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Abstract

The computational exploration, manipulation, and design of complex chemical re-

actions face fundamental challenges related to the high-dimensional nature of poten-

tial energy surfaces (PESs) that govern reactivity. Accurately modeling complex re-

actions is crucial for understanding the chemical processes involved in, for example,

organocatalysis, autocatalytic cycles, and one-pot molecular assembly. Our prior re-

search demonstrated that discretizing PESs using heuristics based on bond breaking

and bond formation produces a reaction network representation with a low-dimensional

structure (metric space). We now find that these stoichiometry-preserving reaction net-

works possess additional, though approximate, structure and resemble low-dimensional

regular lattices with a small amount of random edge rewiring. The heuristics-based

discretization thus generates a nonlinear dimensionality reduction by a factor of ten

with an a posteriori error measure (probability of random rewiring). The structure

becomes evident through a comparative analysis of CHNO reaction networks of vary-

ing stoichiometries against a panel of size-matched generative network models, taking

into account their local, metric, and global properties. The generative models include
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random networks (Erdős–Rényi and bipartite random networks), regular lattices (pe-

riodic and non-periodic), and network models with a tunable level of “randomness”

(Watts–Strogatz graphs and regular lattices with random rewiring). The CHNO net-

works are simultaneously closely matched in all these properties by 3–4-dimensional

regular lattices with 10% or less of edges randomly rewired. The effective dimensional-

ity reduction is found to be independent of the system size, stoichiometry, and rule set,

suggesting that search and sampling algorithms for PESs of complex chemical reactions

can be effectively leveraged.

1 Introduction

Reaction networks (RNs) offer a discrete and relatively compact model of chemical reactiv-

ity in metabolism,1–4 combustion,5,6 protein folding,7,8 and other types of complex chemical

dynamics.9–11 Network models with different definitions of their nodes and edges are used

depending on the application. In kinetic modeling, it is convenient to assign network nodes

to the individual compounds and connect all reactants and products of reactions by network

edges, resulting in highly heterogeneous networks.1,12 However, chemical dynamics and, in

particular, potential energy surface (PES) exploration, is more naturally represented by

a RN, in which network nodes correspond to the states of the chemical system and net-

work edges are transitions between the system states.13,14 As we showed previously, these

stoichiometry-preserving transition networks, when equipped with shortest-path (chemical)

distance as the distance metric, form discrete and low-dimensional metric spaces.14 In com-

parison to the underlying PESs, metric-space models have about ten times smaller dimen-

sionality, as measured by their fractal dimension.15–17

Even though lower dimensionality boosts search algorithm performance,18,19 metric spaces

tend to be more challenging data structures than Euclidean spaces like Rd. The main draw-

back of metric spaces compared to Euclidean spaces is that they do not support a coordinate

representation and cannot effectively locate their elements, having only a concept of a dis-
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tance between pairs of elements. The low dimensionality of RNs compared to the underlying

PESs thus comes with a caveat: the loss of the coordinate representation. However, in this

work, we show that it is possible to lift the caveat if we allow for a certain (small) amount

of error in the form of random edge rewiring. Specifically, we find that RNs can be closely

matched by low-dimensional regular lattices with a small fraction of randomly reassigned

(rewired) edges. Therefore, the coordinate representation can be restored by embedding

RNs in Euclidean spaces Rd, generating a nonlinear dimensionality reduction between the

high-dimensional PES R3N−6 (where N is the number of atoms) and the low-dimensional

embedding space Rd with controllable error. The dimensionality reduction is about tenfold

and holds for a range of RN sizes, stoichiometries, and rule sets. The RN embeddings can

be leveraged by efficient search and sampling algorithms, taking advantage of their low-

dimensional coordinate representation.

The additional (approximate) structure of RNs is a feature of the discretization of reac-

tion paths into sequences of elementary transformations. In many instances, the individual

bond breaks and bond formations can be composed in different orders while summing up

to the same total reaction.14,20 The permutations of the elementary transformations create

(hyper)cubes within a RN, which correspond to fragments of regular lattices. The dimen-

sionality of the hypercubes is related to the number of permuting RN edges and, thus, to

the number of bonds involved in the reaction, which is typically much smaller than the

total number of molecular degrees of freedom. The permutation symmetry is not exact

since some edges are prohibited by valence rules and are further restricted if thermodynamic

and kinetic feasibility are taken into account, for example, using edge weights.14 However,

the deviation from permutation symmetry can be modeled by random edge rewiring, which

moreover provides a quantitative measure of the deviation from the symmetry through the

rewiring probability pr. In this work, we explore the structures of RNs by comparing them to

a panel of size-matched generated network models ranging from regular lattices to random

networks. The generative models are useful surrogates for the real networks as they are cheap
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to construct, scale to arbitrary size, and can be easily tuned using adjustable parameters,

for example, dimensionality and degree of “randomness”.

RNs of the transition network type can be defined constructively by the choice of the

initial node and the transformation rule set. Given a set of stoichiometry-preserving and

reversible rules, repeated application of the rules to the initial node and subsequent nodes

must terminate after a finite number of steps by combinatorial arguments. RNs of transition

network type are thus finite, connected, undirected graphs that, when combined with an

appropriate graph distance metric, define metric spaces.21 Chemical distance is defined as

the shortest-path distance on the networks of bond breaks and bond formations.22,23 The

finite size and metric structure distinguish transition networks from other types of RNs,

which expand indefinitely unless the construction is stopped. In the following, we will only

consider RNs of the transition type and will drop the additional qualification.

We construct and analyze RNs of different stoichiometries containing carbon, hydrogen,

nitrogen, and oxygen (CHNO) atoms using polar reactivity rules. Subsequently, we compare

these RNs to a panel of generative network models ranging from regular to random. For

regular structures, we examine lattices with non-periodic (LNP) and periodic (LP) boundary

conditions, both based on a single repeating pattern. Our analysis of random networks

includes Erdős–Rényi (ER)24 and bipartite random (BR), which are formed by creating

network edges randomly with a predefined probability. Additionally, Watts–Strogatz (WS)

networks25 and modified regular lattices with rewiring (LNP-R and LP-R for non-periodic

and periodic boundary conditions, respectively) contain a tunable degree of randomness via

a rewiring probability parameter.

The networks are evaluated based on their structural characteristics, which are catego-

rized into local, metric, and global properties. Local properties take into account only the

node adjacencies; examples of local properties are node degree and clustering coefficient.

Metric properties involve measures such as average and maximum distances between nodes.

Finally, global properties consider aspects like connectedness and network dimension.26–28

4



Different network properties are relevant in different circumstances, indicating no simple

universal approach for network comparison exists. For example, scale-free (SF) networks

are defined by their degree distribution,29,30 while small-world networks, a network class

that includes WS networks, are characterized by their diameter (or average shortest path

length) and clustering coefficient.26–28,31,32 Specialized search algorithms have been developed

for SF networks, utilizing their heterogeneous structure.33,34 In contrast, for other types of

networks, the primary predictor of the search time is the network dimensionality,18,19,35,36

typically defined by the box-covering dimension,15–17,37 as specialized search algorithms are

not usually available.

Exploration of PESs is currently a very active area of research. In addition to rules-based

methods by us13,14,38 and others,9,10,39–42 accelerated molecular dynamics methods are im-

portant tools for exploring PES, for example, metadynamics,43–45 artificial force-based,46–48

manual steering,49 and ab initio nanoreactor50–53 approaches. Moreover, reaction template-

based methods54–57 and machine learning approaches58–61 have been applied with success.

Quantum chemistry-based exploration generates stoichiometry-preserving networks, in which

the nodes correspond to individual molecular conformations.46–48,62 Each node of the RNs

considered here can be understood as a collection of all conformations for a given constitution

(bonding pattern) and thus a coarse-grained representation of the quantum chemistry-based

networks. These and other methods can benefit from a better understanding of the under-

lying data structure.

This paper is organized as follows. The details of constructing the discrete RN rep-

resentations and the generative network models, along with the analysis of the networks,

are presented in Section 2. Section 3 contains the analysis of the local, metric, and global

network properties of RNs and the comparison between RNs and sized-matched generative

models networks. We discuss the results in Section 4 and give our conclusions in Section 5.
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2 Methods

2.1 Reaction Networks

The procedure for generating RNs is described elsewhere;13,14 thus, we only give a brief

overview. The RNs are collections of molecules subject to the constraint that the total

stoichiometry (total number of atoms) within a node across all molecules in that node must

be fixed. The systems explored here were initialized from a combination of formaldehyde

(CH2O), hydrogen cyanide (HCN), and water (H2O) molecules (CHNO networks). These

molecules were chosen for their simplicity and the diversity of atoms they contain, within

the constraint of only using CHNO atoms. The initial choice of starting molecules is not

critical as only the number of each atom type is important, because the network generation

process is exhaustive. CHNO networks with up to 4 carbon atoms were generated. For each

combination of HCN and CH2O molecules, up to 15 H2O molecules were added, creating a

homologous series of RNs. The pure CHO networks (which are initialized with CH2O and

H2O molecules) have an average carbon oxidation state of 0, while in the CHNO networks,

the average carbon oxidation number is between 0 and +2. We use Hill notation63 to

denote the RN stoichiometries. The edges of the RNs are stoichiometry-preserving reactive

transformations. The transformation rules are chosen to be reversible and complete with

respect to normal polarity rules and are presented in Table 1. The decomposition into

polar transformation covers more than just polar reactions; in fact, all reactions that can

be formally written as a combination of electron pair transfers (“arrow pushing”)64,65 are

representable in this way.38

All RNs were built using the open-source colibri2 software package.66 The Python code

was parallelized to decrease the network construction times and to enable the generation

and analysis of larger networks. With the parallelization and optimization performed, RNs

composed of up to 57 atoms could be built. The construction of the largest RN (C3N1O10H21)

required three days on 48 CPU cores. The reaction rules were encoded as SMARTS strings67

6



Table 1: Polar CHNO transformation rules used in this work.

Bond Dissociation Bond Association Bond Breaking Bond Formation

H C → H+···C– H+···C– → H C C C → C+ C– C+ C– → C C
C C → C+···C– C+···C– → C C C C → C+ C– C+ C– → C C
H O → H+···O– H+···O– → H O C O → C+ O– C+ O– → C O
H O+ → H+···O H+···O → H O+ C O → C+ O– C+ O– → C O
C O → C+···O– C+···O– → C O C O+ → C+ O C+ O → C O+

C O+ → C+···O C+···O → C O+ C O+ → C+ O C+ O → C O+

H N → H+···N– H+···N– → H N C N → C+ N– C+ N– → C N
H N+ → H+···N H+···N → H N+ C N → C+ N– C+ N– → C N
C N → C+···N– C+···N– → C N C N+ → C+ N C+ N → C N+

C N+ → C+···N C+···N → C N+ C N+ → C+ N C+ N → C N+

and applied to the molecular structures using the RDKit library.68 The RN construction

terminated when no new nodes could be generated. The networks were stored as compressed

GraphML files.69 The NetworKit library70 was used for all RN manipulations and analyses.

2.2 Network Properties

We analyzed the constructed CHNO networks with respect to their basic properties (number

of nodes n, number of edges e, and density ρ), local properties (average node degree k and

average square clustering coefficient C4), metric properties (diameter D and average shortest

path length l), and global properties (fractal dimension df and average growth exponent ξ).

The analysis treated the RNs as undirected simple graphs. To establish notation, we briefly

describe the network properties and their computation below.

The network density ρ = 2e/(n (n − 1)) is defined as the proportion of edges e in the

network relative to the complete graph with n nodes. The degree ku of the node u describes

the number of edges incident to u, with the average node degree k defined as the mean over

all network nodes. The clustering in the neighborhood of the node u is typically described

by its (triangle) clustering coefficient Cu.26 However, as RNs are bipartite by construction

because the number of bonds in a node is either even or odd when the multiplicity of bonds

is included,14 the conventional clustering coefficient is always zero and thus not a useful
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measure. Instead, we use the square clustering coefficient C4,u, which is defined for the node

u as the proportion of the pairs of its neighbors v, w that share a neighboring node different

from u,71

C4,u =
∑
v<w

v,w=1, ..., ku

quvw

/ ∑
v<w

v,w=1, ..., ku

[(kv − ηuvw)(kw − ηuvw) + quvw] . (1)

Here, quvw is the number of squares which involve u, v, and w, and ηuvw = 1 + quvw + θvw

with θvw = 1 if v and w are adjacent and 0 otherwise.72 The mean of C4,u over all network

nodes yields the average square clustering coefficient C4.

For an undirected graph with the shortest path distance between nodes u, v ∈ 1, . . . , n

denoted as luv, the diameter D and the average shortest path length l are defined by the

maximum and the mean over all pairs of nodes, respectively, D = maxu<v luv and l =

2/(n(n− 1))
∑

u<v luv. Small-world networks are characterized by a logarithmic dependence

of the metric properties on the network size, l ∼ lnn.26–28,31,32

The calculation of the fractal dimension, df, was performed using the compact box burn-

ing (CBB) algorithm,16,17,73,74 which approximates the box-covering dimension.15,17,37,75 In

preliminary studies, the CBB algorithm proved to be more efficient than the alternative max-

imum excluded mass burning and greedy clustering algorithms.15 As the CBB algorithm is

stochastic, we determined the standard deviation of df values obtained in independent CBB

calculations to be less than 1% in all cases. Therefore, only one calculated CBB fractal dimen-

sion is reported per RN. The CBB algorithm was parallelized over box sizes, which allowed

the calculation of the CBB fractal dimension of the C2H20N2O9 network with n = 1,226,147

nodes in seven days on 40 CPU cores.

The average growth factor ξ describes the increase of the number of nodes ni
u in the cluster

or radius i centered at the node u, that is, ni
u = |{v|luv ≤ i}|. The logistic fit of ni

u versus

i yields the exponent γu. The average growth factor is then defined as ξ = exp(γ), where

the mean is taken over all network nodes. The calculation of metric and global properties
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requires the matrix of shortest path lengths between all pairs of nodes, which was determined

using parallel breadth-first search (BFS).70

2.3 Generative Models

Size-matched networks were constructed using a variety of generative models, ranging from

random to regular. Erdős–Rényi (ER) networks24 and bipartite random (BR) networks76 are

obtained by a random assignment of edges with a fixed probability pc for a given number of

nodes n. BR networks differ from ER networks in that they contain random edges between

two disjoint sets of nodes with the fraction of nodes in the first node set being bs. Both

ER and BR networks may contain disconnected components. Regular lattices with non-

periodic boundary conditions (LNP) are constructed as d-dimensional Cartesian products of

the one-dimensional path graph with itself. Connecting the nodes of the outer faces of the

LNP networks with their opposite faces generates regular lattices with periodic boundary

conditions (LP), which are free of edge effects.

In addition to fully random (ER and BR) and fully regular (LNP and LP) networks,

we considered several classes of networks with tunable “randomness”, which is achieved by

random rewiring of a regular network. Watts–Strogatz (WS) networks25 start from a ring

graph with n nodes, in which each node is additionally joined by edges with K/2 preceding

and K/2 following nodes in the ring order. Shortcuts are then created by replacing some

edges uv with probability pr by uw, where the node w is chosen with a uniform probability

from the remaining (n−2) nodes. Modified regular lattices (LNP-R and LP-R) generalize the

WS construction to higher dimensions by applying random rewiring with probability pr to

the LNP and LP networks, respectively. Random rewiring in the LNP-R and LP-R networks

break the bipartite nature of 2D and 3D lattices. As a result of the random rewiring, WS,

LNP-R, and LP-R networks may be disconnected.

Since the networks with randomness (ER, BP, WS, LNP-R, and LP-R networks) have

variability in network structures, an average of five independent trials is reported for each

9



generative model. In the presence of disconnected components, the weighted average of

the network properties by the number of nodes in each component is given. All generative

models were constructed using the NetworkX library77 software package and custom code

(available on GitHub78). All networks were saved as compressed GraphML files,69 and the

NetworKit library70 was used for all analyses.

3 Results

3.1 Reaction Network Properties

In this work, we consider CHNO networks, which are constructed from combinations of

CH2O, HCN, and H2O molecules using polar reactivity rules (Table 1). Each RN is uniquely

identified by its stoichiometry, and the RNs differing only by the number of H2O molecules

form a homologous series. The changes in key RN properties as functions of the number of

atoms, N , are shown in Figure 1, with homologous series indicated by lines. The smallest RNs

(CH2O and CHN) have path structures with n = 4 nodes and e = 3 edges; the largest RN

has the C3H21NO10 stoichiometry and consists of n = 15,244,289 nodes and e = 101,328,842

edges. In total, we investigate 114 RNs belonging to 11 homologous series.

The network size, n, increases steeply with the number of carbon atoms; for the same

number of carbon atoms, the RNs with higher HCN content are larger than those with

higher CH2O content for the same number of H2O molecules, see Figure 1(a). Within

each homologous series, n initially increases rapidly as H2O molecules are added to the

RN stoichiometry but eventually reaches a crossover point, after which the increase in n is

much slower and levels off as seen through the asymptotic behavior of the growth. Below

the crossover point, the network nodes contain unsaturated molecules; the addition of H2O

molecules introduces additional reactions, which contribute to the network growth. However,

above the crossover point, any further increase in network size is due to bond breaking and

formation in water, with no new reactivity added. The RNs are relatively sparse (ρ < 10−2 in
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all except the smallest RNs) and become even sparser as they increase in size, see Figure 1(b).

The asymptotic behavior observed in n is also seen in ρ as H2O molecules are added. The

reason for increasing sparsity with larger RNs is that the ratio of new nodes to new edges

created gets larger with increasing numbers of atoms. Since the proportion of new nodes to

new edges created gets larger for larger RNs, increasingly larger RNs will become sparser

and sparser.

Insights into the distances within a RN are given by the metric properties, D and l.

Figure 1(c) shows that even for large networks, l remains relatively small. The growth of

l shows a polynmial nature with N as H2O molecules are added, meaning, on average, it

takes only a few steps to get from one node to another. For example, even in the largest

network we considered, C3H21NO10, the average shortest path length is only l = 15.41.

The smaller (water-poor) members of each homologous series follow quite accurately the

logarithmic relationship between the number of nodes, n, and l, which is characteristic of

small-world networks. However, after the crossover to water-rich RNs, l increases faster

than logarithmically with n. For the same number of H2O molecules and carbon atoms,

the average distances increase with higher HCN content. The network diameter, D, shows

qualitatively the same behavior as l.

The local properties of average node degree, k, and average square clustering coefficient,

C4, provide insight into the connectivity among nearby nodes. As Figure 1(d) shows, k

increases rapidly with the number of atoms in water-poor RNs before leveling off in water-

rich members of each homologous series as seen through the asymptotic growth. The small k

means that overall, most nodes have relatively few connections. RNs rich in HCN have higher

average node degrees, reflecting a larger diversity of reactivity patterns compared to RNs with

higher CH2O content. The values of C4, follow the opposite trend, as Figure 1(e) shows.

With the exception of the two RNs with linear structures (CHN and CH2O), which have

no square clusters, C4 values decrease with increasing network size. Within a homologous

series, C4 initially decreases rapidly when H2O molecules are added but appears to approach
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a constant value for water-rich RNs as seen through the asymptotic growth. Less squares of

nodes means fewer nodes are interconnected locally with each other. Similarly, the increase

in the average node degree, k, with higher HCN content corresponds to a decrease in the

average square clustering coefficient, C4.

We considered two global RN properties, the average growth factor, ξ, and the fractal

dimension, df, which offer an understanding of the broader structures within the networks.

The average growth factor, ξ, which indicates how many nodes can be reached within a

given number of steps, shows only small differences between different RN stoichiometries and

sizes. All RNs considered in this work have an average growth factor close to 2. Moreover, ξ

decreases slightly with the number of atoms, consistent with lower network connectedness in

larger RNs observed in smaller average square clustering coefficients, C4. A notable exception

is the homologous series derived from CH2O. We note that the growth factor does not seem

to be correlated with the HCN content, unlike all other network properties. The origin of

this convergence is not clear.

We have investigated in detail the fractal dimensions, df, of CHO RNs approximated by

the CBB and two other approximate methods, maximum excluded mass burning (MEMB)

and greedy coloring, in previous work.14 These results and our preliminary studies of CHNO

networks showed that the CBB method was sufficiently reliable and computationally efficient

for our purposes. Moreover, we estimated the statistical errors of the CBB method due to

its stochastic algorithm using the standard deviations over five independent calculations in

C2H8N2O, C3H8O4, C3H5NO2, and C3H4N2O RNs, which yielded 3.63 ± 0.01, 3.54 ± 0.01,

3.540 ± 0.004, and 3.55 ± 0.02, respectively. Since the statistical errors were on the order

of 1%, only one CBB estimation of the df value was performed for all other RNs. For all

networks, for which the calculation of df was feasible, df was found to be less than 5, as

Figure 1(f) shows. The value of df stays below 5 because of the logarithmic growth seen.

In the base RNs of each homologous series (containing zero H2O molecules), the fractal

dimension is df ≈ 1 for one-carbon RNs, df ≈ 2 for two-carbon RNs, df ≈ 3 for three-carbon
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RNs, and df = 4.55 for C4H8O4, the only four-carbon RN, for which the calculation of df was

feasible. However, the values of df of RNs with the same number of carbon atoms diverge as

H2O molecules are added, and the networks with higher HCN content show a faster increase

in the value of df compared to the RNs with higher CH2O content. The initial rapid increase

levels off with the crossover from water-poor to water-rich RNs. The complete data on the

CHNO networks is given in Section S4 of the Supporting Information (SI).
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Figure 1: Variation of RN properties with the number of atoms, N : (a) number of nodes,
n, (b) density, ρ, (c) average shortest path length, l, (d) average node degree, k, (e) average
square clustering coefficient, C4, (f) fractal dimension, df. Homologous series are indicated
by lines and denoted by their base RNs.

In addition to the averages of node degrees, k, and square clustering coefficients, C4,

we considered their distributions across a network in order to evaluate the heterogeneity

of the RNs with respect to local properties. The shape of the degree distribution depends

on the network size and composition, with the smaller water-poor networks having a tail-

heavy (positively skewed) distribution and the larger, in particular, water-rich networks
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showing a normal distribution. Figure 2(a) shows the distribution of node degrees, k, in

the water-rich C3H19NO9 network with a k = 13.04 and standard deviation ∆k = 3.49.

The water-poor networks thus show some amount of heterogeneity, but the addition of

H2O molecules makes them more homogeneous, decreasing the relative spread of the node

degrees compared to the mean. The Jarque–Bera tests79 of node degree histograms confirm

that the deviation from normality decreases with increasing H2O content and that water-

rich RNs are accepted as normal at p = 0.05 significance level. In previous work, we noted

that the node degree distributions in CHO RNs could be described by heavy-tail lognormal

distributions.14 However, this finding seems to hold only for the smaller, water-poor members

of each homologous series. The node degree distributions of the other RNs are given in

Section S6 of the SI.

The distribution of square clustering coefficients, C4, is right-skewed, as shown in Fig-

ure 2(b) for the C3H19NO9 network. It fits a lognormal distribution, with ln(C4) = −3.26

and ∆ ln(C4) = 0.20. Nonetheless, the distribution of C4 values is relatively narrow. The C4

distributions of the other RNs are compiled in Section S7 of the SI.
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Figure 2: Histograms of (a) node degrees, k (bin width wk = 1), and (b) square clustering
coefficients, C4 (bin width wC = 5.7×10−3 ) in the C3H19NO9 network. A normal distribution
is fitted for k, and a lognormal distribution is fitted for C4. The fitted distributions are shown
by dashed lines.

Structural commonalities of all RNs, irrespective of their composition, can be made

visible by considering network properties as a function of the network size, n, across all
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homologous series. Figure 3 shows the dependence of the three selected network properties:

average shortest path length, l (metric property), average square clustering coefficient, C4

(local property), and fractal dimension df (global property) as a function of n. The value of l

varies approximately logarithmically with the network size, l ∼ lnn, a behavior characteristic

of small-world networks,26–28,31,32 see Figure 3(a). The linear fit of l against lnn yields the

correlation coefficient R2 = 0.973. However, water-rich RNs have higher values of l compared

to the logarithmic relationship, likely due to their more regular structure, which deviates

from the small-world behavior. The C4 values are close to inversely proportional to lnn, as

shown in Figure 3(b). The correlation coefficient of 1/C4 against lnn is R2 = 0.995. The

logarithmic scaling of the value of df with the network size was already observed in CHO

networks.14 As Figure 3(c) shows, the universal relationship also holds for CHN and mixed

CHNO networks, despite the addition of rule sets of carbon–nitrogen reactivity (Table 1).

The linear fit of df against lnn has R2 = 0.992. The water-rich RNs deviate from the scaling

relationships for the average square clustering coefficients, C4, and df yielding C4 slightly

above and df below the general trend.
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3.2 Comparisons with Generative Models

We selected ten CHNO networks of varying sizes and compositions for comparisons with

sized-matched generative models. The comparison RNs are grouped into three size classes:

small (C2H5NO2, CH19NO9, and C2H10O5) with n ≈ 4000 nodes; medium (C3H6O3, C2H6N2O2,

and C2H18O9) with n ≈ 17,000; and large (C3H8O4, C3H4N2O, C2H8N2O3, and C3H5NO2)

with n ≈ 56,000. These RNs are compared to generative models consisting of Erdős–

Rényi networks (ER), bipartite random (BR) networks, Watts–Strogatz small-world net-

works (WS), regular lattices with non-periodic (LNP) and periodic (LP) boundary conditions

as well as regular lattice networks with rewiring (LNP-R and LP-R).

As discussed in Section 3.1, the properties of RNs are strongly correlated with the number

of network nodes, n. For brevity, we thus show only one RN for each size class in the following:

CH19NO9 for small comparison RNs, C2H6N2O2 for medium comparison RNs, and C3H4N2O

for large comparison RNs. Their properties are summarized in Table 2. The properties of

all comparison RNs are listed in Section S4 of the SI.

Table 2: Selected network properties of CH19NO9 (small), C2H6N2O2 (medium), and
C3H4N2O (large) comparison RNs: number of nodes, n; number of edges, e; average node
degree, k; average square clustering coefficient, C4; average shortest path length, l; fractal
dimension, df.

RN n e k C4 l df

CH19NO9 4131 15,404 7.46 7.37 × 10−2 8.84 2.62
C2H6N2O2 17,014 61,762 7.26 6.53 × 10−2 9.62 3.29
C3H4N2O 56,485 208,955 7.40 5.78 × 10−2 10.39 3.55

A comprehensive comparison of RNs and generative network models should consider their

local, metric, and global properties. In Figure 4 we present pairwise plots of average square

clustering coefficients, C4, average shortest path lengths, l, and fractal dimensions, df, in

RNs and size-matched generative network models. The plots exclude the random networks

(ER and BR) to improve the readability as these networks differ substantially from RNs

with respect to all three properties. The full pairwise plots can be found in Section S3 of the
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SI. In the following, we briefly discuss the properties of the size-matched generative models

in comparison to the RNs. The complete data set of generative model networks is available

in Section S5 of the SI.
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Figure 4: Comparisons between network properties of RNs (circles) and generative mod-
els: Watts–Strogatz networks (WS, diamonds), regular lattices with d = 3–5, non-periodic
boundary conditions (LNP, down triangles) and periodic boundary conditions (LP right-
facing triangles), LNP networks with rewiring (LNP-R, up triangles), and LP networks with
rewiring (LP-R, left-facing triangles): (a) fractal dimensions, df, against average square clus-
tering coefficient, C4, (b) average shortest path length, l, against C4, and (c) df against l.
See text for more details.

Erdős–Rényi Networks The ER networks are constructed by choosing the number of

nodes, n, and creating edges randomly between pairs of nodes with a fixed probability pc.

The properties of the size-matched ER networks are shown in Table 3. These models behave

very differently from their RN counterparts. We note that the average shortest path length,

l, of ER networks is considerably smaller, being nearly half that of the corresponding RN.

For example, the C3H4N2O network has l = 10.39, while the size-matched ER network has

only l = 5.69 on average. The average square clustering coefficients, C4, of ER networks are

two to three orders of magnitude smaller than those in RNs, and the fractal dimensions, df,

are higher by 0.6 to 1.1 units than those of the corresponding RNs. Properties of the other

six size-matched ER networks and details of the construction are given in Section S5.1 of

the SI.
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Table 3: Selected properties of sized-matched Erdős–Rényi (ER) networks. See Table 2 for
notation.

ER n e k C4 l df

ER(CH19NO9) 4131 15,395.2 7.45 8.50 × 10−4 4.37 3.71
ER(C2H6N2O2) 17,014 61,701.4 7.25 1.94 × 10−4 5.14 3.93
ER(C3H4N2O) 56,485 209,125.4 7.40 6.60 × 10−5 5.69 4.24

Bipartite Random Networks The BR networks reflect the bipartite structure of RNs14

while introducing randomness similar to ER networks. The construction of BR networks

uses n nodes, which are split into two partitions according to the fraction bs. Subsequently,

e edges are randomly assigned between the partitions. As the RNs are all very close to

parity (bs(CH19NO9) = 0.502, bs(C2H6N2O2) = 0.528, and bs(C3H5NO2) = 0.505), we chose

bs = 0.5 in all constructed BR networks. Table 4 shows the properties of the size-matched BR

networks, which are similar to those of the ER networks and very unlike the corresponding

RNs. The average square clustering coefficients, C4, of BR networks are about one to two

orders of magnitude larger than those of ER networks but still much lower than those of the

corresponding RNs. Similar to the ER networks, the fractal dimensions, df, of BR networks

are higher by 0.6 to 1.0 units compared to the corresponding RNs, while the average shortest

path lengths, l, are nearly half of those in RNs. Properties of the other six size-matched BR

networks are given in Section S5.2 of the SI.

Table 4: Selected properties of size-matched bipartite random (BR) networks with partition
fraction ps = 0.5. See Table 2 for notation.

BR n e k C4 l df

BR(CH19NO9) 4131 15,404 7.46 1.75 × 10−3 4.58 3.57
BR(C2H6N2O2) 17,014 61,762 7.26 4.24 × 10−4 5.35 3.98
BR(C3H4N2O) 56,485 208,955 7.40 1.26 × 10−4 5.91 4.29

Watts–Strogatz Networks The WS networks allow the tuning of the randomness in a

network by the pr parameter, which corresponds to the probability of random edge rewiring.

For moderate values of pr, WS networks exhibit the small-world behavior, that is, l ∼ lnn, as
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well as significant local ordering, expressed by high values of clustering coefficients.26–28,31,32

Table 5 shows the properties of WS networks, which most closely approximate the average

square clustering coefficients, C4, and the number of edges, e, of the corresponding RNs.

The variation of the values of the network properties as a function of pr shows that the

best match between the C4 value and the fractal dimension, df, of the WS networks and their

respective RN counterparts is obtained with a moderate amount of rewiring, pr = 0.25–0.3.

However, this level of randomness creates much smaller average shortest path lengths, l,

relative to the corresponding RN. The value of df of WS networks is lower than that of

random networks but 0.2 to 0.7 units higher than those of the corresponding RNs, and the

value of df shows a much slower increase with the network size. On the other hand, the

closest match of the average shortest path length, l, is obtained for a significantly reduced

amount of rewiring. For example, the C3H4N2O network with pr = 0.05 results in l = 10.69,

an overestimation of the average square clustering coefficient, C4 = 2.5 × 10−1, and an

underestimation of the fractal dimension, df = 3.16. Properties of the other six size-matched

WS networks and other choices of the WS network parameters K and pr are given in and

details of the construction Section S5.3 of the SI.

Table 5: Selected properties of size-matched Watts–Strogatz (WS) networks with K = 8
nearest neighbors and rewiring probability pr. See Table 2 for notation.

WS pr n e k C4 l df

WS(CH19NO9) 0.25 4131 16,524 8.00 8.22 × 10−2 5.03 3.37
WS(C2H6N2O2) 0.275 17,014 68,056 8.00 7.01 × 10−2 5.81 3.76
WS(C3H4N2O) 0.3 56,485 225,940 8.00 5.99 × 10−2 6.42 3.78

Non-Periodic Regular Lattices The LNP networks are constructed for each given di-

mensionality, d, by choosing the side length L to match the number of nodes, n, to the

corresponding RN. The best match for the number of edges, e, is found if the dimensional-

ities of the LNP and RN networks are similar, that is, d = 3, 4. Since the dimensionality

d of LNP networks is integer, only approximate matching of both n and e is possible. The
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calculations of the fractal dimensions, df, of LNP networks help identify the systematic er-

rors of the CBB approximation relative to the underlying dimensionality d. Table 6 shows

the properties of a one-dimensional LNP network with n = 5000, a two-dimensional LNP

network with n = 500, and size-matched regular lattices with d = 3, 4. The properties of

additional LNP networks up to d = 5 can be found in Section S5.4 of the SI.

The regular lattices show a high degree of clustering, as indicated by high average square

clustering coefficients, C4, which are similar to that of RNs and WS networks, see Figure 4.

For example, C4 = 7.12 × 10−2 , for the LNP network with d = 4 and L = 16. But LNP

networks lack shortcuts typical of WS networks and, as a result, have long average shortest

path lengths, l, above those of RNs and far larger than random and WS networks. The

CBB method underestimates the dimension of the underlying space; for example, for the

one-dimensional chain of L = 5000, the CBB method gives df = 0.86 , and for the two-

dimensional L × L lattice with L = 250, the computed fractal dimension is df = 1.73. The

larger lattice with L = 500 has df = 1.75, which shows that df increases towards d = 2 but

the convergence is slow. We also find convergence toward the underlying dimensionality for

d = 3, where the sized-matched lattice with L = 15 has df = 2.15, while for L = 50, we find

df = 2.40. In LNP networks with d = 4, we obtain df = 2.41 for the size-matched lattice with

L = 7 and df = 2.88 for L = 20. Although the theoretical dimensionality of the networks

is underestimated by the CBB method, comparisons between networks of similar size and

approximate dimensionality can be expected to be accurate.

Periodic Regular Lattices The LP networks better approximate an infinite lattice as

they include periodic boundary conditions, removing edge effects. Table 7 shows the network

properties for a one-dimensional LP network (ring) with n = 5000 nodes, a two-dimensional

LP network with n = 500, and size-matched LP networks with d = 3, 4. The properties of

additional LP networks up to d = 5 can be found in Section S5.5 of the SI. For the one-

dimensional ring, the CBB method yields df = 0.93, which indicates that the error of the CBB
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Table 6: Selected properties of non-periodic regular lattices (LNP) with dimensionality d
and side length L. See Table 2 for notation.

Lattice n e k C4 l df

d = 1, L = 5000 5000 4999 2.00 0 1666.67 0.86
d = 2, L = 500 250,000 499,000 3.99 1.25 × 10−1 333.33 1.75
d = 3, L = 15 3375 9450 5.60 9.66 × 10−2 14.93 2.15
d = 3, L = 26 17,576 50,700 5.77 9.22 × 10−2 25.96 2.27
d = 3, L = 39 59,319 173,394 5.85 9.04 × 10−2 38.97 2.36
d = 4, L = 7 2401 8232 6.86 8.08 × 10−2 9.14 2.41
d = 4, L = 12 20,736 76,032 7.33 7.35 × 10−2 15.89 2.68
d = 4, L = 16 65,536 245,760 7.50 7.12 × 10−2 21.25 2.80

method is less than 10%. However, the relative errors seem to grow as the dimensionality

increases and the side length of the size-matched LP lattices decreases. In comparison to

the corresponding RNs, the fractal dimensions of LP networks with d = 3, 4 are too low by

0.1–0.5 units. Periodic boundary conditions slightly reduce average shortest path lengths, l,

of regular networks; however, they remain larger than those of the corresponding RNs, see

Figure 4. The average square clustering coefficients, C4, are somewhat reduced compared to

the LP networks; for example, C4 = 6.52× 10−2 , in the LP network with d = 4 and L = 16.

Moreover, the C4 values are independent of the side length, L.

Table 7: Selected properties of periodic regular lattices (LP) with dimensionality d and side
length L. See Table 2 for notation.

Lattice n e k C4 l df

d = 1, L = 5000 5000 5000 2 0 1250.00 0.93
d = 2, L = 500 250,000 500,000 4 1.25 × 10−1 250.00 1.81
d = 3, L = 15 3375 10,125 6 8.70 × 10−2 11.20 2.29
d = 3, L = 26 17,576 52,728 6 8.70 × 10−2 19.50 2.42
d = 3, L = 39 59,319 177,957 6 8.70 × 10−2 29.23 2.45
d = 4, L = 7 2401 9604 8 6.52 × 10−2 6.86 2.63
d = 4, L = 12 20,736 82,944 8 6.52 × 10−2 12.00 2.87
d = 4, L = 16 65,536 262,144 8 6.52 × 10−2 16.00 2.96
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Regular Lattices with Rewiring As Figure 4 illustrates, the RNs are located in the same

range of average square clustering coefficients, C4, as WS networks and regular lattices, and

at intermediate values of fractal dimension, df, and average shortest path length, l, between

these two generative network models. In analogy to the edge randomization in WS networks,

we thus modify LNP and LP networks by randomly rewiring edges with probability pr. We

denote the resulting networks with tunable “randomness” as LNP-R and LP-R networks,

respectively.

Table 8 shows the properties of the size-matched LNP-R and LP-R networks for d = 3, 4.

As in WS networks, a small amount of rewiring increases the value of df and decreases

the value of l compared to the parent regular lattices, see Figure 4. A modest degree of

rewiring suffices to match the fractal dimension df of the LNP-R and LP-R networks to

that of the corresponding RNs. The LNP-R network with d = 3, L = 39, and pr = 0.1

has df = 3.62 , while the corresponding LP-R network has df = 3.27. The average square

clustering coefficient is also well matched, C4 = 5.54 × 10−2. Smaller RNs need smaller

values of pr to match the value of df of the corresponding RNs. The LNP-R networks with

d = 3 and L = 15 matches the corresponding RN at pr = 0.05, and the best matching LP-R

network with d = 3 and L = 15 has pr = 0.025. With dimensionality d = 4, an even smaller

amount of rewiring is sufficient; the LNP-R network with L = 16 and pr = 0.05 achieves

C4 = 5.73 × 10−2 and df = 3.61.

The average shortest path lengths, l, in these LNP-R and LP-R networks underestimate

those of the corresponding RNs somewhat. Smaller amounts of rewiring produce a better

match for the l value of the RNs. For example, the LNP-R network with L = 16 and

pr = 0.05 has l = 8.08, compared to l = 10.39 in the corresponding RN, see also Table 8. At

the same time, choosing pr = 0.01 gives l = 10.33 but overestimates the values of C4 and df,

as shown in Figure 4. An intermediate value of pr = 0.025 offers the best trade-off between

matching the metric, local, and global properties accurately. Generally, LNP-R networks

match the corresponding RNs better than LP-R networks.
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Table 8: Selected properties of periodic regular lattices with rewiring (LP-R) and non-
periodic regular lattices with rewiring (NLP-R). d denotes the lattice dimensionality, L is
the side length, and pr is the rewiring probability. See Table 2 for notation.

Lattice pr n e k C4 l df

LNP d = 3, L = 15 0.05 3375 9450 5.60 7.72 × 10−2 7.11 2.79
LP d = 3, L = 15 0.025 3375 10,125 6.00 7.82 × 10−2 7.33 2.75
LNP d = 3, L = 26 0.075 17,576 50,700 5.77 6.61 × 10−2 8.00 3.27
LP d = 3, L = 26 0.05 17,576 52,728 6.00 6.98 × 10−2 8.28 3.18
LNP d = 3, L = 39 0.1 59,319 173,394 5.85 5.76 × 10−2 8.54 3.62
LP d = 3, L = 39 0.1 59,319 177,957 6.00 5.54 × 10−2 8.36 3.27
LNP d = 4, L = 7 0.0075 2401 8232 6.86 7.81 × 10−2 7.17 2.68
LP d = 4, L = 7 0.0001 2401 9604 8.00 6.52 × 10−2 6.81 2.64
LNP d = 4, L = 12 0.025 20,736 76,032 7.33 6.60 × 10−2 8.06 3.29
LP d = 4, L = 12 0.0001 20,736 82,944 8.00 6.52 × 10−2 11.52 2.95
LNP d = 4, L = 16 0.05 65,536 245,760 7.50 5.73 × 10−2 8.08 3.61
LP d = 4, L = 16 0.025 65,536 262,144 8.00 5.86 × 10−2 8.47 3.26

Figure 5 illustrates the effect of random rewiring on the average square clustering coeffi-

cient, C4, and fractal dimension, df, over a larger range of pr values. Similar to WS networks,

two ranges of behavior are observed. For small rewiring probabilities, pr, the value of df de-

creases by several units due to the occurrence of shortcuts, with only small changes in the

average square clustering coefficient, C4. The networks are thus still relatively structured

but gain the small-world property. For larger amounts of rewiring, the networks become

increasingly random, and the values of C4 have a much stronger dependence on the rewiring

probability, pr, while the fractal dimension levels off. This behavior is observed for both

LNP-R and LP-R networks with d = 3 and d = 4. Interestingly, the networks that most

closely approximate RNs in Figure 5 are located close to the transition between the two

ranges. The significance of this finding is not yet clear. The complete set of data on LNP-R

and LP-R networks is included in Sections S5.6 and S5.7 of the SI, respectively.
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Figure 5: Plot of fractal dimension, df, against average square clustering coefficient, C4, for
LNP-R networks with d = 3 (black triangles) and d = 4 (red triangles) and LP-R networks
with d = 3 (gray triangles) and d = 4 (yellow triangles) in comparison to RNs (circles). The
LNP-R and LP-R networks have L = 39 and L = 16 for d = 3 and d = 4, respectively.

4 Discussion

4.1 Reaction Network Characterization

As Figure 1 shows, the properties of the RNs within each homologous series follow similar

profiles as H2O molecules are added to the base RN, with a characteristic crossover point

between water-poor (smaller) and water-rich (larger) RNs. For a given homologous series,

the number of nodes, n, of water-poor networks scales polynomially with the number of

atoms, N , in line with our previous observations for CHO networks.14 The size scaling of

water-rich RNs is also polynomial in N , however, with a reduced slope. The crossover

happens approximately between the third and sixth members of each homologous series and

is reflected in local properties, such as average node degree, k, and average square clustering

coefficient, C4, metric properties, such as average shortest path length, l, and diameter, D,

and fractal dimension, df. The plots of all RN properties against N and an illustration of

the crossover point for selected networks and properties are given in Sections S1.1 and S2 of

the SI, respectively.
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Figure 6: Numbers of network edges grouped by transformation rule in RNs of the
C2H3NO homologous series: (a) Base RN (C2H3NO), (b) RN containing three H2O molecules
(C2H9NO4), and (c) RN containing 15 H2O molecules (C2H33NO16).

The water-poor RNs contain a wide distribution of transformation rules, including C C,

C O and/or C N, and E H (E = C, O, N) rules and their multiple-bond counterparts (see

Table 1). For example, Figure 6 shows the numbers of edges grouped by transformation

rule in three RNs of the C2H3NO homologous series. As Figure 6(a) shows, the base RN

C2H3NO has 936 edges, of which 11.8% correspond to C C, 19.7% to C H, 17.9% to C N,

17.5% to C O, 17.3% to N H, and 15.8% to O H transformation rules. In contrast, the

transformations in water-rich RNs are dominated by the breaking and formation of O H

bonds in the solvent, masking the differences between RNs of different stoichiometries. In

the water-rich C2H33NO16 RN, which results from adding 15 H2O molecules to the above

network, over 53.9% of its 4.25 × 106 edges, as shown in Figure 6(c), are due to O H

bond breaks and bond formations. For the RNs above the crossover point, no new chemical

transformations are added; instead, each network node increases by an H2O unit. As a

result, the RN with Nw + 1 H2O molecules (where Nw is above the crossover point) is the

product (Kronecker) graph of the preceding RN, containing Nw H2O, and the 2-node graph

describing water dissociation.14 We thus expect RNs to become more regular with increasing

dilution. Distributions of edges by transformation rule in all RNs are given in Section S8 of

the SI.
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The increase in RN size as a result of adding CH2O and/or HCN monomers is exponential,

as Figure 1(a) shows. In comparison with CHO networks,14 CHN networks show a faster

increase in network size, while mixed CHNO networks fall in between. CHN networks also

grow faster in the water-poor regime with respect to their average shortest path length, l,

and average node degree, k, compared to CHO networks. In water-rich RNs, the value of l

and the diameter, D, increase by a constant for each additional H2O molecule. The increase

of the average node degrees, k, of the CHN and CHO networks also become similar in the

water-rich regime. As for the network sizes, the mixed CHNO networks are intermediate in

their increase between CHN and CHO networks.

We observe universal relationships for metric, local, and global network properties in

a wide variety of CHNO networks shown in Figure 3. For the CHO networks, we have

previously shown that the universal relationships for the fractal dimension, df, are also inde-

pendent of the formal carbon oxidation state.14 These findings indicate that the underlying

structural principles of RNs are independent of the specific transformation rules and are

the result of the octet rule and the use of polar transformations (electron-pair shifts), see

Table 1. Moreover, algorithms based on structural features of RNs, including embedding,

sampling, and search, are likely to be broadly applicable. Investigations of elements that

form hypervalent compounds, for example, phosphorous and sulfur, and of radical reactions

will help shed light on this hypothesis. As the current study exclude some chemistry, if the

rule set is expanded to include radical reactions, the bipartite nature of the RNs will be lost.

The structural properties of RNs with radicals will be explored in future work. The small

differences observed between CHO and CHNO networks implies that incorporating addi-

tional types of atoms and a large set of rules is unlikely to significantly alter the structural

properties of the RNs.

As reported previously, the fractal dimension, df, of RNs is considerably smaller than

the dimensionality of the underlying PES, dPES = 3N − 6.14 The computed df values range

from 0.89 to 4.55 for the RNs, for which these calculations were feasible, see Figure 1(f).
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The fractal dimension df = 4.55 was obtained for the C4H8O4 RN, whose corresponding PES

has dimensionality dPES = 42. The dimensionality reduction is nearly tenfold. Despite the

expanded rule set, we obtain similar reductions for CHN and mixed CHNO networks. For

the C3H3N3 and C3H9NO4 RNs, the fractal dimensions df = 3.55 and df = 4.41 were obtained,

with the corresponding PES dimensionality being dPES = 21 and dPES = 45, respectively,

showing the nearly tenfold dimensionality reduction is irrespective of the stoichiometry for

a range of RNs built with polar transformation rules as heuristics.

4.2 Comparisons to Generative Network Models

Generative network models are of interest because they can represent a multitude of network

properties with just a few parameters. The dimensionalities of many such models have

been studied in the literature. A particularly well-studied class of networks are scale-free

(SF) networks, characterized by their highly heterogeneous structure, featuring a few highly

connected nodes (hubs) alongside many nodes with low connectivity.80,81 In SF networks,

the dimension is influenced by the scaling exponent, λ , which is a key parameter in the

power-law distribution that describes the probability P (k) that a node has k connections,

following the relationship P (k) ∼ k−λ. When λ > 4, the fractal dimension, df, in ER and

SF networks, stabilizes at 6, indicating a departure from scale-free behavior due to a rapid

decline in degree distribution. Typical SF networks studied have a λ between 2 and 3. As

λ approaches 3, df tends toward infinity. However, this holds only in the limit of infinitely

large networks. For finite networks, an empirical df can be estimated, but it would, in effect,

only show the finite-size effects of SF networks, which is why they are not included in this

study for comparison.82

The fractal nature of ER and SF networks at the boundaries (length scales above the

average shortest path length, l) has been explored and found to have a fractal dimension of

df ≈ 2. The nodes at the edges have a low degree, causing the low dimensionality.83 For ER

and other random graph models, analytical expressions for l and the diameter, D, have been
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found.84,85

Dimensionality calculations of regular lattices using approximate box-covering methods

have been reported in the literature.86–88 Depending on the method to calculate the di-

mensionality of regular lattices, the dimensionality is either found to be exact or approach

the dimensionality of the underlying space. The spectral dimensions of linear, square, and

triangular lattices are found to be 1.0, 2.0, and 3.0 dimensional, respectively.86 Using a ran-

dom sequential box-covering algorithm, the fractal dimension, df ≈ 2.0 was obtained for a

500 × 500 regular lattice.87 The 50 × 50 LNP network was computed to have df = 1.649

instead of 2 using an approximate method because of the finite size,88 which is comparable

to df = 1.68 obtained in this work for a 100 × 100 LNP network.

The effective dimension of WS-like networks varies as a function of the length scale on

which it is measured. A transition from a linear to logarithmic scaling of l is observed as

the typical length of shortcuts changes, similar to the transition seen in Figure 5 for LNP-R

and LP-R networks.89 A transition in l from linear scaling to logarithmic scaling was also

found on increasing edge rewiring probability, pr.
90 Higher values of pr were shown to reduce

the characteristic length scale in WS networks, which increases df.
91 In the random limit

(pr = 1), df increases with the number of nodes, n.92 Similarly, in this work, the fractal

dimension, df, of WS, LNP-R, and LP-R networks increases with larger pr as shown for

LNP-R and LP-R networks in Figure 5. The initial increase of df with pr is quite steep but

becomes shallower at pr ≥ 0.2, as shown in Figure 5. The increase of the fractal dimension,

df, due to random rewiring in regular lattices was previously reported.93,94

Figure 4 shows the comparison of the average shortest path length, l (metric property),

the average square clustering coefficient, C4 (local property), and the fractal dimension,

df, between three size classes of RNs: small (C2H5NO2, CH19NO9, and C2H10O5), medium

(C3H6O3, C2H6N2O2, and C2H18O9), and large (C3H8O4, C3H4N2O, C2H8N2O3, and C3H5NO2)

and size-matched generative network models excluding the random networks (ER and BR).

We note that most of these networks belong to the water-poor regime. The water-poor RNs
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provide a more stringent test of structural similarity to generative models since the networks

become more regular with increasing dilution, as discussed above.

The existing body of work has demonstrated that randomness increases fractal dimen-

sion, df, reduces average shortest path length, l, and suppresses local clustering.25,83,89–97

Consequently, the size-matched random ER and BR networks have values of df higher by 0.6

to 1.1 units and values of C4 smaller by one to three orders of magnitude in comparison to

the RNs. BR networks show higher local clustering but are still much less ordered than RNs.

Although both random networks and RNs show the same scaling of l with the network size,

that is, belong to small-world networks, the random networks are “smaller” with respect to

their metric properties by a factor of two. On the other end of the spectrum, size-matched

regular lattice networks with d = 3, 4 are similar to the corresponding RNs with respect to

their average square clustering coefficients but have longer average shortest path lengths and

lower CBB fractal dimensions.

The WS networks demonstrate the effect of randomness on network properties within

the same generative network model. The dependence of the clustering coefficient and the

diameter on the rewiring probability, pr, was already described by Watts and Strogatz in

their seminal paper.25 Additionally, random rewiring increases the fractal dimension, df,

bringing it closer to the values observed in ER and BR networks. However, the WS model

cannot simultaneously satisfy the matching conditions for metric, global, and local network

properties.

The LNP-R and LP-R networks apply the random rewiring to low-dimensional regular

lattices, as shown in Figure 5. These models with d = 3, 4 require a smaller amount of

rewiring than WS networks to match the average square clustering coefficient, C4, and the

fractal dimension, df, of the corresponding RNs with good accuracy. Therefore, it is possible

to simultaneously match metric, local, and global properties of RNs by regular lattices with

rewiring. The necessary amount of rewiring in LNP-R and LP-R models is small, pr ≤ 0.1,

indicating that RNs are more regular than random. Thus, RNs are not only low-dimensional
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metric spaces, but moreover, they resemble low-dimensional Euclidean spaces, represented

by the regular lattices.

The similarities between RNs and LNP-R networks with respect to the local and metric

properties suggest the presence of inherent symmetries within the RNs. The symmetry arises

from the fact that the order of bond formations or breaking often does not matter, which

creates regular patterns in the RNs, which have been observed in our previous work.14,20 The

regular patterns found in the RNs are also reflected in the relatively narrow distributions

of the node degrees, k, and the square clustering coefficients, C4, shown in Figure 2. Most

nodes are thus embedded in similar local neighborhoods, as is the case in regular lattices.

The above analysis was performed on water-poor RNs and applies even more to the water-

rich RNs, which exhibit a more regular structure. Finally, we note that the RNs studied

in this work did not take into consideration thermodynamic or kinetic feasibility of the

reaction paths and constitute the superset of the experimentally observed reactions.38 The

dimensionality of the LNP-R and LP-R networks is thus an upper bound to the subnetworks

of the RN that represent feasible reactions. To gain further insights into RNs, methods such

as disconnectivity graphs,98 which visualize energy landscapes, and persistent homology,99

which captures the global topological features of the network, could be employed.

5 Conclusions

In this paper, we investigated local, metric, and global properties of RNs and showed that

they share common structural characteristics irrespective of their size, composition, and rule

set and can be modeled by low-dimensional non-periodic regular lattices with a small amount

of random rewiring. Thus, in addition to being low-dimensional metric spaces,14 RNs are

also close to low-dimensional Euclidean spaces. The coordinate representation of RNs can

be constructed by embedding into Rd with d = 3, 4 for the networks considered in this work,

generating a tenfold dimensionality reduction with a small error. The reduced-dimensionality
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representations are useful for speeding up sampling and search of RNs. Network embedding

is widely used in similarity search, classification, clustering, and visualization tasks.97,100–102

RNs have the potential to be effectively utilized for identify transition states. Transition

state searches would first locate a potentially feasible reaction pathway within a RN, and

then interpolation between neighboring nodes would be employed to estimate the location

of the corresponding transition state. RNs offer a practical starting point for initiating the

transition state search. At the same time, the rewiring probability pr in the LNP-R and LP-

R networks offers an a posteriori measure of the average deviation from Euclidean structure

and is related to the error of the dimensionality reduction between the parent PES and the

low-dimensional Euclidean space.

The limitation of the current approach is that it requires explicit RN construction, which

is limited by the computational cost and storage needs. However, the understanding of the

dimension and amount of rewiring as a function of the RN composition, oxidation state,

and rule set developed in this work provides the target dimensionality and error measures

for the network embedding. These parameters can then be applied to embed subnetworks

constructed around a compound or reaction of interest. On-the-fly calculations of thermo-

dynamic and kinetic feasibility38 further restrict the size of a subnetwork.

Currently, the node representation ignores stereoisomers and conformers, as the three-

dimensional molecular structures are not taken into consideration. This could be partially

remedied by using low-dimensional representations of conformer equilibria, which have been

recently developed.103 Finally, the expressiveness of RNs is limited by their reliance on

simple graph-based rules such as bond breaks and bond formations. This representation, like

other graph-based molecular models, excludes reactions of transition-metal compounds and

intermolecular complexes, which cannot be expressed by composing discrete rules. Explicit

dimensionality reduction methods might be of interest for treating these chemical systems.
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The vexingly high dimensionality of potential en-
ergy surfaces of complex chemical reactions can
be represented by low dimensional regular lattice
graphs under a suitably chosen discretization.
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