
IEEE TRANSACTIONS ON NETWORKING 1

Provable Approximation Algorithms for Online

Traffic-Sensitive SFC Deployment

Yingling Mao , Xiaojun Shang , and Yuanyuan Yang , Life Fellow, IEEE

Abstract—Network Function Virtualization (NFV) has the
potential for cost-efficiency, manage-convenience, and flexibility
services but meanwhile poses challenges for the service function
chain (SFC) deployment problem, which is NP-hard. It is so
complicated that existing work conspicuously neglects the flow
changes along the chains and only gives heuristic algorithms
without a performance guarantee. In this paper, we fill this gap
by formulating a traffic-sensitive online joint SFC placement
and flow routing (TO-JPR) model, with the objective of jointly
optimize the resource cost and network latency, and proposing
a novel two-stage scheme to solve it. We design a dynamic
segmental packing (DSP) algorithm for the first stage, which
not only maintains the minimal traffic burden for the network
but also achieves an approximation ratio of a small constant on
the resource cost. Besides, we propose the greedy mapping (GM)
algorithm for the second stage, which can guarantee a global
approximation ratio of O(d) on the network latency. Here d is
the diameter of the network graph and is typically smaller than
O(log(M)), where M is the number of servers in the network.
Finally, we perform extensive simulations to demonstrate the
outstanding performance of our algorithms compared with the
optimal solutions and benchmarks.

Index Terms—Network function virtualization, service function
chain placement, flow routing, resource optimization, network
latency optimization.

I. INTRODUCTION

NETWORK function virtualization [1] is penetrating our

daily life. It makes network services more cost-efficient,

manage-convenient, and flexible, by migrating network func-

tions, or middleboxes, from proprietary hardware appliances

to common commercial servers. Specifically, the various net-

work services are now realized by chained-up virtual network

functions (VNFs), also called service function chains (SFCs)

[2]. But the flexibility of VNFs also poses challenges to

the deployment problem of SFCs. Elegant SFC deployment

can further improve both efficiency and cost-effectiveness of

network services, which fully utilize computational resources

Received 4 April 2023; revised 3 July 2024 and 4 February 2025;
accepted 22 April 2025; approved by IEEE TRANSACTIONS ON NETWORK-
ING Editor S. Moharir. This work was supported in part by U.S. National
Science Foundation under Grant CCF-1717731 and Grant CCF-2230620.
(Corresponding author: Yuanyuan Yang.)

Yingling Mao and Yuanyuan Yang are with the Department of Electrical and
Computer Engineering, Stony Brook University, Stony Brook, NY 11794 USA
(e-mail: yuanyuan.yang@stonybrook.edu).

Xiaojun Shang is with the Department of Computer Science and Engineer-
ing, The University of Texas at Arlington, Arlington, TX 76019 USA.

This article has supplementary downloadable material available at
https://doi.org/10.1109/TON.2025.3566728, provided by the authors.

Digital Object Identifier 10.1109/TON.2025.3566728

without increasing too much network latency. On the contrary,

improper deployment decisions may cause redundant flow

paths and traffic burdens, and thus incur unacceptable network

latency and even network congestion.

SFC deployment attracts great attention from academia. A

variety of related work, e.g., [5], [6], [7], [8], [9], [10] and [11],

has elaborated on deploying SFC efficiently, which is typically

formulated into a Joint SFC Placement and flow Routing

problem (JPR). However, due to the NP-hardness of JPR,

most of the existing solutions, e.g., [5], [6], [7] and [8], are

limited to the design of heuristic algorithms and do not have a

provable performance guarantee. To the best of our knowledge,

there are only three existing works [9], [10], [11] having the

performance bound. But the achieved bounds are either loose

or impractical, seen in detail from the Related Work (Sec. II).

In our model, we pursue a near-optimal deployment scheme

that saves resource utilization and reduces network latency

at the same time and maintains a much tighter performance

bound compared with the existing works.

In addition, as far as we are concerned, most models in

previous work, including those with a performance guarantee,

ignore the flow changes between VNFs on each SFC. In prac-

tice, many VNFs have an influence on the traffic volumes of

the processed data flows. For example, the Citrix CloudBridge

WAN optimizer compresses the data flow, reducing the traffic

volume by up to 80%. The BCH(63,48) encoder increases the

traffic volume by 31% due to the checksum overhead [12].

According to Little’s law or the popular Cisco EIGRP [25]

protocols, the traffic volume has a close relationship with

the produced network latency. In particular, the larger the

traffic volume, the higher the produced link latency. Thus, it

is necessary to take such flow changes into consideration in

JPR, and such consideration makes the problem even more

complicated. To the best of our knowledge, there are two

existing works [12], [13] considering the flow changes and

it is also limited to the design of heuristic algorithms with no

performance guarantee.

In this paper, we formulate a joint SFC placement and flow

routing model which considers the flow changes along each

service chain and deals with sequential arrivals and arbitrary

leaves of SFCs in an online manner. Based on the model,

we propose a traffic-sensitive online SFC placement and flow

routing (TO-JPR) scheme. In our scheme, we creatively put

forward a new conception called traffic burden, i.e., the total

link latency of the data flow which needs to be transmitted

via the network. It helps break down the TO-JPR problem

2998-4157 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 17,2025 at 19:01:02 UTC from IEEE Xplore. Restrictions apply.

2 IEEE TRANSACTIONS ON NETWORKING

and make it easier to solve. Specifically, with traffic burden

as a pivot, our scheme has two stages. In the first stage of the

scheme, our task is to pack VNFs, with the aim of minimizing

the resource cost and the produced traffic burden. We call it the

packing stage. And in the second stage, named the mapping-

and-routing stage, we focus on mapping the VNF packages

onto the real servers one by one and routing the data flow

between the VNF packages.

The two-stage scheme has lots of advantages. First, it wisely

split the two optimization objectives into two stages, making

TO-JPR easier to solve. Besides, since we can perfectly mini-

mize the traffic burden in the packing stage as shown in Thm.

2, the performance guarantee of the mapping-and-routing stage

can become the global performance guarantee for the network

latency in the whole SFC deployment problem. Additionally,

a such split measure based on the concept of traffic burden is

also practical. Considering advanced datacenter structures [3],

[4], commercial servers can retrieve data of other servers from

their shared memory. With such technologies, the impact of

data routing is lifted. In this way, the mapping-and-routing

stage can be ignored and the packing stage, reducing the

resource cost meanwhile minimizing the traffic burden, is

the whole story. Moreover, the two-stage scheme has strong

expansibility. For example, some scenarios, e.g., [14], prefer

balanced network flow rather than low network latency. In

these situations, our two-stage scheme still works by merely

changing the optimization objective of the mapping-and-

routing stage, and our outstanding theoretical results of the

packing stage are preserved.

As for the packing stage, we put forward a dynamic segmen-

tal packing (DSP) algorithm, which sequentially packs each

SFC according to its arriving order. DSP solves the conflict

between two optimization goals. It not only perfectly solves

the optimization task of the traffic burden, but also achieves a

resource approximation ratio of 2+ 1
γ

, where γ is the minimum

ratio of totally needed computing resource of each SFC to the

size of servers. Additionally, as for some special online cases,

where SFCs queue to leave in their arriving order, QSP can

further reach an asymptotic approximation ratio of 2 on the

resource cost. When handling the mapping-and-routing stage,

we propose a greedy mapping (GM) algorithm, which can

deal with arbitrary leaves of SFCs and cooperate with DSP to

obtain a global ratio of O(dG) on the network latency, where

dG is the diameter of the network graph. In common practical

network topologies, dG is typically smaller than O(log(M)),
where M is the number of servers in the network.

Our main contributions are listed as follows.

• We formulate a joint online SFC placement and flow

routing model which considers the flow changes along

each service chain and deals with sequential arrivals and

arbitrary leaves of SFCs in an online manner, while

optimizing both resource cost and network latency.

• We creatively propose a two-stage traffic-sensitive online

SFC placement and routing scheme. In the first stage, we

aim to minimize the resource cost and the traffic burden

by packing VNFs, while in the second stage, we target

optimizing the network latency based on the produced

traffic burden.

• We put forward a dynamic segmental packing (DSP)

algorithm for the first stage, which not only maintains

the minimal traffic burden but also achieves a resource

approximation ratio of a small constant.

• As for the second stage, we propose a greedy mapping

(GM) algorithm in the general online case, which guaran-

tees a global ratio of O(dG) on the network latency. Here

dG is the diameter of the network graph and typically

smaller than O(log(M)), where M is the number of

servers in the network.

• We perform extensive simulations to evaluate and com-

pare the performance of our proposed algorithms with

those of OPTs and benchmarks.

The remainder of this paper is organized as follows. Sec-

tion II reviews the related works. In Section III, we describe

the system model, formulate the TO-JPR problem, and prove

its NP-hardness. Section IV proposes a two-stage scheme to

solve TO-JPR. Afterward, Section V introduces DSP for the

first stage while Section VI gives GM for the second stage.

Then Section VIII is the performance evaluation of DSP+GM.

Finally, we conclude the paper in Section IX.

II. RELATED WORK

In order to fully launch its potential of cost-efficiency and

flexibility, the SFC deployment problem has become a research

hot spot in NFV. A variety of research [5], [6], [7], [8], [9],

[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],

[21] have been devoted to it, targeting different optimization

goals. Among these, the two most popular and influential

objectives are resource consumption and network latency. For

instance, researches [15], [16], [17], [18] all contribute to

resource optimization while [19], [20], [21] pursue the lowest

latency.

Although the two objectives may conflict, making it more

challenging for the SFC deployment problem, they are both

vital in practice. Thus, it is necessary for us to jointly consider

resource consumption and network latency in our model. Work

[5], [6], [7], [8], [9], [10], [11] have done so, but most of the

approaches, e.g., [5], [6], [7] and [8], are heuristic algorithms

with no provable performance guarantee. To the best of our

knowledge, there are only three existing works [9], [10],

[11] that consider resource consumption and network latency

having the performance bound. Work [9], [10] put forward

provable approximation algorithms based on the rounding

algorithm. In [9], the algorithm achieves a total approximation

factor of 8, but it may violate servers’ capacities by a factor of

16. Such a violation factor is so great that it may cause network

delay, or even crash. In [10], the capacity limitation is satisfied

with an approximation ratio of O(log(M)), where M is the

number of servers. Such a ratio is relative to M, so it will be

dramatically big in the large-scale case. Reference [11] designs

a two-stage VNF deployment scheme with a constrained

depth-first search algorithm (CDFSA) and a path-based greedy

algorithm (PGA). They give a theoretically-proved worst-case

performance bound by a constant factor. But such a factor is

implicit and may be very large.

Besides, the flow change is also critical for consideration.

Although the traffic-sensitive JPR is not novel, it is creative to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 17,2025 at 19:01:02 UTC from IEEE Xplore. Restrictions apply.

MAO et al.: PROVABLE APPROXIMATION ALGORITHMS FOR ONLINE TRAFFIC-SENSITIVE SFC DEPLOYMENT 3

TABLE I

NOTATIONS

produce a near-optimal scheme with a provable performance

guarantee for this problem. Traffic-sensitive consideration

makes the complicated JPR even more challenging. As far as

we are concerned, there are only two existing works [12], [13]

considering the flow changes and they are limited to the design

of heuristic offline algorithms and do not have a provable

performance guarantee.

III. PROBLEM FORMULATION

A. System Model

The notations used in this model are shown in Table I.

1) Physical Network: Consider a physical network rep-

resented by a undirected graph G = (V,E), where

each node is a commercial server or a router, V =
{V1, V2, · · · , VM , · · ·VM+r} is the set of nodes in the net-

work, and E is the set of communication channels connecting

network nodes in V. Here, V1, V2, · · · , VM are M commercial

servers in the network G. Typically, commercial servers in a

data center have uniform settings, specifically, CPUs, GPUs,

RAM, etc. Thus, we assume that all the servers have a unit

processing capacity, noted as C.1 VM+1, · · · , VM+r are the

routers (or exchange points) with zero computing resources.

For each pair of servers Vp, Vq ∈ V , if (Vp, Vq) ∈ E,

it implies there exists a physical communication channel

connecting the server Vp and server Vq . Denote its bandwidth

as Bp,q If (Vp, Vq) /∈ E, it means server Vp and server Vq are

not directly connected, where we mark Bp,q = 0.

2) SFCs: Suppose the service requests arrive sequentially

in an online manner and each time a request arrives, a corre-

sponding SFC needs to be deployed to realize such a service

request. Denote SFC i as the SFC working for the i-th arriving

1We begin by addressing the TO-JPR problem under this assumption for
data center scenarios. Later in the manuscript, we will relax this assumption
and extend our model and proposed algorithms for more heterogeneous
network scenarios, such as edge and IOT environments.

service request. Assume there are m request arrivals in total

over the entire time span T and the request for SFC i arrives at

time tai with a consequent existing time of ti (tai +ti−1 ∈ T).

In our online model, the request for SFC i may leave sometime

but will not arrive again after leaving, since each SFC arrival

will be considered as a new SFC and indexed depending on

the new arriving order. At each time slot, we do not know

the information of the future, such as the information of

the next arriving SFCs and the time when the arrived SFC

will leave in the future. We only know the information of

SFCs that have arrived and the time of the arrivals and leaves

that happened. The deploying system executes the following

procedures at each time slot: first removing timeout SFCs,

updating the server states, receiving arriving requests, making

SFC deployment decisions, and finally again updating the

server states.

To ensure data security and privacy, we assign individual

and personalized SFCs for each user’s service request. In each

SFC, VNFs are chained in a specific order according to the

application requirements. Suppose there are ni VNFs in SFC

i, noted as Fi,1, Fi,2, · · · , Fi,ni
in chaining order. The needed

computing resource of VNF Fi,j , i.e., the size of Fi,j , is noted

as fi,j . The total number of VNFs is N =
∑m

i=1 ni.

There are data flows between the adjacent chained VNFs.

But it’s worth mentioning that different VNFs have distinct

influences on the traffic volumes of the processed data flows.

For example, the Citrix CloudBridge WAN optimizer com-

presses the data flow, reducing the traffic volume by up to

80%. The BCH(63,48) encoder increases the traffic volume

of data flow by 31% due to the checksum overhead [12].

Therefore, we take the flow changes into consideration in our

model and denote the traffic volume (or called flow rate) of

data flow after passing VNF Fi,j as bi,j . Besides, we denote

the communication latency of such data flow passing a network

link as li,j , which depends on bi,j according to Little’s law

or the popular Cisco EIGRP [25] protocols. In particular, the

larger the traffic volume bi,j , the higher the produced link

latency li,j .

3) SFC Deployment: As for each VNF Fi,j , if server Vk

has enough idle capacity, no less than fi,j , VNF Fi,j can be

placed on server Vk. If any VNF is placed on a server, we say

that the server is occupied and we should pay for the energy

and capital cost to run the server. If Fi,j and Fi,j+1 are placed

on the same server, data flow between Fi,j and Fi,j+1 is not

transmitted between servers so that it will not cause a traffic

burden on the physic network. We call such data flow the idle

data flow. If Fi,j and Fi,j+1 are placed on different servers,

the data flow between Fi,j and Fi,j+1 needs to transmit from

one server to another server, incurring traffic burden as well

as network latency. We refer to such data flows as transmitting

data flows.

Typically, G is not a complete graph. So the data flow from

Fi,j on one server to Fi,j+1 on another server may need to pass

via several other server-nodes in G, when the two server-nodes

are not directly connected. In this case, the network latency is

determined jointly by the link latency of the data flow and the

number of hops, i.e., network connections data flow passing

through. The path of hops depends on the solutions of the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 17,2025 at 19:01:02 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON NETWORKING

multi-hop routing problem on G under the constraints of the

bandwidth limits.

In sum, our model solves a traffic-sensitive online joint SFC

placement and flow routing problem (TO-JPR).

B. Problem Formulation

In the TO-JPR problem, our task is to deploy the m SFCs

onto the physical network G with M commercial servers, i.e.,

place the N VNFs onto M servers and route the corresponding

data flow in the network graph G. When doing so, there are

two categories of conditions needed to be satisfied: server

capacity constraints and bandwidth limitations. And our goal

is to minimize the total resource consumption and the whole

network latency.

In order to formulate TO-JPR, we first define two decision

Boolean variables xk
i,j and wp,q

i,j as below. xk
i,j = 1 if and

only if VNF Fi,j is placed on server k, while wp,q
i,j = 1 if and

only if Data Flow between VNF Fi,j and Fi,j+1 pass through

network connection (Vp, Vq).
Besides, for clear expression, we also define a Boolean

constant ei(t) and another dependent Boolean variable yk(t),
which is dependent on xk

i,j . Specifically, ei(t) = 1 if and only

if tai ≤ t ≤ tai + ti − 1, while yk(t) = 1 if and only if server

k is occupied at time t, i.e.,
∑m

i=1

∑ni

j=1 x
k
i,j · ei(t) > 0.

The capacity constraint of each commercial server requires

m
∑

i=1

ni
∑

j=1

xk
i,j ·fi,j ·ei(t) ≤ yk(t)·C, ∀1 ≤ k ≤ M, t ∈ T. (1)

Since each VNF cannot be split, which implies it is exactly

placed on a commercial server, we have

M
∑

k=1

xk
i,j = 1, ∀1 ≤ i ≤ m, 1 ≤ j ≤ ni. (2)

According to Flow Conservation Law, as for any data flow

between VNF Fi,j and Fi,j+1, we have ∀ 1 ≤ k ≤ M ,

M+r
∑

p=1

wp,k
i,j −

M+r
∑

q=1

wk,q
i,j = xk

i,j+1 − xk
i,j . (3)

The limitation of bandwidth asks

summ
i=1

ni−1
∑

j=1

(wp,q
i,j + wq,p

i,j) · bi,j · ei(t) ≤ Bp,q,

∀ 1 ≤ p, q ≤ M + r, (4)

which implies the total traffic volume of all the data flow

passing the network connection (p, q) should not exceed its

bandwidth limitation Bp,q .

The total resource cost should contain two parts: one is

the energy and capital cost to run the activated/used servers,

and the other part is the used computing resource cost from

the VNFs placed on the servers. Since the needed computing

resources for all VNFs are known, the total used computing

resource cost is identical, i.e.,
∑

t∈T

∑m
i=1

∑ni

j=1 fi,jei(t), for

any SFC deployment schemes. It means this part cost does not

be affected by SFC deployment schemes, thus in the process

of SFC deployment optimization, we omitted this part in the

optimization objective function R.

The two optimization objectives in our model are:

• The Total Resource Cost R

R =
∑

t∈T

M
∑

k=1

yk(t) ·A,

Note that: Referring to related works [15], [16], R can

be determined by the number of activated/used servers,

which implies that even if there is only one VNF placed

on the server, such server has to be activated and we

should pay for its activation cost A, i.e., the energy and

capital cost to run the server.

• The Network Latency between Servers L

L =
∑

t∈T

m
∑

i=1

ei(t) ·





ni−1
∑

j=1

li,j ·

M+r
∑

p=1

M+r
∑

q=1

wp,q
i,j



 ,

where li,j is the communication latency of the data flow

between VNF Fi,j and Fi,j+1 over a network link and
∑M+r

p=1

∑M+r
q=1 wp,q

i,j represents the number of hops that

data flow passes. Such modeling approach is based on

[8], [11], [12] and [13].

In all, TO-JPR can be formulated as the below ILP.

min αR+ βL

s.t. (1)− (4),

where α, β are both weighting factors that are used to adjust

the relative importance of the two cost components.

Note that since activation cost A and server capacity C are

constant, we can redefine R =
∑

t∈T

∑M
k=1 yk(t) · C with

an equivalent mathematical transformation by incorporating
A
C

into α. For simplification of the proof, we will adopt this

newly defined R in the below context.

C. Proof of NP-Hardness

In this section, we show that TO-JPR is NP-hard through a

reduction from the Bin Packing (BP) Problem. It means TO-

JPR cannot be solved in deterministic polynomial time unless

P = NP .

Theorem 1: TO-JPR is NP-hard.

Proof: As for any BP problem with bin size V and item

size a1, a2, · · · , an, we can generate a TO-JPR problem in

polynomial time by setting M = N = n1 = n,m = 1, f1,i =
ai(1 ≤ i ≤ n), C = V, α = 1, β = 0, Bp,q = ∞(1 ≤
p, q ≤ M + r), T = [ta1 , t

a
1 + t1]. Here, the generated TO-JPR

problem and the given BP are exactly the same, thus obviously

they are equivalent.

In all, BP ≤P TO-JPR. Since BP is NP-hard, TO-JPR is

also NP-hard. �

IV. A TWO-STAGE SCHEME

A. Problem Complexity

The TO-JPR problem is very complex since its NP-hardness

comes from not only the resource cost part but also the

network latency part. The resource optimization part is shown

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 17,2025 at 19:01:02 UTC from IEEE Xplore. Restrictions apply.

MAO et al.: PROVABLE APPROXIMATION ALGORITHMS FOR ONLINE TRAFFIC-SENSITIVE SFC DEPLOYMENT 5

Fig. 1. An example of TO-JPR and several possible solutions.

to be NP-hard by reducing from BP in Theorem 1. Similarly,

the latency optimization part of TO-JPR can be shown to

be NP-hard via a reduction from the Quadratic Assignment

Problem (QAP).

What’s worse, these two optimization objectives are not

consistent. To some extent, they are conflicting. Let us take a

simple case of TO-JPR for example to give readers a clear and

intuitive understanding. Assume there is one SFC with 5 VNFs

and 4 one-line connected servers. The link latency of data flow

along the chain, the needed processing capacity of each VNF,

and the capacity of each server are all shown in Fig. 1. For

simplification, here we assume the bandwidths of the network

connections are large enough and thus do not consider it in

this example. We exhibit three possible solutions for this case

in Fig. 1, where Fig. 1(a) is the optimal one that minimizes

the resource consumption or to say the number of occupied

servers. As shown in Fig. 1(a), the capacity of each occupied

server, except the last one, is fully utilized. However, there

exists back-and-forth data flow between the first two servers,

which causes high network latency. Thus, we need to make

trade-offs between resource cost and network latency, which

is challenging.

Besides, online optimization is also another difficulty

because we do not have the future information for the deploy-

ment of SFCs. Especially, the unpredictable halfway leaving

of SFCs makes the timely deployment hard to close to entirely

optimal results over the whole time span.

B. Problem Breakdown: A Two-Stage Scheme

In our model, we put forward a novel concept called

traffic burden, i.e., the total link latency li,j of the data flow

that needs to be transmitted via the server network. Such a

concept is practical and reasonable. For instance, in some

advanced datacenter [3], [4], commercial servers can retrieve

data of other servers from their shared memory. With such

technologies, the data routing problem is eliminated since the

network structure here can be considered fully connected. In

this case, the network latency is exactly determined by the

traffic burden. As for the network with a more complicated

topology structure, like the edge network, the total network

latency is determined by both the traffic burden generated by

the SFCs and the data flow routing in the physical network.

Thus, we can break TO-JPR into two stages, using the traffic

burden as the pivot. The first stage is to pack VNFs, which

can be considered as placing SFCs onto pseudo-servers that

are fully connected, with the aim of minimizing the resource

cost and the produced traffic burden. We call it the packing

stage. The second stage is to map the packed VNF packages

or to say the pseudo-servers onto the real servers one by one

and route the corresponding transmit data flow between VNF

packages, called the mapping-and-routing stage.

Such problem breakdown makes TO-JPR easy to solve.

All resource cost relative issues are solved in the packing

stage. The mapping-and-routing stage only deals with network

latency and can be solved by some modification from the

classical solutions of QAP. The conflict between resource cost

reduction and network latency minimization in TO-JPR turns

into the conflict between resource cost reduction and traffic

burden minimization in the packing stage. One of the classical

approximation algorithms for BP called the Next-Fit (NF)

algorithm [26], gives us enlightenment to solve it.

C. Preliminary Ideas for the Packing Stage

NF is a solution to the problem in the packing stage. The

algorithm works as follows. It considers the VNFs in the

chaining order. If a VNF fits inside the currently considered

server, the VNF is placed on it. Otherwise, the deployment

on the current server finishes, a new server is opened and the

current VNF is placed on this new server. Fig. 1(b) shows the

result of the NF algorithm in the above-mentioned example

of TO-JPR. As we all know, the NF algorithm ensures an

approximation ratio of 2 for BP. Similarly, it is easy for us

to deduce that it can guarantee a small constant ratio for the

resource cost objective in TO-JPR as well. Moreover, the NF

algorithm puts adjacent VNFs on the same server as much

as possible, avoiding the back-and-forth transmit data flow.

Thus, the NF algorithm helps reduce traffic burden since it

cuts back the number of transmitting data flows. Above all, to

some extent, the NF algorithm can make a trade-off between

the resource cost and traffic burden. Specifically, it not only

assures a small constant approximation ratio for the resource

cost objective in TO-JPR but also plays an efficient role in

cutting back the traffic burden.

Although NF helps cut back the traffic burden, it is not

optimal. We can see the traffic burden of Fig. 1(c) is lower than

that of Fig. 1(b), the outcome of NF. What’s worse, NF does

not have bounds on the produced traffic burden since it cannot

directly determine which data flow is idle and which data flow

is transmitted. It means some large data flow may need to

be transmitted by NF. Thus, we plan to design an improved

algorithm for the packing stage, which not only maintains an

outstanding bound for the resource cost but also optimally

reduces the traffic burden. Only in this way, we can ensure the

two stages are not fragmented. That is to say, the performance

guarantee of the mapping-and-routing stage can become

the global guarantee for the network latency in the whole

TO-JPR.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 17,2025 at 19:01:02 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON NETWORKING

TABLE II

NOTATIONS USED IN THE PACKING STAGE

We extract the core advantages of NF and design an

excellent approximation algorithm, called the dynamic seg-

mental packing (DSP) algorithm, for the packing stage. In the

following section, we will present DSP in detail and prove

that it maintains a small constant approximation ratio of 2 for

the resource cost and meanwhile achieves the minimal traffic

burden, paving the way for the mapping-and-routing stage.

V. PACKING STAGE

A. Problem Formulation

In this section, we focus on the packing stage. That is,

pack VNFs by placing SFCs onto pseudo-servers that are fully

connected, with the aim of minimizing the resource cost R

and the produced traffic burden T. Note that T is the total

link latency of all transmitting data flow, i.e.,

T =
∑

t∈T

m
∑

i=1

ei(t) ·





ni−1
∑

j=1

li,j ·

(

1−

M
∑

k=1

xk
i,j · x

k
i,j+1

)



 .

It can be formulated as below:

min αR+ βT

s.t. (1)− (2).

Note that the new notations used in this packing stage are

shown in Table II.

B. Algorithm Design

Inspired by the Next Fit (NF) strategy, we find putting

adjacent VNFs on the same server as much as possible plays

a positive role in the resource cost. Thus, we extract this core

idea, combined with more designs for data flow, and propose

a dynamic segmental packing algorithm, short for DSP, with

time complexity of O(N2). Note that a detailed analysis of

the time complexity is given in Sec. V-C. The thorough design

ideas of DSP are given below and its detailed procedure is

shown in Algo. 1.

Instead of taking VNFs as the operation objects like NF,

DSP focuses on data flow. Recall that if the adjacent two VNFs

are placed on the same pseudo-server, the data flow between

Algorithm 1 Dynamic Segmental Packing (DSP) Algorithm

them is named as an idle data flow; otherwise, it is called a

transmitting data flow. Thus, if all transmitting data flows are

determined, we can deduct the packing scheme as follows.

Divide each SFC into several segments by the transmitting

data flows and pack all VNFs of each segment together, i.e.,

place all VNFs between two adjacent transmitting data flows

on the same pseudo-server. We call such a packing scheme

segmental packing. (see Lines 6-11 in Algo. 1)

In order to cut back the resource cost and traffic burden, we

need to make the transmitting data flow as less as possible. As

for each data flow, we have to determine if it needs to behave

as a transmitting data flow or not, under the server capacity

constraint.

For each new arrived SFC i, DSP works in real time as

below. Note the sub-SFC of SFC i with VNFs Fi,1, · · · , Fi,j

as sub-SFC ij , the optimal packing scheme of sub-SFC ij

with minimal traffic burden as P j
i and the transmitting data

flow set of P j
i as T j

i . For sub-SFC i1, it is easy for us to find

the optimal packing scheme P 1
i . It is just placing Fi,q on a

pseudo-server with li,0, li,1 as transmitting data flow, i.e., T 1
i =

{li,0, li,1}. Denote T 0
i = {li,0}. For each sub-SFC ij(1 ≤

j ≤ k), assume we have recorded transmitting data flow set

of the its optimal packing scheme T j
i . As for sub-SFC ik+1,

find the smallest s such that
∑k+1

j=s fi,j ≤ C. Then find the

P j
i (s − 1 ≤ j ≤ k) with the minimal total traffic burden,

noted as P a
i . Then optimal packing scheme of sub-SFC ik+1

is first packing like P a
i and then packing the remaining VNFs

together, i.e., T k+1
i = {T a

i , li,k+1}. (see Lines 1-5 in Algo. 1)

Let us take Fig. 1 for example. Firstly, as for sub-SFC i1

with only the first VNF Fi,1, it is easy for us to find the optimal

packing scheme P 1
i with the transmitting data flow set T 1

i =
{li,0, li,1} = {3, 3}. As for sub-SFC i2 with the first two VNFs

Fi,1, Fi,2, fi,1+ fi,2 = 2+1 = 3 < 5 (the server capacity C),

so s = min∑2
j=s fi,j≤C s = 1. As for P 0

i and P 1
i ,
∑

l∈T 0
i
l =

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 17,2025 at 19:01:02 UTC from IEEE Xplore. Restrictions apply.

MAO et al.: PROVABLE APPROXIMATION ALGORITHMS FOR ONLINE TRAFFIC-SENSITIVE SFC DEPLOYMENT 7

li,0 < li,0 + li,1 =
∑

l∈T 0
i

, i.e., P 0
i has the minimal traffic

burden, which is P a
i . Thus, a = 0. In all, as for sub-SFC i2,

the transmitting data flow set of the optimal packing scheme

P 2
i is T 2

i = {T 0
i , li,2} = {li,0, li,2}. Similarly, as for i3, fi,1+

fi,2+fi,3 = 6 > 5, fi,2+fi,3 = 4 < 5, meaning s = 2. Then,

a = argmin1≤j≤2

∑

l∈T
j
i
l = 1. So, Ti,3 = {T 1

i , li,3} =

{li,0, li,1, li,3}. As for i4, s = 4, a = argmin3≤j≤3

∑

l∈T
j
i
l =

3, Ti,4 = {T 3
i , li,4} = {li,0, li,1, li,3, li,4}. As for i5, s = 5,

a = argmin4≤j≤4

∑

l∈T
j
i
l = 4, Ti,5 = {T 4

i , li,5} =

{li,0, li,1, li,3, li,4, li,5}, which is just the traffic burden set of

the optimal packing scheme of the given SFC i, as shown in

Fig. 1 (c).

Above we have finished the discussion of in-chain resource

management. It ensures any two adjacent VNF packages (or to

say, pseudo-servers) among a SFC cannot be merged together

under server capacity limitation. Next, we design an inter-

chain merge (ICM) algorithm to further reduce the resource

cost by inter-chain resource management. The main target

of the algorithm design is to ensure two “adjacent” VNF

packages between SFCs cannot be merged together under

server capacity limitation. If the order of SFCs is provided,

this goal can be achieved through the conditional merge

procedure introduced below. Thus, the remaining challenge

is determining the order of the SFCs. A natural approach

is to follow their arrival order. However, this approach may

lead to inefficiencies, as previously occupied but now idle

servers might be far from recently occupied servers, making

them difficult to reuse due to high latency. To address this

issue, prioritize newly arrived SFCs to take the place of the

timeout SFCs and otherwise order them by their arrival time.

In particular, we use a set, U, to record the SFCs that have

left and use a doubly-linked list, O to represent the timely

order of SFCs. Each time a new SFC i′ leaves, if it is the first

or last node in list O, we remove it from the list; otherwise,

we put it into the set U. Each time a new SFC i arrives, if

U is empty, we just add this SFC i after the last node of O;

otherwise, we randomly move an SFC o out of U and use the

new SFC i to replace the location of SFC o in O. Then we will

do a conditional merge depending on the new order of SFCs

in O. Specifically, if this new SFC i has the previous node s

in O and SFC s /∈ U , check whether the first VNF package

of SFC i and the last VNF package of its previous SFC s

can be merged together under server capacity limitation. If so,

merge them and record such forward merge by z
f
i = 1 and

Mgf (i) = s. Similarly, if this new SFC i has the next node

o in O and SFC o /∈ U , check whether the last VNF package

of SFC i and the first VNF package of its next SFC o can be

merged together. If so, merge them and record such backward

merge by zbi = 1 and Mgb(i) = o. Note, initially z
f
i = zbi = 0.

The detailed procedure of ICM is shown in the appendix.

C. Complexity Analysis

DSP has the time complexity of O(N2). We will explain

in detail below.

In Algo. 1, Line 3 checks the number of chaining VNFs

connected with VNF Fi,j which can be contained in a server

while Line 4 finds a sub-SFC which has the minimal traffic

Fig. 2. An example of converting one OPT to the segmental packing version.

burden among the sub-SFCs before these VNFs. So, the

computational complexity of Line 3 and Line 4 are both the

number of those VNFs which can be contained in a server,

which is no more than the number of VNFs in SFC i, ni, i.e.,

timeComplexity(Line 3) = timeComplexity(Line 4) = O(ni).

Thus, the time complexity of the cycle of Line 2-5 is O(n2
i).

Lines 7-11 place the VNFs in SFC i onto the pseudo-servers

one by one according to the transmitting data flow set T i
i

obtained before. Thus, the time complexity here is O(ni).
Line 12 runs the ICM algorithm with the time complexity

O(1).
In all, the time complexity of DSP for SFC i is O(n2

i +ni+
1) = O(n2

i) and for all SFCs is O(n2
1 + · · ·+ n2

m) ≤ O(N2).

D. Proof of Minimal Traffic Burden

We now prove DSP is an optimal solution (OPT) for traffic

burden, having minimal traffic burden, in Theorem 2. Note

that the OPT we mention in this section is the optimal packing

solution with minimal traffic burden, which is different from

the OPT for resource cost in Section V-E.

Theorem 2: DSP is an OPT for traffic burden.

Before proving Theorem 2, we first prove the below Lemma.

Lemma 3: There must exist an OPT of traffic burden, which

is produced by segmental packing.

Proof: If some OPT of traffic burden is not produced by

segmental packing, we can repack it by segmental packing

based on the transmitting data flow set. Specifically, all

VNFs between two transmitting data flows are placed on a

new pseudo-server. Fig. 2 gives an example. Then the new

repacking solution is also an OPT of traffic burden since the

transmitting data flow set does not change. �

Based on Lemma 3, we only consider the OPT produced

by segmental packing, in the below proof of Theorem 2.

Proof: To prove Theorem 2, we only need to prove Tni

i is

the transmitting data flow set of OPT for SFC i. Note that,

here we only consider the time slot t when SFC i exists in the

system, i.e., ei(t) = 1.

We will prove by mathematical induction to show for each

k, T k
i is the transmitting data flow set of OPT for sub-SFC

ik. It is easy to check the base case. Then we only need to

prove the inductive step that T k+1
i is the transmitting data

flow set of OPT for sub-SFC ik+1, noted as ˜T k+1
i . Suppose

in the transmitting data flow set of OPT for sub-SFC ik+1, the

previous one before li,j is li,x, as shown in Fig. 3.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 17,2025 at 19:01:02 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON NETWORKING

• Claim 1:
˜T k+1
i = {T x

i , li,k+1}.

• Claim 2: x = a = argminl−1≤j≤k

∑

d∈T
j
i
d.

(Proof omitted here, please refer to the appendix.)

Combined with Claim 1 and Claim 2, we finally prove that

˜T k+1
i = {T x

i , li,k+1} = {T a
i , li,k+1} = T k+1

i .

�

E. Proof of Approximation Ratio for Resource Cost

We now demonstrate DSP achieves a small constant approx-

imation ratio to the optimal solution (OPT) on the resource

cost R, i.e., C × M ′ by the following two theorems.

Note that the proofs are omitted here, please refer to the

appendix.

Theorem 4: RDSP <
(

2 + 1
γ

)

· ROPT , where γ =

min1≤i≤m

∑ni
j=1 fi,j

C
.

Theorem 5: In the special online cases, when SFCs queue

to leave in their arriving order,

RDSP < 2 · ROPT + C · T0,

where T0 = {t ∈ T |
∑m

i=1 ei(t) > 0}.

VI. MAPPING-AND-ROUTING STAGE

A. Problem Formulation

In this section, we will deal with the mapping-and-routing

stage. Our task is to map the packed VNF packages onto

the real servers one by one and route the corresponding

transmitting data flow between the VNF packages, with the

goal of minimizing network latency.

To formulate the problem in this stage, we first redefine

two Boolean variable x̂p
i,k and ŵp,q

i,k , which are the decision

variables in this problem. Note that x̂p
i,k = 1 if and only if

pseudo-server V̂ i
k is placed on server Vp; ŵp,q

i,k = 1 if and only

if the output data flow of pseudo-server V̂ i
k passes through

network connection (Vp, Vq).
Besides, denote the link latency of the output data flow of

V̂ i
k as ˆli,k. Then we can formulate the mapping-and-routing

problem as below.

minL =
∑

t∈T

m
∑

i=1

M ′
i−1
∑

k=1

M+r
∑

p,q=1

ei(t) · l̂i,k · ŵp,q
i,k

s.t.

m
∑

i=1

M ′
i

∑

k=1

x̂p
i,k ≤ 1 +

m
∑

i=1

(zfi x
p
i,1 + zbix

p

i,M ′
i
), ∀p,

M
∑

p=1

x̂p
i,k = 1, ∀1 ≤ i ≤ m, 1 ≤ k ≤ M ′

i ,

M
∑

p=1

ŵp,s
k −

M+r
∑

q=1

ŵs,q
k = x̂s

k+1 − x̂s
k, ∀k, s,

M ′−1
∑

k=1

(ŵp,q
k +ŵq,p

k) · l̂k≤Bp,q, ∀ 1 ≤ p < q ≤ M,

TABLE III

NOTATIONS USED IN THE MAPPING-AND-ROUTING STAGE

(xp
i,1 − xp

Mgf (i),M ′

Mgf (i)

) · z
f
i = 0, ∀i, p,

(xp

i,M ′
i
− xp

Mgb(i),1
) · zbi = 0, ∀i, p

where the first four constraints correspond to Eq. 1–4, while

the last two constraints imply the merge requirements from

the results of ICM.

Note that the new notations used in this mapping-and-

routing stage are shown in Table III.

B. Ratio of Network Latency Based on DSP

In this section, we first analyze how DSP helps cut back

network latency after minimizing the total traffic burden.

Based on the property of DSP (Thm. 2), it is easy to reach

the following theorem.

We denote the number of hops that the output data flow

of V̂ i
k passes through (i.e.,

∑M+r
p,q=1 ŵ

p,q
i,k) after employing

DSP+(any feasible mapping-and-routing algorithm) and OPT

as d̂i,k and d̂∗i,k, respectively. Additionally, we denote the link

latency of data flow between pseudo-servers V̂ i
k and V̂ i

k+1 after

employing DSP+(any feasible mapping-and-routing algorithm)

and OPT as l̂i,k and l̂∗i,k, respectively.

Theorem 6: Based on DSP, any feasible mapping-and-

routing algorithm can maintain an approximation ratio of dG
on the network latency, i.e.,

LDSP+ ≤ max d̂i,k · LOPT ≤ dG · LOPT ,

where d̂i,k is the number of hops that the output data flow

of V̂ i
k passes through (i.e.,

∑M+r
p,q=1 ŵ

p,q
i,k) after employing

the feasible mapping-and-routing algorithm and dG is the

diameter of the network graph G.

Proof: The proof can be found in the appendix. �

By this theorem, we can get the conclusion that in general,

DSP maintains the approximation ratio of dG on network

latency. It is worth noticing that the diameter dG is a parameter

depending on the topology structure and scale of the network

graph. Work [29] shows the diameters of sparse random graphs

grow logarithmically with the network scale. Specifically, it

forms the expression of c · lnM + o(lnM), where c is the

constant depending on the expected degree and M is the num-

ber of nodes in the graph. Besides, as for some specific types

of network topologies, such as ring, fat tree, star, and mesh,

the network diameter has a relation with the network scale,

the number of network nodes M, as follows. The diameter

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 17,2025 at 19:01:02 UTC from IEEE Xplore. Restrictions apply.

MAO et al.: PROVABLE APPROXIMATION ALGORITHMS FOR ONLINE TRAFFIC-SENSITIVE SFC DEPLOYMENT 9

of the ring, fat tree, star, and mesh network is respectively
M
2 , log2(M), 2, 1. In the worst case, the graph is chained

with a diameter of M. But in practice, the network diameter

is also an important parameter for the network, and network

providers usually pursue the lowest possible network diameter

when deploying servers and connections. The chained or ring

network usually is not employed in practice. Thus, dG is

typically O(logM).
Moreover, if the mapping-and-routing algorithm can further

bound the maximal number of hops of any transmitting data

flow passing through, our two-stage scheme can obtain a

tight performance bound on network latency. Below, we first

propose a heuristic algorithm called greedy mapping (GM)

algorithm to reduce the number of hops of all transmitting

data flow as much as possible. It can cooperate with DSP in

an online manner, for solving the mapping-and-routing sub-

problem.

C. A Heuristic Algorithm for Mapping-and-Routing Stage:

Greedy Mapping (GM) Algorithm

Inspired by the nearest neighbor (NN) algorithm, the most

popular heuristic algorithm for QAP, we propose a greedy

mapping (GM) algorithm. Specifically, after the inter-chain

merge (ICM) in DSP, there are four cases for each new SFC

i, based on if the forward merge and backward merge happen,

i.e., if Mgf (i) > 0 or not and if Mgb(i) > 0 or not. For

example, if Mgf (i) > 0, the first VNF package of SFC i

must be placed on the server where the last VNF package of

its previous SFC Mgf (i) is placed. In this case, the mapping

server of the first VNF package of this new SFC has been

determined. Similarly, if Mgb(i) > 0, the mapping server of

the last VNF package of SFC i is also determined.

As for the case that the mapping nodes of both the first

and last VNF package of SFC i are both determined, we aim

to find a short path from Vp to Vq passing through at least

M ′
i − 2 idle server nodes on G. Specifically, we first find the

shortest path between Vp and Vq , noted as P. If there are at

least M ′
i −2 idle servers on P, P is the satisfying path. If not,

continue adding the nearest idle server node outside P to P,

i.e., inserting it between its two nearest nodes on P, until there

are enough idle servers on P. Finally, we map V̂ i
1 to Vp, map

V̂ i
M ′

i
to Vq and map V̂ i

2 , · · · , V̂M ′
i
−1 to the M ′

i −2 idle servers

on path P;

As for the other three cases, we determine the mapping of

other VNF packages based on the nearest neighbor algorithm.

Specifically, if the mapping server of either the first or the last

VNF package is determined, use this server as the starting

node. If neither of them is determined, just randomly choose

an idle server as the starting node. Then following the VNF

chaining order, sequentially find the nearest connected idle

server, under bandwidth limitation, as the mapping node for

the next VNF package. Note if some network connection has

not enough rest bandwidth for the data flow, we consider this

network connection as disconnected when routing this data

flow.

In sum, the detailed procedure of GM with a time complex-

ity of O(M3) is shown in Algo. 2.

Algorithm 2 Greedy Mapping (GM) Algorithm (employed

After DSP for Each SFC i)

VII. EXTENSION FOR MORE GENERALIZED SCENARIOS

A. Scenarios With Heterogeneous Servers

In the above context, we have focused on data center scenar-

ios and assumed that all the servers have uniform processing

capacity, denoted as C. In this section, we extended our model

and proposed algorithms for heterogeneous networks, where

the processing capacity of server Vk is denoted as Ck.

For SFC deployment in such scenarios, we must revise

the recursive steps of DSP because the key step (Line 3 in

Algo. 1) does NOT stand under diverse server capacities. We

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 17,2025 at 19:01:02 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON NETWORKING

propose a revised algorithm for the packing stage, referred

to as r-DSP, which builds upon the core principles of the

previously proposed DSP algorithm. Additionally, our two-

stage solution framework undergoes slight modifications. In

particular, we first generate a Greedy Routing path using the

nearest-neighbor strategy and then apply r-DSP to place VNFs,

integrating both packing and mapping, rather than following

the previous two-stage approach of first packing and then

performing mapping and routing in uniform scenarios. The

main idea of our new algorithm design is as follows:

For each newly arrived SFC i, if all VNFs can be suc-

cessfully placed on a single idle server, they are allocated

accordingly. Otherwise, a Greedy Routing (GR) algorithm is

first applied to generate a routing path. In detail, if the first

VNF Fi,1 of SFC i can be successfully on the server Vk,

where the last VNF of the previous SFC i − 1 (Fi−1,ni−1
)

was placed, the routing path P starts from this server Vk;

otherwise, the routing path P starts from a randomly selected

idle server. Next, the algorithm iteratively selects the nearest

connected idle server node from the current server to extend

the routing path P until no idle server remains in the network.

The servers along the routing path P are sequentially denoted

as VP1
, · · · , VP|P |

. The size of server VPk
is represented as

CPk
while the number of hops between VPk−1

and VPk
is

denoted as dPk
, with the initial hop count set as dP1

= 0.

Algorithm 3 Revised-DSP (r-DSP) Algorithm

The design ideas of r-DSP are given below and its detailed

procedure is shown in Algo. 3. r-DSP follows the recursive

framework of DSP. Specifically, the optimal packing scheme

of sub-SFC ik must be generated from the optimal packing

scheme of sub-SFC is−1(1 ≤ s ≤ k), combined with a new

VNF package containing all remaining VNFs Fi,s, · · · , Fi,k.

The key difference lies in the feasibility check for packing and

mapping VNFs Fi,s, · · · , Fi,k onto a new idle server. Without

a uniform server size, the decision depends on the specific

server capacity CP
|T

s−1
i

|
on the routing path P rather than the

uniform server size. Consequently, we modify the recursive

steps of DSP (Lines 3-4 in Algorithm 1) and introduce

new recursive steps based on diverse server capacities, as

demonstrated in Lines 3-6 of Algorithm 3. Here, conditions 1

and 2 correspond to Lines 3 and 4 in Algorithm 1, respectively.

Claim 7: Following the same proof approach, Theorems 4

and 5 still hold for the r-DSP algorithm, ensuring a small

constant approximation ratio for resource cost.

Theorem 8: The r-DSP algorithm, combined with any fea-

sible routing algorithm, can also maintain an approximation

ratio of O(dG) on the network latency, i.e.,

Lr−DSP+ ≤ O(dG) · LOPT .

where dG is the diameter of the network graph G.

Proof: The proof can be found in the appendix. �

B. Scenarios With Shareable VNFs

In the context above, we have focused on non-sharing

scenarios where VNF instances cannot be shared among dif-

ferent services, protecting data security and privacy. However,

many application scenarios allow VNF instances to be shared

across different services, reducing resource costs associated

with separate management and maintenance. To address this,

we extend our model by introducing a new integer variable

hi,j ∈ H to represent the types of shareable VNFs, where H is

the set of shareable VNF types. For instance, if H = {1, 2, 3},

it indicates there are three types of shareable VNFs and

hi,j = 3 means VNF Fi,j is a type-3 shareable VNF. For those

VNFs Fi,j that are not allowed to be shared among different

services, we set hi,j = 0. For each type h ∈ H of shareable

VNFs, if it is shared between two services, f ′
h computing

resources will be saved. In other words, when placing two

shareable VNFs of the same type on the same server, the total

computing resources required will be f ′
h less than the original.

We then propose a heuristic Sharing-First algorithm based

on our previous GR+r-DSP algorithm, denoted as sf-DSP,

to deploy SFCs under the extended model with shareable

VNFs. It works as follows. Suppose there are s types of

shareable VNFs, like Firewall, Load Balancer (LB), Deep

Packet Inspection (DPI), etc. Denoted the set of all newly

arrived SFCs at time slot t as It. For each shareable VNF

Fi,j(i ∈ It) among these newly arrived SFCs, check if there

is an active server Vk with the same type of shareable VNFs

placed on it and if this shareable VNF Fi,j can be successfully

placed on such active server Vk. If so, place VNF Fi,j on this

server Vk and mark shareable VNF red. After checking all new

shareable VNFs, mark all unmarked shareable VNFs blue.

Following the chaining order of each SFC and the index

order of newly arrived SFCs, we obtain the sub-SFCs and

deploy them one by one using the GR+r-DSP approach. Each

sub-SFC starts from the first VNF of each SFC or a red

shareable VNF, and ends with the first VNF after the starting

VNF, satisfying one of the following three conditions: (1) the

next VNF is a red shareable VNF; (2) the next VNF is a blue

shareable VNF, and there are more than one blue shareable

VNFs of the same type among the newly arrived SFCs; (3) it

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 17,2025 at 19:01:02 UTC from IEEE Xplore. Restrictions apply.

MAO et al.: PROVABLE APPROXIMATION ALGORITHMS FOR ONLINE TRAFFIC-SENSITIVE SFC DEPLOYMENT 11

is the last VNF of the SFC. If the ending condition is (2), after

deploying this sub-SFC with GR+r-DSP, if all blue shareable

VNFs of the same type as the next VNF can be successfully

placed on the current server, they are allocated accordingly.

Otherwise, we find the nearest largest idle server from the

current server to accommodate the next VNF and as many blue

shareable VNFs of the same type as possible, while adhering

to the server capacity constraints. If placement is successful,

the blue shareable VNF is re-marked as red. This process is

repeated until all VNFs of the newly arrived SFCs are placed.

To further enhance resource management, when deploying

sub-SFC i using the GR+r-DSP approach, we relocate the last

VNF package V̂ i
M ′

i
from the idle server VPM′

i

to an active

server Vk if such an active server Vk exists: (1) it has sufficient

remaining computing resources for the VNF package V̂ i
M ′

i
, and

(2) it is no farther from the previous server VPM′
i
−1

than the

idle server VPM′
i

. This procedural step serves a similar function

to the ICM algorithm.

VIII. PERFORMANCE EVALUATION

A. Simulation Setup

The evaluation of our proposed algorithms in different

scenarios is performed through simulations. In simulations,

we adopt a Monte Carlo simulator by adding our model to the

simulator framework, because it is a good simulator suited for

the variability of the targeted environment according to [30].

As for the infrastructure of the model, we set the bandwidth

capacity of each hop in the edge network, Bp,q , as 1300 Mbps

(the bandwidth of Wireless 802.11ac) if (Vp, Vq) ∈ E. The

flow rate of SFC i after passing VNF Fi,j , bi,j , ranges from

0.5 Mbps to 5 Mbps. And we use the Cisco EIGRP link weight

function [25] to calculate li,j by setting only K2 to a nonzero

constant.2 Additionally, we implement the online mechanism

by Poisson distribution. In detail, we set tai ∼ possion(3),
ti ∼ min{U(1, 10), 10− tai }.

Note that for each group of outcomes, we use the average

value from 100 groups of simulations to avoid the impact of

extreme cases. And the errors shown in all the plots below

are determined by the standard variances of the corresponding

100 groups of simulations.

B. Practical Approximation Ratios

In Theorem 4, 5, 6, we proved the worst-case approximation

ratios of our algorithms. In this section, we perform extensive

simulations to compare the performance of our algorithms

with the optimal solutions (OPTs) and show some average-

case approximation ratios.

1) Network Topology and SFC Setting: In order to make

finding OPTs possible, we first consider a relatively small-

scale TO-JPR with only 4 SFCs, 20 VNFs, and 15 servers.

Specifically, we set m = 4, n1 = · · · = n4 = 5,M = 15, C =
4, fi,j ∼ N(1, 0.25).

Note that even on such a small scale, it is impossible to

achieve accurate OPTs. Because if accurately computing OPT

2In order to make the summed resource cost and network latency in the
same order of magnitude, we set K2 = 1/1300.

Fig. 3. Diagram for proving Theorem 2.

by enumerating, 1520 ≈ 3.3 × 1023 instances need to be

computed. Even if each enumeration required one CPU clock,

it would cost a 2-GHz computer nearly 5 × 106 years to

complete a task. Thus, we use MIP solver to approximate the

results of OPTs in the simulations.

In our simulations, we will try 5 different groups of weight

parameter (α, β) on a mesh topology to evaluate the per-

formance of our algorithms, comparing with different OPTs.

Specifically, we pick 5 representative OPTs as follows: OPT1:

α = 1, β = 10; OPT2: α = 1, β = 2; OPT3: α = 1, β = 1;

OPT4: α = 2, β = 1; OPT5: α = 10, β = 1. Additionally,

we produce 5 classical topology structures of the ring, fat tree,

hybrid, star, and mesh, for simulations (as shown in Fig. 7).

Here we use box plots to show our results. And the

approximation ratios in the plot in this section (Fig. 4, 5) are

computed by dividing the corresponding cost of our proposed

algorithms by that of those OPTs in each simulation.

2) Performance Comparison With OPTs: Fig. 4 gives the

performance ratios of DSP+GM based on the different OPTs

with different weight parameters on the mesh network. In the

first plot, we can see the average ratios of the total cost by our

algorithms to that of different OPTs are all smaller than 1.25,

which reveals the superiority of our algorithm. In the second

plot of Fig. 4, the average ratios of resource cost are between

1.15− 1.25, all much low than 2+ 1
γ

, the theoretical resource

approximation ratio proved in Thm. 4. In the third plot, we can

see the ratios of traffic burden are all less than 1, consistent

with the conclusion in Thm. 2 that DSP produces the minimal

traffic burden. In the fourth plot, the ratios of latency here are

the same as that of traffic burden in the third plot. This is

because the diameter of the mesh network is 1. By Thm. 6,

the obtained latency by DSP+GM is just the optimal one.

Fig. 5 gives the performance ratios of our algorithms to

the OPT with α = β = 1, on 5 different classical network

topology structures. In the first plot, we can see the average

ratios of the total cost are all smaller than 1.25, which reveals

our algorithm can preserve its superiority based on different

network topologies. The same as Fig. 4, the second and third

plots of Fig. 5 respectively verify 4 and Thm. 2. In the fourth

plot, the average ratios of latency on different topologies are all

smaller than 1.35, far lower than the corresponding network

diameters, the theoretical bound proven in Thm. 6. This is

because the theoretical approximation ratio of network latency

in Thm. 6 is a worst-case upper bound. In practice, the real

latency ratios are typically much smaller than the network

diameter.

C. Simulations on 4 Large-Scale Real Network Topologies

1) Network Topology and Simulation Setup: In this sec-

tion, we perform simulations on 4 large-scale real network

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 17,2025 at 19:01:02 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON NETWORKING

Fig. 4. Different approximation ratios based on different OPTs with different weight parameters (OPT1: α = 1, β = 10, OPT2: α = 1, β = 2, OPT3:
α = 1, β = 1, OPT4: α = 2, β = 1, OPT5: α = 10, β = 1), running on Mesh topology.

Fig. 5. Different approximation ratios on different network topologies (Set α = β = 1).

Fig. 6. Performance comparisons with benchmarks.

Fig. 7. 5 different Network topologies with 15 Nodes.

Fig. 8. Different real network topologies.

topologies, shown in Fig. 8, from the Internet topology zoo

[31]: (1) AMRES (25 nodes and 24 links), (2) ARNES (34

nodes and 46 links), (3) DFN (58 nodes and 87 links), (4)

ITCDeltacom (113 nodes and 160 links). We set α = β =
1,m ∈ {5, 10, · · · , 45}, ni = 8,M = 113, C = 4, fi,j ∼
N(1, 0.25).

We will evaluate the performance of DSP by comparing it

with the two benchmarks:(1) Rounding Algorithm (Rd),3 (2)

Next Fit and Nearest Neighbour (NF+NN) algorithm.4

2) Performance Comparisons With Benchmarks: Fig. 6

show the performance of our designed algorithms com-

pared with two benchmarks on the network topology called

ITCDeltacom. Firstly, we can see DSP+GM always achieves

a better performance than the benchmarks in terms of the total

cost. Then, when we take a deep sight at their respective

performance on resource cost and the network latency, it is

interesting to find the fact that Rd is the one with the lowest

resource cost but performs worst on the network latency and

the total cost. Conversely, our proposed algorithms achieve

the smallest network latency and a reasonable resource cost,

slightly worse than that of the Rd algorithm, thereby achieving

the lowest total cost. It reveals that if optimizing to the

limit, the two optimization objectives are conflicting. And

minimizing the resource cost is not a good choice for TO-JPR.

Besides, the similarity of the third and fourth plots shows the

3After formulating TO-JPR as an ILP, the rounding algorithm can be used
here. It is a classical approach to obtaining a provable bound for ILP. See [9],
[10] and [24] as an example. Note it is a batched algorithm.

4NF and NN are the two most popularly-used greedy strategies in the
packing and routing problems respectively. See work [22], [23] as an example.
It is an online algorithm.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 17,2025 at 19:01:02 UTC from IEEE Xplore. Restrictions apply.

MAO et al.: PROVABLE APPROXIMATION ALGORITHMS FOR ONLINE TRAFFIC-SENSITIVE SFC DEPLOYMENT 13

Fig. 9. Relative performance comparisons between DSP+GM and NF+NN
on 4 different real network topologies.

Fig. 10. Performance evaluation in generalized scenarios.

tight relationship between the traffic and the network latency.

Combined with the above interesting fact, it demonstrates

minimizing traffic burden is a good strategy to balance the

resource cost and network latency, which can ensure a pretty

low latency and a reasonable resource cost and thereby achiev-

ing a low total cost.

Since NF+NN is a better benchmark, we further analyze

the competitive performance ratio of DSP+GM to NF+NN in

Fig. 9. From this figure, we can see that in scenarios with

more SFCs, DSP+GM outperforms NF+NN by an average of

22% and up to 51% (in the case of the AMRES topology). In

scenarios with fewer SFCs, DSP+GM outperforms NF+NN

by an average of 11% and up to 47% (also in the case

of the AMRES topology). In general, DSP+GM still makes

significant progress compared with NF+NN. The more SFCs

there are, the greater the improvement. In some special worst

cases, DSP+GM shows a significant performance improvement

over NF+NN, nearing 50%. This is because DSP+GM has a

better performance guarantee in the worst cases.

D. Simulations for More Generalized Scenarios

1) Network Topology and Simulation Setup: In this sec-

tion, we perform simulations on a large-scale real network

topologies named DFN with 1 to 5 types of server sizes,

i.e., Type ∈ [[4], [3.5, 4.5], [3, 4, 5], [2.5, 3.5, 4.5, 5.5], [2, 3, 4,
5, 6]]. The size of each server Ck is randomly selected from

the corresponding Type. Besides, we set α = β = 1,m =
24, ni = 8,M = 58, fi,j ∼ N(1, 0.25). In our simulations for

scenarios with shareable VNFs, we additionally set Type =
[2, 3, 4, 5, 6], H = {1, 2, 3}, f ′

1 = 0.1, f ′
2 = 0.3, f ′

3 = 0.5
and each VNF has 10% chance of being shareable, with

a randomly selected shareable type from H. Since NF+NN

serves as a better benchmark for DSP+GM, we use it as the

baseline and calculate the competitive performance ratio of the

extended algorithms to NF+NN for performance evaluation, as

shown in Fig. 10.

2) Performance in Scenarios With Heterogeneous Servers:

Fig. 10(a) shows in scenarios with heterogeneous servers,

our extended algorithm (GR+r-DSP) outperforms NF+NN

by an average of 16-23 % across different heterogeneous

settings. Overall, the extended algorithm demonstrates signif-

icant improvements compared to NF+NN, exhibiting better

performance in scenarios with a larger number of server size

types, thus highlighting its strong adaptability to diverse server

environments.

3) Performance in Scenarios With Shareable VNFs:

Fig. 10(b) illustrates the effectiveness of our other extended

algorithm, sf-DSP, in scenarios with shareable VNFs under

different weight parameter settings. As shown in Fig. 10(b),

we can see sf-DSP achieves an improvement of 19-25%

over the baseline NF+NN. The larger the ratio α
β

, the better

improvement. This is because the sharing-first rule of sf-DSP

enhances performance by effectively reducing resource costs.

IX. CONCLUSION AND FUTURE WORK

We put forward an online traffic-sensitive joint SFC place-

ment and flow routing model, optimizing both resource cost

and network latency. To address this issue, we propose a two-

stage scheme based on a novel and practical concept of traffic

burden. In the first stage, we propose DSP to pack VNFs.

Importantly, DSP not only maintains a minimal traffic burden

but also achieves a small approximation ratio on the resource

cost. In the second stage, our task is to map the packed VNF

packages onto the real servers one by one and implement data

flow routing between them. As for this stage, we design a

greedy mapping (GM) algorithm for the general online case,

which obtains a global ratio of O(dG) on the network latency.

Here dG is the diameter of the network graph and typically

smaller than O(log(M)), where M is the number of servers

in the network.

In the future, we will try this two-stage scheme on different

scenarios with different optimization objectives, such as the

scenarios that prefer balanced data flow rather than low

network latency, to show the expansibility of our two-stage

scheme.

REFERENCES

[1] Network Functions Virtualization-Introductory White Paper, ETSI,
NFVISG, Sophia Antipolis, France, 2012.

[2] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in Proc. IEEE 3rd Int. Conf. Cloud Netw.

(CloudNet), Oct. 2014, pp. 7–13.

[3] Y. Zhu et al., “Congestion control for large-scale RDMA deployments,”
ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 523–536,
Aug. 2015.

[4] Z. Guo, S. Liu, and Z.-L. Zhang, “Traffic control for RDMA-
enabled data center networks: A survey,” IEEE Syst. J., vol. 14, no. 1,
pp. 677–688, Mar. 2020.

[5] J. Pei, P. Hong, K. Xue, and D. Li, “Efficiently embedding service
function chains with dynamic virtual network function placement in geo-
distributed cloud system,” IEEE Trans. Parallel Distrib. Syst., vol. 30,
no. 10, pp. 2179–2192, Nov. 2018.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 17,2025 at 19:01:02 UTC from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS ON NETWORKING

[6] T. W. Kuo, B. H. Liou, K. C. Lin, and M. J. Tsai, “Deploying chains
of virtual network functions: On the relation between link and server
usage,” IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1562–1576, Aug.
2018.

[7] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gas-
pary, “Piecing together the NFV provisioning puzzle: Efficient placement
and chaining of virtual network functions,” in Proc. IFIP/IEEE Int.

Symp. Integr. Netw. Manage. (IM), May 2015, pp. 98–106.
[8] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On

orchestrating virtual network functions,” in Proc. 11th Int. Conf. Netw.

Service Manag. (CNSM), 2015, pp. 50–56.
[9] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal

placement of virtual network functions,” in Proc. IEEE Conf. Comput.

Commun. (INFOCOM), May 2015, pp. 1346–1354.
[10] X. Shang, Z. Liu, and Y. Yang, “Online service function chain placement

for cost-effectiveness and network congestion control,” IEEE Trans.

Comput., vol. 71, no. 1, pp. 27–39, Jan. 2022.
[11] P. Jin, X. Fei, Q. Zhang, F. Liu, and B. Li, “Latency-aware VNF chain

deployment with efficient resource reuse at network edge,” in Proc.

IEEE Conf. Comput. Commun., Jul. 2020, pp. 267–276.
[12] W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou, “Traffic aware

placement of interdependent NFV middleboxes,” in Proc. IEEE Conf.

Comput. Commun., May 2017, pp. 1–9.
[13] W. Ma, J. Beltran, D. Pan, and N. Pissinou, “Placing traffic-changing

and partially-ordered NFV middleboxes via SDN,” IEEE Trans. Netw.

Service Manag., vol. 16, no. 4, pp. 1303–1317, Dec. 2019.
[14] G. Liu, S. Guo, B. Li, and C. Chen, “Joint traffic-aware consolidated

middleboxes selection and routing in distributed SDNs,” IEEE Trans.

Netw. Service Manage., vol. 18, no. 2, pp. 1415–1429, Jun. 2021.
[15] D. Li, P. Hong, K. Xue, and J. Pei, “Virtual network function

placement considering resource optimization and SFC requests in
cloud datacenter,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 7,
pp. 1664–1677, Jul. 2018.

[16] J. Liu, H. Xu, G. Zhao, C. Qian, X. Fan, and L. Huang, “Incremental
server deployment for scalable NFV-enabled networks,” in Proc. IEEE

Conf. Comput. Commun. (INFOCOM), Jul. 2020, pp. 2361–2370.
[17] Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye, “Provably efficient algo-

rithms for joint placement and allocation of virtual network functions,”
in Proc. IEEE INFOCOM Conf. Comput. Commun., May 2017, pp. 1–9.

[18] X. Shang, Y. Huang, Z. Liu, and Y. Yang, “Reducing the service
function chain backup cost over the edge and cloud by a self-adapting
scheme,” in Proc. IEEE INFOCOM Conf. Comput. Commun., Jul. 2020,
pp. 2096–2105.

[19] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic, latency-
optimal vNF placement at the network edge,” in Proc. IEEE Conf.

Comput. Commun., Apr. 2018, pp. 693–701.
[20] D. Zheng, C. Peng, X. Liao, L. Tian, G. Luo, and X. Cao, “Towards

latency optimization in hybrid service function chain composition and
embedding,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Jul.
2020, pp. 1539–1548.

[21] V. Valls, G. Iosifidis, G. D. Mel, and L. Tassiulas, “Online network
flow optimization for multi-grade service chains,” in Proc. IEEE Conf.

Comput. Commun., Jul. 2020, pp. 1329–1338.
[22] Y. Mao, X. Shang, and Y. Yang, “Joint resource management and flow

scheduling for SFC deployment in hybrid edge-and-cloud network,” in
Proc. IEEE Conf. Comput. Commun., May 2022, pp. 170–179.

[23] Y. Mao, X. Shang, and Y. Yang, “Near-optimal resource allocation and
virtual network function placement at network edges,” in Proc. IEEE

27th Int. Conf. Parallel Distrib. Syst. (ICPADS), Dec. 2021, pp. 18–25.
[24] M. Rost and S. Schmid, “Virtual network embedding approximations:

Leveraging randomized rounding,” IEEE/ACM Trans. Netw., vol. 27,
no. 5, pp. 2071–2084, Oct. 2019.

[25] (2023). Understand and Use the Enhanced Interior

Gateway Routing Protocol (EIGRP). [Online]. Available:
https://www.cisco.com/c/en/us/support/docs/ip/enhanced-interior-
gateway-routing-protocol-eigrp/16406-eigrp-toc.html\#anc17

[26] D. S. Johnson, “Near-optimal bin packing algorithms,” Dept. Math.,
Massachusetts Inst. Technol., Cambridge, MA, USA, 1973.

[27] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, “Approximate
algorithms for the traveling salesperson problem,” in Proc. 15th

Annu. Symp. Switching Automata Theory (swat), Oct. 1974,
pp. 33–42.

[28] M. Kairanbay and H. M. Jani, “A review and evaluations of shortest
path algorithms,” Int. J. Sci. Technol. Res., vol. 2, no. 6, pp. 99–104,
Jun. 2013.

[29] D. Fernholz and V. Ramachandran, “The diameter of sparse random
graphs,” Random Struct. Algorithms, vol. 31, no. 4, pp. 482–516, Dec.
2007.

[30] J. Frey, Introduction To Stochastic Search and Optimization: Estimation,

Simulation, and Control, vol. 99. Hoboken, NJ, USA: Wiley, 2004,
pp. 1204–1205.

[31] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet Topology zoo,” IEEE J. Sel. Areas Commun., vol. 29,
no. 9, pp. 1765–1775, Oct. 2011.

[32] M. Daghmehchi Firoozjaei, J. P. Jeong, H. Ko, and H. Kim, “Security
challenges with network functions virtualization,” Future Gener. Com-

put. Syst., vol. 67, pp. 315–324, Feb. 2017.

Yingling Mao received the B.S. degree in mathe-
matics and applied mathematics from the Zhiyuan
College, Shanghai Jiao Tong University, Shang-
hai, China, in 2018. She is currently pursuing the
Ph.D. degree with the Department of Electrical
and Computer Engineering, Stony Brook Univer-
sity. Her research interests include network function
virtualization, software-defined networks, and cloud
computing.

Xiaojun Shang received the B.Eng. degree in
information science and electronic engineering from
Zhejiang University, the M.S. degree in electronic
engineering from Columbia University, and the
Ph.D. degree in computer engineering from Stony
Brook University. He is currently an Assistant Pro-
fessor with the Department of Computer Science and
Engineering, The University of Texas at Arlington.
His research interests include the areas of edge-
cloud computing, network virtualization, serverless
computing, and machine learning.

Yuanyuan Yang (Life Fellow, IEEE) received
the B.Eng. and M.S. degrees in computer science
and engineering from Tsinghua University and the
M.S.E. and Ph.D. degrees in computer science from
Johns Hopkins University.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 17,2025 at 19:01:02 UTC from IEEE Xplore. Restrictions apply.

