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ABSTRACT Homophily and heterophily are intrinsic properties of graphs that describe whether linked
nodes share similar properties. While Message Passing Neural Networks (MPNNs) have shown remarkable
success in node classification tasks, their performance often deteriorates within specific homophily ranges,
which we term the gray area. In this work, we identify and theoretically demonstrate the challenges
faced by MPNNs in this gray area, highlighting the limitations of existing approaches in addressing it.
To overcome these limitations, we propose the INformation-enhanced Graph Neural Network (INGNN),
which introduces a novel framework that integrates three complementary features—ego-node features, graph
structure features, and aggregated neighborhood features—through an adaptive feature fusion mechanism
based on bi-level optimization. This design enables INGNN to transcend the homophily barriers and
generalize effectively across the entire homophily spectrum. We validate the effectiveness of INGNN through
extensive experiments on both synthetic and real-world datasets with different graph homophily. Specifically,
INGNN outperforms 12 state-of-the-art MPNNs with an average rank of 1.78 on 9 real node classification
datasets. Our ablation studies further show experimental evidence of how the integrated features contribute
to the model’s performance under different homophily settings. INGNN is open-sourced and available at

https://github.com/x11990/ingnn.

INDEX TERMS Graph neural networks (GNNs), graph homophily, graph node classification.

I. INTRODUCTION

Graph neural networks (GNNs) have been proven to be a
powerful approach to learning graph representations for node
classification tasks [1]. Researchers have proposed different
GNN model designs based on the underlying assumption
of graph homophily or heterophily. On the one hand, many
works [1], [2], [3], [4], [5], [6], [7] assume strong graph
homophily, which means that linked nodes in the graph tend
to share similar properties or labels. These GNNs adopt a
message-passing paradigm that recursively propagates and
aggregates node features through the edges in the graph
to produce smoothed node representations [8], [9]. On the
other hand, some works empirically demonstrate the poor
performance of homophily-based GNNs on heterophilic
graphs and design specific GNNs for heterophilic graphs.

The associate editor coordinating the review of this manuscript and

approving it for publication was Giacomo Fiumara

For instance, LINKX [10] proposes to separately embed the
adjacency matrix and the node features, and GIoGNN [11]
performs node neighborhood aggregation from the entire set
of nodes in the graph to find Global homophily. They perform
much better on graphs with strong heterophily but achieve a
worse accuracy on homophilic graphs than homophily-based
GNNeE.

Neither GNNs designed for homophily nor those designed
for heterophily are optimal, since they invisibly establish a
barrier between homophily and heterophily for graph repre-
sentation learning — a GNN can work well on heterophilic
graphs or homophilic graphs, but not both. However, the
real-world graph data could have various levels of homophily.
It is a hassle to first classify a graph as homophilic or
heterophilic before a suitable GNN model can be identified.
What’s worse, some graphs cannot be easily classified as
homophilic or heterophilic. For example, twitch-gamer
[12] is a social network graph in which users follow each
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other by their interests in the game, while the nodes (i.e.,
users) are labeled by gender. Since the following relationships
(i.e., the connections) are not dominated by gender (i.e., the
label), the homophily of twitch-gamer is 0.55, which
falls in the ambiguous intermediate region on the homophily
spectrum, which we call the “gray area”.

Recent studies [13], [14], [15], [16], [17], [18], [19] employ
various strategies to tackle both homophilic and heterophilic
graphs. They are empirically demonstrated to achieve good
generalization performance across the entire spectrum of
graph homophily. For instance, H2GCN [13] identifies a set
of key designs that boost learning from the graph structure
under heterophily without compromising performance for
homophilic graphs. GPR-GNN [15] adaptively learns the
generalized pagerank weights, irrespective of the level of
homophily or heterophily exhibited by the node labels.
However, these methods do not adequately address the critical
question: what specific conditions of homophily under which
traditional MPNN5s exhibit underperformance. Furthermore,
they do not provide a systematic approach to improve
performance under such conditions.

In this work, we first demonstrate that MPNNs would
underperform in some specific homophily ranges, revealing
why homophily-assumption—based methods cannot perform
well in what we call gray area. Then we exploit the
original graph information to systematically solve the gray
area challenge, namely, transcending the homophily barriers
formed by the gray area. The two types of original graph
information, graph structures, and node features, can be used
together and separately, leading to three features including
ego-node features, graph structure features, and aggregated
neighborhood features. MPNNs, however, take advantage of
only the last feature for downstream tasks. We find that all
three features are necessary for MPNNs to generalize on the
whole spectrum of graph homophily and prove it both theo-
retically and empirically. Based on the insight, we propose an
INformation-enhanced MPNN (INGNN), which adaptively
fuses these three features to derive nodes’ representation
and achieves outstanding accuracy compared to state-of-
the-art baselines. We summarize our main contributions as
follows:

o Theoretical Contribution. We show theoretically that
MPNNs would underperform within specific homophily
ranges that could not be simply categorized as
homophily or heterophily, which we refer to as gray area
in this paper.

o The INGNN Model. We propose INformation-enhanced
Graph Neural Network (INGNN), which uplifts
MPNNs’ accuracy performance over the whole
homophily spectrum. INGNN automatically integrates
graph structure features and ego-node features into the
MPNN framework using adaptive feature fusion under
a bi-level optimization framework.

« Empirical Contribution. We conduct extensive experi-
ments to compare INGNN with state-of-the-art GNN's
using synthetic and real graph benchmarks that cover
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the full homophily spectrum. INGNN outperforms
12 baseline models and achieves an average rank of
1.78 on 9 real datasets. INGNN achieves higher node
classification accuracy, 4.17% higher than GCN [1],
6.48% higher than LINKX [10], and 3.81% higher than
H2GCN [13], on average over the real datasets.

« Ablation Study. Our ablation study demonstrates that
all three features, the fusing mechanism, and the
optimization procedure play indispensable roles in
different types of graphs. Moreover, we empirically
verify the necessity of the three features by enhancing
GCN [1], H2GCN [13], and LINKX [10] with the three
features they did not originally have, which improves
their classification accuracy by 1.50%, 0.40%, and
4.97%, respectively.

Il. RELATED WORKS

A. GNNs FOR HOMOPHIC GRAPHS.

Graph neural networks (GNNs) have achieved remarkable
success on node classification tasks [4], [S], [6], [7]. Many
GNNGs [2], [3], [4], [20], [21], [22], [23] fall into the message
passing framework [8], [9], which iteratively transforms and
propagates the messages from the spatial neighborhoods
through the graph topology to update the embedding of a
target node. To name a few, GCN [1] designs a layer-wise
propagation rule based on a first-order approximation of
spectral convolutions on graphs. GraphSAGE [2] extends
GCN by introducing a recursive node-wise sampling scheme
to improve scalability. Graph attention networks (GAT) [3]
enhance GCN with the attention mechanism [24]. Later
work [4], [22], [23], [25], [26], [27] tried to design more
expressive GCN variants by overcoming the over-smoothing
problem of GCNs [28], [29]. DeepGCN [30] utilizes residual
connections, dense connections, and dilated convolutions to
build deeper GCNs for point cloud semantic segmentation.
APPNP [5] leverages personalized PageRank to improve
the propagation scheme. DAGNN [31] proposes to decouple
the transformation and the propagation operation to increase
receptive fields. However, most of the GNNs mentioned
above fail to achieve good performance on heterophilic
graphs [10], [32] because they assume strong homophily in
graphs.

B. GNNs FOR HETEROPHILIC GRAPHS

Recent works have started to pay attention to heterophilic
graphs. LINKX [10] increases performance on heterophilic
graphs by combining the embedded adjacency matrix and
node features with MLPs. GloGNN [11] performs node
neighborhood aggregation from the whole set of nodes in
the graph to find Global homophily, thereby tackling the
challenge posed by heterophilic graphs. Although these
approaches enhance performance on heterophilic graphs,
their effectiveness on homophilic graphs does not match that
of homophily-based MPNNSs.
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C. GNNs FOR BOTH HOMOPHIC AND HETEROPHILIC
GRAPHS
Some other works explore diverse strategies to achieve
good performance on graphs over the whole homophily
spectrum as we focus on in this paper. MIXHOP [14]
proposes a graph convolutional layer that utilizes multiple
powers of the adjacency matrix to learn general mixed
neighborhood information, which demonstrates effective
generalization capabilities on synthetic graphs with different
homophily. H2GCN [13] identifies three key designs, ego-
and neighbor-embedding separation, higher-order neighbors,
and the combination of intermediate representations to
boost representation learning for heterophilic graphs without
sacrificing performance on homophilic graphs. Generalized
PageRank (GPR) GNN [15] adaptively learns the generalized
pagerank weights for node embeddings in different propa-
gation steps to better adapt to the homophily or heterophily
structure of a graph. GGCN [16] leverages two strategies,
including degree correction to adjust degree coefficients and
signed messages to optionally negate messages, to overcome
the over-smoothing problem. ACM-GCN [17] proposes a
multi-channel mixing mechanism, enabling adaptive filtering
at nodes with different homophily. BernNet [18] learns an
arbitrary spectral filter such as those in GCN, DAGNN,
and APPNP via the Bernstein polynomial approximation.
Similarly, AdaGNN [19] introduces trainable filters to
capture the varying importance of different frequency com-
ponents. Both BernNet and AdaGNN exhibit compelling
empirical results on homophilic and heterophilic graphs.
While these methods introduce varied strategies to bolster
performance on heterophilic graphs without compromising
efficacy on homophilic ones, they do not thoroughly
investigate the specific homophily conditions under which
MPNNSs are inherently predisposed to underperform in node
classification tasks. In this paper, we aim to address this
research gap by elucidating the ‘gray area’ challenge inherent
to MPNNs and advocating for a comprehensive exploitation
of the graph information to surmount this challenge.

IIl. MPNNs UNDERPERFORMANCE IN GRAY AREA

This section starts with the notations and the definitions of
graph homophily and the MPNN:Ss, then states the gray area
challenge for MPNNs with theoretical proof.

A. NOTATIONS AND PRELIMINARIES

1) NOTATIONS

Let G = (V,&,X) denotes a graph with N nodes and
M edges, where V and £ are the set of nodes and edges
respectively, |V| = N and |£] = M. We use A € {0, 1}V*N
as the adjacency matrix where A[i,j] = 1if (v;,v)) € &
otherwise A[i, j] = 0. Each node v; € V has a raw feature
vector x; of size D and the raw feature vectors of all nodes
form a feature matrix X € RV*P_ We refer to the adjacency
matrix A and the feature matrix X together as original graph
information.
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2) HOMOPHILY AND HETEROPHILY
Graph homophily H measures the overall similarity between
the nodes connected by an edge in terms of the labels. There
are multiple ways to calculate graph homophily [13], [32],
[33], [34]. In this paper, we adopt the most widely used
edge homophily [13]. Edge homophily ranges from O to 1.
Graphs with edge homophily close to 1 are called homophilic
graphs, while those with edge homophily close to 0 are called
heterophilic graphs.

Definition 1 : Given a graph G = (V,&) with
labels Y, the edge homophily is defined as Heqee(G,Y) =
Ié_l Z(M’V)eg 1(yy = yv), which represents the fraction of

edges that connect two nodes with the same class label.

3) MESSAGE PASSING NEURAL NETWORKS (MPNNs)
Most GNNs follow the message-passing framework where
the hidden state of a node v € V depends on the features
of its neighbors and itself. A typical message-passing layer is
= W, T (@, H)). )
ueN )
where h' represents the hidden feature of a node at layer /
and 40 is the raw feature vector of the node (i.e., 1% = x).
¥ and & are transformation functions, which could be
any differentiable functions like linear transformations or
multi-layer perceptron (MLP). I' is a permutation-invariant
function such as sum, mean, and max, while N (v) is the node
set of v’s neighborhoods. The message-passing layer trans-
forms the features of the neighborhoods with ® into messages
and then aggregates them with I". After that, W updates the
node’s feature with the aggregated message. By stacking
multiple message-passing layers, GNNs iteratively propagate
information to the target node from multi-hop neighborhoods.
We call this process as the node features aggregation and
the extracted features (i.e., {hf,, [ =1,2,---}) as aggregated
neighborhood features.

B. GRAY AREA CHALLENGE

We prove that in a specific homophily range, which we refer
to as gray area, the node features aggregation process may
hurt MPNN’s performance.

Theorem 1: There exists a graph homophily range in
which the misclassification rate of a classification model will
increase after node features aggregation.

The key of proving Theorem 1 is to identify a homophily
range and show that if the homophily of a graph falls into
this range, classifying with aggregated neighborhood features
only will increase the misclassification rate compared with
using raw node features X. To prove that there must exist
such a homophily range, we identify three specific homophily
cases in which the misclassification rate changes (increases
or decreases) when using aggregated neighborhood features.
Then based on the intermediate value theorem, we can prove
the existence of the homophily range with an increased
misclassification rate. Without loss of generality, we prove
the theorem using a binary node classification problem.
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Proof of Theorem 1: We first introduce the necessary
definitions related to the problem. Suppose that there is a
regular graph G with homophily H and degree d. The nodes V
in G can be categorized into two classes, and the feature
of a node v from each class is sampled from two normal
distribution N (w1, 012) and N(u3, 022) respectively. We call
the probability density function of the two distributions
fi(x) and f>(x). An optimal classifier for a binary node
classification problem will categorize a node into a class in
which the node feature has a higher probability of being
sampled from its distribution. The misclassification rate
of such an optimal classifier € is the integral over the
overlapping area of fi(x) and f>(x),

€=1-¢1(2) + 9202, @

where ¢| and ¢, are the two cumulative distribution functions
and z is the solution of fj(x) = f>(x). In particular, we denote
the misclassification rate of using the raw node features
as €gyp-

Next, we discuss how the two node feature distributions
change after aggregation, which will affect the misclassifi-
cation rate. We consider the case where node features are
aggregated by an averaging function (i.e., I' is the mean
function in Eq. 1). Since the graph homophily is H, for an
arbitrary node, there are Hd neighbors from the same class
and (1 —H)d from the other class in average. The aggregated
features of the nodes from class 1 follow the distribution of

Ho? + (1 —H)ozz)

N(Hpr + 0 = H)ua, 7 3
Similarly, those from class 2 follow
Ho? + (1 — H)o?
N(Huz + (1 = Hypy, —2 L., @

d
Although it is challenging to obtain the analytical solution
for z and € with the distributions of the two classes after
aggregation, we could easily identify three special cases
H € {1.0,0.0,0.5} whose misclassification rate based on
aggregated neighborhood features becomes higher or lower
compared to €,4y.

e Case 1: If H = 1.0, the distribution of aggregated

neighborhood features are

2

NGar, %0y and NG, 2 ®)
M1, P M2, i

for class 1 and 2 respectively. Compared to the original
feature distributions, the mean values are the same
but the variances are reduced, leading to a smaller
overlapping area of the distributions. In other words, the
misclassification rate is reduced, i.e., €—1.0 < €rqn-
o Case 2: If H = 0.0, the distribution of aggregated
neighborhood features are
o3 of
N(p2, 7)31161 N (1, 7), (6)

for class 1 and 2 respectively. Compared to Case 1,
the distributions are exchanged, which means the
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FIGURE 1. The misclassification rate when using the aggregated
neighborhood features for graphs with different homophily.

misclassification rate should be the same as H = 1.0,
namely €x—0.0 = €=1.0 < €raw-

e Case 3: If H = 0.5, the distribution of aggregated
neighborhood features are

pi+pr of +o3 )

2 7 24 7

for both class 1 and 2. In this case, the two distributions

are indistinguishable for any classifier, i.e., €y—g5 =

1.0 > €4y, which is the worst case for binary
classification.

Figure 1 shows the misclassification rate when using
aggregated features for graphs with different H. Since the
misclassification rate (Eq. 2) is a continuous function and
EH=00 = €H=10 < €Eraw < €H=05, according to the
intermediate value theorem, there exist 0.0 < H; < 0.5 and
0.5 < H, < 1.0, such that for all G with homophily H €
(H;, Hy), i.e. the gray area in Figure 1, the misclassification
rate of the aggregated features is higher than that of the
raw features. In other words, there exists a graph homophily
range in which the misclassification rate increases after
aggregation. We refer to the range as gray area in this paper.
Therefore the formal definition of gray area is,

Definition 2: Given that edge homophily ranges from 0 to 1,
the gray area is defined as a homophily range H € (H;, H,),
where 0.0 < H; < 0.5 < H, < 1.0. Within this range,
the misclassification rate of the aggregated neighborhood
features is higher than that of the raw node features. Formally,

N( )

Gray Area = {H | H € (H;, H.)}
00<H; <05 <H, <1.0,e(H) > €ran, (8)

where €(H) represents the misclassification rate after aggre-
gation, and €,4,, denotes the misclassification rate using raw
node features.

We further extend the proof for Theorem 1 to multiple
classes. Assume that the nodes in the graph could be
categorized into K classes, while the node feature distribution
of class k is N (i, akz). Then given a graph homophily H, the
node feature distribution of class k after one step aggregation
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will be,
Hof + 4
d

2
ik 9

1—-H
N(Hps + 2= D s ). )
i#k
Then similar to our discussion for binary classification, there
are two special cases when H € {1.0, %}.
e Case 1: If H = 1.0, the distribution of aggregated
neighborhood features of class k is

of o;
N(ui. ) and N, —). (10)

For the same reason for binary classification case,

€H=1.0 < €raw-
e Case 2: If H = %, the distribution of aggregated
neighborhood features are

K K
Doimi Mi iy "12
X Kd ) (11)

for all classes. In this case, the distributions are
indistinguishable for any classifier, i.e., €yl =
- K

N(

1.0 > €,4y, Which is the worst case for the multi-class
classification.

Then according to the intermediate value theorem, there
exists % < ’ﬂ < 1.0 such that for all % < H < ﬂ
€1 > €rqy- Hence we prove that Theorem 1 holds for multiple
classes.

C. EXTENSION TO NON-GAUSSIAN FEATURES

Our primary analysis above assumes that node features
are sampled from Gaussian distributions for mathematical
convenience. However, real-world graph data often exhibit
non-Gaussian characteristics. To evaluate the generality
of the gray area hypothesis, we extend our analysis to
include other distributions, such as uniform and exponential
distributions, which are representative of commonly observed
cases.

For uniform distributions, where features of nodes from
different classes are sampled from distinct intervals, and for
exponential distributions, where features are sampled from
distributions with varying rates, the aggregation process leads
to significant overlaps in feature distributions within the gray
area. This overlap arises because aggregated neighborhood
features tend to converge towards similar values as they
mix features from multiple classes if the graph homophily
nears 0.5.

The increased overlap between feature distributions
reduces their separability, thereby impairing the ability of
a classifier to distinguish between classes. As a result, the
misclassification rate of aggregated features exceeds that
of raw features, consistent with the gray area hypothesis.
Although the exact boundaries of the gray area may vary
depending on the feature distribution, our findings confirm
that the phenomenon persists across different types of
distributions.
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IV. INFORMATION-ENHANCED GNN (INGNN)

We propose to solve the gray area challenge by fully
exploiting the graph information. Specifically, given a graph
g, there are three features Hagp = fage(X, A), Hego = fego(X),
and Hgye = fsuc(A), which result from the use of the two
original graph information, the feature matrix X and the
adjacency matrix A, together and separately. Our basic idea
is to integrate Hego and Hyyc into MPNNSs to address the gray
area challenge.

The first feature H,ge, namely the aggregated neigh-
borhood feature, is exactly what MPNNs are computing.
To extract this feature, we follow the state-of-the-art
design where feature transformation and propagation are
decoupled [31]. It transforms and propagates the raw node
features X and combines the features of different propagation
steps to enlarge the receptive field:

LI A 1 1
Hy, = > A'XW,,, A=D72AD 2, (12
i=1

where A is the normalized adjacency matrix, and D is the
diagonalized node degrees. 51 is the maximum propagation
step.

The other two features Hego and Hgyc, refer as ego-node
features and graph structure features, can be integrated to
alleviate the MPNNs’ underperformance in the gray area.
We further propose to automatically combine the three
features for graphs with different homophily through adap-
tive feature fusion. The three newly introduced components
together with the aggregated neighborhood feature form the
proposed Information-Enhanced GNN (INGNN) and we will
elaborate on these components in the following subsections.

A. EGO-NODE FEATURE EXTRACTOR

We first introduce a separate feature extractor for ego-node
features. To extract the ego-node features, we use a simple
linear transformation of the node feature matrix X € RV*P:

Hego = XWego,  Wego € RPXY, (13)
where Wego is the transformation matrix. We use linear
transformation instead of MLP because linear transformation
consistently achieves the best accuracy in our empirical
evaluation.

Rationale. In Theorem 1, we show that using aggregated
neighborhood features only could increase misclassification
rates under some graph homophily settings. To alleviate
the underperformance phenomenon, we prove that ego-node
features can depress the node misclassification rate in these
settings. This is also empirically supported by our ablation
study that the ego node feature can improve the accuracy of
INGNN by 2.11% (see Section V-B).

Corollary 1: Combining ego-node features with aggre-
gated neighborhood features, i.e., [fage(X, A), fogo(X)] can
depress the misclassification rate in the gray area of
Theorem 1.
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Proof of Corollary I: Recall that the misclassification
rate of using ego-node features foq0(X) is €4y, and that of
using aggregated neighborhood features fu,,(X, A) is larger
than €,,, when the graph homophily falls in the gray area.
Therefore, combining fue,(X) could reconcile the negative
effects of f,4¢(X, A) and thus reduce the misclassification rate
in the gray area.

B. GRAPH STRUCTURE FEATURE EXTRACTOR
We also propose to extract the graph structure feature
by computing the combination of different powers of the
adjacency matrix after a linear transformation:

52
Hgie = Z AWge, Wy € RV>d ) (14)
=1

where Wy is the transformation matrix, and s, is the
maximum power of the adjacency matrix. We use a simple
linear transformation for its efficiency and we do not observe
performance gains from using an MLP.

Rationale. The root cause of the elevated misclassification
rate within gray area is the conflation of node feature
distributions after aggregation, which renders the nodes
indistinguishable from each other. To address this, we posit
that introducing a unique identifier for each node — an
identifier that remains invariant under node aggregation —
would enable our model to accurately classify nodes, even
when the aggregated neighborhood features converge towards
identical representations. Drawing inspiration from recent
works that consider the adjacency matrix as a separate
discriminative feature [10], [11], we propose to leverage
both the adjacency matrix and its sp-hop variants as such
unique identifiers, and to extract graph structure features from
the graph. We hypothesize that these extracted features will
serve as a stabilizing anchor as well as a spatial embedding,
mitigating the performance degradation observed in these
challenging homophily scenarios.

Empirically, our ablation study shows that the graph
structure feature can improve the accuracy of INGNN
by 4.35% on average (see Section V-B). Furthermore,
by incorporating the graph structure feature into an existing
MPNN, H2GCN [13], we observe an average accuracy
improvement of 0.40% (see Section V-D). These results
demonstrate the effectiveness of the graph structure feature
in improving the accuracy of MPNNs.

C. ADAPTIVE FEATURE FUSION
We further introduce an adaptive feature fusion module,
which assigns a trainable scalar importance score for each
feature so that it can automatically learn the features’
importance from the input graph:

€Xp pi

Z,‘l] eprj’
15)

H= U(”lHego + 772Hagg + m3Hsye), W=
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where H is the fused feature and o is the activation function
ReLU. P = {p;li = 1,2, 3} are trainable parameters and
{mili = 1,2,3} are the weights for each feature. After
obtaining the fused feature H, we predict the labels for each
node with a linear classifier, Yprea = Softmax(HWpred),
where Ypreq € RV *C is the predictions and Wired € R4*C
is the predictor’s parameters.

Rationale. The rationale behind adopting this feature
fusion method is two-fold. First, the three features reflect
distinct aspects of the graph information, which will have
different importance for the representation learning on the
graphs with diverse homophily. Therefore, we propose to
assign weights to the features instead of treating them
equally. Later, Table 4 will show that adaptive feature fusion
yields improved accuracy compared to simple summation or
concatenation, with performance gains of 1.84% and 2.09%
respectively. We also verified the importance of the features
for different graphs and the superiority of weighted feature
fusion in the ablation study detailed in Section V-B. Second,
a common practice for combining features with weights is to
treat the assigned weights as hyperparameters, which requires
significant searching costs for different graphs. To avoid the
time-consuming hyperparameter search, we borrow the idea
of bi-level optimization, from the Neural Architecture Search
domain (NAS) [35], [36], to adaptively learn the feature
weights together with the model parameters, which is more
efficient and could be automatically generalized to the graphs
with different homophily.

Suppose that the model parameters are W and the
parameters for feature fusion are P. The loss function of the
node classification tasks is:

1
LW.P.G.XY) = — oy > yogBi),  (16)
yvieY

where Y is ground-truth labels and 3; € Ypeq is the
prediction of our model for node i. The objective of our
bi-level optimization is:

m;n Lyaiid(W*, P, G, Xvaiid, Yvalid),
s.t. W* = arg mV%/n Lirain(W, P, G, Xirains Yirain)- (17)

In short, we optimize the model parameters W on the
train set, while alternatively optimizing the feature fusion
parameters P on the validation set. This training strategy
outperforms training the feature fusion parameters together
with the model parameters using the same optimizer by an
average of 2.27% across 9 datasets, as shown in the ablation
study (see Table 6).

D. IMPLEMENTATION DETAILS

The complete implementation details of INGNN are listed
in Table 1. We highlight two implementation considerations.
First, to improve the efficiency of computing the power
of the adjacency matrix A’, we reuse the intermediate
results of different hops of neighbors to simplify the
computation. Specifically, we compute A’Hego recursively
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TABLE 1. INGNN model implementation details.

Module \Tmplementation Details

Input Feature x

Ego Node features H., = Linear(Dropout(X))
Aggregated Neighborhood featuresHygy = S°71 ;| A'Heyo

=1 g
Graph Structure features H. = 2/21 BN(A - BN(...BN(AW)))

J

H = ReLU(Dropout(m1 Hego + m2Hauge + m3Hre)),
Feature Fusion = PP

5L, e,

Prediction Head [Yprea = Softmax(HW preq)

as A - (A’”Hego) instead of (1&’4)Hego in the aggregated
node feature H,go. In each recursion, the only operation
employed is a sparse-dense matrix multiplication, which
is more efficient than directly computing the power of
the adjacency matrix. We adopt the same strategy when
computing the graph structure feature Hgc. Second, to ensure
numerical stability when computing Hgy., we incorporate
batch normalization to normalize the scale of the feature
matrix after each adjacency matrix multiplication.

1) BI-LEVEL OPTIMIZATION IMPLEMENTATION

To implement our bi-level optimization training scheme,
we utilize two optimizers to train the model parameters W
and the feature fusion parameters P respectively. The model
parameters W are trained with an Adam optimizer [37] O on
the training dataset. The learning rate and weight decay rate
of O is decided by the hyper-parameter settings. On the other
hand, the feature fusion parameters P are trained with another
Adam optimizer O; on the validation dataset with a fixed
learning rate 0.01. We train P for 10 epochs after training W
for every 20 epochs. When training P, we’ll set the Dropout
layers and Batch Normalization layers to evaluation mode.
We early stop the model if the validation accuracy does not
increase for 100 epochs or the total number of training epochs
reaches 3000.

2) TIME COMPLEXITY ANALYSIS

We show that our model has linear scalability with respect to
the number of nodes N. The time complexity for extracting
the ego-node features is O(N - d?), where N represents the
number of nodes in the graph, and d denotes the dimension of
the hidden feature. Extracting the aggregated neighborhood
features requires O(s1Md) for aggregating features from
s1-hop neighbors using sparse matrix multiplications, where
M stands for the number of edges in the graph. Similarly, the
time complexity for extracting the graph structure features
is O(soMd). The feature fusion step necessitates O(Nd) for
reweighting and summing up the features. Lastly, the linear
classifier takes O(NdC) to perform predictions. Assuming
that the average degree of the graph is constant D, we have
M = ND. Consequently, the total time complexity of
our proposed model INGNN is O(N - d?) + O(s;NDd) +
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O(soNDd)+ O(Nd)+ O(NdC), which increases linearly with
the number of nodes N.

V. EXPERIMENTS

We conduct experiments on both synthetic and real datasets
to examine the efficacy of our model in terms of test accuracy
compared to baselines in Section V-A. We then present
ablation studies to show the effectiveness of the three feature
extractors, adaptive feature fusion, and bi-level optimization
in Section V-B. We also examine the insights from feature
fusion in Section V-C and show the benefits of adding the
proposed graph structure features and ego-node features to
existing methods in Section V-D.

Datasets: We generate synthetic graphs syn—cora with
the approach in H2GCN [13]. The syn-cora dataset
provides 11 graphs with homophily ranging from 0.0 to
1.0 with 0.1 as the interval. The raw node features and labels
for each graph are sampled from the cora dataset [38]. The
edges of the graph are generated gradually according to the
given homophily. We evaluate the average test accuracy over
five trials on these graphs with the official data splits (25%,
25%, 50%, for each class).

We also evaluate our method and existing GNNs on 9 real-
world datasets. The statistics of the datasets are summarized
in Table 2 and the homophily of these datasets ranges from
0.222 ~ 0.931. Cora [38], CiteSeer [38], PubMed [38],
and Coauthor CS & Physics [39] have high edge
homophily and are usually considered as homophilic graphs.
For these graphs, we follow the data split in GCN [1]
and DAGNN [31]. For Cora, CiteSeer, and PubMed,
we randomly sample 20 nodes from each class as the train
set, and sample 500 nodes from the rest as the validation
set and 1000 nodes as the test set. For Coauthor CS &
Physics, we randomly sample 20 nodes per class as the
train set, 30 nodes per class as the validation set, and the
rest nodes as the test set. penn94 [40], arXiv-year [41],
genius [42], and twitch-gamer [12] are graphs with
lower homophily. For these graphs, we follow the data split
in LINKX [10], [33], which uses the 50%/25%/25% nodes as
the train/validation/test set respectively. For all the datasets,
we generate five random data splits for computing the average
and standard deviation of the models’ performance.

TABLE 2. Statistics for the real-world datasets.

#Cls #Nodes #Edges #Features degree horfl((l)iiily

Cora 7 2,708 5,278 1,433 1.949 0.81
CiteSeer 6 3,327 4,552 3,703 1.368 0.736
PubMed 319717 44,324 500 2.248 0.802
Coauthor CS 15 18,333 81,894 6,805  4.467 0.808
Coauthor Physics | 5 34,493 247962 8415  7.189 0.931
penn94 2 41,554 1,362,229 5 32.782 0.47
arXiv-year 5 169,343 1,166,243 128 6.887 0.222
genius 2 421,961 984,979 12 2.334 0.618
twitch-gamer 2 168,114 6,797,557 7 40434  0.545
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Baselines for Comparison: Our baselines include pure
MLP applied on the node feature, methods based on
the homophily assumption (GCN [1], GAT [3], and
DAGNN [31]), methods designed for heterophilic graphs
(LINKX [10] and GloGNN [11]), and those that can
generalize on the whole spectrum of graph homophily (MIX-
HOP [14], GPR-GNN [15], H2GCN [13], AdaGNN [19],
BernNet [18], and ACM-GCN [17]). We did a grid-based
hyperparameter search for all baselines and our approach.
Specifically, we use the hidden channels (d), the propagation
steps for aggregated neighborhood features extraction (s1),
the power of the adjacency matrix for graph structure features
extraction (s7), the learning rate n, the weight decay A, and
the feature normalization (v) as hyperparameters. For all the
datasets, we perform a grid search over the following hyper-
parameter options:

d e {64
n € {0.01

128},s1€{2 5 10 20},sp€{l 2 5},
0.001}, A € {0.001 0.0005}, v € {True False}

We also list the best hyper-parameter settings for all the
real-world datasets in Table 3.

TABLE 3. Best hyper-parameter settings for the real-world datasets.

arXiv penn94 twitch genius CiteSeer PubMed Cora CS Physics
Homophily | 0.22 047  0.55 0.62 0.74 0.80 0.81 0.81 093

d 128 64 64 128 128 64 64 64 128
s1 2 10 5 2 10 20 20 10 10
S2 5 1 5 5 1 2 1 1 2
n 0.001 0.01 0.001 0.01 0.001 0.01  0.01 0.001 0.001
A 0.001 0.001 0.0005 0.001 0.0005 0.001 0.001 0.001 0.0005
v False False False False  True True  True False False

A. ACCURACY PERFORMANCE OF INGNN

Table 4 reports the average test accuracy over five random
splits with the standard deviation of the accuracy performance
on the graphs in the syn-cora dataset. Overall, INGNN
outperforms the existing methods on most datasets, with six
in the top-1 and four in the top-2. In particular, INGNN
outperforms the baselines on a larger range of homophily
(0.2 ~ 0.8), which covers the gray area and also more
common cases in real-world datasets. It pushes the best
accuracy up to 2.76%. Furthermore, considering that the
number of classes in syn—-cora is seven, the worst-case
misclassification rate, as discussed in Theorem 1, is expected
to occur around 1/7 =~ 0.14. As evident from Table 4,
within the range of 0 ~ 0.4, conventional MPNN-based
methods, including GCN, GAT, and DAGNN, exhibit lower
accuracy compared to a pure MLP applied directly on node
features. This empirical observation substantiates the gray
area challenge of these algorithms.

Table 5 reports the results on the 9 real datasets. Overall,
INGNN achieves five top-1 and three top-2 over 9 datasets,
with an average rank of 1.78. INGNN achieves an accuracy
improvement of 3.05% ~ 30.94% compared to MLP,
1.17% ~ 10.51% compared to GCN, 0.99% ~ 7.16%
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compared to GAT, and 0.34% ~ 18.62% compared to
DAGNN regardless of the graph homophily. This reveals
the better generalization capability of INGNN on the whole
spectrum of graph homophily compared to pure MLP and
methods based on the homophily assumption. Compared with
methods designed for heterophilous graphs, INGNN obtains
better accuracy than LINKX in 8 out of 9 datasets and
achieves competitive results as GIoGNN in the heterophilic
graphs (i.e., arXiv-year, penn94, twitch-gamer,
and genius) while surpassing it by 2.65% ~ 14.1%
in homophilic graphs. Compared to methods that work on
the whole spectrum of graph homophily, i.e, MIXHOP,
GPR-GNN, H2GNN, AdaGNN, BernNet, and ACM-GCN,
INGNN has the best generalization capability with higher
accuracy of 4.01%, 3.43%, 3.81%, 2.89%, 6.57%, 4.46% on
average respectively.

B. ABLATION STUDIES

We present ablation studies to show the effectiveness of our
design choices: the three graph features, adaptive feature
fusion, and bi-level optimization. Table 6 reports the accuracy
results from five variants of our model by removing one
design element at a time.

1) GRAPH FEATURES

The rows w/o egg, w/o agg, and w/o strc demonstrate
the contribution of the three features extracted from the
original graph information to the accuracy of the model.
Overall, models without one of the three features suffer
from 2.11% ~ 5.43% average accuracy drop on all the
datasets, indicating the importance of these features on
graph representation learning. Specifically, models without
the aggregated neighborhood features (w/o agg) have a
larger accuracy drop on homophilic graphs (i.e., Cora,
CiteSeer, PubMed, CS, and Physics). It echoes the
high performance of MPNNs (e.g., GCN and DAGNN) on
homophilic graphs. In contrast, models without the graph
structure features (w/o strc) suffer from severe accuracy
drops, up to 20.52%, especially on heterophilic graphs.
While models without the ego-node features (w/o egg) have
accuracy drop from 0.38% ~ 4.31%. This phenomenon
echoes its depression effect on the misclassification rate as
stated in Theorem 1.

2) ADAPTIVE FEATURE FUSION

We also investigate the effectiveness of adaptive feature
fusion by comparing it to alternative methods such as
summing up and concatenating the three graph features
in Table 6. When fusing with summation, we observe an
average accuracy drop of 1.84%, indicating the significance
of the proposed adaptive feature fusion. Another widely
used approach for feature fusion is concatenating features.
Although concatenation allows one to learn separate param-
eters for different features, it fails to achieve a well-balanced
integration of features, as it leads to an average accuracy drop
of 2.09%.
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TABLE 4. Test accuracy of different methods on the graphs with different homophily from 0 to 0.5 in syn-cora dataset. Bolded red and normal blue
represent top-1 and top-2 ranking in terms of accuracy respectively.

synh ‘ 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 0.8

0.9

1

MLP  |69.2041.92
GCN | 28.6149.3s
GAT |29.4144.20

DAGNN | 34.3241 .51

LINKX | 72.0941.65

MIXHOP | 39.44 43 98
GPR-GNN| 67.86+2 .66

69.2041 .92
30.6441 58
30.3242 52
39.4941.18
70.54 11 .84
H2GCN (76.4311 27 73.8613.05
38.9549 21
61.9612 53

69.204+1.92
36.03+1.15
34.83+1.67
45.0142.42
69.76 £1.07
71.58+1.75
41.05+2.69
61.214+2.36

69.2041.92
45.1549 18
43.86+1.44
54.48 £3.17
70.13+1.30
721741 44
48.9312.72
64.6912 88

69.204+1.92
51.3941.48
51.1541.25
60.5141.40
71.3441.17
72.95410.76
55.094+2.30
67.67+3.41

69.2041.92
65.04+1 60
64.80+1.81
72.3611.83
74.53+1.83
78.31+1.96
64.754+1.88
74.56 12,60

69.2041.92
74.4811.36
74.3442.03
80.00+1.26
T7.1641.22
83.27+1.25
74.4541.44
80.19+1.57

69.2041.92
82.22 15 20
81.4541.72
86.4942.13
80.35+1.47
87.43+10.88
82.44 42 69
86.68+0.69

69.2041.92
91.2141.15
90.46+1.12
93.3241.45
83.30+1.23
92.0940.46
91.4541.11
93.54+1.36

69.2041.92
96.194+0.65
95.794+0.71
97.48.10.31
87.5941.07
97.0010 25
96.2510.89
97.4540.28

69.2041.92
99.9240.18
100.0+0.00
99.9540.07
89.6041.86
98.9840.62
100.0+0.00
100.0+0.00

INGNN | 72.4941.74 73.67+1.61 73.114+0.94 74.83242.29 75.71+1.00 79.4941 .58 84.67+1.30 87.3241.25 93.704+1.13

94.7543.47 99.9540.07

TABLE 5. Average test accuracy + standard deviation on the real datasets. Bolded red and normal blue represent top-1 and top-2 ranking in terms of
accuracy respectively. OOM means a model runs out of memory on a specific dataset. Rank represents the average rank over all the datasets.

arXiv-year  penn94  twitch-gamer  genius CiteSeer PubMed Cora CS Physics | Rank
Homophily 0.22 0.47 0.55 0.62 0.74 0.80 0.81 0.81 0.93 -
#Nodes 169,343 41,554 168,114 421,961 3,327 19,717 2,708 18,333 34,493 -
#Edges 1,166,243 1,362,229 6,797,557 984,979 4,552 44,324 5,278 81,894 247,962 -
#Classes 5 2 2 2 6 3 7 15 5 -
MLP ‘ 36.7040.21 73.604+0.40 60.9240.07 86.68+0.09 50.94+420 66.04+2.29 52.5642.55 83.08+1.00 82.15+5.11 ‘12.22
GCN 46.0210.26 82.4710.27 62.1810.26 87.421037 63.361206 78121160 77.90+1.18 90.3510.88 92.391+0.89 | 7.78
GAT 49.3740.20 81.454+055 62.3240.23 86.59+1.06 65.90+1.88 76.7842.38 76.98+1.75 88.86+0.65 92.57+0.60 | 7.67
DAGNN 38.49i()‘28 74.84i0A52 60‘36i0A14 71.11i9,11 67.12i171 78.28i1,58 82.34i142 91.83i()‘72 93.22i077 6.78
LINKX 56.00i1,34 84.7110.52 66.06i0_19 90.77i()427 53.66i3469 67.66i4429 62.66i2412 88.53i1443 89.37i1‘52 7.56
GloGNN | 54.5240.39 85.60+0.27 66.3410.20 90.9110.13 55.724300 72.7241.16 74.70+1.62 90.50+1.29 89.164261 | 6.33
MIXHOP | 51.78+0.26 83.63+0.54 65.6510.30 90.6110.24 56.981+480 76.144237 73.80+£4.02 89.7910.91 93.3310.75 | 6.44
GPR-GNN | 44.8940.20 81.1240.63 62.0040.25 90.0249.13 64.724159 79.124087 80.44+1.53 90.7410.60 93.8610.36|5.78
HZGCN 49.09i()‘10 81.54i()‘56 OOM OOM 64.4011‘44 76~30i2.80 79.24i1,75 91-18i0.58 93.56i048 586
AdaGNN | 49.494¢0.16 83.5540.31 64.64410.27 89.684+0.81 63.444194 76.8041.45 80.66+1.07 90.8040.84 92.66+0.89 | 5.33
BernNet 36.49i0,18 82.81i0,51 62.37:{:0,21 88.83:{:0,68 53.52:{:4,70 75.32:{:1,55 76.52:{:2,97 91.43:{:0,91 9130:{:0.86 8.44
ACM-GCN 48.41j:0.30 82.68j:0.60 61.48;{:0,61 81~19:I:6415 65.08i1491 76.70i1_32 78.90:|:1.66 90.50j:0.54 92.70:{:0_74 7.33
INGNN ‘56.53i0_15 85.4440.60 66.07+0.11 89.731+0.51 69.8211.08 79.98+1.57 83.504+0.03 93.15+:0.36 93.56+0.65 ‘ 1.78

3) BI-LEVEL OPTIMIZATION

Without bi-level optimization, the feature fusion weights
are jointly optimized with the model parameters on the
training dataset. Its accuracy drops by 2.27% on average.
This phenomenon is consistent with the observation in the
NAS domain [35]: training model parameters and feature
fusion weights jointly on the same training set would cause
overfitting, and thus poor generalization performance.

C. INSIGHTS FROM FEATURE FUSION

This section studies the importance of the three graph features
in graphs with different homophily. We measure feature
importance by computing their proportion after adaptive
feature fusion. Formally, the importance score is computed
as,

T — i (Hy)

1 (Hego) + 2 (Hagg) + 3 (Hyire)
where s € {ego, agg, strc} and (-) computes the averaged
absolute value of a specific feature.

Figures 2(a) show the results on syn—cora. We observe
three dominant trends. (1) The importance of the aggregated

(18)
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neighborhood features increases from 0.2 to 0.8 as the
homophily increases, echoing the intuition that a node has
similar properties to its neighbors on homophilic graphs.
It is also consistent with our gray area challenge which
reveals that the most severe misclassification rate associated
with the aggregated neighborhood features materializes at
a homophily level of approximately 0.14 (1/7) for the
syn—-cora dataset. (2) The importance of the ego-node
features increases from close to around 0.05 to 0.8 as the
homophily of a graph becomes lower. This indicates that
the ego-node features are a more reliable signal than other
features in some cases, which is consistent with Theorem 1.
(3) All the features have a nontrivial importance score for
graphs with homophily within 0.2 and 0.8 (which is common
for real graphs). This indicates the importance of all the
features in learning node embeddings, echoing insights from
the ablation study.

Figure 2(b) shows the results on real graphs. Since real
graphs have different intrinsic graph properties, including
the raw node features and the graph links, we cannot
compare the changes in feature importance across graphs
like what we did for syn-cora. Instead, we focus
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TABLE 6. Ablation studies on the real datasets.

arXiv penn94 twitch genius CiteSeer ~ PubMed Cora CS Physics | A Avg.

Homophily 0.22 0.47 0.55 0.62 0.74 0.80 0.81 0.81 0.93 -

INGNN 56.53 85.44 66.07 89.73 69.82 79.98 83.50 93.15 93.56 -

w/o €go 53.80 2.74) 81.83 3.620 65.68 0.40] 85.61 4.12] 68.44 1.38 78.92 1.06] 83.120_3& 88.84 431 92.56 1.000 2.11l
w/o agg 53.17 3.36) 84.81 0.63) 65.78 0.30, 89.78 0.051 57.54 1228 72.32 7.66. 72.66 10.84] 87.72 5.43] 85.14 8.42] 543i
w/o strc 36.01 20.52 75.50 9.94] 61.59 4.49] 86.87 2.86) 69.82 0.00] 79.62 0.36). 83.34 0.16) 92.46 0.69] 93.41 0.15) 4.35\L
w/o fusion (sum up) 53.45 3.08] 84.35 1.090 65.76 0320 87.64 2.09] 67.72 2.100 76.04 3.94] 82.48 1.020 91.13 2,020 92.64 0.92] 1,84\L
w/o fusion (concate) 56.55 0.027 82.14 3300 65.87 0.200 89.44 028 66.70 3.120 74.70 5.28] 81.10 2.40) 89.73 3.42) 92.74 0.82) 209l
w/o bi-level 53.27 3.26] 83.71 1.74) 65.74 0.34] 88.25 1.48) 68.60 1.22] 73.32 6.66) 81.02 248 90.31 2.84] 93.15 041] 2.27i,

TABLE 7. Average test accuracy and accuracy improvement when adding features on GCN, LINKX, and H2GCN. Subscripts report the accuracy
improvement from the introduced features compared to Table 5. GCN..: GCN +Hego + Hggrc, LINKX. : LINKX +Haggr, H2GCN.: H2GCN +Hg.

arXiv-year penn94 twitch-gamer  genius CiteSeer  PubMed Cora CS Physics | Avg. Imp.
Homophily 0.22 0.47 0.55 0.62 0.74 0.80 0.81 0.81 0.93 -
GCN; | 54.608571 82.85 0331 65.433250 89.01 1501 63.80 0aar 77.32 080, 78.52 0621 90.41 0061 91.75 0631 1.50
LINKX |55.13 087y 84.79 008t 66.08 0031 91.17 0401 64.88 11201 75.72 5061 81.26 13601 91.99 3467 93.11 3741 4.97
H2GCN; | 50.71 1621 83.96 2421 OOM OOM  65.18 781 75.24 106, 78.04 1205 92.03 0851 92.97 g.50, 0.40

BEm Ego-node Feature Structure Feature

mmm Neighborhood Feature

1.0
0.8
20.6
©
0.4
0.2
0.0 0.2 0.8 1.0

0.0

Homophily

(a) Results on syn—cora dataset.
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(b) Results on real datasets.

FIGURE 2. Importance of the features after feature fusion.

on comparing the importance of different features given
specific graphs. Our observations are summarized as follows.
(1) For homophilic graphs (i.e., CiteSeer, PubMed,
Cora, Coauthor-CS, and Coauthor-Physics), the
aggregated neighborhood features play the most important
role to the node classification accuracy. This phenomenon
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echoes what we observe in syn-cora. (2) For graphs
with low homophily (i.e., arXiv-year), the graph struc-
ture features take the biggest proportion compared to the
other two features, indicating the strong impact of this
feature. It is consistent with our ablation study, where
removing the graph structure features causes the most severe
accuracy drops. (3) For graphs that exhibit homophily
within the gray area (i.e., penn94, twitch-gamer, and
genius), the graph structure features and the ego-node
features take the most importance proportion. This empirical
observation is in agreement with our theoretical evidence,
which posits that the integration of these two additional
features is instrumental in mitigating the misclassification
rate.

D. BENEFITS OF ADDING FEATURES TO EXISTING
METHODS

We add the three identified features into existing methods,
GCN, LINKX, and H2GCN, to show the benefits of these fea-
tures. Since GCN only has aggregated neighborhood features,
we add ego node features and graph structure features to it as
separate branches. For LINKX, we introduce the aggregated
neighborhood features since it is an MLP-based method
with the other two features already. Regarding H2GCN,
graph structure features are introduced as an additional
branch. We fuse the introduced new features with the original
features of GCN and H2GCN using the bi-level optimization
framework as in INGNN. Table 7 shows the average accuracy
for the three improved methods, as well as the improvement in
accuracy compared to its original performance in Table 5. The
introduced features can significantly improve the accuracy of
GCN, LINKX, and H2GCN by 1.50%, 0.40%, and 4.97%
respectively.
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VI.

CONCLUSION

This paper studied how to fully exploit the original graph
information to improve the performance of MPNN5s through-
out the homophily spectrum. We showed theoretically that
MPNNs would underperform in a homophily range that
we call the gray area. To address the gray area challenge,
we proposed a graph neural network called INGNN that fully
exploits graph information by integrating ego-node features
and graph structure features with MPNNSs using the adaptive
feature fusion technique. Extensive experiments show that
INGNN achieves state-of-the-art accuracy compared to
strong baselines on synthetic and real datasets. Additional
ablation studies further illustrate the need for the three graph
features and the adaptive feature fusion mechanism.
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