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Safety Verification of Stochastic Systems:
A Set-Erosion Approach
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Abstract—We study the safety verification problem for
discrete-time stochastic systems. We propose an approach
for safety verification termed set-erosion strategy that veri-
fies the safety of a stochastic system on a safe set through
the safety of its associated deterministic system on an
eroded subset. The amount of erosion is captured by the
probabilistic bound on the distance between stochastic
trajectories and their associated deterministic counterpart.
Building on recent development of stochastic analysis, we
establish a sharp probabilistic bound on this distance.
Combining this bound with the set-erosion strategy, we
establish a general framework for the safety verification
of stochastic systems. Our method is versatile and can
work effectively with any deterministic safety verification
techniques. We exemplify our method by incorporating
barrier functions designed for deterministic safety veri-
fication, obtaining barrier certificates much tighter than
existing results. Numerical experiments are conducted to
demonstrate the efficacy and superiority of our method.

Index Terms—Stochastic system, nonlinear system,
safety verification.

I. INTRODUCTION

S
AFETY is a fundamental requirement for a wide range

of real-world systems, including autonomous vehicles,

robots, power grids, and beyond. Motivated by the significance

of safety, research on safety verification has flourished in

recent decades. Typically, safety verification refers to the

process of verifying whether the system state remains within

a defined safe region over a specified time horizon, whether

in discrete-time or continuous-time contexts [2]. In this letter,

we focus on the safety verification problem for discrete-time

systems.

Since the safety of real-world systems is frequently chal-

lenged by uncertainties in the environment [3], it is essential

for safety verification schemes to account for disturbances.

Most existing approaches have modeled disturbances as

bounded deterministic inputs and verified the safety in the
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worst case through deterministic methods such as dynamic

programming [4], [5], barrier certification [6] and ISSf-barrier

functions [7]. Among these deterministic methods, barrier

certification has attracted growing attention thanks to its

simplicity and has been widely adopted to formally prove the

safety of nonlinear and hybrid systems [8].

Many real-world applications are subject to stochastic dis-

turbances [9]. In such cases, traditional deterministic methods

often become either inapplicable or overly conservative, as

they focus on worst-case scenarios that rarely happen [10]. To

better reflect the effects of stochastic disturbances, stochastic

safety verification shifts the focus to ensuring safety within

a safe set with high probability, e.g., a finite-time stochastic

trajectory stays in the safe set with probability > 99.9%.

Multiple techniques have been developed for the safety

verification of discrete-time stochastic systems. For instance,

martingale-based strategies [10], [11], [12] focus on con-

structing barrier functions that utilize semi-martingale or

c-martingale conditions [13] to bound the failure probability.

Another commonly used method is direct risk estima-

tion [14], [15], [16], which first bounds the failure probability

of the system state at a single time instance, then applies

a union bound over the entire time horizon. Some other

methods such as conformal prediction [17] and optimization-

based approaches with chance constraints [18] are also applied

in practice. However, all these techniques are often either

overly conservative for ensuring safety with high probability

or limited to specific, restrictive scenarios.

In this letter, we present a novel approach termed set-

erosion strategy for verifying the safety of discrete-time

stochastic systems. Our strategy states that to verify the safety

of a stochastic system on a set with a certain probabilistic

guarantee, it suffices to verify the safety of its associated

deterministic system on an eroded subset. The degree of

erosion is quantified by the probabilistic bound on the dis-

tance between stochastic trajectories and their deterministic

counterparts, termed stochastic trajectory gap. We provide

a sharp probabilistic bound for this gap, enabling the set-

erosion strategy to effectively reduce the stochastic safety

verification problem to a deterministic one. This framework

is compatible with various deterministic safety verification

approaches, including barrier certification discussed in this

letter. Although some existing methods such as [19], [20] are

motivated by a similar intuition with set erosion, our derived

bound is significantly tighter than existing methods when the
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probabilistic guarantee is high and the time horizon is long.

Consequently, our method gives a notably less conservative

safety verification result in safety-critical applications for

stochastic systems.

Notations: The set of positive integers is denoted by N+.

We use ‖ ·‖ to denote �2 norm. Given two sets A, B ⊆ R
n, the

Minkowski sum of them is defined by A ⊕ B = {x + y : x ∈
A, y ∈ B}, and the Minkowski difference is defined by A�B =
(Ac ⊕ (−B))c, where Ac, Bc are the complements of A, B and

−B = {−y : y ∈ B}. We use E to denote expectation, P to

denote probability, N (μ,�) to denote Gaussian distribution,

Bn(r, y) to denote the ball {x ∈ R
n : ‖x − y‖ ≤ r}, and Sn−1

to denote the unit sphere {x ∈ R
n : ‖x‖ = 1}. For a random

variable X, X ∼ G means X is independent and identically

drawn from the distribution G. We say α(·) : R → R is an

extended class K function if α(0) = 0 and α(·) is increasing

on R.

II. PROBLEM STATEMENT

Consider the discrete-time stochastic system

Xt+1 = f (Xt, dt, t) + wt, (1)

where Xt ∈ R
n is the system state, dt ∈ D ⊂ R

m is a bounded

disturbance whose statistical properties cannot be captured,

wt ∈ R
n is the stochastic disturbance and f : Rn ×R

m ×N+ →
R

n is a smooth transition function. In this letter, we impose

the Lipschitz nonlinearity condition on the system.

Assumption 1: At every time t ≥ 0, there exists Lt ≥ 0

such that ‖f (x, d, t) − f (y, d, t)‖ ≤ Lt‖x − y‖ holds for every

x, y ∈ R
n and every d ∈ D ⊂ R

m.

We model wt as sub-Gaussian disturbance, which includes

a wide range of noise distributions such as Gaussian, uni-

form, and any zero-mean distributions with bounded support

[21, Sec. 2].

Definition 1 (Sub-Gaussian): A random variable X ∈ R
n is

said to be sub-Gaussian with variance proxy σ 2, denoted as

X ∼ subG(σ 2), if E(X) = 0 and EX(eλ〈�,X〉) ≤ e
λ2σ2

2 holds

for all λ ∈ R and � ∈ Sn−1.

Assumption 2: For the discrete-time stochastic system (1),

wt ∼ subG(σ 2
t ) with some finite σt > 0, ∀t ≥ 0.

This letter aims to establish an effective safety verification

method for the stochastic system (1). To formulate this

problem, we first formalize the concept of safety for the

deterministic systems [8]. Consider the deterministic system

xt+1 = f (xt, dt, t), (2)

which can be treated as the stochastic-noise-free version of

the stochastic system (1). Given a terminal time T ∈ N+ and

a safe set C ⊆ R
n, we say the deterministic system (2) starting

from X0 is safe during t ≤ T if X0 ⊆ C and

x0 ∈ X0 ⇒ xt ∈ C, ∀t ≤ T, ∀dt ∈ D. (3)

For the stochastic system (1), safety in the sense of (3)

can be restrictive. When wt is unbounded, Xt is likely to be

unbounded, thus any bounded set in R
n will be judged as

unsafe. Even if wt is bounded, (3) completely ignores the

statistical property of the stochastic noise and requires the state

to stay in C to the worst case of wt, which rarely happens

Fig. 1. An illustration of set-erosion strategy. Here C in green is the safe
set, and the blue area is the eroded subset C�B

n(r·,t , 0) with r·,t given
in Theorem 1-2). By Theorem 1, if the deterministic trajectory stays in
the blue area at any time, then the stochastic trajectory is safe on C with
1 − · guarantee.

due to the stochastic nature of the noise. This usually leads to

conservative safety guarantees. For these reasons, we focus on

safety with probabilistic guarantee to better capture the effect

of the stochastic noise.

Definition 2: Consider the stochastic system (1) with the

bounded set D ⊆ R
m. Given a · ∈ [0, 1], a safe set C ⊂ R

n,

an initial configuration X0 ⊆ R
n and a terminal time T , the

system is said to be safe with 1 − · guarantee during t ≤ T

if X0 ⊆ C and:

X0 ∈ X0 ⇒ P(Xt ∈ C, ∀t ≤ T) ≥ 1 − ·. (4)

With this definition, the stochastic safety verification

problem we seek to solve can be formalized below.

Problem 1 (Stochastic Safety Verification): Consider a

stochastic system (1) under Assumptions 1 and 2. Develop

an effective strategy to verify its safety with 1 − · guarantee

during a finite horizon t ≤ T .

III. SET-EROSION STRATEGY

Intuitively, the stochastic system (1) is fluctuating around

its associated deterministic system (2) with high probability.

Given a safe set C ⊂ R
n, if we erode/shrink C from its

boundary to get a subset C̃ ⊂ C, which is separated from

the “robustness buffer” C\C̃, and verify that the deterministic

system (2) is safe on C̃, then the fluctuation of the stochastic

trajectories would probably stay in the robustness buffer

and not exceed C. Building on this intuition, we propose a

strategy termed set-erosion for stochastic safety verification.

This strategy can be viewed as the dual to the separation

strategy for stochastic reachability analysis proposed in [22].

For the associated systems (1) and (2), we say Xt and xt

are associated trajectories if they have the same initial state

X0 = x0 and the same dt at any time. The fluctuation of

the stochastic system (1) around the deterministic system (2)

can be quantified by the distances among pairs of associated

trajectories. The set-erosion strategy produces a sufficient

condition for the safety of the stochastic system (1) with 1−·

guarantee, as formalized below.

Theorem 1 (Set-Erosion Strategy): Consider the stochastic

system (1) and its associated deterministic system (2). Given

a safe set C ∈ R
n, an initial set X0 ∈ C, and a terminal time T ,

if there exists r·,t : N+ → R+ such that for any trajectory Xt

of (1) and its associated trajectory xt of (2) starting from X0:

1) P
(

‖Xt − xt‖ ≤ r·,t, ∀ t ≤ T
)

≥ 1 − ·,

2) xt ∈ C � Bn(r·,t, 0), for all t ≤ T ,

then the system (1) is safe with 1 − · guarantee during t ≤ T .
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Proof: Let Xt be any trajectory of (1) associated with a

trajectory xt of (2). Then, by Condition 1 and the definition

of the Minkowski sum,

P
(

Xt ∈ {xt} ⊕ B
n
(

r·,t, 0
)

,∀t ≤ T
)

≥ 1 − ·.

By Condition 2, P(Xt ∈ C,∀t ≤ T) ≥ 1 − · follows.

An illustration of Theorem 1 is shown in Figure 1. We term

r·,t in Theorem 1 as the probabilistic bound on stochastic

trajectory gap, as it represents the gap between stochastic

trajectories and their deterministic counterpart over a time

horizon. It quantifies the erosion depth in the Minkowski

difference C � Bn(r·,t, 0). Theorem 1 states that once a

probabilistic bound r·,t of the stochastic trajectory gap is

provided, then to verify the safety of the stochastic system on

C, it suffices to verify the safety of its associated deterministic

system on the eroded subset C � Bn(r·,t, 0).

The effectiveness of the set-erosion strategy relies on the

tightness of r·,t. If r·,t is too large, then C�Bn(r·,t, 0) can be

very small or even empty, rendering conservative conditions.

Therefore, it is crucial to establish a tight probabilistic bound

r·,t for the stochastic trajectory gap.

IV. PROBABILISTIC BOUND ON STOCHASTIC

TRAJECTORY GAP

In this section, we present two approaches to probabilis-

tically bounding the stochastic trajectory gap. The first one

is based on a novel stochastic analysis technique developed

in our previous work [1]. The second one follows the idea

of worst-case analysis and is presented for comparison. By

comparing the two, we demonstrate that the former is always

superior to the latter.

A. Probabilistic Bound Based on Stochastic Deviation

In [1], we introduce the notion of stochastic deviation as

the distance ‖Xt −xt‖ between associated Xt and xt at a single

time t, and give a tight probabilistic bound on the stochastic

deviation. This bound is established by leveraging a novel

function called the Averaged Moment Generating Function and

the Markov inequality. We refer to our recent works [1], [22]

for more details.

Proposition 1 (Stochastic Deviation [1]): Consider the

stochastic system (1) and its associated deterministic

system (2) under Assumptions 1 and 2. Let Xt be the trajectory

of (1) and xt be the associated trajectory of (2). Then, given

t ≥ 0, for any · ∈ (0, 1) and tunable parameter ¸ ∈ (0, 1),

‖Xt − xt‖ ≤
√

	t(¸1n + ¸2 log(1/·)) (5)

holds with probability at least 1 − ·, where

	t = ψt−1

t−1
∑

k=0

σ 2
k ψ−1

k , ψt =
t

∏

k=0

L2
k, (6)

¸1 =
2 log(1 + 2/¸)

(1 − ¸)2
, ¸2 =

2

(1 − ¸)2
. (7)

Remark 1: In general, the choice of ¸1,¸2 based on (7) is

not necessarily optimal. For instance, when the state dimension

n = 1, one can choose ¸1 = 2 log 2 and ¸2 = 2 by Hoeffding’s

Inequality [23, Ch. 1] for a tighter bound.

Based on Proposition 1, we establish a probabilistic bound

on the stochastic trajectory gap over a finite horizon.

Theorem 2 (Stochastic Trajectory Gap): Consider the

stochastic system (1) and its associated deterministic

system (2) under Assumptions 1 and 2. Let Xt be the trajectory

of (1) and xt be the associated trajectory of (2). For any given

· ∈ (0, 1] and desired ¸ ∈ (0, 1), define

r·,t =
√

	t(¸1n + ¸2 log(T
·
)), (8)

where 	t is as in (6) and ¸1, ¸2 are as in (7). Then

P
(

‖Xt − xt‖ ≤ r·,t, ∀t ≤ T
)

≥ 1 − ·. (9)

Proof: Given 0 ≤ t ≤ T , Proposition 1 implies that for any

associated Xt and xt at time t, it holds that

P

(

‖Xt − xt‖ >

√

	t(¸1n + ¸2 log(T
·
))

)

≤ ·
T
, (10)

where 	t is as in (6) and ¸1, ¸2 are as in (7). Define

r·,t =
√

	t(¸1n + ¸2 log(T
·
). Applying union bound inequality

to (10) over t = 1, . . . , T yields

P

(

T
⋂

t=1

‖Xt − xt‖ ≤ r·,t

)

= 1 − P

(

T
⋃

t=1

‖Xt − xt‖ > r·,t

)

≥ 1 −
T

∑

t=1

·

T
= 1 − ·,

which completes the proof.

For the special case when Lt ≡ L and σt ≡ σ with some

L, σ > 0 for every t ≤ T , the expression for r·,t in Theorem 2

can be simplified as follows:

r·,t =
√

σ 2
(

L2t−1
)

L2−1

(

¸1n + ¸2 log
(

T
·

))

. (11)

Compared to the single-time probabilistic bound (5), r·,t

derived in Theorem 2 is more conservative due to the

application of union bound inequality among the whole tra-

jectory. However, the union bound only leads to an additional

O(
√

log T) term, which scales sufficiently slow with T (e.g.,√
log T = 4.80 when T = 1010). Moreover, the bound (5) is

proved to have the tightest dependence on n and 1
·

for the

stochastic system (1), and is exact for linear systems [1, Sec.

4.4]. Therefore, r·,t in (8) is overall a sharp probabilistic bound

on stochastic trajectory gap. A comparison with some existing

methods is displayed in Section VI, showing that our result is

much tighter.

B. Probabilistic Bound by Worst-Case Analysis

The worst-case analysis is a commonly-used method for

safety verification when the disturbance is bounded [6], [24].

It can also be applied to stochastic systems to estimate

stochastic trajectory gap under any sub-Gaussian stochastic

disturbance wt. This is achieved by viewing wt as a bounded

disturbance with high probability. However, the result is more

conservative than that in Theorem 2.

By the norm concentration properties of sub-Gaussian

random variables [23, Chapter 1.4] and the union bound

inequality, the bound
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bt =
√

σ 2
t

(

¸1n + ¸2 log
(

T
·

))

(12)

for all t ≤ T ensures that P(‖wt‖ ≤ bt, ∀t ≤ T) ≥ 1 − ·. A

worst-case probabilistic bound on ‖Xt −xt‖ can be established

by assuming this bound (12). More specifically, by the local

Lipschitz assumption and the triangular inequality,

‖Xt+1 − xt+1‖ ≤ ‖f (Xt, dt, t) − f (xt, dt, t)‖ + ‖wt‖
≤ Lt‖Xt − xt‖ + bt

for all t < T with probability at least 1 − ·. It follows that

‖Xt − xt‖ ≤
√

ψt−1

t−1
∑

k=0

bk

√

ψ−1
k , (13)

where ψt is as in (6). Plugging (12) into (13), we conclude

‖Xt − xt‖ ≤
√

ψt−1

t−1
∑

k=0

σk

√

ψ−1
k

(

¸1n + ¸2 log
(

T
·

))

, ∀t ≤ T

(14)

holds with probability at least 1 − ·.

This bound (14) derived using the worst-case analysis

is substantially more conservative than that in Theorem 2.

Indeed, since
√

	t ≤
√

ψt−1

∑t−1
k=0 σk

√

ψ−1
k by (6), (14)

is always worse than (8)-(9). To see more clearly the gap,

consider the case when Lt ≡ L and σt ≡ σ . In this case, (14)

reduces to ‖Xt − xt‖ ≤ Lt−1
L−1

√

σ 2(¸1n + ¸2 log T
·
), which is

much worse than (11), especially when L ≈ 1 or ≥ 1.

The gap between (8) (the bound derived in Theorem 2) and

(13) (worst-case analysis bound) arises from two estimates:

i) ‖wt‖ ≤ b, and ii) the triangle inequality ‖Xt+1 − xt+1‖ ≤
‖f (Xt, dt, t) − f (xt, dt, t)‖ + ‖wt‖. In fact, for both of these

estimates, the equality holds rarely considering the randomness

of the disturbance.

V. SET EROSION WITH BARRIER FUNCTIONS

By combining the set-erosion strategy in Theorem 1 with the

probabilistic bound on the stochastic trajectory gap developed

in Theorem 2, the stochastic system (1) starting from X0 ⊆ C

can be verified to be safe with 1 − · guarantee, if

x0 ∈ X0 ⇒ xt ∈ C � B
n
(

r·,t, 0
)

, r·,t is as (8),

∀dt ∈ D ∀t ≤ T. (15)

The new formulation (15) converts the stochastic safety

verification problem into a deterministic safety verification

on a time-varying set. It offers tremendous flexibility to

Problem 1 as one can leverage any deterministic safety

verification methods to verify (15). In applications, a large

number of existing approaches for safety verification of deter-

ministic systems are based upon barrier functions [6], [25]. In

this section, we examplify (15) with the exponential barrier

function.

The notion of discrete-time exponential barrier function is

proposed in the literature [25]. Given a time-varying set C̃t ⊆
R

n, we generalize this notion and introduce the discrete-time

time-varying exponential barrier function (TV-EBF) for the

set C̃t.

Definition 3 (TV-EBF): Consider the deterministic

system (2) with dt ∈ D, D ⊆ R
m. Given a terminal time T , if

there exists a smooth function h(x, t) : Rn × N+ → R such

that for any t ≤ T:

1) C̃t = {x ∈ R
n : h(x, t) ≥ 0}, and

2) there exists γ ∈ (0, 1] such that, for all d ∈ D,

h(f (x, d, t), t + 1) ≥ (1 − γ )h(x, t), forallx ∈ C̃t.

Then h(x, t) is a discrete-time time-varying exponential barrier

function (TV-EBF) for the set C̃t.

When X0 ⊆ C and C̃t ⊆ C � Bn(r·,t, 0), the existence

of h(x, t) on C̃t given as Definition 3 guarantees that the

deterministic system (2) is safe. Therefore, the set-erosion

strategy in (15) implies that the stochastic system (1) is safe

with 1 − · guarantee. This result is formalized as follows.

Proposition 2 (Safety Using TV-EBF): Consider the

stochastic system (1) with the initial configuration X0 ⊆ R
n,

the disturbance set D ⊆ R
m and its associated deterministic

system (2) under Assumptions 1 and 2. Given a safe set C ⊆
R

n and terminal time T , define r·,t as (8). If X0 ∈ X0 ⊆ C and

there exists a C̃t such that C̃t ⊆ C �Bn(r·,t, 0) and a TV-EBF

h(x, t) as defined in Definition 3 on C̃t for the deterministic

system (2), then the stochastic system (1) is safe with 1 − ·

guarantee on C.

Proof: Clearly it holds that h(xt, t) ≥ (1 − γ )th(x0, 0) for

any t ≤ T . Since x0 ∈ X0 ⊆ C̃0, this implies that h(xt, t) ≥ 0,

for every t ≤ T , and therefore xt ∈ C̃t, for every t ≤ T . Since

C̃t ⊆ C�Bn(r·,t, 0), xt satisfies the set-erosion strategy in (15),

which suffices to show that the stochastic system (1) is safe

with 1 − · guarantee on C.

Since r·,t as (8) is sharp, Proposition 2 provides an effective

stochastic safety verification scheme based on deterministic

barrier certifications. Its efficiency depends on the calculation

of the Minkowski difference C � Bn(r·,t, 0). Notice that

C � Bn(r·,t, 0) = (Cc ⊕ Bn(r·,t, 0))c, where the complement

Cc of C is treated as the unsafe set. Thus, Proposition 2

can be considered a barrier certification for the obstacle

avoidance task with “time-dependent expanded obstacles” Cc⊕
Bn(r·,t, 0), which has been well-studied [26], [27]. When Cc

is the union of convex sets such as ellipsoids or polygons,

Cc ⊕ Bn(r·,t, 0) can be efficiently computed [28].

VI. CASE STUDIES

In this section, we present two examples to validate the

proposed safety verification method. In the first example, we

verify safety of a linear scalar stochastic system on a finite

interval. In the second example, we verify safety of unicycle

model of a vehicle with a stabilizing feedback controller.

A. Safety of Linear Systems Over an Interval

As the first experiment, we consider the following linear

stochastic system

Xt+1 = 0.99Xt + wt, X0 = 0, (16)

where Xt ∈ R and wt ∼ N (0, 10−3). This linear system

satisfies Assumption 1 with Lt ≡ L = 0.99 and Assumption 2

with σ 2
t ≡ σ 2 = 10−3. The probabilistic bound r·,t on
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Fig. 2. The probability · (the lower the safer) that a strategy cannot
guarantee safety of (16) on the centered ball with radius R during t ≤ T .
The blue curve is given by our strategy (17), the yellow curve is the
simulated result from 3 × 106 sampled trajectories, and the red curve
is the baseline we choose, given by the main result of [10, Corollary 1].
Left: T = 100. Right: T = 200.

stochastic trajectory gap can be calculated by (11) with ¸1 =
2 log 2 and ¸2 = 2 by Remark 1.

The task is to verify the safety of the linear system (16)

with 1 − · guarantee on the interval C = {x ∈ R : |x| ≤ R}
during t ≤ T . Notice that by fixing X0 = 0, the associated

deterministic trajectory of the system (16) is xt ≡ 0, and

B1(R, 0)�B1(r·,t, 0) = B1(R− r·,t, 0). Therefore, by our set-

erosion strategy in (15), it is enough to verify whether R ≥ r·,t

for any t ≤ T . Since r·,t calculated by (11) is increasing with

t, we conclude that it suffices to verify if R ≥ r·,T , which is

equivalent to:

· ≥ T · exp

{

−
(

R2
(

L2 − 1
)

2σ 2
(

L2T − 1
) − log 2

)}

. (17)

The right-hand side of (17) is the lowest probability ·

that our strategy (15) cannot guarantee safety for the linear

system (16). When · ≥ 1, it means that the radius R of C is

so small that the system (16) is considered unsafe on C. In

such a scenario we set · = 1. Figure 2 shows the relationship

between · and R determined by (17). Our result is compared

with the curve derived from [10, Corollary 1], which calculates

· by upper bounding P(mint≤T xt < −R), and is the best

existing result for general dynamical systems to the best of

our knowledge. We also compare with the simulated result

given by Monte-Carlo approximations with 3 × 106 sampled

trajectories. When R is very small, our strategy directly implies

that the system is unsafe on C, as suggested by the simulated

result. When R gets larger, our strategy offers a result close

to the simulated result and significantly sharper than existing

methods. To show the tightness of the failure guarantees

obtained from using method, we choose R = 1.0 for T = 100

and R = 1.08 for T = 200, both of which should guarantee

· = 10−3 if our result shown in Figure 2 is correct. Then

we sample 5000 independent stochastic trajectories of (16) in

both cases, and visualize their absolute values in Figure 3.

All the trajectories of |Xt| are within the bound R and some

trajectories get quite close to the boundary of the safe set,

validating our result.

B. Nonlinear Unicycle System

Next, we consider a unicycle moving on a 2-dimensional

plane with obstacles. The unsafe region Cu = {(px − 1.3)2 +
(py −3.5)2 ≤ 0.92}∪{(px +0.3)2 +(py −2)2 ≤ 0.722}∪{(px −
6.2)2 + (py − 0.5)2 ≤ 0.752} is the union of red obstacles

Fig. 3. 5000 sampled stochastic trajectories of (16) with R that
corresponds to · = 10−3 in blue curves (our result) of Figure 2. Left:
T = 100. Right: T = 200.

shown in Figure 4 and the safe region is C = R
n \ Cu. The

discrete-time system model is given as

Xt+1 = Xt + ·

⎡

£

vt(Xt) cos(¸t)

vt(Xt) sin(¸t)

ωt(Xt) + dt

¤

⎦ + wt

= f (Xt, dt) + wt, (18)

where Xt =
[

px,t py,t ¸t

]T
is the state of the vehicle,

(px,t, py,t) is the position of the center of mass of the vehicle

in the plane, ¸t is the heading angle of the vehicle, vt(Xt)

is the velocity of the center of mass, ωt(Xt) is the angular

velocity of the vehicle, · is the discretization step size, dt is

a bounded disturbance on the angular velocity, and wt is the

stochastic disturbance on the model. In this experiment, we

assume that |dt| ≤ 0.1, wt ∼ √
· · N (0, 0.02I3), · = 0.01.

vt(Xt) and ωt(Xt) are designed as the feedback controllers

proposed in [29]. The task of the unicycle is to reach the origin

point while avoiding the obstacles under both dt and wt. The

details of controller design can be found in [22, Sec. VIII].

Our goal is to verify the safety of the stochastic system (18)

with 1 − · guarantee through the set erosion strategy. We set

· = 10−4 and the initial state set X0 =
[

5 5 − π
3

]T ± 0.1.

The probabilistic bound r·,t is calculated as (8) with ¸ = 1/16,

and Lt estimated by the methods proposed in [30]. Define rm =
maxt≤T r·,t, then by the set erosion strategy (15), it suffices to

verify whether for the associated deterministic system of (18),

xt ∈ C �Bn(rm, 0) holds for any xt starting from x0 ∈ X0 and

under any |dt| ≤ 0.1. We use barrier certification to verify this

condition, where Proposition 2 reduces to time-independent

barrier certification for forward-invariant condition [8]. The

tool we use is FOSSIL developed by [31]. Based on the

experiment setting, this program returns “Found a valid

BARRIER certificate”, implying that the safety of the

system (18) with 1− · guarantee on the zero-superlevel set of

this barrier function is verified.

To visualize the set-erosion strategy, we simulate 5000

independent trajectories of the associated deterministic system

from x0 ∈ X0 with T = 100, 500 separately. The results are

shown in the left column of Figure 4. The areas in yellow

are the eroded parts C\(C � Bn(rm, 0)) of the C. It is clear

that all the deterministic trajectories have no intersections with

the yellow areas. Meanwhile, to validate the effectiveness of

our strategy, we sample 20000 independent trajectories of the

stochastic system (18) from X0 ∈ X0 during t ≤ T . It is clear

that all the stochastic trajectories successfully avoid all the

obstacles, satisfying our safety verification strategy.
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Fig. 4. Stochastic safety verification of the unicycle system (18) with
99.99% guarantee. Left: Stochastic safety verification using the set-
erosion strategy at the terminal time T = 100, 500. The red shapes
are obstacles. The yellow areas are the eroded part C\(C � Bn(rm, 0)).
Each curve is an independent trajectory of the associated deterministic
unicycle system with different dt . Right: Simulation of the stochastic
trajectories. Each curve is an independently sampled trajectory of the
stochastic system (18) during t ≤ T , T = 100, 500.

VII. CONCLUSION

We propose a general approach called set-erosion strategy

for safety verification of discrete-time stochastic systems with

sub-Gaussian disturbances. Our set-erosion strategy reduces

the problem of safety verification of discrete-time stochastic

systems into the safety verification of an associated determin-

istic system on an eroded subset of the safe set. Based on

our results in [1], we provide a sharp probabilistic bound on

the depth of this erosion. This approach brings tremendous

flexibility to the safety verification of stochastic systems as any

deterministic safety verification methods can be used to ensure

safety on the eroded subset of the safe set. In particular, we

consider the exponential barrier function for safety verification

of deterministic systems and leverage it to obtain efficient

stochastic safety verification schemes.
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