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Abstract
We prove that the period mapping is dominant for elliptic surfaces over an elliptic curve with 12 nodal fibers, and
that its degree is larger than 1. This settles the final case of infinitesimal Torelli for a generic elliptic surface.
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1. Introduction

In order to distinguish smooth projective varieties varying in a family with continuous parameters, it
is often useful to integrate the holomorphic forms over topological cycles. This idea was used to great
effect classically to distinguish smooth curves of a given genus g > 0. A modern reformulation of this
problem in higher dimension asks whether the period mapping from a moduli space of varieties to an
associated space of periods is injective, either locally or globally on the source. We will show that while
the local injectivity statement is true generically, the global statement fails for an important class of
elliptic surfaces.

An elliptic surface is a smooth, projective surface S equipped with a relatively minimal, genus
one fibration 77: § — C to a smooth curve and a distinguished section s. Moduli spaces Fg 4 of
elliptic surfaces are indexed by two nonnegative integers, g = g(C) and d = ﬁ Xiop(S). Counted with
multiplicity, there are 12d singular fibers. The canonical bundle of S is pulled back from a line bundle
L ® wc of degree d +2g — 2 on C. We henceforth assume d > 0 (that is, S has at least one singular
fiber) so that pg(S) := h’(Ks) =g +d — 1.

In this paper, we focus on the moduli space F := Fj ;. Since g(C) = 1, Ks = n*L for a degree 1
line bundle L = O¢(p), and generically the fibration 7 has 12 singular fibers. There is a morphism
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S-S contracting ADE configurations in fibers not intersecting the section s. This contraction has a
Weierstrass form [Kas77]

§={y2=x3+ax+b}CPC(L2®L3®(’)),

wherea € H(C, L*) and b € H(C, L). A quick parameter count reveals that diim F = 1+4+6—1 = 10
where the parameters are, respectively, the j-invariant of (C, p), the section a, the section b and the
quotient by the action of A € C* via (a, b) — (1*a, 1°b).

Noether’s formula implies that the Hodge numbers of S are #>%(S) = h1:0(S) = 1 and -1 (S) = 12.
The Neron-Severi group NS(S) = H' (S, C) N H?(S, Z) always contains the classes of the fiber f and
section s which have intersection numbers s2 = —1, s - f=1f 2 = (0. Hence, there is a copy of the odd
unimodular lattice

Iy ~Zs®Z(s+ f) € NS(S).

Its orthogonal complement {s, f}* ¢ H?(S,Z) is an even (since [Ks] = f), unimodular lattice of
signature (2, 10), so it is isometric to Il 10 = H ® H & Eg.
LetI' := O(Il5,10) and define the period domain to be

D:zP{x6112,10®C|x~x=0,x~)2>0}.

It is a ten-dimensional Type IV Hermitian symmetric domain. By general results of Griffiths [Gri68],
there is a holomorphic period map P: F — D/T sending [S] € F to the line H>°(S) c {s, f}* ® C.
This map is only well-defined mod T" since the isometry {s, f}* — I 1o is ambiguous up to post-
composition by an element of I'. We may now state the first theorem of the paper:

Theorem 1.1. P is dominant.

Remark 1.2. For surfaces S with #%°(S) > 2, the associated period map cannot be dominant due to
Griffiths transversality. The general member S € F, 4 satisfies h*0(S) = 1 only when (g,d) = (1,1)
or (g,d) = (0,2). In the latter case, the surfaces under consideration are elliptic K3 surfaces. By the
Torelli theorem for K3 surfaces [PSS71, LP81], the period mapping gives an isomorphism onto the
corresponding period space.

A local, respectively infinitesimal, Torelli theorem verifies the local injectivity of P, respectively
injectivity of dP, at some point. Such a result implies that P is generically finite onto its image. A
generic Torelli theorem further proves that P is generically one-to-one onto its image. Finally, a global
Torelli theorem implies that P is an embedding, or an isomorphism if the dimensions are appropriate.
We prove that, unlike for K3 surfaces,

Theorem 1.3. deg P > 1. Thus, generic Torelli is false for P: F — D/T.

Remark 1.4. By a result of Lonne [L.62], the monodromy representation for the universal family over
F is the subgroup of O (II,10) preserving the connected component of D, so P does not factor through
D/T for any subgroup I'” c T".

To prove Theorem 1.1, we employ a degeneration argument, similar to Friedman’s proof [Fri84]
of the Torelli theorem for K3 surfaces. First degenerate the base curve C to a nodal curve Cy formed
from gluing two points on P'. An elliptic fibration § — C may be degenerated to an elliptic fibration
So — Cy, and the simplest case is when the fiber over the node of Cy is smooth. Normalizing,

Sy=X->P'=¢y

is an elliptic fibration with (g, d) = (0, 1) — that is, a rational elliptic surface. To reconstruct Sy from X,
we glue two smooth fibers X, and X, for p,g € P! in such a way that a section of X — P! is glued to
form a section of Sy — Cj.

https://doi.org/10.1017/fms.2024.85 Published online by Cambridge University Press



Forum of Mathematics, Sigma 3

The period map for such singular surfaces Sy does not land in D/T", but maps into the boundary
divisor A of a toroidal extension D/T" < (D/T")!L. It suffices to prove that the boundary period map
P": {moduli of Sg} — A is dominant. We find an explicit surface Sy for which any deformation of
its period deforms its moduli. Thus, P! has at least one fiber containing a 0-dimensional component,
implying dominance of P!, and in turn, P.

To prove Theorem 1.3, we describe a second type of degeneration of § — C, to a fibration Sy — C
(here the base stays constant) whose generic fiber is a nodal curve. We analyze the limiting period
mapping for these surfaces and prove that they too map dominantly into the boundary divisor A. Since
two different degenerations dominate the same divisor A, we obtain that deg P > 1.

Our method of proof suggests an interesting conjecture. Each surface S € F contains two natural
elliptic curves meeting at a point: the unique representative of the canonical class Ks and the marked
section curve s. The degenerations we employ in the proof leave one of these curves fixed and degenerate
the other to a nodal curve. Conjecture 4.5 describes a birational involution of F, which commutes with
the period mapping, and swaps the roles of the two natural elliptic curves.

History of the result

In 1983, M.-H. Saito [Sai83] claimed to prove the following infinitesimal Torelli theorem for elliptic
surfaces: the differential dP is injective if the j-invariant map j: C — P! is non-constant, and #>°(S) =
g +d —1 > 0. However, in 2019, Ikeda [Ike19] found a four-dimensional family B c F; ; for which
P| 5 has three-dimensional image, despite the general member of 5 having non-constant j-map. Thus,
[Sai83] has a gap, but the proof still works when wyg is basepoint free. Observe that ws ~ 7*(L ® w¢) is
basepoint free forall S € F, s wheng > Oand d > 1, and wg is basepoint free for generic § € Fg 4 when
g > l and d = 1. The only cases where wg fails to be basepoint free for generic S are (g,d) = (1,1)
and (g,d) = (0, 1). The latter is the case of rational elliptic surfaces, where the period map is trivial.

In 2020, R. Kloosterman [Klo22] independently proved that the infinitesimal Torelli theorem holds
for elliptic surfaces with non-constant j-map when d # 1, or when d = 1 and h°(C,L) = 0. The
techniques generalized those of Kii [Kii78] and Lieberman-Wilsker-Peters [LWP77] from the g = O case.
Conversely, Kloosterman conjectured [Kl022, Conj. 6.1] that when d = hO(C , L) = 1, the infinitesimal
Torelli theorem is false. But this condition holds at every point of Fj i, so our Theorem 1.1 proves that
Kloosterman’s conjecture is, in fact, false.

Regarding a generic Torelli theorem, Chakiris [Cha82] proved that generic Torelli holds in the g = 0,
d > 2 case. Recently, Shepherd-Barron [SB20] has generalized these results to a higher genus base:
elliptic surfaces S — C with ¢ = h'°(S) and Pg = h*>0(S) satisfying the bounds 4pg > 5(q — 1),
Pg = q + 3 also obey a generic Torelli theorem. By our Theorem 1.3, generic Torelli is false when
Pg = q = 1. Hence, the second linear inequality p, > g + 3 appears to be necessary for Shepherd-
Barron’s results to hold.

2. Type II,, degenerations

Let mp: So — Cp be an elliptic fibration over an irreducible, nodal, arithmetic genus one curve Cy
with smooth fiber over the node, and xiop(So) = 12. Such a fibration has a Weierstrass form {y* =
4x3 - aopx — by} withag € HO(C(), OC() (4Py)) and by € HO(C(), OCO(6P0)) for some point Py € (Co)sm-
See Figure 1.

Let Cyp — C be a smoothing over (B, 0) to a genus 1 curve, with smooth total space, and let P be
an extension of Py to a section of p: C — (B, 0). Then, for any & > 0, Cohomology and Base Change
[Har77, II1.12.11] implies that p.O¢ (k'P) is a rank k vector bundle over B. In particular, ag, by extend
locally to sections a, b of p.O¢(4P), p.Oc(6P), and so we can smooth the elliptic fibration Sy <— S
over (B, 0). The resulting total space S is smooth with Sy reduced normal crossings. The double locus
D is the smooth elliptic curve fibering over the node of Cp.
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Figure 1. A Type I}, surface So with double locus D and section s.

Definition 2.1. We call such a degeneration S — C — (B, 0) a Type II;, degeneration, and we call the
central fiber Sy a Type 11}, elliptic surface.

The subscript b indicates that the base degenerates. The terminology is motivated by a similar
terminology in the classification of one-parameter degenerations of K3 surfaces due to Kulikov and
Persson-Pinkham [Kul77, PP81]. They classify their K s-trivial, reduced normal crossing degenerations
into Types I, II, III depending on the depth of the singularity stratification of Sy. Here, we instead have
Ks = Os(F) for arelative fiber F — (B, 0).

As a reduced normal crossing degeneration, the Picard-Lefschetz transformation 7': H>(S;,Z) —
H?(S;,Z) is unipotent and has a logarithm N := log 7. Furthermore, there is a formula for N which
can be deduced from the Picard-Lefschetz transformation for a nodal degeneration of curves, or from
[Cle69, Thm. 5.6].

Let v, c C; denote the vanishing 1-cycle of the node of Cy. Since the fiber over the node of Cj is
smooth, the restriction of the elliptic fibration 7;: S; — C; to the curve vy, is a topologically trivial
2-torus bundle. Trivialize it, and let @, 8 be oriented generators of the homology of some fiber. Define
u:=[y: xa] € H*(S;,Z),v = [y; x B] € H*(S;,Z). Then,

Proposition 2.2. N(x) = (x - u)v — (x - v)u.

Here u,v € {s, f}* because s, f are classes of line bundles on the total space S, and hence
monodromy-invariant. So the classes u, v determine a rank 2 isotropic lattice I := (Zu & Zv)* C 1l 1o.

Let U be the unipotent subgroup of Stabr([/) acting trivially on / and /*/I. From the theory of
toroidal compactifications [AMRT75] (see also [Loo03, Sec. 1A], [AE23, Prop. 4.16] for the case of
Type IV domains), the unipotent quotient

D/UI — AI

embeds as a punctured disk bundle inside a C*-bundle A; — I*+/I ® £. Here £ is the universal elliptic
curve over C \ R whose fiber over 7 € C \ R is the elliptic curve C/Z @ Zt. Since T € Uy the period
map P induces a holomorphic period map B* — D/Uj.

We enlarge A; — A; to aline bundle and define (D/U;)" as the closure of D/Uj in A;. This closure
is a holomorphic disk bundle over I+ /I ® £. The nilpotent orbit theorem [Sch73, Thm. 4.9] (the case
at hand follows as in [Fri84, Thm. 4.2]) implies that the period map from B* extends to a holomorphic
map P: (B,0) — (D/U;)" sending 0 into the boundary divisor A := Ay \ A;. As the zero-section of
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the line bundle, the boundary divisor is naturally isomorphic to
A=T/I®E.

Note that I+ /1 is an even, negative-definite, unimodular lattice of rank 8, which uniquely determines it
to be I+/I = Ej.

There is also a direct construction of the period point P(0) € Eg ® £ from the singular surface Sy
described as follows. Let X — P! be the rational elliptic surface normalizing S — Cj and denote the
section and fiber classes again by s and f. Then {s, f}* ¢ H?(X,Z) is isomorphic to Eg. Let X p and
X, be the two elliptic fibers glued to form the double locus D of Sy. A class y € {s, f}* defines a line
bundle £, € Pic(X), and we declare

U (v) = Lyly ® £7|;1 € E := Pic®(X,,), @.1)

where we have used the gluing isomorphism X,, — X, to form the tensor product of these two
restrictions.

Then s, defines a homomorphism ys, € Hom(Es, E) ~ Eg ® E. Fixing an identification of {s, f}*
with a fixed copy of the Eg lattice, then deforming Sy in moduli of Type II;, surfaces, we get a local
holomorphic period map

PY. Defs, — Hom(E3, £),

which is identical to the extension of P coming from the nilpotent orbit theorem. The equivalence
of these two definitions of the period map follows from Carlson’s description [Car85] of the mixed
Hodge structure on Sy; see Section 6 and Proposition 6.6. From this description of the boundary period
mapping, we see the following:

1. To prove that P is dominant, it suffices to show that P! is dominant from the moduli of Type II,,
elliptic surfaces to Hom(Eg, £).

2. On Type II,, surfaces, the period map P is constructed by comparing the restriction of a line bundle
in {s, f}* c Pic(X) to the two glued fibers.

Observe that (1) follows from the observation at the beginning of this section that every Type 11,
elliptic surface is smoothable to the interior of F, so the Zariski closure of im(P) c (D/T)! must
contain im(P™).

3. Dominance of the period map

Fix a smooth cubic D c P? and let y € PGL3(C) be generic. Then D and y(D) generate a pencil of
cubics with 9 distinct base points. Blowing up at the nine base points D N y(D) = {p1, ..., po} of this
pencil, we get a rational elliptic surface X — P!, together with an isomorphism y: D — (D) between
two of its fibers. The nine blow-ups give rise to nine exceptional sections F1, ..., Fg of the resulting
elliptic fibration. Let #: D — D be an arbitrary translation and consider the surface Sy which results
from gluing our two fibers of X — P! by the isomorphism

vot: D — y(D).

This construction defines a family of singular surfaces S — U over a Zariski open subset U C
PGL3(C) x E where E := Pic’(D).

A very general surface over (7, 1) does not have a section, as there are only countably many sections
of X — P!; for a sufficiently general translation ¢, none of these will glue to a section of the singular
surface. Still, for all such surfaces, there is a period homomorphism ¢s,: H*(X,Z) — E defined by
(2.1). Tt descends to the rank 9 quotient L := H?*(X,Z)/Zf because f|p = Op and flyy = Oyp)-
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There is a translation action of t € E on U given by (yo, o) = (y0, to © 1) = (¥],1;)- It acts on the
period homomorphism as follows:

Uy (v) = s, (v) + (v - f)e. (3.1

From this formula, we deduce that the dominance of the period map for Type II;, elliptic surfaces is
equivalent to dominance of the more general period map

PGL;(C) X E --> Hom(L, E). (3.2)

Consider the codimension one subtorus of Hom(L, E) for which y5,(h) = 0 € E, where 5 is the
pullback of the hyperplane class on P2. The inverse image of this subtorus contains, as a component, the
locus of (v, t) for which ¢ = 0, because under a projective linear identification y, we have y*O,,(p) (1) =
Op(1). Thus, the dominance of (3.2) is implied by the dominance of

PGL3(C) > Hom(H?*(X,Z)/Zf + Zh,E). (3.3)

This follows because the action of € E on Hom(L, E) described by (3.1) is translation by an elliptic
subcurve transverse to the codimension 1 subtorus of Hom(L, E) appearing on the right-hand side
of (3.3).

Finally, Z° ~ span{F; |i =1,...,9} = h' surjects onto H>(X,Z)/Zf + Zh. Pulling back the period
map to this lattice, we get a map

PGL3(C) --> Hom(Z’, E) /Sy

3.4
e {wS()(Fl)’ s ,¢S()(F9)}-

Here, the base points D Ny (D), and hence the exceptional curves F;, are not canonically ordered; they
are permuted by the monodromy of the universal family. This is why we must quotient the target by the
symmetric group Sg. Since Z?=1 [F;] =3h - f in H*(X,Z), the image of the period map (3.4) lands in

{(e1,....e0) €E?|e1+-+ +eg=0}/Cy = Ag ® E/W(Ag) = P*.

The last isomorphism follows from a well-known theorem of Looijenga [L.oo76]. Applying the definition
of g, gives a very explicit construction of (3.4):

Definition 3.1. Fix a smooth cubic D c P2, Define E := Pic’(D) and let A: Sym’E — E denote the
addition map. For a generic y € PGL3(C), set D Ny(D) = {p;};_, and g; := y~'(p;) € D. We define

¥: PGL;(C) --» A™1(0) ~ P®

3.5
y = {0p(pi - a1)},;-

Theorem 3.2. The rational map ¥ from (3.5) is dominant. Thus, the period mapping for Type II},
surfaces is dominant.

Proof. Let G ¢ PGL3(C) be the finite subgroup for which g(D) = D. We claim that ¥ extends, as a
morphism, from U to PG L3(C) \ G. This is easy: the map ¥ extends continuously because D Ny(D) is
still a finite set for all y € PG L3(C)\ G. Normality of PG L3(C) \ G implies that a continuous extension
is algebraic.

We choose D and y carefully so that the set D Ny (D) has only three elements. Concretely, consider
the extremal cubic pencil Xo11; — ]P’% Acp] in the notation of [MP86], given by the equation

Ax%y + y2 2+ 22x) + u(xyz) = 0.
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\)PS

ﬂf D2

Figure 2. The pencil generated by two cubics, shown in red and black, with set-theoretic base locus
three blue points.

See Figure 2. Let D := D, be a generic fiber, and let y = diag(1, {3, {32) where {3 is a primitive third
root of unity. Then y(D) = D441, and so D and y(D) generate the pencil. The intersection multiset
D ny(D)is {3p1,3p2,3p3} where

p1=[1:0:0], p,=[0:1:0], p3=[0:0:1].

Since this y € PGL3(C) fixes p1, pa, p3, the period ¥(y) = {0, ...,0} € Sym?E vanishes. To prove
that ¥ is dominant, it suffices to show that there is no small deformation y” € PG L3(C) of y for which
Y(y") =A0,...,0}.

Suppose, to the contrary, that there were. Since W(y’) = {0, ..., 0}, every base point in D Ny’ (D)
is fixed by y’. If |D N y’(D)| > 4, then y’ must fix a line in P?. This is impossible for a small
deformation of y, which has isolated fixed points. Conversely, |D N y’(D)| > 3 because each of py,
P2, p3 deforms to some fixed point of y’. Hence, y’ fixes exactly three points p}, p}, pj. Furthermore,
D Ny’ (D) = {3p},3p},3p}} as a multiset, again because y’ is near 7y, and the map

PGL3(C) \ G — Sym’(D)

sending y’ — D N y’(D) with multiplicities is continuous.

Since mult, (D N y’(D)) > 2, we deduce that y’ preserves the tangent direction 7)D and the
corresponding tangent line L. Thus, y* € PGL3(C) fixes the point L] N L;. € P2. But, as we noted
before, y’ only fixes three points (this holds not just on D but in the ambient plane P?). Using that y” is
a small deformation of vy, we deduce that

LinLy=p), LinLy=p; LyNL| =p].
Write p] = p; +t; for a translation ¢;. By the addition law on a cubic, we have
2p| = -p3» 2p3 = —p3 2p3 = —p]
from which we can conclude that 1 = (—2)31‘1 i.e. 11 is 9-torsion. But since ¢; are small, we conclude
that 1y =, =3 = 0 and so p; = p;.
Thus, y’ fixes (p1, p2, p3), implying thaty” € (C*)? ¢ PGL3(C) lies in the maximal torus associated
to the coordinates [x : y : z]. Furthermore, y’ preserves the base locus scheme D N y’(D), as this is

the unique subscheme of D which has length 3 at each of py, p;, p3. So y’ induces an automorphism
of the pencil generated by D and y’(D). Since the automorphism group of a rational elliptic surface is
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discrete, and y’ is a small deformation of y, the automorphism y’ must have order 3. But no nontrivial
small deformation of y = diag(1, {3, {32) within the torus (C*)? has order 3. This is a contradiction. O

Remark 3.3. Our original proof of Theorem 3.2 checked by computer that ¥ was nondegenerate for
an explicitly chosen D and .

Proof of Theorem 1.1. By the discussion at the end of Section 2, P is dominant if P! is. The latter
follows from Theorem 3.2. |

4. Type I1; degenerations

We consider in this section degenerations of S — C that keep the base C constant. These are never of
Type 11, because in all such degenerations, j(C) — oo.

Take a one-parameter deformation of a, b € H°(C, O¢(4p)), H*(C, Oc(6p)) over (B,0) until the
discriminant 4a} +27bf = 0 € H(C,Oc¢(12p)) vanishes identically. For instance, we can take the
fiber over 0 € B to be

¥ =x = 3rx + 217
with r € H°(C, O¢(2p)). The degeneration

S - CxB— (B,0)

of elliptic surfaces has a central fiber Sy — C whose generic fiber is irreducible nodal, with two
cuspidal fibers over the zeroes of r. In particular, the normalization Eg := X — C is the smooth P'-
bundle X = Pc (O L), and E() is reconstructed from gluing a bisection D of X — C, branched over the
two zeroes of r. This bisection D is glued along the involution switching the two sheets of v: D — C.

For future reference, note that NS(X) ~ H?(X,Z) is spanned by the P'-fiber class f and the class of
the section s = Pc (O @ 0), with intersection form

f’fzo, soo'f=17 Soo'soo:_la

and Kx = —f — 25. The other natural section so = Pc (0 & L) has class f + Sco.

The bisection D C X has genus 2, being a double cover of C branched over two points. Thus, its
cohomology class is [D] = 2f + 25. = —Kx + f = 2s¢. Note that [D]?> = 4 and [D] - Kx = —2. The
section s that is present on the smooth surfaces in the family S limits to s.,, which is the unique section
of X disjoint from D.

Proposition 4.1. Generically, two singular fibers limit to each cuspidal fiber of So. The limits of the
remaining eight singular fibers lie over a degree 8 divisor in C. The only restriction on this divisor is
that it is linearly equivalent to 8p.

Proof. Consider a deformation of the Weierstrass equation
V2 =x3 = (3r2 + ega)x + (2r + egar + €%g6),
where g4 € H°(C, O¢(dp)) has degree d. The discriminant A = 4a> +27b% is
A =9r2(12rge — gﬁ)e2 +0O(e).
Thus, the Zariski closure of the discriminant divisor is

lim div(A) = 2 - div(r) + div(12rge — g2).
€
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X &

Figure 3. A Type Il surface So = X Up V with the genus 2 double locus D shown in red, the section s
in green, limits of 8 nodal fibers in blue, and limits of pairs of nodal fibers dashed.

For fixed r, the sections rge form a linear subspace P> ¢ P7 = PH(C, O(8p)) of codimension 2. The
sections gi € PH(C, O(8p)) are the image of the degree 2 Veronese embedding, followed by a linear
projection

vy: P3P P? = PSym?HO(C, O(4p)) > P.

The inverse image of {div(rgs)} = P3 c P’ is a copy of P’ ¢ P° under the linear projection. Thus,
the vanishing loci of linear combinations are represented geometrically as the join of the projective
subvarieties v,(P3), P’ c P°. This join is all of P?. Thus, we can realize any divisor in |8p| as
lim¢ o div(A) — 2 - div(r). m

For general g4 and g¢, the punctured family over B \ 0 has smooth total space. The threefold Sisa
double cover branched over the vanishing locus of the cubic x> — (372 + €g4)x + (2> + €g4r + €2gs), s0
it can only be singular where two of the roots of the cubic coincide. This shows that the singular locus
Ssing € V(y,x —r, €) is contained in the singularities of the fibers of So— C.

Since €? || A, the local equation of the double cover is generically y* = u? + €* along the nodes
of So — C. So the nodes form a family of A;-singularities in S. At the nodes on the fibers lying over
div(12rge — gi), the local equation is rather y> = u? +ve?. Thus, to find a semistable model S — (B, 0),
we simply blow up the double locus of Sy in the total space S.

The resulting central fiber is S = X Up V for a ruled surface V. — C, which contains D as a bisection
and has 8 reducible fibers over the points in div(12rgg — gi); see Figure 3. Thus, V ~ Bl |
deformation-equivalent to the blow-up of X at 8 points on D, with the double locus on V identified with D
via the strict transform. It is only deformation-equivalent because V' — C could be the projectivization
of a non-split extension of L by O. Regardless, we can identify

2 2 8
H*(V,Z) = H*(X,Z) &}_, ZE;

and [D] =2so— [E1] —---— [Es] = —Kv + f.

Definition 4.2. We call the degeneration S — C x B — (B,0) a Type Il y degeneration, and we call
the central fiber So a Type 1l ¢ elliptic surface.

From Section 6 and Proposition 6.6, the mixed Hodge structure of a Type 1y surface has a period
map to Eg ® £ which can be described as follows. Consider the sublattice {Ky, f}* ¢ H>(V,Z). This
is isometric to the root lattice

Ds={(ai,...,as) € Z|a) + - +ag € 2Z}
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via the map (ay,...,as) — Zf.;:l a;|E;] - (% Z?:l al-)f. When this isometry is understood, we will
refer to {Ky, f}* simply as Dsg.

Let E := Pic’(D)/Pic®(C) be the Prym variety of the double cover v: D — C. We define a period
homomorphism

:Dg > F
Vso: Ds @.1)

y — £,|  mod Pic’(C)

Yo
by lifting an element y € Dg to an element £,, € Pic(V). These lifts form a Pic®(C)-torsor, and thus,
the image of L’y| p € Pic’(D) under the map to E is well-defined.

Remark 4.3. The period point 5, € Hom(Ds, E) determines, up to a finite isogeny, the period point
in Eg ® E. The extensions of an element of Hom(Ds, E) to an element of Hom(Eg, E) are a torsor over
Hom(Eg/Dg, E) = E[Z]

Proof of Theorem 1.3. To show deg P > 1, it suffices to prove that the moduli of Type IIs surfaces
(appearing as limits of elliptic surfaces in F') also dominate the boundary divisor A. This follows from
Theorem 4.4 below. m]

Theorem 4.4. The period mapping for Type Il ¢ surfaces is dominant.

Proof. The period point y5, and limit mixed Hodge structure of S are encoded, up to a finite map, in
the data (v: D — C, {rl-}?:l) consisting of

1. adegree 2 map v: D — C from a genus 2 to a genus 1 curve, and
2. amultiset of 8 points {ry,...,rg} C C.

Lett: D — D be the involution switching the sheets of v and let {p;, ¢;} = v~ (r;). Then Op (p; —q;) €
Pic’(D) gives, upon quotienting by Pic’(C), the period

Ws,(F; = F)) = [Op(pi —qi)] € E,

where F; + F is areducible fiber of the ruling V — C. Ranging over the eight reducible fibers, the tuple
(Op(pi — qi) mod Pic’(C)), € E®

encodes s, up to torsion because @?:1 Z(F; = F) C Dg has finite index.

Let {ro, 710} € C be the branch points of v. Then v is determined by the monodromy representation
p: 1 (C\ {ro,r10},*) — Z. Let Prym?C be the moduli space of Prym data (C, {ro, 10}, p) over the
universal genus 1 curve C — M. It is a Deligne-Mumford stack of dimension 2, one dimension for
j(C) and another for the element ro — ryo € Pic®(C), well-defined up to sign. The data of p is finite.

A point r; € C determines p; up to switching p; < ¢; which acts by negation on the image of
Op(pi — gi) in E. Thus, we globally get a well-defined map

¥: Sym®C xuq, Prym’C — Z8 ® £/6;

“4.2)
(CoArt, ..., s} {ro, 10}, p) = {Op(pi — ¢;) mod Pic’(C)}},

where £ is the universal elliptic curve. Since the image of each Op (p; — ¢;) in E is only well-defined
up to sign, and the reducible fibers of V. — C are unordered, we must quotient the target by the signed
permutation group &5

Observe that Sym®C x M, Prym?C is ten-dimensional. There is a single condition ensuring that a
point in the domain of ¥ arises from a degeneration of surfaces in F: If L — C is the Hodge bundle, then

https://doi.org/10.1017/fms.2024.85 Published online by Cambridge University Press



Forum of Mathematics, Sigma 11

ro +ryo € |2L| and so by Proposition 4.1, {ry, ..., rg}, {r9,r10} can arise so long as r; +- - - +rg € |8L]
(i.e., the relation

ri 4+ rg —4(rg +r19) = 0 € Pic’ (C) “4.3)
is satisfied). So the Type I limits of degenerations from F are described by
Z = {elements of Sym®C XM, Prym’C | ri+--+rg —4(rg +rig) = 0}.

Our goal is to prove the dominance of the map ‘I‘| A VAR-Y¥Ht Cr

Fix an elliptic curve fiber E of &, consider the point {0,...,0} € Sym®E, and let kerg (¥) :=
¥-1({0,...,0}). It suffices to prove that Z Nkerg (¥) contains, as a component, some zero-dimensional
scheme. Let Ly C Prym?C be the sublocus of Prym data whose Prym variety is E. It is a curve
inside the surface PrymZC. Then, kerg (W) contains, as a component, an unramified double cover
Mg — Lg on whichr = r; = --- = rg and r € {ry,r1o} because the morphism D — FE sending
p = Op(p —t(p)) mod Pic®(C) is surjective.

The defining equation (4.3) of Z restricts to Mg to give the equation

4(7‘9 - r]()) =0¢€ PiCO(C)
(i.e., ro — rip € Pic?(C)[4]). The locus in Lg on which r9 — r1g is 4-torsion is finite and nonempty. So
the theorem follows. o
The proofs of Theorems 3.2 and 4.4 suggest a rather wild conjecture:

Conjecture 4.5. F| | admits a period-preserving birational involution S < S’ for which j(C) = j(F")
and j(F) = j(C’). Here, C,C’ are the bases and F, F’, are the canonical fibers. Furthermore, S and
S” are moduli spaces of stable vector bundles on each other of rank 2, determinant O(s), and ¢, = pt.
A Fourier-Mukai transform induces an isomorphism of their integral Hodge structures.

The existence of such a birational involution would give a geometric explanation for why degener-
ations of Type II;, and Il can have the same periods, even though j(C) — oo in the former, while
Jj(F) — oo in the latter.

5. A family losing dimension

Let F°*P < F be the closure of the sublocus of elliptic fibrations S — C which have six cuspidal
(Kodaira type II) fibers. These fibrations are isotrivial and have a Weierstrass form y> = x> + b for some
b € H(C,Oc(6p)). There is a fiber preserving automorphism o: § — S, given by

o (x,y) = (43x,-y),

and 0*Qg = (cQgs acts nontrivially on the holomorphic 2-form by a primitive sixth root of unity.
Furthermore, since o preserves s and f, it defines an element o* € I' = O({l2,10) which is easily
checked to fix only the origin of 1l j0. So o endows I 19 with the structure of a Hermitian lattice of
hyperbolic signature (1, 5) over the Eisenstein integers Z[ (], and

B:=P{x €l 0®C|x-¥>0, c"x={ex} D

is a Type I Hermitian symmetric subdomain (a complex ball), of dimension 5. Letting I'y := {y €
I'|yoo® =0" oy} be the group of Hermitian isometries, we get a period map to a 5-dimensional ball
quotient

FUP BT,
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But dim F**P = 1 + 5 = 6 with parameters corresponding to j(C) and the relative locations of the six
cuspidal fibers. Thus, P| ..., has positive fiber dimension.

It seems likely that P|,.., is surjective, with generic fiber dimension 1. Regardless, this gives a
second example, after Ikeda’s [Ike19], proving that P is not a finite map, even though it is generically
finite by Theorem 1.1:

Corollary 5.1. P is not finite.

6. Mixed Hodge Structures
MHS of a normal crossings surface

Let Sy be a reduced normal crossings surface with smooth double locus and no triple points. Our goal
in this section is to explicitly describe the mixed Hodge structure on H?(Sp). Let So = U7, S; with
the double curve D;; = §; N S; a smooth, possibly disconnected or empty curve for all i < j. Let
D := U< Dij. The Mayer-Vietoris sequence associated to a covering of So by neighborhoods of the
irreducible components S; reads

D H'50 5 @ H Diy) — B(S0) » D (50 @D H (i), 6.1)
i=1 =1

i<j i i<j

Here, * and res are signed restriction maps. Let K ¢ P H?(S;) be the kernel of the morphism res —
that is, K = {(a; € H2(S[)) |CY[ ‘Dij =aj- Dij}~ Define

J := coker(¢").
By exactness of the sequence (6.1), we obtain a short exact sequence

0—J— H*(S)) » K — 0.

In fact, it is a short exact sequence of mixed Hodge structures with left-hand term J pure of weight 1,
and the right-hand term K pure of weight 2.
Proposition 6.1. If p,(S;) = 0 for all components S; C Sy (equivalently, K is Hodge-Tate of weight 2),
then the Carlson classifying map [Car85]

¢ : K — Jac(J)

of the extension coincides with the Abel-Jacobi map. More precisely, an element of K is a tuple (a; €
H?(S;,7)) represented by line bundles L; such that for each i < j, we have ¢, (Lilp,;;) — c1(Ljlp,;) =
0e HQ(D,-j). Then ¢ = o Al oy, where

4 _ .

(@i € H(51.2)) = D, Lilp,; ® L)l € Pic(D),

AJ: Pic®(D) — Jac(D) = Jac(H' (D)) is the classical Abel-Jacobi isomorphism, and r: Jac(D) —
Jac(J) is the projection map.
Proof. Following Carlson’s construction, the classifying map ¢ for a weight separated extension of
mixed Hodge structures is given by the composition of two splittings. First, choose a left-splitting
a : H*(Sg) — J over Z. Next, choose a right-splitting b : K — F'H?(Sg)c over C, which respects
the Hodge filtration. The composition ac o b : K — Jc gives the classifying map after passing to the
Jacobian quotient:

¢: K — Jc/(Jz+ Flc).
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Figure 4. Heuristic diagram of irreducible components S; in black, double curves D;; in red, 1-cycles
vij C Djj in green, and 2-cycles I'; C S; capping the 1-cycles in blue.

For a, it suffices to produce a morphism on homology ker(t.) — H>(Sp), and then use the universal
coefficient theorem to give a map in the opposite direction:

H?(So) — H(S9)* — ker(i,)* ~ coker(:*) = J.

To define the morphism ker(t.) — H>(Sp), choose a basis for ker(c,) at the singular chain level:
tuples of 1-cycles t; = (y{‘j € Z1(D;j)) such that for each £,

Z L*(’}’lkj) = d(T'¥) for some T¥ € Co(S)).

J

We use the convention that y;; = —y ;. Choosing such Ff for each t in the basis of ker(i.), we construct
a 2-cycle (see Figure 4),

T, = UF{‘ € 2,(Sp).
i

We take the 1-cycles yfj to be Z-linear combinations of some fixed 2¢(D;;) loops on each D;;, whose
union we call y, chosen so that their complement in D;; is a contractible 4g-gon. The assignment
tr > [Tx] € Hz(Sp) then induces a splitting

a: H*(Sy) — J.

To construct a splitting b, we use the Cech-de Rham model of H? (S, C), and its Hodge filtration F!.
An element of H?(Sy, C) is represented by two tuples of differential forms:

(w; € Z(S)) and (6; € A'(Dyj))i<;

such that for all i < j, we have w;|p,; — w;lp,; = db;;. If furthermore, 6;; € ALO(Dy;) forall i < j,
then the element lies in F'H? (S, C).
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Given (@;) € K = ker(res), we know that a;|p,;, — @j|p,, = 0 € HZ(DI-A,'). To define b : K —
F'H?(S,, C), select a basis for K; for each basis element (@;) € K, there exists line bundles £; such
that ¢ (£;) = a;. Since each S; is projective, we may assume that the £; ~ Os, (C; — C}), where C; and
C/ are ample effective curves on §; meeting each D;; transversely away from y. We take w; € Z 2(S)
representing ¢ (£;) and supported on a small neighborhood of C; UC]. Since w;|p,; —wj|p,; € Zz(Dij)
integrates to 0, it has a g-primitive 0;; € AY(D; i), unique up to the addition of a holomorphic one-
form.

To interpret the composition ¢ = ac o b : K — Jg, we will regard Jc as Hom(ker(¢.), C). Then
(ac o b)(a;) is the unique homomorphism ker(t,.) — C which sends #; to

m
Z/ wi+2/' Hij. (62)
o1 JTf i< I

We henceforth drop the index k as we will consider a single basis vector # = .

We will make two simplifications in order to compare ¢ with the Abel-Jacobi map. First, the chains I’;
can be replaced with I'; +x; for any x; € Z5(S;) such that the tuple of homology classes (x;) is Poincaré
dual to an element of K. By Lefschetz duality, there is a perfect pairing associated to the 4-manifold
with boundary

I:Hy(Si = Ne(y)) X Ha(Si = Ne(y),0) = Z,
and we have fr w; = I(C; = C/,T;) € Z. Since (a;) is primitive in K, one can find x € K such that
I(C; = C{,x) =-I(C; - C[, T}).
So replacing I'; with I'; + x;, we may assume that the first sum in (6.2) vanishes.
Second, the primitives 6;; are not closed, so the second integral does not make sense on the homology

classes [yl"j] To remedy this, we construct smooth 1-forms 2;; € Z'(D;;) supported away from y such
that d(0;;+4;;) = 0.Let {;; be a smooth 1-chain on D;; \ y with boundary the signed intersection points:

6&']’ =(C; - Cl/) ND;; — (Cj - C]/) ND;;.

By Lemma 6.2 below, we may produce a form A;; supported in a neighborhood of ¢;;. This allows us to
write the Carlson map for our extension as

Z ‘/Aij(eij + ;)

i<j

¢((a;)) = [f — € Jo/(Jz + FlUc).

But for any 7 € Q'(D;;), since 6;; € A“*(D;;) we have, again by Lemma 6.2,

/ (9[j+/l[j)/\7'=/ /lij/\TZ/ T.
D D;; ¢

ij ij ij
Observe that the classical Abel-Jacobi map AJ: Pic’(D) — Jac(D) indeed sends [4;;] — [, . The
Ly
proposition follows. O

Now, we produce the one-form A;; with the desired properties.

Lemma 6.2. Let C be a Riemann surface and let L = O¢(q — p). There is a hermitian metric h on L,
a (1,0)-form 0 € A0(C), and a smooth 1-form A supported in a neighborhood of a path € from p to q
Jfor which
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1. 96 = iaélog(h),
2. dd=-06, and
3. f AANT = /[ T for any holomorphic one-form .

Proof. Let z be a chart to C from a neighborhood of £. There exists a function f: C \ {p,q} — C* of
the following form:

% ifz e Ne/z(f)
S = smooth interpolation if z € N¢ /2 (£)° N Ne ()
| if 7 ¢ N, (0).

Such a smooth interpolation exists because % has winding number zero along the boundary of
Neja(£). Let s € Mero(C, £) be a meromorphic section with a zero at g and a pole at p. Then, there is
a hermitian metric /2 on £ for which A(s, ) = | f|>. The associated curvature form is -4 log | |2, and
since ¢ (£) = 0, we can find a (1, 0)-form 6 satisfying (1). Furthermore, A = —# (d1og(f) - dlog(f))
is a (0, 1)-form, supported in A := N¢;»(£)° N N¢(£) and satisfying (2).

It remains to check (3). We may write 7 = dg for some holomorphic function g: N¢(¢) — C.
Applying Stokes’s formula and the residue formula, we have

//l/\‘r=—#‘/510g(f)/\dg=ﬁ d(ig~dlog(f))=#/ ig - dlog(f)
C A A 0A

=5 . =9y — _ i . B _
= ~5x 6NE/2(€)8 dlog(z_p) 5= (27i)(g(q) — g(p)) LT'

O

More generally, the lemma holds for any degree zero line bundle O¢ (}.(¢g; — pi)), for a union of
paths connecting each pair of points p; to g; by taking the product of the hermitian metrics, and sum of
the corresponding 6’s and A’s.

Remark 6.3. To apply Lemma 6.2 to the proof of Proposition 6.1, our forms w; must be such that
wilp;; — wjlp;; is the two-form ﬁﬁglog(h) supported in a neighborhood of £;;. This is achieved by
choosing w; = #55 log(h;) for hermitian metrics on h; on £; (and similarly for j) so that i = h; /h;
is the desired hermitian metric on £;[p,; ® £ le]ij‘ Note though that we must allow the two-form w; to
be supported in a tubular neighborhood of C; U C; U {;; rather than just C; U C;. Since ¢;; is disjoint
from 7y, the argument of Lemma 6.1 is unaffected.

Clemens-Schmid sequence

Let S — (B,0) be a degeneration of projective surfaces with smooth total space and reduced normal
crossings central fiber Sy = (JZ, S; with smooth double locus. Assume, furthermore, that p,(S;) = 0
for all i.

The monodromy is unipotent by Clemens [Cle69]. So let N be the nilpotent logarithm of the
monodromy operator on H*(S;). We have the Clemens-Schmid sequence [Mor84] relating the integral
cohomology of Sy and S;:

0 — HO(S,) 25 HO(S,) — Ha(So) — HA(So) = HA(S;) = HA(S,). 6.3)

Since the monodromy operator acts trivially on H°(S,), the first nilpotent operator in (6.3) is identically
0. Using these two observations, the Clemens-Schmid sequence can be shortened to

0 — HO(S,) = Hy(So) = Z™ — H(So) — H(S,) — H(S,). (6.4)
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The limit mixed Hodge structure H>(S,) has a monodromy-weight filtration defined in terms of N:
{0} =Wy c W) € Wo € W3 = H(S,).
WiH?(S;) = im(N);
WoH?(S;) = ker(N);
W3H?(S;) = H*(S1).
We call ker(N) the I-truncated mixed Hodge structure. To describe the 1-truncation explicitly, we

combine (6.4) and (6.1) above at their common term H?(S), with Mayer-Vietoris written horizontally
and Clemens-Schmid written vertically.

imH4(So) — span{&}

0 —> J —— H*(S)) > K > 0
0 —— J —— ker(N) > A > 0.

Here, &k := 2.;[Djk] — [Di;l, where [Dji] € HZ(SJ-) and [Dy;] € H?(S}) are the fundamental
classes of the double loci, and A is the cokernel of / — ker(N). We have that & = ¢1(Os(Sk)ls,). By
Proposition 6.1, we have & € ker(¢: K — Jac(J)) because the line bundles OS(Sk)|S_ ~ OS(Sk)|S_

i Jj

agree on the double locus. Hence, the Carlson extension homomorphism ¢ descends to a homomorphism
lpS() A - JaC(J)

encoding the 1-truncated mixed Hodge structure.

Application

In this section, we apply the general results above to the mixed Hodge structures associated to the
degenerations of Type II;, and II¢, and relate their associated periods to the boundary of the toroidal
extension (D/T).

It is convenient to make an order 2 base change and resolution to the Type II;, degenerations. The
effect is to normalize the first component and insert a second component isomorphic to P! x E where E
is the fiber over the node of Cy. This second component is glued to the rational elliptic surface X — P!
along the two fibers X,,, X,.

After the base change and resolution, we have that in both II;, and II; degenerations, the central fiber
So has two irreducible components and reduced normal crossings: So = S| Up S2. The double locus D
is a disjoint union of two copies of the same elliptic curve E in Type II;, and a connected, smooth genus
2 curve in Type Iy . Let Dy C §1 and D, C S, denote the double locus restricted to each component.

In both cases, the divisor D admits a natural involution ¢, and the image of the first map ¢ in (6.1) is
the (+1)-eigenspace of this involution on H'(D). The image of the restriction map res in (6.1) is a rank
1 subgroup of H>(D) ~ Hy(D), so the Mayer-Vietoris sequence takes the form

0 — H' (D)™ — H(So) — H*(S1) ® HA(S2) —> Z — 0. (6.5)
Case II,. The component S; is a rational elliptic surface X, with D| = X, U X, a pair of isomorphic
elliptic curve fibers. The component S, is simply P! x E with D, = {0, co} x E. The involution on D

swaps the two isomorphic components. Note that since [X,] = [X,] € H?(S}), and similarly for S,
the two restriction maps H>(S;) — H?(D) ~ H*>(E)®? have the same image — namely, the diagonal.
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Case II;. The component S is an elliptic ruled surface X ~ Pc (O @ L), with D a genus 2 bisection
of class 259 = 2(5e + f). The component S, is the blow-up of (a deformation of) S; at 8 points along
D with D, the proper transform of D in the blow-up. The class of D5 is 25y — ), ¢;. The involution
on D is induced by the double cover map v: D — C which comes from the ruling of X. Since D is
irreducible, H>(D) ~ Z.

In both cases, the Jacobian Jac(H'!(D)~) = E is an elliptic curve. In Type 11, it is Jac(E), where E is
either of the double curves, while in Type Il ¢, it is the Prym variety of the double cover map v: D — C.
Thus, the mixed Hodge structure on H>(Sp) is encoded by a Carlson extension map ¢ € Hom(K, E).
By the previous subsection, this extension homomorphism descends to ¥, € Hom(A, E), where

res

A = K/span{é1, &} = ker(H*(S1) ® H(S2) — Z)/Z(D1,=D>).
There is a symmetric bilinear form on H?(Sy). Let

p: H*(So) = H*(S1) & H*(S)) 2, H>(S1) ® Hy(S2) — Ha(So)

be restriction, followed by the Poincaré duality, followed by inclusion. Then define « - 8 := {(a, p(B))
on H?(Sp). The map H?(So) — H?(S,) respects the bilinear forms on the source, and target and the
bilinear form descends to K = ker(res).

By Poincaré duality and the Hodge index theorem, H>(S|) & H?(S») is a unimodular lattice of
signature (2, 10), and it is odd since at least one summand contains (—1)-curves. Since D% + D% =0,
the lattice vector (D1, —D3) is isotropic, and its orthogonal complement is precisely ker(res). Hence,
the lattice A is unimodular of signature (1, 9).

Our degenerating families are polarized by Zs & Z(s + f) € H*(S,). The monodromy operator fixes
these curve classes, and hence, we have a copy of 11,1 C ker(N). So s, f extend over the singular fiber
by (6.3). They can be represented in K as follows: (s,s), (f,0) for Type II;, and (s«,0), (f, f) for
Type Il ¢, respectively. In both cases, they span a sublattice of A isometric to /,; whose orthogonal
complement we call Ag € A. We also have Ay ~ A/I; | canonically.

Proposition 6.4. The lattice Ag is isometric to Eg in both cases.

Proof. Note that A is unimodular of signature (0, 8), so it suffices to check that it is even. The orthogonal
complement of {s, f} in ker(N) is even because f = K, and x - x = x - K5, mod 2 for any x € H>(S,).
Hence, its image Ay is even because ker(N) — A preserves the intersection form. o

Remark 6.5. The lattice Ag can be described more directly using one irreducible component (only
up to finite index in the Type Il case). For Type I, the sublattice {s, f}* < H*(S;) lies in K and
is even, unimodular of signature (0, 8). So it maps isometrically to A9 =~ Eg. For Il, the sublattice
{Ds, f}* € H?(S») lies in K and so maps isometrically to an index two sublattice Dg C Ag ~ Eg.

We summarize the results of this section in the following proposition:

Proposition 6.6. Let S — (B,0) be a degeneration of Type I, or Type Ily. Let K = ker(H*(S)) &
H?(S,) — H?(D)) be the kernel of signed restriction, and let A := K/Z(D{,-D,) and Ag = {s, f}* C
A. Let E be Pic? of either double curve in Type II;, and the Prym variety Pic®(D)/Pic®(C) in Type Iy,
The Carlson extension class ¢ € Hom(K, E) describing the mixed Hodge structure on Sy descends
to Hom(A, E), and so determines the 1-truncated limit mixed Hodge structure of the degeneration. This
homomorphism further descends to a period point ys, € Hom(Ag, E) where Ag ~ Es. Explicitly.

(Ily) The period point s, given by the map sending L € {s, f}* c Pic(S)) fo E|X ® £|; €E.
r q

(Ily) The period point s, is determined up to 2-torsion by the map sending c1(L) € {D, f}*+ C H?(S,)
to L|,, € Pic’(D) /Pic’(C) = E.
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A. Appendix: Compact moduli

KSBA theory [KSB88, Ale96, Kol23] gives a general method for constructing compact moduli spaces
of pairs (X, B), consisting of a projective variety X and a Q-Weil divisor B, which form a so-called
stable slc pair:

1. the pair (X, B) has semi-log canonical singularities,
2. Kx + B is Q-Cartier and ample.

In the case at hand, the pair (§, €s) satisfies these conditions, where § — S is the contraction to the
Weierstrass form. The paper [AB21] of Ascher and Bejleri with an appendix by Inchiostro studies the

corresponding compactification by stable slc pairs F — 7 Every degeneration with generic fiber in

F has a unique limit in F" called the stable model.

No information is lost when considering Type II;, degenerations because the stable model Sy uniquely
determines So: It is the resolution of ADE configurations in fibers. However, for Type Il degenerations,
most period information is lost: the stable model Sy is the gluing of Pc (O @ L) along the bisection D.

Thus, the locus in " corresponding to Type Il degenerations has dimension 2, remembering only
the genus 2 double cover v: D — C.

To record more period information, we can instead choose a different divisor on the general surface
SeF. LetR :=s+ Z}fl fi,» where f; are the singular fibers of S — C, counted with multiplicity.

Because (S, €R) is a stable slc pair, we may again compactify the moduli space of such pairs using
KSBA theory: F — fR, where X is the closure of the pairs {(S, €R) |S € F} in moduli of all stable

slc pairs. Up to a finite map, F remembers the period information of a Type Il degeneration (and this
is still so for Type 11, surfaces).

Thus, it is possible that the normalization of I actually dominates a toroidal compactification of
D/I". An analogous result for elliptic K3 surfaces (g, d) = (0, 2) holds by [ABE22]. We leave this as a
conjecture:

Conjecture A.l1. There is a morphism (FR)" - ID/I"Ty to some toroidal compactification, for an
appropriately chosen fan §.
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