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Abstract

Bacterial pathogens pose a major risk to human health, leading to tens of millions of deaths
annually and significant global economic losses. While bacterial infections are typically
treated with antibiotic regimens, there has been a rapid emergence of antimicrobial resistant
(AMR) bacterial strains due to antibiotic overuse. Because of this, treatment of infections
with traditional antimicrobials has become increasingly difficult, necessitating the develop-
ment of innovative approaches for deeply understanding pathogen function. To combat
issues presented by broad- spectrum antibiotics, the idea of narrow-spectrum antibiotics
has been previously proposed and explored. Rather than interrupting universal bacterial cel-
lular processes, narrow-spectrum antibiotics work by targeting specific functions or essential
genes in certain species or subgroups of bacteria. Here, we generate a collection of
genome-scale metabolic network reconstructions (GENRESs) of pathogens through an auto-
mated computational pipeline. We used these GENREs to identify subgroups of pathogens
that share unique metabolic phenotypes and determined that pathogen physiological niche
plays a role in the development of unique metabolic function. For example, we identified sev-
eral unique metabolic phenotypes specific to stomach pathogens. We identified essential
genes unique to stomach pathogens in silico and a corresponding inhibitory compound for a
uniquely essential gene. We then validated our in silico predictions with an in vitro microbial
growth assay. We demonstrated that the inhibition of a uniquely essential gene, thyX, inhib-
ited growth of stomach-specific pathogens exclusively, indicating possible physiological
location-specific targeting. This pioneering computational approach could lead to the identi-
fication of unique metabolic signatures to inform future targeted, physiological location-spe-
cific, antimicrobial therapies, reducing the need for broad-spectrum antibiotics.
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Introduction

Bacterial pathogens pose a major risk to human health and are responsible for 16% of all global
deaths, including 44% of deaths in low-resource countries [1]. Currently, there are over 500 known
human-associated bacterial pathogens [2]. Treatment of certain bacterial pathogen infections with
traditional antimicrobials has become increasingly difficult in recent years due to growing resis-
tance [3]. It is therefore necessary to gain a deeper understanding of pathogen metabolism to
uncover cellular pathways that could be newly exploited for targeted antimicrobial therapies.

Many well-known pathogens have been deeply characterized experimentally and computa-
tionally [4-6], but metabolic phenotypes have not been described across pathogen genera. A
metabolic phenotype is defined as a unique functional metabolic state of a given organism
determined by predicting the distribution of metabolic functions in the network. Systemically
capturing complex variation in metabolic phenotypes across pathogens is necessary to begin
understanding the development of unique metabolic functions. Understanding variations in
metabolic phenotypes will enable identification of unique metabolic signatures in individual
or select groups of pathogens, such as those inhabiting the same physiological niche. Identify-
ing physiological location-specific metabolic signatures will allow us to approach antimicrobial
drug development differently: we could consider targeting cellular processes that are conserved
among pathogens inhabiting a specific body site to reduce the need for broad-spectrum antibi-
otics, ultimately slowing the emergence of antimicrobial resistance.

To gain a deeper understanding of conserved metabolic signatures in groups of pathogens,
we consider classical evolutionary concepts such as natural selection, convergent evolution,
and divergent evolution. These phenomena have been previously observed in vitro in a variety
of bacterial populations under different environmental conditions [7-10]. Additionally, physi-
ological location has been shown to influence the composition of organisms in the human
microbiome through evolutionary pressures. For example, there is a large variation in commu-
nity composition of commensals present in the skin microbiome across different sites [11],
suggesting each physiological location has a unique niche with properties allowing certain
commensal bacteria to thrive. Natural selection, convergent evolution, and divergent evolution
in bacterial populations are well-studied concepts, and the influence of physiological location
on human microbiome composition is well-characterized [7,8,10,11]. However, the idea of
physiological location as a selective pressure for the development of unique metabolic function
in pathogens has been underexplored.

To capture the range of metabolic phenotypes across pathogens and identify metabolic
functions unique to organisms of specific physiological locations, we need to leverage high-
throughput, automated, in silico pipelines. Specifically, we use genome-scale metabolic net-
work reconstructions (GENRESs) to capture functional metabolism in individual pathogens, at
strain-specific resolution [4,12]. Once assembled, GENREs can be used to probe an organism’s
genotype—phenotype relationship through constraint-based modeling and analysis (COBRA)
[13]. In silico modeling of bacterial metabolism through GENREs has proven effective at
defining functional metabolism in individual pathogens [4,12,14,15].

Here, we identify unique metabolic signatures of pathogens that share a physiological niche
using a collection of 914 GENREs of pathogen metabolism. Additionally, we show that envi-
ronmental selection pressure is a possible driver of divergent evolution of metabolic function
in closely related organisms, while leading to convergent evolution in distantly related organ-
isms that occupy the same physiological niche. Further, we identify genes informed by analysis
of the GENRE:s that are uniquely essential to isolates of a given physiological niche. Finally, we
use these predictions of uniquely essential genes to identify and validate possible stomach
pathogen-targeted antimicrobial compounds.
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Results
Models of pathogen metabolism

To sufficiently capture the variation of functional metabolic phenotypes across bacterial patho-
gens, we generated a collection of 914 in silico network reconstructions of bacterial pathogen
metabolism through an automated pipeline (S1 Fig), covering 345 distinct species across 9
phyla (Fig 1A and 1B). The scope and depth of information represented in this collection of
reconstructions is substantial: across the collection there are a combined total of >1 million
reactions, genes, and metabolites (Fig 1C), with individual reconstructions containing an aver-
age of about 1,500 genes, reactions, and metabolites (Fig 1D-1F). The models were con-
structed using publicly available genome sequences from the Bacterial and Viral
Bioinformatics Resource Center (BV-BRC) [16] and paired with open-source software includ-
ing Python, COBRApy [13], and a recently developed GENRE construction algorithm [17],
Reconstructor. We call our collection of metabolic reconstructions PATHGENN, which is the
first GENRE collection of all known human bacterial pathogens and is among the largest pub-
licly available collections of high-quality GENREs [18,19].

This collection contains a wealth of metabolic and genomic information, and it was impor-
tant to validate the quality and relevance of this collection before subsequent analyses. To
assess quality of the network reconstructions, we used the MEMOTE score [20]. MEMOTE
benchmarking ensures models follow typical community conventions, are in the correct
SBML format, and are of high quality. In addition to model format, MEMOTE benchmarks
models according to 4 primary areas: annotation, basic tests, biomass reaction, and stoichiom-
etry. Annotation tests ensure that a model is annotated according to community standards:
primary annotation identifiers belong to the same namespace and components are described
using systems biology ontology terms. Basic model tests ensure that the model is formally cor-
rect: there is a presence of genes, reactions, and metabolites within a model. Biomass reaction
tests ensure that biomass precursors are present and there is a resulting positive biomass when
simulated in silico. Finally, stoichiometry tests ensure biochemical feasibility of the model; if
stoichiometric inconsistency is identified, it is likely because of unbalanced reactions. A
weighted score is generated for each of these 4 subcategories in addition to an overall MEM-
OTE score (weighted average of subcategory scores), which allows us to assess the quality of
the model generated. The average overall MEMOTE score for reconstructions in the collection
is 84% (SD + 1.06%) (S2 and S3 Figs), suggesting all reconstructions in the collection are of
high quality, and therefore biologically plausible. Using the Reconstructor GENRE creation
tool in this study allows us to create higher quality models (according to overall MEMOTE
score) than other similar reconstruction tools often used in the field. For example, average
overall MEMOTE scores for a collection of GENREs created using 2 other automated recon-
struction tools (ModelSEED [20] and CarveMe [21]) were reported to be ~40% and ~25%,
respectively [17].

Additionally, we determined that the relationship between the number of genes and
reactions in the reconstructions in our GENRE collection is logarithmic (R*=0.973) (Fig
1G). As the number of genes in a pathogen GENRE increases, the number of reactions in
the GENRE increases up to a certain point. However, as the number of genes present con-
tinues to increase, there becomes a limit to the number of reactions present. This observa-
tion is consistent with the expectation that there are limited evolutionary advantages for
bacteria with increasingly large genomes [22], and smaller bacterial genomes are known to
have fitness benefits [23]. The trend we see here further validates the physiological relevance
of our collection.
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Fig 1. Scope of our collection of pathogen models of metabolism. (a) Phylogenetic tree depicting the diversity of 914 considered bacterial pathogens in
the collection of GENREs. The many strains of E. coli, H. pylori, and M. tuberculosis (labeled) that are included exhibits the strain specificity of our
collection. This cladogram was created using the GraPhlAn python tool. (b) Our collection of GENREs represents 9 phyla, 17 classes, 36 orders, 94
genera, and 345 species of pathogens. (c) Across the 914 models, there are a sum total of 1.11 million reactions, 1.05 million genes, and 1.17 million
metabolites. The average MEMOTE score across models is 84% (d-f) Boxplots representing the spread of genes, reactions, and metabolites in each

model, classified by phylum. The number in parentheses after the phylum name represents how many models are in that respective phylum. Dotted line
in the background represents average Reaction, Gene, and Metabolite numbers across species. (g) The relationship between the number of genes and the
number of reactions in each model displays a positive trend similar to other model ensembles. The data presented in 1g was fit to a logarithmic equation.
Colors correspond to taxonomic class of pathogen represented by each point (same legend as Fig 1A). The data underlying Fig 1 can be found in Fig
1_Data.zip on Zenodo: https://zenodo.org/records/13952471.

https://doi.org/10.1371/journal.pbio.3002907.9001

Identifying metabolic reactions unique to subgroups of pathogens

To exhibit the variety of metabolic reaction subsystems present in all GENREs across the col-
lection, we annotated all reactions according to the Kyoto Encyclopedia of Genes and
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Fig 2. Core and unique metabolic reaction subsystems across pathogens and the evolution of metabolic function. (a) Histogram of annotated
reactions across models display prevalent reaction classes used in core metabolism (>75% models have a given reaction), accessory metabolism
(between 25% and 75%), and unique metabolism (<25%). (b) Relative proportions of metabolic subsystems in core and unique metabolic reaction
subgroups. The data underlying Fig 2 can be found in Fig 3_Data.zip on Zenodo: https://zenodo.org/records/13952471.

https://doi.org/10.1371/journal.pbio.3002907.g002

Genomes (KEGG) and separated reactions into core (present in >75% of GENREs), accessory
(between 25% and 75%), and unique (present in <25%) categories (Fig 2A). Details of this
analysis are available in the Methods, including rationale for the core, unique, and accessory
reaction percentile cutoffs, and a secondary analysis with a stricter cutoff for uniqueness. Fur-
thermore, the analysis presented in Fig 2 allows us to capture metabolic subsystems of both
reactions with explicit genetic evidence as well as reactions that were added during the gapfill-
ing process, which goes beyond a traditional bioinformatics-based annotation analysis. On
average, 13% of all reactions are gapfilled and 8% of all metabolites are gapfilled across all 914
GENRE:s (54 Fig). Gapfilled reactions are added to the models to satisfy the criteria that (1) the
metabolic network carries a minimum total flux; and (2) constraints on biomass synthesis and
other fluxes are satisfied. These criteria are further outlined in [17]. Consequently, all gapfilled
reactions are essential to satisfy these criteria, and most but not necessarily all gapfilled reac-
tions are also essential for biomass synthesis.

Through the reaction annotation analysis presented in Fig 2, we gain a deeper understand-
ing of the distribution of metabolic reactions and their corresponding subsystems across GEN-
REs in our collection. Importantly, we observed that most reactions across pathogens were
considered unique (Fig 2A), which can be attributed to the large taxonomic range of pathogens
in the GENRE collection. Additionally, we noticed a larger proportion of nucleotide metabolic
subsystems in core reactions (10%), which is consistent with the ubiquitous role of nucleotide
metabolism across bacterial species [24] (Fig 2B). Furthermore, among the unique reactions,
we observed a larger proportion of terpenoid/polyketide (11% more) and xenobiotic (8% more
than core) metabolic subsystems. Interestingly, terpenoid/polyketide and xenobiotic reaction
subsystems both relate to drug metabolism processes which can be highly variable across
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bacteria [25]. Further, xenobiotic pathways are often implicated in antimicrobial resistance
[26], suggesting that many pathogens possess unique antimicrobial resistance mechanisms.

Interestingly, focusing only on the leftmost bin in Fig 2A, we observe that most metabolic
reactions are present in less than 12.5% of pathogen GENREs. This result suggests that there
are certain subgroups of pathogens that share these unique reactions, with the subgroups con-
taining less than 114 pathogens (12.5% of all pathogens in our collection). We can think of
these as metabolically unique subgroups of pathogens, because they share unique metabolic
reactions that are not present in most pathogens (the other 87.5% of pathogens). Further
exploring these unique metabolic subgroups could prove beneficial, allowing us to leverage
shared unique functions as possible antimicrobial targets. Identifying unique metabolic sub-
groups and understanding the evolutionary pressures driving the development of these sub-
groups is imperative for gaining a deeper understanding of pathogen function.

Pathogen metabolic function is related to host physiological environment

Our reaction analysis suggested that there are subgroups of pathogens with unique metabolic
function. Here, we identify unifying characteristics of these metabolically unique subgroups by
examining metabolic phenotypes across our collection of GENREs. To do this, we can generate
in silico metabolic phenotypes by predicting metabolic flux distributions that describe the flow
of metabolites through a reaction network, ultimately providing us with all feasible metabolic
states unique to a GENRE. Metabolic phenotypes are subject to evolutionary pressures like
natural selection, which could result in divergent or convergent evolution.

Previous studies have uncovered a strong relationship between in silico metabolic pheno-
type and evolutionary history, specifically in terms of taxonomic class [19,27,28]. However,
earlier investigations have not uncoupled metabolic phenotype from evolutionary history to
consider other factors that might play a part in differentiating metabolic phenotypes. Because
there has been evidence that physiological location influences human microbiome composi-
tion [7,8,10,11], here we investigate the influence of physiological location on the development
of unique metabolic phenotypes in pathogens.

We generated in silico metabolic phenotypes of all network reconstructions by utilizing
FBA to generate feasible metabolic flux distributions. Metabolic network models are often
underdetermined systems of equations with an infinite number of solutions. Rather than try-
ing to calculate a single solution, we perform flux sampling to analyze network properties and
determine many potential metabolic phenotypes. The algorithm we use for flux sampling,
Gapsplit [29], samples the GENRE’s solution space in an efficient way, with the goal of captur-
ing the entire range of possible solutions. To visualize individual metabolic phenotype states in
the context of taxonomic class (Fig 3A) and physiological environment (Fig 3B), we used t-dis-
tributed stochastic neighbor embedding (t-SNE) (further explained in Methods). Consistent
with previous studies [19,27,28], we observe clustering based on taxonomic class (Fig 3A).
This result confirms that the flux distributions generated from our GENREs can accurately
capture differences in metabolic phenotypes between taxa. Further, we observe clustering
based on physiological location, suggesting physiological location may play a part in differenti-
ating metabolic phenotypes beyond taxonomy alone (Fig 3B). Overall, the clustering of meta-
bolic phenotypes in both Fig 3A and 3B suggest that metabolic phenotype is a function of both
evolutionary history and environment. Identifying metabolic phenotypes unique to individual
physiological niches could be a novel strategy for targeted drug design, so we consider the clus-
tering of metabolic phenotypes in Fig 3B more closely.

We observed several clusters of interest in Fig 3A and 3B, which we considered more deeply
for theoretical analysis and biological hypothesis generation. Specifically, we noticed close
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https://doi.org/10.1371/journal.pbio.3002907.9003

local clustering of Fusobacteria and Bacteroidia species (Fig 3C). Fusobacteria and Bacteroidia
are not genetically similar organisms: a multiple sequence alignment of available 16S rRNA
sequences reveals significant evolutionary differences between the groups (S5 Fig). Interest-
ingly, despite having a different taxonomic lineage, these Fusobacteria and Bacteroidia patho-
gens are all oral-associated pathogens (Fig 3D) suggesting shared metabolic functionality
between the groups, as evidenced by the observed clustering. Distantly related pathogens with
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shared metabolic phenotypes inhabiting the same environment suggests that unique environ-
mental properties can drive convergent evolution in distantly related organisms.

Secondly, we noticed 2 distinct clusters of Epsilonproteobacteria, more clearly displayed in
Fig 3E. The separate clusters suggest that there are 2 distinct metabolic phenotypes exhibited
by pathogens of this class. Interestingly, one cluster of Epsilonproteobacteria consisted solely
of stomach pathogens (Fig 3F), suggesting that these pathogens have some distinct, unique
metabolic functionality compared to their (mostly) stool Epsilonproteobacteria counterparts.
This cluster pattern supports the idea that unique physiological environments could play a role
in the development of unique metabolic function. Biologically, this result could be explained
by the unique physiological environment of the stomach: the high acidity (pH 1.5 to 2.0) [30]
allows for only a select few bacterial species to take up residence. Further, it has been shown
that Helicobacter pylori (a stomach pathogen) has adapted to this extremely unique environ-
ment by utilizing metabolic pathways that taxonomically similar organisms do not utilize [31].

The results from our t-SNE cluster analysis support the idea that unique physiological envi-
ronment could be a driver of divergent evolution in closely related species, while driving con-
vergent evolution in distantly related pathogens. The divergent evolution pattern we observed
is of particular interest because it implies that there is a selection pressure for beneficial meta-
bolic functions that are uniquely essential to pathogens in a specific environment. It could be
possible to exploit uniquely essential genes of diverse pathogens within a given environment to
identify a physiological niche-specific targeted antimicrobial therapy. Therefore, we could
approach antimicrobial discovery and repurposing from a different perspective; targeting
uniquely essential genes that are conserved across pathogens that inhabit a specific physiologi-
cal niche.

The identification of uniquely essential genes informs stomach pathogen-
specific antimicrobial targets and growth inhibitors

Here, we leveraged the idea that environment is a major driver for the selection of unique met-
abolic function to exploit uniquely essential genes of stomach-associated pathogens as poten-
tial targets for antimicrobial therapies. Targeting antimicrobial therapies to the site of
infection, like the stomach, could potentially ameliorate the harmful effects of long courses of
broad-spectrum antibiotics [32]. Additionally, targeting to the infection site could reduce the
need for bacterial community characterization since all pathogens in the environment would
be targeted. To identify uniquely essential genes to stomach-associated pathogens in silico, we
first determined essential genes for all strains in the GENRE collection using an FBA single-
gene-knockout method in COBRApy. Subsequently, we instantiated a universal essentiality
threshold to determine genes that are uniquely essential across stomach-associated pathogens
(see Methods).

We identified 7 genes as uniquely essential to stomach pathogens (and which were not con-
sidered uniquely essential in any other physiological environment), mqo, ndk, aroE, cdh,
fumC, tktA, and thyX (Table 1). Each of these genes meet the defined threshold to be consid-
ered uniquely essential genes; however, thyX is the most uniquely essential gene with a
uniquely essential score of 100% (see Methods). thyX belongs to the pyrimidine metabolism
pathway, specifically coding for thymidylate synthase. Thymidylate synthase is utilized in both
bacterial and human cells and is responsible for catalyzing the DNA building block thymidy-
late. However, the flavin-dependent thymidylate synthase, thyX, is only present in bacteria,
and completely absent in humans [33], making it an optimal target for an antimicrobial ther-
apy. There has been evidence of 1,4-napthoquinone derivatives as effective thyX inhibitors in
H. pylori and Mycobacterium tuberculosis [33-35], effectively inhibiting bacterial growth.
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Table 1. Genes used for in vitro validation with corresponding targeting compounds and other uniquely essential genes. We identified 7 uniquely essential genes to
stomach associated pathogens (thyX, tktA, mqo, ndk, aroE, cdh, fumC) and reported their uniquely essential percentages. Two genes, fabF and fabZ are not uniquely essen-
tial genes, but are used as positive controls in the in vitro validation assay. Gene products, pathways that the gene is involved in are reported for all 9 genes, and the inhibi-
tor, and inhibitor’s chemical formula are provided for the 3 genes that were used for in vitro validation and were not researched for genes not used for in vitro validation.

Gene
Target

Genes used for in vitro validation thyX
fabF

fabZ

Uniquely essential genes NOT used tktA
for in vitro validation

mqo

ndk

aroE
cdh

fumC

https://doi.org/10.1371/journal.pbio.3002907.t001

Gene Product Associated Metabolic Inhibiting Compound % Uniquely
Pathway Compound Formula Essential
Thymidylate synthase Pyrimidine metabolism Lawsone C1oHgO3 100
3-hydroxyacyl-dehydratse Lipid Cerulenin C,H,,NO; 0
metabolism
3-oxoacyl-synthase Lipid o-Mangostin C,4H,60¢ 0
metabolism
Transketolase Carbohydrate N/A N/A 90
metabolism
Malate dehydrogenase Carbohydrate N/A N/A 80
metabolism
Nucleoside-diphosphate Nucleotide metabolism N/A N/A 80
kinase
Shikimate dehydrogenase | Amino acid metabolism N/A N/A 80
CDP-diacylglycerol Lipid N/A N/A 80
pyrophosphatase metabolism
Fumarate hydratase Carbohydrate N/A N/A 80
metabolism

Further, there has been computational evidence that many versions of 1,4-napthoquinones
can inhibit thyX, including 2-hydroxy-1,4-napthoquinone, otherwise known as lawsone [33].

This literature review corroborated predictions that thyX is an essential gene for bacterial
growth and provided us with a potential small molecule inhibitor of thyX, lawsone. While our
literature review did not verify that thyX is uniquely essential to stomach pathogens, it still pro-
vided essential insights and promise that there is potential for thyX to be uniquely essential
and targetable in vitro. It is important to recognize that lawsone has been shown to be effective
against non-stomach-associated pathogen species. However, this observation does not dis-
count our hypothesis that thyX is uniquely essential to stomach pathogens because of our defi-
nition of uniqueness (Methods). A gene can be essential to specific pathogens in each
environment without being uniquely essential to pathogens across the environment. For
example, 1,4-napthoquinone derivatives (lawsone) were shown to be effective inhibitors of
thyX in M. tuberculosis, a lung pathogen, but that does not mean thyX is essential across all
lung-associated pathogens. Therefore, it is still possible that thyX is uniquely essential and a
targetable gene of stomach-associated pathogens. However, due to the unanswered questions
that arose during our literature review, and possible un-reported off target effects of this identi-
fied inhibitor, it was necessary to validate our computational prediction further.

Validation of stomach-specific pathogen growth inhibitor

To validate our computational predictions, we designed an in vitro assay to assess growth inhibi-
tion of stomach-associated pathogens and non-stomach associated pathogens subject to the possi-
ble stomach-pathogen-specific small molecule inhibitor: Lawsone. As previously discussed, there
is existing experimental evidence that lawsone is an inhibitor of the gene thyX [33,35-39], which
we predicted is a uniquely essential gene to stomach pathogens in silico. However, we wanted to
validate the potential for lawsone to selectively inhibit growth in stomach-associated pathogens.

Additionally, we selected 2 compounds as positive controls, cerulenin and o-mangostin,
which are known to inhibit the fabF and fabZ genes (not uniquely essential to stomach patho-
gens). fabF and fabZ encode acyl-carrier-protein dehydratase and acyl-carrier-protein
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synthase, respectively, which are both proteins belonging to the fatty acid biosynthesis II path-
way. This pathway has been studied as a target for novel antimicrobial compounds due to it
being ubiquitous across bacteria [40]. A previous study exhibited down-regulation of fabZ
expression in Staphylococcus epidermidis in the presence of an a-mangostin inhibitor, and sub-
sequent bacterial growth inhibition was demonstrated. Further, it was reported that the bacte-
ricidal action of the a-mangostin inhibitor is comparable with cell membrane lytic cationic
antimicrobial peptides (CAMPs), suggesting this compound is a very effective antimicrobial
[37]. Further, several prior studies have shown the effectiveness of cerulenin as an inhibitor of
fabF in vitro and have even characterized the mechanism of inhibition [38,39,41]. In the first
study citing cerulenin as a fabF inhibitor, cerulenin was shown to be a weak inhibitor of
Escherichia coli fabF and showed weak growth inhibition, while being a strong inhibitor of S.
aureus fabF with associated strong growth inhibition [39,42].

We selected 7 total pathogens for our in vitro growth inhibition assay: 3 stomach-associated
pathogens (Arcobacter butzleri, Helicobacter pylori, and Campylobacter coli) and 4 non-stom-
ach associated pathogens (Porphyromonas gingivalis (oral), Pseudomonas aeruginosa (wound),
Escherichia coli (stool/gut), Burkholderia cenocepacia (cystic fibrosis lung)) as controls. Each of
the 4 non-stomach isolates have important characteristics that make them desirable candidates
for negative controls in this validation experiment. First, each of these non-stomach isolates
are gram negative. This is important because the differences in cell wall composition (pres-
ence/absence of outer membrane) will not be a confounding factor when validating our
computational predictions since all stomach isolates are also gram negative. Secondly, each of
the non-stomach isolates is from a different physiological niche which will help support our
hypothesis that the selected compounds were selective inhibitors of stomach-associated patho-
gens. Third, the 4 non-stomach isolates were from varying degrees of taxonomic relatedness to
the stomach pathogens. One of the non-stomach pathogens (P. gingivalis) is from a different
phylum than the stomach isolates, while the other 3 isolates (P. aeruginosa, E. coli, B. cenocepa-
cia) were from the same phylum. This variety in lineage also supports our hypothesis that
physiological niche is a driver of metabolic function independent of taxonomy. Finally, the
non-stomach isolates were readily accessible and easily culturable in our experimental system.
We subjected each of the 7 selected isolates to lawsone, cerulenin, and a-mangostin, that
inhibit thyX, fabF, and fabZ, respectively, and continuously monitored growth through sta-
tionary phase (further described in Methods).

The thyX inhibitor, lawsone, inhibited growth in all stomach-associated isolates (A. butzleri,
H. pylori, C. coli) (Fig 4A-4C), while not inhibiting growth of non-stomach associated isolates
(P. gingivalis, P. aeruginosa, E. coli, B. cenocepacia) (Fig 4D-4G). These results align with our
computational predictions that lawsone will inhibit growth of stomach-associated isolates while
not affecting growth of non-stomach isolates (7/7 computational predictions correct (100%)).

The fabZ inhibitor, @-mangostin, inhibited growth in one of 3 stomach-associated patho-
gens (H. pylori) (Fig 4H-4]). Further, there was no inhibition of growth in P. aeruginosa, E.
coli, and B. cenocepacia (Fig 4L-4N). However, there was evidence of growth inhibition in the
non-stomach-associated pathogen P. gingivalis (Fig 4K). These results could be explained by
previously reported off-target effects of @-mangostin. a-mangostin has been implicated in the
down-regulation of many genes besides fabZ, as well as up-regulation of genes related to oxi-
dative stress [37]. a-mangostin was also implicated in the down-regulation of many other
genes, as well as up-regulation of genes related to oxidative stress. The mixed inhibition
observed with a-mangostin suggests that it is not a selective inhibitor of fabZ. Further, the
growth inhibition of H. pylori observed in these results suggest that this growth assay can cap-
ture previously published data regarding off target effects of certain compounds, as fabZ was
not considered uniquely essential to stomach pathogens.
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Fig 4. Results from validation experiments. Growth of H. pylori, A. butzleri, C. coli, P. gingivalis, P. aeruginosa, E. coli, and B. cenocepecia in the presence of 3
compounds, lawsone (thyX inhibitor, uniquely essential gene inhibitory), a-mangostin (fabZ inhibitor, non-uniquely essential control), and cerulenin (fabF
inhibitor, non-uniquely essential control). Lawsone, top row (a-g). o-mangostin, middle row (h-n). Cerulenin, bottom row (o-u). Black growth curves show
the growth of the given bacteria in media without an inhibitory compound. The yellow, teal, and blue growth curves show the growth of the given bacteria in
the presence of lawsone, o-mangostin, and cerulenin, respectively. Shaded regions around the growth curves show the standard deviation across 8 technical
replicates. The data underlying Fig 4 can be found in Fig 4_Data.zip on Zenodo: https://zenodo.org/records/13952471.

https://doi.org/10.1371/journal.pbio.3002907.9004

The fabF inhibitor, cerulenin, inhibited growth in all 3 stomach-associated isolates (Fig 40-
4Q), while not inhibiting growth in P. aeruginosa (Fig 4S). However, cerulenin also showed signs
of weak growth inhibition in E. coli (Fig 4T) and B. cenocepacia (Fig 4U), and strong growth inhi-
bition in P. gingivalis (Fig 4R). Importantly, our result that cerulenin is a weak inhibitor of E. coli
growth concurs with a previously published study [39]. However, unexpected inhibition of stom-
ach isolates suggests the possibility of undocumented off-target effects of cerulenin. The mixed
inhibition observed in this test highlights the possibility of this assay to be able to identify and fill
gaps in model predictions, resulting in more informed models. For example, we see growth inhi-
bition of stomach isolates subjected to Cerulenin despite fabF being a predicted non-essential
gene in the models. Given this knowledge, we could modify our models to include fabF as an
essential gene in future iterations of this project. Overall, the results of this control experiment
confirm that cerulenin is also not a selective inhibitor of stomach-specific pathogens.

Additionally, P. aeruginosa, E. coli, and B. cenocepacia all belong to the proteobacteria class,
and all exhibit similar responses to a-mangostin. However, H. pylori, A. butzleri, and C. coli
also all belong to the same class, Epsilonproteobacteria, but exhibit stark differences in
responses to a-mangostin. This data further supports our claim that taxonomic class is not the
only indicator of metabolic function, and that there are other factors at play driving unique
metabolic functionality.

The results validating our computational prediction that lawsone (thyX inhibitor) is a stom-
ach-specific pathogen growth inhibitor are particularly encouraging; we inhibited growth of
all 3 stomach-associated pathogens while having no effect on growth of non-stomach associ-
ated pathogens, suggesting the possibility of stomach pathogen-specific growth inhibition.
With these results, we successfully demonstrated that our computational pipeline is valid for
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identifying unique antimicrobial targets for growth inhibition of physiological-location spe-
cific pathogens. The idea of targeted antimicrobial therapies has been previously explored, usu-
ally applied to targeting specific species of bacteria using antimicrobial peptides [43,44].
However, there has been little research on site-specific targeting of antimicrobial compounds.
Developing site-specific targeted antimicrobial compounds with a data- and model-driven
approach as described here could be a valuable new avenue to explore.

Discussion

The antimicrobial resistance crisis is rapidly reducing the effectiveness of current drugs to
treat microbial infections [3]. There is a need to begin to use creative approaches to identify
new or repurposed compounds that can be used as antimicrobials. There is limited work
exploring evolutionary pressures that lead to the rise of conserved microbial functions, which
could serve as site-specific antimicrobial targets. Here, we leveraged large-scale genomic data
and metabolic network modeling to uncover relationships between evolutionary history and
unique metabolic function, which we used to identify and validate a physiological niche-spe-
cific, targeted, antimicrobial compound.

Our collection of 914 GENREs of pathogen metabolism provides is a valuable resource that
can be used in further studies to explore questions related to pathogen metabolism. We
acknowledge the quality of our GENREs is limited by (1) annotation quality; and (2) genome
sequence quality. During our initial genome sequence selection process, we were unable to
stringently select for genomes based on specific completeness and contamination thresholds
in the BV-BRC database (beyond the thresholds described in Methods). We acknowledge that
more strict completeness and contamination cutoffs would allow our computational predic-
tions including our essential gene analysis to be more robust and rigorous. However, we have
ensured that the essential genes predicted for a more complete subset of GENREs are represen-
tative of the essential genes predicted for the whole collection (S1 Text). Nonetheless, our col-
lection of GENRE:s is of high quality according to reported MEMOTE scores (S2 and S3 Figs)
and serve as a valuable community resource.

Secondly, when interpreting essential gene results, conditionality is an important factor to
consider. Generally, it is known that in both in vitro and in silico computational settings,
essential gene predictions will vary based on media condition. Essential gene predictions in a
rich media context are more robust predictions and result in a minimal set of essential genes.
Alternatively, essential gene analysis in a minimal media produces a larger set of predicted
essential genes. This idea has been quantitatively explored in a previous study [45] and showed
a linear relationship between the number of essential genes predicted with GENREs and the
number of in silico media components: the more components present in the in silico media,
the fewer essential genes are predicted. By using a rich media in both our in silico simulations
and in our in vitro validation studies, we are left with a minimal set of essential genes that are
maximally essential. In future studies, we could consider performing our computational and
experimental analyses in the context of multiple physiological niche-specific media conditions.
However, we would need to take care to ensure that the results of our analyses were not being
influenced or confounded by differences in compounds present in the defined media.

Additionally, we acknowledge the possibility that the stomach pathogen uniquely essential
genes could be present in commensal organisms or that the identified inhibitory compound
lawsone could inhibit growth of commensal organisms. While generating a large collection of
commensal organisms for cross-referencing was outside of the scope of this project, we gener-
ated 4 GENRESs representative of the most prominent phyla of commensal gut bacteria (Firmi-
cutes: Enterococcus faecium, Bacteroides: Bacteroides intestinalis, Proteobacteria: Escherichia
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coli, Actinobacteria: Bifidobacterium longum). With these 4 GENREs, we generated a list of
essential genes in a complete media context. Only one of the 7 uniquely essential stomach
pathogen genes (tktA) was considered essential in one of the 4 selected commensal isolates (list
of all essential genes for the 4 commensals available in S6 Fig). It is encouraging that only one
uniquely essential gene was found to be essential in only one of the 4 commensal isolates; but
it is difficult to draw conclusions about whether the stomach pathogen uniquely essential
genes would be present in all commensal bacteria. Nonetheless, this analysis provides us with
evidence that the stomach pathogen uniquely essential genes are not ubiquitously essential in
all commensals. While this work provides a first step in developing antimicrobial therapies tar-
geted to the site of infection, we believe that there would be significant value in developing and
using a large collection of models of commensal organisms for cross-referencing our computa-
tional predictions.

Considering our in vitro validation assay, the 4 non-stomach isolates we selected have
favorable characteristics to be negative controls in this study, including: (1) all are gram nega-
tive; (2) all are from different physiological locations; (3) 3 were from the same phylum as the
stomach isolates; and (4) all were easily accessible and readily culturable in our experimental
system. Despite selecting 4 non-stomach isolates with certain key characteristics; there is
ample opportunity to expand the scope of our validation experiment in future iterations of this
study. This expansion would involve including a larger variety of both stomach pathogen iso-
lates, non-stomach pathogen isolates, and commensal organisms to solidify our conclusion
that lawsone is a selective inhibitor of stomach-specific isolates. However, due to the combina-
torial issue that is presented when choosing isolates to account for a wide range of phenotypes,
for this validation assay we selected the 4 non-stomach isolates detailed above.

Further, there is opportunity to expand the number of uniquely essential stomach-patho-
gen genes tested in our in vitro validation assay. We selected thyX and the corresponding
inhibitor lawsone, because thyX was the most uniquely essential gene to stomach pathogens.
In further iterations of this study, we could identify inhibitory compounds for all 7 essential
genes that meet our uniqueness threshold and validate those predictions as well. However, this
extended validation was outside the current scope of this study. Further, the selected inhibitory
compound (lawsone) does have existing literature describing its mechanisms of inhibition in
different bacterial species [33,35]. This literature provides evidence that lawsone does target
the gene of interest (thyX), but our study does not allow us to indicate or validate the mecha-
nistic driver of drug activity. It is possible that there could be off-target effects of each selected
inhibitor (including the positive controls cerulenin and a-mangostin), which could be why we
see inhibition of some isolates when we did not expect to. To resolve this issue, we could more
deeply profile each pathogen and each inhibitor in in future studies.

Our data-driven approach provides a valid framework for identifying highly targetable
physiological locations. While our collection of metabolic network reconstructions is of high
quality, further curating our model simulations and validation experiments in the ways dis-
cussed above would improve this work in future iterations. This computational pipeline and
approach is an important beginning step for further discovery and validation of targeted, site-
specific antimicrobial compounds that could eventually be brought to a clinical setting to help
reduce the harmful effects of broad spectrum antibiotic use.

Methods

Genome-scale metabolic network reconstruction from genome sequences

We first filtered all genome sequences in the BV-BRC [46] 3.6.12 database to only include
those that were considered “good” quality, “complete,” and which came from “human” hosts.
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BV-BRC guidelines define “good” as “a genome that is sufficiently complete (80%), with suffi-
ciently low contamination (10%)”, and amino acid sequences that are at least 87% consistent
with known protein sequence. “Complete” means that replicons were completely assembled.
“Human” hosts mean that the bacteria were isolated from a human host prior to sequencing.
We recognize that the completeness cutoff is not incredibly stringent and has the potential to
impact subsequent essential gene predictions. To address this limitation, we performed analy-
ses which we present in S1 Text.

There are 538 species of bacterial pathogens [2], some of which either do not have publicly
available genome sequences via BV-BRC or do not have “good” and “complete” genome
sequences and were isolated from a human host in BV-BRC. For simplicity, we use the word path-
ogen throughout the manuscript to include bacterial species that are considered either pathogens

» <«

or opportunistic pathogens. For all pathogens that pass the initial “good,” “complete,” and
“human” filters, there is at least 1 NCBI taxID for each species, with some species having multiple
unique NCBI taxIDs. Multiple genome sequences are available in BV-BRC for each NCBI taxID,
so sequences were selected based on the presence of metadata in a hierarchical nature. This meta-
data requirement was instantiated because we wanted to select sequences with enough available
metadata for downstream analyses. Sequences with the most associated metadata were prioritized.
If multiple sequences had the same amount of metadata, we selected the sequence that had isolate
environment-associated metadata. If multiple sequences fulfilled the previous requirements, the
strain that had most health-associated metadata was selected. This hierarchical selection was con-
tinued for metadata categories of isolation country, collection date, and host age, in that order of
priority. The resulting list contained 914 unique genome sequences. This procedure was auto-
mated with a python script available at https://github.com/emmamglass/PATHGENN.

All amino acid sequences were then automatically annotated with RAST 2.0 [47,48], and
GENRE:s were created for each strain using the Reconstructor [17] algorithm. All models are
publicly available (see Data Availability section). We benchmarked all GENREs using the com-
munity standard, MEMOTE [49], and have included overall MEMOTE scores and subcate-
gory scores are reported in S2 and S3 Figs.

Identifying core, accessory, and unique reactions and their corresponding
metabolic subsystems

To identify core, accessory, and unique reactions across pathogens, we generated a reaction
presence matrix. Rows corresponded to each individual GENRE, while columns were KEGG
[50] reactions. Reaction presence and absence was noted for each genre (1 = presence,

0 = absence). Then, a histogram was generated based on frequency of reaction presence. Reac-
tions that were present in less than 25% of GENREs were categorized as unique reactions, reac-
tions present in 25% to 75% or GENREs were categorized as accessory reactions, and reactions
present in greater than 75% or GENREs were categorized as core reactions. These cutoffs were
selected based upon an analysis performed in a previously published study [15]. Subsequently,
each reaction was annotated with the corresponding KEGG metabolic subsystem to which it
belongs. The histogram was then annotated with these metabolic subsystems in each bar of the
histogram. Secondly, we determined the proportion of reactions belonging to each metabolic
subsystem in core reactions compared to unique reactions.

Subsequently, we wanted to ensure that there were indeed reactions present in only 1 strain
by changing the number of bins in our histogram from 8 to 914. This analysis revealed that
there were 232 reactions that were unique to only 1 strain in the collection. This analysis
ensures that there are indeed reactions that meet the strictest criteria for uniqueness. We have
included this analysis in S7 Fig.
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FBA and t-SNE dimensionality reduction/visualization

For each of the 914 models, Flux Balance Analysis (FBA) was performed using the COBRApy
toolbox for each model in our collection to capture metabolic flux through all model reactions. The
objective function used in our FBA analysis was biomass synthesis. This objective function was
used because we use FBA to predict genes for biomass synthesis in subsequent analyses. Ten flux
samples were taken per model for a total of 9,140 flux samples, since reducing the dimensionality
of a larger number of flux samples was infeasible; t-SNE [51] was used for dimensionality reduction
and subsequent visualization of the FBA output. Points were colored based on taxonomic class and
subsequently colored on physiological location for visualization purposes. The perplexity parameter
was selected to attempt to preserve local and global relationships in the data as best as possible, by
using the relationship = N 3, where P = perplexity and N = number of points.

We chose to generate 10 flux samples per model due to computational limitations. More
specifically, if we were to produce 500 flux samples per GENRE, this analysis would yield a
dataset 457,000 rows x ~4,000 columns, which is computationally unfeasible to reduce the
dimensionality using t-SNE. However, to ensure that 10 flux samples was sufficient to capture
much of the flux solution space, we ran a subsequent t-SNE analysis. In this analysis, we ran-
domly sampled 100 GENRESs from the 914 total GENREs. Then, for each of those 100 GENREs
we generated 100 flux samples for each GENRE and used t-SNE for dimensionality reduction
and subsequent visualization (S8 Fig). We performed this analysis 4 times, each time selecting
a different subset of 100 GENREs, to ensure that the results would hold true for multiple ran-
domly selected subsets of GENREs. We observed similar clustering patterns with this larger
sample of fluxes (100), in each of the 4 randomly selected subsets of 100 GENREs. Specifically,
we still observe large clusters of Gammaproteobacteria and Actinomycetia. Additionally, we
still observe the separation of Epsilonproteobacteria into distinct clusters, one of which is
completely comprised of stomach isolates, suggesting that our original analysis using 10 flux
samples per GENRE can capture variation in flux as well as using 100 flux samples.

Due to the high-dimensionality of our data set, linear dimensional reduction techniques like
NMDS and PCA are not able to sufficiently display variation in the data set. To ensure that our
data set could not be sufficiently visualized with NMDS and PCA, we performed the same anal-
ysis in Fig 3 using NMDS and PCA methods. The resulting plots are shown in S9 Fig. We
observed that clustering in these plots is less defined. Because of less-defined clustering observed
with linear dimensionality reduction methods, we concluded that the nonlinear dimensionality
reduction method t-SNE was better for data visualization and testable hypothesis generation,
despite losing the ability to draw conclusions using absolute distances between clusters.

Determining uniquely essential genes

Essential genes for all 914 models were determined using an FBA-based single-gene-knockout
method in COBRApy (cobra.flux_analysis.variability.find_essential_genes()). All essential
genes were translated to KEGG orthologs. Strains and their corresponding essential genes
were grouped by isolation site. Essential genes present in > = 80% of strains in a given isola-
tion source were defined as uniquely essential to that isolation source. The most uniquely
essential gene present in stomach isolates that was not considered uniquely essential to other
isolation sites was selected, which were thyX.

In vitro growth assay for computational prediction validation

We validated our computational prediction that thyX is uniquely essential to stomach isolates
and can be targeted with lawsone. We selected 3 stomach isolates that were included in our
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network reconstruction collection, Arcobacter butzleri (DSM 8739), Helicobacter pylori (DSM
21031), and Campylobacter coli (JV20). We selected 4 non-stomach associated isolates Escheri-
chia coli (JM101), Pseudomonas aeruginosa (PAO1), Porphyromonas gingivalis (DSM 20709),
and Burkholderia cenocepacia (K-56-2). Strain selection criteria are outlined in the Results.

We grew overnight cultures of each species prior to beginning each experiment. Each spe-
cies was grown in a complete media to be consistent with the way computational predictions
were done. However, different complete media were used for each species to optimize their
growth capabilities. A. butzleri, B. cenocepecia, and C. coli were grown in Difco brain heart
infusion broth (Becton, Dickinson & Co) supplemented with 5% FBS (gibco by Thermo Fisher
Scientific). H. pylori was grown in brucella media (Remel) supplemented with 5% FBS. E. coli
and P. aeruginosa were grown in Luria broth (Sigma). P. gingivalis was grown anaerobically in
reinforced clostridial media (ATCC medium 2107). A. butzleri, H. pylori, and C. coli are micro-
aerophilic species, so they were grown in an airtight container with a Mitsubishi Anaeropak to
keep the oxygen concentration between 6% and 12% and carbon dioxide between 5% and 8%.
All species were grown at 37°C with the exception of A. butlzeri, which was grown at 28°C.

Initial strong solutions of cerulenin (Sigma), o-mangostin (MedChemExpress), and law-
sone (2-Hydroxy-1,4-napthoquinione, Sigma) inhibitors were created by first using dimethyl
sulfoxide (Sigma) to solubilize each compound. Brain heart infusion media was used for subse-
quent dilutions to achieve the necessary final concentration.

First, we performed a minimum inhibitory concentration (MIC) assay to determine the
MIC of each compound for A. butzleri, one of the stomach isolates. Beginning with a high con-
centration of each compound, we plated 2x serial dilutions of each compound with A. butzleri
from an overnight culture. We then ran a continuous growth curve using the Cerillo Stratus
plate reader, encased in an air-tight container with a Mitsubishi anaeropak to achieve the
microaerophilic conditions necessary for A. butzleri growth. Results of the MIC assay for each
compound are shown in S10 Fig. The resulting MIC for cerulenin, ¢-mangostin, and lawsone
are 2 mM, 34.3 pm, and 320 M, respectively.

The resulting MIC of each compound for A. butzleri was used in our final validation assay.
For this assay, we subjected each species to the same concentration of inhibitors 2 mM,

34.3 um, and 320 pm for cerulenin, @-mangostin, and lawsone, respectively, in a 96-well plate.
Each condition had 8 wells containing the compound and bacteria, 8 wells with the bacteria
and media, and 8 blank wells containing media. One plate was used per bacterial species to
ensure no contamination occurred. After inoculating the plate, the plate was sealed with a
Breathe-easy film to ensure gas exchange. The plate was then placed into the Cerillo stratus
plate reader and monitored through stationary phase. Growth curve data was then down-
loaded from the plate reader via the Cerillo Canopy and saved on a local machine for analysis.

Supporting information

S1 Text. Completeness cutoff does not impact essentiality predictions. This document
includes 2 additional analyses to support the idea that the 80% completeness threshold does
not impact our gene essentiality predictions. The data underlying Figs 1 and 2 is S1 Text can
be found in Datal.zip.

(PDF)

S1 Fig. Development of the PATHGENN GENRE collection. The BV-BRC database was
used to select pathogen genome strains that satisfied quality criteria. These genome strains
were then annotated using the RAST annotation toolbox to generate the amino acid FASTA
file that was then used in Reconstructor to generate the 914 GENRE:s in the collection.
(PNG)
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S$2 Fig. Overall and subcategory MEMOTE scores across the GENRE collection. Overall
MEMOTE scores had an average of 84%; subcategory scores were also considerably high with
minimal variability in quality. The data underlying S2 Fig can be found in Data2Data3.csv on
Zenodo: https://zenodo.org/records/13952471.

(PNG)

S3 Fig. Overall and subcategory MEMOTE score statistics. Average, standard deviation,
median, minimum, and maximum reported for overall MEMOTE score as well as the consis-
tency, metabolite annotation, reaction annotation, gene annotation, and SBO annotation sub-
categories. The data underlying S3 Fig can be found in Data2Data3.csv on Zenodo at DOL:
https://zenodo.org/records/13952471.

(PNG)

$4 Fig. Summary of gapfilled reactions and metabolites across the 914 GENREs. (a) Percent
of total reactions gapfilled, (b) percent of total metabolites gapfilled. The data underlying S4
Fig can be found in Data4.xlsx on Zenodo: https://zenodo.org/records/13952471.

(PNG)

S5 Fig. Phylogenetic tree of oral Fusobacteria and Bacteroidia species and Epsilonproteo-
bacteria species in PATHGENN with annotated 16s rRNA sequences. Fusobacteria and
Bacteroidia species in the oral environment are not genetically similar. Epsilonproteobacteria
are genetically similar, but occupy distinct environments. The data underlying S5 Fig can be
found in Data5.txt on Zenodo: https://zenodo.org/records/13952471.

(PNG)

S6 Fig. Commensal essential gene analysis. List of essential genes in 4 commensal bacterial
species (listed by species name and BV-BRC genome ID). Essential genes are reported in
KEGG identifiers.

(PNG)

S7 Fig. Histogram of annotated reactions across models. This plot is supplemental to the
data presented in Fig 2A, using more stringent unique reaction cutoffs. The histogram has 914
bins which allow us to see that 232 reactions are unique to one GENRE. The data underlying
S7 Fig can be found in Data7.csv on Zenodo: https://zenodo.org/records/13952471.

(PNG)

S8 Fig. t-SNE plot of 100 flux samples for 100 GENREs. The clustering relationships seen in
Fig 4 with 10 flux samples for each of 914 models are consistent with the clusters seen here
with 3 randomly selected subsets of 100 GENREs with 100 flux samples each. Each pair of
plots (aand e, band f, c and g, d and h) represents randomly selected subset of 100 GENRESs;
(a-d) are colored based on taxonomic class; (e-h) are colored based on physiological location.
The data underlying S8 Fig can be found in FluxSampleData.zip on Zenodo: https://zenodo.
org/records/13952471.

(PNG)

S9 Fig. Comparison of principal component analysis and non-metric multidimensional
scaling method on flux data. (a) principal component analysis, colored on taxonomic class.
(b) Non-metric multidimensional scaling colored on taxonomic class. (c) Principal compo-
nent analysis colored on isolate physiological location. (d) Non-metric multidimensional scal-
ing. The data underlying S9 Fig can be found in FluxSampleData.zip on Zenodo: https://
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zenodo.org/records/13952471.
(PNG)

$10 Fig. Results from MIC assay. MIC assay with Arcobacter butzleri for each chemical inhib-
itor. Stars indicate the selected MIC, the concentration used in the subsequent validation
experiments. The data underlying S10 Fig can be found in Datal0.zip on Zenodo: https://
zenodo.org/records/13952471.

(PNG)
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