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Abstract

Chemical recycling of end-of-life plastic wastes through hydrogenolysis is a promising pathway
for achieving a circular plastics economy and reducing overall energy costs. Understanding
molecular interactions at the inorganic-organic depolymerization interface is crucial for enhancing
catalyst performance and overcoming challenges posed by mixed plastic waste streams. We
investigated a fundamental step in the depolymerization process: physisorption of polymers onto
the metal oxide support preceding diffusion to and reaction at the catalyst-support junction.
Molecular dynamics simulations, augmented with well-tempered metadynamics, were conducted
to explore the adsorption of polylactic acid (PLA) and polyethylene terephthalate (PET) oligomers
onto a hydroxylated alumina support surface. Our findings revealed multiple layers of highly
oriented solvent molecules (1,4-dioxane) above the surface, creating significant barriers to
polyester adsorption. Disrupting and displacing these solvent layers led PET oligomers to adsorb
closer to and interact stronger with the surface than PLA oligomers, possibly contributing to the
higher reaction temperatures needed to achieve full conversion in PET versus PLA hydrogenolysis.
We further suggest an experimental approach to validate our results of solvent layering behavior
through predictions of X-ray reflectivity that are consistent with our initial experiments. The
insights gained in this study can be leveraged to refine our understanding of catalytic mechanisms
to predict depolymerization reactivity and selectivity and improve future hydrogenolysis catalyst
designs.
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Introduction

Discovering alternative processing routes for end-of-life plastics is critical in advancing towards a
circular plastics economy and developing sustainable, carbon-neutral energy infrastructure!™.
Currently, a significant portion of plastic waste ends up in landfills or is incinerated for energy
recovery'2, primarily due to challenges associated with existing recycling processes. For instance,
mechanical recycling of thermoplastics presents economic challenges, as these materials are
expensive to physically sort due to the presence of various contaminants and additives’.
Contaminants also limit the applications of recycled thermoplastics, particularly in areas such as
food packaging, where stringent regulations impede closed-loop recycling®. Additionally,
recycled thermoplastics often suffer from compromised mechanical properties and diminished
quality, resulting in downcycled materials'. These considerations point to the importance of
advancing polymer recycling in implementing the energy transition.

“Upcycling” polymers through chemical processing is a sustainable strategy for generating new,
value-added chemical products from existing plastic waste streams. Through selective breakdown
to their base monomers!%7 or direct chain functionalization®, these processes provide alternative
routes for chemically transforming end-of-life plastic waste. By repurposing plastic waste as new
polymers or as other products such as fuels, chemical recycling offers environmental and economic
incentives for depolymerization. Moreover, chemical recycling processes have the potential to be
highly effective at handling mixed and contaminated plastic waste that cannot be subjected to
thermomechanical recycling, resulting in reduced processing complexities and costs?.

Chemical recycling of end-of-life polymers through hydrogenolysis (cleavage of carbon-carbon or
carbon-oxygen single bonds by hydrogen addition) with supported-metal catalysts enables the
synthesis of value-added chemical products, showing promising selectivity for polyesters and
polyolefins®~!2, However, unlocking the full potential of this process hinges on a comprehensive
understanding of polymer-catalyst interactions at the molecular level. Direct characterization of
the polymer-catalyst interface, through both computational and experimental approaches, is
essential for elucidating the conformations and interactions of adsorbed polymers. This knowledge
can then be leveraged to guide the design of more effective hydrogenolysis catalysts.

The interaction of polymers with metal oxide surfaces is crucial for various catalytic processes. In
supported-metal catalysts for hydrogenolysis, for example, the support material provides a
structural framework to stabilize metal catalysts. Highly porous metal oxide supports such as
alumina (Al>03), silica (Si0z), and titania (TiO2) not only enable additional surface area for the
dispersion of active metal nanoparticles but also enhance the mechanical robustness of the
catalyst'®!*. These supports play an important role in determining the number of active sites and
their surrounding electronic environment through metal-support interactions, which are significant
for overall catalytic performance!*!>. Furthermore, the support itself can be kinetically active and
thus influence catalyst activity, especially in the case of single-atom catalysts'®!”. Modifications
to the support (e.g., via acid-site concentration tuning or addition of self-assembled monolayers)
can also directly impact reaction kinetics!>!%!?, highlighting the importance of support-polymer
interactions. Beyond hydrogenolysis, metal oxide supports are used in other polymer-related
catalytic processes, such as aluminosilicate zeolites in pyrolysis for polymer degradation®. Despite
their broad applications, a detailed understanding of the molecular interactions between metal
oxide support surfaces and polymers, including polyesters, is still lacking.



Supported ruthenium (Ru)-based catalysts have shown high effectiveness in selectively breaking
down polyesters and polycarbonates into various diol products'#>. This class of catalysts has also
exhibited remarkable efficacy in depolymerizing polyolefins like polyethylene and polypropylene.
These catalysts convert long-chained hydrocarbons into alkanes with high liquid product
conversion via metal surface C-C bond cleavage, aided by metal-support interactions®*-'2. Thus,
hydrogenolysis with Ru-based catalysts presents an innovative yet practical approach to chemical
recycling of end-of-life polymers, paving the way towards a sustainable circular plastics economy.

As mentioned earlier, there are currently knowledge gaps in our understanding of how polymers
interact with metal oxide surfaces at the molecular level. While experimental methods such as
adsorption isotherms are common in the field, they are challenging to implement with polymers
due to their complex behavior. Single-molecule microscopy methods, such as fluorescence
correlation spectroscopy (FCS), fluorescence recovery after photobleaching (FRAP), and single-
molecule fluorescence resonance energy transfer (SM-FRET), have proven successful in
describing the adsorption behavior of single molecules onto surfaces and guiding strategies for
controlling adsorption strength and behavior?! 24, These methods are particularly important
because they offer high sensitivity and specificity, allowing for detailed insights into adsorption
dynamics and molecular interactions that are difficult to capture with bulk techniques.

Nonetheless, existing experimental imaging techniques typically lack the necessary time and
spatial resolution to capture atomic-level details. This provides a unique opportunity to
synergistically combine computational approaches such as molecular dynamics (MD) simulations
with experimental interfacial characterization techniques like fluorescence methods as well as X-
ray scattering to achieve complementary insights into polymer physisorption. Moreover,
employing enhanced sampling methods such as metadynamics®~2® can improve the accuracy of
MBD simulations of solid-liquid interfaces. These techniques help accelerate sampling within the
simulation to overcome strong binding forces that exist at the interface, ensuring comprehensive
sampling of the conformational ensemble of physisorbed polymer states and facilitating better
comparisons against experimental data.

Previous MD simulations of the adsorption behavior of polymers on metal oxide surfaces have
primarily focused on bulk polymers in the form of solvated polymer chains and polymer melts to
study their chain dynamics at the solid-liquid interface®!. Yet, these studies have been limited
to characterizing the physical dynamics of bulk polymer chains near the surface, which rely heavily
on polymer-polymer interactions. Consequently, they do not fully capture the conformational
dynamics of individual surface-bound polymers, that are influenced by isolated polymer-surface
and solvent-surface interactions during adsorption and desorption. A recent study by Tong et al.
successfully modeled the interface of several polymer inhibitors (PAA: poly(acrylic acid); PAM:
poly(acrylamide); and PEG: poly(ethylene glycol)) adsorbing onto B-dicalcium silicate (C»S),
providing meaningful descriptions of polymer-surface and solvent-surface interactions®.
However, this study did not offer insights into the impacts of surface-bound hydrogens, which are
common in metal oxide supports of hydrogenolysis catalysts, on polymer-surface interactions.

In this study, we characterized the interfacial interactions between polyester oligomers,
specifically polylactic acid (PLA) and polyethylene terephthalate (PET), and a hydroxylated
alumina support surface during surface adsorption and desorption processes. Polylactic acid
(PLA), a polyester composed of lactic acid joined by ester linkages, is widely recognized as one
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of the most utilized synthetic and biodegradable polymers*?3. Polyethylene terephthalate (PET),
the most widely used polyester, is composed of terephthalic acid and ethylene glycol joined by
ester linkages and has garnered significant attention as the most studied synthetic polymer for
catalytic depolymerization®®. During hydrogenolysis, PLA typically breaks down into 1,2-
propanediol, while PET breaks down into ethylene glycol and 1,4-benzene dimethanol*>. Notably,
Westhues et al. reported drastically higher reaction temperature requirements for achieving full
conversion in PET hydrogenolysis compared to PLA when using Ru catalysts in a 1,4-dioxane
solvent environment®. This finding provides a route towards mixed stream polyester processing
through temperature and solubility tuning. Yet, the factors controlling rate trends in polyester
depolymerization on solid catalysts remain poorly understood. Molecular-level insights into
optimizing catalyst designs can significantly improve the viability of hydrogenolysis and other
catalytic processes for the chemical recycling of end-of-life plastic wastes. Successful
implementation of such strategies will decrease the need for producing virgin plastics, which
entails high energy costs and substantial carbon emissions. Chemical recycling of existing plastic
waste streams through improved hydrogenolysis can facilitate the transition towards a more
sustainable energy infrastructure by reducing the carbon footprint of plastics consumption.

In Ru-catalyzed hydrogenolysis, the thermodynamics of polymer adsorption and subsequent
transport to the active site may be significantly influenced by polymer-support interactions, given
the typically higher surface area of metal oxide supports compared to dispersed metal nanoparticles
and especially single atoms®!4. Thus, our objective in this study was to utilize MD simulations to
uncover the thermodynamic interactions occurring at the solvent-support interface during polymer
surface adsorption and desorption. This approach enabled a fundamental study of the role of
polymer physisorption thermodynamics during hydrogenolysis without the added complexity of
Ru nanoparticles. Specifically, we focused on the interactions between polyesters oligomers (PLA
and PET) and a hydroxylated alumina surface, a model for materials widely used as catalysts and
catalyst supports. To our knowledge, this study represents the first application of long-timescale
MD, augmented by enhanced sampling techniques, to investigate single-polymer adsorption
behavior at a metal oxide/solvent interface. The workflow developed in this study can be applied
to elucidate interfacial interactions in other important inorganic-organic systems, such as those
involving electrolyte molecules and electrode surfaces in lithium-ion batteries>®-¢°,

Methods

Parameterization of polymer and solvent molecules

Structures of polyesters, polylactic acid (PLA) and polyethylene terephthalate (PET), along with
the solvent 1,4-dioxane, were constructed using Avogadro®*. Oligomeric models for PLA
pentamer and decamer (PLAS and PLA10, respectively) and PET dimer and trimer (PET2 and
PET3, respectively), were built based on their respective number of repeated monomer units
(Table 1). The end-to-end distances of these oligomers were determined to be 1.8 nm for PLAS,
2.2 nm for PET2, 3.5 nm for PLA10, and 3.4 nm for PET3. Next, all polymer and solvent
molecules underwent parameterization using the electronic structure program Gaussian®, with
calculations conducted at the Hartree-Fock (HF) level of theory with the 6-31G* basis set. Of note,
the selection of longer polyester chain lengths (PLA10 and PET3) was limited by the maximum
number of atoms that can be accurately parameterized in Gaussian. Atomic point charges were
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assigned via Antechamber®® with the RESP?’ method. Subsequently, the topologies for these
molecules were generated with tLEaP3® using parameters from the General Amber Force Field 2
(GAFF2*). Finally, the topologies were converted from AMBER to GROMACS format using
ACPYPE™.

Surface construction and parameterization

The structure of alumina, representing the hydroxylated (0001) face of a-Al,Os in a neutral pH
catalytic environment, was constructed using the CHARMM-GUI Nanomaterial Modeler input
generator*!. The lattice parameters of the orthorhombic unit cell contained cell lengths of a = 8.2
A, b=4.8A andc=13.0 A, with 90° bond angles (., B, y)*"***. To model the surface, we employed
the INTERFACE Force Field (IFF*>%), developed by Heinz et al. The resulting structure and
topology files were converted from CHARMM to GROMACS format using the ParmEd** tool.

Surface hydroxyl groups were restrained from moving in the z-direction. This constraint aimed to
maintain surface stability during the simulations (Fig. S6) and establish a fixed reference plane for
determining the orthogonal distance between the polymer and surface during enhanced sampling
with metadynamics (see section below). It also allowed for lateral molecular vibrational movement
within the surface, consistent with the NPT ensemble.

Importantly, the inorganic-organic interface, formed by the metal oxide surface in the solid phase
and solvated polymer in the liquid phase, utilized two different force fields: IFF and GAFF2,
respectively. Compatibility between the two force fields was ensured by their equivalent
definitions of non-bonded interactions. Both IFF and GAFF2 utilize the 12-6 Lennard-Jones
potential and Lorentz-Berthelot mixing rule to describe van der Waals forces. Furthermore, the
GAFF2 scaling factor for intramolecular 1-4 interactions was applied system-wide. This decision
was made considering that IFF predominantly models the alumina surface as non-bonded, lacking
specific Al-O bond potentials and thus 1-4 non-bonded interactions.

Metadynamics simulations

An important consideration for our model system is that typical hydrogenolysis catalysts consist
of metal nanoparticles dispersed onto metal oxide supports'® (e.g., ruthenium supported by
alumina). As previously mentioned, we hypothesized that polymer adsorption thermodynamics are
primarily governed by properties of the support and resulting polymer-support interactions. This
assumption led us to simplify our system to focus solely on polymer-support interactions (Fig.
1A). Four systems were constructed, each comprising a single polyester oligomer initially
positioned 1.8 nm (to prevent biases from short-range interaction effects) above the hydroxylated
alumina surface measuring 5.8 x 5.7 x 2.8 nm® and surrounded by the solvent 1,4-dioxane. The
substrate plane defining the interface is characterized by the horizontal plane measuring 5.8 x 5.7
nm?. Fig. 1B provides a visualization example of initial system configuration and simulation box
setup for the PET3 system. The box size was chosen to prevent self-interaction between periodic
images in all three dimensions. PACKMOL*® was employed to insert 1,676 solvent molecules into
the 7.2 nm of free space above the alumina surface, corresponding to the experimental bulk density
of 1,4-dioxide (1.033 g/cm?) at 300 K. Since all structures used in the simulations were neutrally
charged, there was no need to introduce counterions to maintain overall system charge neutrality.
Detailed specifications of the four simulated systems are provided in Table 1.



Table 1. System setup of metadynamics simulations and representative chemical structures of
polyester oligomers.

System Polyester Polyester End-to-End Dist. (nm) No. of Atoms (Polyester) No. of Atoms (System)

| PLA5 1.8 48 35104
I PET2 2.2 47 35103
I PLA10 3.5 93 35149
v PET3 3.4 69 35125
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All simulations utilized the GROMACS 202146 MD simulation engine with the PLUMED 2.7.1#
plugin. The simulation protocol consisted of several steps. First, a steepest descent energy
minimization was performed on all systems. This was followed by a 2 ns NVT equilibration
simulation, during which the temperature was maintained at 300 K using the Bussi-Donadio-
Parrinello (velocity rescale) thermostat*®. Subsequently, a 2 ns semi-isotropic NPT equilibration
simulation was conducted at 300 K using the same thermostat and the Berendsen barostat* to
equilibrate the pressure at 1 bar. Semi-isotropic coupling permitted expansion solely in the z-
direction. Finally, semi-isotropic NPT production simulations were carried out at 300 K and 1 bar,
employing the same thermostat and the Parrinello-Rahman barostat™. These latter simulations
incorporated enhanced sampling techniques, as described below.

In all simulations, a timestep of 2 fs was used, achieved by constraining the bonds between
hydrogen and other heavy atoms with the LINCS>! algorithm. Long-range electrostatic interactions
were computed via the particle mesh Ewald (PME??) summation method, employing a cutoff value
of 1.2 nm. To truncate short-range Lennard-Jones interactions, a force switching scheme was
applied, smoothly transitioning the force to zero between distances of 1.0 nm and the van der
Waals cutoff of 1.2 nm. Additionally, all systems employed periodic boundary conditions (PBC)
in the x, y, and z dimensions. To prevent undesired interactions between the polymer and the top
periodic image of the surface, a “wall” potential was implemented using PLUMED in each system.



This potential acted solely on the polyester molecule and was activated when the distance between
the polymer and the top of the simulation box was within 2 nm.

Building upon our previous research on peptide adsorption onto titania and silica surfaces™, we
utilized the well-tempered metadynamics (WTM?2°) enhanced sampling method. This approach
enabled us to comprehensively explore the configurational space of the polyester oligomers and
their interfacial interactions with the alumina surface, overcoming the timescale limitations of
classical simulations. The ¢ values (Gaussian hill width) for the collective variables (CVs) in each
system were calculated as half the equilibrium fluctuations of the respective CVs, leveraging
trajectory data from the previously described 2 ns semi-isotropic, unbiased NPT equilibration
simulation. Within this WTM sampling framework, we focused on two CVs: (1) the orthogonal
distance between the alumina surface’s top oxygen layer and the polyester’s center-of-mass (Z),
and (2) the radius of gyration of the polyester (Rg), as shown in Fig. 1A. The o values for the Rg
CV were determined to be 0.01 nm, 0.03 nm, 0.02 nm, and 0.025 nm for the PLAS5, PLA10, PET2,
and PET3 systems, respectively, with a value of 0.1 nm determined for the Z CV across all systems.

Metadynamics parameters, including the bias factor (y = 20), bias deposition pace (t = 1 hills/ps),
and initial hill height (wo = 2.0 kJ/mol), were held constant across all four WTM simulations. A
grid with spacing independent of the Gaussian width, storing applied bias values, was implemented
for each system to expedite the evaluation of the continuously growing number of Gaussian kernels
as the WTM simulations progressed. As previously mentioned, a half harmonic restraint, or “wall”
potential, was applied to the Z CV to confine sampling to one of the two mirrored surfaces resulting
from PBC. Production WTM simulations were executed until convergence was achieved, defined
as the point at which negligible changes over time were observed in the polyesters’ Gibbs
adsorption free energy differences (Fig. S8) and in the shapes of their reweighted free energy
surfaces?’>* projected onto both CVs (Figs. S1-2). A third metric used to evaluate convergence
was a marked and sustained reduction in the height of the deposited Gaussian hills over time (Fig.
S4). All systems demonstrated convergence after 1500 ns of production WTM simulation.

Simulation trajectory analysis

Trajectories from the production WTM simulations were visualized using Visual Molecular
Dynamics (VMD?). The electron density profile (EDP) of the solvent was attained by
extrapolating the atomic density distribution of solvent molecules above the surface to the
theoretical bulk electron density. Free energy profiles and landscapes describing polyester
adsorption to the alumina surface were constructed by reweighting for both system and wall biases
applied during WTM simulations using the weighted histogram analysis method (WHAM?>®),
implemented through PLUMED. This method resulted in reconstructed free energies proportional
to the applied potential bias for each CV. Quantification of hydrogen bonding between alumina
hydroxyl groups (hydrogen donors) and participating oligomer oxygens (hydrogen acceptors) of
physisorbed polyesters was performed with a 3 A donor-acceptor distance cutoff and 20° angle
cutoff, using the HBonds plugin in VMD. We also conducted a 200 ns unbiased MD simulation
of the PLAS system to confirm the improved sampling efficiency across both CVs by applying
WTM. In this comparison, we observed wider sampling ranges for the Rg CV and more frequent
sampling of near-surface polyester states based on the Z CV in the WTM simulation (Fig. S7).

Configurational clustering was performed on all physically adsorbed polymer configurations
sampled in each WTM simulation using the gromos®’ clustering method implemented in



GROMACS. Energetically accessible adsorbed polymer configurations were isolated based on
criteria that included a polymer-surface orthogonal distance between 0.2 and 0.6 nm and being
within 1.5 kgT of the adsorption free energy minimum. Root-mean-square deviation (RMSD)
cutoff values of 0.2, 0.2, 0.3, and 0.25 nm were chosen for the PLAS, PET2, PLA10, and PET3
systems, respectively, to ensure a comparative cluster size distribution across the four systems
based on their respective adsorbed configurations. According to the gromos clustering algorithm,
the configuration with the largest number of neighbors, per the RMSD cutoff, is designated as the
first cluster. Then, this configuration and its neighbors are considered successfully clustered and
removed from the selection pool. This process iterates until each frame of the simulation trajectory
that contains an adsorbed polymer configuration has been assigned to a cluster.

Results and Discussion

Surface chemistry effects on solvent layering

We selected the hydroxylated a-AlO3 (0001) surface for MD simulations. The (0001) facet is a
stable and widely observed facet of alumina, typically featuring a hydroxylated surface®!. Alumina
is characterized by its energetically stable corundum structure and finds widespread use as a
substrate in the form of sapphire for high-resolution X-ray characterization of thin films and solid-
liquid interfaces®'. In addition to providing a model substrate relevant to supported alumina
catalysts, use of this surface enables direct comparison to XRR experiments. Such a synergistic
computational-experimental approach has previously proven successful with other model systems,
including electrode-electrolyte interfaces for lithium-ion batteries®®. For the simulated catalytic
conditions under which the MD simulations were conducted, the top oxygen layer of alumina was
fully hydroxylated (see Methods), consistent with the experimental sapphire substrates®.

A representative snapshot illustrating the solvent layering behavior of 1,4-dioxane near the
alumina surface, obtained from the final frame of the PLAS WTM simulation, is shown in Fig.
1D. The normalized atom number density distribution of 1,4-dioxane as a function of distance
from the alumina surface in the WTM simulations is depicted in Fig. 1E. Importantly, we expect
the solvent atom number density distribution obtained from the WTM simulation to be unaffected
by the application of enhanced sampling, as no biases were applied to the solvent molecules, and
the lone polyester molecule is too small compared to the size of the simulation box to exert
influence. To validate this, we compared the solvent atom number density profile from WTM to
that calculated from the 200 ns unbiased PLAS5 simulation and found strong agreement (Fig. S5).

We observed strong solvent layering above the alumina surface. This is captured in Fig. 1E, based
on the respective atom number density peak contributions from the solvent molecules’ centers-of-
mass (COM) and characteristic atom groups (ether oxygens and methylene carbons). The first
solvent layer consists of a bilayer with two adjacent peaks at 0.34 and 0.49 nm. These two partially
overlapping solvent layers are not fully distinct from one another, resulting in an average layer
spacing of ~0.45 nm. Subsequent solvent layers each consisted of a pair of distinctive high- and
low-density regions centered around the bulk solvent density, with a spacing of ~0.47 nm. This
type of layering behavior propagated through the sixth solvent layer, terminating at ~3 nm from
the alumina surface. After this point, the surface’s effects on solvent layering were not apparent as
the amplitude of the corresponding mass distribution oscillation could not be distinguished. This
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phenomenon is consistent with the gradual decay of ordering at increasing distance away from the
surface, as expected for solvents like 1,4-dioxane composed of relatively small molecules®%-62-63,

The orientational distribution of solvent molecules in the first layer was resolved by determining
the contributions of the solvent molecules’ COM, ether oxygen, and methylene carbon atoms. We
found that the solvent’s molecular plane preferentially aligns parallel to the surface with some
degree of tilt. Analysis of the orientational distributions of near-surface solvent molecules
indicated an average tilt angle of 55° formed between the vector along the solvent’s molecular
plane and the surface normal vector (Fig. 1C). On average, solvent molecules near the alumina
surface preferentially orient more horizontally with respect to the surface. This deviation from a
random orientational distribution highlights the influence of the alumina surface on interfacial
solvent ordering. Observations of molecular plane reorientation among solvent molecules were
further confirmed through visual analysis of the trajectories, where solvent molecules initially
aligned parallel to the surface were observed to tilt and reorient themselves as the simulation
progressed (Fig. 1D shows a representative snapshot from the simulations).

By extrapolating the atom number density distribution to the solvent’s theoretical bulk electron
density (0.34 e/A%), we derived the representative MD-derived EDP. The corresponding EDPs
and normalized EDPs of the entire solvent molecule and its characteristic atom groups (ether
oxygens and methylene carbons) are depicted in Fig. S11 and Fig. S12, respectively. The solvent
EDP offers another perspective on the surface layering behavior of 1,4-dioxane above alumina,
which we utilized to initially connect our MD simulation to the experimental characterization of
solid-liquid interfaces. Specifically, to predict the XRR scattering profile, we fit the MD-derived
EDP data to the distorted crystal model (DCM; see SI Methods), which is applicable for describing
molecular layering at solid surfaces. We achieved good agreement between the MD-derived EDP
and the DCM fit-derived EDP upon optimizing DCM model parameters (Fig. 1F). The average
spacing between layers was found to be 0.44 nm, consistent with the theoretical values previously
discussed. Using the DCM fit values, we calculated the predicted structure factor, R/Rr (Fig. 1G),
using Eqns. S1-3. A minimum observed at approximately 0.9 A! indicates variation in the EDP
in the surface normal on the scale of d = 7/qmin = 0.35 nm, consistent with the first molecular layer
of 1,4-dioxane at the alumina interface observed in the simulations. These results permit direct
comparison of our simulation results with initial data from XRR experiments, as illustrated in Fig.
S13. This direct comparison of predicted XRR measurements from MD simulations to
experimental data establishes a basis for future experimental tests of MD models in capturing
solvent and polymer behaviors at catalyst surfaces and various other interfacial systems.
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Figure 1. A) Depiction of polymer-surface orthogonal distance defined between the surface’s top oxygen layer and
polymer center-of-mass (COM; Z) and radius of gyration (Rg) WTM collective variables (CVs). B) Example initial
system configuration and simulation box setup for WTM simulations, shown from both the side (left) and top (right)
views. C) Illustration of the preferred tilt angle with respect to the surface normal vector (top) and near-surface
configuration (bottom) of 1,4-dioxane molecules extracted from analysis of the molecular plane orientational
distribution in WTM simulations. D) Representative snapshot of the final frame from WTM simulation (PLAS system
shown) illustrating 1,4-dioxane solvent layering behavior near the alumina surface. E) Normalized surface-orthogonal
atom number density distribution of 1,4-dioxane above the alumina surface, labeled with layer cutoffs and first layer
density peak assignments to its COM and characteristic atom groups (normalized to their respective bulk atomic
density far from the interface); black: COM, red: ether oxygens, green: methylene carbons. F) Electron density profile
(EDP) of 1,4-dioxane extrapolated from its atom number density distribution (solid black lines) and the corresponding
EDP derived from fitting to the distorted crystal model (DCM; dashed red lines). G) Corresponding predicted structure
factor (R/R¢) of X-ray reflectivity (XRR) obtained from fitting the MD-derived EDP to the DCM.
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Polyester adsorption thermodynamics

Given the scarcity of available thermodynamic data on the physical adsorption of polyester
oligomers and the challenges in obtaining atomic-scale insights through conventional experimental
methods, we employed metadynamics-based enhanced sampling simulations to investigate these
properties. By monitoring the evolution of Gibbs adsorption free energy differences between near-
surface and bulk polyester states (AG ;45— puik ), derived from reweighted trajectories using WHAM
over consecutive 50 ns intervals, we identified simulation convergence as the point at which these
values stabilized across all systems (Fig. S8). Importantly, the adsorption free energy change of
each polyester system eventually reached a plateau consistent with the values extracted from their
respective adsorption free energy profiles (Fig. 2D), discussed below.

For ease of comparing adsorption free energy differences across the polyester oligomers, minima-
adjusted adsorption free energy profiles (Fig. 2D) were obtained by vertically translating the
unadjusted adsorption free energy profiles (Fig. 2A) such that the minima in the adsorbed region
were set to zero for each system. Adsorption free energy differences were determined by
subtracting the average free energy in the bulk region (3—4 nm) from that of the minima in the
adsorbed region (~0.3—0.6 nm). We observed that PET oligomers adsorb much more strongly onto
the alumina surface than PLA oligomers. Specifically, PET2 and PET3 exhibited adsorption free
energies differences of -3.5 and -4.4 kT, respectively, compared to -1.4 and -1.1 kgT for PLAS
and PLA10. As noted earlier with regards to the convergence of the WTM simulations, the
adsorption free energy differences among the four polyester oligomers are primarily influenced by
the type of polyester and relatively independent of polyester chain length. For instance, despite
PLA10 having a significantly longer chain length than PET2 (3.5 nm vs. 2.2 nm, respectively), it
adsorbs less strongly to the surface with an adsorption free energy difference even lower than that
of PLAS, which is more comparable in length to PET2 (1.8 nm vs. 2.2 nm). This result suggests
that, at least within the length scale of oligomers we tested, the chemical effects of different
polyester functional groups drive adsorption thermodynamics at the alumina surface.

Further analysis of the free energy profiles in Fig. 2D indicated a maximum in the adsorption free
energies at orthogonal distances between 1 to 2 nm from the surface for all four polyesters (1.1,
1.3, 1.8, and 1.2 nm for PLAS, PET2, PLA10, and PET3, respectively). The highest free energy
maxima observed for the PLA oligomers was approximately 2.4 kT, while for PET2, it was 5.5
kgT, and for PET3, it was 6.1 kgT. These free energy peaks are noticeably higher than the
corresponding average free energy of each of the polyesters in the bulk region (3—4 nm),
particularly for the PET oligomers. Thus, there exists a free energy barrier to adsorption as the
polyesters approach the alumina surface, as well as to desorption upon polyester departure away
from the alumina surface. This barrier is higher for PET oligomers (vs. the adsorbed and bulk free
energies), but once overcome, it results in more favorable overall adsorption free energies
compared to PLA oligomers. Moreover, the higher desorption barrier observed for PET oligomers
suggests they are less likely to return to the bulk solution. This characteristic may result in a higher
equilibrium coverage of surface-bound PET under steady state conditions, driven by free energy
differences.

The existence of the free energy maxima can be attributed to the energetic penalty of the polyesters
having to displace multiple solvent layers arranged in energetically favorable configurations above
alumina, as discussed in the previous section. Solvent layering was observed up to 2.5-3.0 nm
from the surface (Fig. 1E), corresponding to the approximate distance at which the free energy
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profiles of the polyesters begin to increase upon diffusion towards, and adsorption onto the alumina
surface. Solvent displacement effects induced by oligomer adsorption were confirmed by subtle
differences in the near-surface density distribution of solvent atoms extracted from portions of the
simulation trajectory in which PET3 was either adsorbed versus in the bulk phase (Fig. 2B).

The height of the free energy barrier relative to the adsorption minimum is heavily dependent on
the type of polyester, reinforcing the idea that polyester functional group chemistry dictates the
overall adsorption thermodynamics at the polyester-alumina interface. Specifically, since the
higher maximum observed for PET compared to PLA was largely independent of oligomer chain
length, polyester functional group chemistry is hypothesized to be responsible for driving
differences in the height of the free energy maxima. Interestingly, however, the free energy
maxima of oligomers with longer chain lengths (PLA10, 3.5 nm; PET3, 3.4 nm) occurred at
distances further from the surface. This result suggests that the onset of solvent layer displacement,
or the point at which solvent displacement is complete and full desorption of the polyester into the
bulk occurs, is more dependent on polyester chain length.

To gain additional insights into the above results, we examined the favorability of subsets of
polyester configurations by analyzing configurational entropy differences between adsorbed and
bulk states (see SI; Eqn. S4). Our calculations revealed an entropic penalty for the adsorption of
larger polyesters (-1.9 and -2.6 J/mol-K for PLA10 and PET3, respectively), while the entropy
difference upon surface adsorption of the smaller polyesters was found to be near-zero and positive
(0.3 and 1.5 J/mol-K for PET2 and PLAS, respectively) (Table S1). Hence, the adsorption of
polyesters with smaller chain lengths is more entropically favorable. This result demonstrates that
the chain length of polyesters significantly impacts their adsorption entropy. It is therefore possible
that the solvent displacement distance required for full desorption of larger polyesters is
entropically driven by their unfavorable transition between different conformations on or near the
surface. Additionally, this entropic effect may influence the adsorption free energy differences
associated with these conformations discussed earlier.

Differences in the chemistry of polyester functional groups not only influence the adsorption free
energy but also affect the preferred surface-separation distance of the adsorbed polyesters. For
example, we observed that the PET oligomers preferentially adsorbed closer to the surface, with a
COM distance of 0.37 nm for both PET oligomers, while the PLA oligomers preferred to adsorb
slightly farther away from the surface at distances of 0.43 nm for PLAS and 0.45 nm for PLA10
(Fig. 2C). This trend was confirmed by the atom number density distribution of the polyesters as
a function of distance from the alumina surface in the WTM simulations (Fig. S10). Specifically,
we found that the PET oligomers exhibited higher atomic densities in the first layer, with peaks
located closer to the alumina surface compared to the PLA oligomers.

The preference of the PET oligomers for a closer surface-separation distance resulted in stronger
interactions with the surface compared to the PLA oligomers. This is evidenced in Fig. 2A, which
displays the non-minima-adjusted adsorption free energy profile for each system. In these plots,
the free energies of the adsorbed-state minima reflect the binding strength between each polyester
and the alumina surface, illustrating the PET oligomers’ favorable surface interactions with free
energies between -1 and -2 kgT. In contrast, the PLA oligomers exhibited weaker interactions with
the surface, with free energies between 0 and 1 kzT. Moreover, we observed that PLA oligomers
engaged in more favorable interactions with the solvent compared to PET oligomers, as indicated
by their lower free energies in the bulk region. These findings indicate that the larger adsorption
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free energy differences of PET oligomers, as discussed earlier in Figs. 2C-D, stem from both their
more favorable surface interactions and less favorable solvent interactions compared to PLA.

To further our understanding of the driving forces underlying the observed differences in polyester
adsorption thermodynamics and behavior, we analyzed the preferred near-surface conformations
of the polyesters by performing configurational clustering of the WTM simulation trajectories.
Figs. 2E-F highlight the most energetically favorable polyester conformations obtained by
clustering and reweighting free energy minima in the adsorbed (Fig. 2E) and bulk (Fig. 2F)
regions, along with their respective cluster probabilities. We note that all top-clustered polyester
configurations (see Methods) displayed higher cluster probabilities compared to their respective
second-most probable clusters, confirming their dominance within the cluster ensemble. In the
adsorbed region, only energetically accessible configurations were clustered, defined as those
within 1.5 kgT of the free energy minimum. For the bulk region, all configurations within the
range of 3-4 nm were clustered, as per previous analysis.

Additionally, we investigated the hydrogen bonding interactions between the alumina surface and
various adsorbed polyester conformations, utilizing previously defined distance and angle cutoffs
(see Methods). We quantified the number of hydrogen bonds formed between the surface hydroxyl
groups of alumina and adsorbed polyester states. We then determined the time-averaged
probabilities of hydrogen bond formation with alumina by hydrogen bond-accepting oxygens of
each polyester oligomer observed throughout the simulations. Our analysis revealed probabilities
0f2.5%, 2.9%, 1.6%, and 2.3% in hydrogen bond formation per oxygen for PLAS, PET2, PLA10,
and PETS3, respectively (Fig. S9). These findings indicate that PET oligomers’ hydrogen bond-
accepting oxygens can, on average, form more hydrogen bonds with surface hydroxyl groups than
PLA at comparable oligomer length scales. Moreover, we observed that larger oligomers’
hydrogen bond-accepting oxygens exhibited greater difficulty in forming hydrogen bonds with
surface hydroxyl groups, most likely due to steric hindrance effects.

Our findings further indicate that the PET oligomers preferentially adopted a flattened
conformation on alumina, facilitating the more uniform distribution of their atom groups at closer
distances to the surface. Specifically, we observed that the PET oligomers’ aromatic rings aligned
parallel to the surface, an orientation unattainable for PLA methyl groups. These observations are
consistent with our prior findings, wherein the adsorbed-state free energy well for the PET
oligomers is closer to the surface (Fig. 2C), and a more concentrated density of PET atoms was
found near the surface (Fig. S10), compared to the PLA oligomers. Interestingly, PLA oligomers
adopted a more extended linear conformation upon adsorption, while PET oligomers adopted a
more compact C-shaped configuration (Fig. 2E). Conversely, all four polyester oligomers were
observed to favor an extended linear conformation in the bulk region (Fig. 2F), as expected given
the absence of intermolecular interactions with the alumina surface and the drive to maximize
overall system entropy. In summary, our investigation of interfacial polyester structures through
configurational clustering provided a molecular basis crucially connecting polyester functional
group chemistry to the observed trends in physisorption thermodynamics.
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Figure 2. A) Full adsorption free energy profiles (no minima adjustment) along the Z CV featuring adsorption free
energy minima and maxima for all polyesters (red: PLAS, green: PET2, orange: PLA10, blue: PET3). B) Normalized
near-surface (less than 1 nm distance) solvent atom number distribution determined from simulation trajectory for
when PET3 is physically adsorbed (red) and in bulk (black), demonstrating solvent displacement effects of polyester
physisorption. C) Near-surface (less than 1 nm distance) adsorption free energy profiles along the Z CV, highlighting
free energy minima for all polyesters (minima-adjusted to zero for each system; adsorbed region is defined as within
1.5 kgT of the free energy minima). D) Full adsorption free energy profiles along the Z CV featuring free energy
minima and maxima for all polyesters (minima-adjusted to zero for each system; bulk region is defined as between 3
and 4 nm in separation distance). E) Conformations of adsorbed polyester states with the highest probabilities from
configurational clustering of the adsorbed region, along with corresponding cluster weights. F) Conformations of bulk
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polyester states with the highest probabilities from configurational clustering of the bulk region, along with
corresponding cluster weights.

Preferred conformations of surface-bound polyesters

In Fig. 2, polyester conformations were clustered based on 1D free energy profiles projected solely
onto the Z CV. However, these conformations may not necessarily represent the most energetically
favorable ones based on the second CV, Rg. Therefore, we characterized the 2D free energy
profiles from the WTM simulations, projected onto both CVs simultaneously. Consistent with our
previous findings, we observed broadly similar 2D free energy landscapes for the two PLA
oligomers and two PET oligomers, as well as significant differences across polyester types
(Fig. 3A). Specifically, larger free energy differences were again observed between the adsorbed
and bulk regions for the PET oligomers compared to the PLA oligomers.

Upon examining the near-surface adsorption regions of the 2D free energy landscapes (Fig. 3B),
we observed three and four distinct free energy minima for the smaller (PLAS and PET2) and
larger (PLA10 and PET3) polyester oligomers, respectively. For PLA oligomers, the adsorption
free energy minima were located at Z values slightly above 0.4 nm, whereas those for PET
oligomers were located slightly below 0.4 nm. This observation aligns with the location of free
energy wells in the 1D free energy profiles and that of the first density peaks in the polyester atom
number density distributions (Fig. S10) discussed earlier, from which we determined a smaller
preferential surface-separation distance for PET oligomers compared to PLA oligomers.

Clustering and reweighting were then performed for each of the aforementioned free energy
minima within their corresponding 2D phase space to elucidate the relationship between the
preferred Rg and adsorbed-state conformations of each oligomer. As expected, the resulting most
probable conformations, depicted in Fig. 3C, exhibited similar characteristics to those obtained
from clustering the 1D adsorbed-state free energy minima based solely on the Z CV (Fig. 2E).
However, our findings revealed multiple low free-energy conformations differing in Rg for each
oligomer (Fig. S3), all contributing to the overall clustered adsorbed-state conformational
ensemble associated with their respective 1D free energy profiles. Nonetheless, focusing on the
lowest free energy conformations (labeled C1 for PLAS, PET2, and PLA10; and C3 for PET3),
we found that PET oligomers preferentially adopted more compact structures closer to the surface,
consistent with our earlier findings. Importantly, we refrained from directly comparing Rg values
across the oligomers due to their differing chain lengths. For instance, while PLAS appeared fully
extended at a Rg of ~0.50-0.55 nm, PET2 exhibited full extension at a Rg of ~0.70 nm.

When comparing the clustered, lowest free energy adsorbed-state conformations for PET2 and
PET3, we noted similarities in how consecutive monomer segments were oriented relative to one
another above the surface. This led to the hypothesis of both an optimal distance and “hinge” angle
between adsorbed, consecutive PET monomer segments, which may be a preferred spatial
arrangement that minimizes the free energy, regardless of the overall PET chain length. We tested
this hypothesis by calculating the COM separation distance and hinge angle between each pair of
consecutive aromatic rings in PET2 (PET2-C1; Fig. 3D, left) and PET3 (PET3-C3; Fig. 3D,
middle). We observed highly similar values between the aromatic rings in PET2 (129° and 0.96
nm, respectively) and one pair of rings in PET3 (136° and 0.98 nm), supporting the idea that PET
segments adopt a consistent geometry upon adsorption. The second pair of aromatic rings in PET3
exhibited slightly lower values (106° and 0.87 nm), resulting in average PET values of 124° and
0.94 nm when adsorbed in the flattened C-shaped conformation. This suggests that the optimal
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distance and hinge angle between consecutive PET monomer segments are key factors in the stable
adsorption of PET oligomers on the alumina surface.

Given the presence of flexible bonds between PET monomers, it was unsurprising that the second
most favorable clustered adsorbed-state conformation for PET3 exhibited an S-shape (PET3-C3B;
Fig. 3D, right). Notably, one pair of aromatic rings in the S-shaped PET3 shared nearly identical
hinge angles and separation distances (106° and 0.86 nm) with those in the C-shaped PET3.
However, we observed substantially reduced values for the second pair of rings in the S-shaped
PET3 (89° and 0.77 nm). This finding suggests that surface-bound, S-shaped PET conformations
may feature more sterically hindered aromatic ring arrangements compared to C-shaped PET
conformations, resulting in them being slightly less energetically favorable.
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Figure 3. A) 2D free energy profiles for each polyester depicting the complete free energy landscape of polyester-
alumina interactions at their interface, constructed from FES reweighting analysis across both Z and Rg CVs using
WHAM. B) Close-up examination of near-surface region (less than 1 nm in separation distance) within the 2D free
energy profiles featuring multiple local free energy minima for each adsorbed polyester. C) Conformations of adsorbed
polyester states (top view) with the highest probabilities from configurational clustering analysis of individual local
free energy minima (‘B’ label for PET3 C3 configuration denotes second most probable clustered conformation). D)
PET aromatic ring hinge angles and COM separation distances calculated for the free energy minima configurations
of PET2 (C-shaped) and PET3 (C-shaped and S-shaped) demonstrating optimal adsorbed PET oligomer
conformational geometry.

Molecular mechanisms of polyester adsorption

In this study, we examined the physisorption of polyester oligomers with varying functional group
chemistry and chain length onto alumina, a common support material for supported-metal
hydrogenolysis catalysts. Our findings revealed that the adsorption free energy differences of both
polyester types were largely unaffected by chain length. Clustering analysis indicated that PET
tend to adopt more flattened conformations closer to the surface, suggesting enhanced non-bonded
interactions between PET monomer segments and the surface, contributing to overall favorable
polymer-surface interactions. Conversely, steric hindrance prevented PLA methyl groups from
simultaneously occupying close near-surface positions to maximize surface interactions.

53,64 21,31

Previous studies conducted by us>>°* and others*'*" showed that small-molecule adsorption onto
silica is primarily driven by hydrogen bonding to surface silanol groups, as well as the degree of
protonation of these groups under different pH conditions. Hence, we posited differential hydrogen
bonding to be the dominant type of non-bonded interaction driving the observed differences in
adsorption strength between PLA and PET in our current study. The ability of these polyesters to
act as hydrogen bond acceptors through their carbonyl and ether oxygens, combined with the
ability of alumina hydroxyl groups to act as hydrogen bond donors, influences the polyesters’
overall propensity to form hydrogen bonds with the surface, affecting their adsorption strength.

Hydrogen bonding analysis confirmed the higher propensity of PET to form hydrogen bonds with
the alumina surface compared to PLA. Specifically, it was revealed that the hydrogen bond-
accepting oxygens of PET oligomers were more likely to form hydrogen bonds with the surface
hydroxyl groups of alumina than those of PLA oligomers (Fig. S9). This was observed across all
energetically accessible states in the polyesters’ respective adsorbed regions. Not surprisingly, the
probability of hydrogen bond formation with alumina was reduced for larger oligomers (PLA10,
PET3), likely due to greater steric challenges of all polyester oxygens forming hydrogen bonds
with the surface simultaneously. As PET oligomers were found to adsorb closer to the alumina
surface, they then have a higher propensity to form hydrogen bonds with the surface, despite
having fewer available hydrogen bond-accepting oxygens compared to PLA oligomers. Clustering
analysis suggested other aspects of alumina surface chemistry may also have facilitated the
flattened conformations of PET oligomers, enabling them to associate closer to the surface than
PLA oligomers. This was evidenced by the finding that PET aromatic groups consistently aligned
parallel to the surface when physically adsorbed, unlike in the bulk.

Besides polymer-surface interactions, polymer-solvent interactions are also influential in driving
the stronger adsorption observed for PET compared to PLA oligomers on the alumina surface. Our
findings revealed that PET oligomers faced higher free energy barriers during their approach to
and departure from the alumina surface. Since adsorption at a solid-liquid interface involves an
activation process linked to the solvent-surface binding free energy®-%, we attributed this free
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energy barrier to solvent layer displacement. This assertion was supported by near-surface solvent
density analysis and free energy calculations, which showed that PET oligomers interacted less
favorably with the solvent (1,4-dioxane) upon adsorption compared to PLA oligomers,
contributing to higher PET adsorption free energy differences. Consequently, we propose that the
aromatic ring groups of PET, due to their larger size and less favorable interactions with solvent
molecules compared to the methyl groups of PLA, encountered greater challenges in displacing
solvent layers above the alumina surface. Additionally, PET oligomers preferred to adopt non-
linear conformations upon adsorption, necessitating greater disruption of the stable arrangements
of solvent ether oxygens present at the interface. Collectively, our results suggest that PET’s more
favorable interactions with the surface and less favorable interactions with the solvent compared
to PLA both contributed to its higher adsorption free energy differences.

To characterize the optimal conformational geometry of physisorbed PET oligomers, we
calculated the center-of-mass separation distance and the “hinge” angle formed between
consecutive aromatic ring groups in the lowest free energy conformations of the PET oligomers.
These optimal separation distances and angles can be utilized to predict a threshold chain length
at which the oligomer would overlap end-to-end, rendering the C-shaped conformation less
favorable due to steric hindrance. By extrapolating from the identified optimal values, we
determined that this threshold corresponds to an oligomer chain length of six PET monomer units.
Clustering analysis suggests that beyond this threshold size, the next most probable and likely
prevalent adsorbed PET oligomer conformation is S-shaped. However, past studies indicate that
with further increases in chain length, it will eventually become energetically unfavorable for the
entire chain to remain adsorbed to the surface. Instead, we would expect to observe only a fraction
of the polymer chain adsorbed onto the surface, while the remaining portions reside non-adsorbed
in the bulk?!.

Considering that physical adsorption and desorption represent only the initial and final steps,
respectively, of adsorbate-surface interactions at a solid-liquid interface, understanding the
adsorbate’s behavior post-binding is crucial. In supported-metal catalysts, the strength of
adsorbate-support interactions can significantly impact lateral diffusion of the adsorbate towards
the catalytic junction at the metal-support interface. Notably, these lateral diffusion processes
occur on much shorter timescales than surface adsorption or desorption?!. With strong surface-
adsorbate interactions, adsorbates can “crawl” on the surface, achieving lateral mobility without
desorption?>¢7, while moderately strong interactions may prompt repeated desorption into the bulk
and readsorption, with readsorption probabilities governed by the sticking coefficient?>. This
interaction strength thus determines whether the adsorbate will return fully to the bulk phase or
remain adsorbed upon making repeated, rapid bulk excursions, illustrating alternative routes for
adsorbates to achieve surface lateral displacement within the timescale of such excursions. These
phenomena are captured as “hopping” events, leading to “flight” motions for the adsorbate if its
readsorption rate dominates the desorption rate?!-*,

The stronger observed adsorption of PET onto alumina suggests that PET may encounter greater
challenges in diffusing laterally towards the active metal nanoparticles once attached to the support
surface. PET’s closer proximity to the surface and its preference for more compact conformations
upon adsorption also indicate reduced mobility on the surface, potentially hindering its transport
towards active metal nanoparticles in supported catalysts. These results may provide a possible
molecular-level explanation contributing to the higher temperature reaction conditions necessary
to depolymerize PET compared to PLA observed in experiments’, as elevated temperature would
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provide additional kinetic energy for PET to overcome strong surface binding forces and facilitate
lateral diffusion. However, it is essential to note that other factors may also play a role. Thus, in
designing supported-metal catalysts for mixed stream polyester hydrogenolysis, it is imperative to
consider strategies for controlling the balance of adsorption and desorption strength between the
polymer and support surface. Such strategies may involve chemical surface modification and
precise tuning of solvent properties®*.

Considering the complexities surrounding the surface lateral diffusion of polymers, future
simulations of this behavior will likely require enhanced sampling techniques, as employed in the
current study. Collective variables based on lateral polymer coordinates and/or the number of
polymer-surface hydrogen bonds could be utilized to fully explore the surface diffusion behavior
of single polymer molecules. Furthermore, parallel tempering (temperature replica exchange)
metadynamics simulations can leverage temperature effects to achieve highly efficient sampling
of lateral, surface-bound polymer movements>*-*3-72, Ultimately, simulations using these enhanced
sampling techniques will enable highly accurate predictions of polymer lateral diffusion behavior.
This, in turn, can lead to the design of more effective catalysts that operate under optimized
conditions, thereby improving the efficiency of hydrogenolysis reactions. Rigorous future
analyses, including studies of adsorption residence times and distributions of lateral positions
across adsorbed polymer states, will provide a better understanding of the thermodynamic driving
forces and timescales underlying surface lateral diffusion of short, adsorbed polymer oligomers.
Such understanding can significantly advance catalytic processes like hydrogenolysis by enabling
more precise control over reaction conditions, thus paving the way toward a circular plastics
economy and contributing to a sustainable, carbon-neutral energy infrastructure.

Conclusions

In summary, our results suggest key implications for optimizing hydrogenolysis by simultaneously
adjusting three parameters related to polymer physisorption thermodynamics. Firstly, the
adsorption free energy difference between the adsorbed and desorbed states of the polymer is
crucial. The difference should be substantial enough to strongly favor the adsorbed state over the
desorbed state. Ideally, this free energy difference should primarily result from tuning polymer-
solvent interactions to be relatively weak rather than tuning polymer-support interactions to be
relatively strong, for reasons provided next. Secondly, the absolute free energy of the adsorbed
state can be controlled by adjusting the strength of polymer-support interactions. If these
interactions are too strong, they may hinder surface lateral diffusion of the polymer towards the
catalytic junction once adsorbed. Lastly, the free energy barrier to adsorption and desorption plays
a critical role that must be considered. While a higher barrier may be effective at keeping the
polymer on the surface, it may also impede adsorption unless the reaction temperature is
sufficiently high to overcome this barrier. Ideally, there should be minimal-to-no free energy
barrier to adsorption and desorption, which can be achieved by controlling solvent-support
interactions. At the same time, a significant adsorption free energy difference must still be
maintained to prevent polymer desorption. In all, these principles can serve as design rules to guide
improved catalytic designs for hydrogenolysis, ultimately advancing towards a circular plastics
economy. However, future work should also consider how these design rules might differ for
scenarios involving mixed polymer streams.
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