of a U~ U 8 with positive weight. From
Lemma the total length of segments coming from arcs of aU 3 is at most 87 >~ 1/¢;, because each arc of
a U B can appear at most two times on 0H;. Similarly, from the construction of our coordinate system, the
totaTlength of the segments coming from 9X; that correspond to collars of arcs in o U 8 is at most 2> ¢;.
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Suppose some arc y; of v forms a segment of 0H;. The distance between the leaf of the orthogeodesic
foliation parallel to ~; with length log(3) and the singular, longest leaf parallel to +; has distance uniformly
bounded above by log?2 for large values of ¢ (see Figure . Truncate H; by removing the leaves of the
orthogeodesic foliation parallel to v; with length at most log 3 to obtain a new (non-convex) geodesic polygon
H?. An application of the Collar Lemma [Busl(O, Theorem 4.1.1] to the double DX; along its boundary
shows that a; does not enter the region of H; that we removed.

Each arc +; of  contributed at most 2t + O(e~*/2) to the length of OH;. However, after truncating, each
~; contributes at most 2(log 2 + log 3 + log 2) = log 144 to the length of OH;. Putting together all of our
estimates completes the proof. O

For each «; € a with positive coefficient ¢; in B,, the orthogeodesic length ¢;(a;) of o; on X; is bounded
above and below by the positive real numbers independent of ¢ provided by Lemma If ¢; = 0 for some
i, then Lemma provides bounds on /;(«;) independent of ¢t. Therefore, there exists a subsequence ¢
tending to infinity such that (£, (o)) converges to a positive number ¢; for each 4, while £;(v;) = O(e~*/?)
for each ~v; € .

The metric completion of X;, \ (a U~ U B) is a collection of hyperbolic right-angled hexagons, each with
three non-adjacent sides that correspond to arcs of a U~y U 3. The lengths of these sides determine uniquely
an isometry class of right-angled hexagons, which we have just proved converge to (degenerate) right-angled
hexagons in which the edges corresponding to arcs of v become spikes in the limit. The (degenerate) right-
angled hexagons glue along o to form a complete hyperbolic surface ¥ homeomorphic to ¥ with a maximal
filling arc system labeled by « and realized orthogeodesically on Y. That is, we have constructed a surface

Y(4) =Y eT(%).
Lemma 6.8. We have an equality A(Y(4)) = A.

Proof. By construction, the length of the projection of every edge of the spine of X; dual to an arc of o was
constant along the sequence (X, ) converging geometrically to Y (A). The lemma follows. a

In order to show that the inverse Y'(-) is well-defined, we will need the following statement, which refines
the relationship between the coefficients of B, and the lengths of its arcs.

Let § = a U~ U S denote the support of B,. According to [Luo07, Theorem 1.2], the lengths of the
closest-point projections of the edges of the spine to dual the arcs of J (i.e., the coefficients of the weighted
arc system) extend to an analytic local diffeomorphism B : 7(DX) — R® whose image is a convex cone
with finitely many sides Now we show that analyticity extends to infinity.

Lemma 6.9. For each maximal filling arc system « defining a cell of full dimension in %y (X, 0%), there is
an analytic map

A, T(E) =R
such that if the spine of Y € 7(X) has dual arc system contained in o, then A,(Y) = A(Y).

Proof. The orthogeodesic length functions associated to our maximal arc system § = a U~y U 8 on DX form

an analytic parameterization of 7(DX), which we denote by 45 : T(DX) — R%O. We have a commutative
diagram of analytic embeddings

-1
s Bsoly

) « 27

T(DY).

R(S

An explicit formula for Bs o £=! can be recovered from [Mon09b, Section 2.4], which produces an analytic
mapping G : R%;Jﬁ — R2Y8 that describes how B; behaves when the arcs corresponding to 7 have length

8The “projection length” associated to each arc of § (called the “radius coordinate” in [Luo07] and the “width” in [Mon09b])
is positive when that arc is dual to an edge of the spine of a surface X € T(DX).
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close to 0. More precisely, let m,u5 : RS — R27Z be the coordinate projection. Then for x5 = (24,7, 25) €

eV mY
RS~ X R3y, we have

(10) WQUEOBéoégl(xé) :G(xg7xé)+E

uniformly on compact subsets of R%SEXR%O, where F is a vector whose entries are all of order O (maxwel {x%}) .

Restricting to the locus of symmetric surfaces {X € T(DX) : £,,(X) = €3,(X), Vi}, the map G therefore
induces an analytic map F : RS, — R®. Again, we have an analytic parameterization ¢, : T(X) — RS by
length functions and a diagram

(o3
IR>O

F o
(11) AN FVR
().

So take A, = F o /{,; it follows from the definitions that if the dual arc system to the spine of a surface
Y € T(X) is contained in o, then A,(Y) = A(Y). This completes the proof of the lemma. O

A priori, Y(A) depends on the subsequence X;, converging geometrically to Y (A4). However,

Lemma 6.10. The limit Y (A) does not depend on choice of subsequence X3, , i.e., X; — Y. Moreover,
Y |an (2, 08)|r — T (X) is continuous.

Proof. Throughout this proof, we let 7 := mag be the coordinate projection from the proof of Lemma @

Let s > 0 and X; ; € T(DX) be the surface obtained from X; by keeping all lengths of arcs of aU j fixed
and taking £, (X; ) := £y, (Xi1s), for each v; € 7. Note that £, (X;+s) = O(e~(**1/2). By construction of
X5, the lengths of arcs of a U 3 agree with those of Xy, so gives

m(Bs(Xy)) — m(Bs(Xt,s)) = O(e—(s-l-t))'
Recall that 7(B,,(Xt)) = 7(B,) is constant for all ¢ > 0, so that
W(Bé(Xs—O—t)) - W(ﬁé(Xtys)) — O(ef(s+t))’

as well. Since B, is open, analytic, and {7 ({s(X;)) : t > 0} C R%;Jé lies in a compact set (Lemmas and
, we can adjust the lengths of arcs a; and 8; of U 8 in Xy s by O(e_(s‘”)) to obtain Xsi;. Thus, for
any t, — oo, the lengths (¢, (U fB)) form a Cauchy sequence, hence converge. Thus any two subsequential
geometric limits (with basepoints away from the spikes of the subsurface associated with 32°) coincide, which
proves that Y(A) is well defined.

To see that Y'(-) is continuous, let A, — A; by passing to a subsequence, we may assume that A, are in
the closure of the cell associated to a maximal filling arc system a. Let A, and A be the mirror images (with
corresponding weights) of A, and A in DX, respectively. We build two families of approximating surfaces
X}, XF € T(DY) corresponding to the weighted arc systems

A+kY vi+Aand A +k> vi+A,

on DY, respectively. By [Luo07, Theorem 1.2] (alternately, the proof of Lemma , each XF is close to
X}, in T(DY), hence XF and X} have the same geometric limit Y (A) € T(X), which is what we wanted to
show. |

‘We now have all of the pieces in place to complete the proof of Theorem

Proof of Theorem[6.4. By Lemma Y (-) is well defined and continuous, and by Lemma Y()isa
right inverse to A(-); in particular, Y (-) is injective. For a given maximal arc system «, the open orthant
Us = RS, C R is identified with the interior of a top dimensional cell of |y (X, dX)|r. Some of the
hyperplanes in ORS, are identified with the interior of cells associated with non-maximal filling arc systems

contained in «; let @ denote the closure of U, in |%%n (X, 0X)|r.
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Then Y (-) defines a continuous bijection U, — Y (U, ), and this identification is homeomorphic, because

A, supplies an analytic inverse on Y (U,), by Lemma Since these homeomorphisms glue along the

combinatorics of |« (2, 0X)|r, the map Y () is the desired global homeomorphic inverse to A(-).

Again, by Lemma A(+) is analytic restricted to the relative interior of the image under Y'(-) of each
cell of | (X, 0%)|r, demonstrating the stratified real analytic structure. That level sets of the residue
functions are mapped to one another is an exercise in unpacking the definitions. O

7. TRANSVERSE AND SHEAR-SHAPE COCYCLES

We now define the main protagonists of this paper, the shear-shape cocycles on a measured lamination.
In Section we give a first definition of shear-shape cocycles in terms of the cohomology of an augmented
neighborhood of A, twisted by its local orientation (Definition . While this definition has technical merit
(and exactly parallels the construction of period coordinates for quadratic differentials, a fact which we
exploit in Section , it is impractical to use. We rectify this deficiency in Section by giving a second
formulation which parallels Bonahon’s axiomatic approach to transverse cocycles (compare Definitions
and . The main result of this section, Proposition @ proves that these two definitions agree.

The reader may find it helpful to consult Sections [I0] or [13] while digesting these definitions so as to have
a concrete model of shear-shape cocycles in mind.

7.1. Transverse cocycles. As shear-shape cocycles generalize Bonahon’s transverse cocycles, we begin by
recalling two equivalent definitions of transverse cocycles for geodesic laminations which we generalize in
Sections [T.2] and [7.3] below.

Remark 7.1. We have chosen to present transverse cocycles in a way that anticipates our construction of
shear-shape cocycles. The reader is advised that our treatment is ahistorical, and in particular omits the
fascinating (and quite subtle) relationship between transverse cocycles and transverse Holder distributions.
For more on this correspondence, see [Bon97a], [Bon97b], and [Bon96].

The first definition we consider is cohomological. Let A be a measured lamination on S; then an orientation
of A is a continuous choice of orientation of the leaves of A\. If N is any snug neighborhood of A, then one
may take a corresponding (snug) neighborhood N of the orientation cover A of A. Let ¢ be the covering
involution of N — N, and let Hl(ﬁ, 8]?; R)~ denote the —1 eigenspace for the action of +*,

Definition 7.2. With all notation as above, a transverse cocycle for A is an element of Hl(ﬁ, 8.7/\7; R)~. We
use H(A) to denote the set of all transverse cocycles for A.

With the definition above it is clear that H(X) is a vector space, and if A is a union of sublaminations
A1,..., AL, then the space of transverse cocycles splits as

L
HON) =EPHO).
=1

We record the dimension of H(A) below.

Lemma 7.3 (Theorem 15 of [Bon97b]). The space of transverse cocycles forms a vector space of real
dimension —x(A) + ng(\), where ng()\) is the number of orientable components of .

When working with individual transverse cocycles, the above definition is rather unwieldy. Instead, it is
often more useful to think of a transverse cocycle as a function on actual arcs instead of on homology classes.

Definition 7.4. Let A\ € ML(S). A transverse cocycle o for X is a function which assigns to every arc k
transverse to A a real number o(k) such that

(HO) (support): If k does not intersect A then o(k) = 0.
(H1) (transverse invariance): If k and k" are isotopic transverse to A then o(k) = o(k’).
(H2) (finite additivity): If k = kq U ko where k; have disjoint interiors then o (k) = o (k1) + o(ks).

The reader familiar with train tracks will recognize that these rules resemble those governing weight
systems on train tracks; see Section |§| for a continuation of this discussion.

We direct the reader to [Bon97b] or [Bon96} §3] for a proof of the equivalence of Definitions and
(our proof of Proposition the corresponding statement for shear-shape cocycles, can also be adapted to
prove this equivalence).
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7.2. Shear-shape cocycles as cohomology classes. Our first definition of a shear-shape cocycle is as a
cohomology class on an appropriate augmented orientation cover, paralleling Definition This viewpoint
allows us to deduce global structural results about spaces of shear-shape cocycles (Lemma and also
reveals implicit constraints on the structure of individual shear-shape cocycles (Lemma .

Suppose that « is a filling arc system for S\ A\. For each arc o; € a, choose an arc ¢; which meets o
exactly once and is disjoint from AU a \ {a;}. We call such an arc t; a standard transversal to ;. Compare
Figure [0 below. An orientation of AU a is a continuous orientation of the leaves of A together with a choice
of orientation on each ¢; such that ¢; can be isotoped transverse to «; into A so that the orientations agree.
Most pairs A U a are not orientable, but each has an orientation double cover AU & (the reader should have
in mind the orientation cover of a quadratic differential). We note that if A U « is orientable then X itself
must be.

Consider a snug neighborhood N () of A on some hyperbolic surface X; since X \ A and X \ NV, ()) have the
same topological type, we can identify the arc system « as an arc system on X \ N.(\). In particular, taking
a small neighborhood N, (a) of o we see that there is a correspondence between complementary components
of X\ (AUa) and X \ M ()AU a). We will refer to any neighborhood N, of A U a whose complementary
components have the same topological type as X \ (AU a) as a snug neighborhood.

Now let N, be a snug neighborhood of AUq; then the cover )\Ua — AUqa extends to a covering N — Ng
with covering involution ¢. By definition of the orientation cover, each standard transversal ¢; lifts to a pair
of distinguished homology classes

t 1% e Hy(N,,0N,;R)
such that ¢ t(l) t(z)
The odd cocycles H 1( s 8]\7@, R)~ for the covering involution ¢* now provide a local cohomological model
for the space of shear-shape cocycles on A. Observe that for each 7 and each o € Hl( s aNa, R)~, we have

o(tM) =~ (1) = —o(ttV) = o (1),

Definition 7.5. Let A € ML(S ) A shear-shape cocycle for X is a pair («,c) where a = > «; is a filling
arc system on S\ A and 0 € H'(N,, ON,;R)~ is such that the values o(t\?)) are all positive

Let X1 U...UX,, denote the components of S\ \; then we define the weighted arc system underlying o

A:=>"otP)ai € [ 10 (2;,08)) e
j=1
We denote the set of all shear-shape cocycles for A by SH(A), the set of all shear-shape cocycles with
underlying arc system a by SH®(A; @), and the set of all shear-shape cocycles with underlying weighted arc
system A by SH(A; A). Often, we will leave the arc system implicit and just say that o is a shear-shape
cocycle for A.

Remark 7.6. By Theorem a filling weighted arc system A is the same data as a marked hyperbolic
structure on each component of S\ A. In Sections below, we prove that (so long as o satisfies a
positivity condition) these metrics glue together to give a complete hyperbolic metric on S.

Our definition of shear-shape cocycle a priori depends on the choice of auxiliary neighborhood N, of
AU a. However, it is not hard to see that

Lemma 7.7. The spaces of shear-shape cocycles defined by different snug neighborhoods are linearly iso-
morphic. Moreover, any two choices of snug neighborhoods define the same underlying weighted arc system.

Proof. Given two nested, snug neighborhoods N/, C N, there is a deformation retraction of N, onto N/,
(this comes from the assumption of snugness). This induces an isomorphism

(12) H'(N,,ON4;R) = HY(N!,ON.;R)
9By Poincaré-Lefschetz duality, we have a linear isomorphism H?! (]\A/g, 81/\\72; R) = H; (ﬁg; R) mapping the odd cocycles for

t* to the odd cycles for tsx. Compare with [BD17 §§4.1 and 4.4], where a theory of (appropriately generalized) transverse
(co-)cycles are applied to give shear-type coordinates for some higher rank Teichmiiller spaces.
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which also identifies the —1 eigenspaces of the covering involution. Therefore, we may identify the shear-
shape cocycles defined by N, with those defined by N/,. To see that the weights on « do not depend on
the choice of N, we note that the deformation retraction of N, onto N, takes standard transversals to
standard transversals, and hence the value of the cocycle on the transversals does not change as we change
neighborhoods.

Now given any two snug neighborhoods N, and N/, of AU a, one may take a common refinement N/, of
N, and N/, and apply to deduce that the spaces of shear-shape cocycles defined by N, and N;iare
linearly isomorphic and define the same underlying arc system. O

In view of this lemma, throughout the sequel we will change the neighborhood NV, carrying o at will.

As the orientation cover of A naturally embeds into Z\Afg7 we may identify H(\) with a subspace of
H 1(]?@, 82\7&; R). Since any element of H(\) evaluates to 0 on each standard transversal, we can add and
subtract transverse cocycles from shear-shape cocyles without changing the underlying weighted arc system.
We therefore have the following analogue of Lemma |7.3

Lemma 7.8. Let A be the weighted arc system underlying some shear-shape cocycle. Then SH(A; A) is an
affine space modeled on the vector space H(A). In particular, dimg (SH(A; A)) = —x(A) +no(N).

Homological constraints on residues. When A is orientable (or more generally, contains orientable
components), there are homological constraints governing which weighted arc systems may underlie a shear-
shape cocycle. Passing between arc systems and hyperbolic strutures on complementary subsurfaces (via
Theorem , these homological constraints govern when two structures can be glued together along A.

For example, if A is a simple closed curve then in order to glue a hyperbolic structure on S\ A along A,
the lengths of the boundary components must have equal length. Tracing through the combinatorialization
by weighted arc systems, this implies that the A-length of the boundary components must be the same. The
following lemma generalizes this observation to the case when S\ A has crowned boundary (compare Lemma
below for a similar discussion using hyperbolic geometry).

Lemma 7.9. Suppose that o is a shear-shape cocycle for A with underlying weighted arc system A, and
let p be an orientable component of A\. Then the sum of the (signed) residues of the boundary components
incident to p is 0.

Proof. For any component p of A, let d(u) denote the boundary components (either closed or crowned)
resulting from cutting along p. For the purposes of this proof, let a(u) denote the sub-arc system of «
consisting of those arcs with endpoints on pu.

Pick an orientation on p; this induces an orientation on each boundary component C € 9(u), and hence
gives the metric residue of each such C a definite choice of sign. Since we are eventually going to prove that
the sum of these residues is 0, it does not matter which orientation of 1 we pick.

As p is orientable, picking/zg orientation on p is also equivalent to picking one of the lifts i of p in the

orientation cover AUd&. Let a(p) denote the set of all lifts of arcs of a(p) which meet . Then since severing

—

a(p) disconnects fi from the rest of AU &, there is a relation
Z Eﬂ?i =0in Hl(ﬁg, 6[\7&, Z)
aicalp)

where ¢; is 1 if &; is on the left-hand side of & and —1 on the right-hand side, and #; is the (relative homology
class of the) oriented standard transversal corresponding to &;. See Figure

Therefore, for any cohomology class 0 € H 1(]Vg, Bﬁg; Z), and in particular any shear-shape cocycle,
(13) > eio(ti) =0.
ai€a(p)

Now ¢; is positive when the arc is on the left—hand side of i, equivalently (equipping g C S with the
corresponding orientation) when S \ A is on the left-hand side of p. Similarly, ¢; is negative when the
complementary subsurface lies to the right of p. Unraveling the definitions and partitioning the arcs of a(p)
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FIGURE 8. Severing ties with one of the lifts i of an orientable component p of A. This
partition induces a relation in homology, hence a restriction on shear-shape cocycles. In
this figure the top surface contains A while the bottom contains A; the shaded regions are
neighborhoods of these laminations.

into their incident boundary components, we see that is equivalent to the statement that

Z resa(C) = Z gic; =0,

cea(p) a;Ea(p)

which is what we wanted to prove. O

Remark 7.10. As with transverse cocycles, one can define shear-shape cocycles for any geodesic lamination,
not just those which support transverse measures. The analogue of Lemma [7.9] is more complicated in
this case, as the corresponding homological relations may involve both the #; and other relative cycles (for
example, consider when A contains a geodesic spiraling onto a closed leaf). We have omitted such a discussion
as this level of generality will not be needed for our purposes.

7.3. Shear-shape cocycles as functions on arcs. In analogy with Definition we can also view
shear-shape cocycle as functions on transverse arcs which satisfy certain properties. While this definition is
more involved, it is more convenient for the calculations of Sections and better reflects the process of
“measuring” arcs by a shear-shape cocycle.

As indicated by Lemma|[7.9] we must first cut out the space of all possible weighted arc systems underlying
a shear-shape cocycle. Denote the complementary subsurfaces of A € ML(S) by ¥4,...,%,,, and set

PB(S\ ) = {A € H |1 (35, 0%5)|r ‘ Z res4(C) = 0 for all orientable components y C )\}
j=1 Cea(n)

where we recall that 9(u) denotes the set of boundary components of S\ A resulting from cutting along .
By Theorem [6.4] we can reinterpret Z(S \ \) as the set of all hyperbolic structures on S\ A so that the
metric residues of the boundary components resulting from any orientable component g of A sum to zero.
We note that when each component of X is nonorientable, (S \ A) is just the product of the Teichmiiller
spaces of the complementary subsurfaces. When A is a simple closed curve, then Z(S \ A) consists of those
metrics on S\ A where the two boundary components have the same length.
Using this reinterpretation together with Lemma[£.4] we see that (S \ \) is topologically just a cell:
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Lemma 7.11. Let A € ML(S) with S\ A=, U...UX,,. Then (S \ \) = R%, where

= —ng(A) + Zdlm

where ng () is the number of orientable components of A

Proof. Let i1, .., in,(n) denote the orientable components of A and fix an arbitrary orientation on each.
Then the lemma follows from the observation that Z(S \ A) is a fiber bundle over

no(A)
11 {(Rl ) € RIO®k) ZR; _0}

i=1

with fibers equal to

res(Cx) = R}, for each Cj, € 9(u;)

Y. fle [T7E)
j=1

By Proposition the fibers are each homeomorphic to R, where

no ()

S dim(T(E) | | Y 10(w)]
j=1 =1

Totalling the dimensions of base and fiber give the desired result. (I
We can now present our second definition of shear-shape cocycles.

Definition 7.12. Let A € ML(S). A shear-shape cocycle for X is a pair (o, A) where A is a weighted filling
arc system

n
= cia; € B(S\N)
i=1
and o is a function which assigns to every arc k transverse to A and disjoint from « := Ua; a real number
o(k), satisfying the following axioms:
(SHO) (support): If k& does not intersect A then o(k) = 0.
(SH1) (transverse invariance): If k and &’ are isotopic through arcs transverse to A and disjoint from ¢,
then o(k) = o (k).
(SH2) (finite additivity): If & = k1 U ko where k; have disjoint interiors, then o(k) = o (k1) + o(ka).
(SH3) (A-compatibility): Suppose that k is isotopic rel endpoints and transverse to A to some arc which
may be written as t; U ¢, where t; is a standard transversal and ¢ is disjoint from a. Then the loop
k Ut; Ul encircles a unique point p of AN «, and

o(k) =0(f) +e¢

where ¢ denotes the winding number of k£ U ¢; U £ about p (where the loop is oriented so that the
edges are traversed k then ¢; then ¢). See Figure @

While axiom (SH3) may seem convoluted upon first inspection, its entire effect is to prescribe how the
value o (k) evolves as an endpoint of k passes through an arc of a. The sign change records whether the map
induced by k = t; U ¢ from the oriented simplex into S is orientation-preserving or -reversing.

Remark 7.13. In Section@ (Propositionin particular), we show that there exists a choice of “smoothing”
for a which resolves condition (SH3) into an additivity condition. This is equivalent to prescribing that an
arc k may only be dragged over a point of A N« in one direction.

The equivalence between Definitions [7.5] and [7.12] is essentially the same as the equivalence of the coho-
mological and axiomatic definitions of transverse cocycles [Bon96| pp. 248-9]. However, the A-compatibility
condition (axiom (SH3)) contributes new technical difficulties, and so we have included a full proof for
completeness.

Proposition 7.14. The cohomological and axiomatic definitions of shear-shape cocycles agree.



30 AARON CALDERON AND JAMES FARRE

Proof. Suppose first that o is a cohomological shear-shape cocycle, that is, a cohomology class of the orien-
tation cover Ng of N, that is anti-invariant under the covering involution and that gives positive weight to
the canonical lifts of the standard transversals of each arc of a filling arc system a. We begin by building
from o a function f,; the basic idea is to restrict an arc to a neighborhood of A, resulting in a relative
homology class, and to set f, to be o evaluated on this class.

Suppose that k is any arc transverse to A and disjoint from a. Choose a small neighborhood N, of AU«
so that k meets ON, transversely and 0k N N, = 0; then k|x, is a union of arcs with endpoints on ON,.

Each arc k; of k|y, has two distinguished, oriented lifts k‘gl) and k§2) to ]\AfQ that cross A from right to left.
As in Section these distinguished lifts satisfy
(14) () = — ()

K3

in Hy (ﬁg, 8]\7@ Z), where ¢ is the covering involution of ]Vg — Ng. In particular U([k:l(l)]) = U([kEQ)]) since
o is anti-invariant under . We therefore set

fo(k) = o([K])

where [k] is the homology class of either lift of k|, to Ng.
We now prove that f, satisfies the axioms of Definition [7.12

(SHO) If k& does not intersect A then k|, is empty and [k] = 0, implying f,(k) = 0.

(SH1) If k and k" are isotopic through arcs transverse to A and disjoint from « then k|y, and |y, are
properly isotopic. One can lift this isotopy to the orientation cover to deduce that [k] = [k’] for the
correct choice of lifts, so f,(k) = f, (k).

(SH2) Suppose that k = k1 U k2; then so long as N, is small enough it is clear that k|n, = k1|n, U k2|n, -
Therefore, since a lift of k|y, consists of the union of lifts of ki|x. and ko|y,, we see that [k] =
[k1] + [k2] and hence the corresponding equality of f, values also holds. a

(SH3) Finally, suppose that k is isotopic (rel endpoints and transverse to A) to £ U t;. Without loss of
generality, we assume that the restriction of each of k,£,¢; to N is a single properly embedded arc
(if not, simply break the arcs into smaller pieces and apply (SH1) and (SH2) repeatedly). We also
assume the restrictions are all disjoint (even at their endpoints), appealing to (SH1) as necessary.

The isotopy between k and £U¢; induces a map from a disk A to N, so that 0A C ON,UkULUL;.
Refining NN,, isotoping the arcs, and homotoping the map as necessary, we may assume that A
embeds into Ny, and therefore must occur in one of the configurations shown in Figure |§| below.

No

FI1GURE 9. Possible configurations of the disk A and the corresponding homological rela-
tions.

Now choose one of the lifts A C J/\}'g of A; this choice specifies lifts of the arcs k, ¢, and ¢; and
therefore (after equipping the lifts with their canonical orientations) relative homology classes [k],
[4], and [t;]. As these lifts together with ON, bound the disk A, we therefore get the equality

(k] = [€] £ [t]
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where the sign is determined by the relative configuration of the arcs. Inspection of Figure [9| reveals
that the sign coincides with the winding number of the loop kU t; U £ about p.

Now suppose that (o, A) is an axiomatic shear-shape cocycle in the sense of Definition Pick a snug
neighborhood N, of A U ¢; our task to show that the function (k — o(k)) is indeed a cocycle (on the
orientation cover, and is anti-invariant under the covering involution).

We first show that o naturally defines a cochain on N relative to aﬁg which is anti-invariant by ¢*. Recall
that any arc in the orientation cover comes with a canonical orientation. We may then assign to any oriented
arc k properly embedded in ]Vg the value +o(k), where k is the image of k under the covering projection
and where the sign is positive if k is oriented according to the canonical orientation and negative otherwise.
To the (canonically oriented lifts of the) standard transversals ¢; we assign the value ¢;. Anti-invariance then
follows by construction (compare (14))).

To see that this cochain is actually a cocycle, we show that it evaluates to 0 on every boundary. For the
purposes of this argument, it will be convenient to realize H* (]/\\fg, aﬁg; R) in terms of simplicial (co)homology.
The neighborhood N, may be triangulated as depicted in Figure |10 (compare [SBO1l Figure 1]). In such a
triangulation, each point of ANa and each switch of N, corresponds to a unique triangle, while the remaining
branches each contribute a rectangle which is in turn subdivided into two triangles. This triangulation clearly
lifts to an (t-invariant) triangulation of NQ.

—~———— ——

FIGURE 10. A triangulation of a (snug) neighborhood of AUa. Axioms (SHO)—(SH3) imply
that o(0A) = 0 for each triangle A in the triangulation, i.e., o is a cocycle.

It therefore suffices to prove that for each oriented triangle A of ng we have that o(0A) = 0. There are
three types of triangles, each of which corresponds to a different axiom of Definition [7.12
o If A is (the lift of) a triangle coming from a subdivision of a branch, then one if its sides does not
intersect A and is thus assigned the value 0 by (SH0). The other two sides are isotopic rel A, cross
A with different orientations, and are assigned the same value by (SH1). Therefore o(9A) = 0.
Similarly, if A comes from a neighborhood of «, then the edges transverse to a are assigned the arc
weight ¢; (with opposite signs) while the other edge gets zero weight, so oc(9A) = 0.
e Now suppose A is (the lift of) a triangle corresponding to a switch of N, with OA = ky + kg — k.
Then since the concatenation of k; and ks is isotopic transverse to A to —k, axiom (SH2) implies

o(k1)+o(k) —o(k)=0
and again o(0A) = 0.
e Finally, suppose that A is (the lift of) a triangle corresponding to a point of AN, so A is some signed
combination of the (canonically oriented) lifts of arcs k, £ and t where ¢ is a standard transversal and
k is isotopic rel endpoints and transverse to A to £ Ut. Without loss of generality we assume that A
is positively oriented; then depending on the configuration of k, t and ¢ we have either
{—k+t=0o0rl—t—k=0
(as in Figure[9). In either case, axiom (SH3) implies that o(dA) = 0.
We have therefore shown that o(9A) = 0 for every triangle of a triangulation and hence o is indeed a
1-cocycle on N, rel boundary, finishing the proof of the lemma. ]
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Measuring arcs along curves. We will also want to associate a number o(k) to certain arcs k that
have non-empty intersection with a; this quantity should be invariant under suitable isotopy transverse to
A respecting the combinatorics of intersections with a.

So suppose p C A is an isolated leaf, i.e. a simple closed curve. We say that an arc k transverse to A U «
and contained in an annular neighborhood of u is non-backtracking if any lift k of k to the universal cover
intersects the entire preimage i of u exactly once and k crosses each lift of an arc of a at most once.

If k is a non-backtracking arc, then one may orient k and give p the orientation that makes k start to
the right of p. Record the sequence of arcs (1, ..., B crossed by k, in order (note that arcs of o may repeat
in this sequence). Then up to isotopy, we may assume that k is a concatenation of standard transversals
t1, ...,y together with a small segment kg disjoint from a crossing p from right to left. Compare Figure

Since k is non-backtracking, the points 51 N u, ..., B N @ make progress around p either in the positive

direction or the negative direction. Take ¢ = 41 in the former case and € = —1 in the latter, then define
(15) o(k) :=o(ko) +¢ Z ¢
j=1

where ¢; is the weight corresponding to the arc ;. Note that the value of € only depends on k and not on
its orientation, as reversing its orientation also reverses the orientation of p.

Bs
e =+1

k!

FIGURE 11. Since k makes progress around g in the positive direction, € = +1.

Lemma 7.15. Suppose that k and &’ are non-backtracking arcs transverse to AU« contained in an annular
neighborhood of a simple closed curve component 1 of A. If there exist lifts k£ and k' to S whose endpoints
lie in the same component of S\ (AU &) and k is isotopic to k' transverse to A, then o(k) = o(k’).

Proof. Fix a snug neighborhood N, of AUq; then we need only show that k|x_ and k| y_, define homologous
cycles in the orientation cover. B a a

We can find an isotopy [0,1]2 — S between lifts of k and k' (transverse to A) that leaves the endpoints
in the same component of S \ 1\73. Such an isotopy then descends to S under the covering projection. The
intersection of the image of each transverse arc with N, defines a cycle in the relative homology group, and
this family of cycles is constant along the isotopy.

Since p is orientable, an annular neighborhood of p lifts homeomorphically to ﬁg, as do k and &'

Therefore, the isotopy between k and k' (and the homology between their restrictions) also lifts to the

orientation cover J/\fg, showing that the (lifts of the) restrictions of k and k' are homologous there as well.
Compare Figure O

8. THE STRUCTURE OF SHEAR-SHAPE SPACE

In this section, we investigate the global structure of the space of shear-shape cocycles. Whereas Bonahon’s
transverse cocycles assemble into a vector space, the space SH(\) of all shear-shape cocycles is more complex
when A is not maximal, forming an principal H(A)-bundle over Z(S \ A) (Theorem [8.1)).

After understanding the structure of shear-shape space, we define an intersection form on SH(\) (Section
D and use it to specify the “positive locus” SH™()\) (Definition which we show in Sections through
serves as a global parametrization of both MF(\) and T ().
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8.1. Bundle structure. Lemma [7.8|of the previous section parametrizes all shear-shape cocycles which are
compatible with a given weighted arc system. In this section, we analyze how these parameter spaces piece
together to get a global description of the space of all shear-shape cocycles for a fixed lamination.

Let G be a topological group. A principal G-bundle is a fiber bundle whose fibers are equipped with a
transitive, continuous G-action with trivial point stabilizers together with a bundle atlas whose transition
functions are continuous maps into G. We remind the reader that a principal G-bundle does not typically
have a natural “zero section,” but instead, any local section of the bundle defines an identification of the
fibers with G via the G-action. Moreover, any two sections define local trivializations of the bundle that
differ by an element of G in each fiber.

Theorem 8.1. Let A € ML(S). The space SH(A) forms a principal H(A)-bundle over £(S\ A) whose fiber
over A € Z(S\ ) is SH(\ A).

Proof. There is an obvious map from SH(A) to Z(S \ ) given by remembering only the values o(¢;) of
transversals to the arcs. For a given choice o in the fiber SH(A; A) over A, Lemma [7.8]identifies SH(A; A)
with () via the assignment o — o — oy.

For any filling arc system « of S\ A, the space SH°();a) of shear-shape cocycles with underlying arc
system « is naturally identified with the open orthant

(16) {a € H'(Ny, 0Ny R) ™ : o(t) > 0 Vi, j = 1,2},

where IV, is a snug neighborhood of AUa on S.

Consider the open cell #°(a) C Z(S \ \) defined as all those weighted arc systems with support equal
to a maximal arc system «a. Using cohomological coordinates for SH°(\; a), we can find a continuous
section o of SH®(\;a) — #°(a). Then

bo : B°(a) X H(N) = SH°(N;0)
(A,n) = o(A)+n
is a homeomorphism preserving fibers of the natural projections. For another choice of section ¢/, we have

b5 (Dor (A1) = (A, + 0 (A) — a(4)).
Evidently, the map A — o'(A) — o(4) € H(A) is continuous.

If N/, is another snug neighborhood of A U a, then N, and N/, share a common deformation retract.
The composition of the linear isomorphisms induced on cohomology by inclusion of the deformation retract
preserves the orthants defined as in as well as fibers of projection to (S \ A). This proves that the
principal H(\)-structure of the bundle lying over %°(a) does not depend on the snug neighborhood whose
cohomology coordinatizes SH°(\; a).

To show that the principal H(A)-bundle structures over all cells of Z(S \ \) glue together nicely, we find
a continuous section of SH(A) — Z(S \ A) near any given weighted arc system A. Indeed, if @ C §, then
inclusion N, — Npg of snug neighborhoods defines a map on cohomology. This map restricts to a linear
isomorphism on the kernel of the evaluation map on the transversals to 8\ . Thus, the closure

(17) SHNB) = | SH°(Na)
gﬁ%sgg\)\

of SH®(\; f) in SH(A) may be realized as an orthant in Hl(l/\\fé, 6]/\\@; R)~ with some open and closed faces;

one of the closed faces corresponds to SH®(X; ). E|

Since the complex o4 (S \ A) is locally finite, there are only finitely many arcs f1, ..., 8 disjoint from «.
Let U C B(S\ ) be a small neighborhood of A and o be a continuous section of SH(\; o) = #°(a)NU. For
each i, after including SH°()\; a) as a face of SH(\; aUS;), we may extend o continuously on UN%°(aUfS;).
Continuing this process, eventually extending ¢ to higher dimensional cells meeting U, we end up with a
continuous section U — SH(A), as claimed. As before, trivializations defined by two different sections differ
by a continuous function U — #H(A); this completes the proof of the theorem. O

10When every component of S\ X is simply connected, the empty set is a filling arc system. When this is the case, %°(0)
is identified with a point, while SH(A;0) = H(N).
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Since every bundle over a contractible base is trivial, this implies that
Corollary 8.2. Shear-shape space SH()) is homeomorphic to R%9~6.

Proof. Let ¥q,...,%,, denote the complementary components of A, where ¥; has genus g; with b; closed
boundary components and k; crowns of types {c],..., 0,7% }. By Lemmas and , we know that Z(S\\)
is homeomorphic to a cell of dimension

m m kj
—no(A) + > dim(T(%))) = —no(A) + > | 6g; —6+3b; + > (c] +3)

Lemmas [7.8] and [4.6] together imply that SH(A; A) is an affine H(\)-space of dimension

m kg

no(N) — x(N) = mo(N) + 3 3>l

j=11i=1

Putting these dimension counts together via Theorem we see that SH(A) is homeomorphic to a cell of
dimension

m kj m
3, 3 3
Z 69; = 6+3b; + 5 (cd+2) | =5 ZArea(Ej) = 5 Area(S) = 69 — 6,
7j=1 =1 Jj=1
where the first equality follows from . |

8.2. Intersection forms and positivity. Now that we have a global description of shear-shape space, we
restrict our attention to a certain positive locus SH T () inside of SH(A). The main result of this section is
Proposition in which we identify SH*()) as an affine cone bundle over Z(S \ \).

Positive transverse cocycles. We begin by recalling the definition of positivity for transverse cocycles, as
developed in [Bon96, §6] . Fixing some A € ML(S), we recall that a transverse cocycle for A may be identified
with a relative cohomology class of the orientation cover N of a snug neighborhood N of A\ (Definition .
The intersection pairing of N therefore induces a anti-symmetric bilinear pairing

wy HA) xHOAN) =R

called the Thurston intersection/symplectic form. This form is nondegenerate when A is maximal, and more
generally, when A cuts S into polygons each with an odd number of sides [PH92, §3.2].

Each transverse measure for A is in particular a transverse cocycle. Using the intersection form one can
therefore define a positive cone H*(\) inside of H(\) with respect to the (non-atomic) measures supported
on A. Write

)\:>\1UUALU’71UU"}/M
where the v, are all weighted simple closed curves and the A\, are minimal measured sub-laminations whose
supports are not simple closed curves. Then set

L
(18) HTN) :={peH) :wn(p,u) >0 for all u € U A(Xe)},
=1
where A()\y) denotes the collection of measures supported on Ag.

The reason for this involved definition is that the Thurston form is identically 0 exactly when the under-
lying lamination is a multicurve. Therefore, if the support of A contains a simple closed curve -y, the pairing
of v with every transverse cocycle supported on A is 0.

On the other hand, so long as A is not a multicurve then the Thurston form is not identically 0. In fact,
the cone H*(\) splits as a product

L M
HE ) =P H )& P Hivm).
=1 m=1

HThis is because the components of the orientation cover are all annuli, whose first (co)homologies all have rank 1. For
non-curve laminations, the homology has higher rank and so can support a nonzero intersection form.
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As X supports at most 3g — 3 (projective classes of) ergodic measures, each H*()\,) is a cone with a side for
each (projective class of) ergodic measure supported on ;.

When A is a multicurve, then there are no A;’s and so the condition of is empty. As such, in this
case we have that the space of positive transverse cocycles is the entire twist space:

M
H+(71U...U7M)=7{(71U...U7M): @'H(’Ym)gRN].

Therefore, we see that no matter whether v is a multicurve or not, the space H*(\) is a convex cone of full
dimension (where we expand our definition of “cone” to include the entire vector space).

Positive shear-shape cocycles. We now repeat the above discussion for shear-shape cocycles. By Defini-
tion [7.5] n any shear-shape cocycle (o, @) may be identified with a relative cohomology class of the orientation
cover N, of a neighborhood N, of AU a. As above, the intersection pairing of N then defines a pairing
between : any two shear-shape cocycles with underlying arc system contained inside of a. However, if the
underlying arc systems of o, p € SH(A) are not nested then there is no obvious way to pair the two cocycles.

While it does not make sense to pair two arbitrary shear-shape cocycles, we can always pair shear-shape
cocycles with transverse cocycles. Recall from (the discussion before) Lemmathat H(A) naturally embeds
as a subspace of the cohomology of the neighborhood ZVQ defining a shear-shape cocycle and may be identified
with the kernel of the evaluation map on transversals to a. Therefore, the intersection pairing on ng gives
rise to a function

wsy : SHA) x H(\) = R
which we also refer to as the Thurston intersection form. Throughout the paper, we will differentiate

between the different intersection forms by indicating their domains in subscript.
We record some of the relevant properties of wsy below.

Lemma 8.3. The Thurston intersection form wsy is a Mod(S)[A]-invariant continuous pairing which is
homogeneous in the first factor and linear in the second. Moreover, for any A € Z(S\ A) and p € H(A), the
function

wsH(p) : SH(AA) = R

is an affine homomorphism inducing wy (-, p) on the underlying vector space H(\).

Proof. We begin by showing that the form is actually well-defined. Suppose first that « is maximal; then
since the (homological) intersection form is natural with respect to deformation retracts, and any two snug
neighborhoods of A U @ share a common deformation retract, we see that the form does not depend on the
choice of neighborhood.

Now suppose that 5 is a filling arc system that is a subsystem of two different maximal arc systems
and a,. Then one can take a snug neighborhood N g of AU S which includes into neighborhoods IV; of AU ¢
for i = 1,2. Now since the (homological) intersection form is also natural with respect to inclusions, we see
that the Thurston form must be as well. Therefore, for any o € SH(X; 8) and p € H(A) it does not matter
if we compute wsy (o, p) in Ng, Nq, or No.

Now that we have established that wsy is well-defined, the other properties follow readily from properties
of the (homological) intersection form. Since the homological intersection pairing is linear in each coordinate,
we get that wsy is in particular linear in the second coordinate. Similarly, for any A € %(S\ \) and any two
01,09 € SH(\; A) we know that o1 — o9 is a transverse cocycle, and again by linearity of the homological
intersection form we get that

wsH (01, p) — wsw (o2, p) = wy (o1 — 02,p)

for all p € H(A). Thus wgy is affine on each SH(A; A).

Finally, to see that the map wsy(+, p) is continuous for a fixed p, we recall that for any maximal arc
system q, the space SH°(\; a) of shear-shape cocycles with underlying arc system « may be realized as an
open octant in cohomological coordinates , and this parametrization extends to its closure SH(A; @).

Since the intersection pairing on cohomology is continuous, we see that for each maximal arc system «
the function wsy (-, p) is continuous on SH(A; ). But now since we have checked that the value of wsy(+, p)
does not actually depend on the neighborhood, it agrees on the overlaps of closures SH(\; @) for maximal a.
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Therefore, since the cell structure of Z(S \ \) is locally finite we may glue together the functions wsy (-, p)
(which are continuous on each SH(\;a)) to get a globally continuous function on SH(A). O

With this intersection form in hand, we may now define a positive locus with respect to the set of measures
supported on A.

Definition 8.4. The space of positive shear-shape cocycles SHY()) is the set
SHT(\) = {o € SH(A) : wsy(o,p) >0 for all p € A(N)}.

Observe the difference between the definition above and the one appearing in : any positive shear-
shape cocycle must also pair positively with all simple closed curves -, appearing in the support of A\. The
essential difference between the two cases is that additional branches of 7, coming from the underlying arc
system allows a shear-shape cocycle to meet each ~,, without being completely supported on ~,,. Indeed,
one can check that the contribution to the Thurston form coming from the intersection of o with a simple
closed curve component of X is always positive (compare ) In particular, the positivity condition is
automatically fulfilled for any measure supported on a curve component of A.

On each cohomological chart or it is clear that SH ™ () is an open cone cut out by finitely many
linear inequalities (one for each ergodic measure supported on A, plus positivity of arcs weights). However,
this does not yield a global description of SHT()). In order to get one, we must show that the linear
subspaces cut out by the positivity conditions intersect the H(A) fibers transversely.

Proposition 8.5. The space SH ™ () is an affine cone bundle over 2(S\\) with fibers isomorphic to Ht ().
By an affine cone bundle, we mean that there is a (non-unique) section o : (S \ A) — SH(A) such that
SHT(N) NSH(AA) = 00(4) +HT(N)
for every A € (S \ \). Moreover, any two such sections differ by a continuous map (S \ A\) — H ().

Proof. Choose mutually singular ergodic measures fi1, ..., 4n,71,---,7Ym on A that span A(\), where the
supports of the u, are non-curve laminations and the ~,, are all simple closed curves. Pick an arbitrary
o € SH(A; A), and define

Clo) :=={pe M) | wulp, tin) > —wsp (o, n) foralln=1,... ,N}.

By linearity of wy on H()\), together with the fact that the pairing wy (-, r) is not identically 0 since the
support of p, is not a simple closed curve, this is an intersection of N affine half-spaces which do not depend
on our choice of ergodic measures p; in their projective classes. Again by linearity, we see that this is just a
translate of HT(\) and hence is a cone of full dimension.

Now since wsy (-, it5) is an affine map on SH(A; A) for each j, we see that

o4 C(o) ={ne€SHNA) | wsn(n,un) >0foralln=1,... N} =SH"(A)NSH(); A)

is an affine cone of full dimension (where the last equality holds because the positive discussion is automati-
cally fulfilled for each ~,,). It is a further consequence of affinity that this identification does not depend on
the choice of o. The bundle structure then follows from continuity of wsy. O

9. TRAIN TRACK COORDINATES FOR SHEAR-SHAPE SPACE

In this section, we introduced train track charts for shear-shape cocycles. In Section we recall Bona-
hon’s realization of transverse cocycles to a lamination in the weight space of a train track that snugly carries
it. In Section we reinterpret the cohomological coordinate charts for SH°()\;a) by “smoothing”
AU a onto a train track 7, (Construction and realizing SH°()\; @) as an orthant in the weight space of
To (Proposition . This construction also has the added benefit of converting axiom (SH3) of Definition
7.12|into a simpler additivity condition; this is convenient for computations and provides an explicit formula
for the Thurston intersection pairing. We rely on this formula in Section to show that foliations
transverse to A define positive shear-shape cocycles (Proposition .

Later, in Section we explain how the PIL structure of SH(A) is manifest in train track coordinates
and provides a canonical measure in the class of Lebesgue. When ) is maximal, this measure is a constant
multiple of the symplectic volume element induced by wy. Finally, in Section we consider how train
track charts facilitate an interpretation of SH(\) as organizing the fragments of the cotangent space to ML
at A
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Remark 9.1. We advise the reader that two different types of train tracks appear below: those which carry
transverse cocycles for A and give coordinates on the fiber SH(A; A), and those which carry shear-shape
cocycles and give coordinates on the total space SH(A).

9.1. Train track coordinates for transverse cocycles. We begin by recalling how transverse cocycles
can be parametrized by weight systems on (snug) train tracks. The advantage of these coordinates is that
they determine the cocycle with only finitely many values (a main benefit of the cohomological Definition
, but do so using unoriented arcs on the surface, not the orientation cover (a main benefit of the axiomatic
Definition .

Let 7 be a train track snugly carrying a geodesic lamination A and o a transverse cocycle, thought of as a
function on transverse arcs. For each branch b of 7, pick a tie ;. Then one can assign to b the weight o (t;);
by Axiom (H1) this value does not depend on the choice of tie, and by Axiom (H2) these weights necessarily
satisfy the switch conditions. Therefore, any transverse cocycle can be represented by a weight system on
7, and in fact this map is an isomorphism.

Proposition 9.2 (Theorem 11 of [Bon97b]). Let 7 be a train track snugly carrying a geodesic lamination
A. Then the map o — {o(ts) }pcp(r) is a linear isomorphism between H(X) and W(r), the space of all (real)
weights on 7 satisfying the switch conditions.

On a given train track snugly carrying A, the Thurston intersection form wy is easily computable in terms
of the weight systems. To wit, if o, p € H(\) then their intersection is equal to

1 o(rs) ol

where the sum is over all switches s of 7 and r; and 5 are the half-branches which leave s from the right
and the left, respectively. Compare [PH92, §3.2].

9.2. Train track coordinates for shear-shape cocycles. In order to imitate the above construction for
shear-shape cocycles, we first must explain how to build a train track from A and a filling arc system « on
its complement.

Suppose that 7 carries A\ snugly; then the complementary components of 7 U a correspond to those of
AUa. A smoothing of T U« is a train track 7, which is obtained by choosing tangential data at each of
the points of 7N a and isotoping each arc of o to meet T along the prescribed direction. Each component
of S\ 7 inherits an orientation from S, which in turn gives an orientation to the boundary (of the metric
completion) of each subsurface. A smoothing 7, is standard if for each switch of 7, with an incoming half
branch corresponding to an arc a; € a, the incoming tangent vector to «; is pointing in the positive direction
with respect to the boundary orientation of the component of S\ 7 containing «;; see Figure

NP

FIGURE 12. Left: a geometric train track neighborhood of A together with an arc system
a@. Right: The (preimage of the) standard smoothing 7.

Recall (Construction that a geometric train track 7 constructed from a hyperbolic structure X € T(S),
A€ ML(S), and ¢ > 0 is obtained as the leaf space of the orthogeodesic foliation restricted to an e-
neighborhood of A in X (for small enough values of ¢).
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Construction 9.3 (Geometric standard smoothings). Let A € ML(S) and X be a hyperbolic metric on S.
Let « be a filling arc system in S \ A, realized orthogeodesically on X. For small enough € > 0, o NN (\)
lies in a finite collection of leaves of O)(X) and so each end of each arc of « defines a point in the quotient
7 = N¢(\)/ ~, where ~ is the equivalence relation induced by collapsing the leaves of Ox(X)|n7 (-

The geometric standard smoothing 7, is then obtained by attaching a onto the geometric train track 7
at these points and smoothing in the standard way.

Since « is filling, the components of X \ (AU ) are topological disks. In a geometric standard smoothing
Ta, €ach complementary disk incident to an arc « of a has at least one spike corresponding to an ends of
that «. Since no arc of a joins asymptotic geodesics of A, the complementary polygons all have at least 3
spikes and so we see that 7, is indeed a train track.

Remark 9.4. A geometric standard smoothing keeps track of the intersection pattern of A with o on “either
side” of 7, and the endpoints of @ on a geometric train track 7. C X constructed from A by a parameter
€ > 0 as in Construction [9.3] are stable as € — 0.

A standard smoothing 7, is reminiscent of the construction of completing A to a maximal lamination
A by “spinning” the arcs of o around the boundary geodesics of complementary subsurfaces to A in the
positive direction to obtain spiraling isolated leaves of A’ in bijection with the arcs of a. In Proposition
below, we observe that by smoothing « onto 7 in a standard way, axiom (SH3) allows us to assign weights
to the branches of 7, in such a way that the switch conditions are satisfied. Thus, for a shear-shape cocycle
carried by 7,, the weights deposited on the branches o C 7, encode “shape” data, rather than “shear” data.
As such, we do not think of a standard smoothing as corresponding to the completion of A to a maximal
lamination \'.

Proposition 9.5. Every shear-shape cocycle (o, A) € SH(A) may be represented by a weight system w, (o)
on a standard smoothing 7, that also carries A. Moreover, the map ¢ — w, (o) extends to a linear isomor-
phism

Hl(Ngv ONa;R)™ = W(1a)

where N, is a neighborhood of AU¢, ng is its orientation cover, and Hl(]vg, 3]?@; R)~ is the —1 eigenspace
for the covering involution ¢*.

In particular, this isomorphism realizes SH(\;a) and SHT()\, @) as convex cones (with some open and
some closed faces) inside of W (7).

Proof. Let 7, be a standard smoothing of 7 U« and for each branch b of 7, let ¢, denote a tie transverse to
b. Evaluating a shear-shape cocycle o on t;, yields an assignment of weights

W (o) 1 b — o(ty).

By axiom (SH1) of Definition this weight system does not depend on the choice of tie.

To check that w, (o) satisfies the switch conditions, we observe that there are two types of switches of 7,:
those that come from switches of 7 and those that come from smoothings of points of A N . Axiom (SH2)
implies that the switch condition holds at each of the former, while axiom (SH3) together with our choice
of smoothing ensures that w, (o) satisfies the switch conditions at each of the latter. Compare Figure

We note that this discussion does not rely on the positivity of o on standard transversals, and so can be

repeated to realize an arbitrary element of H 1(Z\AfQ7 8]\72; R)~ as a weight system on 7,. O

Let A =) c;a;; then on any smoothing 7, the identification of Propositionrestricts to an isomorphism
SH(NA) ={weW(r,) :wb;) =¢}

where b; is the branch of 7, corresponding to a;. Indeed, these coordinates together with the parametrization
of transverse cocycles by weight systems on 7 < 7, (Proposition [9.2)) give another proof that the difference
of any two shear-shape cocyles compatible with a given A € #(S \ \) is a transverse cocycle (Lemma [7.8]).

Remark 9.6. The metric residue condition (Lemma [7.9) is still visible in train track coordinates, though
it is somewhat obscured. Indeed, suppose that A contains an orientable component carried on a component
¢ of the geometric train track 7; fix an arbitrary orientation of (.
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k 14

o(k) o(f)
o(ti)
K] = [t + [ o(k) = o(t) + o (0)

F1GURE 13. A standard smoothing of a geometric train track. The equation in homology
encoded by axiom (SH3) becomes an additivity condition on the train track.

Take a geometric standard smoothing 7, of 7 U a. Reversing the tangential information as necessary, we
can then construct a (non-standard) smoothing of 7 U « so that every arc of « is a small branch entering
¢ according to the orientation. Moreover, by reversing the sign of the weight on each arc which has its
smoothing data modified, this non-standard smoothing still carries shear-shape cocycles as a weight systems.
But then by conservation of mass the total sum of the weights on the branches entering ¢ must be 0.

Hence in this setting the metric residue condition manifests as a condition embedded in the recurrence
structure of smoothings.

The extended intersection form on SH(A) also has a nice formula in terms of train tracks. Let 7 be a
(trivalent) train track snugly carrying A and let 7, be a standard smoothing of 7 U ¢; then for o € SH(\)
and p € H(\), we have

(20) wsw (o, p) = %Z o(rs) o(ls)

p(rs)  p(ls)
where the sum is over all switches s of 7, and rs/¢s are the right/left small half-branches. The proof of this

formula is the same as that of and is therefore omitted; the only thing to note in this case is that the
value does not change if one completes a by adding in arcs of zero weight.

9.3. Piecewise-integral-linear structure. A piecewise linear manifold is said to be piecewise-integral-
linear or PIL with respect to a choice of charts if the transition functions are invertible piecewise-linear
maps with integral coefficients. The track charts that we have constructed from standard smoothings in this
section endow each cell SH(A; ) with a PIL structure which clearly extends over all of SH(A) (compare
[PH92, §3.1]).

The points of the integer lattice in W (r,) are invariant under coordinate transformation, thus the integer
points SHz(N\) C SH(N) are well defined.

The PIL structure defined by train track charts gives a canonical measure pgsy in the class of the (69— 6)-
dimensional Lebesgue measure on SH(A). Namely, if B C SH(A) is a Borel set, then

R-BNS
(21) psw(B) = lim %
Since the symplectic intersection form wgy; is constant in a train track chart, the volume element defined
by the (3¢ — 3)-fold wedge product Awsy, is a constant multiple of psy on each chart.

We note that Z(S\ A) is cut out of |/ (S\ )| by linear equations with integer coefficients, as is each cell
of | (S\A)|. Therefore, the integer lattice SHz(\) restricts to a integer lattice in the bundle SH(A; o) over
every cell #(a). Thus we obtain a natural volume element on the bundle over the k-skeleton of Z(S \ A),
whenever it is not empty.

9.4. Duality in train track coordinates. We now take a moment to discuss shear-shape coordinates from
the point of view of train track weight spaces; this discussion is motivated by that in [Thu98|, and is meant
to clarify how shear-shape cocycles fit into the broader theory of train tracks.
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We begin by recalling the analogy between shear coordinates for Teichmiiller space and the “horospherical
coordinates” for hyperbolic space. As observed by Thurston [Thu98| p. 42], projecting the Lorentz model

H"={zi+...+22 —a22 = 1|21 >0}

to (1,...,z,) along a family of parallel light rays gives a parametrization for H" in terms of a half-space.
In these coordinates, horospheres based at the boundary point £ € J,,H" corresponding to the choice of
light ray are mapped to affine hyperplanes and geodesics from £ are mapped to rays from the origin.

When A is maximal and uniquely ergodic, Bonahon and Thurston’s shear coordinates similarly realize
T(S) as the space of positive transverse cocycles HT()), in which planes parallel to the boundary are level
sets of the hyperbolic length of A and rays through the origin are Thurston geodesics. Equivalently, if 7 is a
train track carrying A then shear coordinates identify 7(S) as a half-space inside W (7).

However, shear coordinates are no longer induced by a global projection. Instead, as noted by Thurston,
they can be thought of as a map that takes a hyperbolic structure X to (the 1-jet of) its length function
with respect to a given lamination. Shear coordinates are then a map not into W (r) but into its dual space
W (r)* (which can be identified with W (7) via the non-degenerate Thurston symplectic form). The image
cone is then the positive dual |7 of the cone of measures on .

This formalism then indicates how shear coordinates generalize to maximal but non-uniquely ergodic
laminations. The map is the same, but now the positive dual of A(X) has angles obtained from the intersection
of hyperplanes: one for each ergodic measure on A. Rays in the cone still correspond to geodesics, and affine
planes parallel to the bounding planes correspond with the level sets of hyperbolic length of the ergodic
measures on .

Our shear-shape coordinates come into play when A is not maximal. In this case, one can go through the
above steps for each maximal train track 7, obtained from a snug train tack carrying A by adding finitely
many branches. Since A is carried on a proper subtrack of 7 its cone of measures lives in a proper subspace
E C W(r). Taking the positive dual of A(\) and applying the isomorphism W (r) = W (7)* induced by the
Thurston form then realizes Teichmiiller space as a cone C in W (7). By definition C'N E is exactly HT()),
and one can check this demonstrates C as an affine H(\) bundle.

However, the base of this bundle structure is not canonically determined, in part because E < W(7)
is generally not symplectic. Moreover, the same hyperbolic structure is parametrized by elements in many
different maximal completions, and to achieve Mod(S)-equivariance one needs to understand how to compare
coordinates for different completions. Shear-shape space is designed to solve both of these problems, picking
out geometrically meaningful completions and gluing together the corresponding cones all while preserving
the bundle structure.

Indeed, the shear-shape coordinates defined in Section [13] below associate to each hyperbolic structure a
natural finite set of completions (corresponding to standard smoothings of snug train tracks plus geometric
arc systems) together with a weight system on each completion. The discussion of this section (Proposition
especially) then implies that the associated shear-shape cocycle is independent of the choice of completion,
and that the corresponding train track charts glue together according to the combinatorics of Z(S \ A). In
this picture, level sets of the hyperbolic length now correspond to bundles over (S \ A) whose fibers are
affine subspaces parallel to the boundary of H*()\), while rays in SH™()) correspond to scaling both the
coordinate in (S \ \) as well as the coordinate in HT(\).

10. SHEAR-SHAPE COOORDINATES FOR TRANSVERSE FOLIATIONS

We now show how the familiar period coordinates for a stratum of quadratic differentials can be reinter-
preted as shear-shape coordinates. The main construction of this section is that of the map

Ly : FU4(\) — SH(N)

which records the vertical foliation of a quadratic differential and should be thought of as a joint extension
of [Mir08| Theorem 6.3] and [MW14] Theorem 1.2].

12We remark that this coordinate system is in some sense dual to the paraboloid model of [Thu97, Problem 2.3.13]. Horo-
spherical coordinates place an observer looking out from the center of a family of expanding horospheres, whereas the paraboloid
model places an observer at another boundary point looking in.

13i ¢., those elements of W (7)* which pair positively with every element in A()) via the intersection form.
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The idea is straightforward: given some quadratic differential ¢ € F“*()), the complement S\ Z(q) of
its zeros deformation retracts onto a neighborhood Ny (4) of AU a(q) for some filling arc system a(g) (whose
topological type reflects the geometry of ¢). We may therefore identify the period coordinates of ¢ as a
relative cohomology class in (the orientation cover of) Ny (4 with complex coefficients. The imaginary part
of this class corresponds to A, while its real part is the desired shear-shape cocycle Ix(q).

The only obstacle to this plan is in showing that S\ Z(g) can actually be identified with a neighborhood
of AUa(q). To overcome this, we recall first in Section how to reconstruct the topology of S\ A from the
horizontal separatrices of ¢; this guarantees that all relevant objects have the correct topological types. We
then describe in Section how to build from S\ Z(q) a train track 7, snugly carrying A U a(g) (Lemma
[10.6); this in particular allows us to identify S\ Z(q) as a neighborhood of A U a(q). We may then define
I(g) using the strategy outlined above and identify it as a weight system on 7, (Lemma [10.10).

Section [10.3] contains a discussion of the global properties of the map I: piecewise linearity, injectivity,
and its behavior with respect to the intersection pairing. In this section, we also record Theorem[10.15] which
states that I is a homeomorphism onto SH™()\). For purposes of convenience, the proof of this theorem
is deduced from our later (logically independent) work on shear-shape coordinates for hyperbolic structures

(Sections [12H15)). See Remark [10.16

10.1. Separatrices and arc systems. Given a quadratic differential with |Im(q)| = A, our first task
towards realizing | Re(q)| as a shear-shape cocycle is to build a filling arc system «a(q) on S\ A that encodes
the horizontal separatrices of g. We begin by recalling how to recover the topology of S\ A from the realization
of \ as a measured foliation on gq.

Recall that a boundary leaf £ of a component of S\ A is a complete geodesic contained in its boundary.
Note that infinite boundary leaves of S\ A are in 1-to-1 correspondence with leaves of A which are isolated
on one side, while finite boundary leaves (i.e., closed boundary components) are in 2-to-1 correspondence
with closed leaves of A.

The corresponding notion for measured foliations is that of singular leaves. Let F be a measured foliation
on S and F denote its full preimage to S under the covering projection; then a bi-infinite geodesic path of
horizontal separatrices / is a singular leaf of F if for every saddle connection s comprising ¢, the separatrices
adjacent to s leave from the same side of ¢ (i.e., always from the left or always from the right); see [Lev83]
Figure 2].

There is a fundamental correspondence between boundary leaves of a lamination and singular leaves of a
foliation which we record below. Heuristically, collapsing the complementary regions of a lamination yields
a foliation; the deflation map of Section |5.3|is a geometric realization of this phenomenon. Again, compare
[Lev83, Figure 2] as well as [Min92| Lemma 2.1].

Lemma 10.1. Let A be a measured lamination on S and let F be a measure-equivalent measured foliation.
Then there is a one-to-one, m1(S)—equivariant correspondence between the boundary leaves of S \ A and
singular leaves of F. Moreover, singular leaves of F that share a common separatrix correspond to boundary
leaves of the same component of S \ A

This lemma in particular allows us to read off the topological type of S\ A from the horizontal separatrices
of q. Set Z(¢) to be the union of the horizontal separatrices of ¢, equipped with the path metric. This 1-
complex also comes equipped with a ribbon structure (that is, a cyclic ordering of the edges incident to each
vertex) and by thickening each component of Z(g) according to this ribbon structure we see that Z(gq) can
be regarded as a spine for the components of S\ .

Our construction of a(g) then records the dual arc system to the spine Z(g) of S\ A.

Construction 10.2. Let ¢ be a quadratic differential on S with |Im(gq)| = A. By the correspondence of
Lemma [10.1} each horizontal separatrix of ¢ corresponds to a pair of boundary leaves of the same component
of S\ \. Each infinite separatrix corresponds to a pair of asymptotic boundary leaves, while non-asymptotic
boundary leaves are glued along horizontal saddle connections. Dual to each horizontal saddle connection of
E(q) is a proper isotopy class of arcs on S\ A, and we set a(g) to be the union of all of these arcs.

Since Z(q) is a spine for S\ A and «(q) consists of arcs dual to its compact edges, we quickly see that

14T his is true because we have insisted that A support a measure, and so no non-closed leaf may be isolated from both sides.
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Lemma 10.3. The arcs of a(q) are disjoint and fill S\ A.

Proof. Each component of S \X has a deformation retract onto the universal cover = of a component of Z(q).
In particular, as the interiors of the edges of = are disjoint, duality implies that the arcs of &(q) can all be
realized disjointly. As this picture is invariant under the covering transformation, this implies that the arcs
are disjoint downstairs in S\ \.

Similar considerations also imply that the arc system is filling: let 3 be a component of S\ A with universal
cover ¥ with spine =. By construction, the edges of a(q) in 3 are dual to the edges of Z. Since E(q) is a
spine for S\ A, any loop in ¥ is homotopic to a union of saddle connections, implying that any nontrivial
loop must pass through an edge of a(q). Hence a(q) fills S\ \. O

10.2. Period coordinates as shear-shape cocycles. Now that we understand the relationship between
A and the horizontal data of g, it is easy to build objects T* \ H* and T* on ¢ of the same topological type
as A and AU a(q). However, it is not immediate to actually identify these objects as neighborhoods of A and
AU a(q). Below, we deduce this from the stronger statement that they admit smoothings onto train tracks
snugly carrying A and A U a(q); compare [Mir08| Sections 5.2 and 5.3].

Construction 10.4 (Train tracks from triangulations). Let H denote the set of all horizontal saddle con-
nections on ¢ and let T be a triangulation of ¢ containing H. Let T* be the 1-skeleton of the dual complex
to T and let H* denote the edges of T* dual to H. Note that T* is trivalent by definition.

Let A denote a triangle of T with dual vertex va in T*. Using the |¢|-geometry of A we may assign
tangential data to va as follows (compare Figures [14] and .

e If no edge of A is horizontal, then a unique edge e has largest (magnitude of) imaginary part. Assign
tangential data to va so that the dual edge to e is a large half-branch.

e Otherwise, some edge of A is horizontal and the other two edges have the same imaginary parts. In
this case, we choose tangential data so that the horizontal edge corresponds to a small half-branch
and leaves the large half-branch from the right, as seen by the large half-branch.

We denote the resulting train track by 7,. The subgraph T*\ H* can also be converted into a train track
by deleting the branches of 7, dual to H.

Remark 10.5. We observe that the edges of H* correspond to the arcs of a(g) and 7, is a standard smoothing
of 7 U a(q). Our convention for “standard” ensures that additivity in period coordinates corresponds to
additivity in train track coordinates.

FIGURE 14. An example of the train track 7, around a saddle connection. The thick black
lines are stems of horizontal separatrices of ¢ while the light black lines are non-horizontal
edges of the triangulation T. The dashed line is a branch of 7, \ 7.
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By construction, the graph T* (equivalently, the train track 7,) is a deformation retract of S\ Z(q).
Similarly, T* \ H* (and 7) are deformation retracts of the complement of the horizontal saddle connections.
Together with our discussion above, this implies that 7 has the same topological type as A and 7, has the
same topological type as AU a(q).

In order to actually realize these objects as neighborhoods of A, we observe that we can build an explicit
carrying map from (a foliation measure equivalent to) A onto 7.

Lemma 10.6. The train track 7 carries A snugly. The weight system on 7 that specifies \ is exactly the
(magnitude of) the imaginary parts of the periods of the edges of T.

Proof. Let all notation be as above and let F denote the (singular) horizontal foliation of q.

One can directly build a homotopy of the nonsingular leaves of F onto 7: in a neighborhood of each edge e
of T\ H there is a homotopy of the leaves of F onto the branch of 7 dual to e. Now any leaf of F which passes
through a triangle A of T does so (locally) only twice and must pass through the side of A with the largest
imaginary part, which corresponds to a large half-branch of 7. The complement of the separatrix meeting
the vertex of A opposite to the side with largest imaginary part separates the (locally) non-singular leaves
of F passing through A into two packets that can be homotoped onto 7, respecting the smooth structure at
the switch dual to A; compare Figure

Now the horizontal foliation F of ¢ is measure equivalent to A, and so as 7 carries F it carries A (snugness
follows as 7 and A have the same topological type). The statement about the weight system follows from
our description of the carrying map. O

Now that we have identified 7 as a snug train track carrying A, we may in turn identify a neighborhood
of AU a(q) with (a thickened neighborhood of) 7,. With this correspondence established, we may now
define I)(q) as the image of the real part of the period coordinates of ¢ under the natural isomorphism on
cohomology.

Construction 10.7 (Definition of I5(g)). Let S, A, q,a(q), and 7, be as above, Set M, to be a thickened
neighborhood of 7, (in the flat metric defined by ¢) and let N, be a snug neighborhood of A U a(q) (taken
in some auxiliary hyperbolic metric). Perhaps by shrinking N,, we may assume it embeds into M, as a
deformation retract (this follows by snugness).

Now 7, is itself a deformation retract of S\ Z(q), so the inclusion M, — S\ Z(q) is a homotopy equivalence;
composing inclusions N, — M, — S\ Z(¢) and lifting to the orientation covers yields the isomorphism

(22) H'(S, Z(\/@);C) L5 H'(Na, 0N4; C)

where the hats denote the corresponding orientation covers. As the composite retraction respects the covering
involution ¢, this isomorphism also identifies —1 eigenspaces for *. We therefore define

Ix(g) = Re(j" Per(q))

where Per(q) are the period coordinates for ¢, and where the real part is taken relative to the natural splitting
C=RaiR.

Remark 10.8. From the above construction, a basis consisting of branches for the weight space of 7,

(equivalently, a basis for Hy (]’\\fg, 8]?@; Z) of dual arcs) picks out a basis for H; (§ , Z(3/q); Z). Moreover, each
relative cycle is realized geometrically as a saddle connection (as opposed to concatenations, thereof).

To see that I)(¢) is indeed a shear-shape cocycle, we need only observe that the values on standard
transversals to «(q) are all positive. This follows essentially by definition of the orientation cover and
construction of a(g). To wit: if « is an arc of a(q) dual to a saddle connection s, and ¢ is a standard
transversal to «, then the canonical lifts of ¢t are mapped to those of s under the isomorphism . As the
periods of /g increase as you move along the (oriented) horizontal foliation of (§ ,1/q), this implies that the
value of Ty (¢q) on either of the lifts of ¢ is exactly the length of the saddle connection s.

Therefore, we see that the weighted arc system underlying I (¢) is none other than

Aq) == Z Ca O
aca(q)

where ¢, is the |g|-length of the horizontal saddle connection dual to the arc a.
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Remark 10.9. Naturality of all of the isomorphisms involved quickly implies that this construction does
not depend on the choice of initial triangulation T. Indeed, suppose that T; and Ty are two triangulations
giving rise to train tracks 71 and 7o and hence shear-shape cocycles o1 and o». Since both 7; carry AU a(q)
snugly, Lemma implies that they have a common refinement 7. Lifting the inclusions

N(tUa(q)) = N(ri Ual(q)) — S\ Z(q)

to their orientation covers and drawing the appropriate commutative diagram of cohomology groups, we see
that the shear-shape cocycles built from each T, coincide as weight systems on the common refinement 7.

For use in the sequel, we record below the weight systems on 7, corresponding to A and I(g). The proof
follows by combining the constructions above with the discussion in Section [9] and is therefore left to the
scrupulous reader. See also Figure

For a complex number z, define

[ =z if arg(z) €[0,7)
[z}‘f' - { —z if arg(Z) S [77,277)'

Observe that [z]4 = [—z]4 for all z € C.

Lemma 10.10. Let all notation be as above, and for each edge e of T let b, denote the branch of 7, dual
to it. Then the assignment

o[,

defines a complex weight system w(q) on 7, satisfying the switch conditions. Moreover,

Im(w(q)) = A and Re(w(q)) =I,(q).

FIGURE 15. Local pictures of the different types of switches of 7,. Here we have illustrated
the images of each triangle under the holonomy map. The orientation of each edge should
be interpreted as indicating the value of -]+ so that the edge vector is exactly the complex
weight assigned to the dual branch of 7,. The graphical conventions of this figure mirror
those of Figure

10.3. Global properties of the coordinatization. In this section, we show that the map I, defined
above gives a global coordinatization of MF(\) =& F“%()\). First, we record certain global properties of this
map; as it is defined by reinterpreting period coordinates as shear-shape cocycles, it preserves many of the
structures imposed by period coordinates.

For example, it follows by construction that I, respects the stratification of each space. That is, if
q € QT (k1,...,ky)NF"“(X), then the spine dual to a(q) has vertices of valence k142, ..., k,+2. In a similar
vein, since both F**(A) and SH(A) have local cohomological coordinates (which induce PIL structures) we
can deduce the following:
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Lemma 10.11. For any A € ML(S), the map I is Mod(S)[A]-equivariant and PIL. E|

Proof. Equivariance follows from the naturality of our construction: all combinatorial data (arc systems,
train tracks, etc.) can be pulled back to a reference surface equipped with A, so changing the marking by an
element of Mod(S)[A] acts by transforming the combinatorial data on the reference surface.

The piecewise-linear structure on F**(\) (respectively, SH(\)) is given by period coordinates (respec-
tively, cohomological coordinates in a neighborhood/train track coordinates) and so the map is by construc-
tion piecewise-linear. Integrality comes from the fact that a homotopy equivalence induces an isomorphism
on cohomology with Z-coefficients, hence takes integral points to integral points. O

The Thurston intersection pairing gives us a powerful tool to understand constraints on the image of Iy;
in particular, Iy (¢g) must be a positive shear-shape cocycle. Indeed, the tangential structure of the train track
Ta at each switch provides us with an identification of each triangle A of T with an oriented simplex. With
respect to this orientation, we can compute the area of A by taking (one half of) the cross product of two
of its sides. Comparing the formula for the cross product with the Thurston intersection pairing then
allows us to see that the intersection of A and I(q) is exactly the area of ¢; compare [Mir08| Lemma 5.4].

Proposition 10.12. For all n € MF()) and all p € A(N),

wsn(Ix(n), 1) = i(n, p)-
In particular, Iy(MF (X)) € SHT(N).

The proof of this lemma is made technical by the fact that if u and p/ € A(\) are ergodic but not
projectively equivalent then they are mutually singular. To deal with this difficulty, we build a flat structure
on the subsurface filled by p by integrating against A 4+ tu and Iy(n) for small ¢. The triangulation T then
induces a combinatorially equivalent triangulation of this new flat structure by saddle connections, allowing
us to compare the area of this new flat metric (computed via cross products) with the Thurston form on our
original train track 7,. This inverse construction will also be used in the proof of Proposition

Proof. We begin by observing that since p € A(A), there is a union of minimal components of the horizontal
foliation of ¢(n, \) that supports u. Call this subfoliation F and let Y denote the subsurface filled by F
on ¢(n,A). Note that dY must be a union of horizontal saddle connections, hence is contained in any
triangulation T used to define 7,. In particular, T|y is a triangulation of Y.

Since n and A are realized transversely on ¢(n, A\) and this specific realization of 7 is non-atomic (as any
closed leaves of n have become vertical cylinders), we can compute the intersection number between 1 and
any measure p supported on F as

(23) i(n,u)=/s77><u=/yn><u.

We now build a new flat structure on Y whose conical singularities coincide with those of Y; the salient
feature is that T|y can be straightened out to a triangulation by saddle connections on the new singular flat
structure that reflects the geometry of A + tu. To construct the new singular flat structure, we build charts
from a neighborhood of each triangle A C T|y to C and describe the transitions.

Each triangle A of T is dual to a switch s with an edge that is dual to a large half-branch b incident to
s. Orient 7, N A so that a train traveling along b toward s is moving in the positive direction. The other
edges r and ¢ of A are dual to the half-branches of 7, to the right and left of s, respectively. The vertices
or, 0g are adjacent to r and ¢, respectively, and the vertex o is opposite b; see Figure On the interior of
each triangle A, we orient the leaves of F parallel to b. The leaves of 1 are given the orientation so that the
ordered basis of tangent vectors to A and 7 at each point agree with the underlying orientation of S. With
this orientation, the measures 77 and A induce smooth real 1-forms dn and d\ that look locally like dz and
dy, respectively (as opposed to |dz| and |dy|, respectively).

Restricted to the interior of A, the local orientation of the leaves of 1 also gives the measure p the structure
of a measurable 1-form that we call du. Spreading out the measure on a closed leaf of i over the horizontal
cylinder of A corresponding to its support as necessary, we get that the map

Fo:pe A~ dn+id(A+tu) € C

Yp

15We recall that a PL map between PIL manifolds is itself PIL if it sends integral points to integral points.



46 AARON CALDERON AND JAMES FARRE

obtained by integrating along a path +, from o, to p is isometric along leaves of F and non-decreasing along
leaves of 7. We compute

Fi(o) = In(n)(r) + (A + tp)(r) and Fy(o) = In(n)(b) + i(A + tp) (D).
Transverse invariance and additivity of u gives
(24) Fi(or) = Fi(0) = Ix(n)(€) + i(A + tp)(0).

Since the pair (Fy(o), Fo(og)) forms a positively ordered basis for C (equivalently, since the triangle A is
positively oriented), the pair (F:(0), Fi(og)) is also positively oriented for small enough ¢. Let A} be the
convex hull of (F(o,), Fi(0), Ft(or)).

The area of A} may now be computed as half the cross product of F;(0) and F;(o;). Using equation
and linearity of the cross product, we have the formula

LI Ixm)(r)  In(n)(€)
2 Area(A}) = = .
(25) realA) = 5 I Frur) A+ tu)|
Now for each A and any small enough ¢ the map F; may be extended to an open set U(A) in Y\ Z(¢) that
contains A (minus its vertices) and so that for every p € U(A) there is a unique non-singular |g|-geodesic
segment 7y, joining o, to p. We claim that moreover, we may choose U(A) so that A; C F(U(A)); see Figure

16

FIGURE 16. Integrating against n and A+tu defines a new flat structure on triangles. These
charts piece together to give a new half-translation structure on the subsurface filled by u.

If not, there is some vertex v of Ty \ A such that Fy(v) € A} \ Fi(A). Indeed, by construction, U(A) is
a star-shaped neighborhood about the vertex o, of A, so there is a saddle connection joining o, to v. This
saddle connection passes through or shares a vertex of an edge e of A. Moreover, we may find v so that the
triangle A, formed by e and v is singularity free and contained in U(A). But now, the straightening Al of
Fi(A,) in C lies inside A} with the wrong orientation since Fi(v) lies between F(e) and the corresponding
edge of A}. This is a contradiction to the fact that F; is non-decreasing along leaves of 7, alternatively, to
the fact that the straightenings A} are all positively oriented for small enough ¢. So we may assume that
AL C F(U(A)).

If Ay C Ty shares an edge with A, then the construction of the map F; on A; agrees with F; on
U(A)NU(A1) up to multiplication by +1 (depending on the configuration of the switches dual to A and
A1) and translation by the period of the arc connecting the basepoints o, of each triangle. Thus these
triangles glue up to a half-translation structure on Y\ Z equipped with a triangulation by saddle connections
corresponding to Ty .

In our new flat structure on Y, A+ tu is measure equivalent to the horizontal foliation and (the restriction
of) 7 is equivalent to the vertical foliation. Hence we obtain for any ¢ small enough that

/nx (A +tp) = ZAreaA'—Z%

A€T|y A€T|y

Ix(m)(r) — Ia(n)(€)
At tu(r) Ak ()] = wsHa) A+ th)
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where the second equality follows from and the third from . Combining this with formula and
the linearity of the Thurston intersection form (Lemma [8.3), we get that

i =1 (x| nxa) = (snlInm+ ) = wswlla(), ) = wsn(T (1)),

completing the proof of the lemma. O

From the proof of Proposition [10.12| we can also extract the following, which allows us to reconstruct a
(triangulated) quadratic differential from a sufficiently positive shear-shape cocycle, inverting Construction

10.4l

Lemma 10.13. Let 7 be a train track snugly carrying A and let 7, be a standard smoothing of A U a.
Suppose that o € SH(\) is represented by a weight system on 7, so at every switch s of 7, the contribution

1 0’(7“5) 0(55)

2 (A\(rs)  A(Ls)

of s to wsy (o, ) is positive. Then there exists a quadratic differential ¢ € F**(\) so that Ix(¢) = ¢ and the
dual triangulation to 7, is realized by saddle connections on q.

Proof. The assumption that the contribution at each switch is positive implies that the basis (F(0), F'(o¢))
is positively oriented at each switch, and so we can build a positively-oriented triangle A with the prescribed
periods. These glue together into the desired quadratic differential. (I

In particular, we can locally invert I by building a quadratic differential out of triangles whose edges
have specified periods, so we see that I is injective.

Proposition 10.14. For any A € ML(S), the map I is a homeomorphism onto its image.

Proof. To see that I is injective, we observe that Lemma provides a (left) inverse map Ay to Iy.
Indeed, suppose that ¢ = Iy(q) for some ¢ and pick a triangulation T as in Construction let 7, denote
the dual train track. Applying Lemma then constructs a quadratic differential ¢’ on which each edge of
T is realized as a saddle connection. Since g and ¢’ have the same periods with respect to the same geometric
triangulation, they must be equal.

To prove that I, is continuous, we first observe that I, is by definition continuous on the closure
SH(N; a(q)) of any cell, as it is induced by a continuous mapping on the level of cohomology. In general,
we need only exploit this fact together with a standard reformulation of sequential continuity: a function
f X — Y is continuous if and only if every convergent sequence x,, — x has a subsequence z,, so that
F(2n,) = f(2).

So let ¢, = g € F**(X). The polyhedral structure of SH () is locally finite, so for n large enough, Ix(gy)
is contained in a finite union of cells. After passing to a subsequence ¢, , we may assume that ¢, all share
the same underlying (maximal) arc system ( completing . In particular, Ix(gy,,) € SH(X; 3) for all k and
so In(gn,) — In(q) follows from continuity on cells. Therefore I is a continuous injective map between
Euclidean spaces of the same dimension (Proposition and Corollary and so invariance of domain
guarantees it is a homeomorphism onto its image. (|

The image of I,. In light of Lemma to show that I surjects onto SHT(\) it would suffice to show
that every positive shear-shape cocycle can be realized as a weight system on a train track where every
switch contributes positively to the intersection form. However, it is rather complicated to show that every
positive shear-shape cocycle admits such a representation (see the discussion in Remark just below).

Instead, we deduce this fact using the commutativity of Diagram and the results appearing in Sec-
tions coordinatizing hyperbolic structures by shear-shape cocycles. We emphasize, however, that
Theorem is logically independent from the work done in Sections that leads to its proof. We
include the statement here (as opposed to after Section to provide some closure to our discussion of the
parametrization of MJF(X) by shear-shape coycles.

Theorem 10.15. The map I : F**(\) — SHT()\) is a homeomorphism.
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Proof. In Section [13| we define the geometric shear-shape cocycle o (X) € SH(\) associated to a hyperbolic
metric X € 7(5) and show (Theorem that o) (X) = Ix(OA(X)). In Section [15( we prove Theorem
which states that the map oy : T(S) — SHT()\) is a homeomorphism. In particular, oy is surjective
and hence so is Iy. Together with Proposition this implies the theorem. O

Remark 10.16. If ) is a maximal lamination, one can deduce surjectivity of I by appealing to the theory
of “tangential coordinates” for measured foliations transverse to A. In general, given 7 snugly carrying A,
tangential coordinates can be constructed as a quotient of R*(™) by a vector subspace spanned by vectors
that model the change of length of branches of a train track on either side of a switch after a small “fold” or
“unzip.” When A is maximal, there is a linear isomorphism from shear coordinates to tangential coordinates
via the symplectic pairing wy,; we refer the interested reader to [Thu98| Section 9] or [PH92, §3.4] for details.

The transverse weights defined by the measure of A on 7 together with positive |’ tangential data give 7
the structure of a bi-foliated Euclidean band complex. If the tangential data satisfy a collection of triangle-
type inequalities, this band complex can be “zipped up” to obtain a bi-foliated flat surface with conical
singularities. When defined, the linear transformation mapping tangential coordinates to shear coordinates
preserves the intersection number, hence positivity.

A standard positivity argument (see [Thu82l Proposition 9.7.6] or [Thu98, Theorem 9.3]) shows that
any tangential data with positive intersection with A has a positive representative, hence defines a foliation
transverse to A. In particular, the map from MF(A) to the space of tangential coordinates with positive
intersection with A is surjective. As the space of tangential coordinates with positive intersection is isomorphic
to the H* (), this completes the proof of surjectivity in the maximal case.

This being considered, even in the case when A is maximal “it is harder to see the [positivity] inequalities
satisfied by the shear coordinates [than the tangential coordinates]” [Thu98, p. 45] and it is not clear how to
run the “standard positivity argument” without passing through tangential coordinates. We have therefore
chosen to prove Theorem in a way that avoids developing a theory of tangential coordinates dual to
shear-shape cocycles. Instead, we take advantage of the relationship between the Thurston intersection form
on SH(A) and the length of A on a given hyperbolic surface, as exploited in the proof of Theorem m (see
in particular Claim .

11. FLAT DEFORMATIONS IN SHEAR-SHAPE COORDINATES

The identification of Section [10| between periods of saddle connections and the values of the shear-shape
cocycle I (g) immediately allows us to transport certain flows on F*“(\) to shear-shape space. Moreover,
Theorem [10.15| affords a new perspective on the “tremor deformations” of [CSW20| (see Definition [11.3)).

The horizontal stretch. We begin by observing that the space SH™()\) carries a natural Rsq action
given by scaling both the underlying arc system A and the values assigned to test arcs (equivalently, the
corresponding cohomology class or the weights on a train track realization). Using our correspondence
between period coordinates and shear-shape cocycles (Lemma , we see that this dilation expands the
real part of each period, so the corresponding flat deformation is just a horizontal stretch.

Lemma 11.1. Let g € F**()); then

et 0
(26) (G 9)a)=enw
for all ¢t € R.

In particular, we see that our coordinatization linearizes the expansion of the strong unstable foliation
under the Teichmiiller geodesic flow.

Horocycle flow and tremors. We now consider the horocycle flow on F**()), which is just the restriction
of the standard horocycle flow hs to the strong unstable leaf. An easy computation shows that for every

16Here, positive means that there is a representative of the tangential data that is positive on each branch of 7.

" This is just the Teichmiiller geodesic flow normalized so that the horizontal foliation remains constant. Applying the
standard geodesic flow takes (Ix(q),A) to (e!/21y(q),e~t/2A).
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saddle connection e of ¢, one has

o (] (] ][] ) e[ ],

(here we have invoked the [-]; function to avoid fussing over square roots and orientations).
With the help of Lemma [10.10| we may translate this into the language of transverse and shear-shape
cocycles to observe

Lemma 11.2. The map I, takes horocycle flow to translation by A in a time preserving way. In symbols,
Ix(hsq) = Ix(q) + sA.

More generally, we can perform a similar deformation for any measure p supported on A, resulting in
the tremor flow along u. First defined by Chaika, Smillie, and Weiss in the context of Abelian differentials,
the tremor trem,(q) of a quadratic differential ¢ = ¢(n, A) by a measure p € A()) is the unique quadratic
differential specified by shearing 1 by p and leaving A fixed. Why this makes sense (note that n and p may
not fill S) and why it can be continued for all time present significant technical challenges in [CSW20] (see
8§84 and 13 therein). However, when considered in our coordinates (and restricted to a leaf of the unstable
foliation) tremors become quite simple.

For a given lamination A, let |[A(\)|+ denote the vector space of all signed transverse measures on A; this
is naturally a vector subspace of H(X) of dimension at most 3g — 3 with basis consisting of the length 1 (with
respect to some auxiliary hyperbolic metric) ergodic measures on A.

Definition 11.3. Let ¢ € F**(X) and let 11 € |[A(A)|+. Then the tremor trem,,(q) of ¢ along p is the unique
quadratic differential specified by

(28) Lx(tremy,(q)) = In(q) + p-
Note that the fact that Iy(q) + pu € SHT()) follows by affinity of the Thurston form (Lemma.

Remark 11.4. Technically, the deformation considered above is a “non-atomic tremor” in the language of
[CSW20]. One can also consider “atomic tremors,” which transform ¢ by twisting along certain admissible
loops of horizontal saddle connections.

In shear-shape coordinates, these admissible loops correspond to certain simple closed curves in the
complementary subsurfaces. Atomic tremors are then realized by appropriately shearing the underlying arc
system A(q) along the curves and transporting the transverse cocycle using the affine connection coming
from train-track coordinates. Of course, one can also define tremors along more complicated laminations
contained in S\ A as well.

For the convenience of the reader familiar with the terminology of [CSW20], we have included a dictionary
which translates between our notation and theirs (at least when the horizontal lamination is filling — when
it is not, one must replace A(\) with a subset of the zero set of A and take more care). See Figure

Shear-shape cocycles Foliation cocycles
A(N) Cr
AN+ Tq
wsw (0, ) = i(pg,m) = i(p—,n) signed mass Ly (i)
i(pe,m) +ilp—,n) total variation |L|, ()

F1GURE 17. Translating between our language of shear-shape cocycles and the “foliation
cocycles” of [CSW20]. Throughout, we assume that ¢ = ¢(n, A) where X is filling (equiva-
lently, ¢ has no loops of horizontal saddle connections). We have written a signed transverse
measure p as = pq — p— € |A(N)|x, where py € A(N).

We can now immediately deduce certain properties of the tremor map from the structure of SH™(\) and
the intersection pairing. While we will not use these results in the sequel, we have chosen to include them
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in order to to demonstrate the utility of our new perspective on these deformations. For example, using our
coordinates one can easily deduce that (non-atomic) tremors leave horizontal data invariant and hence can
be continued indefinitely while remaining in the same stratum.

Lemma 11.5. For any g € F**(\) and p € |A(N)|+, the tremor path trem,,(¢) is defined for all time and
is completely contained in SH(A; A(g)). In particular, {trem;,(q)} always remains in the same stratum.

Remark 11.6. The above Lemma is one specific instance of a much more general phenomenon. The global
description of F"*()) afforded by shear-shape coordinates allows one to formulate a general criterion for
extending affine period geodesics, a topic which the authors hope to address in future work.

Using our interpretation of tremors as translation, it is similarly easy to describe how tremors interact
with other flat deformations. Compare with Propositions 6.1 and 6.5 of [CSW20]. We leave proofs to the
reader, as they follow immediately from and .

t/2
0

e

Lemma 11.7. Let ¢ € F**(\). Then for any u € |A(N)|+ and for ¢, = ( 62/2>, we have that

gi trem,,(q) = tremet/zu(gt(q))-
Additionally, for any p1, p2 € |A(N)|+, we have that

tremy,, (¢) tremy,, (¢) = tremy,, 4, (¢) = tremy, (¢) tremy,, ().

In particular, tremors commute with the horocycle flow.

12. SHEAR-SHAPE COORDINATES FOR HYPERBOLIC METRICS

We now parametrize hyperbolic structures on S by shear-shape cocycles for a measured geodesic lamina-
tion A\. With respect to the Lebesgue measure on ML(S), the generic lamination cuts a hyperbolic surface
into ideal triangles. As all ideal triangles are isometric, Bonahon and Thurston’s shearing coordinates need
only take into account the “shear” between pairs of complementary triangles to describe a hyperbolic struc-
ture. As our objective is to generalize these coordinates to laminations with arbitrary topology, we must
therefore combine the data of the geometry of hyperbolic metrics in complementary subsurfaces with the
shearing data between them. Shear-shape space SH()) is well suited to this task.

In the following Sections 15| we explain how to associate a “geometric shear-shape cocycle” to a
hyperbolic metric and prove that the space of positive shear-shape cocycles coordinatizes Teichmiiller space:

Theorem 12.1. The map oy : 7(S) — SHT()\) that associates to a hyperbolic metric its geometric shear-
shape cocycle is a stratified real-analytic homeomorphism.

As detailed in the Introduction, combining this theorem with Theorems and implies that the
orthogeodesic foliation map @) is a homeomorphism, and consideration of the earthquake/horocycle flows
in SHT(\) coordinates then proves the conjugacy on slices (Theorem @

We remark that the stratified regularity of o) and O, is the best one can expect, since the adjacency of
strata of differentials is not analytic (as there are multiple inequivalent ways to “break up a zero”). Compare
with [Duml5| Theorem D], in which it is shown that for a fixed Riemann surface Z, the identification
Q(Z) = ML guaranteed by the Hubbard-Masur theorem [HMT9] is stratified real-analytic.

Fixed complementary subsurfaces. By definition (see Section [13.2]), the weighted arc system A(X)
underlying o (X) exactly identifies the geometry of X \ A via Theorem Setting

T(S;A4) :={X e T(S) - A(X) = A},
Theorem therefore implies that 7(S; A) is nonempty if and only if A € B(S\ \).

Remark 12.2. The authors do not know a proof of this fact that does not factor through Theorem [12.1]
except in some special cases (for example, when the complement of A is polygonal, or when A is a union of
simple closed curves). |§|

180ne can of course complete A to a maximal lamination and then specify the shear coordinates on each of the added leaves,
but then one must be very careful to ensure that these shears satisfy the relations coming from the metric residue condition.
The argument then requires an involved computation with train tracks carrying the completed lamination.
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In fact, since SH*()) is an affine cone bundle over (S \ \) (Proposition , we see that

Corollary 12.3. For each A € (S \ \), the set T(S;A) is a real-analytic submanifold of 7(S) and the
restriction of o) to

T(S;4) = SHT(MA) = HT(N)

is a real-analytic homeomorphism.

In this setting, the correspondence between 7(S;A) and H*™(\) is a natural generalization of shear
coordinates, since the complementary subsurfaces to A are always isometric. In fact, the shape-shifting
deformations built to deform X by some s € H()\) (see the proof sketch of Theorem just below) restrict
to cataclysms/shear maps in the sense of [Bon96| Section 5]. In particular, if s represents a measure supported
on A, then the shape-shifting deformation determined by s is part of an earthquake in s (Corollary ;
if s is a multiple of o)(X), the shape-shifting transformation can sometimes be identified with part of a
(generalized) stretch ray (Propositions and [15.18).

In addition to being non-empty, 7(S; A) is structurally rich; the authors hope to explore this space further
in future work. Of particular interest is the (degenerate) Weil-Petersson pairing on this locus and its relation
with the Thurston symplectic form and Masur—Veech measures.

A sketch of the proof. Since the proof of Theorem spans several sections (two of which consist of
involved constructions of the relevant objects), we devote the remainder of this section to a broad-strokes
outline of the arguments involved. Our exposition throughout these sections is mostly self-contained, but we
sometimes refer to [Bon96] for proofs and to [Thu98| for inspiration.

We begin in Section [L3|by defining the map o,. Under the correspondence established in Theorem [6.4] we
associate to X the weighted arc system A(X) recording the hyperbolic structure on X \ \. We cut X along
the (ortho)geodesic realization of A U a into a union of (degenerate) right-angled polygons, and measure
the shear between certain pairs of polygons. We then argue using train tracks that it suffices to record the
shearing data comprising o (X) on short enough arcs k transverse to A and disjoint from «(X). The value of
o(X) on short k£ may then be defined by isotoping k to a path connecting vertices of the spine Sp and built
of segments alternating between leaves of A and of O, (X), then measuring the total (signed) length along
A. These measurements are equivalent to Bonahon and Thurston’s method of measuring shears (via the
horocyclic foliation) when & is short enough, but cannot be globally derived from theirs due to obstructions
coming from complementary subsurfaces.

The proof that oy is a homeomorphism then follows the same general steps as appear in [Bon96]. After
proving that oy is injective and lands inside of SH™(\) (Proposition and Corollary , we then
show that it is open (Theorem and proper. Since SHT()) is a cell (Proposition , invariance of
domain then implies that ¢ must be a homeomorphism.

Our proof of injectivity mirrors that of [Bon96, Theorem 12] with an additional invocation of Theorem (6.4
For properness we mostly appeal to [Bon96, Theorem 20] but need to discuss complications that arise from
the piecewise-linear structure of shear-shape space. Similarly, our broad-strokes strategy to prove openness
parallels that of [Bon96l §5], in that we build a “shape-shifting coycle” ¢ for all small enough deformations
s of o (X) (see Section . Deforming X by post-composing its charts to H? with ¢, then yields a surface
X, with o3 (Xs) = 0 (X) + 5.

It is in the construction of ¢, performed in Section where our discussion truly diverges from [Bon96]
and [Thu98]. When X is maximal, one can specify s by shearing X along the leaves of A (i.e., performing
a cataclysm). Even in the maximal case this procedure is delicate, hinging on the convergence of infinite
products of small M&bius transformations (compare Section . In the non-maximal case, we must also
simultaneously account for the changing shapes of complementary subsurfaces (which also introduces extra
complications into the shearing deformations since the shapes of spikes are changing). See the introduction
to Section [14] for a more granular description of the construction of 5.

13. MEASURING HYPERBOLIC SHEARS AND SHAPES

In this section, we take our first steps towards proving Theorem by describing how to associate to
any hyperbolic surface X a geometric shear-shape cocycle ox(X) in a natural way; this yields the map

oy T(S) = SHN).
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After fixing some notational conventions that we will use throughout the sequel, we define o (X) by first
specifying its underling arc system A(X) in a variety of equivalent ways. After doing so, we define the shear
between “nearby” hexagons analogously to Bonahon and Thurston; placing all of this data onto a standard
smoothing 7, of a geometric train track is therefore enough to specify 5 (X) (Lemma .

We then show that the data of shears between any two nearby hexagons can be recovered from the weight
system on 7, even if those hexagons are not “visible” to 7, (Lemma . This in particular implies that
our choice of 7, does not actually matter, and hence o (X) is well-defined.

We then conclude the section by proving some initial properties of o). Proposition shows that the
map is injective following an argument of Bonahon, while in Theorem [I3.13] we show that our map captures
the geometry of the orthogeodesic foliation.

13.1. Preliminaries and notation. In this section, we discuss the geometry of a geodesic lamination on a
hyperbolic surface and fix notation in preparation of our definition of the geometric shear-shape cocycle of
a hyperbolic structure.

Throughout, we use the symbol A to refer to both the measured lamination A and its support, realized
geodesically with respect to any number of hyperbolic metrics. We refer to Remark for a discussion
of how to relax the assumption that )\ is measured. We reserve S to denote a topological surface and %
the topological type of a component of S\ A, while X and Y will denote their hyperbolic incarnations. We
also adopt the following family of notational conventions: the expression g C A means that g is a leaf of A,
and Y C X \ A means that Y is a component of (the metric completion of) X \ A, etc. The notation of
[Bon96] is used as inspiration, since we will make direct appeals to the results therein. However, our situation
requires more care, since we have more objects to keep track of. A key difference is that we will focus not
on the relative shear between complementary subsurfaces of X \ A, but on the relative positioning of pairs
of boundary leaves of A\, equipped with a natural collection of basepoints determined by the orthogeodesic
foliation.

Hexagons. Given X € T(S) and A € ML(S), realize A geodesically on X. Construct the orthogeodesic
foliation Oy (X) on X with piecewise geodesic spine Sp and dual arc system a = a(X), realized orthogeodesi-
cally with respect to X and A. The union A\, = AU« is a geometric object on X that fills; that is, the metric
completion of X \ A, is a union of geometric pieces that are topological disks, possibly with some points on

the boundary removed correspondlng to spikes. We lift the situation to universal covers )\ - X where we

have also the full preimages Sp, )\ a, etc., of various objects.

Let H be the vertex set of Sp7 vygwﬂl sometimes refer to v € H as a hexagon. Indeed, to v there is
associated a component H, of X \ Ao which is generically a degenerate right-angled hexagon, though H,
may also be a regular ideal or right-angled polygon, for example. We reiterate that, by abuse of terminology,
any complementary component H, of)? \ Aq is called a hexagon, no matter its shape.

If {H, : v € H} contains components that are not degenerate right-angled hexagons in the usual sense,
then « corresponds to a simplex of @ (S \ A) of non-maximal dimension (or the empty set, if A is filling
and ¢ is empty). One may always include « in a maximal arc system (3, which necessarily defines a simplex

of full dimension. The complementary components of X \ :\; are now degenerate right-angled hexagons in

the usual sense, and gluing them in pairs along 8\ a gives the more general “hexagons” of X \ :\; . We will
often tacitly choose and work with a maximal arc system containing the original when convenient.

Pointed geodesics. We now define a natural family of basepoints associated to boundary leaves of . For
v € ‘H and its associated hexagon H,, define the A-boundary 0\H, of H, to be the set of leaves of X that
meet 0H,,.

For v € ‘H and g a leaf of 9\ H,, define p, to be the orthogonal projection of v to g. Observe that v and p,
lie along the same (singular) leaf of O (X). The orientation of S gives H, an orientation and hence orients
OH,; this yields an orientation-preserving, isometric identification of (g, p,) with (R,0). We refer to points
on a based geodesic by their signed distance to the basepoint, so that 0 refers to p, while +x refer to the
points at signed distance +x from p,,. s

For a pair v # w € H not in the same component of Sp, there is a unique geodesic g € 0\ H, that
separates v from w. Symmetrically, there is such a pointed geodesic g,, € OrH,, separating w from v. Note
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that gY = g¢b, occurs if and only if this leaf is isolated, and by the assumption that A is measured, projects
to a simple closed curve component of A\. Even in this case, the points p, and p,, are in general different.

13.2. The shear-shape cocycle of a hyperbolic structure. Our first task towards defining the geometric
shear-shape cocycle o (X) of a hyperbolic structure X is to construct a weighted, filling arc system A(X) €
P(S \ \) which records the shapes of the complementary subsurfaces.

With the technology we have developed up to this point, we now have many ways of constructing A(X),
all of which are easily seen to be equivalent:

e To each a € a(X), we associate the weight ¢, := i(O)(X), en), where e, is the edge of Sp dual to
«a. Equivalently, ¢, is the length of the projection of e, to either of the two leaves of A to which it
is closest. Then set A(X) =" cpa.

e Each component Y C X \ X is naturally endowed with a hyperbolic structure; by Theorem this
metric corresponds to a weighted, filling arc system in | 2%y (Y, 9Y)|g, and we let A(X) denote the
union of these arc systems over all components of X \ A.

e Let ¢ be the quadratic differential with |Re(q)| = Ox(X) and |Im(q)| = A; then set A(X) = A(q).

The final definition together with the results of Section [10]implies that A(X) € 2(S\ A) for every hyperbolic
structure X on S. In the interest of providing the reader with geometric intuition for this condition, we have
included an alternative, purely hyperbolic-geometric proof of this fact below.

Lemma 13.1. With notation as above, A(X) € (S \ \).

Proof. By Theorem it suffices to show that for each minimal, orientable component p of A, the sum of
the metric residues of the crown ends of X \ X incident to p is 0. If p is a simple closed curve, then the
metric residue is just equal to the (signed) lengths of the boundary components resulting from cutting along
w, which clearly must match.

So assume that p is not a closed curve and pick an orientation. Construct a geometric train track 7 snugly
carrying p as in Construction then 7 inherits an orientation from the inclusion of p and so has well
defined left- and right-hand sides. As in Section every branch b of 7 has a well-defined length along A
which we denote by £.(b) > 0. At each switch s of 7, let hy be the leaf of the horocyclic foliation of N, (1)
projecting to s. By assumption of snugness, the spikes of S\ 7 correspond with the spikes of S\ u, so the
union of the hy truncates each spike of each crown end incident to p by hs.

Each crown incident to p inherits an orientation from the chosen orientation on pu, and we now compute
the total metric residue with respect to these orientations and the truncations induced by the hy’s. Recall
that the metric residue of an oriented crown C is the alternating sum of the lengths of the geodesic boundary
segments running between the truncation horospheres (Deﬁnition. Each such geodesic segment defines a
co-oriented trainpath (b;-...-b,, ) in 7 (i.e., a trainpath and a distinguished side, left or right, corresponding
to + and —, respectively) which runs along the entirety of a smooth component of the boundary of X \ 7.
Using this identification, we may compute that the corresponding contribution to the total metric residue is
given by £ 3. £-(b;).

Finally, we observe that every branch of 7 is a subpath of exactly two smooth boundary edges of X \ 7
(corresponding to its left and right sides). Therefore, the sum of the metric residues of all of the crown
ends incident to g is the sum of the contributions of the corresponding co-oriented trainpaths, which is
necessarily 0 since each branch is counted twice, once with positive and once with negative sign. Thus

A(X) e B(S\N). O

Shears between nearby hexagons. Our second step towards defining o, (X) is to determine how to
record shearing data between two hexagons that lie in different components of X \ A yet are close enough
together. Except for sign conventions (see Remark , our discussion is essentially identical to Bonahon’s
definition of shearing between the plaques of a maximal lamination [Bon96l §2]. Our restriction to pairs of
nearby hexagons reflects the fact that if two hexagons are far apart, a path connecting them may meet a
subsurface of X \ A in a variety of ways.

Given v, w € H, consider the associated pointed geodesics (g%, p,) € O\H, closest to H,, and (g2, p.) €
OxH,, closest to H,. We say that the geodesic segment k,, ,, C X joining p, to py, is a simple piece if k,, ,,
projects to a simple geodesic segment in X and £, ,, bounds a spike in every hexagon that it crosses. That
is, if ky, crosses H, for some u € H, then k, ., N H, bounds a triangle in H,, two sides of which lie on
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asymptotic leaves g¢ and gy’ defining a spike of A If ky.w is a simple piece, then we say that (v,w) is a
simple pair. .

We observe that if v, w € H are close enough together and lie in different components of Sp, then (v, w) is
a simple pair. The exact value of “close enough” is unimportant, but we note that it suffices for d(H,, H,)
to be smaller than the length of the shortest arc of a(X).

Now following Bonahon [Bon96] Section 2], let A, ., be the leaves of X that separate g from gp,, equipped
with the linear order < induced by traversing k., from p, to p,. Since (v,w) is a simple pair, the subset
of those leaves that are also the boundary of a complementary component of X \ A come in pairs that are
asymptotic in one direction. The partial horocyclic foliations on the wedges bounded by pairs of asymptotic
boundary leaves extend across the leaves of A, ,,, foliating the region bounded by g;’ and g,,. In particular,
the leaf of the horocyclic foliation containing p, meets g2, (and the leaf containing p,, meets g\*).

Since the orthogeodesic foliation is equivalent to the horocyclic foliation in spikes, we see that if (v, w) is
a simple pair then the leaf of Oy, , (X) containing p, meets g%, (and the leaf containing p,, meets ¢*). In

fact, simplicity implies that Op ()Z' ) foliates the “quadrilateral” bounded by g%, ¢, and the two leaves of
On

Definition 13.2. Suppose that (v, w) is a simple pair of hexagons. Using the orientation conventions of
Subsection identify the corresponding pointed geodesics (g%, p,) and (g%, pw) with (R,0). Now since
the hexagons are close enough, the singular leaf of Oy, , ()Z' ) containing p, meets g2 in some point r € R,
and we set o (X)(v,w) = —r. See Figure[1§

v,w

(X) containing p, and p,,.

v,w
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FI1GURE 18. Computing the shears between two nearby hexagons v and w. In this example,
r <0, so ox(X)(v,w) > 0.

1

It is not hard to see that o (X)(v,w) remains the same if we flip the roles of v and w. Indeed, following
along the leaves of the orthogeodesic foliation defines an orientation reversing isometry from a subsegment
of gV to a subsegment of g, that takes ¢t — r —¢t. In particular, p, maps to a point on g;, that is positioned
r signed units away from p,,, and so we see that o) (X)(v, w) = ox(X)(w,v).

Remark 13.3. Our choice to set o (X)(v,w) = —r instead of +r records “how far along g? you must travel
from 7 to get to p,.” Though this convention is the opposite of what appears in [Bon96], it allows us to
combine the data of o (X)(v,w) and A(X) into a system of train track weights on a standard smoothing
(Construction just below). Our convention also parallels our choice of [-]; function when measuring
periods of a quadratic differential (Lemma , which makes the relationship between the hyperbolic
geometry of (X, \) and the flat geometry of g(Ox(X), A) more transparent.

Below, we give an elementary estimate that will be used in the proof of Proposition [13.12} compare with
[Bon96l, Lemma 8].

Lemma 13.4. Suppose that (v, w) is a simple pair of hexagons. Let (g%, p,) and (g, pw) be the associated
pointed geodesics. Then the geodesic segment k, ,, joining p, to p,, satisfies

|UA(X)(kv,w)| < g(kv,w)-
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Proof. As (v,w) is simple, the partial orthogeodesic foliation Oy, ., ()Z' ) foliates the region U bounded by

gy, g, and the two leaves of OAW()? ) containing p, and p,,. This foliation gives rise to a 1-Lipschitz
retraction 7 from U to g;, defined by following the leaves of the orthogeodesic foliation to g;,. The image
7(ky ) is then equal to the segment of g, joining p,, to the point labeled by o (X)(v,w), which has length
|oa(X) (v, w)]. The lemma follows. O

Hyperbolic shearing as train track weights. Now that we have explained how to record the shapes
of X \ A (Lemma and the shears between nearby hexagons (Definition , we can package this
information together to define the geometric shear-shape cocycle o5 (X) of a hyperbohc structure X.

Below, we realize the shape and shear information specified above as a weight system on a standard
smoothing of a geometric train track carrying A; this strategy allows us to specify o (X) by a finite collection
of information. Once we show that the weights are well-defined and satisfy the switch conditions, we then
invoke Proposition to interpret this weight system as an (axiomatic) shear-shape cocycle (see Definition
13.8)). This reinterpretation in turn makes it apparent that our initial choice of train track does not matter.

Using Construction choose a geometric train track 7 C X that carries A snugly and let 7, be a

standard smoothing of 7U (X)) (see Construction . Note that the components of X \ T, are in bijection
with the set of hexagons H, and that the assumption that 7 carries A snugly ensures that if two hexagons
correspond to adjacent components of X \ T then they either share an edge of & or form a simple pair. We
recall that two hexagons are a simple pair if the geodesic connecting their basepoints passes only through
spikes of S\ .

Construction 13.5. Fix 7, C X as above. We then associate a weight system w(X) € R?(7e) as follows:

e To each branch corresponding to o € a, assign the weight ¢, = i(Ox(X), e, ), where e, is the edge
of Sp dual to a. )
e For each branch b C 7, that dos not correspond to an arc of a, choose a lift b € 7. Let v,w € H de-

note the vertices of Sp corresponding to the hexagons adjacent to b, and set w(X)(b) = ox(X)(v,w).

Lemma 13.6. Let X, \, a and 7, be as above. Then the edge weights w(X) € R*(") given by Construction
13.5| satisfy the switch conditions.

Proof. Reference to Figure u 19| will provide clarity throughout. We note that 7, is generically trivalent, but
may be 4-valent if there are arcs a1, as € a whose endpoints on A lie on a common leaf of the orthogeodesm
foliation. We give an argument only for the trivalent switches of 7,, and leave it to the reader to make
the necessary adjustments for 4-valent switches (the statement for 4-valent switches can also be deduced by
continuity).

Let s be a trivalent switch; then standing at s and looking into the spike, there are small half-branches
exiting s on our right and left; call these r and ¢, respectively. By our convention on standard smoothings,
every half-branch of 7, corresponding to an arc of ¢ is a right small half-branch.

If no branch of s corresponds to an arc of o, then the arguments appearing in [Bon96, Section 2] imply that
the weights satisfy the switch conditions, because the orthogeodesic foliation is equivalent to the horocycle
foliation in near s. See also [Pap91) Section 6] for a discussion more similar in spirit to ours.

Otherwise, the right small half-branch r is labeled by some « € . Let b be the large half-branch incident
to s. Give names also to the hexagons incident to s and their distinguished points on b or ¢ by projection;
they are N, SE, and SW € H, and py, psg, psw respectively, where b and ¢ form part of the boundary of
N, ¢ and r form part of the boundary of SE, and r and b form part of the boundary of SW. See Figure

Now take d = d(psw,pse), which is equal to w(X)(r) = ¢, > 0 by definition. Define also

s1 = [w(X)()| = dr(psw,pn) and sz := [w(X)(0)| = d-(pN, PsE).
Here, d, is understood to mean the distance between leaves of the orthogeodesic foliation near 7, measured

along any leaf of A (see Section for an explanation of why this value is well-defined).
There are 3 kinds of configurations for the projection points psw,pny and psg that determine the signs

of w(X)(b) and w(X)(£):
(1) The point py precedes both psw and pgg with respect to the orientation of 7 on induced by Hy,
so that
w(X)(b) = —s1 and w(X)(¢) = —s2 with sg > s7.
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FIGURE 19. Left: A local picture of 7 near s. Right: Case (3). The switch condition is
satisfied because s;1 = d — ss.

In this case, d = s3 — s1 and so d — s = —s1, which is exactly the switch condition.
(2) Both psw and pgg precede py, so that

w(X)(b) = s1 and w(X)(¢) = so with s1 > so.

This possibility gives that d = s; — s3 and so d + so = s1.
(3) The point psw precedes py which in turn precedes psg, so that w(X)(b) = s1 and w(X)(£) = —sa.
In this case, d = s1 + s2 and so d — s = s1, which is again the switch condition.
Therefore, no matter the configuration of points py,psw, and psg, we see that the switch conditions are
fulfilled at s, completing the proof of the lemma. O

Remark 13.7. It is important to note that w(X) is generally not the same as the weight system coming
from the shear coordinates of a completion of A (unless A\ was maximal to begin with).

Invoking Proposition and Lemma [13.1] we see that the weight system w(X) defines a shear-shape
cocycle with underlying arc system A(X).

Definition 13.8. The geometric shear-shape cocycle (o,(X), A(X)) of a hyperbolic metric X is the unique
shear-shape cocycle for A corresponding to the weight system w(X) of Construction

The rule that assigns to a hyperbolic structure its geometric shear-shape cocyle therefore defines a map
ox:T(S) = SH(N)
X = ox(X),
which is the subject of the rest of this article.

Train track independence. We have employed the language of train tracks for convenience — the ties of
a train track are a useful class of measurable arcs in the sense that they can be made transverse to A and
disjoint from « (or record the weight associated to an arc of «). However, Construction and Definition
a priori depend on the choice of geometric train track 7, carrying A.

Now that we have identified the weight system w(X) with the shear-shape cocycle o (X), however, we
can invoke both the axiomatic and cohomological interpretations (Definitions and to see that the
value of 0 (X) on any arc k transverse to A but disjoint from « does not depend on the choice of geometric
train track. Indeed, let k be any such arc; then by transverse invariance (axiom (SH1)) we may replace k
with a concatenation of short geodesics, all of which are transverse to A but disjoint from a. By additivity
(axiom (SH2)), it therefore suffices to show that the value of oy (X) on any short geodesic disjoint from a
does not depend on the train track.

Lemma 13.9. Let k be a short enough geodesic segment on X that is transverse to A. Lift k to an arc k
on X and let v and w be the hexagons containing the endpoints of k; then

ox(X) (k) = o (X)(v, w)
where on the left o) (X) represents the axiomatic shear-shape cocycle and on the right o (X) represents the

shear between nearby hexagons (Definition [13.2)). In particular, o (X)(k) does not depend on the choice of
train track employed in Definition [I3.8]
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In fact, the conclusion of this lemma holds for all simple pairs.

Proof. So long as k is short enough (shorter than all arcs of a(X)) we know that (v,w) is a simple pair.
Using axiom (SH1), we may therefore isotope k through arcs transverse to A but disjoint from « to an arc
k', defined to be the concatenation of k, ,,, the geodesic connecting the points p, and p,, on the boundary
geodesics g;’ and g,,, together with segments of the orthogeodesic foliation inside each hexagon H, and H,,.

Let 7 be a geometric train track snugly carrying A defined with parameter ¢; then the collapse map
7 : Ne(A) — 7 takes &/ to a train route on 7, hence on 7,. Orient k' (and hence also the train route 7(k’))
so that it travels from v to w. Let v = uq,us,...,uny = w denote the sequence of hexagons corresponding
to regions of X \ T bordering this train route, so that the regions corresponding to u; and u;1; both meet
the same subsegment of 7(k’). Let p; denote their corresponding projections onto A. Note that since (k')
is carried on 7 < 7,, no pair of subsequent hexagons u; and w;4; lies in the same component of §B This
plus the construction of the train track implies that (u;, u;41) is a simple pair, and we can measure the shear
ox(X)(ui, uir1) (up to sign) as the distance along the train track between m(p;) and 7(p;41).

Now given 7, carrying A\, we observe that k’ also determines a (pair of) relative cycle(s) in the corre-
sponding (orientation cover of the) e-neighborhood of Ay. The value o5 (X)(k) = ox(X)(E’) is then equal
to the value of the cohomological shear-shape cocycle evaluated on either of the oriented lifts k' of k' which
cross the lift of A with positive local orientation. We may therefore express

(K] = [t1] — [to] + [ts] — ... & [tn—1]

where ¢; is a (lift of a) tie corresponding to the branch of the train track connecting the regions corresponding
to u; and w41, lifted to the orientation cover to have positive intersection with A. See Figure
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FIGURE 20. Measuring the shear of a small arc using a geometric train track. By isotoping
k to a proper arc in the geometric train track neighborhood and then expressing its relative
homology class as a sum of the branches, we can compute its shear as the alternating sum
of shears between adjacent hexagons.

But now by construction, we know that o (X) evaluated on [t;] is just the shear oy (X)(u;, ui41). In turn,
this shear is equal to the signed distance along the train track between 7(p;) and 7r( i+1) (where the sign
is determined by the local orientation of A). Combining this with the expression for [k'] above we see that
ox(X)(k) is exactly equal to the signed distance along the train track between m(p;) and m(py), which is
the shear o (X)(v,w). O

We note that in the proof above, the cohomological interpretation of shear-shape cocycles provides a
convenient workaround for the obstacle that the train route with dual transversals ti,...,tx_1 is not in
general isotopic to k through arcs transverse to A. Regardless, the relative homology class defined by
k' N N.(N) is homologous to a linear combination of {¢;} in the orientation cover of N (A).

Remark 13.10. The lemma above can also be proved by splitting any two geometric train tracks to a com-
mon subtrack [PH92, Theorem 2.3.1]. Each splitting sequence can then be realized in the orthogeodesically-
foliated neighborhood N (A) C X by cutting along compact paths in the spine associated to a spike, as in
[ZB04, Section 3|. Splits induce maps on weight spaces, and so Lemma is essentially equivalent to the
statement that Construction is compatible with splitting and collapsing. See also [Bon97b, Lemma 6].
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The cocycle as a map on pairs. It will be convenient to repackage the data provided by o (X) in yet
another form, which also explains our choice of notation in Definition [13.2]

If v,w € H can be joined by a Lipschitz continuous segment k, ,, which is transverse to A, disjoint from
«, and meets no leaf of A twice, then we say that (v,w) is a transverse pair and that k, ., is a transversal.
If (v, w) is a transverse pair, we say that r is between v and w if there is a transversal k, ., that decomposes
as a concatenation of transversals ky ,, = ky , - ky . Finally, we define

oA(X)(v,w) := ox(X)(kyw)

and declare that o5 (X)(v,v) = 0. Observe that if (v, w) are a simple pair then this agrees with our definition
of the shear between nearby hexagons (Definition |13.2)).

Lemma 13.11. The shear-shape cocycle o (X) defines a map on transverse pairs that satisfies
(1) (mi-invariance) for each v € m1(X), we have ox(X)(yv,yw) = oA (X) (v, w).
(2) (finite additivity) If (v,w) is a transverse pair and r is between v and w, then

oA(X) (v, w) = oA(X)(v,7) + oA (X) (7, w).
(3) (symmetry) o (X)(v, w) = ox(X)(w,v).

The proof of this lemma is simply a consequence of unpacking the definitions and showing that two different
choices of transversals give the same shear values; the latter statement is just a repeated application of Axiom
(SH3).

13.3. Injectivity and positivity. We now record some initial structural properties of the map o defined
above. In particular, we demonstrate that o is injective and interacts coherently with the orthogeodesic
foliation map Oy and the shear-shape coordinatization I of transverse foliations.

Observe that injectivity of o) is equivalent to the statement that if two hyperbolic structures have the
same complementary subsurfaces and same gluing data along A, then they must be isometric. As the
horocyclic and orthogeodesic foliations are equivalent in spikes of complementary subsurfaces, the proofs of
[Bon96l Lemma 11 and Theorem 12] may be invoked mutatis mutandis. We outline this argument below for
the convenience of the reader, and direct them to [Bon96] for a more thorough discussion of the estimates
involved. We remark that this strategy also appears in the proof of Proposition where we use it to
piece together Lipschitz-optimal homeomorphisms along .

Proposition 13.12. The map oy : 7(S) = SH(A) is injective.

Sketch of proof. Fix homeomorphisms (S,X) with (X;, ) that lift the markings S — X; and so that each
component scS \ hy maps homeomorphically to a component Y; C X; \ \fori= 1,2.

Suppose that ox(X1) = 0x(X3); then in particular A(X;) = A(X>) and so by Theorem [6.4] the comple-
mentary subsurfaces X; \ A and X5 \ A are isometric. Therefore, for a given component X C S\ A, we can
find an m (X) equivariant isometry ¢y : Y1 — Yg Define ¢ : X1 \A— X2 \ A to be the union of these maps
on each complementary component; by construction, ¢ is an isometry. _ _

We need to show that ¢ extends to a 71 (S)-equivariant isometry ¢ : X1 — X5. To prove this, we apply
the arguments of [Bon96| Lemma 11], which we summarize presently. The first step is to construct a locally
Lipschitz continuous extension of ¢; this step employs the length bound of Lemma and some elementary
hyperbolic geometry, and the arguments of the first ten paragraphs of [Bon96, Lemma 11] may be applied
verbatim.

Asin Bonahon’s original proof, we now show that ¢ is actually 1-Lipschitz, given that it is locally Lipschitz.
We first show that ¢ does not increase the length of leaves of the orthogeodesic foliation.

Given any segment ¢ of a leaf of the orthogeodesic foliation Oy (X7), the length of ¢ restricted to any
hexagon H, where u € H is completely determined by the isometry type of H, and the distance along hy
from p, € O\H,. As ox(X1) determines the shape of X; \ A, we can recover this information and hence
determine the length of ¢ N H,, just from the data of o (X1).

From o (X2) = oA(X1), we deduce that the length of ¢ in any hexagon of X is equal to the length of
©(£) in the corresponding hexagon of )Z'g. Moreover, since ¢ is locally Lipschitz, the 1-dimensional Lebesgue
measure of ¢(£) N () is at most the 1-dimensional Lebesgue measure of £ N A. By a now classical fact the



SHEAR-SHAPE COCYCLES FOR MEASURED LAMINATIONS 59

latter is zero [BS85], hence so is the former. Therefore, the length of ¢ in X is equal to the length of £ in
X, N

Now there is a path joining any two points in X; built from geodesic segments and segments of leaves of
the orthogeodesic foliation. The argument above shows that ¢ preserves the lengths of such paths, so ¢ is
globally 1-Lipschitz. The construction is completely symmetric, so ¢ ~! is 1-Lipschitz as well. Now every
1-Lipschitz homeomorphism between metric spaces with 1-Lipschitz inverse is necessarily an isometry, and
equivariance of ¢ is immediate from the construction. Therefore X; and X5 must be isometric. (I

The diagram commutes. We have now developed sufficient technology to prove that the geometric shear-
shape cocycle of a hyperbolic metric is the same as the shear-shape cocycle associated to its orthogeodesic
foliation. In other words, Diagram commutes. Compare with [Mir08, Proposition 6.1].

Theorem 13.13. For all A € ML and all X € T(S) we have o)(X) =1, 0 O,(X).

Proof. Fix a standard smoothing 7, of a geometric train track 7 for A on X. Our approach is to compute
both o (X)(b) and I, 0 Ox(X)(b) for each branch b of 7,. These numbers will coincide, so by Proposition
oA (X) =T, 0 O\ (X).

Let Ty C X be the piecewise geodesic triangulation of X whose vertices are the vertices of Sp, so that
there is an edge between v,w € Sp if the corresponding regions of X \ 7, share a branch. This recipe
generically yields a triangulation, but may have quadrilaterals in the case that two points of a(X) N A lie
on the same leaf of Oy(X) N N.(A). In this case, we may either choose a smaller initial neighborhood to
define our geometric train track so that this does not occur, or these points correspond to arcs that meet an
isolated leaf of A\ on either side; in the latter case, choose either diagonal that crosses the quadrilateral to
include into Tx. Observe that each edge of Tx is either transverse to O5(X) or a segment of a leaf (on the
off chance that two adjacent regions have exactly 0 shear between them).

Let ¢ = g(Ox(X), A), and recall that Proposition provides a homotopy equivalence Dy : X — ¢ in
the correct homotopy class satisfying Dy, Ox(X) = V(q) and Dy, A = H(q) both leafwise and measurably.
Furthermore, D) maps T x to a (topological) triangulation of ¢ with vertices at its zeros. It therefore remains
to show that o5(X) evaluated on a branch of 7, is the same as I (g) evaluated on the dual edge of this
triangulation.

Now by definition, A(X) = A(q), so consider a branch b of 7, not corresponding to an arc of the arc
system. Dual to b there is an edge e of the triangulation Dy (T x) which is transverse to the orthogeodesic
foliation Oy (X) on ¢ (since Tx was transverse to O(X) on X). Up to sign, the value of Ix(g) on b is the
magnitude of the real part of the period of e, which is just the geometric intersection number (O (X), e)
by transversality.

On the other hand, we have that g(X)(b) is equal to the shear between the two hexagons on either side
of b. This in turn is equal to the geometric intersection number i(Ox(X), ky ) up to sign, where k, ,, is the
geodesic connecting the vertices p, and p,, of AN a(X). Since Dy takes k, ,, to an arc transversely isotopic
to e, we have that |o\(X)(b)| = | Ix(q)(D)].

Finally, to show that the signs are equal, fix matching orientations on k, ,, and e. These induce a local
orientations on the leaves of A so that the algebraic intersection of A with k, ,,, respectively e, is positive.
In turn, this induces a local orientation on the leaves of O5(X) near k, ., respectively e, and our sign
conventions are equivalent to stipulating that the sign is positive if &, ,,, respectively e, crosses Oy (X) from
left to right and negative if it crosses from right to left (compare [Mir08, §5.2]). In particular, the signs agree
and so o (X)(b) = Ix(q)(b) for all branches b, completing the proof of the theorem. O

Corollary 13.14. For all 4 € A()), we have an equality
WSH(O-)\(X)a ,U/) = Z(O)\(X)a /J) = KX(M) > 0.
In particular, oy (7(S)) € SHT ().

Proof. The first equality is a direct consequence of Theorem [13.13| and Proposition [10.12l The second
equality was proved in Lemma [5.7] O
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14. SHAPE-SHIFTING COCYCLES

In the previous section, we explained how to associate to each hyperbolic structure X a shear-shape cocycle
oA(X). In this one, we explain how to upgrade a small deformation s of the cocycle into a deformation of
the hyperbolic structure; this is eventually used to prove that oy : 7(S) — SHT()) is open (Theorem
below). The main issue that we need to overcome is that we must simultaneously change the geometry of
the non-rigid components of X \ A while shearing these subsurfaces along one another.

The goal of this section is therefore to build, for every small enough deformation s of o) (X), a m1(S)-
equivariant shape-shifting cocycle that records how to adjust the relative position of geodesics of A:

ot OWH X OZH — Isom™ X

where O\H := {(hy,py) C OaH, : v € H} is the set of boundary geodesics of A equipped with basepoints
obtained from projections of the vertices of é\o See Proposition

In Section below, we explain how to modify the developing map X — H2 according to s, resulting
in a new (equivariant) hyperbolic structure X with geometric shear-shape cocycle ox(X)+ (Lemma
By fixing a pointed geodesic (h,,p,) € 8;7—[ we identify Isom™ ()~() with TIX so that the projection ¢ of
{0s((ho, o) (P, Pw)) | (B, puw) € OxH} to X is then be the geodesic realization of A in the new metric Xj.

When the deformation s preserves A(X), the cocycle Ps corresponds to a cataclysm map: the complemen-
tary components of X \ \ are sheared along the leaves of X and map isometrically into the deformed surface
Xs. When s alters A(X), we must shear the complementary subsurfaces while also simultaneously changing
their shape, introducing complications not present in Bonahon and Thurston’s original considerations.

Deforming the cocycle. We first make explicit what we mean by a deformation of a shear-shape cocycle;
we quantify what we mean by “small” in Section [14.2

Observe that if o and o’ in SHT()\) are close, then by Proposition we know that their underlying
weighted arc systems A and A’ are close in Z(S\\). In particular, the corresponding unweighted arc systems
a and o must both live in some common top-dimensional cell of Z(S \ A), i.e., must both be contained
in some common maximal arc system 3. Let 7 be some snug train track for A and let 75 be a standard
smoothing of TUS. By Proposition we may then identify o and o’ as weight systems on 73; the difference
o — o' € W(rs) is then a deformation of o. ;

In general, if (0, 4) € SHT(\) and B is any maximal arc system containing the support of A, then the
deformations we consider in this section are those s € W(73) such that o + s € W(7g) corresponds to a
positive shear-shape cocycle. Passing between equivalent definitions of shear-shape cocycles, we see that
we may also think of 5 as a “shear-shape cocycle with negative arc weights.” The underlying weighted arc
system of any deformation s will be denoted by a; while its coefficients are not necessarily positive, they will
satisfy the zero total residue condition of by construction.

By Theorem the arc system A+ a gives each component of S\ A a new complete hyperbolic metric Y
with (non-compact) totally geodesic boundary. Since the supports of A and A + a are both contained inside
of some common maximal 3, one may set up a correspondence between the complementary components of
X \ A\, with the components of Y \ supp(A4 + a) (adding in weight 0 edges as necessary).

A blueprint. To help guide the reader through this rather intricate construction, we include here a top-level
overview of the necessary steps, together with an outline of the section. Briefly, our strategy is to explicitly
define @5 on two types of pairs of pointed geodesics: the “simple pairs” between which the orthogeodesic
foliation is comparable to the horocyclic, and the pairs which live in the boundary of a common subsurface.
Piecing together these basic deformations then allows us to define g on arbitrary pairs of pointed geodesics.

Our construction of ¢, for simple pairs parallels Bonahon’s construction of shear maps [Bon96) Section 5],
and as such requires a detailed analysis of the geometry of the spikes of X \ X. We therefore devote Section
to recording a number of useful notions and estimates from [Bon96]. In this section, we also introduce
the “injectivity radius of X along A,” which measures the length of the shortest curve carried on a maximal
snug train track for A and plays a crucial role in our convergence estimates.

After these preliminary considerations, we turn in Section to the actual construction of ¢4 on simple
pairs. As in [Bon96], the map is defined by adjusting the lengths of countably many horocyclic arcs in an
appropriate neighborhood of A, compensating for changing shears between hexagons. Unlike in [Bon96], we
must also adjust the arcs to account for the changing shapes of each of the spikes (as we are deforming
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the complementary subsurfaces). Convergence of the resulting infinite product of parabolic transformations
is delicate; our approach follows [Bon96, Section 5] with influence from the more geometric approach of
[Thu98]. An accessible treatment of Thurston’s construction of “cataclysm coordinates” can be found in
[PT07, Section 3.5].

We then turn in Sections and to defining (; on pairs of geodesics in the boundary of the same
hexagon or the same complementary subsurface, respectively. It is here that our work significantly differs
from that of Bonahon and Thurston. In these sections we also develop the idea of “sliding” a deformed
complementary subsurface along the original; this viewpoint allows us to easily demonstrate a number of
otherwise nontrivial relations between M&bius transformations (see Propositions [14.18] [14.19} and [14.24).

Finally, in Section [14.5| we build the shape-shifting cocycle ¢, from these pieces; the cocycle relation
(Proposition then follows from the cocycle relations for pieces and the separation properties of A

Note. We remark that throughout this section and the next, we consider isometries via their action on a
pointed geodesic, and compositions should be read from right to left.

14.1. Geometric control in the spikes. We first record some useful definitions and associated geometric
estimates. These estimates play a crucial role in establishing convergence of the infinite products appearing
in Section below. Many of our definitions follow Bonahon’s, but in order to contend with the fact
that the complementary subsurfaces of A are not always isometric, we must relate certain constants to the
geometry of A on X (see Lemma in particular).

Our discussion will take place with certain data fixed. Choose a hyperbolic surface X € T(S) and a
measured lamination A € ML(S). Let ¢ > 0 be small enough so that an e-geometric train track 7 on X
carries A snugly. The standard smoothing 7, for the arc system a = a(X) provides us with a vector space
W (1) that models SH(A; ). With 7, fixed, we endow the vector space of weights on branches of 7, with
the sup norm || - ||, , and restrict this norm to the weight space W (7).

Let k, be an oriented geodesic transverse to a branch b € 7 that also avoids a. Following Bonahon, we
define the divergence radius or depth ry(d) € Zsq of a component d of k; \ A to be “how long the leaves of A
incident to d track each other,” as viewed by .

More precisely, lift everything to the universal cover X. By convention, set r,(d) = 1 if d contains one
of the endpoints of k;. Otherwise, d is contained in a spike of H, for some v € H, i.e., d connects a pair
of asymptotic geodesics g; and g;. The divergence radius r,(d) is then the largest integer r > 1 such that
m(g}) and 7(g;) successively cross the same sequence of branches

b_7-_|_17 b_7-+2, veey bo, ...b7._2, b7._1

of 7, where by is the lift of b meeting ]:711 and 7 : /\@(X) — T is the collapse map. By equivariance, r,(d) is
clearly independent of the choice of lift k; of k.

Remark 14.1. After projecting back down to 7 C X, either b_,41 - ... - by or by - ... - b._1 defines a train
route 74 in 7 that starts at b and terminates by “opening up” into the projection of H, in X. That is, the
geodesics g;' and g, diverge from each other (at scale €) at the terminus of 4.

Now there are boundedly many spikes of X \ A\, and for each » > 1 each spike may contain at most 1
component d C kp \ A with depth exactly r. This gives us the following bound:

Lemma 14.2 (Lemma 4 of [Bon96] and Lemma 5 of [SB01]). For any branch b of 7 and any transversal ky,
the number of components d of k;, \ A with r,(d) = r is at most 6|x(5)].

The train track interpretation of the depth of a segment also allows us to bound the value of a shear-shape
cocycle s in terms of its weights on a snug train track and the depth of its endpoints.

More specifically, for each component d of ky \ A, let kgl be the subarc of k; joining the initial point of
ky to any point of d. Then for any combinatorial deformation s and b a branch of 7,, there is an explicit
formula for s(k{) as a linear function of the weights of s on 7, with at most r,(d) terms [Bon97b, Lemma
6]. Conceptually, this formula arises by splitting 7, open along the spike s containing d, until d is “visible”
in some new track 7/, carried by 7, (see also the proof of Lemma .

The exact expression for s(k;g) will not be important for us; instead, we record the following estimate,
which follows by considering the growth of edge weights upon splitting.
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Lemma 14.3 (Lemma 6 of [Bon96] and Lemma 6 of [SB01]). Let k; be a transversal of a branch b. Then
ls(ki)| < llsll-.7s(d)
for every s € SH()A; ) and every component d of kj \ .

We remark that our definitions of || - ||, and 73(-) make the bound given in Lemma hold without a
topological multiplicative factor, as in [Bon96].

Geometric estimates on depth. The depth of a component d of k; \ A is proportional to the distance
from a lift d to the vertex u € H inside of the corresponding spike. The constant of proportionality in turn
depends on how quickly the spike of H, containing d returns to k, on X; we now identify a quantity that
will allow us to estimate this constant. ~ B

Let k£ be any geodesic arc transverse to A such that each lift k£ to X bounds a spike in every hexagon that
it crosses; equivalently, the endpoints of k lie in a simple pair of hexagons. As in Section it suffices for
k to be shorter than the shortest arc of a(X). Now for each leaf g of A, there is a bound R (g) > 0 for the
distance in g between intersections of g with different lifts k; and ko of k. Indeed, any two lifts of k meeting
g differ by a deck transformation v € m(X) determined by a path in X that traces along the projection of
a segment in g and then closes up along k.

We then define the injectivity radius of X along A\ to be

injy(X) := inf glgfx Ri(9)

where the infimum is taken over all transverse arcs k whose endpoints lie in a simple pair of hexagons.
Equivalently, the injectivity radius of A may also be computed by taking a € so that the geometric train
track Tax built from N () is snug and so that for all € > ¢, the train track built from A (A) is the same
(not just equivalent) to Tmax, as follows. E
For each branch of 7y.x, choose a tie ¢, (that is, a leaf of the orthogeodesic (or horocyclic) foliation
restricted to M (\) that is transverse to b). The injectivity radius along X is then equal to the infimum of
the recurrence times of A to any t;,. Using the “length along a geometric train track” function ¢ defined
in Section we may therefore write
(29) injy(X) = _inf £ (v)

Y=Tmax

Tmax

where the infimum is taken over all simple closed curves v carried on the train track mpax-

Remark 14.4. The length of the hyperbolic systole of X is clearly a lower bound for inj,(X), which is
therefore positive. However, inj, (X) can be much larger than the length of the systole.

For example, if A does not fill the surface then there can be a disjoint curve of arbitrarily small length. In
addition, X may have a very short curve 7 transverse to A, and if A\ does not twist around ~, then inj, (X)
is necessarily very large.

We can now relate the geometry of small arcs to their depth and injectivity radius along .

Lemma 14.5 (Lemmas 3 and 5 of [Bon96] and Lemma 4 of [SB01]). Given a branch b of a geometric train
track 7 constructed from A on X and a short transversal ky, there exists B > 0 such that the following holds.
For every component d of k, \ A with depth r,(d),

[x(d) < Be P,
where D) (X) = inj, (X)/9|x(9)|.

Proof. The idea is the same as in the reference, but our constants are different. Small geodesic arcs meeting
a spike s of a hexagon H,, transversely and far away from the vertex v look like horocycles, which have length
that decays exponentially in distance from v. Therefore, we just need to give a lower bound for the distance
between d and v € H, along the spike s in terms of inj, (X) and the topological complexity of S.

Consider the train path 74 starting at b that defines r,(d). By definition, 4 traverses exactly r(d)
branches of 7 (counted with multiplicity). Now 4 decomposes as a concatenation of maximal sub—train
paths with embedded interiors, each forming a simple loop in 7.

190bserve that any e sufficiently close to the supremum of € for which N () is snug satisfies these conditions.
204 simple loop on a train track is a carried curve which traverses each branch at most once.
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The depth 74(d) is thus bounded above by the number of consecutive simple loops in 74 times the size
of the longest simple loop in 7. The size of a simple loop in 7 is in turn bounded above by the number of
branches of 7, which is at most 9]x(S)|. Finally, since each simple loop in 74 is carried on 7 < Tyax it must
have length at least inj, (X) by (29).

Putting the above estimates together, we see that the distance between v and d in H, is at least

inj (X)rs(d) o njy (X)
size of the longest simple loop in 7 = 9|x(9)]

inj, (X) - #{simple loops in 4} > rp(d),

and the lemma follows. O

14.2. Shape-shifting in the spikes. Our discussion now begins to diverge from [Bon96]. While pairs of
asymptotic geodesics are all isometric, the spikes of X \ A come with extra decoration, namely, a choice of
horocycle at each cusp (equivalently, basepoints which lie on a common leaf of the orthogeodesic foliation).
In this section, we explain how to use these decorations to define the shape-shifting cocycle ¢, on pairs of
basepointed geodesics coming from simple pairs of hexagons.

We remind the reader that X, A, and 7, are fixed so that geometric objects like geodesic segments,
hexagons, arcs of a(X), etc. are understood to live in and be realized (ortho)geodesically on X. Throughout
this section we will fix A = A(X) and use it to denote both a weighted arc system as well as the induced
metric on S\ A. Finally, we recall that s is a combinatorial deformation of o (X) which changes A by a; we
will refer to the deformed hyperbolic structure on S\ A by A 4+ a and its hexagonal pieces by G,, for u € H.

Shapes of spikes. The group PSL2(R) acts transitively on pairs of asymptotic geodesics but, having done
so, cannot further act on the family of horocycles based at the spike. To measure this failure, we associate
below a geometric parameter which records the placement of basepoints in each spike.

Suppose that u € H is a hexagon of X \ Ay and s is a spike of H,, that is, a pair of asymptotic geodesics
g and ¢’. Both g and ¢’ come with basepoints p and p’ obtained by projecting u to these geodesics. We then
associate to s the number h4(s) which measures the length of either of the orthogeodesic leaves connecting
u to porp:

ha(s) = d(p,u) = d(p',u).

Our notation reflects the fact that this function clearly depends only on the geometry of X \ A and not the
shearing along A. The reader familiar with the literature will observe that this parameter is essentially an
orthogeodesic version of the “sharpness functions” appearing in [Thu98§].

In order to measure the difference in sharpness functions between the realizations of s in A and in the
deformed metric A + a, we superimpose the hexagons H, and G, and measure the distance between their
boundary basepoints.

More concretely, choose an arbitrary orientation s of the spike s and fix realizations of both H, and G,
inside of H2. As PSLy(R) acts simply transitively on triples in OH?, there is a unique isometry that takes
the realization of s in G, to its realization in H,. The vertex u of Sp is realized in both H, and G,; let p
and ¢ denote the projections of these points to one of the boundary geodesics g of s. See Figure

Lemma 14.6. With all notation as above, the signed distance from ¢ to p along g is

tanh h4(s) > cR

(30) fX,g(g) = elog (‘wnhh,am(s)

where ¢ = +1 if §'is oriented towards the shared ideal endpoint, and € = —1 otherwise.

The parameter fx (5) plays a crucial role below in our definition of the shape-shifting map on spikes. In
our convergence estimates, we will also need to consider the parameter

(31) [[sl := max[fx,s(5)] < o0
which quantifies the maximum distance that the deformation s moves a basepoint in a spike.

Proof. We compute in the upper half plane; up to isometry, we may assume that s is bound by the imaginary
axis V' = iR<( and its translate 2 + V'; the spine of the orthogeodesic foliation in this spike is a subsegment
of the vertical line 1 + V. With this choice fixed, the projections p and g of u to V may be identified
with ie® and ie® for some a and b, respectively. Without loss of generality, we may also assume that V is
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FIGURE 21. Superimposing hexagons to measure the difference in the shapes of their spikes.

oriented upwards (towards 0o); the opposite choice of orientations simply reverses all signs at the end of the
computation.

Now for ¢t > 0, the path ¢ — tanht 4 isech? is the unit speed parametrization of the orthogeodesic
emanating from V at i. Observe that the isometry z +— e%z stabilizes V and takes this segment to an
orthogeodesic segment emanating from ie® = p which is distance a from i. Since the orthogeodesic segment
through p meets the spine 1+ V after traveling distance h4(s) (by definition), this implies that

e* =tanhhy(s).

Similarly, we have that e® = tanhha4(s). Together, these imply that

tanhha(su) .4
tanhhaia(sy)
Taking logarithms, we see that a — b is the signed distance from ¢ to p along V', as claimed. O

Remark 14.7. Note that by Theorem the parameter fx () varies analytically in a (hence s).

Orientation conventions. We now specialize to the case where (v, w) is a simple pair of hexagons with
associated oriented geodesic k, ,, running between p? on g (the projection of v to the boundary leaf of
OxH, closest to w) and pY, on g5,.

Each leaf g C X crossed by k. inherits an orientation by declaring that turning right onto g while
traveling from v to w along k,,, is the positive direction. We remark that if &, ,, crosses a hexagon H,,
then the induced orientation of g\, the geodesic in 0yH,, closest to w, is the opposite of the orientation of
g, induced as a part of the boundary of H,,. On the other hand, the two orientations on g}, induced by k.,
and coming from H, agree. This is an artifact of our sign convention for measuring shears; see Remark [13.3]

If g is a complete oriented geodesic in the hyperbolic plane and t € R, we let T; be the hyperbolic isometry
stabilizing ¢ and acting by oriented translation distance ¢ along g. The opposite orientation of g will be
denoted g, so that T} = T, .

For an oriented spike §= (g7, g%), its opposite orientation is § = (g%, g¥). In particular, we note that if
5'is an oriented spike of H,, crossed by k, ., then 5 is an oriented spike crossed by k., = I}v,w.

Shape-shifting in spikes. Suppose (v,w) is a simple pair and suppose u is between v and w. Let
§= (g%, 9¢) be the spike of u crossed by k, ,, with basepoints p, and p,,. We define the elementary shaping

transformation A(3) € Isom™*(X) = PSLy R determined by X, s, and s to be
(32) AF) =TSP o1y fxe ),

Ultimately, the element A(8) will be the value of the shear-shape cocycle s on the pair (g%, gY); see just
below for an explanation of how we think of A(5) as “changing the shape” of s.

Observe that A(S) is a parabolic transformation preserving the common ideal endpoint of s. A familiar
computation shows that in the spike determined by g% and A(3)gY, the orthogeodesics emanating from p,
and A(3)p,, meet at a point distance h1q(s) from each (supposing that the deformation is small enough).

To the oriented spike § of u, we also associate the elementary shape-shift

(33) P(3) = Tgi"™ 0 A(F) o Tyt = Ty TP o L e )
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where we recall that the value s(v,u) is obtained by thinking of s as a function on transverse pairs (& la
Lemma [13.11). Note that ¢(s) depends on our reference point v: whereas A(3) is eventually identified as a
value of the shape-shifting cocycle s, the elementary shape-shifts ¢(§) are only building blocks for values
of ps.

For the opposite orientation 5 = (g%, g¥), we check

<\ f ,5(5) -f ,s(g)_ f ,5(§) -f ,5(5‘)_ —1
(34) A(5) = T O xa® _ plee@qefe@® _ g(z-1,

Since s(v,u) = 5(u,v), we may similarly observe that ¢(5) = (3)~1.

Take H, ., to be the set of hexagons between v and w equipped with the linearing order u; < us induced
by the orientation of k, ,,. Let H C H,., be any finite subset and order its elements % = {u1,...u,}. For
short, we denote hexagons H; := H,,, spikes s; := §,,, geodesics g; := g, _, etc.

To the finite, ordered set H we associate the product
(35) on = @(s1)0...0op(sy) o Tgiviv’w) € Isom+(X).

The goal of the rest of the section is then to extract a meaningful limit from (4 as H increases to Hy .-
Ultimately, this limit is how we will define the shape-shifting cocycle ¢s on the boundary geodesics gy’ and
gy corresponding to the simple pair (v, w).

Remark 14.8. In the case that \ is maximal, each H; is an ideal triangle and so A = A+ a = (). In this
case, each spike parameter fx (s;) is 0 and we recover the formula from [Bon96| p. 255].

Geometric explanation of . Before proving convergence, however, let us explain the intuition behind
the formulas above. In order to interpret A(S) and ¢(3) as deformations of the hyperbolic structure X,
we will switch our viewpoint to think of them as values of a deformation cocycle, and so as affecting the
placement of pointed geodesics relative to each other. For brevity, let fx «(5) =¢.

Let us focus first on the shaping transformation A(S). The oriented spike § in the hexagon H,, is formed
by two pointed geodesics (g2, pt) and (g%, p?). Fixing our viewpoint at (g2, pt), we may think of A(3) as
deforming X by holding (g7, p) fixed and identifying (g%, p) with A(3)- (g%, p?). This has the overall effect
of “widening” the spike s so that its sharpness parameter increases from hy to haq.

If instead we fix our basepoint to be outside of H,, say at the basepoint py’ on g C 0\H,, then this
transformation can viewed as a composition of left and right earthquakes. Let Q" and Qv denote the half-
spaces to the left of the oriented geodesics g7 and g,,, respectively. Note that QY C . The deformation
A(8) may then be thought of as first transforming all geodesics of X that lie in Q" by Tg*;,t; this has the

effect of breaking X open along g,/ and sliding @, to the left by distance ¢ along g;/ while keeping X \ QY
fixed. The deformation then further transforms all geodesics in QY by T, ;U; this is equivalent to the right

earthquake with fault locus gy, that slides Q” to the right while keeping X \ Q" fixed. The cumulative effect
is then that the spike s has been “pushed” in the direction of s by distance ¢t. See Figure

Remark 14.9. We give one final interpretation of A(S) as “sliding G,, along H,,” in the proof of Proposition
14.19| below (see also Figure , once we have set up the framework to understand the utility of this

viewpoint.

In particular, note that the shear from H, to H, measured from pY to the image of p; under this
composition of earthquakes has increased by ¢ = fx (5). Therefore, if we let ¢! denote the basepoint on
gs corresponding to the hexagon G, then the shear from H, to H, measured from p¥ to the image of g,
under the deformation is exactly the original shear o (X)(v,u) between v and w.

The elementary shape-shift ¢(3) can be interpreted in much the same way, but now the spike should be
pushed distance fx s(5) + 5(v,u) so that the resulting shear (measured between p and the image of ¢3}) is
exactly o (X)(v,u) + s(v,u).

Finally, the composition can be thought of as a composition of the operations described above (read
from right to left). Therefore, ¢y first performs a right earthquake along g2 by s(v,w), then performs an
elementary shape-shift to pushing the spike s,, by (v, u,) + fx,s(sn), then performs a shape-shift for s,_1,
etc. Observe that if ¢ denotes the basepoint in ¢ corresponding to G,,, then by construction the shear
between v and each u; measured from p¥¥ to the image of ¢/ under the composite deformation is exactly the
desired shear o (X)(v, u;) + (v, u;).
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FIGURE 22. The effect of A(8) when considered as a composition of left and right earth-
quakes.

Assuming the convergence of @ to a limit ¢, ,, (a step performed just below), we see that the placement
of vy (gs,pl,) limits to that of ¢y (g5, pY,). This in turn will be the placement of the geodesic (g%, p%,)

relative to (g%, pY) straightened in the deformed surface X s; see Lemma m

Convergence. We now consider the limiting behavior of ¢y as H — H, ; that a limit exists is almost
exactly the content of [Bon96, Lemma 14]. We give a proof here for convenience of the reader and to make
sure that we are extracting the correct radius of convergence, i.e., that the modifications in the cusps actually
do not affect the radius of convergence (even though there are countably many contributions from changing
the shape of each spike).

Recall from Lemma [14.5] that the function Dy (X) = inj, (Y)/9|x(5)| gives a bound for the rate of decay
of the length of a piece of a leaf of O (X) in terms of its divergence radius.

Lemma 14.10 (compare Lemma 14 of [Bon96]). If ||s|,, < Dx(X), then ¢ converges to a well-defined
isometry @y 4 as H tends to H,y .

Definition 14.11. The limiting isometry ¢, ,, is called the shape-shifting map for the simple pair (v, w).

Remark 14.12. After combining all of our deformations in Section the shape-shifting map ¢,, ., will be
identified as the value of the shape-shifting cocycle 5 on the pair (g%, g%,). However, due to the asymmetry
of our current definition, it is not clear that ¢, 3, = ¢w,,. See Lemma [14.14

Proof of Lemma[I{.10. For brevity, we set D = Dy(X) for the remainder of the proof.
Identify X with H? and Isom™ (X) with the unit tangent bundle T'H? so that the identity I is the vector

over p, € X that is tangent to g, and pointed in the positive direction with the orientation on g’ induced
by ky . Equip TVH? with a left-invariant metric d that is right-invariant with respect to the stabilizer of p,.

Finally, for A € Isom™ (X), let || A := d(I, A), so that |AB|| < ||A|| + || B|| holds by the triangle inequality.
We first show that ¢y stays in a compact set in Isom™ (X). Using boundedness, we then show that any
sequence H — H is in fact Cauchy with respect to d, hence converges.

We start by bounding the lengths of segments of the form &, ., N H,, where v € H, .. To this end,
construct a geometric train track 7 from A on X, and assume that the projection of &, ,, meets 7 transversely.
Subdivide &, ., into arcs £y, ..., k;, whose projections meet 7 once in branches by, ..., by,. For all but finitely

many u € Hy w, we have ky o, N Hy, Ck; \X for some j =1,...,m.
If d C kj\ \, we set 7(d) to be the depth 7y, (d) of d with respect to b; and r(d) = 1, otherwise. By Lemma
114.5] there is B > 0 such that for all u € H, 4,

U kypw N H,) < Be—DrkuwnHy)

With this estimate in mind, our next task is to give a uniform bound on ||pg o Tg}j(v’w)ﬂ for all finite

H C Hyw. For each i, let y; € Isom™ ()N( ) be the isometry corresponding to the tangent vector over k, ., N g?
pointing toward the positive endpoint of ¢g7. Unpacking definitions, we may therefore write the shape-shift
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©(s;) as
o(s:) = ,yiTgsé(vauz‘)Jrfx,s(Si)T};(ﬁ(Uvui)vax,s(Si))%fl7
where h; :=; 'g¥.
An explicit computation (in the upper half plane model, say) shows that
"Tﬁz(uvvui)+fx,s(Si)Th—i(ﬁ(U,ui)-fo,s(Si))H < (els(v,ui)-&-fx,s(sm — 1)l(ky o N H;)
< Bels(vui)+Fx,s(si)|=Dr(kv,wnH;)

By Lemma|14.3|and the triangle inequality, we have that
|5(v, ui) + fxa(si)| < llsllrar(Bow N Hi) + [Is]l5

and so we conclude that
H%fl(p(si)%H < B e kv,wnHi)(||s]l-a — D)

for B’ = Bellslls,

Notice now that conjugation by ~; changes the reference point of our calculation at a distance in the plane
at most £(ky.), so the effect of v, p(s;)y; on g¢ Nk, is a displacement by e/®vw) times the quantity
indicated above. Since this is independent of H, we have that

(36) lo(s)]| = O (er(kv,mm)<||su@-p>)

for any spike s; corresponding to any hexagon u between v and w.
Expanding out ¢y in terms of the ¢(s;) (see (3E)), we have that

n n n
[Tetf <2 lletsall =0 (Z e’“<’WH1:)<|s|m_D)> |
i=1 i=1

i=1
Since there are a uniformly bounded number of gaps with given depth (Lemma |14.2]), the last expression is
bounded by the sum of at most 6|x(S)| many geometric series which are convergent so long as [|s]|,, < D.

fruei0 -

Therefore, we see there is a compact set K in Isom™ ()? ) so that ¢y € K for any finite subset 1 C H, y-

Now that we have shown the family of isometries {¢%} to be uniformly bounded, we can show that
any sequence of refinements is in fact Cauchy. So suppose that #,, increases to H, ., and [H,| = n. By
construction, we may therefore write

on = 3" and pn 1 = Pp(su)y,
where H,, ; = H, U{u} and ,¢" € K. Writing ¢, 11 = V' o(su)[@(sa) ™1, ¢ "], we have that

d(Pn, Pni1) = Hso(su) [@(su)*l,w’*l] ‘

The zeroth order term in the Taylor expansion near the identity for the function X — [|[[X,’'""]|| is 0,
because [I, w'_l] = I. Since ¢! stays in a compact set,

|[ets) 07| = Otlle (sl

(see [Thu97, Theorem 4.1.6] or [Gell4l Lemma 1.1 of Lecture 2]).
Combining this estimate with the triangle inequality and , we get that

d(gns pat1) = Ollp(s,)[) = O (& ton 1) Ielea=D))

Now there are at most 6|x(S)| many u € H, ,, with 7(k,, N H,) = r (Lemma|[14.2), so as n — oo we must
have that r — oo, and hence d(pn, Ynt+1) — 0. Moreover, since this goes to 0 exponentially quickly, the
sequence is in fact Cauchy. This completes the proof of the Lemma. O

Shape-shifting as a limit of signed earthquakes. Here we give a different description of the shape-
shifting map which forgoes approximations by “pushing spikes” in favor of approximations by left and right
simple earthquakes (compare [EMO06l Section IIT]). While this reformulation is symmetric and geometri-
cally meaningful, it comes at the cost of restricting which approximating sequences H — H actually yield
convergent sequences of deformations ¢y. See also the remark at the top of page 261 in [Bon96].
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Let (v, w) be a simple pair and fix a geometric train track T snugly carrying A. So long as 7 is built from a
small enough neighborhood, we may assume that the geodesic &, ., is transverse to the branches of 7. Then
for each integer 7 > 0, let H; ,, denote the set of hexagons such that k, ., N H, has depth at most r with
respect to the branches of 7. Order

HZJH = (U/O =v,U1, ~-~7unaun+1 = 'LU),
and for each i = 0,...,n, choose a geodesic h; that separates the interior of H; from the interior of H; ;.

Orient each h; so that it crosses k, ,, from left to right and set
(37) %,w _ T;(Euo,m) o A(sl) o T:fu1,u2) o A(SQ) 0...0 A(sn) o TZfLun,un+l).

We now wish to show that ¢y ,, — ¢yw as r — 0o. As in the case of p3 — ¥y u, this argument will parallel
that of [Bon96], with the extra complicating factor of the adjustments A(s;) to the shape of cusps.

The interpretation of as a deformation cocycle is now similar to that of , but is now a combination
of spike-shaping transformations together with simple earthquakes.

Let us give a description of the action of this deformation on the pointed geodesic (g, pY,) in OH,, closest
to v. Reading the formula from right to left, we can obtain ¢} ,,(g.,, Py,) by first breaking X along h,, = g,
and sliding the closed half-space containing H,, signed distance $(uy,, u,+1), keeping the open half-space
containing H, fixed. Applying the spike shaping transformation A(s, ) then preserves the natural basepoints
py and p¥ but increases the sharpness parameter hy4 (s, ), making it match that of the spike in the hexagon
G, in the deformed metric A + a. We then simply continue moving from w to v (i.e., backwards along
kyw), alternating between signed earthquakes in the h; and shaping the next spike until we reach g%. Note
that unlike the deformations associated to (4, each step of the process requires only local information about
the spike s; and the shear between u; and wu;41.

Lemma 14.13 (Lemma 16 of [Bon96]). So long as [|s||,, < Dx(X)/2, we have that lim, o ¢, ,, = Pu,w-
Proof. Using additivity, s(u;,u;+1) = 8(v, ui+1) — $(v, u;), we observe that

(88) i = (T AT ) (T2 Also) T 20 ) () A, )T 2 ) T,

1

So ¢y, is obtained from @3 by replacing each term of the form
@(Sz) = T;;U’UI)A(SZ)TQ}E(U’M)
with
O(si) = T Alsi) 1,7

and T;émw) with T:Ef”w).

The basic estimate we need is approximately how close ¢(s;) is to ¢(s;) in Isom™ (X) as r tends to infinity.
For this we will want to understand how closely h;_1 approximates g; near its intersection with k, ., as well
as for ¢g{" and h;.

By construction, h; must be between g and g7, ; for each i = 1,...,;n and hg is between g,/ and g7. But
gy’ and g7, follow the same edge path of length 2r in 7 C 7,, for otherwise, there would be a another
u € Hy,, such that H, separates H; from H;ii. Thus h; follows the same edge path and fellow travels g;”

—DA(X)T‘)

and g7, for length at least O(2rDx(X)); using negative curvature, we have that h; is O(e close to

both gi’ and g}, | near ki .
From closeness of these geodesics from the previous paragraph (and our estimates for ||¢(s;)|| from Lemma

14.10)) it is possible to obtain the basic estimate
l¢(si) " p(si)ll = O (exp (|Is]lryr (ko N Hi) — rDA(X)))

which is small when ||s]|;, < Dx(X). Notice that we have also used the fact that the adjustment parameter
associated to each spike s(s;) is uniformly bounded; that said, even if it grew linearly in r we would obtain
the same estimate (up to a multiplicative factor).

The rest of the argument ensuring that ¢y, ,, and 37~ have the same limit as long as |Is
follows [Bon96, Lemma 16] and is omitted. We remark that the factor of 1/2 appearing at the end is a relic
of the techniques used in [Bon96, Lemma 16]. O

ro < DA(X)/2
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The following simple fact was not apparent from the definition of ¢, . due to its lack of symmetry.
Fortunately, the approximation of ¢, ., by ¢y ,, gives us a symmetric description of ¢y 4.

Corollary 14.14. If (v,w) is simple and ||s||, < Dx(X)/2, then

Pw,v = (P;,qlu
Proof. We observe first that Hj ,, = Hy,,, so the each term of ¢y ,, appears in ¢y, , with the opposite
orientation. Now by , the inverse of the shaping transformation of an oriented spike is equal to the

shaping transformation of the same spike with opposite orientation. Therefore we have that ¢ ,, = (ap;’v)_l
for all 7, and the equality holds as we take r — oo.

14.3. Shape-shifting in hexagons. In this section, we explain how to define the shape-shifting cocycle 5
on pairs of basepointed geodesics that lie in the boundary of a common hexagon; this will encode the change
in hyperbolic structure on X \ \.

While in this setting we do not have to worry about delicate convergence results, we must be more diligent
about recording the placement of basepoints on each geodesic of d\H,. Moreover, the cocycle condition
(Propositions and only becomes apparent once we reinterpret the shaping deformations defined
below as “sliding the deformed hexagon along the original.”

Throughout this section, we have extended both A and A + a to some common maximal arc system « by
adding in arcs of weight 0 as necessary. We remind the reader that s(«) denotes the coefficient of « in a.

Notations and orientations. Let H, C X \ ); be a nondegenerate right-angled hexagon and enumerate
the A-boundary components of H,, as OxH, = {(h1,p1), (h2,p2), (h3,p3)}, cyclically ordered about u. Let
a; € a be the orthogeodesic arc opposite to h;, and denote by p;; the vertex of H, meeting both h; and «;.
See Figure If H, is a degenerate hexagon (i.e., a pentagon with one ideal vertex or a quadrilateral with
two) then we label only those points and geodesics which appear in its boundary.

Each choice of orientation & of o1 induces orientations of hy and hs so that «; leaves from the left-hand
side of h; and arrives on the right-hand side of hy, for {j,k} = {2,3}; an example is pictured in Figure
Observe that the opposite orientation &; induces the opposite orientations on hy and hs. Throughout this
section, we also adopt similar conventions for each orientation of ay and as.

FicURE 23. Distinguished points on a hexagon H, and induced orientations on hsg, hs €
O\H,.

Recall that (by Theorem the deformation s induces a new metric on X \ X denoted by A+ a and
which contains a hexagon G, corresponding to H,. The corresponding basepointed A-boundary geodesics
and vertices of G,, will be denoted by (g;,¢;) and ¢;;, respectively. We adopt similar orientation conventions
as above for the realizations of a; in G,.

Shapes of Hexagons. Paralleling our discussion for spikes, we first need to define geometric parameters
that measure the shape of the hexagon as well as the difference of the placements of the basepoints p; and
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¢; on the geodesics h; and g;. For concreteness, we only consider a; below; the parameters for as and ag
are defined symmetrically.

We begin by associating to ay the parameter

lo(on) :=Latq(ar) —La(or) €R.

which measures the difference in the hyperbolic length of a; in the metric determined by A + a versus in
the original metric A induced by X.

Now fix an orientation &7 of ay; as above, this induces orientations of the geodesics ha, hs, g2, and g3. Let
d (@1, u) be the signed distance from py to pe1 on hg; [*| the local symmetry of the orthogeodesic foliation
implies that da (&1, u) can also be computed as the signed distance from ps to ps1 on hs. Define similarly
dataq(d1,u) as the distance from ¢o to go1 on g2 (equivalently, the signed distance from g3 to gs; on gs).

To all of this information, we associate the parameter

fXﬁs(d’l,u) = dA+a(&1,u) — dA(C_il,’LL) eR
which measures the difference in how far u is from «; in G,, versus in H,. More precisely, considering H,,
and G, in the hyperbolic plane, we can use an element of PSLy(R) to line up (ha, pe1) with (g2, g21) so that
the basepoints and orientations agree. The parameter fx (&1, u) then measures the distance from g2 to po
along hy = go. See Figure[24] Of course, symmetry shows that it is equivalent to align (hs, ps1) with (g3, gs1)
and measure the signed distance from g3 to p3 along hs = g3.

hs
\‘\—T \
\
! \
! \
1 \
1
—— \ \ 93
1 ’H H \ \
[ ] ) \
I, [ A Vi \
' \ 1 \ a
\ ~ !/ [ J
Gu.\ \ aq ! ’ v
\ [Qps7) ]
U p2
\\ ds .
f v({ ) N~ Je2=9
a1, u ~
X,s\C1, 7fX75(041,’U)

FIGURE 24. The parameter fx (@1, u) for two adjacent hexagons. We have decorated the
basepoints on ho = g2 with a superscript to emphasize their dependence on the hexagon.

Note that reversing orientations reverses signs, so that d4 (&1, u) = —da(&,u) and hence
fx,s(@1,u) = —fxs(01,u).
The parameters associated to the hexagons which border a given arc are related in the following way:
Lemma 14.15. Let o be any edge of a and let H, and H, be its adjoining hexagons. Then
fx,s(d,u) + fxs(&,v) = s(a)
where the orientation & is chosen so that w is on its left (equivalently, & is oriented so that v is on its left).

Proof. The proof is an exercise in unpacking the definitions and being careful with orientations; compare
Figure Let py and ph denote the projections of u and v to either of geodesics common to 0yH, and
OxH,, and let ¢4 and ¢4 play similar roles for G,, and G,,.
We can then write
fX,s(&,U)+fX75(&,U) :fXﬁ( 7“’) 75(0771})
=data(d,u) — A(d’,u) —dara(@,v) +da(@,v)
5) —

= dh(pQ P

21The parameter da (@1, u) is called the “t-coordinate” of the arc aj in the hexagon H,, in [LuoQ7]. See also [Mon09b)
Proposition 2.10], where a formula is given in terms of the lengths of {o; : ¢ = 1,2,3}.
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where we recall that s(a) denotes the coefficient of « in a and where dj, and d, represent the signed distance
measured along he and go, equipped with the orientation induced by &. O

Remark 14.16. Using Theorem and some hyperbolic trigonometry, one may show that fx ¢(&1,u)
depends analytically on both A and a for fixed a; and u.

Shaping Hexagons. To the hexagon H, and oriented arc & in its boundary, we associate the shaping
transformation A(d1,u) by

(39) A1, u) = T, e 00 o e (o) o pfxe (@) ¢ Joom ™ (X),

where T, denotes translation along the complete oriented geodesic extending &;. The shaping transforma-
tion is explicitly constructed so that if H,, and G,, are superimposed with (hg, p2) = (g2, ¢2), then

A(dr,u)(hs,p3) = (g3, 43)-
This claim is not immediately apparent from the expression of , but is easy to verify once we reinterpret
A(dy,u) as “sliding G, along H,,.”
To wit, suppose that we superimpose H,, and G, so that (hs,p3) = (g?,7 g3). Now consider what happens

as we apply A(d1,u) to G, while holding H, fixed; the first term 1. Fx.a(@u) onslates G, along h3 so
that ¢31 = ps1, and the right angle formed by a7 and g3 in G, lines up with the same angle in H,. The
transformation Tq (@1) then slides TfX 5(0”’“)(? along aq so that (ha,g21) = (g2,p21). Finally, Th_QfX'S(al’u)

slides Tq (al)TfX ‘(al’u)Gu along ho = g2 so that ¢o lines up with ps. See Figure

P31 = @31

—> h3 > > —

a1
= -, |, -

P21 = Q21
P2 = Q2

—_ —_ —_

T}{X,s(&lau) és (1) T]:fx,ﬁ(al,u)

1 2

FIGURE 25. How the shaping transformation A(ds,u) slides G,, along H,.

Summarizing, we have shown that A(a,u) takes a superimposition of G,, on H, with (hs,ps3) = (93,93)
to another superimposition with (he,p2) = (g2,¢2). In particular, this implies that applying A(d,u) to
(hs, p3) takes it to the position of (g3, ¢3) in the latter placement of G,, which is what we claimed.

Remark 14.17. An elementary hyperbolic geometry argument similar to that in the proof of Lemma
shows that if o in X degenerates to an oriented spike § then the corresponding geometric parameter
fx,s(d1,w) limits to the parameter fx +(5). In particular, along this degeneration the corresponding hexagon-
shaping transformation A(&,u) converges to the spike-shaping transformation A(3).

A cocycle condition for hexagons. A number of relations hold between the shaping transformations for
different arcs and different orientations; eventually, these relations are what ensure that the deformations we
are currently building package together into an honest cocycle (see Proposition .

First, we observe that reversing the orientation of a; inverts the shaping transformation:

(40) A(b’q,u) _ T}{sfx,s(&hu) OTE (a1) fo s (G u) T fxg(al,u) @ (a1) Thf;’ﬁ(ahw _ A(d’l,u)_l

Now suppose that H,, is on the left and H, is on the rlght of the oriented arc @;. Combining the relation
of Lemma [14.15| with the definition of the shaping transformation, we have that

(41) A, u) = T 0 A(d,v) o Ty .
This equation is used frequently in Section [14.4] just below.
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Finally, a beautiful and important relationship holds among the three shaping transformations in a single
right-angled hexagon. Our proof utilizes the “sliding” viewpoint explained above; the statement seems
difficult to prove just by writing down a string of Mobius transformations.

Proposition 14.18. Let u € H be a nondegenerate right-angled hexagon with boundary arcs ay, ds, ds,
oriented so that H, lies to the left of each &;. Then

A(ds,u) o A(da,u) o A(dy,u) = 1.
A similar statement clearly holds for any cyclic permutation of (3,2, 1).

Proof. In order to prove the lemma, we superimpose G,, on top of H, so that (gs,q3) = (hs,ps3). Holding
H, fixed, the first shaping transformation A(@q,u) slides G, along hs, then along «;, then along hg so
that (gz2, g2) lines up with (hg, p2). The second shaping transformation A(ds,u) then acts on this translated
copy of G, by sliding it along hs, then as, then h; so that (g1,¢1) = (h1,p1). Finally, the last term slides
A(d1,u)A(d2,u)G, along the edges of H,, so that (gs,¢3) returns to (hs,p3) (with the same orientation).
Therefore, since A(dy,u) o A(dy,u) o A(d3,u) preserves a unit tangent vector and Isom™ ()}) acts simply
transitively on T'X , the composition of the three shaping transformations must be trivial. (Il

A similar result holds for degenerate right-angled hexagons, with the hexagon-shaping transformation
replaced with the corresponding spike-shaping transformation.

Proposition 14.19. Suppose that u € H is a pentagon with two orthogeodesic arcs oy, as and one spike
s, labeled so that (a1, a2, s) runs counterclockwise around w. Orient each a; so that H, is on its left and
orient s so that it is pointing towards the ideal vertex of H,. Then

A(S) o A(da,u) o A(d,u) = 1.

Similarly, if u € H is a quadrilateral with one orthogeodesic edge a and two spikes s; and s (labeled so
that («, $1, s2) is read counterclockwise), then

A(53) 0 A(51) 0 A(d,u) =1
where all orientation conventions are as above.

Proof. We only explain how to interpret the spike-shaping transformation A(S) in our “sliding” framework;
once we have done so, the rest of the proof is completely analogous to that of Proposition

So let § be a spike of H,, oriented as described; suppose that its left and right boundary geodesics
are hg and hs. Recall that A(S) is constructed so that if we superimpose G, and H, with (ga,q2) =
(ha,p2) then A(3)(hs,p3) = (gs3,q3). This can equivalently be interpreted by superimposing G,, on H, with
(93,93) = (hs,ps3); then applying the shaping transformation to G, while leaving H, fixed takes G, to
another superimposition where (go, g2) = (ha,p2). See Figure |

P2 = q2

FIGURE 26. Interpreting the spike-shaping transformation A(S) as sliding G,, along H,.
Note that in this picture, we have fx 4(5) < 0.
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14.4. Shape-shifting along the spine. In this section we package together the hexagon-shaping deforma-
tions defined in into deformations of entire complementary subsurfaces of X \ A As always, we will
exhibit this deformation by explaining how to adjust the positions of the pointed geodesics in the boundary
of each component of X \ X relative to one another. This in turn requires some book-keeping of orientations
and a liberal application of the cocycle relation (Propositions and .

Throughout this section, we fix some component Y of X \ A. We remind the reader that the deformation

s induces a new hyperbolic structure A 4+ a on Y whose hexagons and basepointed geodesics correspond to
those of Y.

Hexagonal hulls and induced orientations. Suppose that v,w € H are distinct hexagons of Y. Since
the corresponding component of gvp is a tree it contains a unique oriented non-backtracking edge path [v, w]
joining v to w. We then define the hexagonal hull H(v,w) of (v,w) to be the union of all of the hexagons
corresponding to the vertices of [v, w]. Define also the truncated hexagonal hull H (v,w) by truncating each
spike of H (v, w) by the horocycle through the basepoints that are closest to the ideal vertex. Note that both
H(v,w) and H (v,w) come with (71(Y)-equivariant) collections of basepoints on their boundaries obtained
by projecting each of the vertices of [v, w] onto the associated boundary geodesics.

Now for any (hy, py) € OxH, and (hy, py) € OxHy, we have that 8ﬁ(v, w) \ {Pv, P } consists of two paths
d4+. We orient each of §+ so that they both travel from p, to p,. See Figure

FIGURE 27. The truncated hexagonal hull (shaded) of the path [v,w] and the induced
orientations on the paths d1 from p, to p,, in its boundary.

With this induced orientation, the path d; passes through a sequence of basepoints

Pv =P1,DP25 -y Pnt+1 = Pw-
We then associate a shaping transformation A; to each subsequent pair of basepoints as follows:

o If p;, p; 1 are in different hexagons, then they must lie on the same geodesic h; of dY and correspond
to two hexagons H; and H,;, both adjacent to an arc «;. In this case, define 4; = T,i_((“) where h;
is given the orientation induced by d; and where we recall that s(c;) is the coefficient of «; in a.

o If p;, pi+1 are in the same hexagon H,, but do not lie on a common spike, then necessarily they lie
on geodesics connected by some arc «;. In this case, define A; = A(@;, u;) where the orientation on
o; is induced from 6.

e If p; and p;y; lie on a common spike s;, then we define A; = A(S;), where the orientation on s;
is such that the horocyclic segment of d; cutting off s; runs from the left of one of the oriented
geodesics to the right of the other.

Finally, we then combine all of this information to define the shape-shifting transformation
(42) A(5+) = AloAQO...OAn,

where we recall that we are multiplying from right to left. Define A(6_) analogously; the point is, however,
that the choice of &+ does not matter.
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Lemma 14.20. We have A(6_) = A(d,).
Definition 14.21. We call ¢, ., = A(d4) = A(5_) the shape-shifting map for the pair ((hy, py), (hw, Dw))-

Proof. The proof follows by induction on the length of [v,w]. If [v,w] has length 0, i.e., v = w, then this
statement is exactly the content of the cocycle relation for hexagons (Propositions and .

Now suppose that [v,w] has length n and let u be the penultimate vertex in [v,w]. Let a denote the
arc separating u from w, and choose the orientation & so that w lies on its left. Up to relabeling, we may
assume that the orientation of d4 agrees with the orientation of oH (v,w). Denote by (hif,pf) € Y the
last basepoints of H, visited by d1 and let 74 denote the subpaths of d1 from p, to p in the boundary of
the truncated hexagonal hull H (v, u). Define A(y+) analogously to A(6+). Then we may write

AB)AG-) " = Alr) T By By T Ay ) !

= (A(y+)A@ W A(-) ") - A(y-) (A@ w) T3 By B, T, ) A(y-) ™"

where By and B are the shaping transformations corresponding to arcs and spikes of w that are different
from « (labeled counterclockwise from «), oriented either so that w lies on the left of the arc or so that the
spike points into the common ideal endpoint.

Now observe that A(yy)A(&@,u)A(y-)~" is trivial by the inductive hypothesis, as it corresponds to the
comparison between the two possible definitions of ©p pre We also note that

A(&, u)—l T;é&) Bl B2 T}:;(Dz)
is conjugate to
Th_;(a) A(O_l', u)flTZ?) B1 B2 = A(&, w)B1B2 =1

where the first equality follows from (41]) (note the reversals in orientations of ") and the second follows from
the cocycle relation (Propositions|14.18/ and [14.19). Therefore, we see that the entire term A(d;)A(6—) "' is
trivial, which is what we wanted to show. O

Remark 14.22. The above statement can also be proven by interpreting A(d1) in terms of sliding. In
particular, let Z denote the 7 (Y)-equivariant hyperbolic structure on Y corresponding to the weighted arc
system A + a. Then superimposing Z on Y so that (g, Gw) = (hw,Pw), one can consecutively apply the
shaping transformations A; to Z while keeping Y fixed.

Doing so, we see that A, moves Z so that (¢n,¢.) = (hn,pn), then A,_1 o A, moves Z so that
(gn—1,9n-1) = (hn—1,Pn—1), etc. At the end of this process, we have applied A(d+) to Z and by con-
struction, the pointed geodesic (g, g,) matches up with (h,,p,). Since the final positioning of Z is the same
relative to Y whether we used A(d4) or A(6-), this allows us to conclude that the two compositions define
the same element.

Remark 14.23. While we used the distinguished boundary paths 4+ to define the shape-shifting map, one
could in fact use any path from p, to p, in Y U a. In this case, one must take more care to enumerate
basepoints so that p;, p;+1 always either lie on the same geodesic or in the same hexagon.

Observe that reversing the orientation [v,w] = [w,v] also reverses the sequence ppi1,...,p1 of base-
points that the boundary paths é+ meet. Since flipping the order of p; and p;;; inverts each of the A;
transformations defined above, we therefore discover that ¢y, », = 5!, .

In a similar vein, it is not hard to see that the shape-shifting maps satisfy a cocycle relation.

Proposition 14.24. For any triple of pointed geodesics (hy, py), (hy, Dy), and (hy, pyw) of Y, we have that

Opurpo © Ppopuw © Ppuw,pu = 1-

Proof. This follows immediately from the definitions when v lies on either of the paths 1 from u to w.

Otherwise, note that the intersection of paths [u, v] N[v, w]N[w, u] is a point 2 € H. Choosing a basepoint
Pz € OxH,, compute the shape-shifting transformations using the boundary arcs that pass through x. Then
We may exXpress ¥p., p, = Ppu.ps © Pp..p, ad using the observation about inverses above, we realize that

@pu »Pv o @pv sPw o wl)vau = Qppu,px 0 (QOPI sPo o Qpp,v,pm) o (QOPI sPw o Sppw 1pz) ° wl)zvpu =1

This completes the proof of the proposition. O
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14.5. The shape-shifting cocycle. We now combine the shape-shifting maps for simple pairs (Definition
with those for complementary subsurfaces (Definition into the promised shape-shifting cocycle
(Proposition [14.26), which is well-defined as long as the combinatorial deformation s is small enough. As
usual, we construct a geometric train track 7 from A on X so that the weight space of 7, provides a notion
of size for s.

Admissible routes. For v,w € H and Y a component of X \ X, we say that Y is thick with respect to v
and w if one of the two possibilities occur:

(1) either Y contains v and/or w, or
(2) v and w lie in different components of X \ Y and the boundary leaves of Y closest to v and w are
not asymptotic.

Observe that in the first case, there is either no or one boundary geodesic of Y separating v from w (depending
if v and w are both in Y or not), while in the second, there are exactly two boundary components of YV
separating v from w.

Now let v,w € H be any pair of distinct hexagons that do not lie in the same component of X \ A and
let (hy,py) and (hy, py) be a pointed geodesic in 9y H,, and 0\ H,,. Then there is a unique (possibly empty)
sequence hq, ..., h, of boundary geodesics of thick subsurfaces separating p, from p,,, ordered by proximity
to v (with hy closest). E| If one of the h; lies in the boundary of two complementary subsurfaces (so
corresponds to a lift of a curve component of \) then we record it twice, one time for each of the adjoining
subsurfaces. Additionally, if either h, or h,, is a boundary geodesic separating v from w, then we do not
record it as one of the h;. See Figure

N

F1GURE 28. Thick subsurfaces between v and w and an admissible route from p, to p,. In
the figure we have highlighted a path from p, to p,, through the p;; each subpath from p;
to p;41 specifies a factor in the shape-shifting transformation.

We now define an admissible route from p, to p,, to be any sequence of basepoints

pv:poapl€h17~~~,Pn€hmPn+1:Pw

coming from the projections of the central vertices u; of hexagons H,, to h; € O\H,,. If any geodesic
h; = h;41 is repeated then we require that v and w; lie on one side of h; and that w and w;4+; lie on the
other. Observe that the sequence of pairs (u;, u; 1) necessarily alternates between simple pairs/pairs sharing
a boundary geodesic and pairs which lie in the same (thick) subsurface.

Shape-shifting along admissible routes. To any admissible route we can then define a shape-shifting
transformation by concatenating the shape-shifting transformations for subsequent pairs:

(43) Ppo,pw = Ppo,pr O+ O Ppnpnia

22Note that this sequence is necessarily finite, as the distance that any geodesic travels in a thick subsurface is bounded
below by the shortest arc of a (compare the discussion of “close enough” pairs of hexagons in Section [13.2).
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where ¢, .., is as in Definition {14.11)if (u;,ui41) is simple and as in Definition [14.21]if u; and ;1 lie in
the same subsurface. If h; = h;11, then we orient h; to the right as seen from u; and set @, ., = Tifu“u”l)

(recall that we can associate a shear value to the pair (u;, u;+1) by (15)).

Lemma 14.25. The shape-shifting map ¢, ,,, is independent of the choice of admissible route (as long as
it is defined).

Proof. Since the h; are uniquely determined, it suffices to change one point at a time.
So suppose that p; and p} are both basepoints on the geodesic h;; we then demonstrate the equality

Ppi-1,pi ° @Pi»piﬁ-l = @mfl»p; o CIOP; sPi+1
from which the lemma follows. Orient h; so that it runs to the right as seen from v or wu;_1.
Without loss of generality, we may assume that the hexagons u; and u;y; lie in the same subsurface.
Otherwise, the hexagons u;_; and wu; lie in the same subsurface and so (p;,p;+1) is either simple or the
points lie on the same isolated leaf. If this happens we prove that

Ppiv1,pi © Ppipic1 = Ppiy1,p; © Pplpi—1s

which is equivalent to the equation above since each of the shape-shifting factors inverts when one flips the
order of the points.

We first consider the shape-shifting transformations coming from comparing p; or p; with p;11. By our
reduction above, u; and u} lie in the same thick subsurface Y. Let aq,...,ay, denote the arcs of aNY
encountered when traveling from p} to p; along h;; then our definition of shape-shifting in subsurfaces

associates the transformation
e1 2250, s(ay)
i

Cppe = 1,
where e = 1 if h; is oriented from p} to p; and —1 otherwise. Combining this equation with the subsurface
cocycle relation (Proposition [14.24)), we have that

€1 3270, s(ay)
(44) @p;mwl = (P;D;,;Di o @Phpwl = Thi = o me,pi+1'
We now turn our attention to the transformation ¢, , ;. Consider first the case when (pi—1,p;) is simple;
since p; and pj both lie on h; this implies that (p;—1,p}) is also simple. Moreover, since the geodesics H;_1 ;
that separate p;_1 from p; are the same that separate p;_; from p}, we may write

Coiape =, lim (1) 0.0 p(sn) 0 TpM M

and similarly for ¢, , ;. In particular, each approximation for ¢, , p, differs from the approximation for
®p;_,,p, by translation along h;, and so the same is true in the limit:

T5(Uwi—1 7714;)—5(%‘71 JUq)
h. .

i

(45) Ppi—1,p, = Ppi—1.pi ©
Applying axiom (SH3) for shear-shape cocycles (Definition [7.12]) multiple times, we compute that
m

(46) 5(ui_1,u;) —s(ui_l,ui) = &9 ZE(O[]‘)

j=1
where g9 = 41 if p; precedes p; along h; and —1 if p; precedes p;. Combining , , and ,

8.2 >y s(ey) o TZl >y s(ey)
7 k2

Ppi—1.p; © Pplpit1 = Ppi—1.pi © Th, O Ppipiv1 = Ppi—1,pi © Ppipita

since €9 = —e1. This completes the proof of the lemma in the case when (u;_1,u;) is simple.

Similarly, if p;—1 and p; lie on the same isolated leaf of A then so must p;. Unpacking the definitions shows
that holds in this case, and Lemma implies that does as well. Therefore, in this case we also
see that the desired equality holds. O

Finally, now that we have constructed shape-shifting maps for arbitrary pairs of pointed geodesics in IyH
we can prove that they piece together into an Isom™ (X)-valued cocycle.
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Proposition 14.26. The map constructed from X and s
Y5 OH X OH — ISOIH+()Z—)
((hos Po)s (haws Pw)) = pypu,
is a m; (X)-equivariant 1-cocycle, as long as [s||,, < Dx(X)/2.

Proof. That ¢ is w1 (X)-equivariant means that ©sp, vp. = 7 © @pyp 07 * for v € m(X); this follows
directly from the construction.
That ¢ is a 1-cocycle means it satisfies the familiar cocycle condition on triples, i.e.,

Ppu,pv © Ppu,pw = Ppu,pw:

Note that if p, lies on some admissible route from p,, to p,, then this is fulfilled automatically by unpacking
the definitions and invoking Lemma [14.25

One special case of the cocycle condition is when p,, = p,,; in this case we must show that ¢, ,., = Lp;wl,pu.
To demonstrate this, observe that reversing an admissible route from v to w produces an admissible route
from w to v. Moreover, by Corollary in the simple case and by definition in the other cases, each
©p,.pir, also inverts when we flip ¢ and 4 + 1, proving that reversing v and w inverts ¢, . .

Now suppose that u, v, and w are all distinct; then there exists a unique subsurface Y of X \ X such that
each component of X \ 'Y contains at most one of u, v, or w (note that some of u, v, w may be inside of Y).

Choose basepoints ry, 7, and r,, on the boundary components of Y that are closest to u, v, and w (if any
e € {u,v,w} is in Y then set 7, = p,). See Figure 29]

b, 7\

Ppuw,pu

Tw \p\w
£ /
Ppo,puw
Pv =Ty

FI1GURE 29. The cocycle relation for admissible routes.

Choose an admissible route from p, to p, containing r, and r,, and similarly for the other two pairs.
Then by Lemma [14.25/and the observation that the cocycle condition holds along admissible routes, we may
write

QOPuvpv = @Puﬂ“u © ()07'1417"1; © (pT’IJ7pU
and similarly for the other two pairs. Combining all three equations and applying the cocycle relation for Y

(Proposition [14.24)), we see that
Ppu,pv © Ppopw = Ppu,ru © Pru,re © Pry,pe © Ppo,re © Pry,rw © Pru,pw
= Ppu,ru © Prurw © Prv,pw = Pou,pw>

finishing the proof. See Figure 29| for a graphical depiction of this argument. ]

15. SHEAR-SHAPE COORDINATES ARE A HOMEOMORPHISM

We now finish the proof of Theoremby proving that the map oy : 7(S) — SHT()\) is open (Theorem
15.1) and proper and thus, by invariance of domain, a homeomorphism.

In Section we use the shape-shifting cocycle s, built in the previous section, to deform the represen-
tation p : m1(S) — PSLy R that induces the hyperbolic structure X. The deformed representation ps is then
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discrete and faithful (Lemma and the quotient surface X, has the desired shear-shape cocycle (Lemma
15.6). In particular, this gives us a continuous local inverse to o), proving openness. These statements
are similar in spirit to those in [Bon96], but the specifics of our proofs are different. In particular, instead
of adjusting the relative placements of ideal triangles of X \ A we adjust the relative position of pointed
geodesics comprising A

We then prove properness of oy in Section [15.2] concluding the proof of Theorem Here we return
to Bonahon’s argument [Bon96, Theorem 20], but applying this strategy in our setting still requires a bit of
extra care due to the polyhedral structure of SH™ ().

Finally, in Section we show that the action of Rsq on SHT()) by dilation produces lines in 7(S)
that can sometimes be identified with directed Thurston geodesics.

15.1. Deforming by shape-shifting. In this section, we show that any positive shear-shape cocycle close
enough to ox(X) is actually the geometric shear-shape cocycle of a hyperbolic structure. Compare with
[Bon96l, Proposition 13].
Theorem 15.1. Let 8 be a maximal arc system containing a(X) and let 75 be a standard smoothing. Then
for any s € W (7p) such that ||s[|;, < Dx(X)/2 and such that ox(X) + s represents a positive shear-shape
cocycle, there exists X, € T(S) close to X with

O’)\(Xs) = U)\(X) + 5.
In particular, the image of oy (X) is open in SHT(A).

The proof of this theorem appears at the end of this subsection as the culmination of a series of structural
lemmas. Our strategy is to explicitly define X, by using the shape-shifting cocycle constructed in Section
to deform the hyperbolic structure on X. Before proceeding we note the following

Corollary 15.2. For all ¢ € R, and for all € A()), we have the following identity
O’)\(eq“(X)) = O’)\(X) + t,u.

Proof. That the earthquake Eqy,(X) is defined for all time is a consequence of countable additivity (equiv-
alently, positivity) of p; a complete proof can be found in [EMO06l Section III]. Viewing the set of mea-
sures supported on A as a subset of H(\), the formula is immediate from Theorem once we note that
Eq, (X) = X, which follows from the description of ¢y, as a limit of simple left (or right) earthquakes;

see (37) and Lemma [14.13 O

Fix s as in the statement of the theorem and pick an arbitrary v € H and (hy,p,) € OxH,. Identifying
X isometrically with H? and (h,,p,) with a pointed line picks out a representation p : 71 (S) — PSLy R that
induces X. Since ||s|, < Dx(X)/2, Proposition allows us to construct the shape-shifting cocycle ¢s.

We may now deform the representation p by ¢, by defining

Ps : 7T1(S) — PSLQR
Y Ppope © P(Y)-
The equivariance and cocycle properties of Proposition |14.26|ensure that ps is itself a representation. Indeed:
Ps(1172) = puyirape © P(1172)
= Ppuyipe © Pripesmireps © P(71) © p(72)
_ -1
= p,yipe © P(11) © Pp,yap, © P(11) 7 © p(11) © p(72)
= ps(71) © ps(72)

for all v1,7v2 € m1(S). Our goal in the rest of the section is then to show that p; is discrete and faithful, and
that the quotient surface has the correct geometric shear-shape cocycle.

AdJustlng geodesics. To show that p, has the desired properties, we use ¢, to adjust the position of X in
Ultlmately, these adjusted geodesics correspond to the reahzatlon of X on the quotient surface X /im Ps-
Let 4(X) be the space of geodesics in X, and let ONC Y (X) denote the set of boundary leaves of A
Define a map

®, 0N — Y (X),



SHEAR-SHAPE COCYCLES FOR MEASURED LAMINATIONS 79

as follows: if h is a leaf of iﬁ, then h = h,, for some (hy,p,) in O\H. The map P, then takes (hy,py)

isometrically to the pointed geodesic ¢y, p, (hu,pu) C X. Note that if h, = h,, for some other (h,,p,) in
O\H, then
(pp_vlvpu O @py,pw = PPuspw

by the cocycle relation (Proposition and ¢, p,, is by definition a translation along h. Therefore
@, hy = P®p Iy, so @, is indeed well defined.

Using the fact that S is closed, the following lemma follows directly from the fact that ps defines a
representation of 1 (.5) in the same component of representations as p. We give a hands on explanation that
does not use this fact.

Lemma 15.3. The representation ps; constructed above is discrete and faithful.

Proof. For distinct leaves h,, and hy, € O, we claim that o, (h,) is disjoint from @, (h,). Indeed, by the
cocycle relation, the position of @, (h,,) relative to ®,, (h,,) is the same as the position of yp,, p. b relative
to hy. Every finite approximation of ¢, ,, by compositions of elementary shape-shifting transformations
preserves the property that the image of h,, is disjoint from h,,, so the same is true in the limit.

Therefore, as long as p(7) does not stabilize h, then @, (p(7)hy) = ps(7)hy is different from @, (h,) = hy.
If p(v) is a translation along h,, we can find v such that p(y0yY5 ' )ho # hy, and so we see ps(y) does not
stabilize p(Yoy7Y5 *)ho. In either case, this implies that ps(7) acts nontrivially on the space of geodesics, so
in particular ps(7y) # 1, i.e., ps is faithful.

Since 71 (S) is a non-elementary group and p is faithful, im ps is a non-elementary subgroup of isometries.
So assume towards contradiction that ps is indiscrete. Then im p; must be dense in PSLy R; see, e.g., [Sul85]
Proposition, p. 246]. In particular, there is an element v € 71(S) such that ps(y) is arbitrarily close to
a rotation of angle /2 around p,. Then ps(y)h, = ®p,p(7)h, meets h, in a point, which is impossible,
because ®,, (hy) is either equal to or disjoint from ®,, (p(v)hy). We conclude that p, is discrete, completing
the proof of the lemma. O

By Lemma , the quotient X, = X /im ps is a hyperbolic surface equipped with a homeomorphism
S — X, in the homotopy class determined by ps. As such, ps; induces a (p, ps)-equivariant homeomorphism
0X — 0X, hence a continuous, equivariant map on the space of geodesics.

Lemma 15.4. The map ®,, extends continuously to X, and D, (X) descends to the geodesic realization of
Aon X,.

Proof. By equivariance, the induced map on geodesics agrees with ®, on OX. The leaves of O\ are dense

in A, so the closure of the image of ®,, is the geodesic realization of Aon X s, which is invariant under the
action of ps. |

Since @, (X) is the lift of the realization of A on X,, we may now leverage our understanding of the
shape-shifting cocycle to show that the complementary subsurfaces of X \ A have the desired shapes.

Lemma 15.5. We have A(X,) = A(X) + a.

Proof. Recall that by construction the unweighted arc systems of X \ A and X, \ A are both contained in
some joint maximal arc system 3, leading to an identification of hexagons of X \ A with those of X \ A.
So let 8 be an arc of 3, realized orthogeodesically in X;. Let 8 also denote a choice of lift, orthogonal to

Ae in X , and let v and w denote the hexagons adjacent to 5. Choose either of the geodesics g of A\ meeting
B and let ¢, and g, be the basepoints of v and w on g. Then by the cocycle relation (Proposition ,
we know that
Ppo,pw = Ppuspu © Ppu,puw

and so applying equivariance we see that the placement of ¢, relative to g, differs from the placement of p,,
relative to p, only by vp,. p.-

But now since v and w are in the same subsurface, we see by definition that ¢, ,, is translation along
g by exactly s(8). Therefore, the distance along ¢, ., g between g, and g,, is exactly the distance along g
between p,, and p,, plus s(3). Translated into arc weights,

oA (Xs)(B) = ox(X)(B) +5(5),

completing the proof of the lemma. O
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Now that we know that the “shape” part of the data of o) (X;) is what it is supposed to be, we need only
check that the “shearing” data is as specified. Compare [Bon96, Lemma 19].

Lemma 15.6. The surface X, has geometric shear-shape coycle o5 (Xs) = oA (X) +s.

Proof. Observe that by the cocycle relation (Proposition and the discussion in Section it suffices
to compute the change in shearing data between simple pairs.

So suppose that (v, w) is simple. For each integer r, recall that H;, ,, = (u;)j—; denotes the set of hexagons
such that the intersection of the geodesic from p, to p,, with u; has depth at most r with respect to a fixed
geometric train track. Set v = wg and w = wu,41, and let h; = g, , the pointed boundary geodesic of w;
closest to v. Then by Lemma [14.13] we know that

(p;mpw = TZé“O;“l) o A(sy) o Til(ul’uz) o A(sg)0...0A(sy) o0 T:flu"’u"“)

is a good approximation of ¢, . for large enough r.

Now for each r we can deform the hyperbolic structure on X by 5. b (sacrificing equivariance) and
measure the shear o,.(v,w) between v and w in that deformed structure. More precisely, we recall that if
R, denotes the other geodesic in u; that separates v from w, the spike-shaping transformation is equal to a
translation along h/ then along h;. We may then deform X by replacing each translation in the factorization
of v, ,, with a (right) earthquake along the same geodesic; compare with our “geometric explanation” of
spike-shaping in Section [14.2
Since each translation Tiiui’ui“) appearing in @), . - shears X along a leaf of ), it preserves the ortho-
geodesic foliation in complementary components. Therefore, each such term in the deformation thus changes
the shear between v and w by exactly s(u;, u;11).

On the other hand, each spike-shaping transformation A(s;) is a parabolic transformation fixing the vertex
of the spike and thus preserves horocycles based at that point. In particular, the distinguished basepoints
of each h; and Al remain on the same horocycle and hence deforming by A(s;) does not affect o (v, w).

In summary, deforming X by the approximation ¢j, , - changes the shear between v and w by
n
or(v,w) —o(v,w) = s(ug, uir1) = s(v,w)
i=0
where the last equality follows from finite additivity (axiom (SH2)).
Since this equality holds in each approximation and ¢} ., = — ¢p, 5, as r — oo, the equality holds in

the limit as well. Therefore, deforming X by ©py.p changes the shear between v and w by exactly s(v, w),
which is what we needed to show. O

Proof of Theorem[I5.1, As ||s||-, < Dx(X)/2, Lemmas [14.10] and [14.13| ensure that the limits in the def-
inition of ¢, ,, make sense for all simple pairs (v,w). Proposition [14.26| then allows us to construct ¢s.
By Lemma the deformed representation p; = @, - p is discrete and faithful, and by Lemma the
quotient surface has the correct geometric shear-shape cocycle.

Finally, we observe that the values of shape-shifting cocycle ¢4 all converge to the identity as ||s||-, — 0,
and consequently X, — X. This completes the proof of the theorem. O

15.2. The global structure of the shear-shape map. We have already proven in Proposition [[3.14] that
the image of oy lies in SHT()\). We now show that this containment is in fact an equality, completing the
proof of Theorem [12.1}

We proceed in two steps; the first is to show that

Proposition 15.7. The shear-shape map o is a homeomorphism onto its image.

Proof. Proposition (injectivity of o) allows us to invert oy on its image and for each X € T(9),
Theorem provides us with an open neighborhood of o (X) € SHT(\) on which o' is defined and
continuous. By Proposition we have that SHT(\) C SH()\) is an open cell of dimension 6g — 6.
Invoking invariance of domain, we get that 0;1 and hence o) are local homeomorphisms. An additional
application of Proposition implies that o) is globally injective, so o) is a homeomorphism onto its
image as claimed. O
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The second step is to prove that oy : T(S) — SHT()) is a proper map. That is, we must show that when
X, escapes to infinity in 7(S), the corresponding shear-shape cocycles o (X},) must diverge in SH™()). Since
proper local homeomorphisms are coverings and SH™()) is a cell, the map o must be a homeomorphism.

The proof we present below is essentially just that of [Bon96l Theorem 20], but we have to address the
additional complications introduced by the PL structure of SH™()); this manifests itself in the stratified
real-analytic structure of the map.

Proof of Theorem[12.1. We begin by recording an estimate for the geometry of surfaces near the boundary
of the image of o) (where “near” is measured in a train track chart).

So suppose that X € T(5), set @ = o(X), and build a standard smoothing 7, carrying A geometrically on
X. Fix € > 0 and suppose that there exists some s € W(7,) with ||s|,, < € such that oy(X)+s € SHT()\)
is not in the image of oy; then Theorem implies that B

DA(X)/2 < [, < c.

The following claim can be extracted from the proof of [Bon96, Theorem 20]; we outline a proof for the
convenience of the reader.

Claim 15.8. There is a transverse measure p € A(A) with ﬁ(s) < |lpll, <1 and

Ux(p) = wsp(oA(X), p) <e.

Proof of Claim[15.8 If there is a simple closed curve component of A with length at most €, then we are
done. Otherwise, even though A + a defines a hyperbolic structure on each piece of S\ A, the overall shear-
shape cocycle 05 (X) + s does not define a hyperbolic structure on S because the proof of Lemma or
Lemma fails. Therefore, there is a simple pair (v, w) for which the finite products ¢z (or ¢} ) fail to
converge as H tends to H, . (0r 7 — 00).

We claim that there exists u between v and w and a spike s = (g, h) of H,, such that the following holds:
for any geodesic transversal k C X to A meeting the spike s, the countably many points of kn g C g (labeled
by r € N) exiting one end of g escape at a rate strictly slower than e(r — 1). In other words, there are
segments d,. C g such that £x(d,) < e(r — 1) and d, meets k exactly r times.

If this were not the case, then as in the proof of Lemma m the “gaps” ¢, C ky \ A have length
lx(cr) = O(e™ "), where ¢, N g is labelled by € N. This estimate on the decay of gaps implies that @y
converges as H — H,,, and that Opw = Pow &S T — 0O (see the proof of Lemma , contradicting our
assumption.

Now consider the weight system w, on 7, (not satisfying the switch conditions) defined by counting the
number of times d, travels along each branch of 7,, and dividing by the total number of branches n, that
d, traverses, with multiplicity. Observe that n, > r by definition. Then ||w,|, < 1 in the vector space
R?("a) and w, takes value zero on branches corresponding to arcs of a. Moreover, w,. is non-negative on each
branch and approaches the weight space W (r) € RY™) as r — co. Since w, are built from leaves of A, any
limit point u defines a transverse measure supported on A (compare also [PH92, Proposition 3.3.2]).

There are at most 9x(.5) branches of 7,, so by the pigeonhole principal there is a branch such that each
w, has mass at least 1/9x(5), and therefore so must . But now by construction,

lx(p) = lim fx(dr) < (r=1e <€,

T—00 n, zs

providing the desired measure. |

Now suppose towards contradiction that o is maximal and o (X}) € SHT(A; a) is a sequence approaching
some 0 € SH(\; ) that is not in the image of 0. We may then apply the above construction to o — o (X})
to extract a family of measures py on A satisfying 1/9x(S) < ||ukll-. < 1 and wsy(oxn(X),ux) — 0. By
compactness of the set measures on A with norm bounded away from zero and infinity, there is some non-zero
accumulation point p of pg. Continuity of wsy (Lemma then gives

wsn (oA (Xk), px) — wsp(o,p) =0,

23Recall that H1 () is an open cone with finitely many faces in a vector space, while SHT ()) is an affine cone bundle over
a piecewise linear space with no obvious way of extending the smooth structure over faces of Z(S \ A).
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and so we see that o & SH'()\; ), a contradiction. Hence im(oy) N SH™(); ) is relatively closed. On the
other hand, o is a local homeomorphism by Proposition [15.7] hence im(oy) N SH ™' (\; ) is relatively open.

If we knew that the projection of im(oy) surjects onto Z(S \ A) (or at least meets each top-dimensional
face) we would be done. Since we do not a priori have this information, we instead work our way out in
PB(S\ ) cell by cell.

To wit, we may invoke Theorem once more to deduce that im(oy) N SHT(A\;a’) is relatively open
for every filling arc system o’ that shares a common filling arc subsystem with o (hence SHT(\;a) and
SHT(\; ) intersect). Repeating the argument above for these cells, we have that im(coy) D SHT()\;a/) as
well. Since Z(S \ \) is connected, iterating this procedure allows us to deduce that im(oy) D SHT()). The
reverse inclusion follows from Corollary so o is a homeomorphism onto SHT ().

To address the regularity of oy, we note that while 7(S) has a natural R-analytic structure, SH(M\)
does not. However, for each arc system ¢, filling or not, the open cell %°(a) has a well defined analytic
structure compatible with that of the analytic submanifold of 7(S \ A) that it parametrizes. The total
space of the bundle SH°(A\;a) — £°(a) also carries an analytic structure, invariant under train track
coordinate—transformations (Proposition [8.5); thus S#(A) has a stratified R-analytic structure.

The shape-shifting cocycle @5, hence the surface X, then depends real-analytically on s € W(7,) (where o
here is equal to the support of A(X), not a maximal completion). The reason for this is clear: all elementary
shape-shifting transformations are products of small parabolic transformations (see [Thu98, Section 9] or
[Bon96, Theorem A]) or translations with translation distance that are (restrictions of) real-analytic functions
on (an analytic submanifold of) 7(S\ A). These products converge absolutely to the shape-shifting cocycle,
hence uniformly on compact sets to an analytic deformation. (|

15.3. Dilation rays and Thurston geodesics. Using our coordinatization, we can define an extension of
the earthquake flow to an action by the upper-triangular subgroup.

Definition 15.9. Given a measured geodesic lamination A, a hyperbolic surface X € T(S), and t € R,
define an analytic path of surfaces {X%};cr by

Xt =0 (efon (X)),
called the dilation m based at X directed by A.

As the earthquake flow acts by translation in coordinates (Corollary , we see that dilation and
earthquake along A\ (together with scaling the measure on \) fit together into an action by the upper-
triangular subgroup B < GL3 R on PT,. More explicitly, we can specify an action of B on T(S) x RxoA (by
homeomorphisms) by setting

(47) (g g) (X, A) = (03 H(aoa(X) +bA), ).

These B-actions assemble into a Mod(S)-equivariant B-action on PT, (observe that oy depends only on the
support of A and not the actual measure). Quotienting by the mapping class group and restricting to the
unit length locus then gives a P-action on P! M,, and since dilation preserves the property of being regular,
a P-action on each stratum Plefg (k). We call any such action an action by stretchquakes.

Using the commutativity of Diagram (Theorem , we can compare with the computations
performed in Lemmas and to see that

Proposition 15.10. The map O takes the P action of on P! M, to the standard P action on Q' M,.

While we have defined them via coordinates, it is not hard to see that dilation rays are geometrically
meaningful families of surfaces. Generally, we obtain paths of surfaces along which the length of A scales
nicely, and we can identify some dilation rays as directed lines in Thurston’s asymmetric metric on 7(.5).

Mirzakhani observed (see [Mir08, Remark p. 33]) that for a maximal lamination u, the dilation ray
t— Xﬁ corresponds to the stretch path directed by p defined by Thurston in [Thu98, Section 4]. Very
roughly, stretch paths are obtained by gluing together certain expanding self-homeomorphisms of the ideal
triangles comprising X \ p along the leaves of p.

24We are abusing terminology here by declaring that the image of R under an analytic mapping is a ray. Our aim is to
emphasize that the dilation ray should be thought of as directed toward the future, even though it can be defined for all time.
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Lemma 15.11 (Proposition 2.2 of [Thu98]). Let P, be a regular ideal hyperbolic n-gon. For any K > 1,
there is a K-Lipschitz self-homeomorphism P, — P, that maps each side to itself and expands arclength
along the boundary by a constant factor of K.

Proof. The orthogeodesic foliation O(P,,) is measure equivalent to a partial foliation by horocycles centered
at the spikes of P,,. The desired K-Lipschitz homeomorphism P, — P, is constructed by fixing the central
horocyclic n-gon and mapping each horocyclic arc at distance s from the central region to the horocyclic arc
at distance Ks in the same spike. O

Any partition £ = (K1, ..., 5n) of 49 — 4 determines a regular locus P7 #(x) of pairs (X, \), where the
complement of X in X is a union of regular ideal (k; + 2)-gons. Then P' M8 (k) is the moduli space of pairs
where £x () = 1.

Gluing together the expanding maps of regular polygons provides an explicit model of dilation rays in
PIM, (k) and identifies them with geodesics for the Thurston metric. A survey of some basic properties of
Thurston’s metric as well as similarities and differences between directed stretch rays and Teichiiller geodesics
can be found in [PTQT]. The following proposition was inspired in part by recent work of Horbez and Tao,
in which they investigate the minimally displaced sets in the Thurston’s metric using a similar construction
[HT].

Proposition 15.12. For any (X,\) € PT#(x), the dilation ray {X§ : t € R} C PT%(x) is a directed
unit-speed geodesic in Thurston’s asymmetric Lipschitz metric.

Proof. Since \ is regular on X, oy (X) € SHT()) lies in the fiber over the empty arc system. Scaling oy (X)
preserves this arc system, so X is regular for all ¢. It suffices to prove that the optimal Lipschitz constant
for a map X — XY in the homotopy class determined by markings is e’ for all ¢ > 0.

Let Hy(X) denote the (partial) foliation of X by horocyclic arcs that is measure equivalent to O(X). The
maps of Lemma assemble to an e!-Lipschitz homeomorphism X \ A — X' \ A such that Hy(X) maps
to Hy(X%) = e'H\(X) on each component (as measured foliations). Now, using the fact that o)(X}%) =
elox(X), we can adapt the argument of [Bon96, Lemma 11] (as sketched in Proposition |13.12)) to show that
this map is locally Lipschitz hence extends across A to an e’-Lipschitz homeomorphism X — X¥.

Thus e? provides an upper bound for the optimal Lipschitz constant in the homotopy class determined
by markings. On the other hand,

Cxt () = wsn(oA(X}),A) = wsn(e'or(X),\) = elx(N),
so e is also a lower bound for the optimal Lipschitz constant. This completes the proof of the proposition. [

Remark 15.13. As in the last line of the proof of Proposition we always have £x: () = etlx () for
arbitrary A € ML(S). Thus the distance from X to X} in Thurston’s metric is at least t. However, we do
not always know how to build ef-Lipschitz proper homotopy equivalences X \ A — X{\ X (in the correct
homotopy class) that expand arclength along X \ A by a constant factor of e'.

Remark 15.14. Added in proof: In recent work, Pan and Wolf build new families of geodesics for the
Lipschitz metric using harmonic maps [PW22]. Their work also uses our coordinates to show that certain
“Hopf differential disks” in 7, converge to “stretch-earthquake disks.” It would be interesting to know if
their new geodesics coincide with the dilation rays defined here, and by extension if their stretch—earthquake
disks are the same as the orbits of the stretchquake action defined here.

Remark 15.15. Our dilation rays are different from Thurston’s stretch rays defined with respect to one
of the finitely many maximal completions of A when A is not maximal. This follows from the fact that
Ox(X) # Ox(X), where X is a maximal completion of A.

The map PT,%(k) x R — PT%(x) defined by the rule (X, \,t) = (X§,e~*)) is called the stretch flow.
The stretch flow is Mod(S)-equivariant and

Uxy(e7"A) = tx(N),
hence descends to P! M8 (k).

Corollary 15.16. Let v be a P-invariant ergodic probability measure on P'M,.
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e For v-almost every (X, \), the dilation ray ¢ — X} is a unit speed geodesic in Thurston’s asymmetric
metric.

e On a set of full v-measure, the action of the diagonal subgroup of P is identified with the stretch
flow and O conjugates stretch flow to Teichmiiller geodesic flow.

In particular, the stretch flow is ergodic with respect to v.

Proof. By Corollary v-almost every point is regular (with respect to the same topological type of
lamination), so the first statement of the theorem is immediate from Proposition

The second statement is essentially a restatement of Theorem [B combined with the previous statement.
Alternatively, in the Gardiner-Masur parameterization of Q7 4 (Theorem , the Teichmiiller geodesic flow
at time ¢ is given by (n, A) = (e'n, e7t)), so unraveling the definitions and using commutativity of Diagram
(Theorem gives the result.

For ergodicity, we apply Theorem [C| which asserts, in particular, that O,v is an ergodic SLoR-invariant
probability measure on Q' M (k). The Howe-Moore Theorem implies that any non-compact, closed sub-
group of SLyR inherits ergodicity (see, e.g., [FK02, Theorem 3.3.1]); in particular, the Teichmiiller geodesic
flow is ergodic with respect to O,v. So O maps any stretch flow—invariant set B of positive v-measure to an
O,v Teichmiiller geodesic flow—invariant set of positive measure, which must have full measure by ergodicity.
Thus v(B) = 1, demonstrating ergodicity of the stretch flow. a

Recently, Allessandrini and Disarlo [AD20] constructed Lipschitz maps between some pairs of degenerate
right angled hexagons that stretch alternating boundary geodesics by a constant factor. Recall from Section
[6] that the Teichmiiller space of an ideal quadrilateral is 1 dimensional and can be described as the the cone
over a pair of points corresponding to the two arcs a and 8 that join opposite sides of Q.

Lemma 15.17. Let Q be an ideal quadrilateral with weighted filling arc system sd, where § € {a, 5}. Let
Q@' be the quadrilateral with arc system e!sd. There is an e-Lipschitz surjection @ — Q! that multiplies
arclength along the boundary of @ by a factor of et. Moreover, the projection of the compact edge of the
spine of () is mapped to the projection of the compact edge of the spine of Q.

Proof. Every ideal quadrilateral has an orientation preserving isometric involution swapping opposite sides.
Thus the orthogeodesic representative of § cuts ) into 2 isometric pieces, each of which is a right angled
hexagon with two degenerate sides. On each piece, we can apply [AD20, Lemma 6.9] to obtain maps which
glue together along § to give a map with the desired properties. (|

We immediately obtain some new geodesics for Thurston’s metric.

Proposition 15.18. If S\ A consists of ideal triangles and quadrilaterals, then for any X € 7(S5), t — X}
is a directed, unit speed geodesic for Thurston’s asymmetric metric.

Proof. The proof is nearly identical to the proof of Proposition so we only provide a brief outline.
Construct an e'-Lipschitz surjective map X \ A — X} \ A from the units of Lemma and Lemma
For the same reason as before, this map extends continuously across the leaves of A and provides an
e'-Lipschitz homotopy equivalence X — X% in the homotopy class determined by markings. Thus e is an
upper bound for the Lipschitz constant among homotopy equivalences X — X% in correct homotopy class.
This is clearly an upper bound for the ratio

g t
max 3
peML(S) £,(X)
But e? is also a lower bound for this ratio, because the length of A is scaled by a factor of €.

By a theorem of Thurston [Thu98, Theorem 8.5], there is a e-Lipschitz homeomorphism X — X} homo-
topic to the map constructed above. This completes the proof of the proposition. O

Remark 15.19. The proof of Proposition clearly supplies a more general statement: If A is filling
and cuts X € T(9) into a regular polygons and quadrilaterals of any shape, then ¢ — X} is a geodesic for
Thurston’s metric.

There are other cases in which we can glue Lipschitz maps between degenerate right angled hexagons that
can be found in the literature (e.g., [AD20, [PY17]). However, these other cases require additional symmetry
that is not always present in our setting. We suspect that there is a different approach that would prove
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that dilation rays can always be identified with Thurston geodesics, so that O conjugates a kind of Thurston
geodesic flow to Teichmiiller geodesic flow.

16. FUTURE AND ONGOING WORK

There is much more to understand about the correspondence between hyperbolic and flat geometry de-
scribed in this paper. In addition to using the orthogeodesic foliation to import tools from Teichmiiller
dynamics into the world of hyperbolic geometry (and vice versa), the authors expect this link to provide
retroactive explanations for analogous phenomena in the two settings.

We describe a number of future directions and potential applications of the correspondence below, some
of which will be addressed in forthcoming sequels.

Continuity and equidistribution. Theorem [D]states that for a fixed lamination O : T(S) — MF(})
is a homeomorphism, but as Mirzakhani already observed [Mir08, p. 33], O cannot be continuous on
PT4. Moreover, Arana-Herrera and Wright have proven that the earthquake and horocycle flow are not
topologically conjugate by any map [AHW22]. At fault is the basic fact that the support of a measured
lamination does not vary continuously in the relevant topology.

In forthcoming work [CFa], the authors investigate the continuity properties of O restricted to specific
families of (X, \) with constrained geometry and topology. On these families, the support of A is forced to
vary continuously in the Hausdorff topology as the pair varies (in the usual topology on P7 ). For example,
each of the regular loci has this property. With this extra geometric control in hand, we prove that O
restricts to a homeomorphism PT;*(k) <> QT ;> (k) on each regular locus.

By imposing a stronger (yet still geometrically meaningful) topology on ML(S), we ensure the continuity
of O varying over all pairs: let 9£(S) denote the set of measured laminations with the “Hausdorff +
measure” topology so that measured laminations are close in 9ML(S) if they are close both in measure and
their supports are Hausdorff close. We prove a general phenomenon that O : T(S) x ML(S) — QT(S) is
locally Holder continuous with respect to a nice family of locally defined metrics in geometric train track
coordinates.

Our continuity arguments depend on a detailed analysis of the geometric structure of small foliated
train track neighborhoods of a lamination on a hyperbolic surface. This analysis is sufficiently robust to
produce “enough continuity” to deduce that O is a Borel-measurable isomorphism, a fact which is pivotal
for applications. The results of Section then live in a more natural setting, as well.

Combined with this work, the conjugacy of Theorems [A] and [B allows us to import techniques of flat
geometry to the hyperbolic setting. In particular, while O is not continuous, its discontinuity is controlled
enough that we can translate between equidistribution in P'7, and equidistribution in Q'7, [CFb].

Symplectic structure. For a maximal lamination A, Bonahon and S6zen identified the Goldman symplectic
form on the Teichmiiller component of Hom(m; S, PSLy R)/ PSLy R (also the Weil-Petersson symplectic form)
as oy wy in shear coordinates [SBO1]. For arbitrary A € ML(S) and X € T(S), the shape-shifting cocycles
built in Section provide an open set of deformations of the hyperbolization [p : .5 — PSLyR] of X
(Theorem [15.1)). Taking derivatives (as in [SBO01]) identifies the tangent space to [p] with the vector space of
Ad,-invariant Lie algebra valued 1-cocycles, yielding a reasonably explicit formula for a vector in the tangent
space at [p]. Using this formula, it is then possible to compute an expression for the Goldman symplectic
form in shear-shape coordinates. It remains to understand precisely how O interacts with the various natural
symplectic forms on PM,, QM,, and the (degenerate) symplectic forms on strata, a question that is made
technical by the lack of regularity of O.

Measures. To each PSLjy R-invariant ergodic probability measure on Qlj\/lg, pushforward along O~ pro-
duces a P-invariant ergodic probability measure on P! M, (and vice-versa). An important class of such
measures on the singular flat side is furnished by the Masur-Veech measure ji,, on a component of a stratum
Q' M, (k). In [CFal, the authors give a geometric description of v,, := O;!(u,) on the corresponding “stra-
tum” PlMgeg(ﬁ), which parallels [Mir08, Theorem 1.4] that on the principal stratum, v,, disintegrates into
the Weil-Petersson measure on hyperbolic surfaces and Thurston measure on laminations (up to a normal-
ization factor). We give an outline of the various ingredients required to make the analogous statement for
v, with k arbitrary.

As discussed in Section the piecewise-integral-linear (PIL) structure on SH(A) endows it with an
integer lattice and distinguished measure in the class of Lebesgue. Indeed, for each filling A, the integer
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lattice in SHT(A) restricts to an integer lattice on the fiber H*()\) over the empty arc system due to
integrality of the equations defining the piecewise-linear structure of Z(S \ A). The empty arc system
corresponds to the set of X on which A is regular, and so the PIL structure induces a measure (in the class
of Lebesgue) on this regular locus.

We identify the kernel of the Goldman symplectic form restricted to regular loci as tangent to certain
“hyperbolic Schiffer deformations” associated to each even-gon in the complement of A\. These directions
admit explicit descriptions as weight systems on a snug train track for A [BW17, Appendix] which can be
reinterpreted as 1-forms on regular loci obtained as the differentials of coordinate functions. Using our
formula for the Goldman symplectic form restricted to regular loci, we identify the pullback of the Lebesgue
measure on the fiber H(A) over the empty arc system with an analytic volume form obtained as a wedge
power of the restricted symplectic form then wedged together with the distinguished 1-forms associated to
the kernel.

Using snug train tracks, one can define a k-Thurston measure on the space ML(k) of polygonal measured
laminations of a given topological type. While this is essentially Lebesgue measure in train track coordinates
for the “measure + Hausdorff” topology, it is not locally finite in the usual topology on ML(S). We then
construct natural train track coordinate charts that give local measurable trivializations of P*M(k) and
exhibit v, as the product of k-Thurston measure and the Weil-Petersson type volume form.

Counting. The integral points of the PIL structure on SH™*(\) correspond to integer multicurves trans-
verse to A, so when A is itself a multicurve, integral points correspond to square-tiled surfaces. Using
our coordinates for F“*(\), one can recover the leading coefficient for the polynomial counting the num-
ber of square-tiled surfaces with given horizontal curve of bounded area (which was originally computed
in [AH20a, [DGZZ20]). In particular, since renormalized lattice point counts equidistribute to Lebesgue
measure, the coefficient in question can be identified as the Lebesgue measure of (a torus bundle over) the
portion of the combinatorial moduli space Z(S\ \)/ Mod(S\ ) with controlled boundary lengths. Using the
convergence of the renormalized Weil-Petersson form to the Kontsevich form [Mon09b] (which on maximal
cells induces the Lebesgue volume), this framework can also be manipulated to relate counts of curves on
hyperbolic surfaces and intersection numbers on M, ,,.

Moreover, since our coordinates also record the singularity type of the associated differential, the authors
expect that the same strategy can also be used to count square-tiled surfaces in a given stratum with fixed
horizontal multicurve. The leading coefficient should then be the Lebesgue volume of (a torus bundle over)
a compact part of the appropriate subcomplex of the combinatorial moduli space. The relationships with
hyperbolic geometry and intersection theory in these settings are more subtle, however, due in part to the
non-transversality of the metric residue condition cutting out %(S \ A) and the combinatorial conditions
specifying strata. The authors hope to investigate these properties more fully in future work.

Expanding horospheres. Counting problems for square-tiled surfaces/curves on hyperbolic surfaces are
intricately related to the equidistribution of L-level sets for the intersection number with /hyperbolic length
of laminations as one takes L — co. When A is a multicurve, the equidistribution of such “expanding
horospheres” to the Masur—Veech measure on the principal stratum of @' M,/ the pullback by O of this
measure on P* M, (sometimes called Mirzakhani measure) was established in [Mir07, [AH20b)] [Liu20] using the
geometry of the (symmetrized) Lipschitz metric, the non-divergence of the earthquake flow, and a no-escape-
of-mass argument. On the other end of the spectrum, the equidistribution of expanding horospheres for
maximal A to Q' M ¢ can be proven using a standard “thickening plus mixing” argument from homogeneous
dynamics; in the flat setting this is implicit in the work of Lindenstrauss and Mirzakhani [LMO8], and was
recently generalized in [For20, Theorem 1.6] using different methods. Equidistribution in the hyperbolic
setting then follows from the continuity results described above.

Using our extension of Mirzakhani’s conjugacy (and the continuity results described above), the same
“thickening plus mixing” technique can be used to prove that expanding horospheres based at any A equidis-
tribute to the Mirzakhani measure on PlMg. Moreover, an analogous result should also hold for strata:
intersections of expanding horospheres based at A and the regular locus should equidistribute to the pullback
to P M, of the Masur-Veech measure for a component of Q* M, (k).
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