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Safety Verification of Stochastic Systems:
A Set-Erosion Approach
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Abstract—We study the safety verification problem for
discrete-time stochastic systems. We propose an approach
for safety verification termed set-erosion strategy that veri-
fies the safety of a stochastic system on a safe set through
the safety of its associated deterministic system on an
eroded subset. The amount of erosion is captured by the
probabilistic bound on the distance between stochastic
trajectories and their associated deterministic counterpart.
Building on recent development of stochastic analysis, we
establish a sharp probabilistic bound on this distance.
Combining this bound with the set-erosion strategy, we
establish a general framework for the safety verification
of stochastic systems. Our method is versatile and can
work effectively with any deterministic safety verification
techniques. We exemplify our method by incorporating
barrier functions designed for deterministic safety veri-
fication, obtaining barrier certificates much tighter than
existing results. Numerical experiments are conducted to
demonstrate the efficacy and superiority of our method.

Index Terms—Stochastic system, nonlinear system,

safety verification.

AFETY is a fundamental requirement for a wide range
Sof real-world systems, including autonomous vehicles,
robots, power grids, and beyond. Motivated by the significance
of safety, research on safety verification has flourished in
recent decades. Typically, safety verification refers to the
process of verifying whether the system state remains within
a defined safe region over a specified time horizon, whether
in discrete-time or continuous-time contexts [2]. In this letter,
we focus on the safety verification problem for discrete-time
systems.

Since the safety of real-world systems is frequently chal-
lenged by uncertainties in the environment [3], it is essential
for safety verification schemes to account for disturbances.
Most existing approaches have modeled disturbances as
bounded deterministic inputs and verified the safety in the
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worst case through deterministic methods such as dynamic
programming [4], [5], barrier certification [6] and ISSf-barrier
functions [7]. Among these deterministic methods, barrier
certification has attracted growing attention thanks to its
simplicity and has been widely adopted to formally prove the
safety of nonlinear and hybrid systems [8].

Many real-world applications are subject to stochastic dis-
turbances [9]. In such cases, traditional deterministic methods
often become either inapplicable or overly conservative, as
they focus on worst-case scenarios that rarely happen [10]. To
better reflect the effects of stochastic disturbances, stochastic
safety verification shifts the focus to ensuring safety within
a safe set with high probability, e.g., a finite-time stochastic
trajectory stays in the safe set with probability > 99.9%.

Multiple techniques have been developed for the safety
verification of discrete-time stochastic systems. For instance,
martingale-based strategies [10], [11], [12] focus on con-
structing barrier functions that utilize semi-martingale or
c-martingale conditions [13] to bound the failure probability.
Another commonly used method is direct risk estima-
tion [14], [15], [16], which first bounds the failure probability
of the system state at a single time instance, then applies
a union bound over the entire time horizon. Some other
methods such as conformal prediction [17] and optimization-
based approaches with chance constraints [18] are also applied
in practice. However, all these techniques are often either
overly conservative for ensuring safety with high probability
or limited to specific, restrictive scenarios.

In this letter, we present a novel approach termed set-
erosion strategy for verifying the safety of discrete-time
stochastic systems. Our strategy states that to verify the safety
of a stochastic system on a set with a certain probabilistic
guarantee, it suffices to verify the safety of its associated
deterministic system on an eroded subset. The degree of
erosion is quantified by the probabilistic bound on the dis-
tance between stochastic trajectories and their deterministic
counterparts, termed stochastic trajectory gap. We provide
a sharp probabilistic bound for this gap, enabling the set-
erosion strategy to effectively reduce the stochastic safety
verification problem to a deterministic one. This framework
is compatible with various deterministic safety verification
approaches, including barrier certification discussed in this
letter. Although some existing methods such as [19], [20] are
motivated by a similar intuition with set erosion, our derived
bound is significantly tighter than existing methods when the
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probabilistic guarantee is high and the time horizon is long.
Consequently, our method gives a notably less conservative
safety verification result in safety-critical applications for
stochastic systems.

Notations: The set of positive integers is denoted by N..
We use || - || to denote £, norm. Given two sets A, B C R”, the
Minkowski sum of them is defined by A@B={x+y:x e
A, y € B}, and the Minkowski difference is defined by A©GB =
(A€ @ (—B))“, where A€, B¢ are the complements of A, B and
—B = {—y : y € B}. We use E to denote expectation, P to
denote probability, V' (i, ¥) to denote Gaussian distribution,
B"(r,y) to denote the ball {x € R” : |lx —y|| < r}, and S"!
to denote the unit sphere {x € R” : ||x|| = 1}. For a random
variable X, X ~ G means X is independent and identically
drawn from the distribution G. We say «(-) : R — R is an
extended class K function if «(0) = 0 and «(-) is increasing
on R.

[I. PROBLEM STATEMENT

Consider the discrete-time stochastic system
Xev1 =X, dp, 1) + wy, (1)

where X; € R” is the system state, d; € D C R™ is a bounded
disturbance whose statistical properties cannot be captured,
w; € R" is the stochastic disturbance and f : R” x R x N —
R”" is a smooth transition function. In this letter, we impose
the Lipschitz nonlinearity condition on the system.

Assumption 1: At every time t > 0, there exists L; > 0
such that ||f(x,d, 1) —f(y,d, )| < L||x — y|| holds for every
x,y € R" and every d € D C R™.

We model w; as sub-Gaussian disturbance, which includes
a wide range of noise distributions such as Gaussian, uni-
form, and any zero-mean distributions with bounded support
[21, Sec. 2].

Definition 1 (Sub-Gaussian): A random variable X € R" is
said to be sub-Gaussian with variance proxy o2, denoted as

2252
X ~ subG(c?), if E(X) = 0 and Ex(e*¢X)) < ¢ 2~ holds
forall A € R and £ € 8"

Assumption 2: For the discrete-time stochastic system (1),
Wy ~ subG(olz) with some finite o; > 0, V¢ > 0.

This letter aims to establish an effective safety verification
method for the stochastic system (1). To formulate this
problem, we first formalize the concept of safety for the
deterministic systems [8]. Consider the deterministic system

Xep1 =[x, dp, 1), 2

which can be treated as the stochastic-noise-free version of
the stochastic system (1). Given a terminal time 7 € Ny and
a safe set C € R”, we say the deterministic system (2) starting
from X is safe during t < T if Xy C C and

xoe Xy = x€C, Vit <T, Vd; € D. 3)

For the stochastic system (1), safety in the sense of (3)
can be restrictive. When w; is unbounded, X; is likely to be
unbounded, thus any bounded set in R” will be judged as
unsafe. Even if w; is bounded, (3) completely ignores the
statistical property of the stochastic noise and requires the state
to stay in C to the worst case of w;, which rarely happens

¢ e

0
W% \\,l

Deterministic x; Stochastic X,

Fig. 1. Anillustration of set-erosion strategy. Here C in green is the safe
set, and the blue area is the eroded subset C & B"(r5 1, 0) with rs ; given
in Theorem 1-2). By Theorem 1, if the deterministic trajectory stays in
the blue area at any time, then the stochastic trajectory is safe on C with
1 — § guarantee.

due to the stochastic nature of the noise. This usually leads to
conservative safety guarantees. For these reasons, we focus on
safety with probabilistic guarantee to better capture the effect
of the stochastic noise.

Definition 2: Consider the stochastic system (1) with the
bounded set D € R™. Given a § € [0, 1], a safe set C C R",
an initial configuration Ay € R" and a terminal time 7, the
system is said to be safe with 1 — § guarantee during t < T
if Xy € C and:

XoeXy = PX,elC, Ve<T)>1-5. “4)

With this definition, the stochastic safety verification
problem we seek to solve can be formalized below.

Problem 1 (Stochastic Safety Verification): Consider a
stochastic system (1) under Assumptions 1 and 2. Develop
an effective strategy to verify its safety with 1 — § guarantee
during a finite horizon r < T.

IIl. SET-EROSION STRATEGY

Intuitively, the stochastic system (1) is fluctuating around
its associated deterministic system (2) with high probability.
Given a safe set C C R”, if we erode/shrink C from its
boundary to get a subset C C C, which is separated from
the “robustness buffer” C\é, and verify that the deterministic
system (2) is safe on C~, then the fluctuation of the stochastic
trajectories would probably stay in the robustness buffer
and not exceed C. Building on this intuition, we propose a
strategy termed set-erosion for stochastic safety verification.
This strategy can be viewed as the dual to the separation
strategy for stochastic reachability analysis proposed in [22].

For the associated systems (1) and (2), we say X; and x;
are associated trajectories if they have the same initial state
Xo = xp and the same d; at any time. The fluctuation of
the stochastic system (1) around the deterministic system (2)
can be quantified by the distances among pairs of associated
trajectories. The set-erosion strategy produces a sufficient
condition for the safety of the stochastic system (1) with 1 —§
guarantee, as formalized below.

Theorem 1 (Set-Erosion Strategy): Consider the stochastic
system (1) and its associated deterministic system (2). Given
a safe set C € R”, an initial set Xy € C, and a terminal time 7,
if there exists r5; : N; — R, such that for any trajectory X;
of (1) and its associated trajectory x; of (2) starting from Ajp:

D P(IX —xll <rsy, YE<T)>1-38,

2) ;€ CO B (rs;,0), forall t <T,
then the system (1) is safe with 1 — & guarantee during t < T.
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Proof: Let X; be any trajectory of (1) associated with a
trajectory x; of (2). Then, by Condition 1 and the definition
of the Minkowski sum,

P(X; € {x} ® B"(rs,.0),Vt <T) > 1 3.

By Condition 2, P(X; € C,Vt < T) > 1 — § follows. [ |

An illustration of Theorem 1 is shown in Figure 1. We term
rs; in Theorem 1 as the probabilistic bound on stochastic
trajectory gap, as it represents the gap between stochastic
trajectories and their deterministic counterpart over a time
horizon. It quantifies the erosion depth in the Minkowski
difference C © B"(rs;, 0). Theorem 1 states that once a
probabilistic bound r5; of the stochastic trajectory gap is
provided, then to verify the safety of the stochastic system on
C, it suffices to verify the safety of its associated deterministic
system on the eroded subset C & B"(r5,, 0).

The effectiveness of the set-erosion strategy relies on the
tightness of rs ;. If 75 ; is too large, then C © B"(rs,, 0) can be
very small or even empty, rendering conservative conditions.
Therefore, it is crucial to establish a tight probabilistic bound
rs; for the stochastic trajectory gap.

V. PROBABILISTIC BOUND ON STOCHASTIC
TRAJECTORY GAP

In this section, we present two approaches to probabilis-
tically bounding the stochastic trajectory gap. The first one
is based on a novel stochastic analysis technique developed
in our previous work [1]. The second one follows the idea
of worst-case analysis and is presented for comparison. By
comparing the two, we demonstrate that the former is always
superior to the latter.

A. Probabilistic Bound Based on Stochastic Deviation

In [1], we introduce the notion of stochastic deviation as
the distance || X; —x;|| between associated X; and x; at a single
time ¢, and give a tight probabilistic bound on the stochastic
deviation. This bound is established by leveraging a novel
function called the Averaged Moment Generating Function and
the Markov inequality. We refer to our recent works [1], [22]
for more details.

Proposition 1 (Stochastic Deviation [1]): Consider the
stochastic system (1) and its associated deterministic
system (2) under Assumptions 1 and 2. Let X; be the trajectory
of (1) and x, be the associated trajectory of (2). Then, given
t >0, for any é € (0, 1) and tunable parameter ¢ € (0, 1),

1X: = xell < v/ Wi(ern + e2log(1/8)) )
holds with probability at least 1 — §, where

t—1 t
=y ) v =[] ©6)
k=0 k=0
_ 2log(1 +2/e) _ 2
el = (1_s) 82—(1_8)2- (7N

Remark 1: In general, the choice of €1,e> based on (7) is
not necessarily optimal. For instance, when the state dimension
n = 1, one can choose ¢; = 2log2 and &, = 2 by Hoeffding’s
Inequality [23, Ch. 1] for a tighter bound.

Based on Proposition 1, we establish a probabilistic bound
on the stochastic trajectory gap over a finite horizon.

Theorem 2 (Stochastic Trajectory Gap): Consider the
stochastic system (1) and its associated deterministic
system (2) under Assumptions 1 and 2. Let X; be the trajectory
of (1) and x; be the associated trajectory of (2). For any given
S € (0, 1] and desired ¢ € (0, 1), define

ros = Wilein + e log(1)), ®)
where W, is as in (6) and €1, &y are as in (7). Then
P(IX, — x| < rsy, Vi<T)>1-3. )

Proof: Given 0 <t < T, Proposition 1 implies that for any
associated X; and x; at time ¢, it holds that

P(nxt — x| > \/‘I’r(€1n+82 log<§>)> <2 (0

where W, is as in (6) and e1,&, are as in (7). Define

rs = \/ Vi(e1n+ & log(g). Applying union bound inequality
to (10) over r =1, ..., T yields

T T
P(ﬂ 1% — x| < rg,,) =1- IP(U 1X; — x| > m)

t=1 =1
T

1-2%:1—5,

t=1

v

which completes the proof. |

For the special case when L, = L and o; = o with some
L,o > 0 for every t < T, the expression for 5 ; in Theorem 2
can be simplified as follows:

o2 (12—
o= \/ T e+ ez 1og(§). (1)

Compared to the single-time probabilistic bound (5), rs
derived in Theorem 2 is more conservative due to the
application of union bound inequality among the whole tra-
jectory. However, the union bound only leads to an additional
O(/logT) term, which scales sufficiently slow with T (e.g.,
JVIogT = 4.80 when T = 10'%). Moreover, the bound (5) is
proved to have the tightest dependence on n and % for the
stochastic system (1), and is exact for linear systems [1, Sec.
4.4]. Therefore, s in (8) is overall a sharp probabilistic bound
on stochastic trajectory gap. A comparison with some existing
methods is displayed in Section VI, showing that our result is
much tighter.

B. Probabilistic Bound by Worst-Case Analysis

The worst-case analysis is a commonly-used method for
safety verification when the disturbance is bounded [6], [24].
It can also be applied to stochastic systems to estimate
stochastic trajectory gap under any sub-Gaussian stochastic
disturbance w;. This is achieved by viewing w; as a bounded
disturbance with high probability. However, the result is more
conservative than that in Theorem 2.

By the norm concentration properties of sub-Gaussian
random variables [23, Chapter 1.4] and the union bound
inequality, the bound
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b= \/0,2(81n+82 log(%)) (12)

for all + < T ensures that P(||w;|| < b;, Vi <T)>1-6. A
worst-case probabilistic bound on ||X; —x;|| can be established
by assuming this bound (12). More specifically, by the local
Lipschitz assumption and the triangular inequality,

IXer1 — X1l < W Xe, dr, 1) — [, dp, D+ [Iwel
< L Xy — x|l + by

for all + < T with probability at least 1 — §. It follows that

t—1
X = xill < V1 Y b v
k=0

where V; is as in (6). Plugging (12) into (13), we conclude

t—1
1% =l = Vot Yo ern + ez Tog(F)),
k=0

13)

holds with probability at least 1 —§.

This bound (14) derived using the worst-case analysis
is substantially more conservative than that in Theorem 2.
Indeed, since /¥, < MZ;;IO ok,/l/f,:l by (6), (14)
is always worse than (8)-(9). To see more clearly the gap,
consider the case when L; = L and o; = o. In this case, (14)

reduces to || X; — x;|| < LL’T_II\/oz(sln—i—ez logg), which is
much worse than (11), especially when L ~ 1 or > 1.
The gap between (8) (the bound derived in Theorem 2) and
(13) (worst-case analysis bound) arises from two estimates:
1) [|w:]| < b, and ii) the triangle inequality || X;+1 — x/41] <
Wf (Xs, dyy ) — f(xg, dy, D) + |lwell. In fact, for both of these
estimates, the equality holds rarely considering the randomness

of the disturbance.

V. SET EROSION WITH BARRIER FUNCTIONS

By combining the set-erosion strategy in Theorem 1 with the
probabilistic bound on the stochastic trajectory gap developed
in Theorem 2, the stochastic system (1) starting from Xy € C
can be verified to be safe with 1 — § guarantee, if

X0 € X() = X; € C GBH(T&I, 0), rs,t is as (8)7

Vd, e DVt <T. (15)

The new formulation (15) converts the stochastic safety
verification problem into a deterministic safety verification
on a time-varying set. It offers tremendous flexibility to
Problem 1 as one can leverage any deterministic safety
verification methods to verify (15). In applications, a large
number of existing approaches for safety verification of deter-
ministic systems are based upon barrier functions [6], [25]. In
this section, we examplify (15) with the exponential barrier
function.

The notion of discrete-time exponential barrier function is
proposed in the literature [25]. Given a time-varying set ¢ c
R”, we generalize this notion and introduce the discrete-time
time-varying exponential barrier function (TV-EBF) for the
set C;.

Definition 3 (TV-EBF):  Consider the  deterministic
system (2) with d; € D, D € R™. Given a terminal time T, if
there exists a smooth function h(x, ) : R" x N — R such
that for any r < T

) G ={xeR": hx, ) >0}, and

2) there exists y € (0, 1] such that, for all d € D,

h(f(x,d,t),t+ 1) > (1 — y)h(x, t), forallx € ét.

Then h(x, ) is a discrete-time time-varying exponential barrier
function (TV-EBF) for the set C;.

When Xy € C and G, € C© B"*(rs;, 0), the existence
of h(x,t) on é, given as Definition 3 guarantees that the
deterministic system (2) is safe. Therefore, the set-erosion
strategy in (15) implies that the stochastic system (1) is safe
with 1 — § guarantee. This result is formalized as follows.

Proposition 2 (Safety Using TV-EBF): Consider the
stochastic system (1) with the initial configuration Xy € R”,
the disturbance set D € R™ and its associated deterministic
system (2) under Assumptions 1 and 2. Given a safe set C C
R" and terminal time 7', define r;5 ; as (8). If Xp € Ap € C and
there exists a C, such that ; C C© B"(rs.t,0) and a TV-EBF
h(x, t) as defined in Definition 3 on C, for the deterministic
system (2), then the stochastic system (1) is safe with 1 —§
guarantee on C.

Proof: Clearly it holds that h(x;, t) > (1 — y)'h(xg, 0) for
any t < T. Since x9 € Xy C éo, this implies that A(x;, f) > 0,
for every t+ < T, and therefore x; € 5,, for every t+ < T. Since
¢ c CeB" (s, 0), x; satisfies the set-erosion strategy in (15),
which suffices to show that the stochastic system (1) is safe
with 1 — § guarantee on C. |

Since rs ; as (8) is sharp, Proposition 2 provides an effective
stochastic safety verification scheme based on deterministic
barrier certifications. Its efficiency depends on the calculation
of the Minkowski difference C © B"(rs;,0). Notice that
C o B"(rs,0) = (C° @ B"(rs,;, 0))¢, where the complement
C¢ of C is treated as the unsafe set. Thus, Proposition 2
can be considered a barrier certification for the obstacle
avoidance task with “time-dependent expanded obstacles” C®
B"(rs.1,0), which has been well-studied [26], [27]. When C¢
is the union of convex sets such as ellipsoids or polygons,
C¢ @ B"(rs5,, 0) can be efficiently computed [28].

VI. CASE STUDIES
In this section, we present two examples to validate the
proposed safety verification method. In the first example, we
verify safety of a linear scalar stochastic system on a finite
interval. In the second example, we verify safety of unicycle
model of a vehicle with a stabilizing feedback controller.

A. Safety of Linear Systems Over an Interval
As the first experiment, we consider the following linear
stochastic system
Xi41 = 0.99X; +w;, Xo =0, (16)

where X; € R and w; ~ N(0, 10_3). This linear system
satisfies Assumption 1 with L, = L = 0.99 and Assumption 2
with 02 = o2 = 1073, The probabilistic bound rs, on
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T =100 T =200

—— Our Result
Result by [10]
Simulation result

. [——our Result

N Result by [10]
N Simulation result

Safety set radius R Safety set radius R

Fig. 2. The probability § (the lower the safer) that a strategy cannot
guarantee safety of (16) on the centered ball with radius R during t < T.
The blue curve is given by our strategy (17), the yellow curve is the
simulated result from 3 x 108 sampled trajectories, and the red curve
is the baseline we choose, given by the main result of [10, Corollary 1].
Left: T = 100. Right: T = 200.

stochastic trajectory gap can be calculated by (11) with &1 =
2log2 and &, =2 by Remark 1.

The task is to verify the safety of the linear system (16)
with 1 — § guarantee on the interval C = {x € R : |x| < R}
during + < T. Notice that by fixing Xy = 0, the associated
deterministic trajectory of the system (16) is x; = 0, and
BY(R, 0) eBl(r,;,,, 0) = BY(R— 5, 0). Therefore, by our set-
erosion strategy in (15), it is enough to verify whether R > rs ;
for any ¢ < T. Since r;; calculated by (11) is increasing with
t, we conclude that it suffices to verify if R > rs 7, which is
equivalent to:

R(L* -1
62T-exp{—(2022142—T_)1)—10g2>}. a7

The right-hand side of (17) is the lowest probability &
that our strategy (15) cannot guarantee safety for the linear
system (16). When § > 1, it means that the radius R of C is
so small that the system (16) is considered unsafe on C. In
such a scenario we set § = 1. Figure 2 shows the relationship
between § and R determined by (17). Our result is compared
with the curve derived from [10, Corollary 1], which calculates
& by upper bounding P(min;<7x; < —R), and is the best
existing result for general dynamical systems to the best of
our knowledge. We also compare with the simulated result
given by Monte-Carlo approximations with 3 x 10® sampled
trajectories. When R is very small, our strategy directly implies
that the system is unsafe on C, as suggested by the simulated
result. When R gets larger, our strategy offers a result close
to the simulated result and significantly sharper than existing
methods. To show the tightness of the failure guarantees
obtained from using method, we choose R = 1.0 for 7' = 100
and R = 1.08 for T = 200, both of which should guarantee
8 = 1073 if our result shown in Figure 2 is correct. Then
we sample 5000 independent stochastic trajectories of (16) in
both cases, and visualize their absolute values in Figure 3.
All the trajectories of |X;| are within the bound R and some
trajectories get quite close to the boundary of the safe set,
validating our result.

B. Nonlinear Unicycle System

Next, we consider a unicycle moving on a 2-dimensional
plane with obstacles. The unsafe region C, = {(px — 1.3)2 +
(Py—3.5)? < 0.92}U{(px+0.3)>+ (py —2)* < 0.722}U{(p —
6.2)> + (py — 0.5)> < 0.75%} is the union of red obstacles

T =100

| Stochastic trajectories of X,|
Bound with 99.9% guarantee

T =200

Stochastic trajectories of [X,|
Bound with 89.9% guarantee|

0 50 100 150 200

Fig. 3. 5000 sampled stochastic trajectories of (16) with R that
corresponds to § = 1073 in blue curves (our result) of Figure 2. Left:

shown in Figure 4 and the safe region is C = R" \ C,. The
discrete-time system model is given as

vi(X) cos(6)
XH‘] = Xt + n V;(Xt) Sin(9;) =+ wy
w(Xy) + d;
= f(Xs, dp) +wy, (18)
where X; = [px,, Dyt 0,]T is the state of the vehicle,

(Px.1> Py,r) 18 the position of the center of mass of the vehicle
in the plane, 6; is the heading angle of the vehicle, v,(X;)
is the velocity of the center of mass, w;(X;) is the angular
velocity of the vehicle, n is the discretization step size, d; is
a bounded disturbance on the angular velocity, and w; is the
stochastic disturbance on the model. In this experiment, we
assume that |d;| < 0.1, w, ~ /n-N(0,0.0213), n = 0.01.
vi(Xy) and w;(X;) are designed as the feedback controllers
proposed in [29]. The task of the unicycle is to reach the origin
point while avoiding the obstacles under both d; and w;. The
details of controller design can be found in [22, Sec. VIII].

Our goal is to verify the safety of the stochastic system (18)
with 1 — § guarantee through the set erosion strategy. We set
8 = 10~* and the initial state set Xy = [5 5 - %]T +0.1.
The probabilistic bound 75 ; is calculated as (8) with ¢ = 1/16,
and L, estimated by the methods proposed in [30]. Define r,, =
max;<7 75, then by the set erosion strategy (15), it suffices to
verify whether for the associated deterministic system of (18),
x; € C 6 B"(ry, 0) holds for any x; starting from xp € A and
under any |d;| < 0.1. We use barrier certification to verify this
condition, where Proposition 2 reduces to time-independent
barrier certification for forward-invariant condition [8]. The
tool we use is FOSSIL developed by [31]. Based on the
experiment setting, this program returns “Found a valid
BARRIER certificate”, implying that the safety of the
system (18) with 1 —§ guarantee on the zero-superlevel set of
this barrier function is verified.

To visualize the set-erosion strategy, we simulate 5000
independent trajectories of the associated deterministic system
from xg € Xp with T = 100, 500 separately. The results are
shown in the left column of Figure 4. The areas in yellow
are the eroded parts C\(C & B"(ry, 0)) of the C. It is clear
that all the deterministic trajectories have no intersections with
the yellow areas. Meanwhile, to validate the effectiveness of
our strategy, we sample 20000 independent trajectories of the
stochastic system (18) from Xo € Ay during ¢+ < T. It is clear
that all the stochastic trajectories successfully avoid all the
obstacles, satisfying our safety verification strategy.
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Fig. 4. Stochastic safety verification of the unicycle system (18) with

99.99% guarantee. Left: Stochastic safety verification using the set-
erosion strategy at the terminal time T = 100, 500. The red shapes
are obstacles. The yellow areas are the eroded part C\(C © B"(rm, 0)).
Each curve is an independent trajectory of the associated deterministic
unicycle system with different d;. Right: Simulation of the stochastic
trajectories. Each curve is an independently sampled trajectory of the
stochastic system (18) during t < T, T = 100, 500.

VIl. CONCLUSION

We propose a general approach called set-erosion strategy
for safety verification of discrete-time stochastic systems with
sub-Gaussian disturbances. Our set-erosion strategy reduces
the problem of safety verification of discrete-time stochastic
systems into the safety verification of an associated determin-
istic system on an eroded subset of the safe set. Based on
our results in [1], we provide a sharp probabilistic bound on
the depth of this erosion. This approach brings tremendous
flexibility to the safety verification of stochastic systems as any
deterministic safety verification methods can be used to ensure
safety on the eroded subset of the safe set. In particular, we
consider the exponential barrier function for safety verification
of deterministic systems and leverage it to obtain efficient
stochastic safety verification schemes.
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