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Abstract

We prove that the period mapping is dominant for elliptic surfaces over an elliptic curve with 12 nodal fibers, and
that its degree is larger than 1. This settles the final case of infinitesimal Torelli for a generic elliptic surface.
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1. Introduction

In order to distinguish smooth projective varieties varying in a family with continuous parameters, it
is often useful to integrate the holomorphic forms over topological cycles. This idea was used to great
effect classically to distinguish smooth curves of a given genus ý > 0. A modern reformulation of this
problem in higher dimension asks whether the period mapping from a moduli space of varieties to an
associated space of periods is injective, either locally or globally on the source. We will show that while
the local injectivity statement is true generically, the global statement fails for an important class of
elliptic surfaces.

An elliptic surface is a smooth, projective surface S equipped with a relatively minimal, genus
one fibration ÿ : ÿ → ÿ to a smooth curve and a distinguished section s. Moduli spaces ýý,ý of
elliptic surfaces are indexed by two nonnegative integers, ý = ý(ÿ) and ý = 1

12 ÿtop(ÿ). Counted with
multiplicity, there are 12ý singular fibers. The canonical bundle of S is pulled back from a line bundle
ÿ ⊗ ÿÿ of degree ý + 2ý − 2 on C. We henceforth assume ý > 0 (that is, S has at least one singular
fiber) so that ýý (ÿ) := ℎ0 (ÿÿ) = ý + ý − 1.

In this paper, we focus on the moduli space ý := ý1,1. Since ý(ÿ) = 1, ÿÿ = ÿ∗ÿ for a degree 1
line bundle ÿ = Oÿ (ý), and generically the fibration ÿ has 12 singular fibers. There is a morphism
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ÿ → ÿ contracting ADE configurations in fibers not intersecting the section s. This contraction has a
Weierstrass form [Kas77]

ÿ = {ÿ2 = ý3 + ÿý + ÿ} ⊂ Pÿ (ÿ2 ⊕ ÿ3 ⊕ O),

where ÿ ∈ ÿ0(ÿ, ÿ4) and ÿ ∈ ÿ0(ÿ, ÿ6). A quick parameter count reveals that dim ý = 1+4+6−1 = 10
where the parameters are, respectively, the j-invariant of (ÿ, ý), the section a, the section b and the
quotient by the action of ÿ ∈ C∗ via (ÿ, ÿ) ↦→ (ÿ4ÿ, ÿ6ÿ).

Noether9s formula implies that the Hodge numbers of S are ℎ2,0 (ÿ) = ℎ1,0 (ÿ) = 1 and ℎ1,1 (ÿ) = 12.
The Neron-Severi group NS(ÿ) = ÿ1,1 (ÿ,C) ∩ ÿ2 (ÿ,Z) always contains the classes of the fiber f and
section s which have intersection numbers ý2 = −1, ý · ÿ = 1, ÿ 2 = 0. Hence, there is a copy of the odd
unimodular lattice

ý1,1 
 Zý ⊕ Z(ý + ÿ ) ⊂ NS(ÿ).

Its orthogonal complement {ý, ÿ }⊥ ⊂ ÿ2 (ÿ,Z) is an even (since [ÿÿ] = ÿ ), unimodular lattice of
signature (2, 10), so it is isometric to ýý2,10 = ÿ ⊕ ÿ ⊕ ý8.

Let � := ÿ (ýý2,10) and define the period domain to be

D := P{ý ∈ ýý2,10 ⊗ C
�� ý · ý = 0, ý · ý̄ > 0}.

It is a ten-dimensional Type IV Hermitian symmetric domain. By general results of Griffiths [Gri68],
there is a holomorphic period map ÿ : ý → D/� sending [ÿ] ∈ ý to the line ÿ2,0 (ÿ) ⊂ {ý, ÿ }⊥ ⊗ C.
This map is only well-defined mod � since the isometry {ý, ÿ }⊥ → ýý2,10 is ambiguous up to post-
composition by an element of �. We may now state the first theorem of the paper:

Theorem 1.1. P is dominant.

Remark 1.2. For surfaces S with ℎ2,0 (ÿ) ≥ 2, the associated period map cannot be dominant due to
Griffiths transversality. The general member ÿ ∈ ýý,ý satisfies ℎ2,0 (ÿ) = 1 only when (ý, ý) = (1, 1)
or (ý, ý) = (0, 2). In the latter case, the surfaces under consideration are elliptic K3 surfaces. By the
Torelli theorem for K3 surfaces [PSS71, LP81], the period mapping gives an isomorphism onto the
corresponding period space.

A local, respectively infinitesimal, Torelli theorem verifies the local injectivity of P, respectively
injectivity of ýÿ, at some point. Such a result implies that P is generically finite onto its image. A
generic Torelli theorem further proves that P is generically one-to-one onto its image. Finally, a global

Torelli theorem implies that P is an embedding, or an isomorphism if the dimensions are appropriate.
We prove that, unlike for K3 surfaces,

Theorem 1.3. deg ÿ > 1. Thus, generic Torelli is false for ÿ : ý → D/�.

Remark 1.4. By a result of Lönne [Lö2], the monodromy representation for the universal family over
F is the subgroup of ÿ (ýý2,10) preserving the connected component of D, so P does not factor through
D/�′ for any subgroup �′ ⊂ �.

To prove Theorem 1.1, we employ a degeneration argument, similar to Friedman9s proof [Fri84]
of the Torelli theorem for K3 surfaces. First degenerate the base curve C to a nodal curve ÿ0 formed
from gluing two points on P1. An elliptic fibration ÿ → ÿ may be degenerated to an elliptic fibration
ÿ0 → ÿ0, and the simplest case is when the fiber over the node of ÿ0 is smooth. Normalizing,

ÿÿ
0 = ÿ → P1 = ÿÿ

0

is an elliptic fibration with (ý, ý) = (0, 1) – that is, a rational elliptic surface. To reconstruct ÿ0 from X,
we glue two smooth fibers ÿý and ÿÿ for ý, ÿ ∈ P1 in such a way that a section of ÿ → P1 is glued to
form a section of ÿ0 → ÿ0.
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The period map for such singular surfaces ÿ0 does not land in D/�, but maps into the boundary
divisor � of a toroidal extension D/� ↩→ (D/�)II. It suffices to prove that the boundary period map
ÿII : {moduli of ÿ0} → � is dominant. We find an explicit surface ÿ0 for which any deformation of
its period deforms its moduli. Thus, ÿII has at least one fiber containing a 0-dimensional component,
implying dominance of ÿII, and in turn, P.

To prove Theorem 1.3, we describe a second type of degeneration of ÿ → ÿ, to a fibration ÿ0 → ÿ

(here the base stays constant) whose generic fiber is a nodal curve. We analyze the limiting period
mapping for these surfaces and prove that they too map dominantly into the boundary divisor � . Since
two different degenerations dominate the same divisor � , we obtain that deg ÿ > 1.

Our method of proof suggests an interesting conjecture. Each surface ÿ ∈ ý contains two natural
elliptic curves meeting at a point: the unique representative of the canonical class ÿÿ and the marked
section curve s. The degenerations we employ in the proof leave one of these curves fixed and degenerate
the other to a nodal curve. Conjecture 4.5 describes a birational involution of F, which commutes with
the period mapping, and swaps the roles of the two natural elliptic curves.

History of the result

In 1983, M.-H. Saito [Sai83] claimed to prove the following infinitesimal Torelli theorem for elliptic
surfaces: the differential ýÿ is injective if the j-invariant map ÿ : ÿ → P1

ÿ is non-constant, and ℎ2,0 (ÿ) =

ý + ý − 1 > 0. However, in 2019, Ikeda [Ike19] found a four-dimensional family B ⊂ ý1,1 for which
ÿ
��
B

has three-dimensional image, despite the general member of B having non-constant j-map. Thus,
[Sai83] has a gap, but the proof still works when ÿÿ is basepoint free. Observe that ÿÿ 
 ÿ∗(ÿ ⊗ÿÿ ) is
basepoint free for all ÿ ∈ ýý,ý when ý > 0 and ý > 1, and ÿÿ is basepoint free for generic ÿ ∈ ýý,ý when
ý > 1 and ý = 1. The only cases where ÿÿ fails to be basepoint free for generic S are (ý, ý) = (1, 1)
and (ý, ý) = (0, 1). The latter is the case of rational elliptic surfaces, where the period map is trivial.

In 2020, R. Kloosterman [Klo22] independently proved that the infinitesimal Torelli theorem holds
for elliptic surfaces with non-constant j-map when ý ≠ 1, or when ý = 1 and ℎ0 (ÿ, ÿ) = 0. The
techniques generalized those of Kiı̆ [Kiı̆78] and Lieberman-Wilsker-Peters [LWP77] from the ý = 0 case.
Conversely, Kloosterman conjectured [Klo22, Conj. 6.1] that when ý = ℎ0 (ÿ, ÿ) = 1, the infinitesimal
Torelli theorem is false. But this condition holds at every point of ý1,1, so our Theorem 1.1 proves that
Kloosterman9s conjecture is, in fact, false.

Regarding a generic Torelli theorem, Chakiris [Cha82] proved that generic Torelli holds in the ý = 0,
ý ≥ 2 case. Recently, Shepherd-Barron [SB20] has generalized these results to a higher genus base:
elliptic surfaces ÿ → ÿ with ÿ = ℎ1,0 (ÿ) and ýý = ℎ2,0 (ÿ) satisfying the bounds 4ýý > 5(ÿ − 1),
ýý ≥ ÿ + 3 also obey a generic Torelli theorem. By our Theorem 1.3, generic Torelli is false when
ýý = ÿ = 1. Hence, the second linear inequality ýý ≥ ÿ + 3 appears to be necessary for Shepherd-
Barron9s results to hold.

2. Type IIÿ degenerations

Let ÿ0 : ÿ0 → ÿ0 be an elliptic fibration over an irreducible, nodal, arithmetic genus one curve ÿ0

with smooth fiber over the node, and ÿtop(ÿ0) = 12. Such a fibration has a Weierstrass form {ÿ2 =

4ý3 − ÿ0ý − ÿ0} with ÿ0 ∈ ÿ0 (ÿ0,Oÿ0 (4ÿ0)) and ÿ0 ∈ ÿ0 (ÿ0,Oÿ0 (6ÿ0)) for some point ÿ0 ∈ (ÿ0)sm.
See Figure 1.

Let ÿ0 ↩→ C be a smoothing over (ý, 0) to a genus 1 curve, with smooth total space, and let P be
an extension of ÿ0 to a section of ÿ : C → (ý, 0). Then, for any ý > 0, Cohomology and Base Change
[Har77, III.12.11] implies that ÿ∗OC (ýP) is a rank k vector bundle over B. In particular, ÿ0, ÿ0 extend
locally to sections a, b of ÿ∗OC (4P), ÿ∗OC (6P), and so we can smooth the elliptic fibration ÿ0 ↩→ S

over (ý, 0). The resulting total space S is smooth with ÿ0 reduced normal crossings. The double locus
D is the smooth elliptic curve fibering over the node of ÿ0.
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Figure 1. A Type IIÿ surface ÿ0 with double locus D and section s.

Definition 2.1. We call such a degeneration S → C → (ý, 0) a Type IIÿ degeneration, and we call the
central fiber ÿ0 a Type IIÿ elliptic surface.

The subscript b indicates that the base degenerates. The terminology is motivated by a similar
terminology in the classification of one-parameter degenerations of K3 surfaces due to Kulikov and
Persson-Pinkham [Kul77, PP81]. They classify their ÿS -trivial, reduced normal crossing degenerations
into Types I, II, III depending on the depth of the singularity stratification of ÿ0. Here, we instead have
ÿS = OS (F) for a relative fiber F → (ý, 0).

As a reduced normal crossing degeneration, the Picard-Lefschetz transformation ÿ : ÿ2(ÿý ,Z) →

ÿ2 (ÿý ,Z) is unipotent and has a logarithm ý := logÿ . Furthermore, there is a formula for N which
can be deduced from the Picard-Lefschetz transformation for a nodal degeneration of curves, or from
[Cle69, Thm. 5.6].

Let ÿý ⊂ ÿý denote the vanishing 1-cycle of the node of ÿ0. Since the fiber over the node of ÿ0 is
smooth, the restriction of the elliptic fibration ÿý : ÿý → ÿý to the curve ÿý is a topologically trivial
2-torus bundle. Trivialize it, and let ÿ, ÿ be oriented generators of the homology of some fiber. Define
ÿ := [ÿý × ÿ] ∈ ÿ2 (ÿý ,Z), ÿ := [ÿý × ÿ] ∈ ÿ2 (ÿý ,Z). Then,

Proposition 2.2. ý (ý) = (ý · ÿ)ÿ − (ý · ÿ)ÿ.

Here ÿ, ÿ ∈ {ý, ÿ }⊥ because ý, ÿ are classes of line bundles on the total space S , and hence
monodromy-invariant. So the classes ÿ, ÿ determine a rank 2 isotropic lattice ý := (Zÿ ⊕ Zÿ)sat ⊂ ýý2,10.

Let ýý be the unipotent subgroup of Stab� (ý) acting trivially on I and ý⊥/ý. From the theory of
toroidal compactifications [AMRT75] (see also [Loo03, Sec. 1A], [AE23, Prop. 4.16] for the case of
Type IV domains), the unipotent quotient

D/ýý ↩→ ýý

embeds as a punctured disk bundle inside a C∗-bundle ýý → ý⊥/ý ⊗ E . Here E is the universal elliptic
curve over C \ R whose fiber over ÿ ∈ C \ R is the elliptic curve C/Z ⊕ Zÿ. Since ÿ ∈ ýý the period
map P induces a holomorphic period map ý∗ → D/ýý .

We enlarge ýý ↩→ ýý to a line bundle and define (D/ýý )
II as the closure ofD/ýý in ýý . This closure

is a holomorphic disk bundle over ý⊥/ý ⊗ E . The nilpotent orbit theorem [Sch73, Thm. 4.9] (the case
at hand follows as in [Fri84, Thm. 4.2]) implies that the period map from ý∗ extends to a holomorphic
map ÿ : (ý, 0) → (D/ýý )

II sending 0 into the boundary divisor � := ýý \ ýý . As the zero-section of
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the line bundle, the boundary divisor is naturally isomorphic to

� 
 ý⊥/ý ⊗ E .

Note that ý⊥/ý is an even, negative-definite, unimodular lattice of rank 8, which uniquely determines it
to be ý⊥/ý = ý8.

There is also a direct construction of the period point ÿ(0) ∈ ý8 ⊗ E from the singular surface ÿ0

described as follows. Let ÿ → P1 be the rational elliptic surface normalizing ÿ0 → ÿ0 and denote the
section and fiber classes again by s and f. Then {ý, ÿ }⊥ ⊂ ÿ2(ÿ,Z) is isomorphic to ý8. Let ÿý and
ÿÿ be the two elliptic fibers glued to form the double locus D of ÿ0. A class ÿ ∈ {ý, ÿ }⊥ defines a line
bundle Lÿ ∈ Pic(ÿ), and we declare

ÿÿ0 (ÿ) := Lÿ

��
ÿý

⊗ Lÿ

��−1
ÿÿ

∈ ý := Pic0(ÿý), (2.1)

where we have used the gluing isomorphism ÿý → ÿÿ to form the tensor product of these two
restrictions.

Then ÿÿ0 defines a homomorphism ÿÿ0 ∈ Hom(ý8, ý) 
 ý8 ⊗ ý . Fixing an identification of {ý, ÿ }⊥

with a fixed copy of the ý8 lattice, then deforming ÿ0 in moduli of Type IIÿ surfaces, we get a local
holomorphic period map

ÿII : Defÿ0 → Hom(ý8, E),

which is identical to the extension of P coming from the nilpotent orbit theorem. The equivalence
of these two definitions of the period map follows from Carlson9s description [Car85] of the mixed
Hodge structure on ÿ0; see Section 6 and Proposition 6.6. From this description of the boundary period
mapping, we see the following:

1. To prove that P is dominant, it suffices to show that ÿII is dominant from the moduli of Type IIÿ
elliptic surfaces to Hom(ý8, E).

2. On Type IIÿ surfaces, the period map ÿII is constructed by comparing the restriction of a line bundle
in {ý, ÿ }⊥ ⊂ Pic(ÿ) to the two glued fibers.

Observe that (1) follows from the observation at the beginning of this section that every Type IIÿ
elliptic surface is smoothable to the interior of F, so the Zariski closure of im(ÿ) ⊂ (D/�)II must
contain im(ÿII).

3. Dominance of the period map

Fix a smooth cubic ÿ ⊂ P2 and let ÿ ∈ ÿÿÿ3 (C) be generic. Then D and ÿ(ÿ) generate a pencil of
cubics with 9 distinct base points. Blowing up at the nine base points ÿ ∩ ÿ(ÿ) = {ý1, . . . , ý9} of this
pencil, we get a rational elliptic surface ÿ → P1, together with an isomorphism ÿ : ÿ → ÿ(ÿ) between
two of its fibers. The nine blow-ups give rise to nine exceptional sections ý1, . . . , ý9 of the resulting
elliptic fibration. Let ý : ÿ → ÿ be an arbitrary translation and consider the surface ÿ0 which results
from gluing our two fibers of ÿ → P1 by the isomorphism

ÿ ◦ ý : ÿ → ÿ(ÿ).

This construction defines a family of singular surfaces S → ý over a Zariski open subset ý ⊂

ÿÿÿ3 (C) × ý where ý := Pic0 (ÿ).
A very general surface over (ÿ, ý) does not have a section, as there are only countably many sections

of ÿ → P1; for a sufficiently general translation t, none of these will glue to a section of the singular
surface. Still, for all such surfaces, there is a period homomorphism ÿÿ0 : ÿ2(ÿ,Z) → ý defined by
(2.1). It descends to the rank 9 quotient ÿ := ÿ2(ÿ,Z)/Z ÿ because ÿ |ÿ = Oÿ and ÿ |ÿ (ÿ) = Oÿ (ÿ) .

https://doi.org/10.1017/fms.2024.85 Published online by Cambridge University Press
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There is a translation action of ý ∈ ý on U given by (ÿ0, ý0) ↦→ (ÿ0, ý0 ◦ ý) =: (ÿ′
0, ý

′
0). It acts on the

period homomorphism as follows:

ÿÿ′
0
(ÿ) = ÿÿ0 (ÿ) + (ÿ · ÿ )ý. (3.1)

From this formula, we deduce that the dominance of the period map for Type IIÿ elliptic surfaces is
equivalent to dominance of the more general period map

ÿÿÿ3 (C) × ý � Hom(ÿ, ý). (3.2)

Consider the codimension one subtorus of Hom(ÿ, ý) for which ÿÿ0 (ℎ) = 0 ∈ ý , where h is the
pullback of the hyperplane class on P2. The inverse image of this subtorus contains, as a component, the
locus of (ÿ, ý) for which ý = 0, because under a projective linear identification ÿ, we have ÿ∗Oÿ (ÿ) (1) =
Oÿ (1). Thus, the dominance of (3.2) is implied by the dominance of

ÿÿÿ3 (C) � Hom(ÿ2 (ÿ,Z)/Z ÿ + Zℎ, ý). (3.3)

This follows because the action of ý ∈ ý on Hom(ÿ, ý) described by (3.1) is translation by an elliptic
subcurve transverse to the codimension 1 subtorus of Hom(ÿ, ý) appearing on the right-hand side
of (3.3).

Finally, Z9 
 span{ýÿ

�� ÿ = 1, . . . , 9} = ℎ⊥ surjects onto ÿ2 (ÿ,Z)/Z ÿ + Zℎ. Pulling back the period
map to this lattice, we get a map

ÿÿÿ3 (C) � Hom(Z9, ý)/ÿ9

ÿ ↦→ {ÿÿ0 (ý1), . . . , ÿÿ0 (ý9)}.
(3.4)

Here, the base points ÿ ∩ ÿ(ÿ), and hence the exceptional curves ýÿ , are not canonically ordered; they
are permuted by the monodromy of the universal family. This is why we must quotient the target by the
symmetric groupÿ9. Since

∑9
ÿ=1 [ýÿ] = 3ℎ − ÿ in ÿ2 (ÿ,Z), the image of the period map (3.4) lands in

{(ÿ1, . . . , ÿ9) ∈ ý9
�� ÿ1 + · · · + ÿ9 = 0}/ÿ9 = ý8 ⊗ ý/ÿ (ý8) 
 P

8.

The last isomorphism follows from a well-known theorem of Looijenga [Loo76]. Applying the definition
of ÿÿ0 gives a very explicit construction of (3.4):

Definition 3.1. Fix a smooth cubic ÿ ⊂ P2. Define ý := Pic0(ÿ) and let ý : Sym9ý → ý denote the
addition map. For a generic ÿ ∈ ÿÿÿ3 (C), set ÿ ∩ ÿ(ÿ) = {ýÿ}

9
ÿ=1 and ÿÿ := ÿ−1 (ýÿ) ∈ ÿ. We define

« : ÿÿÿ3 (C) � ý−1(0) 
 P8

ÿ ↦→ {Oÿ (ýÿ − ÿÿ)}
9
ÿ=1.

(3.5)

Theorem 3.2. The rational map « from (3.5) is dominant. Thus, the period mapping for Type IIÿ
surfaces is dominant.

Proof. Let ÿ ⊂ ÿÿÿ3 (C) be the finite subgroup for which ý(ÿ) = ÿ. We claim that « extends, as a
morphism, from U to ÿÿÿ3 (C) \ÿ. This is easy: the map « extends continuously because ÿ ∩ ÿ(ÿ) is
still a finite set for all ÿ ∈ ÿÿÿ3 (C) \ÿ. Normality of ÿÿÿ3 (C) \ÿ implies that a continuous extension
is algebraic.

We choose D and ÿ carefully so that the set ÿ ∩ ÿ(ÿ) has only three elements. Concretely, consider
the extremal cubic pencil ÿ9111 → P1

[ÿ:ÿ] in the notation of [MP86], given by the equation

ÿ(ý2ÿ + ÿ2ÿ + ÿ2ý) + ÿ(ýÿÿ) = 0.
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Figure 2. The pencil generated by two cubics, shown in red and black, with set-theoretic base locus

three blue points.

See Figure 2. Let ÿ := ÿ [ÿ:ÿ] be a generic fiber, and let ÿ = diag(1, ÿ3, ÿ
2
3 ) where ÿ3 is a primitive third

root of unity. Then ÿ(ÿ) = ÿ [ÿ3ÿ:ÿ] , and so D and ÿ(ÿ) generate the pencil. The intersection multiset
ÿ ∩ ÿ(ÿ) is {3ý1, 3ý2, 3ý3} where

ý1 = [1 : 0 : 0], ý2 = [0 : 1 : 0], ý3 = [0 : 0 : 1] .

Since this ÿ ∈ ÿÿÿ3 (C) fixes ý1, ý2, ý3, the period «(ÿ) = {0, . . . , 0} ∈ Sym9ý vanishes. To prove
that « is dominant, it suffices to show that there is no small deformation ÿ′ ∈ ÿÿÿ3 (C) of ÿ for which
«(ÿ′) = {0, . . . , 0}.

Suppose, to the contrary, that there were. Since «(ÿ′) = {0, . . . , 0}, every base point in ÿ ∩ ÿ′(ÿ)

is fixed by ÿ′. If |ÿ ∩ ÿ′(ÿ) | ≥ 4, then ÿ′ must fix a line in P2. This is impossible for a small
deformation of ÿ, which has isolated fixed points. Conversely, |ÿ ∩ ÿ′(ÿ) | ≥ 3 because each of ý1,
ý2, ý3 deforms to some fixed point of ÿ′. Hence, ÿ′ fixes exactly three points ý′

1, ý′
2, ý′

3. Furthermore,
ÿ ∩ ÿ′(ÿ) = {3ý′

1, 3ý
′
2, 3ý

′
3} as a multiset, again because ÿ′ is near ÿ, and the map

ÿÿÿ3 (C) \ ÿ → Sym9(ÿ)

sending ÿ′ ↦→ ÿ ∩ ÿ′(ÿ) with multiplicities is continuous.
Since multý′

ÿ
(ÿ ∩ ÿ′(ÿ)) ≥ 2, we deduce that ÿ′ preserves the tangent direction ÿý′

ÿ
ÿ and the

corresponding tangent line ÿ ′
ÿ . Thus, ÿ′ ∈ ÿÿÿ3 (C) fixes the point ÿ ′

ÿ ∩ ÿ ′
ÿ ∈ P2. But, as we noted

before, ÿ′ only fixes three points (this holds not just on D but in the ambient plane P2). Using that ÿ′ is
a small deformation of ÿ, we deduce that

ÿ ′
1 ∩ ÿ ′

2 = ý′
2, ÿ

′
2 ∩ ÿ ′

3 = ý′
3, ÿ

′
3 ∩ ÿ ′

1 = ý′
1.

Write ý′
ÿ = ýÿ + ýÿ for a translation ýÿ . By the addition law on a cubic, we have

2ý′
1 = −ý′

2, 2ý′
2 = −ý′

3, 2ý′
3 = −ý′

1

from which we can conclude that ý1 = (−2)3ý1 i.e. ý1 is 9-torsion. But since ýÿ are small, we conclude
that ý1 = ý2 = ý3 = 0 and so ý′

ÿ = ýÿ .
Thus, ÿ′ fixes (ý1, ý2, ý3), implying that ÿ′ ∈ (C∗)2 ⊂ ÿÿÿ3 (C) lies in the maximal torus associated

to the coordinates [ý : ÿ : ÿ]. Furthermore, ÿ′ preserves the base locus scheme ÿ ∩ ÿ′(ÿ), as this is
the unique subscheme of D which has length 3 at each of ý1, ý2, ý3. So ÿ′ induces an automorphism
of the pencil generated by D and ÿ′(ÿ). Since the automorphism group of a rational elliptic surface is
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8 P. Engel, F. Greer and A. Ward

discrete, and ÿ′ is a small deformation of ÿ, the automorphism ÿ′ must have order 3. But no nontrivial
small deformation of ÿ = diag(1, ÿ3, ÿ

2
3 ) within the torus (C∗)2 has order 3. This is a contradiction. �

Remark 3.3. Our original proof of Theorem 3.2 checked by computer that ý« was nondegenerate for
an explicitly chosen D and ÿ.

Proof of Theorem 1.1. By the discussion at the end of Section 2, P is dominant if ÿII is. The latter
follows from Theorem 3.2. �

4. Type II ÿ degenerations

We consider in this section degenerations of ÿ → ÿ that keep the base C constant. These are never of
Type IIÿ because in all such degenerations, ÿ (ÿ) → ∞.

Take a one-parameter deformation of ÿ, ÿ ∈ ÿ0 (ÿ,Oÿ (4ý)), ÿ0(ÿ,Oÿ (6ý)) over (ý, 0) until the
discriminant 4ÿ3

0 + 27ÿ2
0 = 0 ∈ ÿ0(ÿ,Oÿ (12ý)) vanishes identically. For instance, we can take the

fiber over 0 ∈ ý to be

ÿ2 = ý3 − 3ÿ2ý + 2ÿ3

with ÿ ∈ ÿ0(ÿ,Oÿ (2ý)). The degeneration

S → ÿ × ý → (ý, 0)

of elliptic surfaces has a central fiber ÿ0 → ÿ whose generic fiber is irreducible nodal, with two
cuspidal fibers over the zeroes of r. In particular, the normalization ÿ

ÿ

0 := ÿ → ÿ is the smooth P1-
bundle ÿ = Pÿ (O ⊕ ÿ), and ÿ0 is reconstructed from gluing a bisection D of ÿ → ÿ, branched over the
two zeroes of r. This bisection D is glued along the involution switching the two sheets of ÿ : ÿ → ÿ.

For future reference, note that NS(ÿ) 
 ÿ2(ÿ,Z) is spanned by the P1-fiber class f and the class of
the section ý∞ = Pÿ (O ⊕ 0), with intersection form

ÿ · ÿ = 0, ý∞ · ÿ = 1, ý∞ · ý∞ = −1,

and ÿÿ = − ÿ − 2ý∞. The other natural section ý0 = Pÿ (0 ⊕ ÿ) has class ÿ + ý∞.
The bisection ÿ ⊂ ÿ has genus 2, being a double cover of C branched over two points. Thus, its

cohomology class is [ÿ] = 2 ÿ + 2ý∞ = −ÿÿ + ÿ = 2ý0. Note that [ÿ]2 = 4 and [ÿ] · ÿÿ = −2. The
section s that is present on the smooth surfaces in the family S limits to ý∞, which is the unique section
of X disjoint from D.

Proposition 4.1. Generically, two singular fibers limit to each cuspidal fiber of ÿ0. The limits of the

remaining eight singular fibers lie over a degree 8 divisor in C. The only restriction on this divisor is

that it is linearly equivalent to 8ý.

Proof. Consider a deformation of the Weierstrass equation

ÿ2 = ý3 − (3ÿ2 + ÿý4)ý + (2ÿ3 + ÿý4ÿ + ÿ2ý6),

where ýý ∈ ÿ0 (ÿ,Oÿ (ýý)) has degree d. The discriminant � = 4ÿ3 + 27ÿ2 is

� = 9ÿ2 (12ÿý6 − ý2
4)ÿ

2 +O(ÿ3).

Thus, the Zariski closure of the discriminant divisor is

lim
ÿ→0

div(�) = 2 · div(ÿ) + div(12ÿý6 − ý2
4).
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Figure 3. A Type II ÿ surface ÿ0 = ÿ ∪ÿ ý with the genus 2 double locus D shown in red, the section s

in green, limits of 8 nodal fibers in blue, and limits of pairs of nodal fibers dashed.

For fixed r, the sections ÿý6 form a linear subspace P5 ⊂ P7 = Pÿ0 (ÿ,O(8ý)) of codimension 2. The
sections ý2

4 ∈ Pÿ0 (ÿ,O(8ý)) are the image of the degree 2 Veronese embedding, followed by a linear
projection

ÿ2 : P3 ↩→ P9 = PSym2ÿ0(ÿ,O(4ý)) � P7.

The inverse image of {div(ÿý6)} = P5 ⊂ P7 is a copy of P7 ⊂ P9 under the linear projection. Thus,
the vanishing loci of linear combinations are represented geometrically as the join of the projective
subvarieties ÿ2 (P

3), P7 ⊂ P9. This join is all of P9. Thus, we can realize any divisor in |8ý | as
limÿ→0 div(�) − 2 · div(ÿ). �

For general ý4 and ý6, the punctured family over ý \ 0 has smooth total space. The threefold S is a
double cover branched over the vanishing locus of the cubic ý3 − (3ÿ2 + ÿý4)ý + (2ÿ3 + ÿý4ÿ + ÿ2ý6), so
it can only be singular where two of the roots of the cubic coincide. This shows that the singular locus
Ssing ⊂ ý (ÿ, ý − ÿ, ÿ) is contained in the singularities of the fibers of ÿ0 → ÿ.

Since ÿ2 | | � , the local equation of the double cover is generically ÿ2 = ÿ2 + ÿ2 along the nodes
of ÿ0 → ÿ. So the nodes form a family of ý1-singularities in S . At the nodes on the fibers lying over
div(12ÿý6 −ý2

4), the local equation is rather ÿ2 = ÿ2 + ÿÿ2. Thus, to find a semistable model S → (ý, 0),

we simply blow up the double locus of ÿ0 in the total space S .
The resulting central fiber is ÿ0 = ÿ ∪ÿý for a ruled surfaceý → ÿ, which contains D as a bisection

and has 8 reducible fibers over the points in div(12ÿý6 − ý2
4); see Figure 3. Thus, ý ∼ ýýý1 ,..., ý8 ÿ is

deformation-equivalent to the blow-up of X at 8 points on D, with the double locus on V identified with D

via the strict transform. It is only deformation-equivalent because ý → ÿ could be the projectivization
of a non-split extension of L by O. Regardless, we can identify

ÿ2(ý,Z) = ÿ2 (ÿ,Z) ⊕8
ÿ=1 Zýÿ

and [ÿ] = 2ý0 − [ý1] − · · · − [ý8] = −ÿý + ÿ .

Definition 4.2. We call the degeneration S → ÿ × ý → (ý, 0) a Type II ÿ degeneration, and we call
the central fiber ÿ0 a Type II ÿ elliptic surface.

From Section 6 and Proposition 6.6, the mixed Hodge structure of a Type II ÿ surface has a period
map to ý8 ⊗ E which can be described as follows. Consider the sublattice {ÿý , ÿ }⊥ ⊂ ÿ2 (ý,Z). This
is isometric to the root lattice

ÿ8 = {(ÿ1, . . . , ÿ8) ∈ Z
8
�� ÿ1 + · · · + ÿ8 ∈ 2Z}
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via the map (ÿ1, . . . , ÿ8) ↦→
∑8

ÿ=1 ÿÿ [ýÿ] −
(

1
2

∑8
ÿ=1 ÿÿ

)
ÿ . When this isometry is understood, we will

refer to {ÿý , ÿ }⊥ simply as ÿ8.
Let ý := Pic0(ÿ)/Pic0(ÿ) be the Prym variety of the double cover ÿ : ÿ → ÿ. We define a period

homomorphism

ÿÿ0 : ÿ8 → ý

ÿ ↦→ Lÿ

��
ÿ

mod Pic0 (ÿ)
(4.1)

by lifting an element ÿ ∈ ÿ8 to an element Lÿ ∈ Pic(ý). These lifts form a Pic0(ÿ)-torsor, and thus,
the image of Lÿ

��
ÿ
∈ Pic0(ÿ) under the map to E is well-defined.

Remark 4.3. The period point ÿÿ0 ∈ Hom(ÿ8, ý) determines, up to a finite isogeny, the period point
in ý8 ⊗ ý . The extensions of an element of Hom(ÿ8, ý) to an element of Hom(ý8, ý) are a torsor over
Hom(ý8/ÿ8, ý) = ý [2].

Proof of Theorem 1.3. To show deg ÿ > 1, it suffices to prove that the moduli of Type II ÿ surfaces
(appearing as limits of elliptic surfaces in F) also dominate the boundary divisor � . This follows from
Theorem 4.4 below. �

Theorem 4.4. The period mapping for Type II ÿ surfaces is dominant.

Proof. The period point ÿÿ0 and limit mixed Hodge structure of S are encoded, up to a finite map, in
the data (ÿ : ÿ → ÿ, {ÿÿ}

8
ÿ=1) consisting of

1. a degree 2 map ÿ : ÿ → ÿ from a genus 2 to a genus 1 curve, and
2. a multiset of 8 points {ÿ1, . . . , ÿ8} ⊂ ÿ.

Let ÿ : ÿ → ÿ be the involution switching the sheets of ÿ and let {ýÿ , ÿÿ} = ÿ−1(ÿÿ). ThenOÿ (ýÿ−ÿÿ) ∈

Pic0 (ÿ) gives, upon quotienting by Pic0 (ÿ), the period

ÿÿ0 (ýÿ − ý ′
ÿ ) = [Oÿ (ýÿ − ÿÿ)] ∈ ý,

where ýÿ +ý ′
ÿ is a reducible fiber of the rulingý → ÿ. Ranging over the eight reducible fibers, the tuple

(Oÿ (ýÿ − ÿÿ) mod Pic0 (ÿ))8
ÿ=1 ∈ ý8

encodes ÿÿ0 up to torsion because
⊕8

ÿ=1 Z(ýÿ − ý ′
ÿ ) ⊂ ÿ8 has finite index.

Let {ÿ9, ÿ10} ∈ ÿ be the branch points of ÿ. Then ÿ is determined by the monodromy representation
ÿ : ÿ1 (ÿ \ {ÿ9, ÿ10}, ∗) → Z2. Let Prym2C be the moduli space of Prym data (ÿ, {ÿ9, ÿ10}, ÿ) over the
universal genus 1 curve C → M1. It is a Deligne-Mumford stack of dimension 2, one dimension for
ÿ (ÿ) and another for the element ÿ9 − ÿ10 ∈ Pic0 (ÿ), well-defined up to sign. The data of ÿ is finite.

A point ÿÿ ∈ ÿ determines ýÿ up to switching ýÿ ↔ ÿÿ which acts by negation on the image of
Oÿ (ýÿ − ÿÿ) in E. Thus, we globally get a well-defined map

« : Sym8
C ×M1 Prym2

C → Z8 ⊗ E/ÿ±
8

(ÿ, {ÿ1, . . . , ÿ8}, {ÿ9, ÿ10}, ÿ) ↦→ {Oÿ (ýÿ − ÿÿ) mod Pic0 (ÿ)}8
ÿ=1,

(4.2)

where E is the universal elliptic curve. Since the image of each Oÿ (ýÿ − ÿÿ) in E is only well-defined
up to sign, and the reducible fibers of ý → ÿ are unordered, we must quotient the target by the signed
permutation group ÿ±

8 .

Observe that Sym8
C ×M1 Prym2C is ten-dimensional. There is a single condition ensuring that a

point in the domain of « arises from a degeneration of surfaces in F: If ÿ → ÿ is the Hodge bundle, then
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ÿ9 + ÿ10 ∈ |2ÿ | and so by Proposition 4.1, {ÿ1, . . . , ÿ8}, {ÿ9, ÿ10} can arise so long as ÿ1 + · · · + ÿ8 ∈ |8ÿ |
(i.e., the relation

ÿ1 + · · · + ÿ8 − 4(ÿ9 + ÿ10) = 0 ∈ Pic0 (ÿ) (4.3)

is satisfied). So the Type II ÿ limits of degenerations from F are described by

ý = {elements of Sym8
C ×M1 Prym2

C
�� ÿ1 + · · · + ÿ8 − 4(ÿ9 + ÿ10) = 0}.

Our goal is to prove the dominance of the map «
��
ý

: ý → Z8 ⊗ E/ÿ±
8 .

Fix an elliptic curve fiber E of E , consider the point {0, . . . , 0} ∈ Sym8ý , and let kerý («) :=
«−1({0, . . . , 0}). It suffices to prove that ý∩kerý («) contains, as a component, some zero-dimensional
scheme. Let ÿý ⊂ Prym2C be the sublocus of Prym data whose Prym variety is E. It is a curve
inside the surface Prym2C. Then, kerý («) contains, as a component, an unramified double cover
ýý → ÿý on which ÿ = ÿ1 = · · · = ÿ8 and ÿ ∈ {ÿ9, ÿ10} because the morphism ÿ → ý sending
ý ↦→ Oÿ (ý − ÿ(ý)) mod Pic0 (ÿ) is surjective.

The defining equation (4.3) of Z restricts to ýý to give the equation

4(ÿ9 − ÿ10) = 0 ∈ Pic0(ÿ)

(i.e., ÿ9 − ÿ10 ∈ Pic0(ÿ) [4]). The locus in ÿý on which ÿ9 − ÿ10 is 4-torsion is finite and nonempty. So
the theorem follows. �

The proofs of Theorems 3.2 and 4.4 suggest a rather wild conjecture:

Conjecture 4.5. ý1,1 admits a period-preserving birational involution ÿ ↔ ÿ′ for which ÿ (ÿ) = ÿ (ý ′)

and ÿ (ý) = ÿ (ÿ ′). Here, ÿ,ÿ ′ are the bases and ý, ý ′, are the canonical fibers. Furthermore, S and

ÿ′ are moduli spaces of stable vector bundles on each other of rank 2, determinant O(ý), and ý2 = pt.
A Fourier-Mukai transform induces an isomorphism of their integral Hodge structures.

The existence of such a birational involution would give a geometric explanation for why degener-
ations of Type IIÿ and II ÿ can have the same periods, even though ÿ (ÿ) → ∞ in the former, while
ÿ (ý) → ∞ in the latter.

5. A family losing dimension

Let ýcusp ↩→ ý be the closure of the sublocus of elliptic fibrations ÿ → ÿ which have six cuspidal
(Kodaira type II) fibers. These fibrations are isotrivial and have a Weierstrass form ÿ2 = ý3 + ÿ for some
ÿ ∈ ÿ0(ÿ,Oÿ (6ý)). There is a fiber preserving automorphism ÿ : ÿ → ÿ, given by

ÿ : (ý, ÿ) ↦→ (ÿ3ý,−ÿ),

and ÿ∗¬ÿ = ÿ6¬ÿ acts nontrivially on the holomorphic 2-form by a primitive sixth root of unity.
Furthermore, since ÿ preserves s and f, it defines an element ÿ∗ ∈ � = ÿ (ýý2,10) which is easily
checked to fix only the origin of ýý2,10. So ÿ∗ endows ýý2,10 with the structure of a Hermitian lattice of
hyperbolic signature (1, 5) over the Eisenstein integers Z[ÿ6], and

B := P{ý ∈ ýý2,10 ⊗ C
�� ý · ý > 0, ÿ∗ý = ÿ6ý} ⊂ D

is a Type I Hermitian symmetric subdomain (a complex ball), of dimension 5. Letting �0 := {ÿ ∈

�
�� ÿ ◦ ÿ∗ = ÿ∗ ◦ ÿ} be the group of Hermitian isometries, we get a period map to a 5-dimensional ball

quotient

ýcusp → B/�0.
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But dim ýcusp = 1 + 5 = 6 with parameters corresponding to ÿ (ÿ) and the relative locations of the six
cuspidal fibers. Thus, ÿ

��
ý cusp has positive fiber dimension.

It seems likely that ÿ
��
ý cusp is surjective, with generic fiber dimension 1. Regardless, this gives a

second example, after Ikeda9s [Ike19], proving that P is not a finite map, even though it is generically
finite by Theorem 1.1:

Corollary 5.1. P is not finite.

6. Mixed Hodge Structures

MHS of a normal crossings surface

Let ÿ0 be a reduced normal crossings surface with smooth double locus and no triple points. Our goal
in this section is to explicitly describe the mixed Hodge structure on ÿ2(ÿ0). Let ÿ0 =

⋃ÿ
ÿ=1 ÿÿ with

the double curve ÿÿ ÿ = ÿÿ ∩ ÿ ÿ a smooth, possibly disconnected or empty curve for all ÿ < ÿ . Let
ÿ :=

⋃
ÿ< ÿ ÿÿ ÿ . The Mayer-Vietoris sequence associated to a covering of ÿ0 by neighborhoods of the

irreducible components ÿÿ reads

ÿ⊕

ÿ=1

ÿ1(ÿÿ)
ÿ∗

→
⊕

ÿ< ÿ

ÿ1 (ÿÿ ÿ ) → ÿ2 (ÿ0) →

ÿ⊕

ÿ=1

ÿ2 (ÿÿ)
res
−→

⊕

ÿ< ÿ

ÿ2 (ÿÿ ÿ ). (6.1)

Here, ÿ∗ and res are signed restriction maps. Let ÿ ⊂
⊕

ÿ2 (ÿÿ) be the kernel of the morphism res –
that is, ÿ = {(ÿÿ ∈ ÿ2(ÿÿ))

��ÿÿ · ÿÿ ÿ = ÿ ÿ · ÿÿ ÿ }. Define

ý := coker(ÿ∗).

By exactness of the sequence (6.1), we obtain a short exact sequence

0 → ý → ÿ2 (ÿ0) → ÿ → 0.

In fact, it is a short exact sequence of mixed Hodge structures with left-hand term J pure of weight 1,
and the right-hand term K pure of weight 2.

Proposition 6.1. If ýý (ÿÿ) = 0 for all components ÿÿ ⊂ ÿ0 (equivalently, K is Hodge-Tate of weight 2),

then the Carlson classifying map [Car85]

ÿ : ÿ → Jac(ý)

of the extension coincides with the Abel-Jacobi map. More precisely, an element of K is a tuple (ÿÿ ∈

ÿ2 (ÿÿ ,Z)) represented by line bundles Lÿ such that for each ÿ < ÿ , we have ý1 (Lÿ |ÿÿ ÿ
) − ý1 (L ÿ |ÿÿ ÿ

) =

0 ∈ ÿ2 (ÿÿ ÿ ). Then ÿ = ÿ ◦ AJ ◦ ÿ, where

(ÿÿ ∈ ÿ2 (ÿÿ ,Z))
ÿ
↦→

⊕
ÿ< ÿ Lÿ |ÿÿ ÿ

⊗ L ÿ |
−1
ÿÿ ÿ

∈ Pic0 (ÿ),

AJ: Pic0(ÿ) → Jac(ÿ) = Jac(ÿ1(ÿ)) is the classical Abel-Jacobi isomorphism, and ÿ : Jac(ÿ) →

Jac(ý) is the projection map.

Proof. Following Carlson9s construction, the classifying map ÿ for a weight separated extension of
mixed Hodge structures is given by the composition of two splittings. First, choose a left-splitting
ÿ : ÿ2(ÿ0) → ý over Z. Next, choose a right-splitting ÿ : ÿ → ý1ÿ2(ÿ0)C over C, which respects
the Hodge filtration. The composition ÿC ◦ ÿ : ÿ → ýC gives the classifying map after passing to the
Jacobian quotient:

ÿ : ÿ → ýC/(ýZ + ý1ýC).
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Figure 4. Heuristic diagram of irreducible components ÿÿ in black, double curves ÿÿ ÿ in red, 1-cycles

ÿÿ ÿ ⊂ ÿÿ ÿ in green, and 2-cycles �ÿ ⊂ ÿÿ capping the 1-cycles in blue.

For a, it suffices to produce a morphism on homology ker(ÿ∗) → ÿ2 (ÿ0), and then use the universal
coefficient theorem to give a map in the opposite direction:

ÿ2(ÿ0) → ÿ2 (ÿ0)
∗ → ker(ÿ∗)

∗ 
 coker(ÿ∗) = ý.

To define the morphism ker(ÿ∗) → ÿ2 (ÿ0), choose a basis for ker(ÿ∗) at the singular chain level:
tuples of 1-cycles ýý = (ÿý

ÿ ÿ ∈ Z1 (ÿÿ ÿ )) such that for each i,

∑

ÿ

ÿ∗(ÿ
ý
ÿ ÿ ) = ÿ (�ý

ÿ ) for some �ý
ÿ ∈ C2 (ÿÿ).

We use the convention that ÿÿ ÿ = −ÿ ÿÿ . Choosing such �ý
ÿ for each ýý in the basis of ker(ÿ∗), we construct

a 2-cycle (see Figure 4),

ÿý =
⋃

ÿ

�ý
ÿ ∈ Z2 (ÿ0).

We take the 1-cycles ÿý
ÿ ÿ to be Z-linear combinations of some fixed 2ý(ÿÿ ÿ ) loops on each ÿÿ ÿ , whose

union we call ÿ, chosen so that their complement in ÿÿ ÿ is a contractible 4ý-gon. The assignment
ýý ↦→ [ÿý ] ∈ ÿ2 (ÿ0) then induces a splitting

ÿ : ÿ2 (ÿ0) → ý.

To construct a splitting b, we use the 
ech-de Rham model of ÿ2(ÿ0,C), and its Hodge filtration ý1.
An element of ÿ2(ÿ0,C) is represented by two tuples of differential forms:

(ÿÿ ∈ Z
2 (ÿÿ))ÿ and (ÿÿ ÿ ∈ A

1(ÿÿ ÿ ))ÿ< ÿ

such that for all ÿ < ÿ , we have ÿÿ |ÿÿ ÿ
− ÿ ÿ |ÿÿ ÿ

= ýÿÿ ÿ . If furthermore, ÿÿ ÿ ∈ A1,0(ÿÿ ÿ ) for all ÿ < ÿ ,
then the element lies in ý1ÿ2 (ÿ0,C).
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Given (ÿÿ) ∈ ÿ = ker(res), we know that ÿÿ |ÿÿ ÿ
− ÿ ÿ |ÿÿ ÿ

= 0 ∈ ÿ2(ÿÿ ÿ ). To define ÿ : ÿ →

ý1ÿ2 (ÿ0,C), select a basis for K; for each basis element (ÿÿ) ∈ ÿ , there exists line bundles Lÿ such
that ý1 (Lÿ) = ÿÿ . Since each ÿÿ is projective, we may assume that the Lÿ 
 Oÿÿ (ÿÿ −ÿ ′

ÿ ), where ÿÿ and
ÿ ′

ÿ are ample effective curves on ÿÿ meeting each ÿÿ ÿ transversely away from ÿ. We take ÿÿ ∈ Z2(ÿÿ)

representing ý1 (Lÿ) and supported on a small neighborhood ofÿÿ∪ÿ ′
ÿ . Since ÿÿ |ÿÿ ÿ

−ÿ ÿ |ÿÿ ÿ
∈ Z2 (ÿÿ ÿ )

integrates to 0, it has a ÿ-primitive ÿÿ ÿ ∈ A1,0(ÿÿ ÿ ), unique up to the addition of a holomorphic one-
form.

To interpret the composition ÿ = ÿC ◦ ÿ : ÿ → ýC, we will regard ýC as Hom(ker(ÿ∗),C). Then
(ÿC ◦ ÿ) (ÿÿ) is the unique homomorphism ker(ÿ∗) → C which sends ýý to

ÿ∑

ÿ=1

∫

�ý
ÿ

ÿÿ +
∑

ÿ< ÿ

∫

ÿý
ÿ ÿ

ÿÿ ÿ . (6.2)

We henceforth drop the index k as we will consider a single basis vector ý = ýý .
We will make two simplifications in order to compare ÿ with the Abel-Jacobi map. First, the chains �ÿ

can be replaced with �ÿ + ýÿ for any ýÿ ∈ Z2(ÿÿ) such that the tuple of homology classes (ýÿ) is Poincaré
dual to an element of K. By Lefschetz duality, there is a perfect pairing associated to the 4-manifold
with boundary

ý : ÿ2 (ÿÿ − ýÿ (ÿ)) × ÿ2(ÿÿ − ýÿ (ÿ), ÿ) → Z,

and we have
∫
�ÿ

ÿÿ = ý (ÿÿ − ÿ ′
ÿ , �ÿ) ∈ Z. Since (ÿÿ) is primitive in K, one can find ý ∈ ÿ such that

ý (ÿÿ − ÿ ′
ÿ , ý) = −ý (ÿÿ − ÿ ′

ÿ , �ÿ).

So replacing �ÿ with �ÿ + ýÿ , we may assume that the first sum in (6.2) vanishes.
Second, the primitives ÿÿ ÿ are not closed, so the second integral does not make sense on the homology

classes [ÿý
ÿ ÿ ]. To remedy this, we construct smooth 1-forms ÿÿ ÿ ∈ Z1(ÿÿ ÿ ) supported away from ÿ such

that ý (ÿÿ ÿ +ÿÿ ÿ ) = 0. Let ℓÿ ÿ be a smooth 1-chain on ÿÿ ÿ \ÿ with boundary the signed intersection points:

ÿℓÿ ÿ = (ÿÿ − ÿ ′
ÿ ) ∩ ÿÿ ÿ − (ÿ ÿ − ÿ ′

ÿ ) ∩ ÿÿ ÿ .

By Lemma 6.2 below, we may produce a form ÿÿ ÿ supported in a neighborhood of ℓÿ ÿ . This allows us to
write the Carlson map for our extension as

ÿ((ÿÿ)) =

[

ý ↦→
∑

ÿ< ÿ

∫

ÿÿ ÿ

(ÿÿ ÿ + ÿÿ ÿ )

]

∈ ýC/(ýZ + ý1ýC).

But for any ÿ ∈ ¬1(ÿÿ ÿ ), since ÿÿ ÿ ∈ A1,0(ÿÿ ÿ ) we have, again by Lemma 6.2,

∫

ÿÿ ÿ

(ÿÿ ÿ + ÿÿ ÿ ) ∧ ÿ =

∫

ÿÿ ÿ

ÿÿ ÿ ∧ ÿ =

∫

ℓÿ ÿ

ÿ.

Observe that the classical Abel-Jacobi map AJ: Pic0 (ÿ) → Jac(ÿ) indeed sends [ÿℓÿ ÿ ] ↦→
∫
ℓÿ ÿ

. The

proposition follows. �

Now, we produce the one-form ÿÿ ÿ with the desired properties.

Lemma 6.2. Let C be a Riemann surface and let L = Oÿ (ÿ − ý). There is a hermitian metric h on L,

a (1, 0)-form ÿ ∈ A1,0 (ÿ), and a smooth 1-form ÿ supported in a neighborhood of a path ℓ from p to q

for which
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1. ÿÿ = ÿ
2ÿ ÿÿ log(ℎ),

2. ýÿ = −ÿÿ, and

3.
∫
ÿ ∧ ÿ =

∫
ℓ
ÿ for any holomorphic one-form ÿ.

Proof. Let z be a chart to C from a neighborhood of ℓ. There exists a function ÿ : ÿ \ {ý, ÿ} → C∗ of
the following form:

ÿ =

⎧⎪⎪«
⎪⎪¬

ÿ−ÿ
ÿ−ý

if ÿ ∈ ýÿ /2 (ℓ)

smooth interpolation if ÿ ∈ ýÿ /2 (ℓ)
ý ∩ ýÿ (ℓ)

1 if ÿ ∉ ýÿ (ℓ).

Such a smooth interpolation exists because ÿ−ÿ
ÿ−ý

has winding number zero along the boundary of
ýÿ /2(ℓ). Let ý ∈ Mero(ÿ,L) be a meromorphic section with a zero at q and a pole at p. Then, there is

a hermitian metric h on L for which ℎ(ý, ý) = | ÿ |2. The associated curvature form is ÿ
2ÿ ÿÿ log | ÿ |2, and

since ý1 (L) = 0, we can find a (1, 0)-form ÿ satisfying (1). Furthermore, ÿ = − ÿ
2ÿ (ÿ log( ÿ ) − ÿ log( ÿ ))

is a (0, 1)-form, supported in ý := ýÿ /2(ℓ)
ý ∩ ýÿ (ℓ) and satisfying (2).

It remains to check (3). We may write ÿ = ýý for some holomorphic function ý : ýÿ (ℓ) → C.
Applying Stokes9s formula and the residue formula, we have

∫

ÿ

ÿ ∧ ÿ = − ÿ
2ÿ

∫

ý

ÿ log( ÿ ) ∧ ýý = ÿ
2ÿ

∫

ý

ý (ÿý · ý log( ÿ )) = ÿ
2ÿ

∫

ÿý

ÿý · ý log( ÿ )

= − ÿ
2ÿ

∫

ÿýÿ /2 (ℓ)

ý · ý log( ÿ−ÿ
ÿ−ý

) = − ÿ
2ÿ (2ÿÿ) (ý(ÿ) − ý(ý)) =

∫

ℓ

ÿ.

�

More generally, the lemma holds for any degree zero line bundle Oÿ (
∑
(ÿÿ − ýÿ)), for a union of

paths connecting each pair of points ýÿ to ÿÿ by taking the product of the hermitian metrics, and sum of
the corresponding ÿ9s and ÿ9s.

Remark 6.3. To apply Lemma 6.2 to the proof of Proposition 6.1, our forms ÿÿ must be such that
ÿÿ |ÿÿ ÿ

− ÿ ÿ |ÿÿ ÿ
is the two-form ÿ

2ÿ ÿÿ log(ℎ) supported in a neighborhood of ℓÿ ÿ . This is achieved by

choosing ÿÿ =
ÿ

2ÿ ÿÿ log(ℎÿ) for hermitian metrics on ℎÿ on Lÿ (and similarly for j) so that ℎ = ℎÿ/ℎ ÿ

is the desired hermitian metric on Lÿ |ÿÿ ÿ
⊗ L ÿ |

−1
ÿÿ ÿ

. Note though that we must allow the two-form ÿÿ to

be supported in a tubular neighborhood of ÿÿ ∪ ÿ ′
ÿ ∪ ℓÿ ÿ rather than just ÿÿ ∪ ÿ ′

ÿ . Since ℓÿ ÿ is disjoint
from ÿ, the argument of Lemma 6.1 is unaffected.

Clemens-Schmid sequence

Let S → (ý, 0) be a degeneration of projective surfaces with smooth total space and reduced normal
crossings central fiber ÿ0 =

⋃ÿ
ÿ=1 ÿÿ with smooth double locus. Assume, furthermore, that ýý (ÿÿ) = 0

for all i.
The monodromy is unipotent by Clemens [Cle69]. So let N be the nilpotent logarithm of the

monodromy operator on ÿ∗(ÿý ). We have the Clemens-Schmid sequence [Mor84] relating the integral
cohomology of ÿ0 and ÿý :

0 → ÿ0 (ÿý )
ý
−→ ÿ0(ÿý ) → ÿ4(ÿ0) → ÿ2(ÿ0) → ÿ2(ÿý )

ý
−→ ÿ2(ÿý ). (6.3)

Since the monodromy operator acts trivially on ÿ0 (ÿý ), the first nilpotent operator in (6.3) is identically
0. Using these two observations, the Clemens-Schmid sequence can be shortened to

0 → ÿ0 (ÿý ) → ÿ4 (ÿ0) 
 Z
ÿ → ÿ2(ÿ0) → ÿ2(ÿý )

ý
−→ ÿ2(ÿý ). (6.4)
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The limit mixed Hodge structure ÿ2(ÿý ) has a monodromy-weight filtration defined in terms of N:
{0} = ÿ0 ⊂ ÿ1 ⊂ ÿ2 ⊂ ÿ3 = ÿ2 (ÿý ).

ÿ1ÿ
2(ÿý ) = im(ý);

ÿ2ÿ
2(ÿý ) = ker(ý);

ÿ3ÿ
2(ÿý ) = ÿ2 (ÿý ).

We call ker(ý) the 1-truncated mixed Hodge structure. To describe the 1-truncation explicitly, we
combine (6.4) and (6.1) above at their common term ÿ2(ÿ0), with Mayer-Vietoris written horizontally
and Clemens-Schmid written vertically.

imÿ4(ÿ0) span{ÿý }

0 ý ÿ2(ÿ0) ÿ 0

0 ý ker(ý) Λ 0.

Here, ÿý :=
∑

ÿ [ÿ ÿý ] − [ÿý ÿ ], where [ÿ ÿý ] ∈ ÿ2(ÿ ÿ ) and [ÿý ÿ ] ∈ ÿ2(ÿý ) are the fundamental
classes of the double loci, and Λ is the cokernel of ý → ker(ý). We have that ÿý = ý1 (OS (ÿý ) |ÿ0 ). By
Proposition 6.1, we have ÿý ∈ ker(ÿ : ÿ → Jac(ý)) because the line bundles OS (ÿý )

��
ÿÿ


 OS (ÿý )
��
ÿ ÿ

agree on the double locus. Hence, the Carlson extension homomorphism ÿ descends to a homomorphism

ÿÿ0 : Λ → Jac(ý)

encoding the 1-truncated mixed Hodge structure.

Application

In this section, we apply the general results above to the mixed Hodge structures associated to the
degenerations of Type IIÿ and II ÿ , and relate their associated periods to the boundary of the toroidal
extension (D/�)II.

It is convenient to make an order 2 base change and resolution to the Type IIÿ degenerations. The
effect is to normalize the first component and insert a second component isomorphic to P1 × ý where E

is the fiber over the node of ÿ0. This second component is glued to the rational elliptic surface ÿ → P1

along the two fibers ÿý , ÿÿ .
After the base change and resolution, we have that in both IIÿ and II ÿ degenerations, the central fiber

ÿ0 has two irreducible components and reduced normal crossings: ÿ0 = ÿ1 ∪ÿ ÿ2. The double locus D

is a disjoint union of two copies of the same elliptic curve E in Type IIÿ and a connected, smooth genus
2 curve in Type II ÿ . Let ÿ1 ⊂ ÿ1 and ÿ2 ⊂ ÿ2 denote the double locus restricted to each component.

In both cases, the divisor D admits a natural involution ÿ, and the image of the first map ÿ∗ in (6.1) is
the (+1)-eigenspace of this involution on ÿ1(ÿ). The image of the restriction map res in (6.1) is a rank
1 subgroup of ÿ2 (ÿ) 
 ÿ0(ÿ), so the Mayer-Vietoris sequence takes the form

0 → ÿ1(ÿ)− → ÿ2(ÿ0) → ÿ2(ÿ1) ⊕ ÿ2(ÿ2)
res
−→ Z→ 0. (6.5)

Case IIb. The component ÿ1 is a rational elliptic surface X, with ÿ1 = ÿý ∪ ÿÿ a pair of isomorphic
elliptic curve fibers. The component ÿ2 is simply P1 × ý with ÿ2 = {0,∞} × ý . The involution on D

swaps the two isomorphic components. Note that since [ÿý] = [ÿÿ] ∈ ÿ2(ÿ1), and similarly for ÿ2,
the two restriction maps ÿ2(ÿÿ) → ÿ2(ÿ) 
 ÿ2 (ý)⊕2 have the same image – namely, the diagonal.
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Case IIf . The component ÿ1 is an elliptic ruled surface ÿ 
 Pÿ (O ⊕ ÿ), with ÿ1 a genus 2 bisection
of class 2ý0 = 2(ý∞ + ÿ ). The component ÿ2 is the blow-up of (a deformation of) ÿ1 at 8 points along
ÿ1 with ÿ2 the proper transform of ÿ1 in the blow-up. The class of ÿ2 is 2ý0 −

∑
ÿÿ . The involution

on D is induced by the double cover map ÿ : ÿ → ÿ which comes from the ruling of X. Since D is
irreducible, ÿ2(ÿ) 
 Z.

In both cases, the Jacobian Jac(ÿ1 (ÿ)−) = ý is an elliptic curve. In Type IIÿ , it is Jac(ý), where E is
either of the double curves, while in Type II ÿ , it is the Prym variety of the double cover map ÿ : ÿ → ÿ.
Thus, the mixed Hodge structure on ÿ2 (ÿ0) is encoded by a Carlson extension map ÿ ∈ Hom(ÿ, ý).
By the previous subsection, this extension homomorphism descends to ÿÿ0 ∈ Hom(Λ, ý), where

Λ = ÿ/span{ÿ1, ÿ2} = ker(ÿ2(ÿ1) ⊕ ÿ2(ÿ2)
res
−→ Z)/Z(ÿ1,−ÿ2).

There is a symmetric bilinear form on ÿ2 (ÿ0). Let

ý : ÿ2(ÿ0) → ÿ2(ÿ1) ⊕ ÿ2(ÿ2)
PD
−−→ ÿ2 (ÿ1) ⊕ ÿ2(ÿ2) → ÿ2(ÿ0)

be restriction, followed by the Poincaré duality, followed by inclusion. Then define ÿ · ÿ := 〈ÿ, ý(ÿ)〉

on ÿ2 (ÿ0). The map ÿ2(ÿ0) → ÿ2(ÿý ) respects the bilinear forms on the source, and target and the
bilinear form descends to ÿ = ker(res).

By Poincaré duality and the Hodge index theorem, ÿ2(ÿ1) ⊕ ÿ2 (ÿ2) is a unimodular lattice of
signature (2, 10), and it is odd since at least one summand contains (−1)-curves. Since ÿ2

1 + ÿ2
2 = 0,

the lattice vector (ÿ1,−ÿ2) is isotropic, and its orthogonal complement is precisely ker(res). Hence,
the lattice Λ is unimodular of signature (1, 9).

Our degenerating families are polarized by Zý ⊕ Z(ý + ÿ ) ⊂ ÿ2(ÿý ). The monodromy operator fixes
these curve classes, and hence, we have a copy of ý1,1 ⊂ ker(ý). So s, f extend over the singular fiber
by (6.3). They can be represented in K as follows: (ý, ý), ( ÿ , 0) for Type IIÿ and (ý∞, 0), ( ÿ , ÿ ) for
Type II ÿ , respectively. In both cases, they span a sublattice of Λ isometric to ý1,1 whose orthogonal
complement we call Λ0 ⊂ Λ. We also have Λ0 
 Λ/ý1,1 canonically.

Proposition 6.4. The lattice Λ0 is isometric to ý8 in both cases.

Proof. Note thatΛ0 is unimodular of signature (0, 8), so it suffices to check that it is even. The orthogonal
complement of {ý, ÿ } in ker(ý) is even because ÿ = ÿÿý and ý · ý ≡ ý · ÿÿý mod 2 for any ý ∈ ÿ2 (ÿý ).
Hence, its image Λ0 is even because ker(ý) → Λ preserves the intersection form. �

Remark 6.5. The lattice Λ0 can be described more directly using one irreducible component (only
up to finite index in the Type II ÿ case). For Type IIÿ , the sublattice {ý, ÿ }⊥ ⊂ ÿ2 (ÿ1) lies in K and
is even, unimodular of signature (0, 8). So it maps isometrically to Λ0 
 ý8. For II ÿ , the sublattice
{ÿ2, ÿ }

⊥ ⊂ ÿ2(ÿ2) lies in K and so maps isometrically to an index two sublattice ÿ8 ⊂ Λ0 
 ý8.

We summarize the results of this section in the following proposition:

Proposition 6.6. Let S → (ý, 0) be a degeneration of Type IIÿ or Type II ÿ . Let ÿ = ker(ÿ2 (ÿ1) ⊕

ÿ2 (ÿ2) → ÿ2 (ÿ)) be the kernel of signed restriction, and let Λ := ÿ/Z(ÿ1,−ÿ2) and Λ0 = {ý, ÿ }⊥ ⊂

Λ. Let E be Pic0 of either double curve in Type IIÿ and the Prym variety Pic0(ÿ)/Pic0(ÿ) in Type II ÿ .

The Carlson extension class ÿ ∈ Hom(ÿ, ý) describing the mixed Hodge structure on ÿ0 descends

to Hom(Λ, ý), and so determines the 1-truncated limit mixed Hodge structure of the degeneration. This

homomorphism further descends to a period point ÿÿ0 ∈ Hom(Λ0, ý) where Λ0 
 ý8. Explicitly.

(IIb) The period point ÿÿ0 given by the map sending L ∈ {ý, ÿ }⊥ ⊂ Pic(ÿ1) to L
��
ÿý

⊗ L
��−1
ÿÿ

∈ ý .

(IIf ) The period point ÿÿ0 is determined up to 2-torsion by the map sending ý1 (L) ∈ {ÿ, ÿ }⊥ ⊂ ÿ2 (ÿ2)

to L
��
ÿ
∈ Pic0(ÿ)/Pic0(ÿ) = ý .
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A. Appendix: Compact moduli

KSBA theory [KSB88, Ale96, Kol23] gives a general method for constructing compact moduli spaces
of pairs (ÿ, ý), consisting of a projective variety X and a Q-Weil divisor B, which form a so-called
stable slc pair:

1. the pair (ÿ, ý) has semi-log canonical singularities,
2. ÿÿ + ý is Q-Cartier and ample.

In the case at hand, the pair (ÿ, ÿ ý) satisfies these conditions, where ÿ → ÿ is the contraction to the
Weierstrass form. The paper [AB21] of Ascher and Bejleri with an appendix by Inchiostro studies the

corresponding compactification by stable slc pairs ý ↩→ ý
ÿ

. Every degeneration with generic fiber in

F has a unique limit in ý
ÿ

called the stable model.
No information is lost when considering Type IIÿ degenerations because the stable model ÿ0 uniquely

determines ÿ0: It is the resolution of ADE configurations in fibers. However, for Type II ÿ degenerations,

most period information is lost: the stable model ÿ0 is the gluing of Pÿ (O ⊕ ÿ) along the bisection D.

Thus, the locus in ý
ÿ

corresponding to Type II ÿ degenerations has dimension 2, remembering only
the genus 2 double cover ÿ : ÿ → ÿ.

To record more period information, we can instead choose a different divisor on the general surface
ÿ ∈ ý. Let ý := ý +

∑12
ÿ=1 ÿÿ , where ÿÿ are the singular fibers of ÿ → ÿ, counted with multiplicity.

Because (ÿ, ÿý) is a stable slc pair, we may again compactify the moduli space of such pairs using

KSBA theory: ý ↩→ ý
ý

, where ý
ý

is the closure of the pairs {(ÿ, ÿý)
�� ÿ ∈ ý} in moduli of all stable

slc pairs. Up to a finite map, ý
ý

remembers the period information of a Type II ÿ degeneration (and this
is still so for Type IIÿ surfaces).

Thus, it is possible that the normalization of ý
ý

actually dominates a toroidal compactification of
D/�. An analogous result for elliptic K3 surfaces (ý, ý) = (0, 2) holds by [ABE22]. We leave this as a
conjecture:

Conjecture A.1. There is a morphism (ý
ý
)ÿ → D/�

ý
to some toroidal compactification, for an

appropriately chosen fan ý.
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