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We present and distribute a parallel finite-element toolbox written in the free software FreeFEM for computing 
the Bogoliubov-de Gennes (BdG) spectrum of stationary solutions to one- and two-component Gross-Pitaevskii 
(GP) equations, in two or three spatial dimensions. The parallelization of the toolbox relies exclusively upon the 
recent interfacing of FreeFEM with the PETSc library. The latter contains itself a wide palette of state-of-the-art 
linear algebra libraries, graph partitioners, mesh generation and domain decomposition tools, as well as a suite 
of eigenvalue solvers that are embodied in the SLEPc library. Within the present toolbox, stationary states of the 
GP equations are computed by a Newton method. Branches of solutions are constructed using an adaptive step-
size continuation algorithm. The combination of mesh adaptivity tools from FreeFEM with the parallelization 
features from PETSc makes the toolbox efficient and reliable for the computation of stationary states. Their BdG 
spectrum is computed using the SLEPc eigenvalue solver. We perform extensive tests and validate our programs 
by comparing the toolbox’s results with known theoretical and numerical findings that have been reported in the 
literature.

Program summary
Program Title: FFEM_BdG_ddm_toolbox.zip
CPC Library link to program files: https://doi .org /10 .17632 /w9hg964wpb .1
Licensing provisions: GPLv3
Programming language: FreeFEM (v 4.12) free software (www.freefem.org)
Nature of problem: Among the plethora of configurations that may exist in Gross-Pitaevskii (GP) equations 
modeling one or two-component Bose-Einstein condensates, only the ones that are deemed spectrally stable 
(or even, in some cases, weakly unstable) have high probability to be observed in realistic ultracold atoms 
experiments. To investigate the spectral stability of solutions requires the numerical study of the linearization 
of GP equations, the latter commonly known as the Bogoliubov-de Gennes (BdG) spectral problem. The present 
software offers an efficient and reliable tool for the computation of eigenvalues (or modes) of the BdG problem 
for a given two- or three-dimensional GP configuration. Then, the spectral stability (or instability) can be inferred 
from its spectrum, thus predicting (or not) its observability in experiments.
Solution method: The present toolbox in FreeFEM consists of the following steps. At first, the GP equations in two 
(2D) and three (3D) spatial dimensions are discretized by using P2 (piece-wise quadratic) Galerkin triangular (in 
2D) or tetrahedral (in 3D) finite elements. For a given configuration of interest, mesh adaptivity in FreeFEM is 
deployed in order to reduce the size of the problem, thus reducing the toolbox’s execution time. Then, stationary 
states of the GP equations are obtained by a Newton method whose backbone involves the use of a reliable and 
efficient linear solver judiciously selected from the PETSc1 library. Upon identifying stationary configurations, to 
trace branches of such solutions a parameter continuation method over the chemical potential in the GP equations 
(effectively controlling the number of atoms in a BEC) is employed with step-size adaptivity of the continuation 
parameter. Finally, the computation of the stability of branches of solutions (i.e. the BdG spectrum), is carried 
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out by accurately solving, at each point in the parameter space, the underlying eigenvalue problem by using the
SLEPc2 library. Three-dimensional computations are made affordable in the present toolbox by using the domain 
decomposition method (DDM). In the course of the computation, the toolbox stores not only the solutions but also 
the eigenvalues and respective eigenvectors emanating from the solution to the BdG problem. We offer examples 
for computing stationary configurations and their BdG spectrum in one- and two-component GP equations.
Running time: From minutes to hours depending on the mesh resolution and space dimension.

1. Introduction

The study of Bose-Einstein condensates (BECs) has admittedly en-
joyed a substantial interest for more than two decades since their first 
observation in ultracold atoms experiments [1,2]. Both theoretical and 
experimental developments have been summarized in [3,4]. These stud-
ies revealed the emergence of interesting wave configurations including 
vortices and vortex structures [5–8], and the quest for experimentally 
creating and studying new states has been an exciting and active area 
of research. Indeed, a plethora of experimental techniques have been 
developed including imprinting techniques [9–11], stirring the con-
densate above a certain critical angular speed [12,13], counterflow 
techniques [14], the use of anisotropic potentials [15], nonlinear in-
terference between different condensate fragments [16] as well as the 
so-called Kibble-Zurek mechanism [17], among many others. The vari-
ety of configurations that have emerged through these studies is vast, 
and has sparked theoretical and computational investigations over the 
years. Some basic examples of such structures are dark solitons, sin-
gle vortex lines (with I-, U- or S-shaped ones in rotated BECs) [18], 
as well as vortex rings [19] (see also the review [20] and references 
therein). More complex states, such as multiple vortex lines and rings, 
vortex stars, and hopfions have also been reported in the literature (see 
for example [21–23]), together with recent computational techniques 
for vortex identification [24]. Alongside prototypical bound modes in 
multi-component BECs that can be identified (e.g. dark-bright [25], 
vortex-bright [26,27] and dark-antidark [28], as well as vortex-ring-
bright and vortex-line-bright solitons [29]), more exotic configurations 
have been reported, including skyrmions [30,31], monopoles and Alice 
rings [32,33]. Even more, with the introduction of state-of-the-art bi-
furcation techniques for partial differential equations (PDEs), more and 
more multi-component solutions were identified [34,35].

The principal model for the above theoretical and computational 
studies has been the Gross-Pitaevskii (GP) equation [4] (and variants, 
including multi-component settings), which is a PDE known to describe 
the properties of a BEC in the mean-field approximation. Note that the 
GP model is a nonlinear Schrödinger (NLS) equation that incorporates 
an external potential to confine the atoms in the condensate [4]. One of 
the key steps in these studies, however, is concerned with the response of 
the pertinent waveforms under the presence of a perturbation induced, 
e.g. by imperfections in the initial state preparation in the BEC. This 
crucial step involves the study of the spectral stability [36] of the solu-
tion to the GP equation at the theoretical/computational level, and it is 
a two-fold process. At first, a stationary solution to the GP equation is 
identified by means of (spatial) discretization methods and root-finding, 
i.e. fixed-point techniques. Then, the GP equation is linearized about this 
(stationary) solution, thus resulting into a spectral (eigenvalue) prob-
lem, known as the Bogoliubov-de Gennes (BdG) problem [37,38]. The 
numerical solution of the BdG problem provides important information 
about the spectral characteristics of waveforms that may have high prob-
ability to be observed numerically if they are deemed stable (or even 
weakly unstable, depending on the growth rates of the unstable eigen-
values).

Up until now, there has been a wide variety of publicly available 
programs (written in C, Fortran, MATLAB, and FreeFEM) dedicated 

1 https://petsc .org/.
2 https://slepc .upv .es.

exclusively to the computation of stationary states to the GP equation 
that employ spectral methods [39–41], finite elements [42,43] (see also 
[44]), and finite differences [45–49]. In almost all of these studies, sta-
tionary solutions are computed by solving the GP equation under the 
constraint of the conservation of the number of atoms; a large variety of 
numerical algorithms can be used for the constrained problem, among 
which the celebrated normalized gradient method [50] is one of the most 
popular. Alternative approaches for the computation of solutions to the 
GP equation involve the re-formulation of the problem as a bifurcation 
one, where the chemical potential (controlling the number of atoms) 
is varied by using numerical continuation [51] coupled with Newton’s 
method [52]. This approach has been adopted in a series of studies 
that employ finite-element [28,34,53,54], finite-difference [22,23,34], 
as well as spectral (spatial) discretization methods [23]. However, to the 
best of our knowledge, a limited number of publicly available codes for 
studying the BdG spectrum of configurations to the GP equation exist. 
One such a code (written in Fortran) is the FACt toolbox [55] which 
computes thermal fluctuations in BECs by solving the associated BdG 
equations. Recent efforts in that same vein involve the publicly avail-
able toolbox in FreeFEM that was developed by a subset of the present 
authors [56]. It utilizes mesh adaptation techniques (that are built-in in
FreeFEM) and employs the ARPACK eigenvalue solver [57] (which is 
interfaced with FreeFEM) for solving the BdG equations, although the 
calculations therein are carried out in sequential mode.

Building upon the recent work in [56], we present and distribute 
herein a parallel finite-element toolbox written in FreeFEM for comput-
ing the Bogoliubov-de Gennes (BdG) spectrum of stationary solutions 
to one- and two-component Gross-Pitaevskii (GP) equations in 2D or 
3D. The parallelization of the toolbox relies exclusively on the recent 
interfacing of FreeFEM with the PETSc library [58] (see also [59]). 
The combination of mesh adaptivity and the simplification in the use 
of parallel linear solvers in FreeFEM (such as distributed direct solvers 
and domain decomposition methods [60,61]) renders the present tool-
box an ideal framework for computing configurations in one- and two-
component BECs in 2D or 3D. This further paves the path for the efficient 
and reliable computation of the BdG spectrum by using the SLEPc [62]
library.

Our ultimate goal with the present toolbox is to offer a versatile 
and reliable tool to the BEC community which can perform parallel 
computations for exploring the BdG spectrum of 2D and 3D (one- or two-
component) configurations of interest within reasonable computational 
time. Finally, the advantage of FreeFEM in hiding all technicalities of 
the finite-element method and using a syntax close to the mathematical 
formulation of the problem allows the user to focus on the mathemati-
cal and physical aspects of the problem and easily make changes in the 
codes to simulate new configurations.

The structure of the paper is as follows. In Sec. 2, we introduce the 
one- and two-component GP equations together with the associated BdG 
models. In Secs. 3 and 4, we describe the numerical methods for com-
puting stationary states to the GP equations and their respective BdG 
spectra. We illustrate the validation of our programs in Secs. 5 and 6, 
whereas the architecture of the programs and the description of param-
eter and output files is discussed in Sec. 7. Finally, the main features of 
the toolbox are summarized in Sec. 8, where we additionally offer some 
of its potential extensions.



G. Sadaka, P. Jolivet, E.G. Charalampidis et al.

2. The Gross-Pitaevskii model and Bogoliubov-de Gennes 
equations

In this section, we present the theoretical setup of the toolbox. 
We introduce the one- and two-component Gross-Pitaevskii (GP) and 
Bogoliubov-de Gennes equations in Secs. 2.1 and 2.2, respectively. 
We would like to stress out that the model equations below are ex-
pressed in nondimensional form, and further details about the phys-
ical units of the model equations together with their scaling can be 
found in our recent contribution [56] (and references therein). For the 
user’s convenience, we include in this toolbox example scripts (see files
phys_to_adim_1comp.edp and phys_to_adim_2comp.edp in the
Tools_scaling subdirectory) that compute non-dimensional parame-
ters from physical values corresponding to several experimental studies 
published in the literature. These programs could guide the user in 
linking parameters of existing experiments with non-dimensional pa-
rameters used in this contribution (and, more generally, in theoretical 
studies).

2.1. The one-component case: Gross-Pitaevskii and Bogoliubov-de Gennes 
equations

The spatio-temporal behavior of a Bose-Einstein condensate (BEC) is 
described by the Gross-Pitaevskii (GP) equation [4]:

i
��

��
= −

1

2
∇2� +�trap� + �|�|2�, (1)

where �(�, �) ∶  ×R
+
→ ℂ is the macroscopic complex-valued wave 

function, defined over the domain  ∈R
� , with � the spatial dimension, 

i.e. � = 1, 2, 3. In Eq. (1), � is the nonlinearity strength corresponding to 
repulsive (� > 0) or attractive (� < 0) interactions. The external poten-
tial �trap(�) confining the atoms in the condensate is:
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where ��, �	, �
 are the trapping frequencies. Using in Eq. (1) the stand-
ing wave ansatz �(�, �) = �(�)
−i��, with � the chemical potential, we 
obtain the stationary GP equation:

−
1

2
∇2�+�trap�+ �|�|2 = ��. (3)

In this work, we compute stationary solutions to Eq. (3) with homo-
geneous Dirichlet boundary conditions (i.e. � = 0 on �) for fixed �. 
Branches of such solutions are obtained by performing numerical contin-
uation [51] over �, which corresponds here to a bifurcation parameter. 
At each step in the continuation process, we monitor the energy
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|�(�)|4

)
��, (4)

and the total number of atoms

�(�) = ∫


���� = ∫


|�|2��. (5)

The Bogoliubov-de Gennes (BdG) problem we aim to solve is obtained 
by using in Eq. (1) the ansatz

�(�, �) =
[
�(�) + �

(
�(�)
−i�� +�(�)
i��

)]

−i��, � ≪ 1, (6)

where �(�) is a stationary state, � and � are complex-valued functions, 
and � is a complex number. We obtain the linear eigenvalue problem 
called the BdG equation:
( − � + 2�|�|2 ��2
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(
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where

 ≡ −
1

2
∇2 +�trap. (8)

The present toolbox computes the eigenvalue-eigenvector pair 
(�, �, �) for a given stationary solution �. Note that we consider the 
most general case, with � ∈ ℂ and � ∈ ℂ. The particular case of real 
solutions (� ∈ R) and real eigenvalues (� ∈ R), corresponding to ele-
mentary excitations, was recently studied in [63]. We direct the reader 
to [56] for a detailed discussion on the properties of the general BdG 
problem.

2.2. The two-component case: Gross-Pitaevskii and Bogoliubov-de Gennes 
equations

A mixture of two BECs (e.g. different hyperfine states of the same 
species) is described by a coupled system of two GP equations [3,4,19]:

⎧⎪⎨⎪⎩

i
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2
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)
�2.

(9)

Coefficients �11 and �22 in (9) represent the interaction strengths be-
tween atoms of same species, whereas the �12 and �21 represent the 
ones between different species. For mathematical models involving 
more than two GP equations (e.g. for spinor BEC), we refer to [64]. 
Similarly to the one-component case, using in Eqs. (9) the Ansätze 
�� (�, �) = �� (�)


−i�� �, � = 1, 2, with chemical potentials �1 and �2, we 
obtain the following coupled system of stationary GP equations:
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The system (10), with homogeneous Dirichlet boundary conditions 
(�� = 0 on � for � = 1, 2), is solved for fixed values of �1 and �2. The 
characterization of a stationary solution is based on the total energy

(�1, �2) = ∫
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as well as the total number of atoms �(�1, �2) =�(�1) +�(�2), where 
�(⋅) is given by Eq. (5). To study the spectral stability of stationary 
solutions we consider the Ansätze
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with �, �, �, �, � ∈ ℂ, and obtain the BdG equations for the two-
component case:
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with matrix elements
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�22 = −�11,
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�44 = −�33,

(14)
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and  given by Eq. (8).

3. The computation of stationary solutions to the GP equations

3.1. Newton’s method for a single-component BEC

For the computation of stationary solutions to Eq. (3), we use New-
ton’s method [52]. We first split the complex-valued wave function �
into real and imaginary parts via � = �� + i �� and obtain from (3) the 
following coupled system of nonlinear equations

⎧
⎪⎨⎪⎩

−
1

2
∇2�� +�trap�� + �� (��, ��)�� − ��� = 0,

−
1

2
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(15)

We introduced in (15) the (scalar) function � (��, ��) = |�|2 = �2
�
+ �2

�

that corresponds to the cubic nonlinearity in the GP equation. Note that 
the expression of � has been programmed in the toolbox in a general 
way; other types of expressions (corresponding to the GP equation with 
different nonlinearity than cubic) can be used and easily implemented 
in the toolbox.

The homogeneous Dirichlet conditions for the complex-valued wave 
function � translate into imposing �� = �� = 0 on �. After setting the 
classical Sobolev spaces [65] � =�1

0
() for �� and ��, we define the 

weak formulation (mandatory for the finite-element implementation) of 
Eq. (15) as: find (��, ��) ∈ � × � = � 2, such that for all test functions 
(��, ��) ∈ � 2
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The above coupled system of nonlinear equations is discretized us-
ing finite elements in FreeFEM (see Sec. 3.3), and solved by means 
of Newton’s method which requires a sufficiently good initial guess. 
For a given value of � and an initial guess (�0

�
, �0

�
), Newton’s method 

computes corrections to the solution components (��, ��) iteratively 
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⎛⎜⎜⎜⎜⎝

(
��
���

)

��=�
�
� ,��=�

�
�

(
��
���

)

��=�
�
� ,��=�

�
�(

��
���

)

��=�
�
� ,��=�

�
�

(
��
���

)

��=�
�
� ,��=�

�
�

⎞⎟⎟⎟⎟⎠

(
�

�

)
=

(�(��� , ��� , ��)�(��� , ��� , ��)
)
,

(18)

with the corresponding weak formulation
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Note that the implementation of Eqs. (19) in FreeFEM takes a form 
very similar to the mathematical formulation of the problem due to its 
versatile metalanguage used therein. This is an advantage for the user 
who can thus build bug-free numerical codes when cumbersome math-
ematical expressions are coded.

3.2. Newton’s method for the two-component BEC

The two-component GP system (10) is solved similarly by means of 
Newton’s method, after splitting �1 and �2 into real and imaginary parts 
via �1 = �1� + i �1� and �2 = �2� + i �2�. Equations (10) are thus con-
verted into a system consisting of four real-valued (nonlinear) equations:
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Again, homogeneous Dirichlet boundary conditions on �1 and �2 are 
imposed: �1� = �1� = �2� = �2� = 0 on �. The weak formulation of 
Eqs. (20) can be written as follows: find (�1�, �1�, �2�, �2�) ∈ � 4, such 
that for all test functions (�1�, �1�, �2�, �2�) ∈ � 4
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1� =∫


(�trap − �1)�1��1� + ∫


1

2
∇�1� ⋅∇�1� + ∫


(�11� (�1�, �1�)

+ �12� (�2�, �2�))�1��1� = 0,

2� =∫


(�trap − �2)�2��2� + ∫


1

2
∇�2� ⋅∇�2� + ∫


(�21� (�1�, �1�)

+ �22� (�2�, �2�))�2��2� = 0,

2� =∫


(�trap − �2)�2��2� + ∫


1

2
∇�2� ⋅∇�2� + ∫


(�21� (�1�, �1�)

+ �22� (�2�, �2�))�2��2� = 0.

(21)

Newton’s method computes, for fixed chemical potentials �1 and �2 and 
given initial guess 

(
�0
1�
, �0

1�
, �0

2�
, �0

2�

)
, the corrections
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�1=�
�
1�
−��+1

1�
, �1=�

�
1�
− ��+1

1�
, �2 = ��

2�
− ��+1

2�
, �2=�

�
2�
− ��+1

2�
,

(22)

which are solutions to the following system of linear equations:

∫


(�trap − �1)�1�1� + ∫


1

2
∇�1 ⋅∇�1�

+ ∫


(�11� (�
�
1�
, ��

1�
) + �12� (�

�
2�
, ��

2�
))�1�1�

+ ∫


�11

(
��

���
(��

1�
, ��

1�
)��

1�
�1 +

��

���
(��

1�
, ��

1�
)��

1�
�1

)
�1�

+ ∫


�12

(
��

���
(��

2�
, ��

2�
)��

1�
�2 +

��

���
(��

2�
, ��

2�
)��

1�
�2

)
�1�

= ∫


(�trap − �1)�
�
1�
�1� + ∫


1

2
∇��

1�
⋅∇�1�

+ ∫


(�11� (�
�
1�
, ��

1�
) + �12� (�

�
2�
, ��

2�
))��

1�
�1�,

(23)

∫


(�trap − �1)�1�1� + ∫


1

2
∇�1 ⋅∇�1�

+ ∫


(�11� (�
�
1�
, ��

1�
) + �12� (�

�
2�
, ��

2�
))�1�1�

+ ∫


�11

(
��

���
(��

1�
, ��

1�
)��

1�
�1 +

��

���
(��

1�
, ��

1�
)��

1�
�1

)
�1�

+ ∫


�12

(
��

���
(��

2�
, ��

2�
)��

1�
�2 +

��

���
(��

2�
, ��

2�
)��

1�
�2

)
�1�

= ∫


(�trap − �1)�
�
1�
�1� + ∫


1

2
∇��

1�
⋅∇�1�

+ ∫


(�11� (�
�
1�
, ��

1�
) + �12� (�

�
2�
, ��

2�
))��

1�
�1�,

(24)

∫


(�trap − �2)�2�2� + ∫


1

2
∇�2 ⋅∇�2�

+ ∫


(�22� (�
�
2�
, ��

2�
) + �21� (�

�
1�
, ��

1�
))�2�2�

+ ∫


�21

(
��

���
(��

1�
, ��

1�
)��

2�
�1 +

��

���
(��

1�
, ��

1�
)��

2�
�1

)
�2�

+ ∫


�22

(
��

���
(��

2�
, ��

2�
)��

2�
�2 +

��

���
(��

2�
, ��

2�
)��

2�
�2

)
�2�

= ∫


(�trap − �2)�
�
2�
�2� + ∫


1

2
∇��

2�
⋅∇�2�

+ ∫


(�21� (�
�
1�
, ��

1�
) + �22� (�

�
2�
, ��

2�
))��

2�
�2�,

(25)

∫


(�trap − �2)�2�2� + ∫


1

2
∇�2 ⋅∇�2�

+ ∫


(�22� (�
�
2�
, ��

2�
) + �21� (�

�
1�
, ��

1�
))�2�2�

+ ∫


�21

(
��

���
(��

1�
, ��

1�
)��

2�
�1 +

��

���
(��

1�
, ��

1�
)��

2�
�1

)
�2�

+ ∫


�22

(
��

���
(��

2�
, ��

2�
)��

2�
�2 +

��

���
(��

2�
, ��

2�
)��

2�
�2

)
�2� (26)

= ∫


(�trap − �2)�
�
2�
�2� + ∫


1

2
∇��

2�
⋅∇�2�

+ ∫


(�21� (�
�
1�
, ��

1�
) + �22� (�

�
2�
, ��

2�
))��

2�
�2�.

Again, the implementation of Eqs. (23)-(26) with FreeFEM is very sim-
ilar to the mathematical formulation.

3.3. Finite-element implementation with FreeFEM

We now present the finite-element implementation in the free soft-
ware FreeFEM [57] of the weak formulations for the one- and two-
component GP equations solved with Newton’s method. Note that 
the main principles of programming and numerical settings presented 
herein are shared with the implementation of the BdG problem, see 
Sec. 4.

One of the main advantages while programming in FreeFEM is that 
cumbersome formulas are coded in a compact form, and close to their 
mathematical formulations. For example, the weak form of the sys-
tem of linear equations (19) is conveniently implemented as a list of 
expressions embodied in a Macro (see BdG_1comp_ddm/A_macro/-
Macro_problem.edp) in which integral terms are easy to identify:

NewMacro problemGP

macro f(ur,ui) (ur^2 + ui^2)//

macro dfdur(ur,ui) (2.*ur)//

macro dfdui(ur,ui) (2.*ui)//

varf vGP([q,s],[vr,vi]) =

intN(Th,qforder=ord)((Ctrap - mu)*q*vr + .5*grad

(q)’*grad(vr)

+ (Ctrap - mu)*s*vi + .5*grad(s)’*grad(vi)

+ beta * (f(phir,phii)*q*vr + f(phir,phii)*s*vi)

+ beta * phir*vr*(dfdur(phir,phii)*q + dfdui(

phir,phii)*s)

+ beta * phii*vi*(dfdur(phir,phii)*q + dfdui(

phir,phii)*s))

+ intN(Th,qforder=ord)((Ctrap - mu)*phir*vr +

.5*grad(phir)’*grad(vr)

+ (Ctrap - mu)*phii*vi + .5*grad(phii)’*grad(vi)

+ beta * f(phir,phii) * (phir*vr + phii*vi))

BCGP;

EndMacro

Another advantage of this formulation in FreeFEM is that it can 
be invariantly used in any (spatial) dimension (� = 2 or � = 3), and 
for any available type of finite elements. This is accomplished by sim-
ply declaring respective values in the files defining the computational 
case. Indicatively, for the computation of the 2D ground state us-
ing a  2 finite-element space, the user can declare (see for example
BdG_1comp_ddm/INIT/2D_ground_state.inc):

macro dimension 2//

macro FEchoice P2//

These choices are transmitted in the main programs, see, e.g.
FFEM_GP_1c_2D_3D_ddm.edp:

func Pk = [FEchoice,FEchoice];

...

meshN Th; // Local mesh

meshN ThBackup; // Global mesh

fespace Wh(Th,FEchoice);

fespace Whk(Th,Pk);
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fespace WhBackup(ThBackup,FEchoice);

fespace WhkBackup(ThBackup,Pk);

...

Wh<complex> phi, phitemp; // Wavefunction

Whk [q,s], [phir,phii];

WhBackup<complex> phiBackup, phitempBackup; //

Wavefunction

Similarly, for the two-component case, the macro formulation for 
the linear system (23)-(24) can be found in the file BdG_2comp_ddm/
A_macro/Macro_problem.edp, and reads

NewMacro problemGP

macro f(ur,ui) (ur^2 + ui^2)//

macro dfdur(ur,ui) (2.*ur)//

macro dfdui(ur,ui) (2.*ui)//

varf vGP([q1,s1,q2,s2],[v1r,v1i,v2r,v2i])=

intN(Th,qforder=ord)(

1./2.*grad(q1)’*grad(v1r) + (Ctrap - mu1)*q1*v1r

+ (beta11*f(phi1r,phi1i) + beta12*f(phi2r,

phi2i))*q1*v1r

+ beta11*(dfdur(phi1r,phi1i)*phi1r*q1 + dfdui(

phi1r,phi1i)*phi1r*s1)*v1r

+ beta12*(dfdur(phi2r,phi2i)*phi1r*q2 + dfdui(

phi2r,phi2i)*phi1r*s2)*v1r

+1./2.*grad(s1)’*grad(v1i) + (Ctrap - mu1)*s1*
v1i + (beta11*f(phi1r,phi1i) + beta12*f(

phi2r,phi2i))*s1*v1i

+ beta11*(dfdur(phi1r,phi1i)*phi1i*q1 + dfdui(

phi1r,phi1i)*phi1i*s1)*v1i

+ beta12*(dfdur(phi2r,phi2i)*phi1i*q2 + dfdui(

phi2r,phi2i)*phi1i*s2)*v1i

+1./2.*grad(q2)’*grad(v2r) + (Ctrap - mu2)*q2*
v2r + (beta22*f(phi2r,phi2i) + beta21*f(

phi1r,phi1i))*q2*v2r

+ beta22*(dfdur(phi2r,phi2i)*phi2r*q2 + dfdui(

phi2r,phi2i)*phi2r*s2)*v2r

+ beta21*(dfdur(phi1r,phi1i)*phi2r*q1 + dfdui(

phi1r,phi1i)*phi2r*s1)*v2r

+1./2.*grad(s2)’*grad(v2i) + (Ctrap - mu2)*s2*
v2i + (beta22*f(phi2r,phi2i) + beta21*f(

phi1r,phi1i))*s2*v2i

+ beta22*(dfdur(phi2r,phi2i)*phi2i*q2 + dfdui(

phi2r,phi2i)*phi2i*s2)*v2i

+ beta21*(dfdur(phi1r,phi1i)*phi2i*q1 + dfdui(

phi1r,phi1i)*phi2i*s1)*v2i

)

+ intN(Th,qforder=ord)(

1./2.*grad(phi1r)’*grad(v1r) + (Ctrap - mu1)*
phi1r*v1r + (beta11*f(phi1r,phi1i) + beta12*
f(phi2r,phi2i))*phi1r*v1r

+ 1./2.*grad(phi1i)’*grad(v1i) + (Ctrap - mu1)*
phi1i*v1i + (beta11*f(phi1r,phi1i) + beta12*
f(phi2r,phi2i))*phi1i*v1i

+ 1./2.*grad(phi2r)’*grad(v2r) + (Ctrap - mu2)*
phi2r*v2r + (beta22*f(phi2r,phi2i) + beta21*
f(phi1r,phi1i))*phi2r*v2r

+ 1./2.*grad(phi2i)’*grad(v2i) + (Ctrap - mu2)*
phi2i*v2i + (beta22*f(phi2r,phi2i) + beta21*
f(phi1r,phi1i))*phi2i*v2i

)

BCGP;

EndMacro

We highlight here that the user has the flexibility to consider differ-
ent trapping potentials in the two-component case if necessary. This can 

be accomplished by modifying the .inc files located in the INIT sub-
directories, and consider, for example, Ctrap1 and Ctrap2 for the first 
and second components, respectively.

The programs that we deliver with this toolbox consider  2 (piece-
wise quadratic) finite elements. The mesh in FreeFEM (generically iden-
tified as Th) is made of triangles in 2D and tetrahedra in 3D. A fast mesh 
generator with a simple syntax is built in FreeFEM. A striking feature of
FreeFEM is the ability to perform adaptive mesh refinement: the grid is 
refined in regions of large gradients and coarsened in low-gradient ones. 
This is of paramount importance, especially for high-dimensional prob-
lems where a sufficiently good resolution of the solution is required. 
Using a very fine mesh (with no mesh adaptation) for the entire domain 
would lead to a large memory consumption and an excessively long com-
putational time. With the implementation of adaptive mesh refinement 
in the present toolbox in FreeFEM, we maintain reasonable problem 
sizes, and thus computational time, while keeping a high degree of ac-
curacy.

For 2D configurations, the mesh is adapted by using the built-in
adaptmesh command in FreeFEM. In short (further details can be 
found in our recent contribution [56]), the underlying algorithm mod-
ifies the inner product in the mesh generator to evaluate distance and 
volume [66–68]. For 3D configurations, adaptive mesh refinement in
FreeFEM is performed through the use of the libraries mshmet and
mmg [69] where similar algorithms are employed. In the present imple-
mentation for computing stationary 2D and 3D configurations to the GP 
equations, we use adaptive mesh refinement based on the density of the 
solution as well as its real and imaginary parts. This approach has been 
considered in [70], and has been proven quite effective in computing 
complicated vortex solutions.

The underlying nonlinear equations are solved by means of Newton’s 
method which is fed by an initial guess (with fixed chemical poten-
tial(s)), see Secs. 5 and 6 for example cases. Newton’s iterations are 
stopped when one of the following criteria is satisfied:

‖‖‖‖‖

(
�

�

)‖‖‖‖‖∞
< !� ,

‖‖‖‖‖

(��
)‖‖‖‖‖2

< !" , (27)

The former controls the convergence (in the infinity norm) in Newton’s 
method whereas the latter checks the accuracy of the solution (the resid-
ual in the L2-norm). In practice, we use !� = 10−8 and !" = 10−16 but we 
found that both criteria are satisfied simultaneously in all the cases we 
have considered in this paper. Moreover, we note that convergence in 
Newton’s method depends crucially on the choice of the linear solver we 
employ. Specifically, in 2D, we use an exact LU decomposition, as com-
puted (within the SLEPc library) by the MUMPS solver with options:
"-pc_type lu -ksp_type preonly"
The computational cost in 2D is thus manageable. For 3D cases, we 
switch to a more economical preconditioner, and in particular, the al-
gebraic multigrid method which is available in HYPRE with options:
"-pc_type hypre -ksp_type gmres -ksp_atol 1e-12
-ksp_rtol 1e-6 -ksp_gmres_restart 50 -ksp_max_it 500 
-ksp_pc_side right -sub_pc_type lu
-sub_pc_factor_mat_solver_type mumps".

The toolbox can trace branches of stationary configurations to the 
GP equations by performing numerical continuation [51] over the pa-
rameters of the model. For the one-component case, we consider the 
chemical potential � as our principal continuation parameter. In partic-
ular, we start from a value of the chemical potential �0 for which the 
initial guess is sufficiently close to the stationary state of interest. Upon 
convergence in Newton’s method (discussed above), we use the resulting 
converged state as an initial guess for the next step in the continuation 
process with chemical potential �0 + ��. We highlight the fact that we 
include a simple adaptive strategy for the selection of the increment ��
in the toolbox. Initially, the �� is fixed to 10−3 when �0 is close to the 
respective state’s linear limit. It then gets doubled, i.e. �� = 2��, at ev-
ery 10 steps in the continuation process until it reaches ��#$� = 0.015
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whereupon it remains fixed, and the continuation stops when the final 
value �� specified by the user is reached.

Finally, for the two-component setting, we follow different continu-
ation strategies that involve relevant principal continuation parameters 
in order to match the toolbox’s results with ones that exist in the litera-
ture. For example, the 2D ring-antidark branch is traced by performing 
continuation over �1 and �2 first, and then over the inter-component 
interactions �12 and �21 (with fixed �1 and �2). The 2D vortex-antidark 
branch is traced by fixing �1 and �2 first, and continuation over the 
inter-component interactions �12 and �21 is performed afterwards. Ul-
timately, various continuation strategies can be conveniently designed 
and implemented in the toolbox by the user involving different principal 
continuation parameters.

4. Solving the BdG equations

We solve the BdG problems for the one- and two-component cases by 
using the SLEPc library [62] which is now interfaced with FreeFEM. 
First, we write the weak form of the BdG problems that will be supplied 
to the solver. Indicatively, and for the one-component case, the weak 
formulation of the BdG problem associated with Eq. (7) reads:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫


1

2
∇� ⋅∇�1 + ∫


(�trap − �)��1

+∫


2�|�|2��1 + ∫


��2��1 = �∫


��1,

−∫


1

2
∇� ⋅∇�2 − ∫


(�trap + �)��2

−∫


2�|�|2��2 − ∫


��
2
��2 = �∫


��2.

(28)

The bilinear terms in the left hand side of this equation form the finite-
element matrix � that is fed to SLEPc library. The implementation 
of the BdG problem of Eq. (28) can be straightforwardly made now in
FreeFEM :

NewMacro problemBdG

varf vBdGMat([A,B],[v1,v2]) =

intN(Th,qforder=ord)(.5*grad(v1)’*grad(A) +(

Ctrap-mu)*A*v1’

+ 2.*beta*abs(phi)^2*A*v1’ + beta*phi^2*B*v1’

- .5*grad(v2)’*grad(B) - (Ctrap-mu)*B*v2’

- 2.*beta*abs(phi)^2*B*v2’ - beta*(phi’)^2*A*v2

’)

BCBdG;

varf vBdGVec([A,B],[v1,v2]) = intN(Th,qforder=

ord)(A*v1’ + B*v2’);

EndMacro

It is easy to see the correspondence between the weak formulation 
of Eq. (28) and its implementation in the above macro (see the file
BdG_1comp_ddm/A_macro/Macro_problem.edp). For the compu-
tation of the BdG spectrum, we apply a small shift to slightly regularize 
the eigenproblem, e.g. % = 10−4 or % = 10−2 that is implemented in the
EPSSolve function of SLEPc by using the parameters:
"-st_type sinvert -eps_target sigma".

Upon computing the eigenvalues and eigenvectors of the BdG prob-
lem in SLEPc, we further check their accuracy by displaying the residual 
of Eq. (7):

‖‖‖‖‖
�

(
�

�

)
−�

(
�

�

)‖‖‖‖‖∞
(29)

by using the SLEPc parameters: "-eps_error_backward ::ascii
_info_detail".

Finally, we present the weak formulation in the two-component case 
emanating from Eqs. (13)-(14):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫


1

2
∇� ⋅∇�1 + ∫


(�trap − �1)��1 + ∫



(
2�11|�1|2 + �12|�2|2

)
��1

+ ∫


�11�
2
1
��1 + ∫


�12�1�2��1 + ∫


�12�1�2��1 = �∫


��1,

−∫


1

2
∇� ⋅∇�2 − ∫


(�trap − �)��2 − ∫



(
2�11|�1|2 + �12|�2|2

)
��2

− ∫


�11�1

2
��2 − ∫


�12�1�2��2 − ∫


�12�1�2��2 = �∫


��2,

∫


1

2
∇� ⋅∇�3 + ∫


(�trap − �)��3 + ∫



(
2�22|�2|2 + �21|�1|2

)
��3

+ ∫


�21�1�2��3 + ∫


�21�1�2��3 + ∫


�22�
2
2
��3 = �∫


��3,

−∫


1

2
∇� ⋅∇�4 − ∫


(�trap − �)��4 − ∫



(
2�22|�2|2 + �21|�1|2

)
��4

− ∫


�21�1�2��4 − ∫


�21�1�2��4 − ∫


�22�2

2
��4 = �∫


��4.

(30)

Again, the implementation of the BdG problem of Eq. (30) is easy in
FreeFEM (see BdG_2comp_ddm/A_macro/Macro_problem.edp):

NewMacro problemBdG

varf vBdGMat([A,B,C,D],[v1,v2,v3,v4]) =

intN(Th,qforder=ord)(.5*grad(v1)’*grad(A) + (

Ctrap - mu1)*A*v1’ + (2.*beta11*un2(phi1,

phi1) + beta12*un2(phi2,phi2))*A*v1’

+ beta11*phi1*phi1*B*v1’ + beta12*phi1*phi2

’*C*v1’ + beta12*phi1*phi2*D*v1’

-.5*grad(v2)’*grad(B) - (Ctrap - mu1)*B*v2’

- (2.*beta11*un2(phi1,phi1) + beta12*
un2(phi2,phi2))*B*v2’

- beta11*phi1’*phi1’*A*v2’ - beta12*phi1’*
phi2’*C*v2’ - beta12*phi1’*phi2*D*v2’

+.5*grad(v3)’*grad(C) + (Ctrap - mu2)*C*v3’

+ (2.*beta22*un2(phi2,phi2) + beta21*
un2(phi1,phi1))*C*v3’

+ beta22*phi2*phi2*D*v3’ + beta21*phi1’*
phi2*A*v3’ + beta21*phi1*phi2*B*v3’

-.5*grad(v4)’*grad(D) - (Ctrap - mu2)*D*v4’

- (2.*beta22*un2(phi2,phi2) + beta21*
un2(phi1,phi1))*D*v4’

- beta22*phi2’*phi2’*C*v4’ - beta21*phi1’*
phi2’*A*v4’ - beta21*phi1*phi2’*B*v4’

)

BCBdG;

varf vBdGVec([A,B,C,D],[v1,v2,v3,v4]) = intN(Th,

qforder=ord)(A*v1’ + B*v2’ + C*v3’ + D*v4’);

EndMacro

5. Validation test cases for the one-component BEC

The first mandatory validation test consists in proving that the new 
parallel BdG toolbox using PETSc provides the correct results for the 
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cases that were affordable with the previously published sequential 
BdG toolbox using ARPACK [56]. These cases correspond to fundamen-
tal one-component BEC configurations well documented in the physi-
cal literature. We set � = 1 (repulsive interactions) and �trap =

1

2
�2
⟂
�2

(isotropic trap, with �2 = �2 + 	2 + 
2) and compute the following con-
figurations:

• The 2D ground state (parameter file BdG_1comp_ddm/INIT/

2D_ground_state.inc). The distribution of the BdG modes for 
oscillations of the ground state in the Thomas-Fermi (TF) limit for 
repulsive BECs was found in [71], and is given by

�TF
#,�

= �
⟂

√
#+ 2�2 + 2�(1 +#), (31)

where #, � ≥ 0 are integers. The toolbox computes the first 20 BdG 
modes for � = 6 and �

⟂
= 0.2. An important test for this case is 

to accurately capture the zero mode: using 4 MPI processors, this 
eigenvalue is computed as �TF

0,0
= 6 ⋅ 10−7 + i 8 ⋅ 10−14. This gives an 

indication of the precision of calculations with the present toolbox. 
This case also serves to check that mesh adaptation provides the 
same results as computations with a refined fixed mesh.

• The 2D dark soliton (parameter file BdG_1comp_ddm/INIT/

2D_dark_soliton.inc). This case is also known as the dark-
soliton stripe (see [72] and references therein). At the linear limit, 
this state is constructed as

��& =

√
�
⟂

2'
�0(

√
�
⟂
�)�1(

√
�
⟂
	)


−
1
2
�⟂(�

2+	2)
, (32)

where �( are Hermite polynomials of degree (. Similarly as be-
fore, we set �

⟂
= 0.2, and perform a numerical continuation over 

� all the way up to � = 3 in order to trace the entire branch. This 
case is computationally interesting, since it exists a preferred direc-
tion along which the configuration will tend to align itself. When 
we adapt the mesh, this direction changes, and the wave function 
will then rotate. We overcome this issue by allowing the toolbox 
to perform mesh adaptation at each continuation step. Note that 
mesh adaptivity is performed at every step in Newton’s method, es-
pecially when the norm of the correction is greater than 0.1. The 
results are identical to the results of [73]: we observe the emergence 
of a cascade of pitchfork (i.e. symmetry-breaking) bifurcations.

• The 3D ground state (parameter file BdG_1comp_ddm/INIT/

3D_ground_state.inc). This is the only 3D case affordable with 
sequential computations. We compute the BdG spectrum for �

⟂
= 1

without MPI (using the sequential toolbox published in [56]) and 
with 4 MPI processors (and the �-adaptivity continuation strategy 
discussed previously). Both numerical results are in full agreement 
with the numerical results reported in [22].

These three cases were also considered in our previous contribu-
tion [56], where detailed illustrations of the corresponding GP sta-
tionary states and associated BdG spectra are provided. The case 
of a central vortex state (see [56]) is also provided (parameter file
BdG_1comp_ddm/INIT/2D_central_vortex.inc). The user can 
obtain the graphs representing stationary states (contours/iso-surfaces 
of atomic density) and BdG spectra by running the programs of the 
present toolbox.

To illustrate the capability of the new toolbox to deal with complex 
3D cases, we briefly present cases that have been recently considered in 
the physical literature:

• 3D dark soliton (parameter file BdG_1comp_ddm/INIT/3D_dark
_soliton.inc). The existence of this state in 3D and its BdG anal-
ysis was considered in [74], where the azimuthal symmetry of the 
state was taken into account to reduce the 3D BdG problem to a 2D 
one. We perform a full 3D BdG analysis by using an isotropic poten-
tial with �

⟂
= 1. The 3D dark soliton (or planar dark soliton) can be 

constructed in the linear limit by the Cartesian eigenstate |0, 0, 1⟩
(bearing a zero cut in the 
 direction), and can be expressed in 
terms of Hermite polynomials [74] (see also [54]). This state em-
anates from the linear limit at � = 5∕2, and it is degenerate; the 
eigenstates |1, 0, 0⟩ and |0, 1, 0⟩ produce the same solution although 
they now have zero cuts along the � and 	 directions, respectively. 
The script uses this eigenstate as a seed to Newton’s method to per-
form a continuation over �. Our 3D results match perfectly the ones 
obtained in [74] with the axisymmetry hypothesis.

• 3D vortex lines and beyond. We consider two extra cases with 
complex 3D structure that cannot be computed with the sequen-
tial toolbox: a single-charged vortex-line state [22] (parameter file
BdG_1comp_ddm/INIT/3D_vortex_line_single.inc), and 
a vortex-ring configuration bearing two (oppositely charged) vor-
tex lines handles [54] (parameter file BdG_1comp_ddm/INIT/

3D_vortex_ring_2vortex_lines.inc). The former state bi-
furcates from the linear limit at � = 2.5 (i.e. 1st-excited state), and 
can be classified in terms of cylindrical coordinates as |0, 1, 0⟩cyl =
�2)1

0
(�2 + 	2)
i*
−(�

2+	2+
2)∕2 [54] (where )1
0
stands for the asso-

ciated Laguerre polynomial). Similarly, the vortex-ring with two 
handles bifurcates at � = 3.5 from the linear limit, and is con-
structed by the combination of Hermite polynomials (in Cartesian 
coordinates) |2, 0, 0⟩ + |0, 2, 0⟩ + i|1, 0, 1⟩. Our toolbox was capable 
of tracing branches of solutions for both cases and the respective re-
sults are shown in Figs. 1 and 2, respectively. In particular, panels 
a) in these figures depict the BdG spectra of the pertinent states that 
match with the findings in [22] and [54]. Panels b) show atomic 
density isosurfaces |�|2 of the solutions for � = 4.5 and � = 6, re-
spectively.

To conclude this first part of validation tests and warn the potential 
user about the necessary computational resources, we present in Table 1
a summary of the considered cases, together with typical computational 
times and mesh sizes (i.e. the number of elements). Table 2 contains 
the number of unknowns (ndof), the number of tetrahedra (nt), and the 
number of non-zero elements (nnz) of the matrix used for the compu-
tation of the BdG spectra. The toolbox initially builds a mesh by taking 
into account the topology of the solution. For example, a disk-shaped 
mesh with smaller triangles and minimum edge size ℎ#�( = ℎ#$�∕45 in 
its center is used for studying a 2D vortex configuration. The mesh is re-
fined at each iteration in Newton’s method in regions of large gradients 
(e.g. around solitons or vortices) and de-refined otherwise (zones of con-
stant density) when adaptive mesh refinement is chosen, see Sec. 3.3. 
For a given case, we draw comparisons in Table 1 between results that 
were obtained with 4 MPI processors and without MPI using adaptive 
mesh refinement. We draw also comparisons in Table 2 for more com-
plex 3D cases. As a general recommendation, we suggest to use adaptive 
mesh refinement while exploring branches of solutions for which their 
topology is unknown.

6. Validation test cases for the two-component BEC

We now move on to the study of localized configurations in two-
component GP equations (10). Admittedly, the study of their existence, 
and more crucially, their BdG spectrum (upon solving Eqs. (13)-(14)) 
places them in an one level harder category. Indeed, the size of the 
BdG problem for 2D and (even more) 3D configurations becomes quite 
large, especially when one wants to provide a detailed and accurate de-
scription of the spectral properties of such configurations. However, the 
combination of mesh adaptivity implemented in FreeFEM with paral-
lelization tools provided by PETSc makes the present toolbox a great 
candidate to compute such challenging 3D cases. Table 3 summarizes 
the test cases we considered, and has the same format as Table 2.
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Table 1
Results on test cases for the one-component GP and BdG problems with mesh adaptivity. Results are 
presented with 4 MPI processors and without MPI. The computational time, the mesh size (number 
of elements) and the number of continuation steps (niter) performed for each case are shown. When 
using mesh adaptivity, the size of the mesh for the last step of the continuation is depicted in the 
mesh size column. For 2D cases we compute 100 eigenvalues whereas for the 3D ground state, we 
compute 40 eigenvalues only. The user can compute more eigenvalues if more memory is available. 
The BdG spectrum is computed every other two (continuation) steps in �. The computations were 
performed on a Macbook pro M1, 16GB of DDR4 2400 MHz RAM.

Without MPI 4 MPI processors

CPU time CPU time CPU time CPU time
niter GP BdG mesh size GP BdG mesh size

2D_ground_state 1 00:00:05 00:00:26 10,900 00:00:03 00:00:12 10,866
2D_dark_soliton 208 00:19:12 00:58:18 20,912 00:06:58 00:26:01 19,859
3D_ground_state 133 01:09:16 05:51:27 46,681 00:14:44 04:58:57 47,097

Table 2
Summary of results on 3D test cases for the one-component GP and BdG problems with mesh adap-
tivity. The number of processors, the mean CPU time per each continuation step, the total number 
of continuation steps (ncont) performed (for tracing the respective branches) are shown. Moreover, 
the table contains the number of times the BdG problem was solved (nBdG; we computed the eigen-
values at every 3 continuation steps in �), the number of unknowns (ndof), the number of tetrahedra 
(nt), the number of non-zero elements (nnz) of the matrix used for the computation of the BdG spec-
tra, the estimated memory used for each processor maxRSS. For all test cases, 80 eigenvalues were 
computed in the BdG problem only. Again, the user can compute more eigenvalues if more mem-
ory is available. The present computations were performed on the CRIANN Computing Center and 
MATRICS platform utilizing an Intel Broadwell E5-2680 v4 @ 2.40GHz (14 cores per socket) archi-
tecture with two sockets per node and 128 GB of DDR4 2400 MHz RAM. An Intel Omnipath 100Gb/s 
low latency network was used for communications.

GP test cases Processors CPU time ncont ndof nt maxRSS

3D_dark_soliton 28 00:01:01 168 205,822 76,455 0.78 Gb
3D_vortex_line_single 28 00:04:02 168 329,988 122,969 0.79 Gb
3D_vortex_ring_2vortex_lines 56 00:05:19 201 654,802 244,597 1.10 Gb

BdG test cases Processors CPU time nBdG ndof nnz maxRSS

3D_dark_soliton 28 00:01:30 56 103,116 11,782,505 3.07 Gb
3D_vortex_line_single 28 00:03:41 56 165,362 18,934,023 7.09 Gb
3D_vortex_ring_2vortex_lines 56 00:08:02 67 327,887 37,600,455 8.57 Gb

Table 3
Same as Table 2, but for the two-component GP and BdG problems (again, with mesh adaptivity). 
Note that 100 and 60 eigenvalues were computed for all 2D and 3D test cases, respectively. The 
continuations (and thus BdG computations) were performed over �12 for the 2D vortex-antidark and 
2D ring-antidark states whereas for the rest of the cases, over �2.

GP test cases Processes CPU time ncont ndof nt maxRSS

2D_vortex-antidark 4 00:00:17 46 30,506 3,744 1,11 Gb
2D_ring-antidark 4 00:00:09 105 37,847 4,634 4,53 Gb
2D_dark-bright-soliton 4 00:00:12 81 27,775 3,399 0,34 Gb
2D_ground-state-soliton-necklace 4 00:00:29 81 58,081 7,175 2,22 Gb
2D_ground-state-multipole 4 00:00:28 81 41,717 5,131 1,42 Gb
3D_dark-bright-soliton-stripe 28 00:02:18 81 24,698 3,936 1,22 Gb
3D_vortex-ring-bright-state 28 00:03:52 81 24,578 3,935 1,16 Gb

BdG test cases Processes CPU time nBdG ndof nnz maxRSS

2D_vortex-antidark 4 00:00:31 46 27,787 5,125,301 0,78 Gb
2D_ring-antidark 4 00:00:41 91 37,791 6,946,743 1,02 Gb
2D_dark-bright-soliton 4 00:00:33 81 25,303 4,644,479 0,75 Gb
2D_ground-state-soliton-necklace 4 00:01:03 81 55,155 10,136,839 1,43 Gb
2D_ground-state-multipole 4 00:00:37 81 38,882 7,142,816 1,11 Gb
3D_dark-bright-soliton-stripe 28 00:03:56 81 72,202 32,963,342 6,70 Gb
3D_vortex-ring-bright-state 28 00:03:21 81 71,627 32,681,221 7,03 Gb
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Fig. 1. 3D one-component BEC with single-charged vortex-line configuration. a) The BdG spectrum and b) density |�|2 for � = 4.5. The computational domain is the 
cube [−5.4, 5.4]3.

Fig. 2. 3D one-component BEC with vortex-ring with two (oppositely charged) vortex-line handles configuration. a) The BdG spectrum and b) density |�|2 for � = 6. 
The computational domain is the cube [−6.23, 6.23]3.

6.1. 2D two-component BEC test cases

The first two-component BEC validation cases consider two states 
taken from [28] and analyzed in detail in [56]: vortex-antidark and 
dark-antidark ring solutions. The corresponding parameter files
are BdG_2comp_ddm/INIT/2D_vortex-antidark.inc and BdG

_2comp_ddm/INIT/2D_ring-antidark.inc, respectively. Such
bound modes emerge in two-component GP equations due to the inter-
component interaction. Indeed, a dark soliton or a vortex (or a ring) 
in �1 will induce an effective potential through the inter-component 
nonlinearity which itself “traps” a localized mode in �2. As a conse-
quence, atoms in �2 “fill-in” the density dip of �1 through this (effec-
tive) trapping process. The scripts compute solutions to the GP system 
(10) in the case of repulsive inter-component interactions with mis-
cibility condition 0 ≤ �12 <

√
�11�22. To simplify the case study, we 

set �11 = �22 = � = 1, �12 = �21, and 0 < �12 < �, since only the ratio 
between non-linear interaction coefficients matters. The pictures illus-
trating these cases (stationary solutions and BdG spectra) are not shown, 
since identical to those presented in [56].

The last 2D cases consider more exotic states that were recently stud-
ied in [34]. Since the construction of the initial condition is crucial in 
capturing these states, we briefly present the main technical details. At 
first, we construct the ground state of Eq. (3) by

� =

√
�
⟂

2'
�0(

√
�
⟂
�)�0(

√
�
⟂
	)


−
1
2
�⟂(�

2+	2)
, (33)

and use it to seed Newton’s method with � = 1.03 and �
⟂
= 0.2. The 

branch of the ground state is traced from � ≈ 0.202, i.e. close to the linear 
limit where this state bifurcates from, until � = 1. For this computation, 

we use the program for the one-component BEC with parameter file
BdG_1comp_ddm/INIT/2D_Hermite_LL_phi1.inc.

The terminal profile �, now called �1, is extracted while setting �1 =
� = 1. Then, we focus on Eq. (10) with �11 = 1.03, �22 = 0.97, and �12 = 1

(�
⟂
= 0.2 and �1 = 1 are as before). Following the approach discussed in 

[25], we plug the (terminal) profile �1 into the equation for �2 [cf. Eq. 
(10)], and linearize it with respect to �2. This process results in the 
following eigenvalue problem for (�2, �2)

−
1

2
∇2�2 +�eff�2 = �2�2 (34)

with �eff = �trap + �21|�1|2 being the effective potential [25] which is 
responsible for “trapping” bound modes in the �2 component of Eq. 
(10). Equation (34) is solved numerically in the script BdG_2comp_
ddm/FFEM_LL_2c_2D_3D_ddm.edp (using parameter .inc files spec-
ified below for each case) to obtain eigenvalue-eigenvector pairs 
(�2, �2), that together with (�1, �1) form the initial guess that we seed 
to Newton’s method. We then trace branches of bound modes of the 
coupled system of Eq. (10), over the principal continuation parameter 
�2. Note that upon selecting a pair (�2, �2), we perform continuation 
from �2 until �2 + 0.4 in all the cases. The toolbox computes the fol-
lowing states that are illustrated in Fig. 3 (atomic density of the state 
computed for the last value of �2) and Fig. 4 (BdG spectra):

• 2D state with a dark-soliton in one component and a bright-soliton 
in the other one (parameter file BdG_2comp_ddm/INIT/2D_

dark-bright-soliton.inc). This solution (first column of 
Fig. 3) corresponds to the first eigenvalue of problem (34) and bi-
furcates from the linear limit at �2 ≈ 1.05133. This state is unstable 
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Fig. 3. 2D two-component BEC with soliton and necklace configurations. Density profiles of each of the components, i.e. |�1|2 (top row) and |�2|2 (bottom row), for 
different values of �2 (the last value considered in the continuation procedure). From left to right: the dark-bright soliton state, ground state and soliton necklace 
state, ground state and multipole state (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 4. 2D two-component BEC with soliton and necklace configurations. The BdG spectra as functions of �2 corresponding to a) the dark-bright soliton branch, 
b) ground state (�1) and soliton necklace (�2) branch, and c) the ground state and multipole branch. Each of these branches bifurcate from (�1, �2) ≈ (1, 1.05133), 
(1, 1.23276), and (1, 1.29325).

over �2 (see Fig. 4a) except from a very narrow window of stabil-

ity close to the linear limit (see also Fig. 2a in [34], and references 

therein).

• 2D state with ground-state in one component and soliton neck-

lace in the other one (parameter file BdG_2comp_ddm/INIT/2D_

ground-state-soliton-necklace.inc). This branch (second 

column of Fig. 3) corresponds to the 7th eigenvalue of problem (34)

and bifurcates from the previous solution at �2 ≈ 1.23276. It in-

volves a soliton necklace in �2 (note its imprint on �1). Similar to 

the previous case, this state is unstable (see also Fig. 1a in [34]) but 

features a very narrow window of stability as shown in panel b) of 

Fig. 4.

• 2D state with ground-state in one component and a multipole in the 

other one (parameter file BdG_2comp_ddm/INIT/2D_ground-

state-multipole.inc). This so-called multipole branch (third 

column of Fig. 3, see also Fig. 16c in [34]) corresponds to the 8th 

eigenvalue of problem (34) and bifurcates from the linear limit at 

�2 = 1.29325. It can be described by the combination of Cartesian 

(i.e. Hermitian) eigenstates |2, 1⟩ + |0, 3⟩.

All the cases that we discussed here match perfectly with the numerical 

results of [34].

6.2. 3D two-component BEC test cases

We present two 3D two-component BEC configurations that are very 
challenging when computing the BdG spectra. To capture branches 
of solutions, we employ the same “trapping” technique that was dis-
cussed for the 2D two-component cases. The wave function �1 car-
ries the ground state, and is obtained by running the script for the 
one-component BEC with � = 1.03 and �

⟂
= 1 and parameter file

BdG_1comp_ddm/INIT/3D_Hermite_LL_phi1.inc. Continuation 
over � from its linear limit, i.e. � ≈ 1.501, is stopped at � = 2. Then, the 
eigenvalue problem (34) is solved by the script BdG_2comp_ddm/F-
FEM_LL_2c_2D_3D_ddm.edp (using parameter .inc files specified 
below for each case) to obtain the eigenvalue-eigenvector pairs (�2 , �2). 
This way, and upon selecting an eigenvalue-eigenvector pair of our 
choice, we trace branches of 3D bound modes of Eq. (10) by perform-
ing continuation over �2 (while setting �11 = 1.03, �22 = 0.97, �12 = 1) 
for fixed �

⟂
= 1 and �1 = 2. We stop the continuation process when the 

continuation parameter reaches �2 + 0.4, i.e. being 0.4 units far away 
from the respective linear limit of �2 .

With this technique, we can obtain the following 3D states illustrated 
in Fig. 5 (BdG spectra in the first column and density for the last value 
of �2 in the second column):

• 3D state with ground state in �1 and the planar dark soliton in 
�2 (parameter file BdG_2comp_ddm/INIT/3D_dark-bright-

soliton-stripe.inc.) This state corresponds to the first eigen-
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Fig. 5. 3D two-component BEC cases. BdG spectra over �2 and atomic density for the two components for the last value of �2 considered in the continuation 
procedure: a) the dark-bright soliton stripe (with the ground state in �1 and the planar dark soliton in �2), and b) vortex-ring-bright state (with the vortex-ring state 
in �2).

value of (34) and represents a dark-bright soliton stripe in 3D 
(see Fig. 5a and also [19]. It bifurcates from its linear limit at 
�2 ≈ 2.79467. It can be classified in terms of Cartesian eigenfunc-
tions as |0, 1, 0⟩. Our numerical results on its BdG spectrum show 
that the state is stable from its inception until �2 ≈ 2.902 when it 
becomes unstable.

• 3D state with ground state in �1 and a vortex-ring state in 
�2 (parameter file BdG_2comp_ddm/INIT/3D_vortex-ring-

bright-state.inc.) This vortex-ring-bright state (see Fig. 5b) 
was obtained for �1 = 2 and corresponds to the 6th eigenvalue 
of (34). It bifurcates from the linear limit of �2 at �2 = 3.67602

and is generically unstable as shown by its BdG spectrum. Note 
that in the one-component setting, the vortex-ring state can be 
classified in terms of a combination of Cartesian eigenstates as 
1√
2
(|2,0,0⟩ > +|0,2,0⟩) + �|0, 0, 1⟩ [54].

7. Description of the programs

In this section, we first describe the architecture of the programs 
and the organization of the provided files. We then present the input 
parameters and the structure of the output files.

7.1. Program architecture

Codes and data files forming the BdG problem with the domain 
decomposition method (DDM) are stored in the FFEM_BdG_ddm_tool-
box directory. The latter is organized in two main subdirectories:

BdG_1comp_ddm and BdG_2comp_ddm, corresponding to the one-
and two-component codes. Each subdirectory contains two main files: 
FFEM_GP_$case_ddm.edp, which is the main FreeFEM script file for the 
computation of the stationary state, and FFEM_BdG_$case_ddm.edpwhich 
is the main FreeFEM script file for the computation of the BdG eigenval-
ues ($case=1c_2D_3D for the one-component case and $case=2c_2D_3D 
for the two-component case).

To run these codes, first of all, the user must install FreeFEM
with PETSc following the instructions in https://doc .freefem .org /
introduction /installation .html. Then, the user can run the FreeFEM

code for the computation of the GP stationary state by using either 
the command
mpirun -np 4 FreeFem++-mpi FFEM_GP_$case_ddm.edp
or
ff-mpirun -np 4 FFEM_GP_$case_ddm.edp.
The BdG eigenvalues can then be computed by typing (in terminal) ei-
ther
mpirun -np 4 FreeFem++-mpi FFEM_BdG_$case_ddm.edp
or
ff-mpirun -np 4 FFEM_BdG_$case_ddm.edp.
Parameter files for the examples presented in this paper are stored in 
the INIT folder.

The obtained solutions are saved in the dircase directory. Depend-
ing on the output format selected by the user, data files are generated 
in specific folders for visualization with Tecplot,3 ParaView,4 and Gnu-

3 https://tecplot .com.
4 https://www .paraview .org.
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plot.5We also provide ready-made layouts for visualization with Tecplot 
in the folder Figures. The user can thus obtain the figures from this pa-
per using newly generated data. More details about the output structure 
are given in Sect. 7.4.

The complete architecture of the BdG_1comp_ddm and BdG_2comp
_ddm directories is the following:

1. FFEM_GP_$case_ddm.edp: the main script for computing GP station-
ary states.

2. FFEM_BdG_$case_ddm.edp: the main script for computing the BdG 
spectrum.

3. FFEM_LL_$case_ddm.edp: the main script for solving the eigenvalue 
problem of Eq. (34) (i.e. for finding the eigenvalue-eigenvector pairs 
(�2, �2)). This script is used only for the two-component BEC cases.

4. param_num_common.inc: a parameter file containing main numerical 
parameters.

5. INIT: directory storing the parameter files for the examples pre-
sented in Sects. 5 and 6.

6. Figures: directory containing Tecplot layouts used to replot the 
figures shown in Sects. 5 and 6. The main code must be run with the 
associated example before opening the layout to replot the figure.

7. A_macro: directory containing macros used in the main scripts for 
GP and BdG problems.

8. A_macro_LL: directory containing macros used in the main scripts 
for the study of respective linear limits (LL).

7.2. Macros and functions

The different macros and functions used in the toolbox for the se-
quential code are stored in the A_macro folders:

• Macro_BdGsolve.edp: macro for computing the BdG eigenvalues as-
sociated with matrices of Eqs. (28) and (30).

• Macro_createdir.edp: macro for creating the file structure of the
dircase folder.

• Macro_globalpartition.edp: macro for creating a partition of the 
global mesh, and sending the solution from the global mesh to the 
local one.

• Macro_GPsolve.edp: macro for computing the GP stationary state 
with Newton’s method (see Eqs. (19) and (23)-(26)).

• Macro_LLsolve.edp: macro for computing the eigenvalues of Eq. (34).
• Macro_meshAdapt.edp: macro for adapting the mesh to the wave 
function.

• Macro_onedomainsol.edp: macro for sending the solution from the 
local domain to the global one.

• Macro_operator.edp: collection of useful macros and functions: gra-
dients, energy (4), chemical potential, Hermite polynomials, etc. 
Also contains a macro that creates a spherical mesh for 3D prob-
lems.

• Macro_output.edp: macros used for saving data in Tecplot and Par-
aView formats.

• Macro_plotEigenvector.edp: macro for plotting the real and imaginary 
parts of a BdG eigenvector.

• Macro_plotphi.edp: macro for plotting the complex wave function. 
The user can press the “k” key to alternate between plots of the 
density, phase and real and imaginary parts of the wave function.

• Macro_problem.edp: definitions of the weak formulations for the GP 
[cf. Eqs. (19) or (30)], the BdG problems [cf. Eqs. (28) or (23)-(26)] 
and the linear limit problem [cf. Eq. (34)].

• Macro_readmu.edp: macro to read the � from dircase/Gnuplot/GP
_results.dat, and compute the corresponding BdG eigenvalues.

• Macro_readmubeta.edp: macro to read the values of � or � from
GP_mucont_results.dat or GP_betacont_results.dat that are con-

5 http://www .gnuplot .info.

tained in dircase/Gnuplot/ in order to compute the corresponding 
BdG spectrum.

• Macro_restart.edp: macros used to save and load the wave function 
to or from FreeFEM files.

• Macro_saveData.edp: macro for saving the stationary wave function.
• Macro_saveEigenvalues.edp: macro for saving the BdG eigenvalues 
and eigenvectors.

7.3. Input parameters

Parameters are separated in two files. Numerical parameters used 
in all computations are specified in param_num_common.inc. Files in the
INIT directory specify physical parameters associated with the state 
of interest, computation and numerical parameters specific to this prob-
lem. The files distributed with the toolbox provide a variety of examples 
that can be used as a starting point when selecting parameters for the 
study of new states.
(1) In the file param_num_common.inc, the parameters are:

• displayplot: controls the output information to plot. Possible val-
ues range from 0 (no plots), to 2 (plots data at all iterations of 
Newton’s method, and all eigenvectors computed by the BdG code).

• iwait: Boolean indicating if the code must wait for user’s input 
when a plot is shown (true) or it can continue (false) with the 
next plot.

• cutXY, cutXZ, cutYZ: (only for 3D cases in the one-component 
case) Booleans indicating whether to plot cuts of the wave func-
tion along the different axis at � = 0, 	 = 0 or 
 = 0.

• Tecplot: Boolean indicating whether to save data in the Tecplot 
format.

• Tecplotddm: for saving solution for Tecplot with DDM or not.
• Paraview: Boolean indicating whether to save data in the ParaView 
format (only in 2D and 3D).

• adaptinit: if true, the initial solution is recomputed after the first 
mesh adaptation.

• adaptmeshFF: determines if mesh adaptation is used (true) or not 
(false).

• useShift: Boolean indicating whether to use a shift when computing 
the BdG eigenvalues (see, Sec. 4).

• Nadapt: if mesh adaptation is used, then the mesh is adapted every
Nadapt iterations during the continuation.

• Nplot: the wave function is plotted every Nplot iterations during 
the continuation.

• Nsave: the wave function is saved for ParaView or Tecplot every
Nsave iterations during the continuation.

• Nrst: the wave function is saved for the BdG computation every
Nrst iterations during the continuation.

• tolerrF: the tolerance value !" in Eq. (27).
• tolNewton: the tolerance value !� in Eq. (27).
• shift: the value of the shift % used when computing eigenvalues.
• shiftLL: the value of the shift % used when computing eigenvalues 
close to the linear limit.

• shiftFLL: the value of the shift % used when computing eigenvalues 
far from the linear limit.

• adaptboundary: control parameter that determines whether to 
adapt (==0) or not (==1) the boundary of the mesh in 3D.

• skipBdG: the value to skip � or �12 computed with GP for BdG 
computation.

• muL, mubetaL: to switch between using shiftFLL or shiftLL, if � or 
�1 or �2 or �12 <mubetaL we use shiftLL otherwise we use shift-
FLL.

• LL: Boolean indicating whether we want to compute the linear limit, 
i.e. eigenvalue problem for (�2, �2) for the second component or 
not.

• NNZ: contain the non zero elements (nnz) for the BdG matrix.
• dmuk: counter for dmu adaptation.
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• FINAL: Boolean to run the final solution of endmu in the GP con-
tinuation or to stop the BdG computation.

• newtonMax: the maximum number of Newton iterations.

(2) In the file $case.inc, stored in the INIT directory, the parameters 
are:

• General parameters for the case:
∙ dimension: the dimension of the problem (2 or 3).
∙ FEchoice: the type of finite element used. Usually  2.
∙ nev: the number of eigenvalues computed by the BdG code.

• Parameters used to restart a computation:
∙ restart: Boolean indicating if the initial solution is a restart from 
a previous computation. If true, the solution and mesh stored in
dirrestart for the value of � given by murestart will be used as 
initial solution.
∙ murestart: the initial value of � in the case of a restart.
∙ dirrestart: the folder where the initial solution is stored in the 
case of a restart.

• Parameters of the continuation:
∙ kpol, lpol, mpol: integers defining the initial state in the linear 
limit.
∙ startmu: the initial value of �.
∙ endmu: the final value of �.
∙ dmu: the increment in � during the continuation.
∙ facmu: when using the linear limit, the initial value of � is given 
by facmu ⋅�|�-#⟩. ∙ mubeta: a macro that contains the name of the 
variable that we want to do the continuation over it: �1, �2, �12 or 
�21.

• Coefficients of the GP equation:
∙ beta: the nonlinear coefficient (we set � = 1 in all test cases except 
for the linear limit cases where � = 1.03).
∙ ax, ay, az: the frequencies of the trapping potential along the three 
coordinate axes.
∙ Ctrap: a function defining the trapping potential.

• Parameters for the mesh generation:
∙ Dx: the distance between points on the mesh border.
∙ scaledom: a coefficient used to control the size of the domain: the 
mesh radius is given by Rdom = scaledom ⋅ �TF, where �TF is the 
Thomas-Fermi radius.
∙ createMesh: a macro creating the initial mesh Th.

• Parameters for the mesh adaptation:
∙ errU: the interpolation error level.
∙ hmin: the minimum length of a mesh element edge in the new 
mesh.
∙ hmax: the maximum length of a mesh element edge in the new 
mesh.
∙ adaptratio: the ratio for a prescribed smoothing of the metric. No 
smoothing is done if the value is less than 1.1.

• Parameters for the initial solution:
∙ initname: the name given to the initial solution.
∙ initcond: a macro defining the initial solution for the phi vari-
able.

• Definitions of the boundary conditions:
∙ BCGP: the boundary conditions used in the GP code for Eqs. (19)
and (23)-(26).
∙ BCBdG: the boundary conditions used in the BdG code for Eqs. 
(28) and (30).
∙ BCLL: the boundary conditions used in the LL code for Eq. (34).
∙ fcase: the name given to the current computation.
∙ dircase: the directory where the results are stored.

(3) In a two component case, some new parameters are defined in the
$case.inc file:

• Parameters used to restart a computation:

∙ mu1restart, mu2restart: initial values of �1 and �2 in the case 
of a restart.
∙ beta12restart, beta21restart initial values of �12 and �21 in the 
case of a restart.

• Parameters of the continuation:
∙ startmu1, startmu2: initial values of �1 and �2.
∙ endmu1, endmu2: final values of �1 and �2.
∙ dmu1, dmu2: increments of �1 and �2 during the continuation.
∙ startbeta12, startbeta21: initial values of �12 and �21.
∙ endbeta12, endbeta21: final values of �12 and �21.
∙ dbeta12, dbeta21: increments of �12 and �21 during the continu-
ation.

• Coefficients of the GP equation:
∙ beta11, beta12: nonlinear coefficients �11 and �22.

• Parameters for the initial solution:
∙ initname1: the name given to the initial solution for the first 
component.
∙ initname2: the name given to the initial solution for the second 
component.
∙ initcond: a macro defining the initial solution for [phi1,phi2]
variables.

7.4. Outputs

When a computation starts, the OUTPUT_$case directory is created. 
It contains up to eight folders. The RUNPARAM_GP, RUNPARAM_BdG, and
RUNPARAM_LL directories contain a copy of the code and data files, thus 
allowing an easy identification of each case, and preparing an eventual 
rerun of the same case at a later time. The other folders contain different 
output format files of the computed solution for its visualization using 
Tecplot, ParaView or Gnuplot. The content of these subfolders depends 
on the case and on the computation parameters (differences in the two 
component code are given in parentheses):

1. The Gnuplot folder contains two files:
∙ Information about the stationary states is stored in the GP_re-
sults.dat file (GP_mucont_results.dat or GP_betacont

_results.dat file). The columns appear in the following order: 
the non-linear coefficient � (�12 and �21), the imposed chemical 
potential � (�1 and �2), the number of Newton iterations used for 
this value of �, the norms associated with !" and !� in Eq. (27), the 
computed value of the chemical potential (computed values of �1
and �2), the number of atoms (5) (the number of atoms in the two 
components), the GP energy, the mesh size, the number of degrees 
of freedom, the CPU time to compute the stationary state, and the 
value of the current �� (��1, ��2).
∙ BdG eigenvalues are stored in the BdG_results.dat file. The 
columns appear in the following order: the non-linear coefficient 
� (�12 and �21), the imposed chemical potential � (�1 and �2), the 
eigenvalue number between 0 and nev, the real and imaginary part 
of the eigenvalues, the Krein signature and its sign (the Krein sig-
nature and its sign for the two components).
∙ BdG’s numerical information is stored in the BdG_num_re-

sults.dat file. The columns appear in the following order: the 
non-linear coefficient � (�12 and �21), the imposed chemical poten-
tial � (�1 and �2), the non zero element for the BdG matrix, the 
number of degrees of freedom, the CPU time to compute the eigen-
values, and the cumulative CPU time.

2. The Paraview folder contains the wave functions stored as .vtk or 
.vtu and .pvd files:
∙ phi_init.vtu and phi_final.vtu are the initial and final 
solutions.
∙ phi_mu_$mu.vtu contains the stationary wave function for a 
given value of �.
∙ phi_mu1_$mu1_mu2_$mu2.vtu contains the stationary wave 
function for given values of �1 and �2 in the first continuation.
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∙ phi_beta12_$beta12_beta21_$beta21.vtu contains the 
stationary wave function for given values of �12 and �21 in the 
second continuation.

3. The Paraview_Eigenvectors folder contains the eigenvectors 
stored as:
∙ eVec_mu_$mu_$nev.vtu in the one-component code.
∙ eVec_beta12_$beta12_beta21_$beta21_mu1_$mu1_mu2

_$nev.vtu in the two-component code.
4. The RST folder contains the stationary states stored as FreeFEM
files. The names are:
∙ RST-$mu.rst or RST-$mu1-$mu2-$beta12-$beta21.rst

for the data.
∙ RSTTh-$mu or RSTTh-$mu1-$mu2-$beta12-$beta21 for the 
mesh files. The file extensions are .msh (in 2D) or .meshb (in 3D).

5. The RST_LL folder contains the stationary states stored as FreeFEM
files. The names are:
∙ LL_mu1-$mu1_ip-$mu2.rst for the data.
∙ LLTh_mu1-$mu1_ip-$mu2 for the mesh files. The file extensions 
are .msh (in 2D) or .meshb (in 3D).

6. The Tecplot folder contains the wave functions stored as .dat Tec-
plot files:
∙ phi_init.dat and phi_final.dat are the initial and final 
solutions.
∙ phi_mu_$mu.dat contains the stationary wave function for a 
given value of �.
∙ phi_mu1_$mu1_mu2_$mu2.dat contains the stationary wave 
function for given values of �1 and �2 in the first continuation.
∙ phi_beta12_$beta12_beta21_$beta21.dat contains the 
stationary wave function for given values of �12 and �21 in the 
second continuation.

7. The Tecplot_Eigenvectors folder contains the eigenvectors 
stored in the Tecplot format:
∙ eVec_mu_$mu_$nev.dat in the one-component code.
∙ eVec_beta12_$beta12_beta21_$beta21_mu1_$mu1_mu2

_$nev.dat in the two-component code.
8. The Tecplot_Eigenvalues folder contains the file BdG_re-

sults_eig.dat with all the eigenvalues stored in the Tecplot 
format.

8. Summary and conclusions

The experimental realization of single- and two-component BECs in 
higher spatial dimensions has admittedly been an exciting journey in 
understanding the fundamental properties of matter at ultracold tem-
peratures. In parallel, however, this journey has posed computational 
challenges pertaining about not only the existence of matter waves in 
GP equations (single and two-component versions thereof) but more 
crucially, their spectral stability analysis, i.e. BdG spectrum. The study 
of the BdG spectrum often results in solving a very large eigenvalue 
problem, a task that is computationally demanding and requires the use 
of parallelization. With the present work, we took up this challenge, 
and presented as well as delivered a parallel finite-element toolbox for 
computing the BdG spectrum of stationary solutions to one- and two-
component GP equations in 2D and 3D.

The toolbox was created with the open-source, finite-element soft-
ware FreeFEM which is now interfaced with parallel libraries such as
PETSc and SLEPc. The ability of FreeFEM to perform adaptive mesh 
refinements, together with the use of parallel linear solvers such as do-
main decomposition and algebraic multigrid methods in PETSc, makes 
the present toolbox a versatile tool for studying 2D and 3D configura-
tions to GP equations within reasonable CPU times. The computation 
of the BdG spectrum that is carried out in the present toolbox consists 
of two steps. At first, stationary states are identified by using Newton’s 
method which now has access to parallel linear solvers from PETSc. 
Moreover, a natural parameter continuation method is adopted to ob-
tain branches of solutions to GP equations over the chemical potential �

or the inter-component interaction parameters �12 and �21. Upon trac-
ing branches of solutions, the BdG spectrum is computed afterwards by 
solving the associated eigenvalue problem with SLEPc.

We successfully verified our toolbox’s results against known theo-
retical and numerical findings that have been published in the open 
literature. We reported typical CPU times that render the toolbox to be 
used on ordinary laptops and small workstations (of course, depend-
ing on the complexity of the state of interest). The parameter files of 
the toolbox correspond to the test cases we presented in this paper, and 
they can be used by the user to reproduce the results. We further pro-
vide these files from the scope of getting used as templates, if the user 
intends to compute a new BEC setup or case of interest. We hope that 
the description and documentation of the toolbox will allow the user 
in a convenient way to consider other types of trapping potentials e.g.
quartic ± quadratic trapping ones [75], and nonlinearities, such as the 
non-local ones appearing in dipolar settings, e.g. see [76].

There is clearly a broad array of future computational explorations 
and developments stemming from this work that we briefly mention 
here. First, we implemented a natural (or sequential) continuation ap-
proach to trace branches of solutions in the present toolbox. It will be 
quite interesting to consider other types of continuation approaches in
FreeFEM including the pseudo-arclength continuation [77,78], asymp-
totic numerical method (ANM) [79], and deflation-based techniques 
[34,35,54,72], among many others. Another possibility concerns about 
the interfacing of other libraries for eigenvalue computations, including 
the FEAST eigenvalue solver [80] which enjoys multiple levels of par-
allelization [81]. Finally, with the recent experimental developments 
on spinor condensates [82,83] described by more than two GP equa-
tions (see, e.g. [33] where the authors considered a three-component 
GP system for studying monopoles and Alice rings), it is thus timely to 
bring forth state-of-the-art computing methodologies in order to eluci-
date the configuration space of solutions in these experimentally acces-
sible systems. Such computational studies and software development in
FreeFEM are currently in progress and will be reported in future con-
tributions.
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