
Graphical Abstract

Context-driven self-supervised visual learning: Harnessing the environment as a data source

Lizhen Zhu,James Z. Wang,Wonseuk Lee,Brad Wyble

agent

viewing 

direction

a simulated virtual house 



Highlights

Context-driven self-supervised visual learning: Harnessing the environment as a data source

Lizhen Zhu,James Z. Wang,Wonseuk Lee,Brad Wyble

• Created an approach that uses spatial context as a similarity signal

• Developed a method for constructing image datasets using an environmental sampling agent

• Training with contextual information improves state of the art in contrastive learning

• Simulated data provide new forms of physically realistic augmentations



Context-driven self-supervised visual learning: Harnessing the
environment as a data source

Lizhen Zhua, James Z. Wanga,b,c, Wonseuk Leed and Brad Wyblee,∗,1

aData Science and Artificial Intelligence Area, College of Information Sciences and Technology, The Pennsylvania State University, University

Park, PA, 16802, USA
bHuman-Computer Interaction Area, College of Information Sciences and Technology, The Pennsylvania State University, University

Park, PA, 16802, USA
cDepartment of Communication and Media, School of Social Sciences and Humanities, Loughborough University, Loughborough, Leicestershire, LE11

3TU, UK
dDepartment of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
eDepartment of Psychology, The Pennsylvania State University, University Park, 16802, PA, USA

A R T I C L E I N F O

Keywords:
Contrastive learning
Representation learning
Virtual environment
Developmental psychology
Deep learning
Bio-inspired computing
Intelligent agent

T H E B I G G E R P I C T U R E

Despite being trained on extensive datasets, current computer vision systems lag behind human
children in learning about the visual world. One possible reason for this discrepancy is the fact that
humans actively explore their environment as embodied agents, sampling data from a stable visual
world with accompanying context. This article presents a form of contrastive learning that uses spatial
context from small image sets obtained from a simulated environment to train a model that generalizes
to the classification of natural images and spatial perception, demonstrating improved performance
compared to state-of-the-art contrastive methods. While this work is a modest step forward, the long-
term ambition is to give intelligent agents a greater ability to learn on their own by exploring their
surroundings. Intelligent agents with this capability have the potential to solve a diverse range of
problems and make a significant impact on society.

1. Summary

Visual learning often occurs in a specific context, where
an agent acquires skills through exploration and tracking
of its location in a consistent environment. The historical
spatial context of the agent provides a similarity signal for
self-supervised contrastive learning. We present a unique ap-
proach, termed Environmental Spatial Similarity (ESS), that
complements existing contrastive learning methods. Using
images from simulated, photorealistic environments as an
experimental setting, we demonstrate that ESS outperforms
traditional instance discrimination approaches. Moreover,
sampling additional data from the same environment sub-
stantially improves accuracy and provides new augmenta-
tions. ESS allows remarkable proficiency in room classifi-
cation and spatial prediction tasks, especially in unfamiliar
environments. This learning paradigm has the potential to
enable rapid visual learning in agents operating in new
environments with unique visual characteristics. Potentially
transformative applications span from robotics to space ex-
ploration. Our proof of concept demonstrates improved ef-
ficiency over methods that rely on extensive, disconnected
datasets.
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2. Introduction

One of the central challenges faced by both artificial
and natural cognitive visual systems is the ability to map
pixel-level inputs, such as those obtained through eyes or
cameras, onto compositional, internal representations that
inform decisions, actions, and memory processes. In the
recent two decades, significant progress has been made in
understanding vision, notably due to the rise of statistical
models1,2 and particularly deep neural networks.3 These ad-
vances have fostered myriad real-world applications across a
wide range of fields, spanning from biomedicine to emotion
recognition.4–7

The process of learning for computational cognitive
visual systems often involves the use of vast image datasets
that are organized into categories such as specific types
of animals or vehicles, or particular concepts such as sur-
face materials,8 aesthetics,9 or product defects.10 General-
purpose image understanding might use massive datasets,
sometimes with billions of images labeled with thousands of
discrete linguistic terms,11,12 but otherwise lack contextual
information. For example, two social-media-crawled images
labeled as “French bulldogs” might both depict different
dogs or two views of the same dog. Despite these limitations,
these datasets have helped to drive a new generation of
deep learning approaches to computer vision, leading to
significant improvements in image categorization perfor-
mance following the release of models such as AlexNet.3

These advances have been achieved through incremental
improvements in both the scale and complexity of networks
and datasets.
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Despite these improvements, deep learning solutions for
vision still lack the robustness of human performance, even
for the relatively simple task of image recognition. While
they perform well on specific target datasets such as Ima-
geNet,11, such models struggle to generalize to other, even
highly similar tasks.13 Moreover, they lag behind human
performance in object classification,14 and are susceptible
to adversarial attacks in ways humans are not.15 Scaling
data sets up is not proving an effective remedy for these
shortcomings.12 Another drawback of current approaches
is that the immense size of large datasets limits the ability
to conduct experiments due to restricted access to the im-
ages and necessary computing resources, and concerns arise
about the environmental toll of the energy used in training.

Human-inspired contextual learning in computer vi-

sion. To approach this problem we draw inspiration from
the nature of human visual learning and how it differs from
contemporary computer vision. During their first year or
two of life, children are typically extensively exposed to
a narrow range of specific visual objects within a highly
familiar and constrained context. Many children in mod-
ern households spend the first year of their life primarily
in one or two buildings, viewing a limited set of spaces,
surfaces, faces, and objects from various perspectives and
lighting conditions (e.g., sunlight, cloudy light, artificial
illumination). Headcam data reveals that only three specific
faces comprise the vast majority of face exposure for the
average child from Western households in the first year of
their life.16 Moreover, children view a comparatively small
number of objects, many of which are only seen within a
specific context, such as a toaster on a particular kitchen
counter with a certain wall texture. Even the total number
of views of the world by a human child is comparatively
small compared to the number of images in large data sets.
Children typically make around 90 million visual fixations
by the age of two (derived based on an average fixation rate
of approximately 1.4/second17), which is much smaller than
the hundreds of millions or billions of images in the larger
datasets. A similar disparity exists for the training of Large
Language Models.18

This limited exposure to a narrow range of objects in one
context that we see in children would result in poor perfor-
mance for standard deep learning approaches that typically
require balanced exposure to a wide range of objects in dif-
ferent backgrounds to avoid learning skewed statistical rela-
tionships. To avoid this problem, large datasets rely on many
exemplars of objects on a wide range of backgrounds19 but it
is unknown how children learn to effectively parse the visual
environment without such diverse visual experiences. To

help address this gap, we hypothesize that through the use of

environmentally contextualized learning, computer systems

can be designed to learn representations that are flexible

enough to perform well on generalized tasks such as natural

image classification from smaller, less diverse datasets. Our
work here provides a step in this direction by showing that
including the spatial position of image samples within an
environment can measurably improve performance on a task

like ImageNet classification relative to an algorithm that uses
only instance discrimination for training.

Lessons from human visual development. The field
of developmental psychology offers insights into what is
missing from contemporary machine vision learning. While
viewing the world, children harness a wealth of environmen-
tal information about how their bodies deliberately sample
information through controlled orientation of their senses
and their interactions with the world.20–22 Inspired by these
findings, we take an interdisciplinary step by introducing a
new learning approach to self-supervised contrastive learn-
ing in which the environment is considered as the data
source. This approach allows us to repeatedly sample the
same objects in the same rooms from slightly varying posi-
tions using a notional agent that occupies a specific location
at each time point. For example, while a house has a limited
set of locations and objects, the number of possible visual
patterns that can be experienced within it is vast given the
ability to move such an agent around, to experience varying
lighting conditions over time, and to vary physical properties
of the sensors such as focal depth. Figure 1 illustrates such
visual differences.

In humans, this mechanism may emerge early in the
developmental process, perhaps even before a child be-
gins to move independently (i.e., self-locomotion), if they
are passively moved and track self-motion through sources
such as optic flow, vestibular input, and other senses. This
kind of visual learning precedes and enables higher-order
learning mechanisms that infer properties about labeled
categories,23,24 causal interactions,25 and physical reason-
ing.26–28

Improving self-supervised learning. Self-supervised
learning approximates some aspects of early human visual
experience by learning visual patterns from unlabeled im-
ages. One such algorithm, called contrastive learning,29–31

trains networks to detect when two images are algorithmi-
cally derived augmentations of a base image (i.e. positive
pairs). However, this approach lacks the ability to represent
real-world similarity in the training process. Two source
images from nearly identical views of an object would be
treated as completely distinct by this approach since they are
different instances. On the other hand, human visual learning
is thought to exploit the similarity between proximal samples
within the environment to develop a smooth latent represen-
tation that connects different views of the same objects.32

Such similar images are a natural byproduct of perception
by any agent that traverses an environment in which objects
persist over time, thereby providing a variety of changes in
perspective, lighting conditions, and so on. The information
that can be extracted from sequential samples by these agents
is much richer than what can be gained through instance
discrimination alone.

This aspect of environmentally driven learning trans-
forms the statistical consistency of the world, which might
be seen as a disadvantage in some traditional deep learning
approaches, into a valuable signal for understanding the
physical properties of how light and materials interact for
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Figure 1: The impact of position on the appearance, lighting, and camera distance/focal length of an image
(A) The perspective of a room can greatly impact its appearance when rendered from different positions in the ThreeDWorld
simulated environment. (B) The natural lighting of a scene can significantly alter its appearance when captured at different times
of the day. Photos courtesy of Federico Adolfi. (C) The head and facial features of a statue may appear differently when captured
with different focal lengths and camera distances. Photos courtesy of James Z. Wang.

arrangements of objects and surfaces in a visually rich
environment, as guided by information about location. This
approach is inspired by embodied perspectives on human
perception33 and learning.22,34 While a wholly embodied
approach would have agents actively engage with their sur-
roundings and learning co-occurs with behavior, our method
conducts after the agent has sampled a large set of images.
In this approach, positive pairs reflect variations due to both
typical augmentations and small shifts in viewing position.
Thereby we use the relative positions of the agent at the time
two given images were sampled as a proxy of their image
similarity. The mechanism we envision does not rely on
externally derived labels or even the notion of what objects
are. In a cognitive framework, this kind of learning serves
as a foundation for subsequent learning at which point the

ability to perceive the significance of verbal labels begins to
influence visual learning.35

Our environmental spatial similarity approach. Our
proposed algorithm demonstrates improved efficiency in
learning how to visually categorize objects when compared
to an existing contrastive learning method. We define in-
creased efficiency as improving accuracy on a downstream
ImageNet task while keeping the size of the model, dataset
volume, training epochs, augmentations, and downstream
task fixed. Our approach involves adjusting the Momentum
Contrast (MoCo) algorithm29 to leverage spatial context
information obtained through simulated images collected
in a single environment to determine which images from a
randomly sampled dictionary are positive pairs. In MoCo, a
positive pair is two augmentations derived from the same
source image. In our proposed approach, a positive pair
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is two images that were proximal in spatial and rotational
coordinates. For each key image, there could exist more than
one positive pair. We term this approach as Environmental
Spatial Similarity with Multi-Binary positive pairs (ESS-
MB). We demonstrate across a variety of conditions that
the training process using spatial context to mark positive
pairs is more efficient than the same-instance discrimina-
tion found in MoCo V2. We further extended the binary
representation of similarity to a continuous one to assign
differentiated weights to positive pairs, called the multi-
weighted version (ESS-MW), resulting in a further modest
enhancement in the downstream performance.

We highlight five convergent findings that support the
effectiveness of this approach. First, by examining various
spatial similarity thresholds, we identify that there is a point
of peak performance. Using such a threshold, our approach’s
pretraining on a set of 102,197 (abbreviated as “100K”)
images collected during one traversal of an environment
leads to enhanced downstream accuracy in an ImageNet
classification task compared to the MoCo model pretrained
on the same image set, with a further improvement using
a loss function that is weighted by spatial proximity. This
approach is complementary to other contrastive learning
models. Second, our approach’s superior performance gen-
eralizes to both a smaller dataset collected from the same
environment and one from a different environment. Thirdly,
by accumulating more images of similar views within the
same environment, we observe enhanced accuracy, even
with the same total amount of training. Moreover, we ex-
plore a new form of augmentation afforded by ray tracing
with varying light sources and multiple downstream tasks.
Lastly, the model with our approach outperforms the MoCo
model on room classification and spatial localization tasks,
especially in unseen environments. All critical comparisons
in our experiments were conducted thrice to offer a confident
accuracy range, factoring in the standard error.

3. Results

3.1. Simulated datasets provide a source of spatial

similarity
To create a dataset that exhibits environmental consis-

tency, we used a simulation approach that leverages state-of-
the-art ray tracing within the Unity framework. Simulations
provide us and other researchers the agility to experiment,
allowing testing of the effect of highly specific, parametric
variations in the image set–something not feasible with real-
world image sets. Building on the ThreeDWorld platform,36

we simulated an agent moving through a fully furnished,
detailed house and apartment, capturing images at closely
spaced intervals. In this environment, ray tracing was used to
simulate the transmission of light rays from virtual sources,
which bounce and scatter to create realistic perspective,
reflections, shadows, and material properties such as glossi-
ness that mimic the appearance of real gloss in human
psychophysics.37

The Archviz House (referred to as “House”) and the
Apartment (referred to as “Apt”) are both simulated building
interiors provided by the ThreeDWorld platform. Each is
furnished with a set of objects (e.g., furniture, laptop, and
cup). The House was enhanced with an additional set of 48
objects, whereas the Apt was enhanced with 101 objects, all
of which were sourced from a library of 3D objects using a
JSON file.

We generated three basic datasets: House14K, House100K,
and Apt14K, where the numbers 14K and 100K refer to the
approximate number of samples. These datasets were col-
lected under the default lighting condition of ThreeDWorld.
Every sample is a 224×224 egocentric image captured by the
avatar, accompanied by its respective position and rotation.
These samples were generated from pre-recorded avatar
trajectories created by a human user navigating the buildings
via keyboard controls. Figure 2 shows the two simulated
environments, the trajectories for all three datasets, and some
example images captured within both settings. Within the
House environment, we also varied the simulated lighting
conditions of simulation to generate House100KLighting
and House14KLighting datasets as described in the exper-
imental procedures.

3.2. ESS has superiority over instance

discrimination
To investigate whether our ESS approach improves

visual learning, we conducted a study comparing con-
trastive learning models based on our approach with a self-
supervised technique using the identical training set. Our
approach modifies the MoCo V2 algorithm by Chen et al. 29

Because instance discrimination can only learn if two images
are different augmentations of the same image, it overlooks
the degree of similarity or difference between distinct im-
ages. For the ESS-MB approach, we find similar images
in the dictionary for each key image based on the agent’s
position and rotation and record them as positive pairs. Each
positive pair contributes equally to the calculation of the loss
function. In the ESS-MW approach, each positive pair is
given a weight for loss calculation based on the position and
rotation difference between the two images.

We compare our ESS-MB with MoCo V229 when
trained on our simulated datasets, specifically the House100K,
where images selected for training are randomized in se-
quence. Unless otherwise specified, ESS-MB represents a
variant of MoCo V2 that incorporates ESS-MB.

Pretext training for the baseline MoCo V2 model29 used
the same House100K dataset, with the same dictionary
size, augmentation techniques, epoch count, batch size, and
downstream ImageNet task. All simulations were executed
thrice on four NVIDIA RTX A6000 GPUs, with average
results and standard error subsequently computed.

With ESS-MB, the thresholds for distance and rotation
similarity serve as adjustable parameters, fine-tuning the
spatiotemporal boundaries of environmental consistency.
At extremely narrow thresholds (e.g., 0.001 meters or de-
grees), ESS-MB closely mirrors the instance discrimination
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Figure 2: The simulated environments and the trajectories used by the embodied agent to generate the datasets
(A) The Archviz House. (B) The Apartment. (C-E) The trajectories for House14K, Apt14K, and House100K, respectively. (F-G)
Three example images from the House and Apt environments, respectively. During training, random batches were sampled from
these trajectories. Images were considered similar if they were spatially close to each other.

as used in MoCo. As presented in Table 1, the threshold
of 0.8 meters and 12 degrees yielded the best downstream
performance, with a classification accuracy of 18.05% and
degraded performance with both higher and lower threshold
values. To gauge the relative importance of both rotation
and position, we retrained the model with these variables
omitted from the threshold and found that the exclusion of
either variable caused a comparable dip in accuracy. For
subsequent experiments, the thresholds of 0.8 meters and
12 degrees were retained for the ESS-MB model trained
on House100K. A further improvement in accuracy was
obtained by introducing a modest quantity of ImageNet-
style training images to the pretext training, after which
the downstream accuracy was 23.36%. More details are
provided in Experimental Procedures.

Expecting the model to learn more effective information
from the continuous similarity representation, we developed
the ESS-MW approach which added a weight to each pos-
itive pair in the loss function. The weight increases as the

position and rotation of two samples become closer. As
shown in Table 2, with the thresholds of (0.8,12), (0.4,6),
and (1.6,24), ESS-MW improved the test accuracy by 0.39%,
0.47%, and 0.69%, respectively, compared to ESS-MB.

These downstream accuracy scores compare favorably
to results from the MoCo model trained on the same dataset,
with average scores from the baseline model trailing behind
the ESS-MB average by a margin exceeding standard errors.
These results suggest that spatial similarity context facili-
tates learning from the pretext task on simulated images in a
way that translates to the superior classification of ImageNet
images that the representational backbone model has never
been trained on.

We tested whether these results generalize to smaller
datasets within the same environment using just 14K images
and for a different environment entirely. Specifically, we
used the House14K and Apt14K datasets. For the House100K
dataset, the most effective threshold settings yielded an
average of 6.3 positive pairs in the dictionary for each image.
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Table 1
Comparison between the baseline and ESS on House environment with modified thresholds
“Threshold” indicates that if a sample’s position and rotation difference relative to the key samples is below (x meters, y degrees),
it is designated a positive sample. The column “Positive Pairs” shows the average number of positive samples in the dictionary for
each threshold. N/A indicates that one or more thresholds were omitted from the similarity metric. “House14KLong” indicates that
the number of pretext training epochs was increased to equate total training between the 14K and 100K datasets. ² denotes that
higher values of this term are preferable. ´ denotes that lower values of this term are more favorable. Numbers after ± represent
the standard error of the mean, rounded to a minimum of .01. Numbers in bold highlight the best downstream classification
results on each dataset.

Pretext Training Stage Positive Pretext Task Downstream ImageNet Classification
Dataset Model Threshold Pairs Training loss ´ Training loss ´ Test loss ´ Test accuracy (%) ²

House100K

Baseline N/A 1 4.43 ± 0.02 4.71 ± 0.03 4.72 ± 0.03 17.36 ± 0.36

ESS-MB (0.4,6) 1.3 3.78 ± 0.01 4.68 ± 0.03 4.71 ± 0.03 17.56 ± 0.34

ESS-MB (0.8,12) 6.3 4.00 ± 0.00 4.67 ± 0.00 4.75 ± 0.01 18.05 ± 0.04

ESS-MB (1.6,24) 29.3 4.57 ± 0.00 4.86 ± 0.03 4.97 ± 0.02 16.92 ± 0.19

ESS-MB (0.8,N/A) 60.5 4.81 ± 0.00 5.02 ± 0.04 5.14 ± 0.03 15.92 ± 0.15

ESS-MB (N/A,12) 292.4 5.97 ± 0.00 4.94 ± 0.01 4.88 ± 0.01 15.55 ± 0.15

House14KLong
Baseline N/A 1 3.72 ± 0.00 5.18 ± 0.01 5.17 ± 0.01 12.44 ± 0.12

ESS-MB (0.5,7.5) 6.6 3.87 ± 0.00 5.09 ± 0.00 5.11 ± 0.01 13.44 ± 0.08

House14K

Baseline N/A 1 5.19 ± 0.09 6.79 ± 0.52 6.92 ± 0.55 9.46 ± 0.79

ESS-MB (0.25,3.75) 2.6 5.23 ± 0.02 5.89 ± 0.09 5.96 ± 0.10 11.09 ± 0.29

ESS-MB (0.5,7.5) 6.6 5.19 ± 0.01 5.59 ± 0.01 5.63 ± 0.01 11.61 ± 0.16

ESS-MB (1.0,15) 20.6 5.41 ± 0.06 5.62 ± 0.05 5.66 ± 0.04 11.07 ± 0.10

Apt14K

Baseline N/A 1 5.29 ± 0.10 17.37 ± 10.45 18.30 ± 11.61 5.54 ± 0.88

ESS-MB (0.3,4.5) 2.4 5.41 ± 0.04 9.28 ± 1.78 9.31 ± 1.69 6.87 ± 0.48

ESS-MB (0.6,9) 6.7 5.40 ± 0.02 6.55 ± 0.06 6.55 ± 0.02 8.47 ± 0.09

ESS-MB (1.2,18) 21.2 5.58 ± 0.07 6.46 ± 0.11 6.54 ± 0.15 8.28 ± 0.29

Table 2
Result of ESS-MW with various thresholds on House100K environment

Training Stage Pretext Task Downstream ImageNet Classification
Threshold Training loss ´ Training loss ´ Test loss ´ Test accuracy (%) ²

(0.8,12) 3.92 ± 0.003 4.62 ± 0.001 4.67 ± 0.004 18.39 ± 0.082

(0.4,6) 3.77 ± 0.004 4.98 ± 0.326 4.67 ± 0.024 18.03 ± 0.114

(1.6,24) 4.26 ± 0.003 4.72 ± 0.011 4.82 ± 0.013 17.61 ± 0.135

To bring the average number of positive pairs to be around
6.5 for the 14K datasets, the best thresholds were found to be
0.5 meters and 7.5 degrees for House14K, and 0.6 meters and
9 degrees for Apt14K. With these thresholds, ESS-MB also
outperformed MoCo with downstream accuracies of 11.61%
and 8.47%, compared to 9.46% and 5.5% for the baseline
MoCo models trained on the same datasets.

3.3. Richer exploration of an environment

improves learning
Training with the House100K dataset produces a sub-

stantially higher accuracy on Imagenet classification for both
models, even though both the House14K and House100K
datasets contain images from the same rooms. The improve-
ment in performance might stem from the larger number
of training steps involved with the House100K dataset. To
control for this factor, we trained the ESS-MB model on
the House14K dataset for 1,428 epochs, which is equivalent
to the total number of training steps in the House100K
dataset over 200 epochs. Nevertheless, even when equating

training steps, the House14K dataset yielded lower down-
stream accuracy than the House100K dataset, by a margin
of 4.61%, as shown in Table 1. These results support the
hypothesis that a more extensive exploration within a single
environment can lead to improved performance, both in
terms of distinguishing features within that environment and
in the supervised classification of real-world images.

3.4. ESS is complementary to other contrastive

learning approaches
Our ESS approach could be applied to most constrastive

learning model to improve their performance. We further im-
plemented our ESS-MB approach on SimCLR,31 Decoupled
Contrastive Learning (DCL),38 and the Contrastive Learn-
ing with Stronger Augmentations (CLSA)39 on House100K
to determine if our approach improves performance for these
algorithms. Note that the Nearest-Neighbor Contrastive
Learning of visual Representations (NNCLR)40 uses a
different way to define the positive pairs, so that we could
not implement ESS-MB on NNCLR. Instead, we compared
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Table 3
Comparison of the ESS-MB with various contrastive learning models trained on House100K
The ✓ means ESS-MB is implemented on a specified contrastive learning model. We compare NNCLR with ESS-MB on MoCo
V2, as NNCLR’s different definition of positive pairs complicates the direct application of ESS-MB on NNCLR. Numbers in bold
highlight the better downstream classification results for each model type.

CL Model ESS-MB CL backbone
Pretext Task Downstream ImageNet Classification
Training loss ´ Training loss ´ Test loss ´ Test accuracy (%) ²

SimCLR ResNet-50 0.15 ± 0.01 4.88 ± 0.01 4.84 ± 0.01 16.81 ± 0.05

SimCLR ✓ ResNet-50 0.59 ± 0.01 4.70 ± 0.01 4.79 ± 0.01 17.71 ± 0.13

DCL ResNet-50 3.75 ± 0.06 4.67 ± 0.01 4.70 ± 0.01 17.62 ± 0.11

DCL ✓ ResNet-50 3.86 ± 0.00 4.66 ± 0.01 4.69 ± 0.02 18.15 ± 0.10

CLSA ResNet-50 11.44 ± 0.00 4.16 ± 0.03 4.06 ± 0.03 24.77 ± 0.33

CLSA ✓ ResNet-50 11.23 ± 0.00 3.89 ± 0.01 3.83 ± 0.01 27.77 ± 0.22

NNCLR ResNet-18 3.39 ± 0.24 1555 ± 8.26 7.03 ± 0.15 3.55 ± 0.03

MoCo V2 ✓ ResNet-18 3.89 ± 0.10 5.75 ± 0.01 5.71 ± 0.01 7.96 ± 0.08

MoCo V3 ViT 1.87 ± 0.01 4.58 ± 0.02 4.47 ± 0.02 19.27 ± 0.21

MoCo V3 ✓ ViT 2.11 ± 0.00 4.57 ± 0.01 4.46 ± 0.01 19.84 ± 0.13

ESS-MB on MoCo with NNCLR using the ResNet-1841

backbone. In addition, we implemented ESS-MB on MoCo
V342 with the Vision Transformer (ViT)43 backbone. For
more details, please refer to the Supplemental Information.

As shown in Table 3, on all 5 models, our approach out-
performs the original one. For SimCLR and MoCo V3, both
models use batch-wise contrast. A total batch size of 1024
of 4 GPUs limits the number of positive and negative pairs
that can be obtained. With the same threshold, there are only
1.6 positive pairs for each image on average, thus leading to
limited influence on the model performance. For NNCLR,
although ESS-MB and NNCLR reported closely matched
losses of 3.39 and 3.89 in the pretext task, our model
achieved an accuracy of 7.96% on the downstream ImageNet
classification task–a marked improvement of 4.41% over
NNCLR. The large downstream training loss of NNCLR is
related to the implementation of Lightly.44

3.5. Simulated lighting is a complementary

augmentation
In traditional contrastive learning, augmentations such

as random cropping, Gaussian blur, and color jittering are
used to train the model to be invariant to minor image
variations. However, these techniques fail to capture realistic
variation in lighting due to changes in the illuminant which
happen in real-world viewing conditions, particularly when
observing the same location at different times of the day. To
evaluate whether simulated images from different lighting
conditions could serve as a complementary source of aug-
mentations, we developed the House100KLighting dataset
that uses nine different lighting settings. We conducted three
experiments to investigate the impact of lighting-based aug-
mentation on classification results. First, we removed the
traditional augmentations from ESS-MB. Second, we ex-
cluded standard augmentations and trained ESS-MB with
House100KLighting instead of House100K. To make the
number of training samples the same, for each image, we
randomly selected one of the nine lighting conditions shown
in Figure 4 from the dataset. Third, we trained the ESS-MB

using both House100KLighting and the standard augmenta-
tions. As shown in Table 4, the pretext task losses remain
unaffected. There was a decline of 8.38% in downstream
accuracy when augmentations were excluded. Training that
incorporated multiple lighting conditions alongside tradi-
tional augmentations further improved accuracy, suggesting
that ray-traced lighting variation can be a valuable and com-
plementary source of data augmentation for unsupervised
contrastive learning.

3.6. ESS training improves localization
To determine whether ESS-MB training is also superior

in tasks related to spatial perception compared to MoCo,
we developed two downstream tasks. The first task required
the model to classify the specific room of a house based on
a given view, while the second task required the model to
predict the exact position and orientation of a provided view.
For these evaluations, we compared ESS-MB with base-
line models that had been pretrained on House100K. The
room classification task was first conducted on images from
the House14K dataset. However, the performance was very
close to the ceiling so we created a more challenging variant
where the lighting condition for each sample was varied
randomly. As shown in Table 5, the accuracy of ESS-MB on
House14K, House14KLighting, and Apt14K surpassed the
baseline model by 1.25%, 8.67%, and 14.99%, respectively.
ESS-MB performs better in classifying the rooms in the
environment than the baseline, especially when transferring
to lighting conditions and environments not encountered
during pretext training.

In the spatial localization task, pretrained models are
fine-tuned to estimate the position and rotation of the agent.
As shown in Table 6, ESS-MB consistently achieves lower
losses compared to the baseline for both datasets. Specifi-
cally, ESS-MB predicts the position of images with an error
of under 1 meter and 2 meters for House14K and Apt14K,
respectively. ESS-MB training leads to better predictive
accuracy in position by 0.15 meters in House14K and 0.51
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Table 4
Comparison of the ESS-MB trained on House100K with various augmentation settings
The column “Augmentation” indicates whether the pretext training uses the augmentation method from the original MoCo.

Pretext Dataset Augmentation
Pretext Task Downstream ImageNet Classification
Training loss ´ Training loss ´ Test loss ´ Test accuracy (%) ²

House100K 4.08 ± 0.003 6.13 ± 0.229 6.20 ± 0.18 9.70 ± 0.16

House100KLighting 4.07 ± 0.005 5.77 ± 0.314 5.92 ± 0.35 14.09 ± 0.25

House100K ✓ 4.00 ± 0.005 4.67 ± 0.002 4.75 ± 0.01 18.05 ± 0.04

House100KLighting ✓ 4.03 ± 0.001 4.49 ± 0.013 4.51 ± 0.01 20.74 ± 0.17

Table 5
Comparison of the baseline and ESS-MB trained on House100K on the room classification task for images from the House14K,
House14KLighting and Apt14K datasets

Model Dataset Training loss ´ Test loss ´ Test accuracy (%) ²

Baseline House14K 0.19 ± 0.003 0.19 ± 0.004 98.10 ± 0.08

ESS-MB House14K 0.08 ± 0.002 0.08 ± 0.002 99.35 ± 0.08

Baseline House14KLighting 0.88 ± 0.01 0.93 ± 0.01 78.70 ± 0.85

ESS-MB House14KLighting 0.47 ± 0.02 0.52 ± 0.03 87.37 ± 0.54

Baseline Apt14K 1.30 ± 0.04 1.30 ± 0.03 74.85 ± 0.26

ESS-MB Apt14K 0.65 ± 0.03 0.64 ± 0.03 89.84 ± 0.97

meters in Apt14K. While both models exhibit notable rota-
tion errors, ESS-MB outperforms the baseline in both tasks,
with a superiority of 16.26 and 7.05 degrees for House14K
and Apt14K, respectively.

4. Discussion

These results provide clear evidence that incorporating
spatial context in environmental sampling significantly im-
proves the effectiveness of contrastive learning compared to
methods using an equivalent number of training epochs on
the same dataset. Both rotation and position are important
for defining whether a pair of views is similar enough.
Moreover, the magnitude of the threshold for spatial sim-
ilarity influences the learning outcome; excessively large
thresholds might mislabel highly distinct views as positive
pairs. Additionally, we discovered that resampling the same
environment to acquire more images substantially boosts
downstream accuracy, even if the images originate from
identical rooms with the same furnishings and largely similar
trajectories. Collectively these findings support the ability of

visual learning algorithms to efficiently extract visual pattern
information from a given environment, both by tracking the
history of spatial information and denser reexploration of
the same locations from slightly different positions and view
angles as exemplified in Figure 1A.

Our approach is versatile and can be applied to con-
trastive learning with any dataset embedded with spatial
history information. Furthermore, it holds the potential for
adaptation to datasets rich in temporal sequence information,
such as the Ego4D dataset.45 Here, temporal similarity
could potentially replace spatial similarity. Moreover, our
training experiments show that resampling the same views
under different illuminants offers a source of augmentation
(e.g., the trees in Figure 1B) that complements traditional
techniques, such as color manipulation. Additionally, the
superior performance of ESS-MB in tasks like room clas-
sification and spatial localization demonstrates its ability to
learn tasks associated with spatial perception, both within
and across environments.

The long-term implications of this research span be-
yond developing general-purpose vision algorithms. It holds

Table 6
Comparison between the baseline and ESS-MB models trained on House100K for the spatial localization task
Position error represents the discrepancy in the predicted avatar position, denoted as Ĉpos. in the text. Rotation error refers to
the error in the predicted avatar rotation, denoted as Ĉrot.. Position drop and Rotation drop indicate the reduction in position
error and rotation error from the start to the end of training, respectively.

Model
Test

Training loss ´ Test loss ´
Position (meter) Rotation (degree)

dataset Error ´ Drop ² Error ´ Drop ²

Baseline House14K 15.53 ± 0.16 15.24 ± 0.14 0.96 ± 0.01 2.12 ± 0.07 71.77 ± 0.34 34.25 ± 0.34

ESS-MB House14K 9.40 ± 0.19 9.21 ± 0.25 0.81 ± 0.01 1.61 ± 0.08 55.51 ± 0.83 50.37 ± 0.83

Baseline Apt14K 32.75 ± 0.29 33.35 ± 0.31 2.35 ± 0.06 3.27 ± 0.09 100.11 ± 0.19 2.65 ± 0.20

ESS-MB Apt14K 26.96 ± 0.60 27.46 ± 0.68 1.84 ± 0.07 2.77 ± 0.03 93.06 ± 0.82 8.71 ± 0.77

L. Zhu et al.: Preprint submitted to Patterns Page 8 of 20



Context-driven self-supervised visual learning: Harnessing the environment as a data source

promise for embedded systems that need to learn in specific
environments. The approach provides intelligent agents the
ability to more rapidly learn generalizable visual under-
standing skills–achieved by tracking their location as they
explore the environment and then performing either online
or offline learning to improve performance for subsequent
tasks. This would be helpful when a small drone dispatched
to a remote location with unique lighting or other visual
characteristics or a robotic explorer sent to a remote planet
would require the acquisition of a new visual representation
backbone while minimizing power consumption, making
training efficiency a critical factor. Offline training could
be performed using more efficient hardware connected to
a power source and then the resultant backbones could be
distributed to numerous drones for fine-tuning. The long-
term impact of this work could therefore be significant for
several sectors, including robotics, unmanned aerial vehi-
cles, robot-assisted scientific exploration, disaster-relief op-
erations, environmental surveillance in inaccessible locales,
and planetary and space exploration. While our current focus
is on the classification of static images, the potential exists
for tasks that rely on contiguity between images such as
action classification and navigation. Moreover, simulated
environments offer a unique opportunity for designing aug-
mentations that reflect the kind of changes that occur in
the real world, potentially leading to more effective training
for perceivers operating in real-life situations by including
simulated datasets. Our positive results with lighting-based
augmentation indicate that further exploration of this ap-
proach could be beneficial when the reflectance properties
of surfaces and natural illuminants of an environment have
been measured.

In addition to computer vision, spatial similarity training
could also shed light on the invariance properties of human
visual neurons that tolerate massive changes in an object’s
size, position, and rotation. This phenomenon could result
from the natural temporal contiguity of visual input46 or
smooth changes in input features over time.47 This would be
a potentially valuable method to simulate the development of
visual neurons in simulations of biological visual systems.

To further improve this approach, there are other aspects
of ray-traced simulation that we have not explored. For
example, the covariation of distance to an object and the
camera’s focal length alters the apparent size of different
parts of the object based on their distance from the observer
(e.g., the statue in Figure 1C). This type of variation occurs
naturally in real-world viewing conditions but cannot be
accurately simulated through simple augmentations such as
cropping and magnification.

Another opportunity for further improvement lies in re-
fining the spatial similarity function used to identify positive
pairs. Currently, our algorithm defines spatial context such
that similarity between two data points decreases sharply
with greater distance or differences in rotational angle sepa-
rately. However, as shown in Figure 3, even with an identical
distance and rotation difference, the similarity between the
two views can differ. There are ways to revise this function

»

»

»

»

A

B

Figure 3: Illustration of a more comprehensive approach to
evaluating spatial similarity, which considers not only the
distance and angle between two views but also the specific
region of space being observed
Even though the angular difference between the two views
generated in (A) and (B), calculated as |ā1 − ā2|, and the
position difference are equivalent, the two views in (A) could
be considered more similar due to their convergent perspective
and shared focus on a specific region of space. In contrast,
the views in (B) may be considered less similar due to their
divergent perspective and lack of overlap in the region of space
being observed.

by incorporating information about pixel depth and objects.
Depending on this function, our ESS-MW approach can be
further explored and enhanced. For example by allowing
samples with farther spatial separation to be flagged as
slightly similar according to the presence or absence of
intervening visual barriers or objects. This could be detected
by tracking the variability in the visual input over time, such
that passing through doorways or other barriers would cause
dramatic shifts in the visual statistics, and therefore would
down-weight the similarity of those samples.

Besides, it is worth investigating the effect of increasing
the number of images collected from a single environment
on performance. Our analysis has shown that using 100K
images as opposed to 14K images from the same house re-
sulted in a significant improvement in downstream accuracy,
even though both datasets contained images of the same
rooms and the longer trajectory essentially covered the same
views as the shorter one. It remains an open question how
downstream accuracy would change with further increases
in the density of image sampling from a given environment,
and whether there is a ceiling to the accuracy attainable from
a particular environment.

Lastly, interacting with the virtual platform TDW and
conducting online learning is a further direction of explo-
ration. An extra adaptive network can be trained to determine
the movement direction and rotation of the avatar based on
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the avatar’s field of view and historical information to max-
imize the information that can be gained from the environ-
ment. The current bottleneck is that the interaction between
the avatar and the virtual environment cannot be processed in
batches, which greatly affects the training speed. A possible
alternative is to collect a dense dataset of images in advance,
and then choose informative samples for training via the
adaptive network.

A limitation of our study is the modest overall accuracy
achieved in the downstream image classification task. This is
a predictable outcome given such a small set of images used
in training and the narrow scope of the environment from
which they were collected–especially when compared with
the diversity of ImageNet. However, this limitation mimics
the real-world learning scenarios experienced by embodied
agents, such as children, who learn a robust basis set of visual
representations through exposure to restricted environments.
The evident gap between our current downstream accuracy
and human performance in image classification suggests
significant opportunities for improvement and future devel-
opment in training algorithms that exploit environmental
context. Given the relatively small size of the datasets used in
our framework, there is potential for rapid experimentation
and iterative refinement of similar algorithms. In light of
these findings, we encourage the computer vision commu-
nity to explore ways to narrow the accuracy gap for such
datasets. We have made all of our datasets available on an
explanatory website (see below).

5. Experimental Procedures

5.1. Resource availability
5.1.1. Lead contact

Request for information and resources used in this article
should be addressed to Dr. Brad Wyble (bpw10@psu.edu).

5.1.2. Materials availability

This study did not generate new unique reagents.

5.1.3. Data and code availability

Our dataset is based on the high-fidelity 3D virtual
environment, ThreeDWorld,36 which can be downloaded at
https://www.threedworld.org. Datasets used in this paper
have been deposited at https://osf.io/w98gq/ under DOI
10.17605/OSF.IO/W98GQ and are publicly available as of the
date of publication.48 All datasets are also available at http:
//www.child-view.com. We provide our two-stage dataset
generation pipeline, along with the codes for conducting
all the experiments and the pretraining and downstream
checkpoints, at https://osf.io/ft59q/, under DOI 10.1

7605/OSF.IO/FT59Q and are publicly available as of the
date of publication.49 Any additional information required
to reanalyze the data reported in this paper is available upon
request.

5.2. Dataset generation process
In the first stage, the selected environment was initialized

with a set of predetermined objects and a non-kinematic de-
fault avatar was placed in a suitable location within the envi-
ronment. All objects were given a mass of 10,000 to prevent
movement due to avatar collisions. Using ThreeDWorld’s
interaction module, a user maneuvered the avatar, navigating
its trajectory with functionalities like turning, advancing,
retreating, and jumping–all triggered by specific keystrokes.
The trajectory of the avatar, including the step numbers,
positions, and rotations (represented by quaternions to avoid
gimbal lock), was recorded as the agent traversed the house.
The rotation of the avatar only changed in the horizontal
(yaw) plane.

In the second stage, the same objects and avatar were
placed in the environment and the skybox was configured
either to its default setting or to one of the nine pre-selected
skyboxes for the lighting augmentations. To ensure the qual-
ity of captured images, the resolution was set to 1024×1024

and the field of view to 60 degrees. Other parameters, such
as render quality and shadow strength, were set to the de-
fault values in ThreeDWorld. The avatar retraced the earlier
recorded trajectory, moving to the predetermined position
and rotation at each step and capturing a 1024 × 1024 RGB
image. These images were resized to a 224 × 224 resolution
using Python codes with antialiasing from the PIL library.
This pipeline can also be used by researchers to generate
datasets with customized settings. The environment initial-
ization and avatar camera parameters are both adjustable.

One important advantage of varying light sources in
a ray-traced virtual environment is its capacity to more
accurately emulate the real-world physics of light reflection,
resulting in a richer variety than basic augmentation tech-
niques that merely shift spectral distributions. The Three-
DWorld platform features 95 distinct skyboxes as environ-
ment lighting conditions. We controlled an avatar to capture
three images from the living room, stairs, and bedroom,
maintaining consistent position and rotation in the House
environment for each of the 95 skyboxes. The t-distributed
stochastic neighbor embedding (t-SNE)50 was then used
to cluster concatenations of those three images simulated
under each of the 95 skyboxes. To explore lighting aug-
mentations, we selected nine skyboxes, drawn from a 3 × 3

grid of the t-SNE plot (Figure 4). A sample image from
the House environment for each chosen skybox is shown
within the t-SNE plot. Every image in the House14k and
House100K datasets was generated ten times, one with the
default lighting condition of ThreeDWorld and also one for
each of these nine skyboxes. The resulting datasets are ti-
tled House14KLighting and House100KLighting. For more
details on the lighting models within ThreeDWorld, readers
can refer to the primary reference.36

5.3. Implementation details of ESS-MB and

ESS-MW
Our model is based on the MoCo V2 architecture,29

implemented using Pytorch. ESS-MB randomly selects a
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Figure 4: Illustration of representative lighting conditions available in ThreeDWorld
A total of 95 lighting conditions are shown here, distributed according to a cluster analysis based on pixel values of three example
images captured in the House environment using the t-SNE algorithm. From the total collection of skyboxes, nine were selected
to cover this space. For each selected skybox, an example image, taken from an identical viewpoint within the house, is shown.
From left to right and top to bottom, the skyboxes’ names are as follows: Kiara_1_dawn, Ninomaru_teien, Small_hangar_01,
Venice_sunrise, Blue_grotto, Whipple_creek_gazebo, Mosaic_tunnel, Royal_esplanade, and Indoor_pool.

Table 7
Comparison of ESS-MW with different hyperparameter values on House100K

Training Stage Pretext Task Downstream ImageNet Classification
ÿ Ā Threshold Training loss ´ Training loss ´ Test loss ´ Test accuracy ²

2 1/60 (0.8,12) 3.92 ± 0.003 4.62 ± 0.001 4.67 ± 0.004 18.39 ± 0.082

2 1/30 (0.8,12) 3.91 ± 0.004 4.62 ± 0.006 4.69 ± 0.001 18.13 ± 0.067

2 1/120 (0.8,12) 3.93 ± 0.001 4.63 ± 0.011 4.70 ± 0.016 18.13 ± 0.134

1 1/60 (0.8,12) 3.97 ± 0.002 4.66 ± 0.006 4.74 ± 0.011 17.69 ± 0.067

4 1/60 (0.8,12) 3.85 ± 0.002 4.66 ± 0.007 4.70 ± 0.012 17.73 ± 0.102

fixed number of images from the dataset for each batch. As
illustrated in Figure 5, each input image is transformed with
randomly selected augmentation operations as in MoCo.
Data augmentation techniques applied here included random
cropping, Gaussian blur, horizontal flipping, color jittering,
and grayscale conversion. Each transformed image ÿ is then

encoded into two 128-dimensional vectors, called the query
feature ćÿ and key feature āÿ, by the key encoder and the
momentum encoder, respectively, which are both ResNet-
5041 backbones that have different parameters. The āÿ fea-
ture is normalized and stored with its position and rotation
information in a fixed-sized dictionary that records them as
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Figure 5: The proposed ESS-MB approach
The learning algorithm compares a given image against the Ċ images in the dictionary, using their spatial position and rotation
information to find positive pairs by comparing their relative spatial position and rotation values against a given threshold. The
feature values of all images within the dictionary are then compared to compute the loss value relative to whether each image is
part of a positive pair. This loss value is used to drive gradient descent as in the original MoCo formulation.

a queue. The dictionary size is set to 4,096 to accommodate
the size of our comparatively small data set. The spatial
information from which the image generating ćÿ originated
is compared to the spatial information linked to each feature
in the dictionary. In contrast to conventional contrastive
learning, our approach identifies a positive pair based on
spatial similarity up to a certain threshold. The difference
between positions (Ďÿ, ďÿ, Đÿ) and (ĎĀ , ďĀ , ĐĀ) is calculated by
the Euclidean distance:

�pos. =
(
(Ďÿ − ĎĀ)

2 + (ďÿ − ďĀ)
2 + (Đÿ − ĐĀ)

2
)1∕2

. (1)

The difference between rotations Ĉÿ and ĈĀ is defined as:

�rot. = min(|Ĉÿ − ĈĀ|, 360 − |Ĉÿ − ĈĀ|) . (2)

The binary function to calculate the spatial similarity is
defined by:

Ą(āp,ār)
=

{
1 if �pos. < āp and �rot. < ār ,

0 otherwise,
(3)

where āp is the threshold of the position and ār is the
threshold of the rotation. As illustrated in Figure 6, a pair
of images with positional difference within a specified range
(in meters) and rotational difference within a given range (in
degrees) is considered a positive pair. Otherwise, they are
labeled as a negative pair.

The loss function for image ÿ is then calculated as fol-
lows:

Ĉÿ = −
1

|Č (ÿ)|
1

Ć*Č (ÿ)

log
exp(sim(ćÿ, āĆ)∕Ā)1

Ă*Ā exp(sim(ćÿ, āĂ)∕Ā)
, (4)

where sim(ċ, Č) = ċĐ Č∕(||ċ||||Č||), represents the cosine
similarity of two vectors, Č (ÿ) represents the set of positive
pairs with the key image ÿ, and Ā is the temperature parameter
that controls how much attention is paid to difficult samples.
The set Ā represents the dictionary.

This strategy makes use of the spatial information from
the environment to define the positive pairs. As there are
often multiple samples in the dictionary that fall within the
spatial similarity threshold relative to the query image, we
use ESS-MB, where MB indicates there are multiple positive
pairs. This strategy ensures that we don’t miss useful infor-
mation or compromise training efficiency by only focusing
on a single sample with high similarity to the query im-
ages. In ESS-MB, every sample within the spatial similarity
threshold is treated as an equally valid positive pair during
the calculation of loss, which is inspired by the supervised
contrastive learning method.51 This approach allows for
a more comprehensive consideration of relevant samples,
leading to improved performance compared to using just a
single positive pair.

In contrastive learning, image similarity is binary, in
that images are either identical or not. In the real world,
the degree of similarity between two views is continuously
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Image i
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direction

key image positive pair image(s) negative pair image(s)

Figure 6: The illustration of positive pair and negative pairs
Four different views of the agent in a room, based on the agent’s location and viewing direction. Image ÿ and the blue image
would be considered a positive pair. The rotation distance between the red image on the upper left and image ÿ is larger than the
set threshold, hence they are considered a negative pair. Similarly, the position distance between the red image at the bottom
right and image ÿ is larger than the set threshold, hence they are considered a negative pair.

changing based on changes in the position of the viewer. To
capture this dynamism, in ESS-MW approach, we assign
each positive pair of views ÿ and Ā a weight čÿ,Ā , which is
defined as:

čÿ,Ā =
1

exp
(
ÿ
(
Ā�rot. + �pos.

)) , (5)

where ÿ controls the influence of spatial context differences
and Ā balances the relative importance of position and rota-
tion in the weight calculation. The assigned weight increases
in proportion to the similarity of the view pair. The loss
function is defined as follows:

Ĉÿ = −
1

Ć*Č (ÿ)

čÿ,Ć1
Ā*Č (ÿ)

čÿ,Ā

log
exp(sim(ćÿ, āĆ)∕Ā)1

Ă*Ā exp(sim(ćÿ, āĂ)∕Ā)
. (6)

As shown in Table7, on House100K, the best downstream
task performance can be achieved when ÿ is 2 and Ā is 1∕60.

There is one implementation detail of ESS models that
is worth noting. When comparing ćÿ with features in the

dictionary, if we first select the positive pairs from the
dictionary before adding feature āÿ, we call it the last-
enqueue implementation. If the āÿ feature was added to the
dictionary before selecting positive pairs, we define it as
the first-enqueue implementation. In our implementation of
the model trained on House14K and Apt14K, to prevent
the model from selecting the other view of the same image
with high probability (which would be similar to the original
MoCo model), we used the last-enqueue implementation.
However, last-enqueue sometimes led to a situation where
there were no positive pairs in the dictionary, in which
case a positive pair was generated by selecting the dictio-
nary feature that had been generated by the image closest
to image ÿ in the trajectory. This was a rare occurrence,
on average happening with probability 0.03 for House14K
for the 0.5 meters and 7.5 degrees threshold and 0.02 for
Apt14K with the 0.6 meters and 9 degrees threshold. For
the model trained on House100K, the model often collapsed
using last-enqueue, producing the same feature vectors for
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all inputs. To reduce this risk, we used the first-enqueue
implementation on models trained with House 100K.

5.4. Pretext training
The pretext task used 200 epochs and a batch size of

256. Due to the composition of our training set, we dis-
covered that we could increase the learning rate from the
initial 0.015 to 0.3 to increase accuracy and still have stable
learning for both MoCo and our approach. Results from
the House100K dataset, using the original learning rate, are
provided in Supplemental Information. During training, the
stop gradient method is applied to the momentum encoder.
Only the main encoder parameters, āć , are updated through
backpropagation. The momentum encoder parameters, āā,
are updated by momentum updating: āā ± ăāā+(1−ă)āć ,
where ă is the momentum coefficient.

During the pretext training, all the training images were
from virtual indoor settings, which markedly contrast with
the samples in the downstream ImageNet classification task.
We tried to improve the performance of the model by
adding some ImageNetV2 images13 into the training set.
ImageNetV2 has 1,000 categories, with multiple images in
each category that do not overlap with the standard ImageNet
dataset used for the downstream task described below.
Because ImageNetV2 doesn’t include spatial information,
for both the baseline and ESS-MB models, the only positive
pair for any image is its augmented counterpart. For each
training epoch, there are 102,197 images from House100K
and an additional 10,000 images from ImageNetV2.

5.5. Evaluation of the learned representations
The accuracy of the pretext task: The baseline model

only considered one positive pair. The accuracy computation
for the pretext training is different from ESS-MB which
has multiple positive pairs and the two cannot be directly
compared. In the baseline model, accuracy was calculated by
determining if the pair with the highest cosine similarity was
the pre-defined positive pair. For ESS-MB, accuracy was
computed by applying the ĉÿąăąÿĂ function to each cosine
similarity score. If the result was greater than the threshold
of 0.95, the pair was predicted to be positive; otherwise,
it was predicted to be negative. The predicted result was
then compared to the pre-defined positive pair according
to the positions and rotation to calculate the accuracy. The
pretaining accuracies of main experiments from 1 are shown
in? .

ImageNet classification task: To evaluate the quality
of the learned representations, as in MoCo, we added a
linear classifier on top of the fixed backbone architecture
and trained only the last added layer for 50 epochs of the
ImageNet.

Room classification task: In this task, we trained a
linear classifier to label a given image according to what
room it had been generated in using the features from each
pretrained model. Each downstream model was trained for
20 epochs. The House environment includes 8 rooms, while
the Apt environment consists of 9 rooms. Each image is
labeled with a number, ranging from 0 to 7 (for House)

Table 8
Pretext training accuracies

Pretext dataset Model Threshold Accuracy (%)

House100K

Baseline N/A 82.11 ± 0.24

ESS-MB (0.4,6) 99.57 ± 0.00

ESS-MB (0.8,12) 99.37 ± 0.01

ESS-MB (1.6,24) 98.89 ± 0.00

ESS-MB (0.8,N/A) 98.77 ± 0.00

ESS-MB (N/A,12) 97.66 ± 0.00

House14KLong
Baseline N/A 54.92 ± 0.14

ESS-MB (0.5,7.5) 99.59 ± 0.00

House14K

Baseline N/A 18.43 ± 0.09

ESS-MB (0.25,3.75) 92.11 ± 0.79

ESS-MB (0.5,7.5) 93.50 ± 0.16

ESS-MB (1.0,15) 92.55 ± 0.37

Apt14K

Baseline N/A 17.57 ± 0.10

ESS-MB (0.3,4.5) 91.27 ± 0.63

ESS-MB (0.6,9) 91.87 ± 0.05

ESS-MB (1.2,18) 91.54 ± 0.77

or up to 8 (for Apt), to represent the room where it was
captured. The boundaries and illustrations of each room are
included in Supplemental Information. In each dataset, 80%
of images were used for the training and the remaining 20%

for testing. In the House14KLighting dataset, Mosaic_tunnel
and Venice_sunrise lighting conditions were only applied to
the test data. Meanwhile, each training image was randomly
assigned one of the other seven lighting conditions.

Spatial localization task: We added a single-layer neu-
ral network with four output nodes at the end of the pre-
trained model. The training utilized 80% of the images from
each dataset, setting aside the remaining 20% for testing
purposes. In the spatial localization task, pretrained models
are fine-tuned to estimate the position (Ďp, ďp, Đp) and
rotation ĈĆ of each image from the House14K and Apt14K
datasets. The loss function, denoted as Ĉ, is defined by

Ĉpos. =
(
(Ďp − Ď)2 + (ďp − ď)2 + (Đp − Đ)2

)1∕2
,(7)

Ĉrot. = min(|Ĉp − Ĉ|, 360 − |Ĉp − Ĉ|) , (8)

Ĉ = Ĉ2
pos. + ÿĈ2

rot. , (9)

where ÿ is a hyperparameter for adjusting the ratio of Ĉpos.
and Ĉrot.. Here, we set ÿ to 1∕360 to ensure both terms start
with comparable magnitudes.

5.6. Hyperparameter sensitivity analysis
Several hyperparameters play a role in pretraining and

may indirectly affect the downstream performance. We
trained a series of ESS-MB models on the House100K
dataset, adhering to the pipeline described in Contrastive
Learning Models for Experimental Procedures section. We
varied the batch sizes, temperature parameters, thresholds,
and dictionary sizes of the original ESS-MB model, either
doubling or halving them individually. Additionally, we
tested the use of both default and multi-skybox settings.

The results, as shown in Figure 7, indicate that mod-
ifications in batch sizes, lighting conditions, temperature
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parameters, thresholds, and dictionary sizes during pretrain-
ing have impacts on downstream accuracy. When the batch
size was doubled or halved, the downstream test accuracy
decreased by 3.71% and 1.59%, respectively. Doubling the
batch size caused the model not to converge well; halving
the batch size, despite slightly reducing the pretext loss,
limited the model’s generalizability beyond House100K. Us-
ing multi-skybox augmentation enhanced the model’s ability
to generalize to other datasets. The temperature parameter,
which directly influences the loss function and determines
the model’s focus on harder samples during training, also
showed a significant impact: doubling or halving it led to
a decrease in accuracy by 1.26% and 0.15%, respectively.
As discussed in the Experimental Procedures section, the
threshold, which dictates the similarity criterion for positive
pairs and the number of such pairs in the dictionary, also af-
fects the results. In contrast, the dictionary size, determining
the number of pairs to compare with the key sample, both
positive and negative, for comparison with a key sample,
had a more limited influence on the downstream task, as the
similarity of positive pairs was already fixed.

Batch size

Lighting 

conditions*

Temperature

Threshold

Dictionary size

Batch size

Lighting 

conditions*

Temperature

Threshold

Dictionary size

∆ Downstream Test AccuracyA

B ∆ Pretext Loss

Figure 7: Impact of varied pre-training hyperparameters on
downstream test accuracy and pretext loss
(A) The effect of hyperparameter variations on downstream
test accuracy. (B) The effect of hyperparameter variations
on pretext loss during pretraining. Regarding batch sizes,
temperature parameters, thresholds, and dictionary sizes, blue
indicates that the parameter value has been doubled, while red
indicates that it has been halved. ∗ For lighting conditions, blue
represents the default setting, whereas red represents the use
of multiple skyboxes.
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Supplemental Information

Room boundaries in two environments
The Archviz House (‘House’) consists of eight distinct rooms, with example images depicted in Figure S1. These rooms

are the kitchen, lower hall, lower bedroom, outer deck, upstairs piano room, bathroom, and upstairs bedroom. Images are
classified based on their position inside the defined boundaries of each room. Certain images, such as those captured on the
stairs, do not fall within the boundaries of any room and are therefore excluded from the evaluation. In House14K, 12,127 of
14,766 images are labeled. In House100K, 83,300 of 102,197 images are labeled. The boundaries and the number of samples
for each room are listed in Table S1.

A B C D

E F G H

Figure S1: Eight rooms in the House environment
(A) Kitchen. (B) Living room. (C) Lower hall. (D) Lower bedroom. (E) Outer deck. (F) Upstairs piano room. (G) Bathroom.
(H) Upstairs bedroom.

The Apartment (‘Apt’) layout consists of nine rooms, arranged in two rows. Rooms in the upper row in the floor plan are
marked as rooms 0 to 4, from left to right. Rooms 5 to 8 are in the lower row in the same left-to-right sequence. The items
placed in each room are carefully designed. For instance, entertainment facilities are filled in room 0. Rooms 3, 4, 6, and
7 serve as living rooms, each having a distinct style. Room 8 is a kitchen. In Apt14K, 9,855 of 14,487 images are labeled.
Sample images and the specified boundaries for each room are shown in Figure S2 and Table S2, respectively.

Learning rate comparison
In our pretext training, we adopted a learning rate of 0.3 instead of the suggested 0.015 from MoCo V2. This adjustment

was made based on its improved overall accuracy on our datasets. Table S3 shows the results of MoCo V2 with different
learning rates when trained on the House100K dataset.

Details of the implementation of ESS-MB on other models
SimCLR31 is a popular contrastive learning model in which the positive pair of an augmented view is itself. Negative

pairs are other augmented samples from the same batch. Our ESS-MB on SimCLR found positive samples from the same
batch according to spatial information. All parameters were the same as those in SimCLR. We ran the experiment on a single
GPU for 200 epochs as suggested by the code.

DCL38 removes the positive pairs’ effect on the denominator of InfoNCE loss. We implemented the updated loss function
based on our original ESS-MB model for both DCL and ESS-MB with DCL. All the parameters were the same as the ESS-MB
on MoCo.

CLSA39 categorizes augmentation operations into ‘strong’ and ‘weak’ and tries to align the feature distance distribution
of views derived from these two augmentation types when finding the positive pairs from the weak augmented samples
simultaneously. CLSA inherits the structure of MoCo. Based on the implementation of CLSA, our approach found positive



Table S1
The boundaries of the eight rooms in the House environment and the number of samples for each room
The coordinate ranges are measured in the ThreeDWorld virtual environment. “House14K images” and “House100K images”
means the number of images in each category for House14K and House100K respectively.

Room name Ď-axis boundary ď-axis boundary
Height House14K House100K
boundary images images

kitchen (-17.00, -11.83) (-1.48, 1.80) (1.4, 3.5) 2079 7535
living room (-17.00, -7.60) (-7.00, -1.48) (1.4, 5.2) 3225 32412
lower hall (-6.30, -4.10) (-4.30, -3.10) (0.6, 3.5) 461 3490
lower bedroom (-3.43, 0.05) (-4.30, 1.60) (0.6, 3.5) 1506 10155
outer deck (-7.10, 6.00) (-7.40, -4.75) (0.4, 5.2) 2491 6721
upstairs piano room (-3.20, -0.25) (-4.30, -3.00) (3.5, 5.2) 925 9882
bathroom (-3.20, -0.25) (-4.30, -3.00) (3.5, 5.2) 419 2853
upstairs bedroom ( 0.00, 4.10) (-4.30, 1.37) (3.5, 5.2) 1021 10252

A B C

D E F

G H I

Figure S2: Nine rooms in the Apt environment
Letters A-I represent the rooms 0 through 8 in order.

pairs of an augmented view from the dictionary. In our experiment, we kept the hyperparameters of CLSA but modified the
dictionary size and learning rate to match our original ESS-MB.

NNCLR40 computes similarity according to the proximity within a latent space generated by the encoder to contrastively
learn representations from unlabeled images. The Lightly package was used to run NNCLR simulations with the ResNet-18



Table S2
The boundaries of the nine rooms in the Apt environment and the number of samples for each room
The coordinate ranges are measured in the ThreeDWorld virtual environment.

Room label Ď-axis boundary ď-axis boundary Images
0 (-10.6, -7.2) ( 1.45, 4.80) 680
1 (-7.2, -3.1) ( 1.45, 4.80) 659
2 (-3.1, 0.8) ( 1.45, 4.80) 1312
3 ( 0.8, 6.8) ( 1.45, 4.80) 1295
4 ( 6.8, 9.8) ( 1.45, 4.80) 749
5 (-10.6, -6,2) (-5.70, -0.18) 1333
6 (-6.2, -3.1) (-5.70, -0.18) 794
7 (-3.1, 3.3) (-5.70, -0.18) 1269
8 ( 3.3, 9.8) (-5.70, -0.18) 1764

Table S3
Comparison results of MoCo V2 with two different learning rates trained on the House100K dataset

Learning Pretext Task Downstream ImageNet Classification
rate training loss accuracy Training loss Test accuracy (%)
0.015 3.73 73.45 209.25 7.61

0.3 4.43 82.11 4.71 17.36

backbone. To ensure a fair comparison, we switched the backbone of ESS-MB on MoCo to Resnet-18 and trained both models
for 200 epochs in the pretraining phase.

MoCo V342 applied the contrastive learning structure to the Vision Transformer43 backbone. The dictionary size is set to
4096 to align with the threshold of ESS-MB approach. We run both models for 200 epochs in the pretraining with 256 batch
size.

Assessing the clustering of learned features
After training on the datasets, we applied t-SNE50 on the features for a subset of images from the corresponding datasets

to determine whether the training produced clustering of features from spatially proximal images. We randomly selected
approximately 10,000 images that were inside the room boundaries and took the features from the fully trained ResNet model
as input to the t-SNE. In the resulting t-SNE space, each image’s features were labeled with a number (and a corresponding
color), indicating the room of its origin.

The t-SNE visualizations generated for both the baseline and ESS-MB models trained on House and Apt environments
are shown in Figures S3 and S4, respectively. Furthermore, we used the Silhouette Coefficient,52 Calinski-Harabasz index,53

and Davies-Bouldin index54 as metrics to assess the clustering quality of the t-SNE outputs. These results are shown in
Table S4. Both results show a model trained on the more extensive House100K dataset exhibited a stronger capability in
distinguishing features generated from different rooms compared to the one trained on the smaller House14K dataset. For
all the models trained on three datasets, ESS-MB exhibited reduced clustering relative to the baseline model. This might be
attributed to the ESS-MB training approach, which tends to group features of spatially proximal images together, regardless of
room boundaries. In contrast, the baseline MoCo model relies only on instance discrimination. As a result, cluster boundaries
for nearby locations in adjacent rooms would not be as distinct with ESS-MB.
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Figure S3: The t-SNE results of the learned features in the House environment
(A) ESS-MB on House14K. (B) ESS-MB on House100K. (C) Baseline on House14K. (D) Baseline on House100K.
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Figure S4: The t-SNE results of the learned features in the Apt environment
(A) ESS-MB on Apt14K. (B) Baseline on Apt14K.

Table S4
Evaluation of the learned features
CH and DB stand for Calinski-Harabasz and Davies-Bouldin indices, respectively. An upward arrow indicates that a higher value
for the respective index denotes more effective clustering, while a downward arrow implies the reverse.

Pretext dataset Model Silhouette ² CH index ² DB index ´

House100K Baseline 0.2394 4538.16 0.8552
House100K ESS-MB 0.1437 2393.92 1.8488
House14K Baseline -0.0548 1187.78 5.5367
House14K ESS-MB 0.0972 1549.44 9.8386


