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Abstract

Generative, temporal network models play an important role in analyzing
the dependence structure and evolution patterns of complex networks. Due
to the complicated nature of real network data, it is often naive to assume
that the underlying data-generative mechanism itself is invariant with time.
Such observation leads to the study of changepoints or sudden shifts in the
distributional structure of the evolving network. In this paper, we propose
a likelihood-based methodology to detect changepoints in undirected, affine
preferential attachment networks, and establish a hypothesis testing frame-
work to detect a single changepoint, together with a consistent estimator for
the changepoint. Such results require establishing consistency and asymp-
totic normality of the MLE under the changepoint regime, which suffers from
long range dependence. The methodology is then extended to the multiple
changepoint setting via both a sliding window method and a more computa-
tionally efficient score statistic. We also compare the proposed methodology
with previously developed non-parametric estimators of the changepoint via
simulation, and the methods developed herein are applied to modeling the
popularity of a topic in a Twitter network over time.

1 Introduction

In network analysis, understanding how a temporal network evolves is a conse-
quential task. For example, assessing how interest in a topic diffuses over time
in a Twitter network can only be evaluated if the network is observed temporally.
Similarly, in order to judge how effective a policy is at dampening disease spread
throughout a community, one must be able to compare the spread dynamics be-
fore and after the policy is instituted. Upon observing a large, temporal network,
however, it is often naı̈ve to assume that it evolved under one fixed data-generating
process. Most temporal networks are exposed to forces, internal or external, that
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may augment the nature in which they evolve. Continuing the Twitter example,
news of a major world event may receive increased interest, albeit for a short pe-
riod of time, before returning to its pre-announcement popularity. These shifts in
data-generating dynamics can be characterized as changepoints.

When it comes to modeling dynamic networks, one popular class of tempo-
ral, generative network models is the preferential attachment (PA) model. Since
its initial emergence as the Barabási-Albert (BA) model in [3], many generaliza-
tions have been developed in order to generate networks that better conform to
real-world datasets; see for example [5, 7, 13, 26]. Estimating changepoints in the
undirected preferential attachment model was first studied by [2] and [4] where
they employed non-parametric estimators of the changepoint based on fluctuations
in the degree distribution. Although the methodology is general, it does not di-
rectly determine the existence of changepoints. Real network datasets are inher-
ently noisy objects and thus it is natural to ask whether a certain temporal shock
has a large enough impact on the network formation, beyond what is typically
expected, to be classified as a changepoint. Inspired by [2] and [4], we propose
likelihood-based alternatives to the changepoint problem, and provide a hypothe-
sis testing framework that not only detects where a changepoint has occurred, but
decides whether or not it even occurred in the first place. If a changepoint has not
occurred, one may assume that the entire network is generated under a single PA
process. Otherwise, different periods of time may have been governed by varying
parameters under the preferential attachment evolution assumption.

In [4], it is found that the preferential attachment model suffers from long
range dependence in the changepoint setting. That is, the degree distribution of
a preferential attachment network is heavily influenced by its evolution before
changepoint. Since likelihood-based procedures for preferential attachment net-
works heavily depend on the degree distribution, it could be the case that estima-
tion procedures using edges recently added to the network are corrupted by their
dependence on the network’s earlier evolution. In this work we confirm that is
not the case; despite the long range dependence affecting quantities such as the
tail index of the degree distribution, likelihood-based procedures are still effective
in making inference on parameters of the preferential attachment model. Surpris-
ingly, there are cases where the long range dependence results in more efficient
parameter estimation.

In practice, it is possible to have multiple changepoints in a given data stream.
Although it is justified theoretically, [2] and [4] have not addressed the statistical
nature of the multiple changepoint detection. Therefore, another goal of our work
is to present efficient multiple changepoint detection algorithms that scale to mas-
sive networks. Outside of applications to the the PA model, the likelihood-based
changepoint detection problem has a long history in the statistics literature. For an
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overview of both parametric and non-parametric changepoint detection methods,
we refer to [8]. We also refer to [20] for an overview of multiple changepoint pro-
cedures. In our present study, we provide two methods, namely sliding window
and binary segmentation methods, to handle the multiple changepoint detection
problem for PA networks, both of which have also been further applied to a real
data example.

The rest of the paper is organized as follows. In Section 2, we provide impor-
tant background information on the setup of the PA model and the likelihood-based
inference. Then in Section 3.3, we establish the hypothesis testing framework for
the single changepoint detection problem in the PA models, together with the pro-
posal of a consistent estimator for the changepoint. We next discuss challenges
and our resolutions (i.e. sliding window and binary segmentation methods) for the
multiple changepoint situation in Section 4. A numerical study comparing the two
proposed methods is also included in Section 4.3. Section 5 provides a real data
example from a Twitter network, which gives an illustration of the applicability of
our proposed methods. We give concluding remarks in Section 6, and all technical
proofs are collected in the appendix.

2 Preferential Attachment Modeling

2.1 The standard preferential attachment model

Preferential attachment (PA) has become a popular mechanism to model real-
world, dynamic networks by imitating their scale-free behavior through a “rich-
get-richer” data-generative mechanism. In this section, we review well-known as-
pects of the undirected preferential attachment model (see Chapter 8 of [24] for a
full treatment).

For our theoretical analyses, we assume the graph sequence {G(k)}nk=2 is ini-
tialized with two nodes connected by two edges, i.e. G(2) ⌘ (V (2), E(2)) where
V (2) = {1, 2} and E(2) = {{1, 2}, {1, 2}} . From G(k�1) to G(k), k � 3, a new
node k together with an undirected edge, {k, vk}, is added to the graph according
to the following preferential attachment rule. For vk 2 V (k � 1) and k � 3,

P
�
{k, vk} 2 E(k) \ E(k � 1)

�� Fk�1

�
=

Dvk(k � 1) + �

(2 + �)(k � 1)
, (1)

where Dvk(k � 1) denotes the degree of node vk 2 V (k � 1) and Fk is the sigma
algebra generated by the information in G(k). Note that we exclude the possibility
of having self-loops in the model setup. In order for (1) to result in a valid probabil-
ity, it is further assumed that � > �1. In what follows, we employ the short-hand
notation PA(�) to denote this process.
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For i � 1, let Ni(k) =
P

w2V (k) 1{Dw(k)=i} be the number of nodes with
degree i at time k. By [24, Theorem 8.3], we have

Ni(k)

k
p�! pi(�) = (2 + �)

�(3 + 2�)�(i+ �)

�(1 + �)�(i+ 3 + 2�)
as k !1. (2)

Also, let N>i(k) :=
P

j>iNj(k) be the number of nodes with degree greater than
i at time k, then we have that

N>i(k)

k
p�! p>i(�) =

�(3 + 2�)�(i+ 1 + �)

�(1 + �)�(i+ 3 + 2�)
as k !1. (3)

From (2) and (3), we have the following convenient identity:

p>i(�) =
(i+ �)pi(�)

2 + �
, (4)

which is helpful later in the proof of our main results. By Stirling’s formula,
pi(�) ⇠ Ci�(3+�) as i ! 1, where C = (2 + �)�(3 + 2�)/�(1 + �), giving
the PA model the ability to exhibit scale free behavior [see Chapter 8.4 of 24, for
more details].

2.2 Birth-immigration processes

Results like (2) are often attained through either martingale methods or by em-
bedding the degrees {Dv(n)}nv=1 into a carefully constructed sequence of birth-
immigration processes. The embedding provides a finer resolution of the structural
dynamics that underlie the evolution of the preferential attachment process, as well
as a convenient description of limiting objects for preferential attachment models
[see 1, 23, for a full description of such embedddings]. In order to cleanly de-
scribe some limit theorems for the degree distributions, we now introduce linear
birth-immigration processes.

A linear birth process
�
⇠i✓(t) : t � 0

 
with immigration parameter ✓ and unit

lifetime parameter is a continuous time Markov process, initialized at ⇠i✓(0) = i,
with state space N+ and transition rate

qj,j+1 = j + ✓, j 2 N+, ✓ � 0. (5)

The difference ⇠i✓(t) � ⇠i✓(0) has a negative binomial distribution with number of
successes r = i+ ✓ and probability of success p = e�t so that for t � 0

P
�
⇠i✓(t) = j

�
=

�(j + ✓)

�(j � i+ 1)�(i+ ✓)
e�(i+✓)t

�
1� e�t

�j�i
, (6)
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P
�
⇠i✓(t) > j

�
=

�(j + 1 + ✓)

�(j � i+ 1)�(i+ ✓)

Z 1�e�t

0
xj�i(1� x)i�1+✓dx. (7)

If the process is initialized with one particle, we drop the superscript and write
⇠�(t) ⌘ ⇠1� (t) for t � 0. A simple calculation shows that

pi(�) = P (⇠�(T ) = i) , (8)
p>i(�) = P (⇠�(T ) > i) , (9)

where T is an exponential random variable, independent of ⇠�(·), with rate 2 + �.

2.3 Likelihood inference

In this section, we will review likelihood-based inference for the preferential at-
tachment model. Likelihood inference for the undirected affine preferential attach-
ment model was rigorously studied in [12] and will form the basis for our change-
point analyses. Assume we have observed the graph sequence {G(k)}nk=2 evolving
according to the classical rule in (1) with � 2 [⌘,K], where ⌘ > �1 and K < 1.
The likelihood of � 2 [⌘,K] given the entire graph sequence is given by

L (� | {G(k)}nk=2) =
nY

k=3

Dvk(k � 1) + �

(2 + �)(k � 1)
. (10)

Since we will later consider model evolution with changepoints, it is convenient to
denote the likelihood function:

L(ns,nt](�) := L
⇣
�
���{G(k)}bntck=bnsc+1

⌘
, for s, t 2 [0, 1], s < t.

If s is such that the likelihood product in (10) is indexed for k < 3, we simply
denote the multiples as 1. The log-likelihood becomes

`(ns,nt](�) := logL(ns,nt](�)

=

bntcX

k=bnsc+1

log(Dvk(k � 1) + �)�
bntcX

k=bnsc+1

log(k � 1)� (bntc � bnsc) log(2 + �),

(11)

which emits score and hessian

u(ns,nt](�) :=
@

@�
`(ns,nt](�) =

bntcX

k=bnsc+1

1

Dvk(k � 1) + �
� bntc � bnsc

2 + �
, (12)
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u0(ns,nt](�) :=
@2

@�2
`(ns,nt](�) = �

bntcX

k=bnsc+1

1

(Dvk(k � 1) + �)2
+
bntc � bnsc
(2 + �)2

.

(13)

Note that if for some k, Dvk(k � 1) = i, node vk has incremented its degree from
i to i+ 1 at step k. Since at most one node, other than node k, can have its degree
incremented at step k, we find that

bntcX

k=bnsc+1

1{Dvk (k�1)=i} = N>i(bntc)�N>i(bnsc).

That is, the difference between the number of nodes with degree greater than i at
time bntc and bnsc is simply the number of nodes whose degree have undergone
the i ! i + 1 transition during that time period. We may use this fact to rewrite
the score and hessian in a more convenient form

u(ns,nt](�) =
1X

i=1

N>i(bntc)�N>i(bnsc)
i+ �

� bntc � bnsc
2 + �

, (14)

u0(ns,nt](�) = �
1X

i=1

N>i(bntc)�N>i(bnsc)
(i+ �)2

+
bntc � bnsc
(2 + �)2

, (15)

(see Lemma A.3 for more details). We thus define the maximum likelihood esti-
mator based on the edges bnsc+ 1 to bntc, �̂(ns,nt], as the solution to the equation
u(ns,nt](�) = 0. If we are using the full data to estimate �, we will employ the no-
tation �̂n := �̂(0,n]. It is proven in [12] that for fixed s and t, �̂(ns,nt] is a consistent
estimator of �. Additionally, [12] prove asymptotic normality of the MLE, where
asymptotic variance is given by I�1(�; �). Here,

I(�; �) =
1X

i=1

p>i(�)

(i+ �)2
� 1

(2 + �)2
. (16)

The asymptotic normality of �̂(ns,nt] under PA(�) is derived in Lemma A.1, which
is crucial in the derivation of our likelihood ratio test. As (14) and (15) suggest,
this boils down to understanding the asymptotic behavior of N>i(bntc)/n.

3 Changepoint detection

Although the classical preferential attachment model is already a popular choice
for modeling real-world networks, it essentially assumes the network evolution rule
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(cf. (1)) to remain unchanged over time and is not perturbed by temporal shocks to
the network. For many real-life scenarios, this is an unrealistic assumption (see for
instance the Twitter data example in Section 5). In order to capture these dynam-
ics, a preferential attachment model with changepoints have been proposed in [4],
which we now summarize. The graph sequence {G(k)}nk=2 evolves as follows:

• For k = 2, . . . , bnt?c, allow the network evolve according to PA(�1).

• For k = bnt?c + 1, . . . , n, the network evolves according to PA(�2) where
G(bnt?c) is used as the seed graph.

In the rest of this paper, we refer to this graph evolution process as PA(t?; �1, �2)
with �1 6= �2. The shift from �1 to �2 thus signifies that some disturbance has
occurred at time bnt?c+1, and has affected the underlying structure of the network
evolution going forward.

3.1 Degree distribution under changepoint

Under the PA(t?; �1, �2) model, [4] derive the asymptotic limit of the empirical
degree distribution. This theorem is fundamental in deriving the consistency of our
likelihood-based changepoint estimator. We present their result as Theorem 3.1
below.

Theorem 3.1 (Theorem 2.1 of [4], 3.8 of [2]). For t? 2 [0, 1], suppose that
{G(k)}nk=2 evolves according to the PA(t?; �1, �2) model. Define for t � t?

⌧?(t) ⌘ 1

2 + �2
log

t

t?
.

Then for i � 1

sup
t2[t?,1]

����
Ni(bntc)

nt
� p?i (t; �1, �2)

����
p�! 0 as nk !1,

where

p?i (t; �1, �2) = (1� (t?/t))P
⇣
⇠�2(T̃ (t)) = i

⌘
+ (t?/t)P

⇣
⇠
⇠�1 (T )
�2

(⌧?(t)) = i
⌘
.

(17)

Here, T is an exponential random variable with rate 2 + �1, independent of ⇠�1(·)
and ⇠�2(·). T̃ (t) is an exponential random variable, truncated to the interval
[0, ⌧?(t)], with rate 2 + �2 and independent of ⇠�2(·). Explicitly, ⇠

⇠�1 (T )
�2

(·) is a
birth-immigration process generated conditional on the value of ⇠�1(T ).
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In order to model degree growth in the PA(t?; �1, �2) network, [4] associate to
each node a birth-immigration process that models its degree. The constant ⌧?(t)
corresponds to the amount of time the processes evolve after the changepoint, or the
amount of embedding time that passes between the introduction of the bnt?c-th and
bntc-th node in the PA(t?; �1, �2) process. The random variable ⇠�2(T̃ (t)) models
the degree of a typical node (or birth-immigration process) introduced after the
changepoint. Similarly, ⇠

⇠�1 (T )
�2

(⌧?(t)) approximates the degree of a typical node
introduced before the changepoint. In other words, to generate a random variable
that has the asymptotic distribution of a typical node born before the changepoint,
we may initialize a birth-immigration process with immigration rate �2 with a draw
from the distribution {pi(�1)}i�1 and allow the birth-immigration process to evolve
until time ⌧?(t).

Using (6) and (7), we have another convenient representation of (17)

p?i (t; �1, �2) =pi(�2)P
�
⇠32�2(⌧

?(t)) > i+ 2
�
+ (t?/t)

iX

j=1

pj(�1)P
⇣
⇠j�2(⌧

?(t)) = i
⌘
.

Note that in p?i (t; �1, �2), the contribution of �2 to the tail has lessend when com-
pared to the PA(�2) model. Since nodes have not undergone their intital evolution
under the PA(�2) model, as evidenced by the truncation of the random variable
T̃ (t) when compared to (8), pi(�2) has been down-weighted in p?i (t; �1, �2).

From Theorem 3.1, we obtain Lemma 3.1. Recall from the discussion in Sec-
tion 2.3 that in order to develop theory for likelihood-based procedures for PA
networks, understanding the behavior of N>i(n)/n is pivotal.

Lemma 3.1. For t? 2 [0, 1], suppose that {G(k)}nk=2 evolves according to the
PA(t?; �1, �2) model. Then for i � 1

sup
t2[t?,1]

����
N>i(bntc)

nt
� p?>i(t; �1, �2)

����
p�! 0 as n!1,

where

p?>i(t; �1, �2) =(1� (t?/t))P
⇣
⇠�2(T̃ (t)) > i

⌘
+ (t?/t)P

⇣
⇠
⇠�1 (T )
�2

(⌧?(t)) > i
⌘

=p>i(�2)P
�
⇠32�2(⌧

?(t)) > i+ 2
�
� (t?/t)P (⇠�2(⌧

?(t)) > i)

+ (t?/t)
iX

j=1

pj(�1)P
⇣
⇠j�2(⌧

?(t)) > i
⌘
+ (t?/t)p>i(�1).

The equality for p?>i(t; �1, �2) in Lemma 3.1 is achieved by employing the
tower property, conditioning on T̃ (t) and ⇠�1(T ). We see that preferential attach-
ment models are subject to long range dependence; the initial conditions that gov-
ern the early evolution of the network have a long-term impact on properties of the
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degree distribution. For example, Lemma 3.1 exhibits that under the PA(t?; �1, �2)
model, the power-law tail index of the degree distribution is still 2 + �1. The
changepoint does not perturb the tail behavior of the degree distribution which ren-
ders power-law tail index estimates such as the Hill estimator unfit to detect shifts
in the degree distribution [see 16, 27, for more on tail index estimation]. Addition-
ally, it is unclear how such long range dependence affects likelihood inference as
presented in Section 2.3.

In Lemma 3.2, we develop a generalization of the relationship (4) for the
PA(t?; �1, �2) model that will prove useful in later proofs.

Lemma 3.2. Suppose t > s � t?. Then for all i � 1,

i+ �2
2 + �2

Z t

s
p?i (u; �1, �2)du = tp?>i(t; �1, �2)� sp?>i(s; �1, �2).

Proof. Using (17), we find that
Z t

s
p?i (u; �1, �2)du =pi(�2)

Z t

s
P
�
⇠32�2(⌧

?(u)) > i+ 2
�
du

+
iX

j=1

pj(�1)

Z t

s
(t?/u)P

⇣
⇠j�2(⌧

?(u)) = i
⌘
du,

where a simple exchange in the order of integration gives that
Z t

s
P
�
⇠32�2(⌧

?(u)) > i+ 2
�
du =tP

�
⇠32�2(⌧

?(t)) > i+ 2
�
� sP

�
⇠32�2(⌧

?(s)) > i+ 2
�

� t?p�1
>i (�2) (P (⇠�2(⌧

?(t)) > i)� P (⇠�2(⌧
?(s)) > i)) ,

and a u-substitution returns
Z t

s
(t?/u)P

⇣
⇠j�2(⌧

?(u)) = i
⌘
du =t?

2 + �2
i+ �2

⇣
P
⇣
⇠j�2(⌧

?(t)) > i
⌘
� P

⇣
⇠j�2(⌧

?(s)) > i
⌘⌘

.

Hence
Z t

s
p?i (u; �1, �2)du =tpi(�2)P

�
⇠32�2(⌧

?(t)) > i+ 2
�
� spi(�2)P

�
⇠32�2(⌧

?(s)) > i+ 2
�

� t?
2 + �2
i+ �2

(P (⇠�2(⌧
?(t)) > i)� P (⇠�2(⌧

?(s)) > i))

+ t?
2 + �2
i+ �2

iX

j=1

pj(�1)
⇣
P
⇣
⇠j�2(⌧

?(t)) > i
⌘
� P

⇣
⇠j�2(⌧

?(s)) > i
⌘⌘

,

where we have used (4) to determine that pi(�2)p�1
>i (�2) = (2 + �2)/(i + �2).

Multiplying both sides of the previous display by (i+�2)/(2+�2) and again using
(4) completes the proof.
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3.2 Non-parametric methods

In order to detect the changepoint t? under the PA(t?; �1, �2) model, [4] employs a
non-parametric estimator which tracks the proportion of nodes with degree 1 (i.e.
leaves) as the network evolves. In a later paper, [2] develops a non-parametric esti-
mator for t? under more general conditions on the attachment rule (1). As opposed
to [4], the methodology in [2] tracks changes in the entire empirical degree distri-
bution, which in-turn provides more information about the changepoint location.
Hence, for brevity, we only present and compare our likelihood-based methods to
[2]. Although their theory is based on a preferential attachment model where nodes
attach according to their out-degree rather than their total degree, their methodol-
ogy is still valid for the linear PA case since the associated � parameters would just
differ by 1.

The estimator of the changepoint t? in [2] is given by

T̂n = inf

(
t � 1

hn
:

1X

i=0

2�i

����
Ni+1(bntc)

nt
� Ni+1(bn/hnc)

n/hn

���� >
1

bn

)
, (18)

where hn and bn are intermediate sequences such that hn !1, bn !1, hn
n ! 0

and bn
n ! 0 as n ! 1. Intuitively, (18) detects a changepoint when the R1

+

distance between the empirical degree distributions after the changepoint and some
time in the distant past exceeds a given threshold. As reasonable defaults, [2]
recommends using hn = log log n and bn = n1/ log logn which we will also follow.
The consistency of T̂n has been justified in [2] as well, i.e. T̂n

p�! t?, provided that
there is a changepoint at t?. Although methods developed in [2] are applicable to a
wide range of sublinear preferential attachment models, in their current state they
do not provide a mechanism to test if a changepoint has occurred in the first place,
motivating the need for a hypothesis testing framework and other likelihood-based
alternatives.

3.3 Likelihood ratio test

As mentioned earlier, the goal of statistical changepoint detection is two-fold. We
need to first decide if a changepoint has occurred, and if so, where it occurred.
Both of these objectives can be conveniently met in a hypothesis testing framework.
Consider the hypotheses

H0 : The graph sequence {G(k)}nk=2 evolves according to PA(�).

HA : 9t? 2 [�, 1� �] such that {G(k)}nk=2 evolves according to PA(t?, �1, �2)

(19)
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for some � 2 (0, 1/2). Clearly, the alternative hypothesis implies the existence
of a changepoint, while the null hypothesis assumes that the network is generated
according to the PA rule (1) via a fixed �. Under HA, � ensures that the change-
point is bounded away from 0 and 1. In practice, this assumption guarantees that
a sufficient number of edges is generated under both PA schemes (allowing for
accurate estimation of �1 and �2), but also plays a theoretical role in later proofs.
Alternatively, one can choose to obviate the need for � by augmenting the statistic
used to test the hypotheses (19). See [11, 15] for more details.

To test (19), we consider the likelihood ratio

⇤m :=
L(0,n](�̂n)

L(0,m](�̂(0,m])L(m,n](�̂(m,n])
for m = bn�c, . . . , bn(1� �)c. (20)

The numerator in (20) maximizes the likelihood under the null hypothesis of no
changepoint and the denominator is maximized under the alternative �1 6= �2
for some conjectured changepoint location m. For theoretical analyses, it is in-
stead convenient to work with the statistic �2 log⇤m. With this transformation, a
large value of�2 log⇤m provides evidence in favor of a changepoint located at m.
Therefore, one may expect the m that maximizes �2 log⇤m under the alternative
to satisfy m/n ⇡ t? as n!1.

In order to derive the asymptotic distribution for the maximum of �2 log⇤m

under the null hypothesis, it is amenable to convert to continuous time and consider
a stochastic process perspective. Consider the log-likelihood ratios �2 log⇤nt in-
dexed by t 2 [�, 1 � �]. This is a right-continuous process, and hence an ele-
ment of the Skorohod space D[�, 1 � �] which we will equip with the Skorohod
metric. When the limiting process of �2 log⇤nt is derived, the continuous map-
ping theorem gives the asymptotic distribution of the supremum of �2 log⇤nt for
t 2 [�, 1� �].

The following theorem gives the asymptotic distribution of

sup
t2[�,1��]

�2 log⇤nt,

under H0, from which we derive the hypothesis test. Here, we use B(t) to refer to
a Brownian bridge process.

Theorem 3.2. Fix � 2 (0, 1/2). Then under H0 in (19)

sup
t2[�,1��]

�2 log⇤nt ) sup
t2[�,1��]

B2(t)

t(1� t)
, (21)

in R, where) denotes the weak convergence.
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We defer the detailed proof of Theorem 3.2 to Appendix A.1. In fact, Theo-
rem 3.2 establishes a hypothesis testing framework for the null of no changepoint,
rejects H0 when the test statistics

sup
t2[�,1��]

�2 log⇤nt

exceeds the (1� ↵)-th quantile of the limiting distribution,

sup
t2[�,1��]

B2(t)

t(1� t)
.

Though quantiles of the limit distribution are not readily available in most software,
they can be simulated via Brownian motion realizations or approximations like that
of Equation (1.3.26) in [8].

Now that Theorem 3.2 gives us the ability to detect the presence of a change-
point, we would like to consistently estimate it. As mentioned earlier, large values
of �2 log⇤nt indicate that t is likely a changepoint. Hence, under HA, we expect
the argmax of �2 log⇤nt to be a consistent estimator of the true changepoint t?.
However, in order for �2 log⇤nt to attain large values in a neighborhood about
t?, we require that L(nt,n](�̂(nt,n]) is large for t � t?. That is, we require that
the maximum likelihood estimator �̂(nt,n] is a consistent estimator of �2 under the
PA(t?; �1, �2). This condition is highly non-obvious as the long range dependence
implied by Theorem 3.1 would suggest that the MLE may be corrupted by the pre-
changepoint regime. This, however, is not the case as we present in Theorem 3.3,
which is proved in Section A.4 in the Appendix.

Theorem 3.3. Fix s 2 [t?, 1] and ⌧ 2 (0, 1� s). Suppose that {G(k)}nk=2 evolves
according to the PA(t?; �1, �2) rule. Then as n!1

sup
t2[s+⌧,1]

����̂(ns,nt] � �2
��� p�! 0.

We may also prove asymptotic normality of the MLE for �2 under the PA(t?; �1, �2)
model, as given in Theorem 3.4. Note that the asymptotic variance of the centered
and scaled �̂(ns,nt] is given by (I?t (�2)� I?s (�2))

�1 when s � t?. Here,

I?t (�) = t

 1X

i=1

p?>i(t; �1, �2)

(i+ �)2
� 1

(2 + �)2

!
.

Theorem 3.4 indicates that, equating the number of edges used in each estima-
tion procedure, the asymptotic variance of the MLE for �2 under the PA(t?; �1, �2)

12



regime is smaller than the asymptotic variance of the MLE for �2 under the PA(�2)
model if �1 < �2. On the other hand, if �1 > �2, �̂(ns,nt] is subject to a larger
asymptotic variance under the PA(t?; �1, �2) model when compared to the PA(�2)
setting.

This finding can be explained by relationship between the asymptotic variance
of the MLE and the tail behavior of the degree distribution under the PA(t?; �1, �2)
model. Note that N>i(bntc)�N>i(bnsc) counts the number of nodes that transi-
tioned from degree i to degree i + 1 in between time steps bnsc and bntc. Thus,
if the parameters of the PA(t?; �1, �2) model are such that more nodes make tran-
sitions between large degrees, tp>i(t; �1, �2)� sp>i(s; �1, �2) tends to decay more
slowly as i!1, resulting in a smaller asymptotic variance of the MLE. However,
in order for a node to make transitions between large degrees, the node must attain
a large degree in the first place. Since pi(�) has a power law tail index of 3 + �,
�1 < �2 encourages more nodes to attain a large degree before the changepoint
than otherwise would have occurred if the network was generated under the PA(�2)
model. The setting where �1 < �2 thus acts as a stimulus that fosters the oppor-
tunity for more nodes to pass through larger degrees after the changepoint, while
�1 > �2 has the opposite effect.

Theorem 3.4. Fix s 2 [t?, 1] and ⌧ 2 (0, 1� s). Assume that {G(k)}nk=2 evolves
according to the PA(t?; �1, �2) rule. Then as n!1

(I?t (�2)� I?s (�2)) ·
p
n(�̂(ns,nt] � �2))W (I?t (�2))�W (I?s (�2))

in D[s+ ⌧, 1] where W (·) is a Wiener process. Moreover, if �1 < �2,

(I?t (�2)� I?s (�2))
�1 < (t� s)�1I�1(�2; �2),

and if �1 > �2

(I?t (�2)� I?s (�2))
�1 > (t� s)�1I�1(�2; �2).

Theorem 3.4 is proved in Section A.5 of the Appendix. Theorem 3.5 formalizes
the consistency of the likelihood ratio procedure.

Theorem 3.5. Fix � 2 (0, 1/2) and assume that there exists only one changepoint
at t? 2 [�, 1��]. Suppose also that the network evolves according to PA(t?; �1, �2).
Then we have

t̂n := n�1 argmax
bn�cmb(1��)nc

� 2 log⇤m
p�! t?, (22)

as n!1.

We leave the proof of Theorem 3.5 to Appendix A.6, and provide comparisons
on the performance of t̂n and T̂n through a simulation study in the next section.
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� �0.5 0 1 2
Rejection Rate 0.050 0.042 0.046 0.052
Standard Error 0.0097 0.0090 0.0094 0.0099

Table 1: Rejection rates and (Bernoulli-based) standard errors for the likelihood
ratio test applied to 500 PA(�) networks with 50,000 edges and � = 0.1.

3.4 Simulation study

Though the consistency of t̂n and T̂n has been justified, we now further evaluate
and compare their numerical performance on simulated data. In each simulation,
the preferential attachment networks are initialized by a node with a self-loop, and
all simulations assume a typical significance level of ↵ = 0.05. We first assess the
Type 1 error rate for the likelihood ratio methodology by simulating 500 PA(�) net-
works with 50,000 edges, � 2 {�0.5, 0, 1, 2} and � = 0.1. The Type 1 error rates
and their Bernoulli-based standard errors are presented in Table 1. As expected,
the Wald-based confidence intervals for the rejection rates all contain ↵ = 0.05.
Hence, the asymptotic distribution in Theorem 3.2 is a good approximation for the
distribution of the likelihood ratio under the null hypothesis, even at small sample
sizes. Most real-world dynamic networks (e.g. those listed on data repositories like
SNAP [19] and KONECT [18]) contain well over 50,000 edges and hence asymp-
totic approximations are reliable, assuming the network is truly generated by a PA
process.

Next, we evaluate the statistical power and estimation of the changepoint loca-
tion for the likelihood ratio methodology. We apply the likelihood ratio test to 500
simulated PA(0.6; 0, �2) networks, i.e. they are initialized by a Barabási-Albert
process, PA(0), and then transitions to a PA(�2) process at t? = 0.6. The networks
have 50,000 edges and we again let � = 0.1. Here, we allow �2 to vary between
�0.2 and 0.2 by increments of 0.02. An empirical power curve and mean abso-
lute error for the changepoint location for tests that rejected the null hypothesis are
presented in Figure 1. The likelihood ratio methodology is powerful; differences
in the offset parameter beyond 0.1 in absolute value are detected well-over 95% of
the time. Interestingly, decreases in the offset parameter are detected slightly more
often than increases. For differences in the offset parameter below 0.1 in absolute
value, however, the estimation of the changepoint location becomes unreliable.

In order to further assess the accuracy of the changepoint location estimate, we
compare the estimation error for the likelihood ratio and non-parametric estima-
tors, t̂n and T̂n, on larger networks with greater, more realistic differences in the
offset parameter. Specifically, we simulate 500 networks of size 100,000 from a
PA(0.6; 0, �2) process, where �2 is allowed to range from 0.1 to 0.5 by increments
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�2 0.1 0.2 0.3 0.4 0.5
MAE(t̂n) 0.0281 0.0070 0.0030 0.0018 0.0013
MAE(T̂n) 0.2574 0.1518 0.0930 0.0710 0.0560

Table 2: Empirical mean absolute error of t̂n and T̂n for 500 PA(0.6; 0, �2) net-
works with 100,000 edges and � = 0.1.

of 0.1. The mean absolute error in changepoint location is presented in Table 2.
The likelihood ratio test rejects the null hypothesis in all simulations. Compared
to previous simulations, t̂n becomes highly accurate with larger differences in the
offset parameter and has uniformly smaller error than T̂n. The small differences in
the offset parameter require the addition of many nodes to manifest in the empirical
degree distribution according to the law of large numbers effect, hence T̂n performs
poorly for small �2. We also remark here that the supremacy of the likelihood ratio
is unsurprising, since the likelihood-based methodology should out-perform non-
parametric procedures when the data-generating model is correctly specified.

The non-parametric estimator T̂n, however, was designed to accommodate
more general preferential attachment models. Namely, T̂n can detect differences
between sublinear regimes of preferential attachment as explained in Assumption
2.1 of [2]. In order to assess the robustness of the likelihood ratio methodology
to more general changes in the degree-based attractiveness of nodes, we generate
500 networks with 100,000 edges, where the attachment function changes from
linear to sublinear at t? = 0.6. At step k, node v is chosen to be attached to with
probability proportional to Dv(k � 1) + 1 for k  bnt?c, and (Dv(k � 1) + 1)b

for k � bnt?c+1. Here we allow b 2 {0.5, 0.6, 0.7, 0.8, 0.9}, where larger values
of b thus indicate less dramatic changes in the attachment function. Mean abso-
lute errors (MAE) in changepoint location for t̂n and T̂n are reported in Table 3.
Although �̂(nt,n] is generally computed under a misspecified model, the likelihood
ratio methodology still performs well by virtue of �̂(0,nt] and �̂(nt,n] being far apart
near the true changepoint. The non-parametric estimator T̂n performs well for
lower values of b, but if the change in attachment function is subtle, it performs
worse. This simulation, along with the previous, indicates that the empirical de-
gree distribution is not sensitive to small changes in the attachment function from
a statistical perspective.
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Figure 1: Empirical rejection rates for the likelihood ratio test applied to 500
PA(0.6; 0, �2) networks with 50,000 edges and � = 0.1 along with average ab-
solute error for changepoint location. Error is only computed for those tests that
reject the null hypothesis. Red line indicates ↵ = 0.05.

b 0.5 0.6 0.7 0.8 0.9
MAE(t̂n) 0.0004 0.0005 0.0009 0.0019 0.0079
MAE(T̂n) 0.0343 0.0440 0.0607 0.0969 0.2320

Table 3: Empirical mean absolute error for t̂n and T̂n for 500 networks initialized
by a PA(1) process which transitions to a sublinear PA process with attachment
function (Degree+1)b at t? = 0.6. Networks are of 100,000 edges, and we choose
� = 0.1.
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4 Multiple changepoint detection

So far our study only focuses on the case with a single changepoint, but for prag-
matic purposes, it is important to consider the generalization to circumstances
with multiple changepoints. We start with discussions on some difficulties that
the methodology presented in Section 3.3 may face when applied to the multiple
changepoint setting and present an alternative strategy to detect multiple change-
points. The consideration of multiple changepoints can not only accentuate diffi-
culties faced in the single changepoint case, but also introduce new complications.
Akin to the single changepoint case, statistical multiple changepoint detection is
often presented under the hypothesis testing framework, a convention that we will
follow [6, 20].

Fix � 2 (0, 1/2) and consider the hypothesis test

H0 : The graph sequence {G(k)}nk=2 evolves according to PA(�).

HA : There exists a partition � < t?1 < · · · < t?⌧ < 1� � such that {G(k)}nk=2

evolves according to PA(t?1, . . . , t
?
⌧ ; �1, . . . , �⌧+1)

(23)

Here PA(t?1, . . . , t
?
⌧ ; �1, . . . , �⌧+1) is the natural extension of the model presented

in Section 3 but now jumps occur at edges bnt?1c, . . . , bnt?⌧+1c with the initializer
process being PA(�1). Note that H0 in (23) matches that of (19), implying that
if the null hypothesis is true, the same exact methodology from Section 3.3 can
be applied. Jointly estimating the changepoints under HA is a difficult task, and
hence the task of finding multiple changepoints is often reduced to sequentially
uncovering changepoints one at a time. That is, the multiple changepoint detection
problem is reduced to a sequence of single changepoint detection problems.

4.1 Screening and Ranking (SaRa)

One popular way decomposing the multiple changepoint problem to a sequence
of single changepoint problems is via local estimation of the multiple change-
points. When applying likelihood ratio methodology, it is pertinent to ensure that
the model is correctly specified. Naively applying the sequence of statistics (20) to
a graph sequence with multiple changepoints will result in portions of the edgelist
that are specified as a single PA process, though they are truly governed by multiple
PA processes. Under the alternative, this leads to suboptimal estimation of model
parameters, and thus suboptimal statistics and hypothesis tests. Instead, to ensure
test regions contain at most one changepoint, [14] and [21] proposed a screening-
and-ranking (SaRa) algorithm to detect multiple changepoints. In effect, the SaRa
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algorithm decomposes the hypothesis test (23) into a sequence of hypotheses

H0(k) : The edges E(k + h) \ E(k � h) are added via offset parameter �.
HA(k) : The edges E(k + h) \ E(k) and E(k) \ E(k � h) are added via

offset parameters �1 6= �2.

(24)

for k = n0 + h, . . . , n � h. Here, h > 0 is chosen such that no two changepoints
are within h edges of each other. In order for asymptotics developed in previous
sections to kick in, h must grow with n. Henceforth, we assume hn = bnsc for
some s 2 (0, 1). In the continuous time setting, this assume the changepoints
specified under HA in (23) are approximately separated by s for large n. With
this window-based assumption, individual hypothesis tests can be performed over
select windows that contain only a single changepoint, assuming a proper choice
of hn.

We slightly augment the methods of [14] and [21] for our purposes. Using
likelihood ratio methods from Section 3.3, the natural statistic to test (24) is

L(k�hn,k+hn](�̂(k�hn,k+hn])

L(k�hn,k](�̂(k�hn,k])L(k,k+hn](�̂(k,k+hn])
for k = hn + 1, . . . , n� hn � 1.

(25)
Theoretically, however, this statistic is difficult to work with. Namely, if we convert
to continuous time by letting k = bntc, �̂(nt,n(t+s)] ⇡ �̂(k,k+hn] and �̂(n(t�s),n(t+s)] ⇡
�̂(k�hn,k+hn], it is difficult to establish the joint convergence of these (scaled and
centered) processes in D[0, 1� �]⇥D[�, 1� �]. In the proof of Theorem 3.2, we
were able to get away without establishing joint convergence since �̂n = �(0,n] is a
realization of �(0,nt] at t = 1. Then establishing the convergence of the scaled and
centered �(0,nt] in the Skorohod space was sufficient, since the continuous map-
ping theorem allows us to prove statements like (30). The joint convergence of the
processes �̂(nt,n(t+s)] (or equivalently �̂(n(t�s),nt]) and �̂(n(t�s),n(t+s)] in (25) can-
not be derived from the convergence of a single process or transformations of such
processes, thus theoretical analysis becomes less tractable. We refer to Chapter 13
of [28] for more on deriving stochastic process limits from existing ones.

Instead, we propose the statistic

⇤k(hn) :=
L(k�hn,k](�̂(k,k+hn])L(k,k+hn](�̂(k�hn,k])

L(k�hn,k](�̂(k�hn,k])L(k,k+hn](�̂(k,k+hn])
, (26)

for k = hn+1, . . . , n�hn� 1. In the denominator (26) maximizes the likelihood
under the alternative hypotheses in (24). The numerator, on the other hand, is an
unsophisticated representation of the null hypothesis. Under the null, �̂(k,k+hn]
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and �̂(k�hn,k] should in a sense be interchangeable since they are both estimators
of �. Thus, switching the maximizers of L(k�hn,k](�) and L(k,k+hn](�) should
result in a likelihood ratio that is approximately 1 under the null hypothesis, but
far from optimal under the alternative. Note that �̂(k�hn,k] and �̂(k,k+hn] are time
shifts of the same process, making continuous mapping methodology suitable for
the analysis of (26).

The following corollary gives the limiting process for�2 log⇤bntc(bnsc). The
proof is very similar to that of Theorem 3.2, and hence we omit it for brevity.

Corollary 4.1. Fix s 2 (0, 1/2). Under H0 in (23)

�2 log⇤bntc(bnsc))
2

s
(W (t+ s) +W (t� s)� 2W (t))2 (27)

in D[s, 1 � s], where ) denotes the weak convergence and W (·) is a Wiener
process.

Corollary 4.1 provides the building block for the application of the SaRa algo-
rithm to our PA network setup here, which we now explain.

The SaRa algorithm proceeds by collecting the locations which locally maxi-
mize �2 log⇤k(hn). Along the lines of [14], we call ` a h-local maximizer if

�2 log⇤`(hn) � �2 log⇤k(hn), for all k 2 {`� h, . . . , `+ h}.

For simpilcity, we choose h = hn as a default, though more informed choices can
be made. Naturally, these maximums locally maximize the discrepancy charac-
terized by the likelihood ratio and provide the most evidence against the null hy-
pothesis. Once the scanning step is complete and we have identified the hn-local
maximizers, we compare the collection of hn-local maximums to the (1 � ↵)-th
quantile of the s-local maximimums of

X(t) :=
2

s
(W (t+ s) +W (t� s)� 2W (t))2 ,

the limiting process of �2 log⇤bntc(bnsc). A s-local maximizer is a continuous
time analog the hn-local maximizer; t is a s-local maximizer of X(t) if X(t) �
X(u) for all u 2 [t � s, t + s]. The quantiles of the s-local maximums of X(t)
are difficult to obtain analytically, but since X(t) is a transformation of Wiener
processes, they can be easily simulated.

In comparison to (20), the statistic (26) has computational advantages. As dis-
cussed previously, the maximum likelihood estimates in (20) and (26) in do not
have a closed-form and are solved by setting (12) equal to zero and employing
Newton’s Method. In particular, for (20), one must compute the likelihood ratio at
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every single edge m, which further involves computing the maximum likelihood
estimates �̂(0,m] and �̂(m,n]. Even with clever programming and techniques such as
warm starts, this is not easily computable for large networks. Although optimiza-
tion still needs to be performed at every time point m for (26), the window hn also
serves as a computational backstop for the procedure since optimization occurs
over 2hn edges rather than employing the entire edgelist. Though faster methods
are still to be desired if one were to analyze large networks with other changepoint
segmentation methods such as binary segmentation. We also point out that these
analyses give rise to multiple hypothesis tests, so one may consider control of the
false discovery rate or family wise error rate as in [14]. We will leave this point for
future research.

4.2 Score test

Another popular way of sequentially detecting multiple changepoints is via binary
segmentation [20]. Although there are many variants of binary segmentation, in-
cluding those of [11] and [22], we apply the routine version as presented in Algo-
rithm 4.2. In the algorithm, we let f(·) be a function that, from an edgelist, returns
TRUE if a changepoint is detected, and otherwise returns FALSE. Further, let g(·)
be a function that returns an estimated changepoint from an edgelist.

Algorithm 1 BinarySegmentation(E(n), f(·), g(·))
Input: edgelist E(n), f(·), g(·)
Output: set of estimated changepoint locations T̂

if f(E(n)) then

m g(E(n))
T̂  T̂ [m
BinarySegmentation(E(m), f(·), g(·))
BinarySegmentation(E(n) \ E(m), f(·), g(·))

end if

Binary segmentation is a particularly convenient technique as it conveniently
extends the single changepoint detection procedures to the multiple changepoint
setting. Though, for computationally intensive procedures, their repeated applica-
tion over multiple segments renders them infeasible for practical applications. This
is especially true for dynamic networks, as the number of edges in a typical network
can exceed the millions or even billions. As mentioned in Section 4.1, the likeli-
hood ratio procedures in Section 3.3 can unfortunately become computationally
onerous, which calls for the need of a quicker procedure to detect changepoints.

In order to assuage the computational bottleneck induced by the likelihood ra-
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tio methodology, we introduce a score-based statistic that drastically reduces com-
putational load in detecting changepoints. To introduce the statistic assume for a
moment that we are indeed under H0 in (23). Under H0, the best estimate of � is
�̂n = �̂(0,n], the MLE based on the entire network. By definition, u(0,n](�̂n) = 0.
However, if the whole data stream is governed by PA(�), then we might expect
that �̂n approximately solves u(0,m](�) = 0 for any m < n. On the other hand, if
there is a changepoint at m, u(0,m](�̂n) should be far from 0 since �̂n is computed
under a misspecified model. This leads us to propose the following statistic for
changepoint detection:

Sm := �u2(0,m](�̂n)

 
1

u0(0,m](�̂n)
+

1

u0(m,n](�̂n)

!
for m = bn�c, . . . , bn(1��)c.

(28)
Here, we need to ensure bn�c  m  bn(1 � �)c for � 2 (0, 1) in order to
guarantee that there is sufficient data so that the score function and observed infor-
mation are a good representatives of the PA process up to that point. The hessian in
(28) is used as a scaling factor to eliminate unknown parameters in the asymptotic
distribution of Sm. In theory, one could employ u0(0,n](�̂n) instead of u0(0,nt](�̂n)
for a better estimate of the asymptotic covariance of �̂n under the null hypothesis,
though we employ the latter to match the asymptotic distribution in Theorem 3.2.
Intuitively, the likelihood ratio (20) is likely the most powerful, and hence it may
be beneficial to imitate its behavior under the null hypothesis. Theorem 4.1 gives
the asymptotic distribution of the proposed statistic under the null hypothesis, with
proofs deferred to Appendix A.7. This gives rise to a hypothesis test of change-
point existence where the null hypothesis is rejected when supt2[�,1] Snt exceeds
the (1� ↵)-th quantile of a supt2[�,1]B

2(t)/t(1� t) distribution.

Theorem 4.1. Fix � 2 (0, 1/2). Then under H0 in (23)

sup
t2[�,1��]

Snt ) sup
t2[�,1��]

B2(t)

t(1� t)
, (29)

in R.

By using (28), the computational load is alleviated by requiring only one com-
putation of the MLE per segment. If (20) were applied, one would need to com-
pute on the order of n many MLE’s for the first segment. Further, since the
score function is additive, it requires only O(n) operations to compute Sm for
m = bn�c, . . . , n. Although we are unable to present a consistency result for the
score-based method, the computational benefits are obvious.
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� �0.5 0 1 2
Window 0.0457 0.0473 0.0556 0.0491

Score 0.0499 0.0558 0.0519 0.0519

Table 4: False positive rates for the window and score methods applied to 500
PA(�) networks with 50,000 edges and � = 0.1 and hn = 10,000.

4.3 Multiple changepoint simulation study

In this section we compare the empirical performance of the window and score
methods to simulated, multiple changepoint data. As in [20], it may be desirable
to control the family-wise error rate (FWER) or false discovery rate (FDR) via a
multiple testing procedure, though we present unadulterated results as the choice
of procedure can muddy comparisons. First, we evaluate the false positive rates for
the window and score methods when there is no changepoint. Since the window
method finds multiple local maxima within a data sequence, we define the positive
rate to be the proportion of hn-local maximums that reject the null hypothesis out
of total identified hn-local maximums. On the other hand, the positive rate for the
score test is the number of times the maximum Sm exceeds the (1�↵)-th quantile
of the null distribution in Theorem 4.1 out of the number of total segments tested.
Under the null, the positive rate for the score test will be close to the FWER due to
the sequential nature of binary segmentation. For the window method, however, the
FWER will be inflated compared to the positive rate under the null due to multiple
hypothesis tests being performed at once (one for each hn-local maxima).

To evaluate control on the false positive rate, we apply the window and score
methods to 500 simulated PA(�) networks of size 100,000 where � 2 {�0.5, 0, 1, 2}.
We let hn = 10,000 for the window statistic and � = 0.1 for the score statistic.
Here, hn and � are chosen so that the region [0.1, 0.9] is searched for a change-
point in both cases. Further, these settings are chosen to ensure that there are
enough edges to accurately estimate parameters of the PA processes under each
regime. The empirical false positive rate for each � value is reported in Table 4.
The false positive rates behave as expected, concentrating around ↵ = 0.05. The
study indicates that even in the multiple changepoint setting, the hypothesis testing
perspective still provides control on detecting the existence of a changepoint.

Next, we assess the ability for the window and score methods to detect multi-
ple changepoints and estimate their locations consistently. To do so, we apply the
methods to 500 simulated PA(0.2, 0.5; 1, 1.5, �3) networks of size 100,000. That
is, the network-generating process switches from PA(1) to PA(1.5) at t?1 = 0.2,
and then switches from PA(1.5) to PA(�3) at t?2 = 0.5. We allow �3 to vary from
1 to 1.4 by increments of 0.1. If �3 = 1, we are under an “epidemic alternative”;
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Method �3 # of changepoints Rand index
0 1 2 3 4

Window

1.0 0 12 458 29 1 0.963
1.1 0 56 414 29 1 0.934
1.2 3 191 282 24 0 0.851
1.3 1 352 141 6 0 0.757
1.4 5 425 67 3 0 0.713

Score

1.0 0 128 370 3 0 0.934
1.1 0 36 451 13 0 0.948
1.2 2 6 479 13 0 0.940
1.3 0 127 363 10 0 0.858
1.4 0 390 108 2 0 0.725

Table 5: Number of changepoints found and average rand index for the window
and score methods applied to 500 PA(0.2, 0.5; 1, 1.5, �3) networks with 100,000
edges and � = 0.1 and hn = 10,000.

the network generating process eventually returns to the state it was initialized
under. As in the previous simulation, we let hn = 10,000 and � = 0.1. The
estimated number of changepoints and average Rand index across the 500 simu-
lations are reported in Table 5. For �3 = 1, which is the largest change between
the PA processes at t? = 0.5, the window method exhibits the benefits of local
estimation of the changepoint. Since changepoint estimation relies on local infor-
mation, the initializing PA(1) process does not influence the estimation. The score
method performs worse in this situation since the null hypothesis estimate �̂n re-
flects that the network is generating by a PA(1) process for 70% of the network
evolution. However, as soon as �3 is slightly larger than 1, the score method out-
performs the window-based method. Once �3 becomes closer to 1.5 and the second
and third PA processes become more similar, both methods exhibit poorer perfor-
mance. Though, the score method more consistently detects that there are indeed
2 changepoints. Generally, the window method more accurately detects change-
points under an epidemic-like alternative, but the speed and accuracy of the score
method under other settings make it a desirable choice for multiple changepoint
detection.
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5 Data Example

We now demonstrate the applicability of our changepoint detection methods to real
world networks by applying our methods to the Twitter Higgs network, first ana-
lyzed in [9] (available on [19]). The Higgs boson particle, whose existence was
theorized in 1964 by Peter Higgs and others, bolstered a popular theory in particle
physics. On July 4th, 2012 at 8 AM GMT, scientists at CERN sent ripples through
the physics community with the announcement of the discovery of a particle with
properties agreeing with that of the Higgs boson particle. Before the official an-
nouncement, however, rumors of the discovery spread through Twitter. The Twitter
Higgs network tracks the activity of a subset of users discussing this discovery from
July 1st to July 7th, 2012. Here, we limit our analysis to just the retweets of these
users so that a directed edge (v, w) indicates that node v retweeted node w. This
network is temporal, and each edge is observed in the order of its creation with a
timestamp. Intuitively, one would expect that with the announcement of Higgs bo-
son discovery, the dynamics and short term attractiveness of users retweets would
shift dramatically.

Unfortunately, a retweet network is not a tree; users can retweet multiple times
during the network evolution. Hence, in order to better conform with model as-
sumptions, we remove users with out-degree larger than 1. Although this seems
like a drastic adjustment, 67.6% of users retweet only once throughout the network
evolution. Hence, we are still able to analyze the behavior of a typical user in
the network with this data cleaning step. This resulting network contains 198,437
users.

We apply both the score and window tests to the network to detect multiple
changepoints. For the score test we allow � = 0.1, and we set hn = b0.05nc =
9921 for the window method. The score method detects 5 changepoints, while the
window method detects 6. In order to correct for multiple testing, we employ a
Holm adjustment to the p-values for both procedures [17]. In this case, the Holm
correction has no effect on the number of estimated changepoints, indicating the
significance for the changepoints detected.

We then utilize maximum likelihood to fit preferential attachment models over
the constant segments of the network defined by the changepoints. The maxi-
mum likelihood estimates and Fisher information-based confidence intervals (cf.
[12, 25]) are given in Figures 2 and 3 for the score and window methods, respec-
tively. Throughout, the estimated changepoints are colored in red, with the official
announcement time colored in blue. Additionally, Figures 2 and 3 display the
moving proportion of nodes with degrees larger than 100 within a centered time
window of length 200. Note that the choice of the threshold (100, the empirical
70-percentile of the degree distribution) can be changed to any other upper quan-

24



Figure 2: Time of Higgs boson announcement (in blue) along with estimated
changepoints (in red) for the score method. The first panel displays a sliding win-
dow proportion of attached nodes with degree larger than 100 over a period of
length 200. The second panel displays offset parameter estimates and confidence
intervals over the constant regions computed via MLE.

tiles of the degree distribution. Essentially, if the proportion of selected nodes with
large degrees (> 100) increases within a time period, then we may expect the de-
gree distribution to have heavier tails, and the estimated offset parameter � over
that region should decrease. As a result, the attachment mechanism has become
more preferential and thus high degree nodes are more attractive.

Both methods capture the varying dynamics in users retweet behavior. The
nearest changepoint to the official announcement detected by the score method
was approximately two hours before the announcement at 05:49:55 GMT, while
the window method produced the nearest estimated changepoint at 09:08:20 GMT
on 07/04/2012. We further remark that in Figures 2 and 3, the x-axis corresponds
to the number of steps in the network evolution, not the real time scale. Due to
the large number of retweets produced around the announcement of the news, the
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Figure 3: Time of Higgs boson announcement (in blue) along with estimated
changepoints (in red) for the window method. The first panel displays a sliding
window proportion of attached nodes with degree larger than 100 over a period of
length 200. The second panel displays offset parameter estimates and confidence
intervals over the constant regions computed via MLE.
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first two changepoints detected by the two methods are in fact all not very far away
from the official announcement in real time.

Across both methods, the proportion of attached nodes with degree greater
than 100 remains relatively constant between the estimated changepoints, indicat-
ing that the attachment process has stabilized over these regions. Both methods
indicate that the offset parameter � decreases near the official announcement of the
discovery, while eventually increasing towards the end of the observed network
evolution. Such trend suggests that around the announcement the attachment pro-
cess becomes more preferential, so that large degree nodes are more attractive over
that time period. This is reasonable since initial tweets surrounding a news break-
ing event are likely to be popular and quickly gain attention. In later stages of the
news cycle, however, the attachment process becomes more uniform, indicating
that attention has diffused throughout the network after a short period of time.

Although the window method is more sensitive, some estimated changepoint
locations are shared across the two methods. Figure 4 reports the test statistics
for the first segmentation step of the score method, as well as the likelihood ratio
statistics for the window method. The lack of spikes in the score statistic between
July 5th and 6th conveys the necessity of binary segmentation; without additional
segmentation, the two additional changepoints in that time period would likely
not have been detected. Note that for the likelihood ratio statistics, there is a later
spike that remains undetected, but is classified as a changepoint via the score statis-
tic. This spike was not classified as an hn-local maximizer due to its proximity to
another maximizer, and hence is undetected by the window method. The window
hn can be further reduced to estimate additional changepoints in the network evo-
lution, though we choose not to do so in order to retain accurate estimation of the
offset parameters.

Overall, our numerical analyses show that the preferential attachment model
with changepoints, combined with our likelihood-based methodology, can be used
to successfully track the dynamics of an evolving network.

6 Conclusion

In this paper, we introduce likelihood-based methods for changepoint detection in
preferential attachment models. For single changepoint detection, we produced
a theoretically justified likelihood ratio test that empirically performs better than
a non-parametric estimator under correctly and miss-specified models. Further,
we extend the likelihood based methodology to the multiple changepoint setting
where both window-based and fast binary segmentation methods can be applied to
large networks. The presented methods offer solutions to the statistical detection
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Figure 4: The statistics Sk and ⇤k(hn) plotted over the network evolution along
with the estimated changepoints for each method (in red). The announcement of
the Higgs boson discovery is marked in blue.
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of changepoints via a hypothesis testing perspective not previously put forward in
the network literature. When applied to a Twitter retweet network, the multiple
changepoint methods offer a statistically sound analysis of the varying dynamics
in the presence of shocks to the network evolution.

With this work, there are multiple avenues of research yet to be explored. First,
one can consider the extension of these methods to more realistic network models
such as the one in [25]. We believe the methods presented here can be extended to
the case where users in a network can make multiple connections. Further, one can
consider the development of likelihood-based methodology for changepoint detec-
tion in more general preferential attachment models such as sublinear preferential
attachment (as in [2, 13]). Finally, one can consider more interesting definitions of
a changepoint in the network setting. Here, we considered a classical definition of
changepoint where the distribution of the entire network changes, but it is also pos-
sible to assume changes in a subset of the network or some other types of changes
in the network dynamics.
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A Proofs

A.1 Proof of Theorem 3.2

The proof of Theorem 3.2 requires the weak convergence of
p
n(�̂(ns,nt]��), which

is given in Lemma A.1. The weak convergence of
p
n(�̂(ns,nt]��) further relies on

the weak convergence of the score function evaluated at the truth, n�1u(0,nt](�),
to a Weiner process. To prove this, we rely on the fact that the summands of
n�1u(0,nt](�) are a martingale difference array, and hence we can apply functional
martingale central limit theorems (FMCLT). We now present Lemma A.1.
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Lemma A.1. Fix s 2 [0, 1] and ⌧ 2 (0, 1 � s). Assume that {G(k)}nk=2 evolves
according to the PA(�) rule. Then as n!1

(t� s)I(�; �) ·
p
n(�̂(ns,nt] � �))W (tI(�; �))�W (sI(�; �))

in D[s+ ⌧, 1] where W (·) is a Wiener process, and

I(�; �) =
1X

i=1

p>i(�)

(i+ �)2
� 1

(2 + �)2
,

for � 2 [⌘,K].

We defer the proof of Lemma A.1 to Section A.2, and proceed with the proof
of Theorem 3.2.

Proof. From (20), we see that

�2 log⇤nt =
⇣
2`(0,nt](�̂(0,nt])� 2`(0,nt](�̂n)

⌘
+
⇣
2`(nt,n](�̂(nt,n])� 2`(nt,n](�̂n)

⌘

:= I(0,nt] + I(nt,n].

We first focus on I(0,nt]. Applying Taylor’s expansion to `(0,nt](·), we have that
there exists �?n between �̂(0,nt] and �̂n such that

`(0,nt](�̂n)� `(0,nt](�̂(0,nt]) = u(0,nt](�̂(0,nt])
⇣
�̂n � �̂(0,nt]

⌘
+

u0(0,nt](�
?
n)

2

⇣
�̂n � �̂(0,nt]

⌘2

=
u0(0,nt](�

?
n)

2

⇣
�̂n � �̂(0,nt]

⌘2
.

Therefore,

I(0,nt] = �u0(0,nt](�
?
n)
⇣
�̂n � �̂(0,nt]

⌘2
= � 1

n
u0(0,nt](�

?
n)
⇣p

n
⇣
�̂n � �̂(0,nt]

⌘⌘2
.

Also, since

p
n
⇣
�̂n � �̂(0,nt]

⌘
=
p
n
⇣
�̂n � �

⌘
�
p
n
⇣
�̂(0,nt] � �

⌘
, (30)

and by Lemma A.1 as well as the continuity of the functional F : x 2 D[�, 1] 7!
x(1)� x, we have

tI(�; �) ·
p
n
⇣
�̂n � �̂(0,nt]

⌘
) tW (I(�; �))�W (tI(�; �)) in D[�, 1]. (31)
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Similar arguments as in (ii) and (iii) in the proof of Lemma A.1 give that

tI(�; �) · I(0,nt] ) (W (tI(�; �))� tW (I(�; �)))2 , in D[�, 1].

Defining the Brownian bridge B(t) := I�1/2(�; �) (W (tI(�; �))� tW (I(�; �))),
we thus have

I(0,nt] )
B2(t)

t
, in D[�, 1].

Nearly the same proof methodology applies for I(nt,n], thus giving that

I(nt,n] )
B2(t)

1� t
in D[0, 1� �]. (32)

Applying the continuity of the functional G : x(t) 2 D[�, 1��] 7! x(t)+x(1�t)
we thus have that I(0,nt] + I(nt,n] converges weakly to the sum of their respective
limits, which can be rewritten as

B2(t)

t
+

B2(t)

1� t
=

B2(t)

t(1� t)
,

Thus

�2 log⇤nt )
B2(t)

t(1� t)
, in D[�, 1� �]. (33)

Finally, using continuity of the functional

G : x 2 D[�, 1� �] 7! sup
t2[�,1��]

x(t),

we have that

sup
t2[�,1��]

�2 log⇤nt ) sup
t2[�,1��]

B2(t)

t(1� t)
in R.

A.2 Proof of Lemma A.1

Proof. In the spirit of [25], we use Taylor expansion to rewrite the score at �̂(ns,nt]
around �. Then

0 = u(ns,nt](�) + u0(ns,nt](�
?
n)(�̂(ns,nt] � �), (34)
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where �?n = � + ⇠(�̂(ns,nt] � �) for some ⇠ 2 [0, 1]. The intermediate value �?n
depends on t, though we drop this dependence in notation. Some algebra then
gives

p
n(�̂(ns,nt] � �) = �

 
1

1
nu

0
(ns,nt](�

?
n)

!
n�1/2u(ns,nt](�). (35)

The following results are used to prove Lemma A.1:

(i) n�1/2u(0,nt](�))W (tI(�; �)) in D[0, 1],

(ii) sup
t2[0,1]

sup
�2[⌘,K]

����n�1u0(0,nt](�)� tI(�; �)
��� p�! 0,

(iii) sup
t2[s+⌧,1]

����̂(ns,nt] � �
��� p�! 0.

where W (·) is a Wiener process on [0, 1]. The use of ⌧ in (iii) ensures that t is not
chosen to be exactly s, and retains compactness of the index set. We prove these
results in Lemmas A.2, A.3 and A.4, respectively. Lemma A.2 combined with the
continuity of the functional F : x 2 D[s+ ⌧, 1] 7! x� x(s) gives that

n�1/2u(ns,nt](�) = n�1/2u(0,nt](�)�n�1/2u(0,ns](�))W (tI(�; �))�W (sI(�; �)),
(36)

in D[s+ ⌧, 1]. Lemma A.3 gives that

sup
t2[s+⌧,1]

sup
�2[⌘,K]

����n�1u0(ns,nt](�)� (t� s)I(�; �)
���

= sup
t2[s+⌧,1]

sup
�2[⌘,K]

����n�1u0(0,nt](�) + n�1u0(0,ns](�)� tI(�; �) + sI(�; �)
���

 sup
t2[s+⌧,1]

sup
�2[⌘,K]

����n�1u0(0,nt](�)� tI(�; �)
���+ sup

�2[⌘,K]

���n�1u0(0,ns](�) + sI(�; �)
��� p�! 0.

We now establish the convergence �n�1u0(ns,nt](�
?
n)

p�! (t � s)I(�; �) in D[s +

⌧, 1]. See that

sup
t2[s+⌧,1]

����n�1u0(ns,nt](�
?
n)� (t� s)I(�; �)

���

 sup
t2[s+⌧,1]

����n�1u0(ns,nt](�
?
n)� (t� s)I(�?n)

���+ sup
t2[s+⌧,1]

|(t� s)I(�?n)� (t� s)I(�; �)|

 sup
t2[s+⌧,1]

sup
�2[⌘,K]

����n�1u0(ns,nt](�)� (t� s)I(�; �)
���+ (1� s) sup

t2[s+⌧,1]
|I(�?n)� I(�; �)| .

(37)
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The first term converges in probability to 0. Since I(�; �) is (uniformly) continuous
on [⌘,K], it suffices to show that �?n

p�! � in D[s+⌧, 1]. Since |�?n � �|  |�̂(ns,nt]�
�|, we can instead show that supt2[s+⌧,1] |�̂(ns,nt] � �| p�! 0. This is proven in
Lemma A.4.

Thus, supt2[s+⌧,1] |I(�?n)� I(�; �)| p�! 0. Hence, by (37)

�n�1u0(ns,nt](�
?
n)

p�! (t� s)I(�; �) in D[s+ ⌧, 1]. (38)

Combining the convergences (36) and (38), we have that jointly in D[s + ⌧, 1] ⇥
D[s+ ⌧, 1]
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?
n)

!
)
✓
W (tI(�; �))�W (sI(�; �))

(t� s)I(�; �)

◆
.

Finally, by one last application of the continuous mapping theorem

(t� s)I(�; �) ·
p
n(�̂(ns,nt] � �) = �(t� s)I(�; �)

1
nu

0
(ns,nt](�

?
n)

n�1/2u(ns,nt](�)

)W (tI(�; �))�W (sI(�; �)).

A.3 Supporting Lemmas for the Proof of Lemma A.1

Lemma A.2. Suppose the graph sequence {G(k)}nk=2 evolves according to PA(�).
Then as n!1,

n�1/2u(0,nt](�))W (tI(�; �)) ,

in D[0, 1].

Proof. We look to apply Theorem 2.5 in [10], which we record as Theorem A.1
for convenience. Towards this end, define

⌘n,k =
1p
n

✓
1

Dvk(k � 1) + �
� 1

2 + �

◆
, (39)

and let Fn,k = �(G(0), G(1), . . . , G(k)). ⌘n,k is a martingale difference array
since

E [⌘n,k | Fn,k] =
1p
n

 
k�1X
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Dw(k � 1) + �
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!
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=
1p
n

 
k�1X
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1

(k � 1)(2 + �)
� 1

2 + �

!
= 0.

To show convergence, we confirm (a) of Theorem A.1. Note that
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The right hand term is 0 by a similar computation as before. Continuing with the
remaining term, we have
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Since Ni(n)/n
a.s.��! pi(�) by (2), Cesàro convergence of random varibles gives

that 1
nt

Pbntc
k=1

P1
i=1

Ni(k�1)/(k�1)
i+�

a.s.��!
P1

i=1
pi(�)
i+� = 1

2+�

P1
i=1

p>i(�)
(i+�)2 . Thus

bntcX

k=3

E
⇥
⌘2n,k

�� Fn,k

⇤ p�! t

 1X

i=1

p>i(�)

(i+ �)2
� 1

(2 + �)2

!
= tI(�; �). (40)

Next we confirm (b) of Theorem A.1. Fix ✏ > 0 and note that
����

1

Dvk(k � 1) + �
� 1

2 + �

���� 
����

1

Dvk(k � 1) + �

����+
����

1

2 + �

���� 
1

1 + �
+

1

2 + �
:= m(�).

(41)
Hence, |⌘n,k|  1p

n
m(�). Thus

bntcX

k=3

E
h
⌘2n,k1{|⌘n,k|>✏}

�� Fn,k

i
 m2(�)

1

n

bntcX

k=3

P
�
|⌘n,k| > ✏

�� Fn,k

�
.

Since P
�
|⌘n,k| > ✏

�� Fn,k

� a.s.��! 0, Cesàro convergence thus gives that the bound

tends to 0 almost surely and
Pbntc

k=3 E
h
⌘2n,k1{|⌘n,k|>✏}

�� Fn,k

i
a.s.��! 0. Since all

conditions are satisfied, Theorem A.1 gives

n�1/2u(0,nt](�) =
1p
n

bntcX

k=3

✓
1

Dvk(k � 1) + �
� 1

2 + �

◆
)W (tI(�; �)) in D[0, 1].

(42)

Theorem A.1. Suppose {Xn,i,Fn,i} is a martingale difference array where Fn,i

is sequence of sigma algebras that increase with n. If

(a) for all t 2 [0, 1],
Pbntc

i=1 E [Xn,i | Fn,i]
p�! '(t) where ' is continuous and

(b) for all ✏ > 0,
Pbntc

i=1 E
h
X2

n,i1{|Xn,i|>✏} | Fn,i

i
p�! 0

then
Pbntc

i=1 Xn,i )W ('(t)) in D[0, 1], where W (·) is a Wiener process.

Lemma A.3. Suppose the graph sequence {G(k)}nk=2 evolves according to PA(�).
Then as n!1,

sup
t2[0,1]

sup
�2[⌘,K]

��n�1u(0,nt](�)� tU(�; �)
�� p�! 0,
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and
sup
t2[0,1]

sup
�2[⌘,K]

����n�1u0(0,nt](�)� tI(�; �)
��� p�! 0,

where

U(�; �) =
1X

i=1

p>i(�)

i+ �
� 1

2 + �
.

Proof. We only prove the second result, as the proof for the first is nearly identical.
The proof follows those of [12] and [25], with minor adjustments for the supremum
norm in t. First, see that by using a similar strategy as in Lemma A.2

� 1

n
u0(0,nt](�) =

1

n

bntcX

k=3

1

(Dvk(k � 1) + �)2
� bntc � 2

n(2 + �)2

=
1

n

bntcX

k=3

1X

i=1

1{Dvk (k�1)=i}

(i+ �)2
� bntc � 2

n(2 + �)2

=
1X

i=1

N>i(bntc)/n
(i+ �)2

� 1

n

1X

i=1

21{i=1}
(i+ �)2

� bntc � 2

n(2 + �)2

=
1X

i=1

N>i(bntc)/n
(i+ �)2

� 1

n

2

(1 + �)2
� bntc � 2

n(2 + �)2
.

Further,

sup
t2[0,1]

sup
�2[⌘,K]

����n�1u0(0,nt](�)� tI(�; �)
���

 sup
t2[0,1]

sup
�2[⌘,K]

�����

1X

i=1

N>i(bntc)/n
(i+ �)2

�
1X

i=1

tp>i(�)

(i+ �)2

�����+
1

n

2

(1 + ⌘)2

+ sup
t2[0,1]

sup
�2[⌘,K]

�����
bntc � 2

n(2 + �)2
+

1

(2 + �)2

���� .

Clearly, the second term converges to 0. The third term also converges to 0 since

sup
t2[0,1]

sup
�2[⌘,K]

�����
bntc � 2

n(2 + �)2
+

1

(2 + �)2

���� 
1

(2 + ⌘)2
sup
t2[0,1]

�����
bntc � 2

n
+ 1

����! 0.

We now turn our attention to the first term. From (3), we have that N>i(bntc)/n
p�!

tp>i(�) for any t 2 [0, 1]. Since N>i(bntc)/n is a monotone and tp>i(�) is con-
tinuous as functions of t, this convergence is uniform, i.e.

sup
t2[0,1]

|N>i(bntc)/n� tp>i(�)|
p�! 0. (43)
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Also note that for every i � 1

iN>i(bntc) = i
1X

j=i+1

Nj(bntc) 
1X

j=1

jNj(bntc) = 2bntc,

since summing over the degrees returns twice the number of edges. Hence

N>i(bntc)/nt  N>i(bntc)/bntc  2/i.

We thus have for any M 2 N

sup
t2[0,1]

sup
�2[⌘,K]

�����

1X

i=1

N>i(bntc)/n
(i+ �)2

�
1X

i=1

tp>i(�)

(i+ �)2

�����


1X

i=1

supt2[0,1] |N>i(bntc)/n� tp>i(�)|
(i+ ⌘)2


MX

i=1

supt2[0,1] |N>i(bntc)/n� tp>i(�)|
(i+ ⌘)2

+
1X

i=M+1

2/i

(i+ ⌘)2
+

1X

i=M+1

p>i(�)

(i+ ⌘)2
.

By choosing large enough M , the last two terms can be made arbitrarily small. By
(43), the first term converges in probability to 0. Putting these results together, we
have

sup
t2[0,1]

sup
�2[⌘,K]

����n�1u0(0,nt](�)� tI(�; �)
��� p�! 0.

Lemma A.4. Fix s 2 [0, 1] and ⌧ 2 (0, 1 � s). Assume that {G(k)}nk=2 evolves
according to the PA(�) rule. Then as n!1

sup
t2[s+⌧,1]

����̂(ns,nt] � �
��� p�! 0.

Proof. This proof closely follows that of Theorem 3.2 in [25]. From Lemma 4 of
[12], U(�; �) has a unique zero at � = �. Furthermore, it is positive for � < � and
negative for � > �.

Fix ✏ > 0. By continuity of U(�; �), there exits ⇠ > 0 such that U(�; �) > ✏/⌧
on [⌘, � � ⇠] and U(�; �) < �✏/⌧ on [� + ⇠,K]. Hence

inf
�2[⌘,��⇠]

inf
t2[s+⌧,1]

(t� s)U(�; �) > ✏ and sup
�2[�+⇠,K]

sup
t2[s+⌧,1]

(t� s)U(�; �) < �✏.
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Further, for all � 2 [⌘, � � ⇠] and t 2 [s+ ⌧, 1],

n�1u(ns,nt](�) � (t� s)U(�; �)� sup
v2[s+⌧,1]

sup
�2[⌘,K]

��n�1u(ns,nv](�)� (v � s)U(�; �)
��

> ✏� sup
v2[s+⌧,1]

sup
�2[⌘,K]

��n�1u(ns,nv](�)� (v � s)U(�; �)
�� .

Similarly, for all � 2 [� + ⇠,K] and t 2 [s+ ⌧, 1],

n�1u(ns,nt](�)  (t� s)U(�; �) + sup
v2[s+⌧,1]

sup
�2[⌘,K]

��n�1u(ns,nv](�)� (v � s)U(�; �)
��

< �✏+ sup
v2[s+⌧,1]

sup
�2[⌘,K]

��n�1u(ns,nv](�)� (v � s)U(�; �)
�� .

By Lemma A.3, we see that

P
 

sup
v2[s+⌧,1]

sup
�2[⌘,K]

��n�1u(ns,nv](�)� (v � s)U(�; �)
�� < ✏/2

!
! 1 as n!1.

Hence with probability tending towards 1 as n!1:

inf
t2[s+⌧,1]

inf
�2[⌘,��⇠]

n�1u(ns,nt](�) � ✏/2,

sup
t2[s+⌧,1]

sup
�2[�+⇠,K]

n�1u(ns,nt](�)  �✏/2.

Since u(ns,nt](�̂(ns,nt]) = 0 8t 2 [s+ ⌧, 1], this implies

P
 

sup
t2[s+⌧,1]

����̂(ns,nt] � �
��� < ⇠

!
! 1.

A.4 Proof of Theorem 3.3

The proof is very similar to that of Lemma A.4. We replace the use of Lemma 4
in [12] with Lemma A.6, which ensures that U?

t (�) � U?
s (�) has a unique zero at

�2. Additionally, we replace Lemma A.3 with Lemma A.5 to ensure the uniform
convergence of n�1u(ns,nt](�) to U?

t (�) � U?
s (�) on [⌘,K]. The result follows

accordingly. Lemmas A.5 and A.6 are proven below.

Lemma A.5. Suppose the graph sequence {G(k)}nk=2 evolves according to PA(t?; �1, �2).
Then as n!1,

sup
t2[t?,1]

sup
�2[⌘,K]

��n�1u(0,nt](�)� U?
t (�)

�� p�! 0,
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and

sup
t2[t?,1]

sup
�2[⌘,K]

����n�1u0(0,nt](�)� I?t (�)
��� p�! 0,

where

U?
t (�) ⌘t

 1X

i=1

p?>i(t; �1, �2)

i+ �
� 1

2 + �

!
,

and

I?t (�) ⌘t
 1X

i=1

p?>i(t; �1, �2)

(i+ �)2
� 1

(2 + �)2

!
.

Proof. Repeat the proof of Lemma A.3, replacing the supremum over [0, t] with a
supremum over [t?, t], until (43) where we replace the convergence with Proposi-
tion 4.17 of [4] which states that, uniformly on [t?, 1], N>i(bntc)/n converges in
probability to tp?>i(t; �1, �2). The rest of the proof follows exactly.

The next lemma demonstrates that for t > s � t?, the limit of n�1u(ns,nt](�),
U?
t (�) � U?

s (�) has a unique zero at �2. This is a necessary ingredient in order to
prove consistency of the MLE in the post-changepoint regime.

Lemma A.6. Suppose t?  s < t  1. Then U?
t (�)� U?

s (�) has a unique zero at
� = �2.

Proof. Note that

U?
t (�)� U?

s (�) =
1X

i=1

tp?>i(t; �1, �2)� sp?>i(s; �1, �2)

i+ �
� t� s

2 + �
,

which, using Lemma 3.2, we may write as

U?
t (�)� U?

s (�) =

Z t

s

 1X

i=1

p?>i(u; �1, �2)(i+ �2)

(i+ �)(2 + �2)
� 1

2 + �

!
du

=

Z t

s

 1X

i=1

p?i (u; �1, �2)(i+ �2)

(i+ �)(2 + �2)
�

1X

i=1

p?i (u; �1, �2)(i+ �)

(2 + �)(i+ �)

!
du

=

Z t

s

 1X

i=1

p?i (u; �1, �2)

i+ �

✓
i+ �2
2 + �2

� i+ �

2 + �

◆!
du
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=
�2 � �

(2 + �2)(2 + �)

Z t

s

1X

i=1

p?i (u; �1, �2)

i+ �
(2� i)du

⌘ �2 � �

(2 + �2)(2 + �)

Z t

s
J(u,�)du.

We prove that the integrand J(u,�) is strictly positive. See that

1X

i=1

p?i (u; �1, �2)

i+ �
(2� i) =

p?1(u; �1, �2)

1 + �
�

1X

i=3

p?i (u; �1, �2)

i+ �
(i� 2)

>
p?1(u; �1, �2)

1 + �
� 1

1 + �

1X

i=3

p?i (u; �1, �2)(i� 2)

=
1

1 + �

1X

i=1

p?i (u; �1, �2)(2� i)

=
2 + �2
1 + �

� 1

1 + �

1X

i=1

(i+ �2)p
?
i (u; �1, �2).

From Lemma 3.1, we see that
1X

i=1

(i+ �2)p
?
i (u; �1, �2) =(1� (t?/u))

1X

i=1

(i+ �2)P
⇣
⇠�2(T̃ (u)) = i

⌘

+ (t?/u)
1X

i=1

(i+ �2)P
⇣
⇠
⇠�1 (T )
�2

(⌧?(u)) = i
⌘

=(1� (t?/u))E
h
⇠�2(T̃ (u)) + �2

i

+ (t?/u)E
h
⇠
⇠�1 (T )
�2

(⌧?(u)) + �2
i
.

Using the fact that ⇠�2(t) � 1 has a negative binomial distribution with number of
successes 1+ �2 and probability of success e�t, we may additionally compute that

E
h
⇠�2(T̃ (u)) + �2

i
=E

h
E
h
⇠�2(T̃ (u)) + �2 | T̃ (u)

ii

=E
h
(1 + �2)e

T̃ (u)
i
.

A straight-forward calculation shows that

E
h
eT̃ (u)

i
=

2 + �2
1 + �2

1� (t?/u)
1+�2
2+�2

1� t?/u
,
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so that in totality we may write

E
h
⇠�2(T̃ (u)) + �2

i
=(2 + �2)

1� (t?/u)
1+�2
2+�2

1� t?/u
. (44)

Similarly, we may condition on ⇠�1(T ) to write

E
h
⇠
⇠�1 (T )
�2

(⌧?(u)) + �2
i
=E

h
E
h
⇠
⇠�1 (T )
�2

(⌧?(u)) + �2 | ⇠�1(T )
ii

=E
h
(u/t?)

1
2+�2 (⇠�1(T ) + �2)

i
.

Recalling (8), we have that

E [⇠�1(T ) + �1] =(2 + �1)
�(3 + 2�1)

�(1 + �1)

1X

i=1

(i+ �1)
�(i+ �1)

�(i+ 3 + 2�1)

=(2 + �1)
�(3 + 2�1)

�(1 + �1)

1X

i=1

�(i+ 1 + �1)

�(i+ 3 + 2�1)

=(2 + �1)
�(3 + 2�1)

�(1 + �1)

1X

i=1

1

1 + �1

✓
�(i+ 1 + �1)

�(i+ 2 + 2�1)
� �(i+ 2 + �1)

�(i+ 3 + 2�1)

◆

=(2 + �1)
�(3 + 2�1)

�(1 + �1)

1

1 + �1

�(2 + �1)

�(3 + 2�1)

=2 + �1,

so that E[⇠�1(T ) + �2] = 2 + �2. Thus, we have calculated that

E
h
⇠
⇠�1 (T )
�2

(⌧?(u)) + �2
i
= (u/t?)

1
2+�2 (2 + �2). (45)

Using (44) and (45), we may write
1X

i=1

(i+ �2)p
?
i (u; �1, �2) =(1� (t?/u))E

h
⇠�2(T̃ (u)) + �2

i

+ (t?/u)E
h
⇠
⇠�1 (T )
�2

(⌧?(u)) + �2
i

=(2 + �2)(1� (t?/u)
1+�2
2+�2 ) + (2 + �2)(t

?/u)
1+�2
2+�2

=2 + �2.

Returing to our original goal, we have shown that

J(u,�) =
1X

i=1

p?i (u; �1, �2)

i+ �
(2� i)

43



>
2 + �2
1 + �

� 1

1 + �

1X

i=1

(i+ �2)p
?
i (u; �1, �2)

=
2 + �2
1 + �

� 2 + �2
1 + �

=0.

In summary, we have written

U?
t (�)� U?

s (�) =
�2 � �

(2 + �2)(2 + �)

Z t

s
J(u,�)du,

where J(u,�) > 0. Thus, for t > s, U?
t (�)�U?

s (�) is strictly positive for � < �2,
strictly negative for � > �2 and exactly zero when � = �2. Hence �2 is the unique
zero of U?

t (�)� U?
s (�).

A.5 Proof of Theorem 3.4

Proof. The proof is very similar to that of Lemma A.1. Recall that a Taylor expan-
sion gives that

p
n(�̂(ns,nt] � �2) = �

 
1

1
nu

0
(ns,nt](�

?
n)

!
n�1/2u(ns,nt](�2),

where �?n lies between �̂(ns,nt] and �2. In order to prove 3.4, it suffices to prove

(i) n�1/2u(ns,nt](�2))W (I?t (�2)� I?s (�2)) in D[0, 1],

(ii) sup
t2[t?,1]

sup
�2[⌘,K]

����n�1u0(ns,nt](�)� (I?t (�)� I?s (�))
��� p�! 0,

(iii) sup
t2[s+⌧,1]

����̂(ns,nt] � �2
��� p�! 0.

Statements (ii) and (iii) are proven in Lemma A.5 and Theorem 3.3, respectively.
Hence, it suffices to prove (i). As in Lemma A.2, we aim to apply Theorem A.1 to
the martingale differences

⌘n,k =
1p
n

✓
1

Dvk(k � 1) + �2
� 1

2 + �2

◆
,

for k > bnsc. In order to prove that condition (a) of Theorem A.1 is satisfied,
recall as in the proof of Lemma A.2 that we may write

bntcX

k=bnsc+1

E
⇥
⌘2n,k | Fn,k

⇤
=

1

2 + �2

1

n

bntcX

k=bnsc+1

1X

i=1

Ni(k � 1)/(k � 1)

i+ �2
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� bntc � bnsc
n

1

(2 + �2)2
.

Note that under the changepoint model, Ni(bntc)/nt
p�! p?i (t; �1, �2), uniformly in

t, as k !1 by Theorem 3.1. Hence we may conclude that

1

n

bntcX

k=bnsc+1

Ni(k � 1)

k � 1
p�!
Z t

s
p?i (u; �1, �2)du,

where Lemma 3.2 gives that
Z t

s
p?i (u; �1, �2)du =

2 + �2
i+ �2

(tp?>i(t; �1, �2)� sp?>i(s; �1, �2)) .

Hence
bntcX

k=bnsc+1

E
⇥
⌘2n,k | Fn,k

⇤ p�!
1X

i=1

tp?>i(t; �1, �2)� sp?>i(s; �1, �2)

(i+ �2)2
� t� s

(2 + �2)2

= I?t (�2)� I?s (�2).

Thus condition (a) of Theorem A.1 is proved. Condition (b) of Theorem A.1 is
proved just as in Theorem A.2. Hence, (i) is proved and asymptotic normality of
the MLE is achieved.

We now prove the variance bound. See that by using Lemma 3.2

I?t (�2)� I?s (�2) =
1X

i=1

tp?>i(t; �1, �2)� sp?>i(s; �1, �2)

(i+ �2)2
� t� s

(2 + �2)2

=
1

2 + �2

Z t

s

 1X

i=1

p?i (u; �1, �2)

i+ �2
� 1

2 + �2

!
du.

Note that p?i (u; �2, �2) = pi(�2). This can be easily seen with the identity

P
⇣
⇠j+1
� (t) > i

⌘
= P

⇣
⇠j�(t) > i

⌘
+

i+ �

j + �
P
⇣
⇠j�(t) = i

⌘
, (46)

for i > j � 1 and t � 0. Equation (46) is easily obtained through an integration
by parts. With (46) in hand, see that

p?i (u; �2, �2) =pi(�2)P
�
⇠32�2(⌧

?(u)) > i+ 2
�

+ (t?/u)
iX

j=1

pj(�2)P
⇣
⇠j�2(⌧

?(u)) = i
⌘
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=pi(�2)P
�
⇠32�2(⌧

?(u)) > i+ 2
�

+ pi(�2)
iX

j=1

i+ 2 + 2�2
j + 2 + 2�2

P
⇣
⇠j+2
2�2

(⌧?(u)) = i+ 2
⌘
,

and using (46)

=pi(�2)P
�
⇠32�2(⌧

?(u)) > i+ 2
�

+ pi(�2)
iX

j=1

⇣
P
⇣
⇠j+3
2�2

(⌧?(u)) > i+ 2
⌘
� P

⇣
⇠j+2
2�2

(⌧?(u)) > i+ 2
⌘⌘

=pi(�2)P
�
⇠32�2(⌧

?(u)) > i+ 2
�

+ pi(�2)
�
1� P

�
⇠32�2(⌧

?(u)) > i+ 2
��

=pi(�2).

Hence, if �1 = �2, I?t (�2) � I?s (�2) = (t � s)I(�2; �2). Further, by interchanging
sums we may rewrite

1X

i=1

p?i (u; �1, �2)

i+ �2
=

1X

i=1

pi(�2)P
�
⇠32�2 (⌧

?(u)) > i+ 2
�

i+ �2

+ (t?/u)
1X

i=1

Pi
j=1 pj(�1)P

⇣
⇠j�2(⌧

?(u)) = i
⌘

i+ �2

=
1X

i=1

pi(�2)P
�
⇠32�2 (⌧

?(u)) > i+ 2
�

i+ �2

+ (t?/u)
1X

j=1

pj(�1)
1X

i=j

P
⇣
⇠j�2(⌧

?(u)) = i
⌘

i+ �2

⌘
1X

i=1

pi(�2)P
�
⇠32�2 (⌧

?(u)) > i+ 2
�

i+ �2
+ (t?/u)

1X

j=1

pj(�1)wj .

We thus aim to show that if �1 < �2 then
P1

j=1 pj(�1)wj >
P1

j=1 pj(�2)wj and
thus I?t (�2) � I?s (�2) > (t � s)I(�2; �2). If �1 > �2, we will also show that the
inequality is reversed. We rewrite

1X

j=1

pj(�1)wj =p1(�1)w1 +
1X

j=2

pj(�1)wj
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=

0

@1�
1X

j=2

pj(�1)

1

Aw1 +
1X

j=2

pj(�1)wj

=w1 +
1X

j=2

pj(�1)(wj � w1)

=w1 +
1X

j=2

pj(�1)
j�1X

m=1

(wm+1 � wm)

=w1 +
1X

m=1

0

@
1X

j=m+1

pj(�1)

1

A (wm+1 � wm)

=w1 +
1X

m=1

p>m(�1)(wm+1 � wm)

=w1 �
1X

m=1

p>m(�1)(wm � wm+1).

We thus aim to prove that if �1 < �2, then
P1

m=2 p>m(�1)(wm � wm+1) <P1
m=2 p>m(�2)(wm�wm+1). If �1 > �2, we also aim to prove that the inequality

is reversed. In order to do so, we aim to apply Lemma 3 of [12], which requires
that {wm�wm+1}1m=1 is a strictly decreasing, non-negative sequence. In order to
prove that {wm � wm+1}1m=1 is non-negative, note that {wj}1j=1 is a decreasing
sequence since ⇠j+1

�2
(⌧?(u)) stochastically dominates ⇠j�2(⌧

?(u)) and thus

wj = E
"

1

⇠j�2(⌧
?(u)) + �2

#
� E

"
1

⇠j+1
�2

(⌧?(u)) + �2

#
= wj+1.

We next derive the following relationship for the sequence {wj}1j=1:

(t?/u)
1

2+�2 wj +
⇣
1� (t?/u)

1
2+�2

⌘
wj+1 =

(t?/u)
1

2+�2

j + �2
. (47)

See that

wj+1 =
1X

i=j+1

P
⇣
⇠j+1
�2

(⌧?(u)) = i
⌘

i+ �2

=
1X

i=j+1

1

i+ �2

�(i+ �2)

�(i� j)�(j + 1 + �2)

✓
t?

u

◆ j+1+�2
2+�2

 
1�

✓
t?

u

◆ 1
2+�2

!i�j�1
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=
(t?/u)

1
2+�2

1� (t?/u)
1

2+�2

1X

i=j+1

i� j

j + �2

P
⇣
⇠j�2(⌧

?(u)) = i
⌘

i+ �2

=
(t?/u)

1
2+�2

1� (t?/u)
1

2+�2

0

@
1X

i=j+1

P
⇣
⇠j�2(⌧

?(u)) = i
⌘

j + �2
�

1X

i=j+1

P
⇣
⇠j�2(⌧

?(u)) = i
⌘

i+ �2

1

A

=
(t?/u)

1
2+�2

1� (t?/u)
1

2+�2

0

@
P
⇣
⇠j�2(⌧

?(u)) > j
⌘

j + �2
+

P
⇣
⇠j�2(⌧

?(u)) = j
⌘

j + �2
� wj

1

A

=
(t?/u)

1
2+�2

1� (t?/u)
1

2+�2

✓
1

j + �2
� wj

◆
.

Rearranging terms gives (47). We further derive the following convenient upper
and lower bounds for the sequence {wj}1j=1:

(t?/u)
1

2+�2

j + �2
(1� wj) < wj+1 <

(t?/u)
1

2+�2

j + �2
. (48)

In order to do so, see that

wj+1 =
1X

i=j+1

P
⇣
⇠j+1
�2

(⌧?(u)) = i
⌘

i+ �2

=
1X

k=j

P
⇣
⇠j+1
�2

(⌧?(u)) = k + 1
⌘

k + 1 + �2

=
1X

k=j

1

k + 1 + �2

�(k + 1 + �2)

�(k � j + 1)�(j + 1 + �2)

✓
t?

u

◆ j+1+�2
2+�2

 
1�

✓
t?

u

◆ 1
2+�2

!k�j

=

�
t?

u

� 1
2+�2

j + �2

1X

k=j

k + �2
k + 1 + �2

P
⇣
⇠j�2(⌧

?(u)) = k
⌘

=

�
t?

u

� 1
2+�2

j + �2

0

@1�
1X

k=j

1

k + 1 + �2
P
⇣
⇠j�2(⌧

?(u)) = k
⌘
1

A

=

�
t?

u

� 1
2+�2

j + �2

 
1� E

"
1

⇠j�2(⌧
?(u)) + 1 + �2

#!
.
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Thus, clearly wj+1 < (t?/u)
1

2+�2 /(j + �2). Also,

E
"

1

⇠j�2(⌧
?(u)) + 1 + �2

#
< E

"
1

⇠j�2(⌧
?(u)) + �2

#
= wj .

Hence, (48) is proven. We now finally prove that {wm � wm+1}1m=1 is a strictly
decreasing sequence. From (47), we have that

(t?/u)
1

2+�2

(j + �2)(j + 1 + �2)
= (t?/u)

1
2+�2 (wj � wj+1)

+
⇣
1� (t?/u)

1
2+�2

⌘
(wj+1 � wj+2).

Hence, it suffices to show that

wj+1 � wj+2 <
(t?/u)

1
2+�2

(j + �2)(j + 1 + �2)
.

We may again apply (47) to see that

wj+1 � wj+2 =
1

j + 1 + �2
� (u/t?)

1
2+�2 wj+2,

and applying the lower bound in (48) gives that

<
1

j + 1 + �2
� 1

j + 1 + �2
(1� wj+1),

=
wj+1

j + 1 + �2
,

while applying the upper bound in (48) gives that

<
(t?/u)

1
2+�2

(j + �2)(j + 1 + �2)
.

Hence, we have prove that the sequence {wm � wm+1}1m=1 is strictly decreasing.
This allows us to apply Lemma 3 [12] to state that if �1 < �2

1X

m=1

p>m(�1)(wm � wm+1) <
1X

m=1

p>m(�2)(wm � wm+1),
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and if �2 < �1

1X

m=21

p>m(�1)(wm � wm+1) >
1X

m=1

p>m(�2)(wm � wm+1).

This implies that if �1 < �2

1X

j=1

pj(�1)wj >
1X

j=1

pj(�2)wj ,

and if �1 > �2

1X

j=1

pj(�1)wj <
1X

j=1

pj(�2)wj .

Hence, the proof is complete.

A.6 Proof of Theorem 3.5

Proof. To prove (22), we show that for any ⌧ > 0 and for some  > 0

P(�2 log⇤nt? > sup
s2[�,t?�⌧ ]

�2 log⇤ns + )! 1, as n!1. (49)

The proof for s 2 [t? + ⌧, 1� �] is similar and hence we omit it. Akin to the proof
of Theorem 3.2, we write

� 2 log⇤nt? + 2 log⇤ns

= 2`(0,nt?](�̂(0,nt?]) + 2`(nt?,n](�̂(nt?,n])� 2`(0,ns](�̂(0,ns])� 2`(ns,n](�̂(ns,n]),

and since `(ns,n](�̂(ns,n]) = `(ns,nt?](�̂(ns,n])+`(nt?,n](�̂(ns,n]), and `(0,nt?](�̂(0,nt?]) =

`(0,ns](�̂(0,nt?]) + `(ns,nt?](�̂(0,nt?]), we have

= 2
⇣
`(0,ns](�̂(0,nt?])� `(0,ns](�̂(0,ns])

⌘
+ 2

⇣
`(ns,nt?](�̂(0,nt?])� `(ns,nt?](�̂(ns,n])

⌘

+ 2
⇣
`(nt?,n](�̂(nt?,n])� `(nt?,n](�̂(ns,n])

⌘

= 2
⇣
`(0,ns](�̂(0,nt?])� `(0,ns](�̂(0,ns])

⌘
+ 2

⇣
`(ns,nt?](�̂(ns,nt?])� `(ns,nt?](�̂(ns,n])

⌘

+ 2
⇣
`(ns,nt?](�̂(0,nt?])� `(ns,nt?](�̂(ns,nt?])

⌘
+ 2

⇣
`(nt?,n](�̂(nt?,n])� `(nt?,n](�̂(ns,n])

⌘
;
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and since �̂(ns,nt?] is a maximizer of `(ns,nt?](·), then we have the following lower
bound:

� 2
⇣
`(0,ns](�̂(0,nt?])� `(0,ns](�̂(0,ns])

⌘
+ 2

⇣
`(ns,nt?](�̂(0,nt?])� `(ns,nt?](�̂(ns,nt?])

⌘

+ 2
⇣
`(nt?,n](�̂(nt?,n])� `(nt?,n](�̂(ns,n])

⌘

:= A1(n, s) +A2(n, s) +A3(n, s),

Invoking results in Theorem 3.2, we see that A1(n, s) and A2(n, s) converge weakly
to processes that are finite with probability 1.

We next claim that sups2[�,t?�⌧ ]A3(n, s)
p�!1, i.e.

lim
n!1

P
 

sup
s2[�,t?�⌧ ]

A3(n, s) > L

!
= 1,

for all L > 0. The mean value theorem expansion allows us to write A3(n, s) as

2
⇣
`(nt?,n](�̂(nt?,n])� `(nt?,n](�̂(ns,n])

⌘
= 2u(nt?,n](�

?
n(s))

⇣
�̂(nt?,n] � �̂(ns,n]

⌘
,

(50)
for some �?n(s) between �̂(ns,n] and �̂(nt?,n]. Since �̂(nt?,n](·) is maximized by
�̂(nt?,n], we can write

2

✓
`(nt?,n](�̂(nt?,n])� inf

s2[�,t?�⌧ ]
`(nt?,n](�̂(ns,n])

◆

= sup
s2[�,t?�⌧ ]

2
��u(nt?,n](�?n(s))

�� ·
����̂(nt?,n] � �̂(ns,n]

���

Our proof consists of two parts, and we will show that as n!1,

(1) P
⇣
infs2[�,t?�⌧ ]

����̂(nt?,n] � �̂(ns,n]

��� > ✏
⌘
! 1;

(2) sups2[�,t?�⌧ ]

��u(nt?,n](�?n(s))
�� p�!1.

We now focus on (1) and consider the term
����̂(nt?,n] � �̂(ns,n]

���. Note that
u(ns,n](�) = u(ns,nt?](�) + u(nt?,n](�), and Lemmas A.3 and A.5 give

sup
�2[⌘,K]

��n�1u(ns,nt?](�)� (t? � s)U(�; �1)
�� p�! 0, (51)

sup
�2[⌘,K]

��n�1u(nt?,n](�)� (U?
1 (�)� U?

t?(�))
�� p�! 0 (52)
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Hence
sup

�2[⌘,K]

��n�1u(ns,n](�)� V (�)
�� p�! 0, (53)

where we set V (�) := (t?�s)U(�; �1)+U?
1 (�)�U?

t?(�). Also note that U(�; �1)
and U?

1 (�) � U?
t?(�) have unique zeros at �1 and �2, respectively, and are positive

before and negative after their zeros (see Lemma 4 in [12] and Lemma A.6).
In particular, |V (�2)| = |(t? � s)U(�2; �1) + U?

1 (�2) � U?
t?(�2)| = |(t? �

s)U1(�2)| > 0 since U(�; �1) has a unique zero at �1 and is positive beforehand.
Fix 0 < ⇠ < |V (�2)|, and the continuity of V (�) thus gives the existence of a
✏ > 0 such that

inf
�:|���2|<2✏

|V (�)| > ⇠.

Further, since n�1u(ns,n](�̂(ns,n]) = 0,

���V (�̂(ns,n])
��� =

���V (�̂(ns,n])� n�1u(ns,n](�̂(ns,n])
���  sup

�2[✏,K]

����
1

n
u(ns,n](�)� V (�)

���� .

(54)
Therefore, we conclude from (53) that with probability tending towards 1,

���V (�̂(ns,n])
���  sup

�2[✏,K]

����
1

n
u(ns,n](�)� V (�)

����  ⇠ < inf
�:|���2|<2✏

|V (�)| ,

which further implies P(|�̂(ns,n] � �2| > 2✏) ! 1. Meanwhile, by the consistency
of �̂(nt?,n], we have

P(|�̂(nt?,n] � �2| < ✏)! 1.

Hence, we see that as n!1,

P
✓

inf
s2[�,t?�⌧ ]

����̂(nt?,n] � �̂(ns,n]

��� > ✏

◆
! 1. (55)

We next show that sups2[�,t?�⌧ ] |u(nt?,n](�?n(s))|
p�! 1. Let Br(x) denote

the open ball of radius r centered at x. Note that as n ! 1, �?n(s) /2 B(�2)
with high probability for some  > 0 since �̂(nt?,n] and �̂(ns,n] are well-separated
with probability tending towards 1 and `(nt?,n](·) is non-linear and maximized at
�̂(nt?,n]. Further,

��n�1u(nt?,n](�
?
n(s))

�� � |U?
1 (�

?
n(s))� U?

t?(�
?
n(s))|

� sup
�2[⌘,K]

��n�1u(nt?,n](�)� (U?
1 (�)� U?

t?(�))
��
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� inf
�/2B(�2)

|U?
1 (�)� U?

t?(�)|

� sup
�2[⌘,K]

��n�1u(nt?,n](�)� (U?
1 (�)� U?

t?(�))
�� .

The first term is nonzero since U?
1 (·) � U?

t?(·) has a unique zero at �2. The
second term can be make arbitrarily small by by (51) and (52). Hence

sup
s2[�,t?�⌧ ]

��u(nt?,n](�?n(s))
�� p�!1. (56)

Combining (56) with (55) gives that �2 log⇤nt? + infs2[�,t?�⌧ ] 2 log⇤ns
p�! 1,

which implies the existence of a  > 0 such that

P
 
�2 log⇤nt? > sup

s2[�,t?�⌧ ]
�2 log⇤ns + 

!
! 1.

Therefore, as n ! 1, the maximum becomes well-separated, and occurs at t? so
that we have

t̂n = n�1 argmax
m=bn�c,...,bn(1��)c

⇤m
p�! t?.

A.7 Proof of Theorem 4.1

Proof. We first observe that via a Taylor expansion of u(0,nt](�) around �̂(0,nt]

n�1/2u(0,nt](�̂n) = n�1/2u(0,nt](�̂(0,nt]) + n�1/2u0(0,nt](�
?
n)(�̂n � �̂(0,nt])

= n�1/2u0(0,nt](�
?
n)(�̂n � �̂(0,nt]).

where �?n lies between �̂n and �̂(0,nt]. Similarly to the argument made in Lemma
A.1,

�n�1u0(0,nt](�
?
n)

p�! tI(�; �) in D[0, 1],

and by (31),

tI(�; �) ·
p
n
⇣
�̂n � �̂(0,nt]

⌘
) tW (I(�; �))�W (tI(�; �)) in D[�, 1],

which implies

n�1u2(0,nt](�̂n)) (tW (I(�; �))�W (tI(�; �)))2 in D[�, 1].
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Further, Lemma A.3 gives that in D[0, 1],

�n�1u0(0,nt](�̂n)
p�! tI(�; �),

�n�1u0(nt,n](�̂n)
p�! (1� t)I(�; �).

Define the Brownian bridge B(t) := I�1/2(�; �) (W (tI(�; �))� tW (I(�; �))).
Combining the previous three convergences thus gives

Snt = �u2(0,nt](�̂n)
 

1

u0(0,nt](�̂n)
+

1

u0(nt,n](�̂n)

!
) B2(t)

✓
1

t
+

1

1� t

◆
=

B2(t)

t(1� t)

in D[�, 1� �]. Then applying the continuous mapping theorem gives

sup
t2[�,1��]

Snt ) sup
t2[�,1��]

B2(t)

t(1� t)
in R.
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