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Abstract—Modern fifth-generation (5G) networks are increas-
ingly moving towards architectures characterized by softwariza-
tion and virtualization. This paper addresses the complexities and
challenges in deploying applications and services in the emerging
multi-tiered 5G network architecture, particularly in the context
of microservices-based applications. These applications, charac-
terized by their structure as directed graphs of interdependent
functions, are sensitive to the deployment tiers and resource
allocation strategies, which can result in performance degradation
and susceptibility to failures. Additionally, the threat of deploying
potentially malicious applications exacerbates resource allocation
inefficiencies. To address these issues, we propose a novel opti-
mization framework that incorporates a probabilistic approach
for assessing the risk of malicious applications, leading to a more
resilient resource allocation strategy. Our framework dynamically
optimizes both computational and networking resources across
various tiers, aiming to enhance key performance metrics such
as latency, accuracy, and resource utilization. Through detailed
simulations, we demonstrate that our framework not only satisfies
strict performance requirements but also surpasses existing
methods in efficiency and security.

Index Terms—5G, microservices, edge-cloud infrastructure,
resource orchestration.

I. INTRODUCTION

The emergence of fifth-generation (5G) mobile networks
presents a major revolution in the design and operation of
modern communication and computing systems due to the
increased softwarization and virtualization. Unlike its prede-
cessors, 5G introduces a multi-tiered architectural paradigm
that significantly diverges from the traditional, monolithic
single-tier frameworks [1]. This transformation is not merely
a technological evolution; it underpins a fundamental shift
in how applications and services are designed, deployed, and
managed. One of the key innovations enabling this paradigm
shift is the widespread adoption of a microservices-based
architecture for applications [2]. By breaking down complex
applications into smaller, manageable, and independent units,
microservices allow for greater modularity, easier scalability,
and more effective fault isolation. While the architecture brings
forth several benefits, it also imposes a set of unique challenges
concerning the deployment and resource allocation of each
microservice [3], [4]. Their performance, characterized by
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Fig. 1: Schematic representation of the resource orchestrator managing
resources between normal and malicious applications considering the
workflows of apps over the set of microservices f1 through fm.

metrics such as latency and accuracy1 , is highly dependent on
both the tier they are deployed in and the amount of compute
and networking resources allocated to them.

However, this problem grows in complexity exponentially
when considering a network hosting multiple applications,
each comprising a unique directed graph of interconnected
microservices. Orchestrating resources for these myriad ser-
vices becomes a complex task since each microservice must be
optimally placed within the appropriate tier of the 5G network
and provisioned with the required amount of resources [5],
[6]. Furthermore, an added layer of complexity arises from
the necessity to consider the presence of potentially malicious
applications. In the highly interconnected realm of 5G networks,
the threat posed by deploying resources to rogue applications
becomes a significant concern [7]. Such malicious applications
have the potential to not only undermine the integrity of the
network but also result in the gross misallocation of resources,
thereby squandering essential compute and networking capa-
bilities.

Resource management in cloud environments is a well-
studied research problem [8]–[13]. However, the shift to
microservices architecture brings new challenges, particularly
in managing multiple application components across a vast
number of distributed servers dynamically. In this context, the
work in [2] models microservices allocation in cloud data
centers as a binary quadratic programming problem, aiming
to minimize interaction costs. A similar attempt to minimize
application response time through workload profiling is dis-
cussed in [14]. With the rise of multi-access edge computing
(MEC), researchers have explored application deployment and

1The notion of accuracy is used to reflect how well a computational task,
e.g., object detection, is executed given the compute resources available.



migration in this setting as well [15]. For instance, [1] proposes
a Markov decision process (MDP) formulation for dynamic
service migration in MEC. The work in [16] adopts a machine
learning approach for proactive placement and migration of
microservices in MEC setups.

However, these works focus predominantly on either com-
pute or network resources and often ignore the intricate
coupling between the two. The authors in [17] have pro-
posed an application based resource orchestration framework,
however, they do not consider the possibility of malicious
applications and the need for re-allocating resources. This
paper tackles the overarching problem of optimizing resource
allocation for microservices-based applications in a multi-
tiered, heterogeneous 5G network environment. The main
challenge is twofold: (i) To determine the optimal placement of
individual functions across multiple network tiers, considering
the real-time state of resources; (ii) To account for the coupling
relationships between different resources like compute, storage,
and bandwidth, and their impact on application-level metrics
such as latency, accuracy, and cost. The key contributions of
this paper are as follows:

1) We formalize the problem of function-to-tier mapping
and resource allocation as a constrained optimization
problem that takes into account both system performance
and the potential of applications being malicious.

2) Our framework integrates a risk factor associated with
the belief that an application might be malicious, thereby
providing a more robust resource allocation strategy.

3) Through extensive simulations, we validate the effective-
ness of our optimization framework in various scenarios,
illustrating its adaptability and efficiency. We also provide
comparisons with existing resource allocation strategies,
demonstrating significant improvements in latency, accu-
racy, and resource utilization in the presence of risks.

The remainder of this paper is organized as follows: Section
II provides a detailed overview of the system model. Section
III presents the problem formulation and our optimization
framework, followed by Section IV, which discusses the
simulation setup and results. Finally, Section V concludes
the paper and alludes to future research directions.

II. SYSTEM MODEL

We consider a multi-tier edge-cloud 5G infrastructure,
consisting of N tiers in the system, encompassing various
types of compute nodes such as edge devices, MEC servers,
and central cloud servers. The network architecture is assumed
to host M applications, each represented as a directed acyclic
graph (DAG). Our objective is to optimize the allocation of
resources in such a way as to meet the application-specific
performance metrics while minimizing resource utilization and
considering the potential malicious nature of apps.

A. Physical Infrastructure and Computing Tiers

The physical infrastructure is constituted by a set N of
computing tiers, with each tier n ∈ N := {1, 2, . . . , N} having

a fixed number of networking resources, denoted by netn and
compute resources, denoted by compn. These resources are
shared across various applications that are inherently DAGs
formed over a pool of functions or microservices. Fig. 1
illustrates an architecture of the 5G edge-cloud infrastructure
with multiple computing tiers and applications along with
fixed compute and network resources available at each tier.
The resource orchestrator uses the application workflows and
performance attributes to deploy and provision resources to
the participating microservices.

B. Applications and Functions

We consider a universal set of functions or microservices,
denoted by F := {1, 2, ..., F}. Every application in the system
uses a combination of functions from this set to perform
its operations. Hence, each function can be associated with
one or multiple applications, leading to shared or dedicated
resource usage patterns. There are M distinct applications
in the system. Each application m ∈ M := {1, . . . ,M} is
modeled as a directed acyclic graph Gm = (Vm, Em), where
Vm denotes the set of microservices or functions constituting
the application, and Em represents the directed edges indicating
data dependencies between these functions.

In our model, we consider the fact that applications may
potentially be malicious. Assigning resources to functions
linked to malicious applications results in resource wastage
as they do not contribute to the system’s overall performance.
We assume that for each application m, there exists a prior
belief πm ∈ [0, 1], which indicates the probability of that
application being malicious2. This prior knowledge influences
the optimization problem, particularly in resource allocation
decisions.

C. Performance Metrics

Each application has end-to-end latency and accuracy require-
ments, represented by Lm ∈ R+ and Am ∈ R+ respectively.
The latency of each function v within an application m,
particularly when it is deployed on tier n, is influenced by
the amount of allocated networking resources rnet and the
number of times it is being used in the workflow. This usage
of the function is characterized by the number of times it
appears in the graphs of all applications and can be computed
as Iv =

∑
m∈M

∑
(u,v)∈Em

w(u, v,m), where w(u, v,m)
is a weight function that returns the number of times the
edge (u, v) exists in the graph of app m. Consequently, we
define the latency function as fv,n(r

net, Iv) = an − b r
net

Iv
,

where an represents the base latency in tier n, and b is a
constant representing the rate of latency reduction per unit
increase in network resources. Similarly, the accuracy of
the function v is modeled by gv,n(r

com, Iv) = a′n + b′ r
com

Iv
,

where a′n signifies the base accuracy in tier n, and b′ is a
constant indicating how accuracy improves with additional

2Several risk assessment techniques are available in the literature to evaluate
the prior belief [18] on applications being malicious.



computational resources. The system’s overall performance
is evaluated using a composite metric ϕ(Lm, Am), where
ϕ : R+ × R+ → R+ is a monotonically increasing function
of both the latency Lm and accuracy Am achieved by each
application m.

III. METHODOLOGY & ANALYSIS

The overarching objective is to judiciously allocate resources
to functions and place them on suitable tiers. The goal is
two-fold: minimizing the redundant resources used (factoring
in maliciousness) and maximizing the system performance.
This optimization is guided by a performance function ϕ that
correlates the achieved thresholds for latency and accuracy.

A. Problem Formulation
The optimization problem can be mathematically formulated

as follows:

min
xn
v,m,rnet

v,m,

rcom
v,m,Lm,Am

∑
m∈M

(θ + λπm)
∑
v∈Vm

(rcom
v,m + rnet

v,m)−

κ
∑

m∈M
ϕ(Lm, Am), (1)

subject to
∑
n∈N

xn
v,m = 1, ∀m ∈ M, ∀v ∈ Vm, (2)∑

m∈M

∑
v∈Vm

rcom
v,mxn

v,m ≤ compn, ∀n ∈ N , (3)∑
m∈M

∑
v∈Vm

rnet
v,mxn

v,m ≤ netn, ∀n ∈ N , (4)∑
v∈Vm

∑
n∈N

fv,n(r
net
v,m, Iv)x

n
v,m ≤ Lm, ∀m ∈ M, (5)∑

v∈Vm

∑
n∈N

gv,n(r
com
v,m, Iv)x

n
v,m ≥ Am, ∀m ∈ M. (6)

The objective in (1) aims to minimize the effective resources
used and maximize the allocation performance. The term
(θ + λπm) serves as a weighting factor for the resources,
increasing the cost of allocating resources to apps that have
a higher prior belief of being malicious. The more likely an
app is to be malicious (higher πm), the more its resource use
will count against the objective. The factor λ ≥ 0 acts as a
tuning parameter to adjust the influence of the belief about the
app’s maliciousness on the optimization. Several assumptions
underpin our model as follows: (i) Each function can be
deployed in one tier only. This is captured by the constraint
(2), where binary decision variable xn

v,m indicates whether
function v of application m is deployed on tier n; (ii) Resources
allocated to a function do not exceed the tier’s available
capacities. This is captured by the constraints (3) and (4);
(iii) Functions shared across applications experience increased
latency based on their input load and reduced accuracy. This is
ensured using constraints (5) and (6). The optimization problem
described in (1)-(6) represents a mixed-integer nonlinear
program (MINLP) due to the presence of both continuous
and integer variables, as well as potentially nonlinear and
objective functions. Given the complexity introduced by these
factors, the problem can be shown to be NP-hard.

B. Observations and Insights

We now provide some key observations and insights based
on the structure of the problem in the following lemmas and
propositions. The impact of allocating compute and network
resources to microservices is described by the following lemma:

Lemma 1. Given the monotonically increasing nature of the
functions f and g, for any function v, as we allocate more
networking resources rnet

v,m, the latency will decrease and as
we allocate more compute resources rcom

v,m, the accuracy will
increase.

The potential impact of deploying the microservices in
different tiers on the latency and accuracy is described by
the following lemma:

Lemma 2. Considering monotonically increasing structure
of base latency an, i.e., a1 < a2 < . . . < aN , and accuracy
a′n, i.e., a′1 < a′2 < . . . < a′N in terms of the tier, deploying
function v on a higher-tier (closer to the cloud) will have a
higher base latency but potentially better accuracy due to more
available resources. The reverse is true for lower tiers (closer
to the edge).

Proposition 1. For any function v used by multiple applica-
tions, if function v is shared among multiple apps, it is better
to allocate more resources to it than a function that is used
by a single app, to improve resource efficiency.

Proof. Given that multiple apps share function v, optimizing
its performance ensures better aggregate performance across
these apps. This improves the performance function ϕ in (1)
with a smaller number of resources.

The priority of allocating compute and network resources
to microservices based on their roles in the applications is
described by the following proposition:

Proposition 2. If resources are limited, it is optimal to allocate
resources first to functions that lie on the critical path of the
applications’ graphs. This is because these functions are the
most sensitive in terms of the end-to-end latency and accuracy
metrics.

Proof. The critical path in the graph determines the end-to-end
latency for the application. Therefore, optimizing functions on
this path will have the highest impact on the overall application
performance.

C. Optimal Resource Orchestration Algorithm

To address the problem of resource allocation and per-
formance optimization in this distributed multi-tier system,
we propose a two-step iterative algorithm. The algorithm
initially sets end-to-end latency Lm and accuracy Am for each
application m based on prior knowledge. It then iteratively
optimizes resource allocation and function placement while
adapting the performance metrics. Specifically, for fixed Lm

and Am, the algorithm solves an optimization problem to



Fig. 2: Comparative analysis of computational and network usage percentages under varying probabilities of App 1 (π1) and App 2 (π2) being
malicious. Each subplot represents (from left to right): a) Computational usage of App 1, b) Network usage of App 1, c) Computational usage
of App 2, and d) Network usage of App 2.

Algorithm 1 Resource Allocation and Performance Optimiza-
tion

1: Initialization:
2: Initialize Lm and Am for all m
3: Set stopping criterion ϵ
4: while change in objective > ϵ do
5: Step 1: Optimize Resource Allocation and Function

Placement
6: for each application m do
7: Fix Lm and Am

8: Solve resource allocation problem
9: Update rcom

v,m, rnet
v,m, and xn

v,m

10: end for
11: Step 2: Update Performance Metrics
12: for each application m do
13: Determine new Lm and Am

14: Update Lm and Am in the optimization problem
15: end for
16: Step 3: Update Objective Function
17: Compute new objective value
18: Check for convergence
19: end while

determine the best resource allocation rcom
v,m and rnet

v,m, as well
as the placement xn

v,m for each function. Subsequently, it
updates Lm and Am based on the newly achieved performance.
Convergence is checked based on the change in the objective
function. To solve the optimization problem, we can employ
Lagrangian relaxation to decouple the constraints, thereby
making the problem more tractable. The Lagrangian multipliers
can be updated using the subgradient method. A pseudocode
of the solution approach is provided in Algorithm 1.

D. Adaptive Re-orchestration Algorithm

Once, the malicious apps have been detected by the resource
orchestrator, there is a need to re-allocate the resources used
by malicious apps to existing functions in order to improve
their performance and improve resource efficiency. Note that
since functions have already been deployed, the goal of the re-
orchestrarion process is to optimally re-arrange resources within
each tier. Denote by D the set of detected malicious applications
by the system operator, and {xn∗

v,m}n∈N ,v∈Vm,m∈M\D the

Fig. 3: Example workflows of applications using microservices f1
through f5. Both applications 1 and 2 share the resources allocated
to microservices f4 and f5.

solution to tier allocation of each function associated with
applications obtained from the original optimization problem.

The optimal resource re-orchestration problem can be
formulated as follows:

min
rnet
v,m,rcom

v,m,

Lm,Am

∑
m∈M\D,
v∈Vm

(rcom
v,m + rnet

v,m)− κ
∑

m∈M\D

ϕ(Lm, Am)

subject to
∑

m∈M\D

∑
v∈Vm

rcv,mxn∗
v,m ≤ compn, ∀n ∈ N ,

∑
m∈M\D

∑
v∈Vm

rnv,mxn∗
v,m ≤ netn, ∀n ∈ N ,

Constraints (5) and (6).

This problem, in general, constitutes a convex program and
if ϕ is a linear function, it simplifies into a linear programming
problem. Hence, this can be solved with a lower complexity
than the original problem using standard convex optimization
solvers.

IV. PERFORMANCE EVALUATION

A. Simulation Setup

Our simulation, designed to assess the effectiveness of the
proposed algorithm, utilizes a three-tier resource orchestration
system. We examine two different applications, each compris-
ing five distinct functions. Fig. 3 illustrates the workflows
of the two applications with graph G1 shown in blue and
graph G2 shown in red. Functions f4 and f5 are shared
between the two applications, creating a coupling relationship
between the apps. The performance function ϕ is defined as
ϕ(L,A) = −αL + βA + γ, where α, β, and γ are fixed
constants. This definition implies that performance is inversely
related to latency and directly related to accuracy. The specific
values of all the simulation parameters are detailed in Table I.



(a) (b) (c)

Fig. 4: Analysis of resource utilization across three tiers for App 1 and App 2. Subplots illustrate: a) Compute resource usage by tier, b)
Network resource usage by tier, and c) Aggregate resource utilization comparison between App 1 and App 2.

Parameters Value
Total number of tiers, N 3
Number of functions, F 5

Number of applications, M 2
Capacity of compute resources, compn 7.65, 12.75, 17.00

Capacity of network resources, netn 11.50, 21.85, 28.50
Weighting factor for performance function, κ 3e3

Penalty factor for malicious apps, λ 2e-5
Weighting factor for all apps, θ 5

Performance function constants (α, β, γ) 495, 499, 10

TABLE I: Simulation Parameters.

Fig. 5: Trade-off between latency and accuracy for App 1 and App
2 across varying belief of being malicious (π2, π1). Each data point
represents a specific configuration of (π2, π1) values.

B. Experiment Results

To solve the MINLP problem of the resource orchestrator, we
employed the Mixed-Integer Nonlinear Decomposition Toolbox
in Python (MindtPy), which breaks down the non-convex
optimization problem into a sequence of linear and continuous
nonlinear optimization subproblems. In this subsection, we
provide a sensitivity analysis and performance evaluation of
the results based on the simulation scenario considered.

In Fig. 2, we examine the impact of the belief factor
regarding the malicious nature of applications on resource
allocation between computational and network resources. The

(a) (b)

Fig. 6: Trade-off analysis between system latency (in seconds) and
application accuracy as a function of (a) computation usage (%) and
(b) network usage (%).

results indicate a balance in resource allocation between the
two applications when their belief factors π1 and π2 are equal.
In contrast, a disparity in these factors shifts the resource
allocation favoring the application perceived as less likely to
be malicious.

The relationship between the belief factor and application
performance, in terms of latency and accuracy, is illustrated in
Fig. 5. The findings highlight that enhanced resource allocation
improves application performance, but this improvement for
one application tends to compromise the other, showcasing
the inherent trade-offs in orchestrating resources for multiple
applications. Fig. 4 presents the resource distribution scenario
when both applications are deemed non-malicious π1 = π2 = 0.
In this case, computational and networking resources are nearly
equally distributed between the two applications, achieving
close to 100% utilization in each tier, thereby validating the
direct correlation between resource allocation and application
performance.

Fig. 6 shows the impact of resource usage on the application
performance. The increment of both type of resource usage
will generally improve the application performance albeit at a
different rate depending on the latency and accuracy functions.
Fig. 7 presents the average compute and network resource
efficiency results for 50,000 realizations of simulated beliefs
over malicious applications. We can observe that the resource
efficiency generally decreases as the belief factor over the
apps increases, affirming its role as a critical parameter for



(a) (b)

Fig. 7: Variation of resource efficiency with respect to belief factor
for different lambda values: (a) Computation resource efficiency (%)
and (b) Network resource efficiency (%).

(a) (b)

Fig. 8: Resilience of resource orchestration after malicious apps have
been detected.

robust and efficient resource orchestration. Fig.8a illustrates
the resource utilization patterns during and after a simulated
malicious attack, under the condition that π1 = π2 = 0,
indicating no initial suspicion of malicious activity. Post the
attack, and subsequent to the detection and elimination of
the malicious application, a noticeable decline in resource
usage for the remaining application is observed. However,
following the implementation of resource re-orchestration, there
is a notable increase in resource allocation to the surviving
application as shown in Fig.8b. This adjustment not only
restores but potentially enhances both the performance and
resource efficiency of the system.

V. CONCLUSION & FUTURE WORK

In this paper, we addressed the problem of optimizing
the resource allocation and function placement within the
multi-tiered, heterogeneous infrastructure of 5G networks for
microservices based applications. Our approach considers end-
to-end performance metrics (latency and accuracy), resource
constraints at multiple tiers, and the potential for malicious
applications. The objective is multi-faceted, aiming to min-
imize the effective use of resources while maximizing the
overall system performance. We introduced coupling functions
to capture the inter-dependencies between networking and
compute resources, allowing a more holistic view of resource
orchestration. The optimization problem is modeled as a
MINLP and we proposed an iterative solution algorithm to
solve it. Furthermore, we have also presented a re-orchestration
algorithm that optimally rearranges resources once malicious
apps have been detected and removed from the system. Results
from simulations have revealed notable improvements in system

performance, in terms of latency, accuracy, and overall resource
utilization. These improvements were particularly pronounced
in scenarios involving high risk of malicious applications,
underscoring the effectiveness of our risk-aware resource
allocation strategy. Future work may focus on developing
efficient heuristics or approximation algorithms to solve this
problem at scale.
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