®

Check for
updates

Toward Liveness Proofs at Scale

Kenneth L. McMillan®0

University of Texas at Austin, Austin, USA
kenmcmil@gmail.com

Abstract. While the problem of mechanized proof of liveness of reactive pro-
grams has been studied for decades, there is currently no method of proving live-
ness that is conceptually simple to apply in practice to realistic problems, can be
scaled to large problems without modular decomposition, and does not fail unpre-
dictably due to the use of fragile heuristics. We introduce a method of liveness
proof by relational rankings, implement it, and show that it meets these criteria in
a realistic industrial case study involving a model of the memory subsystem in a
CPU.

1 Introduction

The problem of mechanized proof of liveness of reactive programs has been studied for
decades. Yet proving liveness of practical systems remains a challenge that is typically
beyond the capability or time constraints of practicing engineers. This is not to say
that we lack the conceptual framework or the tools needed to prove liveness properties.
Rather, the difficulty lies in applying the tools and methods at the scale and complexity
of systems encountered in industry. Here, we study the source of these difficulties with
the goal of developing an approach that allows engineers with a reasonable degree of
sophistication in formal methods to prove liveness of real systems.

The inspiration to study this problem comes from an effort to prove liveness of
models of memory systems that have been developed by hardware engineers at Apple,
Inc. The engineers use a tool and language called Ivy [18] to prove safety properties
of memory subsystem models. These properties guarantee the consistency of memory
operations from the point of view of the processor cores. Liveness of these models is
considered important, in part to ensure the liveness of the underlying hardware imple-
mentation, but also to guarantee that the consistency proofs are not vacuous, owing
to oversights in the models that might result in deadlock. Unfortunately, proving live-
ness using an existing approach implemented in Ivy was found by the engineers to be
excessively difficult.

To understand why this is this is case, we must consider first the safety proofs.
These are accomplished using a large number of hand-written inductive invariants of
the models that were verified using a decision procedure (the SMT solver Z3 [5]). It
is significant that it was possible to construct these proofs and maintain them through
model changes on the time scale of industrial processor design.

One important factor in this success is that the models and proofs are constructed in
a way that allows automated verification using only effectively propositional reasoning,
or EPR [22], in which category we include extended logical fragments implemented

© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 255-276, 2024.
https://doi.org/10.1007/978-3-031-65627-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_13&domain=pdf
https://doi.org/10.1007/978-3-031-65627-9_13

256 K. L. McMillan

in modern SMT solvers, such as FAU [9]. This means that the verifier is a decision
procedure and hence can provide both proofs and counterexamples. Empirically, auto-
mated verification within EPR is far more efficient, stable and reliable than verification
in the richer logics that SMT solvers provide [21,23]. This makes it possible to rapidly
iterate while crafting a proof by invariant, while rarely having to debug failures of the
verifier. Using EPR also makes it practical to verify a large model representing the
entire memory system without resorting to compositional methods (i.e., without using
assume/guarantee specifications of the system components). The ability to carry out
proof without modular decomposition significantly reduces the conceptual complexity
of the proof task for engineers.

Unfortunately, these advantages of EPR do not currently carry over to liveness
proofs. Known methods for liveness proof either (/) do not produce verification condi-
tions in EPR, (2) cannot be applied at the necessary scale or (3) are too conceptually
complex to be applied in industry. We will enumerate here the primary approaches to
liveness proof the and difficulty of applying them in industrial applications.

Model Checking. Because the models are complex and not finite-state it is a significant
challenge to apply model checking to them. Model checkers for infinite-state systems
generally do not support liveness proofs and do not, in any event, scale to the needed
size and complexity even for safety. This rules out model checking approaches such
as [8,10,11,13,17] as well as Invisible Ranking [6]. Proofs combining model checking
with compositional refinement and abstraction methods are possible [16] but have high
conceptual complexity.

Deductive Approaches. In addition to inductive invariants, the common deductive
approaches to liveness require the user to provide a ranking that maps the system state
into a well-founded pre-order [14,15]. This is conceptually simple, but reasoning about
well-founded orders generally takes us outside of EPR. We will consider why this is
the case in more detail shortly, and how undecidable reasoning makes the problem of
constructing large proofs substantially more difficult.

Liveness-to-Safety Translations. In this approach, we prove liveness by proving
safety of a transformed program [2]. Although the approach has primarily been applied
to finite-state systems, a recent method due to Padon et al. can be applied to infinite-state
systems and produces verification conditions in EPR [19,20]. Unfortunately, it requires
a user to provide an inductive invariant for the transformed program. The conceptual
complexity of this task is high due to the subtlety and complexity of the transformation.
This is the approach that the Apple engineers found difficult to apply.

Motivated by the practical experience at Apple, the goal of the proposed work is to
create a liveness proof methodology with the following characteristics:

1. It is conceptually simple and easy to apply in common cases,

2. It supports a rich class of systems and temporal specifications,

3. It requires users to reason only about their own system, not about automatically
constructed state machines,

Toward Liveness Proofs at Scale 257

4. Itis as automated as is practical, relying only on decidable automated reasoning, and
5. It can be scaled to large models without modular decomposition.

To achieve these goals, we propose to apply the novel concept of a relational rank-
ing. Using a relational ranking, we hypothesize that we can retain the relative simplicity
of proof by well-founded ranking, allowing us to express rankings of height up to w™
while avoiding any automated reasoning about well-founded orders, thus keeping the
proof obligations within EPR. This allows us to reason automatically about the entire
model, without modular decompositions, and thus without the need to write complete
interface specifications for the system components (a task which is difficult for engi-
neers). In place of this, we can re-use the inductive invariants needed to prove safety to
supply almost all of the liveness proof. In fact, our experience with a generic memory
system model provided by Apple bears out these expectations.

The primary contributions of this work are, first a novel deductive proof approach
for liveness, based on relational rankings, and second, a case study of industrial interest,
applying the method and motivating the features of the proof approach.

2 Background and Related Work

The classical approach to proving liveness properties deductively is to apply a ranking.
A ranking is a function of the system state that ranges over a well-founded pre-order
(often the natural numbers). This approach is well known for proving termination of
sequential programs and was adapted to the proof temporal logic properties of con-
current, reactive programs by Manna and Pnueli [15]. To apply their ranking rule, the
user must supply inductive invariants and a ranking that are expressed over the system
state. The proof is then reduced to non-temporal verification conditions that in principle
can be discharged automatically. Approaches to proving liveness or termination using
rankings include [4,12,24], some of which can synthesize rankings in limited cases.

2.1 Liveness-to-Safety with Rankings

We will use linear temporal logic (LTL) to define temporal properties, with [J for
‘always’ and ¢ for ‘eventually’. Following Manna and Pnueli, — stands for implication,
while = stands for temporal entailment. That is, p = ¢ is a shorthand for O(p — ¢).
We prove properties of standard first-order symbolic transition systems. As usual, we
assume a vocabulary X' of function and relation symbols representing the program state
and a corresponding vocabulary of primed symbols X’ representing the next state. A
transition system is a pair (Z, 7), where 7 is a first-order formula over X representing
the initial states and 7 is a first-order formula over X' and X’ representing the set of
system transitions. We take Z A (7 as an axiom. That is, Z holds initially, and 7 for
every successive pair of states.
Manna and Pnueli gave a basic rule for proving properties of the form:

(@07) — (p = 0q). 6]

The condition r is assumed to occur infinitely often. We will call this a justice con-
straint, and the formula r a justice condition. If justice condition 7 holds infinitely

258 K. L. McMillan

init: action send(x): action poll:
pend := A\x. false; requires x > last; if 3t. pend(¢):
last := 0; last := x; X := miny (pend(y));
pend(z) := true; emit recv(x);

pend(x) := false;

Fig. 1. Simple timestamped queue example in a notional synchronous language.

often, then whenever p holds, ¢ must hold in the future. For now, we will assume that p,
r and ¢ are non-temporal. To prove such a formula, we show that p establishes an invari-
ant ¢ that holds until ¢ is true. Moreover, while ¢ holds, a ranking ¢ never increases,
and whenever r holds, § decreases. We require that § be a function from the program
state into some well-founded set.

In our notation, the rule for proving formulas of form (1) is as follows:

Bl.p= (qV ¢)

B2.¢= (¢ V (¢' A (8" <6))) 2)
B3.gAr = (¢ V(8 <))

@O0r) — (p = 09)

Notice that premises B1-B3 are temporal entailments. Normally, these are proved using
the safety rule, stated below:
1.7 —-p
R.TAp—p
B.TAp—p
Up

3)

Thus, we can think of (2) as a liveness-to-safety rule. We will call the invariant p used in
the safety rule the ‘safety invariant’ to distinguish it from the invariant ¢ in the liveness
rule.

A Simple Example. As an example, Fig. 1 shows a simple transition system represent-
ing a message queue, inspired by the Apple generic memory model. The actions repre-
sent atomic system transitions, which we assume are proved terminating (for example,
because they are loop-free, as here). A sender enters messages in the queue with logical
time stamps, drawn from the natural numbers. We assume the time stamps of messages
entering the queue are increasing, but there may be gaps in the time stamp sequence. A
receiver polls the queue for messages. When there is a message, the message with min-
imum time stamp is removed and a signal ‘recv’ is emitted. The state predicate ‘pend’
represents the time stamps that are currently present in the queue.
We would like to prove the following property for all ¢:

(O0poll) — (send(t) = Qrecv(t)). 4)

where send(t) is true when sender enters a message with time stamp ¢, recv(t) is true
when the receiver removes a message with time stamp ¢, and poll is true when the

Toward Liveness Proofs at Scale 259

receiver polls the queue. In other words, if the receiver polls the queue infinitely often,
then every sent message is eventually received. Note that ¢ is a temporal constant.

An obvious ranking function for this proof counts the number of time stamps < ¢
that are pending in the queue, that is, 6 = |{7 | 7 < ¢ A pend(7)}|. While timestamp
t is pending, § will decrease each time the queue is polled, since the removed time
stamp, being minimal, must be < ¢. We can define § in first-order logic using a simple
recursion over the natural numbers. That is, cnt(7), the number of pending timestamps
< 7, is defined recursively as:

ent(1) £ ite(7 = 0,0, cnt(7 — 1)) + ite(pend(7), 1,0)

We then have § = cnt(t). For the liveness invariant ¢ in the proof rule, we can use just
pend(t). Our justice condition r is that the queue is polled, i.e., 7 = poll.

In principle, we can now discharge the premises of Rule (2) using the safety rule,
with safety invariant p = Vz. pend(x) — x < last. Notice this invariant is also need
to prove the safety property that timestamps are dequeued in increasing order. Since all
of the premises of the safety rule are (quantified) first-order formulas over the theory
of linear arithmetic, we should be able to discharge them automatically using Z3, a
powerful automated theorem prover that supports this theory. When we attempt this,
however, we obtain a disappointing result. When trying to discharge premise B3 (stating
that 6 decreases when the queue is polled) Z3 runs for a few minutes and then returns
an inconclusive result — neither a proof nor a counterexample. The solvers CVC4 and
CVCS5 also fail.

The problem is that the formula we want to prove is outside Z3’s decidable frag-
ment. To show that removing a timestamp < ¢ reduces cnt(t) requires induction over ¢.
73 is unable to do this. The needed inductive generalization may seem trivial in this
small example, so one might easily imagine that a heuristic approach could solve the
problem. In a large proof, however, such heuristics are fragile and fail in opaque ways.
This failure puts a heavy burden on the user to debug the prover heuristics or discover
the necessary instance of the induction axiom by hand. One may imagine alternative
ranking schemes, for example using list or finite set datatypes to represent the ranking.
This does not escape the fundamental problem, however, that reasoning about well-
founded sets requires instantiating an induction schema.

To see how these issues play out in a typical ranking approach, consider the ranking-
based liveness proof method of [24]. This method synthesizes a ranking as a polyno-
mial over the integer variables in the program as well as the cardinalities of certain
predicates appearing in the program. This heuristic is fragile, however. In our simple
example, the predicate whose cardinality we require is A7. pend(7) A7 < t. This predi-
cate appears nowhere in the program or the property, and so the ranking synthesis must
fail (we cannot build a ranking from just the ‘pend’ predicate). Moreover, if we use the
cardinality of this predicate in the ranking, the method will be unsound, since this car-
dinality is not verified to be finite. Even given the predicate and a proof of its finiteness,
the approach must infer ‘deltas’ which are upper and lower bounds on the changes in
the integer variables for each action. This is done by an approximate analysis. Unfor-
tunately, the method cannot infer an upper bound of -1 for the delta of our predicate
for the ‘poll” action, because the inference is based on pattern matching and requires

260 K. L. McMillan

updates to the predicate to occur in the program. Thus the method cannot infer that the
ranking is eventually reduced. Even if this were somehow fixed, verifying the resulting
safety properties could still fail because the mixing of quantifiers, uninterpreted pred-
icates and non-linear integer arithmetic makes the verification conditions undecidable.
The same issues would be faced using other methods based on linear ranking functions
over integers (e.g., [4]). The fundamental problem is that unreliable heuristics must be
used to skirt undecidability, leading to methods that fail even on very simple problems.
The Ironfleet approach [12] is substantially more manual, but still relies on undecid-
able reasoning about well-founded orders. Users must therefore diagnose opaque and
unpredictable failures of the prover and provide manual guidance. By contrast, Invisible
Ranking [6,7] produces decidable verification conditions, but cannot express rankings
of height above w.

2.2 Dynamic Liveness-to-Safety Construction

An alternative to well-founded rankings for infinite-state systems is the dynamic
liveness-to-safety method (DL2S) proposed by Padon et al. [19]. It works by trans-
lating a program P and a liveness property ¢ into a different program P’ and safery
property ¢, such that P’ |= ¢ implies P |= ¢. Space prohibits a detailed description
of the method here. At a high level, it is similar to the method of Biere for finite-state
systems [2] in that it detects bad cycles by storing a shadow copy of the system state
and testing whether the system can return to the shadow state after certain fairness
constraints have been satisfied. The DL2S method is similar to the finite-state method,
except that it stores in the shadow state only a finite amount of information about the
system state that is dynamically chosen. Restricting the shadow state to a finite projec-
tion of the system state guarantees that every infinite behavior must visit some shadow
state infinitely often.

The DL2S approach is quite flexible, and has the advantage that in common cases,
it yields safety verification conditions in EPR. Thus, the automated part of the proof
tends to be reliable and we do not obtain inconclusive results as we did above, using a
well-founded ranking. Unfortunately, the safety proof requires us to construct an induc-
tive invariant over the transformed program P’. This greatly increases the conceptual
complexity of proof development task for the user. Quoting Padon et al. [20] “Because
our approach relies on an inductive invariant supplied by the user, it requires the user to
understand the liveness-to-safety transformation and it requires both cleverness and a
deep understanding of the protocol.” To illustrate this, Fig. 2 shows an invariant obtained
manually for the simple queue example of Fig. 1, after many failed attempts and coun-
terexamples. The symbols D, A, O and W, ‘frz’ and ‘svd’ (some with subscripts) rep-
resent auxiliary state variables that are introduced by the DL2S construction. The user
must understand the semantics of these variables as well as the safety property to be
proved. Compare this in complexity to the proof by ranking that required the user only
to introduce a function that counts the pending time stamps, and needed no auxiliary
invariants apart from the simple one needed for safety. Unlike the ranking proof, the
DL2S proof can be completed rapidly and automatically by Z3. Unfortunately, we have
relieved the burden of undecidability on the automated prover at the cost of a substantial
burden of complexity on the user. Our goal here is to eliminate this invidious trade-off.

Toward Liveness Proofs at Scale 261

Vz. pend(z) — x < last
Vr.pend(1) — D(1)
Vr.frz A (pend(T) V Opend(’l')) — A(T)

svd A =Wpepp — Ir. (r <tA Opend(T) A —pend(T))

(frz vV =W_rsp) — pend(t) A O-recv(t)
(—frz A Worsp) — —Orsp
OOpoll
V7.svd AT < t A pend(7) — Opend(T)

where rsp = send(t) — Orecv(t)

Fig. 2. Invariants for DL2S proof of simple queue example.

3 Relational Rankings

A key point that we failed to notice in the proof of our simple example by well-founded
ranking is that the liveness of the time stamped queue does not actually depend on the
well-foundedness of the time stamp order. In fact, we could use real numbers for the
time stamps, and the queue would still be live. The need for induction over the natural
numbers was an artifact of our proof rule, which requires a well-founded ranking. This
also explains why the proof by DL2S can be accomplished in EPR — the time stamps
are treated as a simple total order, which can be axiomatized within EPR.

This observation suggests a middle path that maintains the conceptual simplicity
of the proof by ranking, but eliminates reasoning about well-founded orders other than
time. To achieve this, we propose to express rankings as relations over infinite sets,
ordered by implication. While this order is not well-founded, we establish finiteness
of the ranking relations outside of the logic. This gives us the best of both worlds: we
remove the burden of undecidability on the automated prover without the extra burden
of complexity imposed on the user by DL2S.

To guarantee that relational rankings are sound for infinite-state systems, we adapt
a key idea from the DL2S method to prove that a relation is always finite (that is, its
extension as a set of tuples is always finite). To do this, we guarantee that all tuples in
the relational ranking are constructed from values that have been produced in a finite
computation. This ensures that the ranking relations are finite and therefore that they
cannot be infinitely reduced in the implication order.

Our proof approach uses a generic proof rule that is parameterized by a few user-
provided relations over the user’s program state. The rule avoids exposing the user
to the state of a machine-constructed program and still keeps the verification condi-
tions within EPR. For the sake of simple exposition, we will consider a succession of
increasingly general rules, culminating in a rule that supports many justice conditions
and lexicographic rankings.

262 K. L. McMillan

3.1 The Relational Reactivity Rule

We begin with a simple proof rule that simulates the Manna and Pnueli reactivity
Rule (2). We first consider the problem of proving that some relation R, a function
of the program state, is always finite. This can be accomplished by the following proof

rule:
Fl.Vz. =R(x)

F2.0Vz. R'(z) = (R(x) Ve =e1 V- ---Va =¢e,) 3)
U R is finite

In this rule, e; ... ey are expressions that depend on the program state. Typically, they
represent the values computed during a single atomic step of the program. This set is
necessarily finite. Premise F1 says that the relation R is initially empty. Premise F2
says that at most the elements e; ... e, can be added to relation R in each transition.
In practice, e; . . . e, can be just the ground terms occurring in the transition condition.
Since a finite number of elements is added to R at each time step, R must be finite at
every finite time. Notice we did not state that R is finite in the logic, since this is not
expressible in first-order logic.
Now we replace our well-founded ranking J by a relation, using two shorthands:

conserves § = V. §'(x) — §(x)
reduces & = Jx. §(x) A -6 (x)

That is, a transition ‘conserves’ the ranking if it does not add any elements, and it
‘reduces’ the ranking if it removes at least one element. We can now prove formulas of
form (1) using the following rule:

C0. O R is finite

Cl.p=(qgV ¢ A Vz.d(z) — R(x)))

C2.¢ = (¢' V(¢ A (conserves 0) (6)
C3. o A1 = (¢ V (reduces 9))

(O0r) = (p= 0q)

Premises C1-3 correspond closely to the premises of Rule (2). The key difference is
that, in premise C1, we establish that the ranking relation ¢ is finite at the moment
when condition p holds. This is done by establishing that § is contained in the finite
relation RR. Using just first-order connectives, we can also express that the ranking is
conserved unless ¢ holds (right-hand side of C2) and that the ranking is reduced when
r holds (right-hand side of C3). Since 6 must be finite while the invariant ¢ holds, it
follows that ¢ eventually holds. The advantage of this formulation is that it allows us to
express the verification conditions in pure first-order logic, without additional theories.
If we take care in the use of quantifier alternations, this allows us to keep the verification
conditions within EPR [23].

Now consider proving liveness, of our simple time stamped queue. To prove prop-
erty (4) using rule (6), we use the following definitions of the predicates in the rule:

§(t) Zpend(T) AT <t
¢ = pend(t)

Toward Liveness Proofs at Scale 263

Notice that the ranking ¢ is very similar to the one we used above, but it represents
simply the set of pending time stamps < ¢ and not the cardinality of this set. The
invariant ¢ is the same. We can let R = 6, since the program adds only one element
to § at each step, thus finiteness of J can be proved automatically using Rule (5). This
proof has essentially the same conceptual complexity as the proof using well-founded
ranking (in fact, slightly less, since we need not define the counting function). However,
unlike that proof, it can be checked efficiently and reliably in EPR using Z3, whereas
Z3 fails to find a proof for the well-founded ranking. If we make a mistake in the proof,
Z3 can produce a true counterexample, guiding us to correct the proof.

3.2 Chaining Liveness Lemmas

Consider proving liveness of a cascade of two queues of the type described above. That
is, when we poll queue,, if a time stamp is received, we enter it into queue,. We would
like to show an end-to-end response property, that is, assuming CI0poll, for i = 1,2,
we have send; (t) = Orecva(t). One way to do this is to prove response properties for
the two queues, that is, send; (t) = Orecv;(t) for i = 1,2 and then use these properties
to prove end-to-end response.

Unfortunately, we do not yet have a proof rule that would allow us to prove a
response property assuming two response properties. To remedy this, we will relax
Rule (6) slightly. First, we first observe that the condition need not hold true infinitely.
It suffices that it hold in the future until q is true. Second, we can relax ¢ and ¢’ in the
rule’s premises to the weaker {q. This gives us the following rule:

CO0. R is finite
Dl.p= ((0q) V¢ A (Vz.6(x) — R(x)))

D2. ¢ = ((Ogq) V (¢’ A (conserves 0)) e
D3. ¢ Ar = ((Og) V (reduces ¢))

D4. ¢ = ((0g) V (Or))

p=90q

Notice that we have moved the assumption about 7 into the premises of the rule,
making r effectively a parameter of the rule. Also, observe that the premises now have
temporal operators in them (other than the prime symbol, representing ‘at the next
time’). This may seem to defeat the purpose of a program logic rule, since it does not
reduce the proof to ordinary logic. However, we will see that, by appropriate abstrac-
tions, we can reduce the temporal verification conditions to decidable propositions.

In our two-queue example, to prove send; (t) = Orecvy(t), we can use the follow-
ing values of the rule parameters:

264 K. L. McMillan

R £ true
§ £ true
¢ = Orecvy (t)
r = recvy (t)
R(7) £ pend, (7) V pend,(7)
¢ = pend, (t) V pend,(t)

§1(7) 2 pend, () AT < t 82(7) £ (pend, (1) Vv pend, (7)) AT <t
T1 £ pO“1 T2 e po]]2
1 £ pend, (t) 2 £ pend, (t)

Fig. 3. Rule parameters for liveness of the cascaded queues.

We then have to prove the following simplified premises:

DI. send; (t) = ((Orecva) V ¢)
D2. ¢ = ((Orecva) V &)

D3. ¢ Arecvy = (Qrecva))
D4. ¢ = Qrecv,

We can prove D1 using our lemma that send;(f) = Orecvy(t). This proof is
propositional, in the sense that it does not depend on the semantics of the proposi-
tions Qrecvy or Qrecvs. For D2 and D3, we need our lemma sends(t) = Orecva(t).
That is, if send2(¢) then recvy(t) by the lemma, otherwise recvy(t) is false, thus
Qrecvy (t) remains true. The proof for D3 is again purely propositional: the transi-
tion relation guarantees that recv, implies sends (¢) which in turn guarantees Qrecvs(t)
by the lemma. We needed one tautology of temporal logic to prove D2, that is,
Qrecvy = (recvy V (Qrecvy)’). This is one of the facts about the ¢ operator that form
the symbolic tableau constraints [3], the other being recv; = {recv;. The tableau
axioms can be generated automatically from the verification conditions allowing Z3 to
discharge the premises. Though this approach is not complete, it allows us to avoid
adding further inference rules, for example, to prove single-step eventualities, or to use
response properties as assumptions.

Notice that we don’t need a ranking for this proof, but we require that receiving
on queue; and sending on queue, occur in the same transition, so that D3 is provable
from the tableau axioms. Otherwise we would need a third lemma stating recvy () =
Osendz(t). We also need a safety invariant, implying that time stamps in queue; are
always greater than time stamps in queue,:

lasty < last; A V. pend, (x) — x > lasty

This invariant is also needed to prove the safety property that timestamps are entered
into queue,, in order. Often, invariants needed to prove safety properties are also suffi-
cient for liveness.

Toward Liveness Proofs at Scale 265

3.3 Stable Schedulers

Reducing the proof to many small lemmas, each with its own relational ranking, is an
effective approach, but each lemma adds complexity to the proof and opportunities for
errors that are time-consuming to correct. Since we require a ranking for each lemma,
it would seem more parsimonious, if possible, to combine these rankings into a single
ranking and dispense with the statements of the lemmas.

With multiple rankings come multiple justice conditions. In a given state, only one
of these must cause the ranking to decrease. We call this justice condition helpful in the
given state [6]. To establish a justice condition that must eventually reduce the ranking
in a given state, we introduce a function called a stable scheduler.

As a simple example, consider proving liveness of the cascaded queues above with-
out proving liveness lemmas for the individual queues. It is not difficult to define a
ranking over the combined state of the two queues. Let us say that d; is the number of
time stamps 7 < ¢ that are pending in queue,, for i = 1, 2. A suitable numeric ranking
018 201 + 0.

We have two justice conditions to consider, that is, we assume that both queues are
polled infinitely often. Unfortunately, neither of these conditions always reduces the
ranking, since there may be no time stamps 7 < ¢ in one or the other of the two queues.
One solution to this would be to define a combined justice condition r = poll, if §; > 0
else poll,. This condition would indeed imply that the ranking decreases, but we would
have to prove a lemma that it is true infinitely often.

As an alternative, for each justice condition 7;, we provide a scheduler predicate
1); that determines when r; is helpful, in the sense of reducing the ranking ¢;, when it
eventually holds. We require the scheduler predicates to be stable, in the sense that v;,
when true, remains true until ; holds.

A proof rule for response properties with multiple justice conditions and a stable
scheduler can be stated as follows:

SL.pA=(Qq) = ¢
S2. Niey ¢ A—=(0q) =
PN
(conserves d;) A
(; A i — (reduces 6;)) A
(i N =y —) (3
S3. /\;Zz1 d) A —|(<>q) A 'l,/)z = Or;
S4. ¢ N (0q) = Vi i
S5. A\i_; ¢ = (Vz.b;(z) — R(x)))
S6. IR is finite
p= Qg

Premise S1 of the rule says that the invariant ¢ is established whenever p is true but
the desired eventuality g is false. Premise S2 gives several conditions that system
transitions must satisfy, in the case invariant ¢ holds, but the eventuality does not. First,
the invariant ¢ must be preserved. Second, the each ranking component ¢; must be
conserved. Third, if scheduler predicate 1); is true and justice condition r; is true, then
the ranking §; must be reduced. Fourth, if scheduler predicate v; is true and justice

266 K. L. McMillan

condition r;is false, then 1; must remain true. The last is the stability condition for the
scheduler. Premise S3 ensures that every scheduled justice condition eventually occurs.
Premise S4 guarantees that at least one justice condition is always scheduled when the
invariant holds. Finally, S5 and S6 guarantee that the ranking is always finite while the
invariant holds. A proof of soundness of this rule can be found in Appendix A.

For the cascaded queues, we can use the rule parameters shown in Fig. 3. Notice that
02(7) is true when time stamp 7 appears in either queue, so that moving a time stamp
from queue, to queue, does not cause s to increase. Also, notice that d is reduced
when ry occurs and), holds, because pend, (7) and pend,(7) cannot both be true.
This is implied by the safety invariant used above.

Now suppose we change the system so that the queues can hold a bounded number
of time stamps. This means that if queue, is full, we cannot move a time stamp from
queue; to queue, (in other words, the action that polls queue; must block). We can
prove this system live by a small change to) and 5, that is:

Y1 = -3t pendy(T) AT < t
e =37 pendy(T) AT <0t

(1>

If there is a time stamp 7 < ¢ to send in queue,, then d; must be reduced on polling
queue,. Otherwise, by the safety invariant above, queue, must be empty. Therefore it
cannot block, and polling queue; must reduce ;. That is, we design the scheduler to
prioritize actions that unblock other actions. To handle a longer cascade of queues, we
would prioritize the queues later in the cascade.

3.4 Lexicographic Rankings

Consider now a cascade of queues in which messages can be reordered. For example,
suppose we have two classes of messages, A and B. We have two corresponding polling
actions for queue; : poll; 4 and poll, 5. Each action moves the message of its given class
with the least time stamp from queue; to queue,. Thus, messages of different classes
can bypass each other in transit. We will assume that queue,, delivers messages in FIFO
order, that is, in order of their time of arrival. We will denote the time of arrival of a
message with time stamp ¢ at queue, by a natural number ¢, (t).

Reordering of messages presents us with a difficulty in establishing a ranking. That
is, at the time a message of class A is sent, we do not have an upper bound on the
number of future messages of class B that will bypass it before it reaches queue,. Thus,
we cannot establish a finite ranking. One solution to this problem is to take a lemma,
such as V7. send; (1) = Opend, (7). At that point when message ¢ reaches queue,,
the number of messages in queue, is known, so we can establish a ranking to prove
that message ¢ is eventually received. Alternatively, we could use temporal prophecy to
achieve the same effect [20]. However, in both cases we are adding complexity to the
proof by asking the user to provide the necessary cut formulas, as well as the rankings.
This is unnecessary, however, if we use a lexicographic ranking.

To do this, we introduce a proof rule that combines multiple rankings lexicographi-
cally. That is, we introduce a hierarchy of rankings d; . . . d,,, where J; is the high-order

Toward Liveness Proofs at Scale 267

component and 4, is the low-order component. This induces a lexicographic ranking &
such that 6(s1) < 0(s2) when ;(sy) is finite forall ¢ = 1...n, and

\/;L:l ((51(81) < (51'(82) A (/\;L;lléj(sl) = 5j(82))). (9)

We will not, however, explicitly represent . Instead, we will establish verification con-
ditions guaranteeing that the §; are always finite and that § is conserved and eventually
reduced. For this, a lower-order ranking must be conserved only when no high-order
ranking is reduced. Given a scheduler ¢ for the rankings, we will say that ranking J;
is preempted if, for some j < 4, 6; is scheduled. A preempted ranking need not be
reduced, and in fact is allowed to increase, as long as it remains finite. We say that a
ranking is required if it is scheduled and not preempted. A required ranking must even-
tually be reduced. This allows us to relax the condition of stability of the schedulers as
well, since only the schedulers of required rankings need be stable. We will introduce
two shorthands:

pre; () = ViZi1p
req; (7/)) =P A ﬁprei(z/})

The predicate pre, (¢) indicates that the ranking component §; is preempted under
scheduler ¢ and req,, (1) indicates that ¢; is required.

Using these notations, a suitable rule for establishing liveness with lexicographic
relational rankings with stable schedulers is as follows:

Sl.pA—=(0g) = ¢
L2. AL o A —(Oq) =
PN
(—pre;(¢) — (conserves d;)) A
(req;(¢) Ar; — (reduces d;)) A
(req, () A =1y —) (10)
S3. ALy @ A (0g) Apy = O
S4. ¢ A =(0q) = Vi) ¥
S5. Aily ¢ = (Vz.0;(z) — R(x)))
S6. R is finite
p= Qg

As before, premise S1 establishes the liveness invariant ¢. Premise L2 differs from S2
in the previous rule in that transitions must conserve a ranking J; only if it is not pre-
empted, must reduce the ranking when the justice condition occurs only if it is required,
and must keep the scheduler stable only if the ranking is required. The remainder of the
premises are the same as in the previous rule. A proof of soundness of this rule can be
found in Appendix A.

Now consider again our problem of cascaded queues with reordering, and sup-
pose we want to prove that messages of class A are always eventually received, that
is, send; (t) A A(t) = Orecva(t), under the assumption the actions poll; 4, and poll,, are
called infinitely often. This is done with the lexicographic ranking defined in Fig. 4.

Notice that, as long as 11 remains true, executing action poll, 4 must reduce ranking
01, since the earliest class A message must have time stamp < t. While this is true,

268 K. L. McMillan

R(7) £ pend, (7) V pendy (7)
¢ = (Pend (t) V pend,(t)) A A(t)
01(7) £ pend, (T) AT <t 02(T) £ pend, (7) A ta (1) < ta(t)
r1 = poll, , ro 2 poll,
P = pend, (t) o & pend, ()

Fig. 4. Rule parameters for liveness of the cascaded queues with reordering.

the ranking d- is allowed to increase arbitrarily, so long as it remains contained in R.
This allows any number of B messages to be added to queue,, bypassing message ¢.
However, when message ¢ is removed from queue,, d> becomes scheduled and must be
conserved. This is true because no new messages in queue, can have arrival times less
than ¢, (t). The ranking must decrease every time poll, occurs, since the least arrival
time in queue, must be < ¢,(t) as long as ¢ remains in the queue. All of the premises
of the proof rule are in EPR and can easily be checked automatically.

Parameterized Systems. The are practical situations in which we have an infinite
or unbounded number of justice conditions. For example, we may have an infinite or
unbounded number of concurrent processes (or to be more precise, process id’s may be
drawn from an infinite set, if we have dynamic process creation). We wish to assume
that every process is scheduled to run infinitely often. In the Apple generic model, this
situation arises in various ways, due to fairness assumptions involving unbounded num-
bers of processors, controllers, addresses and so on. It is straightforward to generalize
Rule 10 to parameterized justice conditions. We can do this by simply replacing con-
junction and disjunction over finite sets with universal and existential quantification
over infinite sets:

S1.pA=(0gq) = ¢
P2.Vz. AL, d A —(0q) =
PN
—pre; (1) (xz) — (conserves d;)) A
i) (z) Ari(x) — (reduces §;)) A

req; (¥)(x) A —ri(x) — Yi(x)) (11
P3.Vz. AI_; ¢ Ai(2) = Or(x)
P4. ¢ = Jdz. \/;;1 i(x)
S5. A\ily ¢ = (Va.0;(x) — R(x)))
S6. UR is finite
p=0q

Notice here that premises P2, P3 and P4 are similar to L2, S3 and S4 in Rule (10),
except that the predicates 1; and r; have a parameter x that is quantified. Also, notice
that n is the number of rankings, not the number of processes, which is conceptually
infinite. We can also easily extend the rule to rankings that are n-ary relations rather
then unary relations, which is useful in some cases.

Toward Liveness Proofs at Scale 269

Relative Completeness. A temporal proof system is relatively complete if it reduces
the validity of all temporal propositions to the validity of a finite collection of formulas
of arithmetic. We are explicitly nor concerned with relative completeness here, since our
goal is to reduce the proof to decidable propositions in EPR in practice. Having said
this, there are two obvious ways in which the relative incompleteness of our system
manifests. First, Rule 5 is not complete for proving finiteness of the ranking in cases
where the system can non-deterministically choose an unbounded natural number or
set in a single transition, as opposed to computing these values. Second, due to the
finiteness requirement, our lexicographic ranking (9) has ordinal height at most w™.
However, we can describe systems whose reachability relations have greater ordinal
height than this. For example, a program that chooses an arbitrary natural number n
and descends lexically over the tuples in N™ has ordinal height w* and hence cannot be
proved in our system. This incompleteness has not proved to be an issue, however, our
case study.

1
switch

fabric

CPU

switch
fabric

Lu || oramc

Fig.5. Apple generic memory model architecture. The flow of memory operations (reads and
writes) is depicted by the solid arrows in the diagram, and the flow of I/O operations by dashed
arrows. Requests are depicted in light blue, with responses in gray. (Color figure online)

4 Case Study: The Apple Generic Memory Subsystem Model

We now consider applying the relational ranking approach to the Apple generic memory
model mentioned in the introduction. Apple provided a generic abstract memory system
model that was designed to capture the essential difficulties in proving memory system
consistency and liveness without revealing intellectual property. This model has been
contributed to the open-source the Ivy project, as have our proofs [1].

The high-level structure of the Apple generic model is sketched in Fig. 5. The sys-
tem connects a collection of processor cores with a collection of memory and I/O mod-
ules, via switch fabrics and controllers. The number of processor cores and controllers
is unbounded in the model. At each stage, memory operations (reads and writes) are
queued and may be reordered. The order of transmission depends on a set of ordering
rules specific to the given stage. In some cases, operations may be blocked by opera-
tions that are present in later stages. Whether one operation can bypass another may
depend on various attributes of the operations, including the initiating processor, the
address, the operation type, and the destination memory controller. While operations
may be completed by the memory units out-of-order, they are ultimately retired in-order
at the processor cores, by means of a reorder buffer. The Apple engineers developed a

270 K. L. McMillan

safety proof, using hand-written inductive invariants, that the ordering rules provide a
consistent view of memory to the processor cores, according to the desired memory
consistency model. The generic model consists of approximately 1200 SLOC in the
Ivy language. The safety proof consists of 78 invariants, comprising approximately 500
SLOC.

It was also considered important to prove a liveness property of this model, that is,
that every operation issued by a core is eventually retired. This property depends upon
a large number of fairness assumptions that constrain the behavior of different units.
There are two compelling reasons to verify this specification. First, from a system point
of view, we need to know that the ordering rules do not cause any operation to be
blocked indefinitely. Second, from a modeling point of view, we need to be certain that
the guarantee of memory consistency is not rendered vacuous by a modeling error that
prevents certain operations from being retired. However, the DL2S method was found
to be too difficult and counterintuitive to be applied in practice for this.

4.1 Liveness Proof with Lemmas

We initially implemented a liveness proof rule in the Ivy tool similar to Rule (8) that
allows parameterized justice conditions, without lexicographic ranking. The earliest
version of this rule lacked the ability for the user to specify the stable scheduler. Instead,
it used a default priority-based scheduler (i.e., the first non-empty ranking is scheduled).
Using this implementation, we constructed a liveness proof for the Apple model. The
lack of lexicographic ranking made it necessary to break the proof into many lem-
mas. The proof consists of 26 lemmas expressed in first-order temporal logic, chained
together in the style of Sect. 3.2. The basic lemmas are liveness properties relating to the
liveness of specific channels in specific modules. Most of these state that an operation
reaching one module is eventually transferred to the next module on the appropriate
flow path. Additional non-blocking properties are used to state that space eventually
becomes available for an operation of a given type in a given module. These basic live-
ness properties were chained to prove end-to-end liveness.

Most of the lemmas in the proof are universally quantified, typically over mod-
ule identifiers (i.e., processors or memory controllers) or operation time stamps. When
proving the properties, these quantifiers were Herbrandized, that is, replaced by fresh
constants. This replacement of variables with constants played a significant role in the
construction of rankings, just as the use of a time stamp constant ¢ allowed us to con-
struct a ranking in our simple examples. Moreover, replacing quantified variables with
constants also helps in keeping verification conditions within EPR, and thus allowing
Ivy to automatically discharge them and produce counterexamples in a reliable way
using the Z3 theorem prover.

As an example, the DRAM controllers block incoming operations that have the
same address as operations that are already queued. To prove that operations are not
indefinitely blocked, we first prove that operation ¢ eventually leaves the DRAM con-
troller, using a ranking. Universally generalizing ¢, we can then show that all operations
in the memory controller eventually reach the DRAM controller, since the blocking
operation must eventually depart. Similarly, we first show that the completion of oper-
ation timestamped t eventually reaches the reorder buffer at the CPU. Generalizing

Toward Liveness Proofs at Scale 271

t universally, we can then show that every operation w eventually leaves the reorder
buffer, since every predecessor of u, for which it waits, must eventually arrive.

We found that it was straightforward to prove all the lemmas save two using the
basic relational ranking approach. In all of these cases, Z3 was able to discharge the
relevant proof obligations quickly and reliably, without timeouts or divergences. This
was critical as each lemma required a few counterexamples to help correct errors in the
rule application. Without these counterexamples, developing the proof would have been
extremely challenging.

The two lemmas we were unable to prove were instructive. One case involved a
queue containing two kinds of operations. We needed to show that if both kinds of
operations are removed infinitely often, then every element is eventually removed. The
other case was proving that, if completions of all operations eventually reach the reorder
buffer (out of order) then all operations are eventually retired (in order). We discharged
the two lemmas by model checking a small abstract model (using the eager abstraction
method [17]) and then used refinement maps to transfer liveness properties of the small
models to the larger model. This method, while effective, was conceptually complex
and time-consuming. This experience motivated us to consider the more general proof
approach using stable schedulers.

The overall liveness proof consumed approximately 90 person-hours of effort and
resulted in fixing several issues in the Apple generic model. The overall textual size of
the proof was approximately 1000 SLOC, and all of the proof obligations were checked
by Ivy in approximately 115 min on a laptop computer.

4.2 Lemma-Free Proof of Liveness

After adding stable schedulers to the Ivy proof rule, we found that it was straightforward
to prove the two lemmas that were previous proved using model checking and refine-
ment relations. However, the complexity of the proof remained high due to the large
number of lemmas. Eliminating the lemmas from the proof proved difficult for two
reasons. First, as in our simple reordering queue example, the presence of reordering
of operations at various places in the system prevented us from expressing the overall
ranking as a sum of simple relational rankings. Second, without taking lemmas and
Herbrandizing them, we faced the problem of quantifier alternations in the verification
conditions that took them outside EPR.

To handle the first problem, we extended the liveness proof rule with lexicographic
rankings. This made it possible to express a ranking for the entire end-to-end liveness
property without taking lemmas, instead using only a single application of the liveness
proof rule. This proof relied on 14 justice assumptions, and for each justice assumption
introduced one component in the lexicographic relation ranking.

Checking this proof with Z3 was not possible, however. We found that Z3 pro-
duced unpredictable timeouts and was unable to produce the counterexamples needed
to debug the proof. The root cause of the problem was quantifier alternations occurring
in certain invariants of the system that were needed to prove liveness, but not to prove
safety. As a simple example of this phenomenon, consider a mutual exclusion proto-
col based on ticket numbers, as in [19]. To prove liveness, we must show that every
unserved tick number is held by some process that is waiting to enter its critical section.

272 K. L. McMillan

Otherwise the protocol deadlocks. Deadlock does not affect safety but, of course, does
rule out liveness. The invariant we need says that for all ticket numbers ¢, if ¢ is waiting
be served, then some process p holds ticket ¢. This quantifier alternation introduces a
Skolem function from tickets to processes, which forms a function cycle with the map
in the system state from processes to ticket numbers. This breaks stratification of the
verification conditions, which are thus not in EPR.

Similar situations occur in the Apple generic model. For example, we must show
that in every memory module, some time stamp occurs in the first queue position,
assuming the queue is not empty. In the proof with lemmas, the quantifier alternations
were avoided by simply Herbrandizing the quantifier over memory modules, reducing
it to a constant. In the lemma-free proof, however, this was not possible. We found it
impractical to carry out the proof with Z3 using non-stratified invariants, because of
frequent and unpredictable timeouts.

As an alternative, auxiliary variables were added to the system to provide suffi-
cient witnesses for the offending existential quantifiers, as needed to prove liveness. For
example, one auxiliary variable represents the least time stamp present in any memory
module, and another the identifier of the memory controller module holding this time
stamp. The defining properties of these auxiliary variables must be stated as invariants.
In some cases, this also entailed more complex ranking definitions.

The textual size of the proof without lemmas is greatly reduced from the proof with
lemmas, at about 280 SLOC, of which about 120 represent the auxiliary variables and
their invariants, and the checking time is reduced to 15 min (11 for liveness only). The
human effort required for the proof was also substantially less, at about 20 h. This figure
should be taken with a grain of salt, however, since the second proof effort benefited
from the understanding of the system gained in the first.

It is interesting to note that, in the liveness proofs, only one new safety invariant
was needed, consisting of a disequality between two variables. The remaining invariants
came from the safety proof, or were invariants over the auxiliary variables. The ability
to re-use the safety proof greatly reduced the overall effort in proving liveness.

5 Conclusions and Future Work

We have endeavored in this work to develop a method of proving liveness that is is
conceptually simple to apply in practice to realistic problems, can be scaled to large
problems without modular decomposition, and does not fail unpredictably due to the
use of fragile heuristics. No existing method meets these conditions. In a realistic case
study, we have seen that relational rankings do. The case study is an of an order of mag-
nitude greater complexity than problems that have been solved by comparable existing
methods.

We have also observed that there is a trade-off between the use of lemmas in the
proof and the use of lexicographic rankings. The latter approach yielded a proof of
lesser textual complexity, but required more sophisticated reasoning to construct the
proof, in order to keep the verification conditions within decidable bounds. Handling
quantifier alternations in lexicographic proofs is an issue that requires further explo-
ration.

Toward Liveness Proofs at Scale 273

There are several possible directions for further work. One is the problem of assign-
ing root causes to liveness proof failures. One approach would be use state space explo-
ration on the concrete model. For example, we could use model checking to test whether
in fact a scheduled justice condition always reduces one of the rankings. If so, the fault
likely likes in the safety invariant. Or if the scheduled justice condition implies that the
ranking is eventually but not immediately reduced, then an additional ranking may be
needed. It is not clear, however, how to effectively explore the state space of complex,
infinite-state models to obtain this information.

A related question is automated synthesis of relational rankings. A natural app-
roach is to use a syntax-guided or template-based definition of the search space and
to perform the search in a counterexample-guided manner (that is, using CEGIS, or
counterexample-guided inductive synthesis). To use CEGIS effectively, we require an
effective counterexample diagnosis approach that allows us to rule out large spaces of
incorrect proofs. To be useful in practice, such a technique would have to fail transpar-
ently, in a way allows effective user guidance.

Another interesting question is whether there are useful classes of distributed sys-
tems for which the method is complete, that is, for which there always exist relational
rankings that can be verified within EPR.

Finally, while a single realistic case study is useful for motivating and guiding
research, it does not allow us to draw conclusions about the general utility of any given
method. For this we need a large, representative class of benchmark problems to use
in evaluation. Such a benchmark does not currently exist. Developing it would be a
significant step toward liveness proof methods that are effective at scale.

A Soundness proofs

In this section, we prove that Rules (8) and (10) are sound. We start by defining the
necessary background notions. We use standard multi-sorted first order logic. If s is a
multi-sorted first-order structure, we write o[s] for the universe of sort o in structure
s, and ¢|[s| for the interpretation of formula ¢ in structure s. For the sake of notational
simplicity, we restrict our attention in the sequel to unary relations, but the extension
to n-ary relations is straightforward. A (unary) relation over sort o is a formula ¢/ of
the form Ax. p(z), where p is a first-order formula whose only free variable is = and
x is of sort 0. We write [s] for the function that takes x to p(z)[s]. We adopt the
standard semantics of first-order linear temporal logic with the prime operator, so that
t’ indicates the value of ¢ at the next time. Moreover, we take the axiom Z A 07 (where
(Z,T) is intended to represent a transition system with initial condition Z and transition
condition 7).

Definition 1. A lexicographic relational ranking is an indexed set (possibly empty) of
unary predicates, 6 = {0;—1..n }, where each predicate may be over a different sort. We
say d is finite in structure s if §;[s] is finite for all i = 1. ..n. The ranking on structures
induced by 0 is the pre-order <s such that, for any two structures si o over the same
universe, s1 <s s iff:

— 0 is finite in s1, and

274 K. L. McMillan

— forsomei € 1...n, 6;[s1] C 0;[s2] and forall1 < j <4, §;[s1] = §;[s2].

Theorem 1. For any lexicographic relational ranking § = {0;—1.. .}, the pre-order <
is well-founded.

Proof. By induction on n. In the base case, n = 0, the order is well-founded because
it is empty. In the induction step, we show that if there is an infinite downward chain
in the order <y, there is an infinite downward chain in the order <. where € is the
ranking {€;—1.. ,—1} such that ¢, = d;;1. This is a contradiction, since by inductive
hypothesis, € is well-founded. To see this, suppose we have an infinite descending chain
to >s t1 > ---. By definition, § must be finite in ¢;. Moreover, forall i = 1..., we
must have 01 [t;] D 01 [t;+1]. Since 61 [t1] is finite, in cannot infinitely decrease, therefore
there exists an ¢ such that 01 [t;] = 01[t;41] for all j > <. It follows that the sequence
t;,tj+1,.-.1s an infinite descending chain of e. O

Theorem 2. Rule (10) is sound.

Proof. Suppose toward a contradiction that there exists a sequence of structures s =
S0, 81, - .. satisfying Z A OO7, such that p[s,] is true for some i, but ¢[s;] is false for
all j > 4, and all the premises of the rule hold in s. From premise S1 we have ¢[s;]
and from L2, by induction on time, that ¢[sj] for all 7 > ¢. By S5 and S6, we know
that delta is finite in s; for all j > 7. Now we show that for all j > i, there exists a
k > j such that s; >;5 s3. By S4, we know that there exists an [€ 1...n such that
;[s;]. Therefore, let I be the least number in 1...n such that, for some m > j, we
have ¢;[s,,]. We have —pre;(¢)[si] for all k& > j and therefore by L2 and induction,
01(sj) D d1(sk). From S3, it follows that there exists k£ > j such that r;[s;]. Moreover,
by L2 and induction on time, we have, for all j < m < k, req;(¢)[sm] and 9;[sp,].
Thus, by L2 we have 6;[si] D 0;[sk+1), hence &[s;] D & [sk+1]. We have proved that
for all j > 4, there exists a & > j such that s; >5 sy. It follows that there exists an
infinite descending chain in <;, which contradicts Theorem 1. |

Theorem 3. Rule (8) is sound.

Proof. Since premise S2 of Rule (8) implies premise L2 of Rule (10), and the remaining
premises of the two rules are identical, it follows by Theorem 3 that Rule (8) is sound.

References

1. Apple, Inc. Apple Generic Memory Model. https://github.com/kenmcmil/ivy/tree/master/
doc/examples/apple

2. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. Electr. Notes
Theor. Comput. Sci. 66(2), 160-177 (2002)

3. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-
ing: 10%° states and beyond. In: LICS, pp. 428-439. IEEE Computer Society (1990)

4. Cook, B., Podelski, A., Rybalchenko, A.: Abstraction refinement for termination. In: Hankin,
C., Siveroni, L. (eds.) SAS 2005. LNCS, vol. 3672, pp. 87-101. Springer, Heidelberg (2005).
https://doi.org/10.1007/11547662_8

5. de Moura, L.M., Bjgrner, N.: Z3: An efficient SMT solver. In: TACAS, pp. 337-340 (2008)

https://github.com/kenmcmil/ivy/tree/master/doc/examples/apple
https://github.com/kenmcmil/ivy/tree/master/doc/examples/apple
https://doi.org/10.1007/11547662_8

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

Toward Liveness Proofs at Scale 275

. Fang, Y., Piterman, N., Pnueli, A., Zuck, L.: Liveness with invisible ranking. In: Steffen, B.,

Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 223-238. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24622-0_19

Fang, Y., Piterman, N., Pnueli, A., Zuck, L.: Liveness with incomprehensible ranking. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 482-496. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-24730-2_36

Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Quantified invariants via syntax-
guided synthesis. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 259-277.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_14

. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in Satisfiabiliby mod-

ulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 306-320.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_25

Ghilardi, S., Ranise, S.: MCMT: a model checker modulo theories. In: Giesl, J., Hihnle,
R. (eds.) JCAR 2010. LNCS (LNAI), vol. 6173, pp. 22-29. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14203-1_3

Gurfinkel, A., Shoham, S., Vizel, Y.: Quantifiers on demand (2021). CoRR, abs/2106.00664
Hawblitzel, C., et al.: IronFleet: proving safety and liveness of practical distributed systems.
Commun. ACM, 60(7), 83-92 (2017)

Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive pro-
grams (2014)

Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst. 16(3), 872—
923 (1994)

Manna, Z., Pnueli, A.: Completing the temporal picture. Theor. Comput. Sci. 83(1), 91-130
(1991)

McMillan, K.L.: Circular compositional reasoning about liveness. In: Correct Hardware
Design and Verification Methods, 10th IFIP WG 10.5 Advanced Research Working Con-
ference, CHARME ’99, Bad Herrenalb, Germany, September 27-29, 1999, Proceedings, pp.
342-345 (1999)

McMillan, K.L.: Eager abstraction for symbolic model checking. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 191-208. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96145-3_11

McMillan, K.L., Padon, O.: Ivy: a multi-modal verification tool for distributed algorithms.
In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 190-202. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-53291-8_12

Padon, O., Hoenicke, J., Losa, G., Podelski, A., Sagiv, M., Shoham, S.: Reducing liveness to
safety in first-order logic. Proc. ACM Program. Lang. 2(POPL), 26:1-26:33 (2018)

Padon, O., Hoenicke, J., McMillan, K.L., Podelski, A., Sagiv, M., Shoham, S.: Temporal
prophecy for proving temporal properties of infinite-state systems. In: FMCAD, pp. 1-11.
IEEE (2018)

Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: decidable reasoning about
distributed protocols. Proc. ACM Program. Lang. 1(OOPSLA), 108:1-108:31 (2017)
Ramsey, F.: On a problem in formal logic. Proc. London Math. Soc. (1930)

Marcelo Taube, et al.: Modularity for decidability of deductive verification with applications
to distributed systems. In: Foster, J.S., Grossman, D. (eds.) Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018,
Philadelphia, PA, USA, June 18-22, 2018, pp. 662-677. ACM (2018)

Yao, J., Tao, R., Gu, R., Nieh, J.: Mostly automated verification of liveness properties for
distributed protocols with ranking functions. In: POPL (2024). To appear

https://doi.org/10.1007/978-3-540-24622-0_19
https://doi.org/10.1007/978-3-540-24730-2_36
https://doi.org/10.1007/978-3-030-25540-4_14
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-14203-1_3
https://doi.org/10.1007/978-3-319-96145-3_11
https://doi.org/10.1007/978-3-030-53291-8_12

276 K. L. McMillan

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Toward Liveness Proofs at Scale
	1 Introduction
	2 Background and Related Work
	2.1 Liveness-to-Safety with Rankings
	2.2 Dynamic Liveness-to-Safety Construction

	3 Relational Rankings
	3.1 The Relational Reactivity Rule
	3.2 Chaining Liveness Lemmas
	3.3 Stable Schedulers
	3.4 Lexicographic Rankings

	4 Case Study: The Apple Generic Memory Subsystem Model
	4.1 Liveness Proof with Lemmas
	4.2 Lemma-Free Proof of Liveness

	5 Conclusions and Future Work
	A Soundness proofs
	References

