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Abstract—Effective resource orchestration for network slicing
is critical for optimizing the performance of diverse applications
running on next generation communication networks. This paper
presents a novel approach that leverages advancements in multi-
agent reinforcement learning (MARL) to adaptively learn the
resource requirements of various applications in network slices and
orchestrate resources in real-time. Our proposed MARL-based
orchestration scheme aims to balance the varying requirements
of individual network slices, ensuring optimal performance
amid dynamic application deployments with limited network
information. Simulation results and comparative analyses validate
the efficiency and efficacy of our methodology, demonstrating
its superiority over traditional methods in terms of system
performance and resource utilization. Simulation results indicate
that our strategy significantly enhances system utility and
efficiency, particularly with limited resources.

Index Terms—edge-cloud network, network slicing, resource
orchestration, multi-agent reinforcement learning, traffic flows.

I. INTRODUCTION

Next-generation (NextG) networks are rapidly evolving
towards being software-defined and virtualized, enabling un-
precedented flexibility in managing the resources of physical
network nodes [1], [2]. A key paradigm in these networks is
network slicing, which facilitates the creation of virtualized
network segments tailored to the specific needs of diverse
applications, including industrial automation, remote health-
care, and autonomous vehicles [3]. These applications often
demand ultra-reliable low-latency communication (URLLC)
and enhanced mobile broadband (eMBB) services, each with
distinct performance and resource needs [4].

The architecture of NextG networks comprises of hetero-
geneous nodes including edge devices, multi-access edge
computing (MEC) servers, and core network nodes with varying
resource capacities [5]. Each node can provide a proportion of
its available resources to the application using it, and hence
this local allocation decision can have a significant impact
on the overall performance of the application. Applications
generate traffic flows, with each flow traversing multiple nodes
and links in the network, which can vary in their resource
requirements and paths through the network. For example,
URLLC traffic flows require low latency and high reliability,
whereas eMBB traffic flows require high bandwidth [6]. The
end-to-end performance of these flows is critically dependent
on the amount of resources allocated by each network node and
communication links to the specific types of traffic. Thus, each

Fig. 1: An abstraction of network slices and traffic flows for
applications over an edge-cloud 5G network.

node and link within the network must continuously manage
the allocation of resources to a specific traffic type at any
given instant. This dynamic allocation needs to be adaptive to
changing network conditions and application requirements, in
order to achieve high service quality and resource efficiency
from the network providers standpoint. Moreover, the resource
provisioning decisions need to be fine-grained down to the
application flow level.

Fig. 1 illustrates the network abstraction showing an example
of a sliced traffic flow navigating through an edge-cloud
network, comprising of IoT edge devices, MEC servers,
and cloud servers. Each flow has specific requirements for
computing power and memory. The traffic flows generated
by users fluctuate in their requirements over time, lead-
ing to uncertain and dynamic resource requests. Access to
comprehensive global network information is limited due to
rapidly changing environment and the decentralized structure
of these distributed resource nodes with network security
measures [7]. Therefore, an adaptive and efficient resource
orchestration mechanism is critically important to meet end-
to-end performance requirements of critical network slices [8].
Traditional static resource allocation methods are inadequate
for such dynamic and heterogeneous environments as they fail
to capture the intricate and fluctuating traffic dynamics, often
leading to sub-optimal resource utilization and an inability to
guarantee the necessary service requirements. Therefore, there



is a need to actively learn the traffic dynamics in a distributed
manner to inform the resource allocation strategy [9].

In this paper, the main objective is to optimize the com-
putational performance of application traffic across the core
network, focusing on compute and memory resources1. Uti-
lizing an online learning framework, we present a dynamic
multi-objective optimization problem considering both slice-
averaged efficiency and utility metrics. We then propose a
multi-agent reinforcement learning (MARL) based resource
orchestration framework [10]. In our approach, each resource
provisioning unit is managed by controllers with two types
of learning agents, each responsible for a specific resource
orchestration policy. These agents can only locally observe data
containing flow requirements and slice aggregated resources
from the previous time frame. This is especially critical in
contexts where resource provisioning units lack visibility into
the data of other units and the overall network’s physical
infrastructure and slice traffic topology. The proposed MARL-
based resource orchestration framework is validated through
extensive simulations, demonstrating significant improvements
over traditional static and random allocation strategies. Our
results highlight the potential of MARL to enhance system
utility and efficiency in virtualized networks.

The rest of this paper is organized as follows: Section II pro-
vides an overview of the related works. Section III introduces
the network slicing model and problem formulation. Section
IV details the proposed methodology and the MARL-based
framework, including the description of actions, observations,
reward function, and the training process. Subsequently, Section
V describes the simulation results and presents a comparative
analysis with baseline schemes. Finally, Section VI concludes
the paper.

II. RELATED WORK

Several studies in the literature have focused on virtual
network function (VNF) placement and resource provisioning
schemes in NextG networks [11]. However, these approaches
often assume that functional chains are known prior to
resource allocation, which limits their applicability in dynamic
environments [12]–[15]. Traditional optimization frameworks
have also been explored for resource orchestration, yet their
computational complexity and need for repeated execution
make them impractical for real-time implementation [16]–[21].
In contrast, recent advancements in artificial intelligence (AI)
have introduced dynamic strategies based on deep learning
and reinforcement learning for network resource orchestra-
tion [22]–[26]. These methods, however, are implemented
in radio access networks not considering the complexity of
the network topology or typically assume either full access
to comprehensive network status and rely on embedding
vector exchanges between agents, which may not be feasible
in decentralized partially observable environments [27]–[31].
In this work, we address these limitations by introducing

1Several other types of resources can also be considered but these do not
significantly alter the proposed resource orchestration scheme.

Fig. 2: Illustration of an example application flow in slice m traversing
select nodes in the edge-cloud infrastructure.

a MARL-based resource orchestration framework designed
for distributed and decentralized network architectures. Our
approach enhances system utility and efficiency by dynamically
adapting to the stochastic nature of application traffic demands,
thereby overcoming the constraints of traditional and existing
AI-based methods.

III. SYSTEM MODEL

In this section, we construct a network-slicing environment
model that depicts a scenario wherein multiple applications
concurrently use a shared pool of physical and virtual network
resources.
A. Network Infrastructure

We consider a physical network infrastructure consisting of
a set of Ja ∈ Z access nodes and Jc ∈ Z computing nodes
(edge and core nodes), denoted by J = {1, 2, . . . , J}, where
J = Ja + Jc. The system model illustrated in Fig. 2 has 8
access nodes (labeled 1 - 8), 4 edge nodes (labeled 9 - 12), and
2 core nodes (labeled 13 - 14). Each node j ∈ J has a fixed
compute resource capacity of Cη

j ∈ R and a fixed memory
resource capacity of Cγ

j ∈ R2. These resources are shared
among a set of M ∈ Z diverse and independent application
flows denoted by the setM = {1, 2, . . . ,M}. Each application
flow m ∈M consisting of multiple functions or microservices
traverses a set of nodes in the network.
B. Slice Model

Two categories or slices of application flows are considered
in our system, i.e., eMBB and URLLC. The set of application
flows of type σ, where σ ∈ {1, 2}, corresponding to eMBB
and URLLC respectively, are denoted by Mσ, where M1 ∩
M2 = ∅. Applications in the URLLC slice category have more
stringent performance requirements compared to the eMBB
slice. Each flow is characterized by the tuple consisting of a
starting node, intermediary nodes, and an ending node. Each
application flow m initiates at the starting node θ

(in)
m ∈ J

and terminates at the ending node θ
(out)
m ∈ J , Hence, an

application flow m can be represented by a node set Θm =

{θ(in)m , θ
(1)
m , θ

(2)
m , ..., θ

(Jm)
m , θ

(out)
m }, where Θm ⊂ J and Jm

is the number of intermediary nodes (edge and core nodes)

2We assume that the access nodes do not have any compute or memory
resources.



traversed by application flow m. We consider a time-slotted
system operation where the resource provisioning decisions are
undertaken at each time slot t, the duration of which is denoted
as Ts. Each application flow m ∈ M at time t has compute
and memory resource requests denoted by d

(t)
m = {η(t)m , γ

(t)
m }.

Similarly, each application flow m at time t is allocated with an
amount of corresponding resources by node j ∈ Θm denoted
as r

(t)
m,j = {ζ

(t)
m,j , δ

(t)
m,j}.

C. Utility and Efficiency Characterization

The total allocation of memory resources for application
m denoted as δ

(t)
m is calculated by aggregating the resources

provided among the resource nodes that the application m

traverses, which can be expressed as δ
(t)
m =

∑
j∈Θm

δ
(t)
m,j . The

utility of memory resource is calculated by fσ(x) defined as:

fσ(x) =

{
β1

1+exp(−(a1x+b1))
+ β2 ln (1 + wx) , σ = 1,

1
1+exp(−(a2x+b2))

, σ = 2,
(1)

where x ∈ R+ indicates the proportion of resource request
satisfied by the allocation. For the eMBB slice, the parameters
β1, β2, a1, b1, and w are chosen to ensure that the utility
function f1 (x) increases monotonically over the interval x ∈
[0, 1]. This configuration mirrors the eMBB slice’s relaxed and
flexible requirements. For the URLLC slice, the parameters a2
and b2 are set to ensure that the function f2(x) aligns with
the more stringent requirements of the URLLC applications.
Insufficient resources result in a drastic decrease in the utility
for applications in the URLLC slice, much more than eMBB
applications, emphasizing the necessity of resource provisioning
to maintain desired utility levels in critical use cases. Moreover,
over-provisioning of the memory resource does not provide any
additional utility to the application. Thus, we set fσ (x) = 1
when x > 1. Similarly, we define a monotonically decreasing
function of the compute latency, gσ(z), to capture the utility
of compute resource, defined as follows:

gσ(z) =
1

(1 + cσz)
, z > 0, (2)

where cσ is a positive coefficient that determines the slope of
the function. At time t, the latency τ

(t)
m of application m can

be calculated through a queuing process. Queuing occurs when
resource requests are generated before existing requests are
processed, potentially leading to increased delays in handling
current requests. We consider first-come, first-served policies
where requests are processed in the order they arrive [32].
The effective compute resource allocated to the application m
calculated based on queued traffic for the compute resource
request and the resource allocated to the application is defined
as follows:

∗
ζ(t)m = min

{
ζ(t)m ,

D
(t−1)
m

Ts
+ η(t)m

}
, (3)

where ζ
(t)
m =

∑
j∈Θm

ζ
(t)
m,j is the total amount compute

resource allocated to the application flow m. Equation (3)
indicates the update of the amount of compute resources that

are actually functional on the application m at time t, which
signifies that if the compute resources are over-provisioned,
it does not provide any additional benefits on application
m. Conversely, when the compute resources are allocated
insufficiently, the queue of requests start to develop and hence
form the residual block. The variable D

(t)
m indicates the size

of the residual block, which is set to 0 for t = 0, and then it
is updated each time using

D(t)
m = max

{
0, D(t−1)

m + Ts

(
η(t)m − ζ(t)m

)}
. (4)

Therefore, the compute latency can then be determined using
the following equation:

τ (t)m =
2D

(t−1)
m − Ts

( ∗
ζ
(t)
m − η

(t)
m

)
2ζ

(t)
m

+
1

∗
ζ
(t)
m

, (5)

where the first term represents the queuing delay and the second
term indicates processing delays, respectively.

Fig. 3: Utility functions of compute and memory resources

The overall utility of an application flow incorporates the
utility of the compute resource and memory resource. The
utility function Um(·) for application m at time t is defined
as follows:

Um

(
r(t)m

)
=

αη,1g1

(
τ
(t)
m

)
+ αγ,1f1

(
δ(t)m

γ
(t)
m

)
,m ∈M1,

αη,2g2

(
τ
(t)
m

)
+ αγ,2f2

(
δ(t)m

γ
(t)
m

)
,m ∈M2,

(6)

where the non-negative coefficients αη,σ and αγ,σ are chosen
for balancing the constituent terms with αη,σ + αγ,σ = 1.
Similarly, an application m in the slice category Mσ at time t
has an efficiency of Em(·), which depends on the utilities of
resource provisioning and the amount of resources allocated.
The resource efficiency of application flow m can be defined
as follows:

Em

(
r(t)m

)
= νη

gσ
(
τ (t)
)

ζ
(t)
m

+ νγ
fσ

(
δ(t)m

γ
(t)
m

)
δ
(t)
m

, m ∈M, (7)



where νη and νγ are non-negative weighting factors with νη +
νγ = 1. In the following subsection, we formalize our problem
formulation based on these developed metrics of slice utility
and resource efficiency.

D. Problem Formulation

The averaged system utility and system efficiency at time t
are computed as the combination of the averaged utility and
efficiency of the eMBB and the URLLC slices :

U
(
R

(t)
M , t

)
=
|M1|
|M|

U
(t)

1

(
R

(t)
M

)
+
|M2|
|M|

U
(t)

2

(
R

(t)
M

)
, (8)

E
(
R

(t)
M , t

)
=
|M1|
|M|

E
(t)

1

(
R

(t)
M

)
+
|M2|
|M|

E
(t)

2

(
R

(t)
M

)
, (9)

where

U
(t)

σ

(
R

(t)
M

)
=

1

|Mσ|
∑

m∈Mσ

Um

(
r(t)m

)
, σ ∈ Σ, (10)

E
(t)

σ

(
R

(t)
M

)
=

1

|Mσ|
∑

m∈Mσ

Em

(
r(t)m

)
, σ ∈ Σ, (11)

where RM = {r1, ..., rM}. The cardinality of M and Mσ

are represented as |M| and |Mσ| respectively. This measure
of system performance encapsulates the relative efficiency
and functionality across the respective applications. This
formulation can scale to capture a variety of different slices,
resource requirements, utility functions, and network topologies.
well as utility functions.

Finally, the dynamic multi-objective optimization problem
can be mathematically formulated as follows:

max
ζ
(t)
m,j ,δ

(t)
m,j

(
1

T

T∑
t=0

E
(
R

(t)
M , t

)
,
1

T

T∑
t=0

U
(
R

(t)
M , t

))T

(12)

s.t.
∑

m∈Mj

ζ
(t)
m,j ≤ Cη

j , ∀j ∈ J , (13)∑
m∈Mj

δ
(t)
m,j ≤ Cγ

j , ∀j ∈ J , (14)

where M j indicates the set of applications that cross the node
j ∈ J , respectively. The objective (12) aims to simultaneously
maximize the average system utility and resource efficiency
over a time horizon T . The constraints (13) and (14) ensure
resources allocated to the application flows at time t by node
j cannot exceed the node’s compute and memory resource
capacity.

IV. METHODOLOGY & FRAMEWORK

This section presents the MARL framework wherein the
Dueling Double Deep Q-Network (D3QN) algorithm is imple-
mented to enhance stability and accelerate convergence during
the training process.

A. Observations and Actions

We transform the original optimization problem (12)-
(14) into a distributed multi-agent problem with an un-
derlying Markov decision process (MDP) defined by the
tuple

(
N ,S, (Oi)i∈N , (Ai)i∈N , (Ri)i∈N , P, λ

)
. The set of

all agents is denoted by N with a cardinality of |N | = 2Jc.
The total state space of the environment is denoted by S and
can only be partially observed by each agent, which reflects a
degree of information degradation. The action space for agent i
is given by Ai, where A1 = A2 = ... = A2Jc

= {1, 2, ..., Na}
with total Na actions. Matrix P describes the probability of
state transitions. The discount factor, λ, captures the decreasing
value of future rewards. Furthermore, Ri refers to the reward
obtained by agent i following its action, and oi ∈ Oi denotes
the observation of agent i, where Oi is the observation space
of agent i.

Considering a type of resource agent associated with the
controller of resource node j, the observation of the agent at
time t can be denoted as

otj,h =

 ∑
m∈Mj

1

rt−1
m ,

∑
m∈Mj

2

rt−1
m ,

∑
m∈Mj

1

r̂t−1
m,j ,

∑
m∈Mj

2

r̂t−1
m,j ,

∑
j∈Θm

∑
m∈Mj

1

r̂t−1
m,j ,

∑
j∈Θm

∑
m∈Mj

2

r̂t−1
m,j ,Λ

t−1
j,h , Ch

j

 ,

(15)
where h ∈ {η, γ} signifies the index of resource type,

while rtm ∈ d
(t)
m and r̂tm,j ∈ r

(t)
m,j represent the requested and

allocated resources respectively. The set of applications in slice
σ across the node j is denoted asMj

σ . The variable Λt−1
j,h is an

array that contains actions on the adaptation of resource levels
for each slice category, where Λt−1

j,h =
[
ρ · ϕt−1

1 , ρ · ϕt−1
2

]
,

suggesting whether to increase, decrease, or maintain resources
in current state. The weighting factor ρ ∈ R controls the
magnitude of resource increment or reduction. Specifically,
ϕt
1, ϕ

t
2 ∈ {1,−1, 0}, and ϕσ = 1 indicates increasing the

resource for slice σ, while ϕσ = −1 and ϕσ = 0 suggest
decreasing and maintaining the resource. Therefore, considering
two slices in the network, there are three actions of resource
allocations for the eMBB slice and three actions for the
URLLC slice, which makes 9 potential actions for each
resource agent. Given an observation, the agent can select
an action out of Na = 9 candidate options represented by
atj,h ∈ Ai = {1, 2, ..., 9}. Then, the selected action is mapped
to the resource allocation decision ϕt

σ through a mapping
function F (·) defined as follows:(

ϕt
1, ϕ

t
2

)
= F

(
atj,h

)
. (16)

The controller of node j takes ot−1
j,h as input and returns the

action atj,h at time t. Then, the r̂tm,j can be calculated as
follows:

r̂tm,j =

∑
m∈Mj

σ
r̂t−1
m,j + ρ · ϕt

σ

|Mj
σ|

,m ∈Mσ, j ∈ Θm. (17)



We then incorporate the minimum adjustment method to prevent
resource allocation at node j from exceeding the node capacity.
This can be described as follows:

r̂tm,j ← r̂tm,j min

{
1,

Ch
j∑

m∈Mj
1∪Mj

2
r̂tm,j

}
. (18)

B. Reward Function

The performance of our proposed resource orchestration
framework is based on the optimal policies of the agents,
which are designed to maximize the system’s overall utility
and resource efficiency. Thus, given a resource agent associated
with the controller in node j and an application set Mj

1 ∪M
j
2,

the reward at time t is formulated as follows:

Rt
j,h(o

t
j,h, a

t
j,h) = −B1 · F

 ∑
j∈Θm

∑
m∈Mj

1

r̂tm,j −
∑

m∈Mj
1

rtm


−B2 · F

 ∑
j∈Θm

∑
m∈Mj

2

r̂tm,j −
∑

m∈Mj
2

rtm

+B3,

(19)
where B1, B2, and B3 are positive weighting parameters to
balance the contribution of each term within the reward function.
The value of B2 should far exceed B1, reflecting the priority
of the URLLC slice. The function F (·) is defined as follows:

F (x) =

{
y(x), x < 0,

0, else,
(20)

where y(x) is a convex, monotonically decreasing function
with y(x) = 0 at x = 0. The reward function is a compound
measure that amalgamates two distinct square terms: the
former aggregates the difference between the total amount of a
particular type of resource h allocated to the eMBB application
flows at node j and the aggregated resource request of the
eMBB application flows at time t. Similarly, the latter term
indicates the same process for the flows in the URLLC slice
category across node j at time t. Consequently, the reward
function at node j exhibits interdependence between multiple
agents.

C. Training Procedure

We use a Markov chain (MC) to generate the requirements
for each application flow m ∈ Mσ. The MC model has Ns

states which are randomly sampled within a range specified
in Table I. The transition matrix P is constrained such
that Pi,j = 0 : |i − j| > 1, ∀ i, j ∈ {1, 2, ..., Ns}. This
implies that state transitions are restricted to neighboring
states only based on the given probabilities. Each application
flow has an independent sampling process from the Ns

requirement states. The variability in the number of application
flows and their respective resource requests can aggregate to
exceed network capacity, making selective resource allocation
necessary. During the training, the policies of the agents may
cause some application flows to suffer reduced performance as
the system endeavors to maximize overall system performance.

An appropriate level of aggregation can help increase the
dynamics of the network environment, enabling agents to
learn the optimal policy effectively. At the beginning of every
episode, we generate a random number of application flows,
each assigned a static route consisting of a randomly generated
node path. Each episode has T time slots. We update resource
requests for every episode (every time slot during testing) based
on the transition matrix P. As training proceeds, we gradually
decrease the exploration to encourage the agent to utilize its
learned strategies, preventing it from settling for sub-optimal
actions.

Fig. 4: Example network topology comprising of access nodes, edge
nodes, and Core nodes. The size of the nodes are proportional to the
amount of compute and memory resources available at those nodes.

Fig. 5: Evolution of averaged training reward for compute resource
agents.

V. SIMULATION AND RESULTS ANALYSIS

In this section, we first describe the simulation settings and
subsequently present the results for evaluating the performance
of our proposed framework and comparing it with baseline
strategies.

A. Simulation Setup

Our simulations are conducted using a Python 3.7 envi-
ronment, utilizing the Pytorch 1.10.1 library. The training



(a) Random Strategy (b) Static Strategy (c) MARL

Fig. 6: Compute resource allocation for an application of URLLC slice category.

Parameters Value
Number of application traffic chains, M 2∼8
Compute resource capacity at node j, Cη

j {30, 60}
Memory resource capacity at node j, Cγ

j {30, 60}
Compute resource demand of App m, ηm 20 ∼ 65
Memory resource demand of App m, γm 30 ∼ 75

Total training episodes Ntrain 5000
Total testing episodes Ntest 25
Number of MDP states Ns 10

Learning rate, µ 5e-5
Discount factor, λ 0.99

Time segments for each episode, T 100
Function f1(·) parameters (β1, β2, a1, b1, w) 0.2, 0.8, 10, -4, 1.8

Function f2(·) parameters (a2, b2) 45, -40
Function gσ(·) parameters (c1, c2) 0.2, 1

Slice 1 Utility weight parameters (αη,1, αγ,1) 0.5, 0.5
Slice 2 Utility weight parameters (αη,2, αγ,2) 0.5, 0.5

Efficiency weight parameters (νη , νγ ) 0.5, 0.5
Resource node number, N 9

Relay buffer size 5e5
Network soft update parameter 5e-3

Amplitude of guidance, ρ 3
Performance function constants (B1, B2, B3) 0.05, 5, 100

Hidden network layer size [25, 25]
Observation Size 9

Action Size 1
Batch Size 256

TABLE I: Simulation Parameters.

was carried out on an Nvidia GeForce MX350 with 8 GB
memory and took 23 hours. The network topology used in our
simulation experiments is shown in Fig. 4, which is inspired by
the edge-cloud architecture in next generation communication
applications particularly in industrial settings [33]. The network
topology contains three core nodes, each connected to two edge
nodes, each having distinct levels of compute and memory
resource capacities. Each edge node is interconnected with
a multitude of access nodes. Access nodes serve as critical
junctures, acting as the start and end points for flow traffic.
During the simulation, we construct application flows by
initial selection of a pair of access nodes. Subsequently, the
intermediate paths are determined by randomly sampling from
the available paths between the two nodes. The nodes within any
given flow path must be unique, thereby excluding the possibil-
ity of cyclic paths. During the training phase, the initial resource

capacities for both the edge nodes and the core nodes were
configured according to normal distributions,(µ = 30, σ2 = 1)
for the edge nodes and (µ = 60, σ2 = 2) for the core nodes.
We choose y(x) = x2 for reward function Rt

j,h(·) in equation
(20). A comprehensive list of parameter values used in the
simulations is provided in Table I.

B. Performance Analysis

The averaged training results of all agents across the network
controlling a particular resource are depicted in Fig. 5, which
illustrates the convergence trend of the learning process over
the episodes.

We use the following baseline methods as benchmarks for
comparative analysis:

1) Random Strategy: Allocation of resources to each slice
at every resource node was executed in a stochastic
manner without regard to the specific needs or priorities
of the slices.

2) Static Strategy: A predetermined static allocation
protocol that each slice receives an equal, invariant
allocation of fifty percent of the total resource capacity
at every node, regardless of the fluctuating aggregated
requirements of the individual slices.

Fig. 6 exhibits the requested, allocated compute resource,
and delay patterns observed under different orchestration
approaches, providing an intuitive understanding of how the
orchestration of compute resource affects compute latency.
In Fig. 6a, the allocation pattern resulting from the random
strategy is displayed. It is evident that resource allocation under
this strategy does not correlate with the pattern of resource
requirements. Fig. 6b shows the allocation patterns that emerge
from the static strategy. From this observation, the allocation
remains fixed and fails to adapt to the dynamic nature of
resource requests over time. As demonstrated in Fig. 6c, the
DRL strategy showcases an adaptive and responsive pattern
of orchestration. This strategy dynamically reduces resource
allocation when the demands are fulfilled and increases the
allocation in response to unmet requests.

In the subsequent analysis, we examined the system utility
and efficiency considering both compute and memory resource
orchestration given the limited resource capacity. For both



(a) Slice compute resource utility (b) Slice memory resource utility

Fig. 7: Averaged efficiency vs the number of flows.

(a) Slice compute resource efficiency (b) Slice memory resource efficiency

Fig. 8: Averaged efficiency vs the number of flows.

types of resources, the core nodes are provisioned with an
overall capacity of 20 units, while the fog nodes have a
designated capacity of 10 units. The methodology for defining
utility and efficiency metrics is presented in Section III. We
initiated the process by varying the total number of application
flows from 2 to 8 incorporated in the system. For each flow
number setting, we undertook Ntest episodic tests to evaluate
performance. The results obtained from these episodes were
then averaged, providing a measure of efficiency and utility
under the various orchestration approaches. Fig. 7 reveals
that the static method achieves superior utility specifically for
eMBB slice. Conversely, the random strategy demonstrates the
lowest utility for both slices. However, it’s significant to point
out that the DRL strategy delivers the highest utility for the
URLLC slice. Considering the system orchestration efficiency,
as illustrated in Fig. 8, it is worth noting that the DRL strategy

demonstrates enhanced resource efficiency for all types of
slices. Specifically, for the eMBB slice, it is evident that a
smaller resource allocation achieves greater utility, ascribed to
the comparatively relaxed requirements of applications within
this slice. In contrast, the demanding characteristics of the
URLLC slice necessitates a greater allocation of resources to
satisfy its stringent requirements.

VI. CONCLUSION

In our study, a thorough network slicing environment model
has been developed, accounting for two categories of slices.
We propose a resource orchestration scheme that employs
a multi-agent reinforcement learning (MARL) framework to
manage the dynamic and diverse network conditions inherent
to decentralized network architectures. Extensive comparative
evaluations have confirmed the enhanced system utility and



efficiency of our MARL-based resource orchestration approach,
under conditions of scarce resources. For future work, we plan
to augment our network resource orchestration framework with
an additional class of agent, specifically designed for resource
reservation. By integrating this new agent, we anticipate the
establishment of more robust defensive strategies that will
maintain the integrity and reliability of network services under
adverse conditions.
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