PSEUDO-ANOSOV SUBGROUPS OF GENERAL FIBERED 3-MANIFOLD GROUPS
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ABSTRACT. We show that finitely generated and purely pseudo-Anosov subgroups of fundamental groups
of fibered 3-manifolds with reducible monodromy are convex cocompact as subgroups of the mapping
class group via the Birman exact sequence. Combined with results of Dowdall-Kent—Leininger and Kent—
Leininger—Schleimer, this establishes the result for the image of all such fibered 3-manifold groups in the
mapping class group.

1. INTRODUCTION

Farb and Mosher defined convex cocompactness in Mod(S)—the mapping class group of a finite type
orientable surface S of negative Euler characteristic—via analogy with convex cocompactness of Kleinian
groups [FMO02]. The convex cocompact subgroups of Mod(S) play an important role in the geometry of
surface group extensions and surfaces bundles [FM02, Ham, MS12] and have a rich dynamical and geometric
structure [Ham07, KL08a, KL0O8b, DT15, BBKL20]. One basic property is that convex cocompact subgroups
of Mod(S) are finitely generated and purely pseudo-Anosov, that is, every infinite order element is pseudo-
Anosov. In their introductory paper, Farb and Mosher asked if this pair of properties characterized convex
cocompactness [FM02, Question 1.5]. A “no” answer can be used to produce a relatively simple example of
a finitely generated group that is not hyperbolic, but has no Baumslag—Solitar subgroups, see [KL07, §8].
While, a “yes” answer would limit the possibilities for convex compact subgroups by requiring every finitely
generated subgroup of such a group to again be convex cocompact. We establish that the answer to Farb
and Mosher’s question is yes for subgroups that are contained in the image of the fundamental groups of
fibered 3—manifold groups inside the mapping class group, as we now explain.

Every orientable 3-manifold that fibers over a circle is the mapping torus My = S x[0,1]/(z,1) ~ (f(z),0)
of an orientation preserving surface homeomorphism f: S — S. Fixing a basepoint z € S C My, the
fundamental group, I'y = m My = m1(Mjy, z), splits as a semi-direct product, I'y = m.S x5, Z, where f, is
an automorphism of 7.5 = 71(S, z) induced by f. If ¢: I'y — Z is the homomorphism of this splitting, then
we write p: Z — {f) < Mod(S) for the monodromy homomorphism, so that u(¢(g)) = f¢9) for g € I'y.
Setting S* = S~ {z}, the monodromy is the descent of a homomorphism p*: I'y — Mod(S?), with image
in the finite index subgroup Mod(S%,z) < Mod(S?) consisting of isotopy classes of homeomorphisms that
fix the z—puncture. These homomorphisms fit into a commutative diagram with the Birman exact sequence,
defined by the homomorphism @, : Mod(S%, z) — Mod(S) induced by the inclusion ®: S* — S:

1 ™S I, ¢ Z 1
N
1 ™S Mod(S%, z) —=+ Mod(S) — 1

The Nielsen—Thurston Classification Theorem [FLP91] says that every element of a mapping class group
is either pseudo-Anosov, reducible, or finite order. Our main result proves that the answer to Farb and
Mosher’s question is “yes” for subgroups of 4*(I's) when f is an infinite order, reducible mapping class.

Theorem 1.1. Suppose x(S) < 0 and f: S — S is a reducible, infinite order mapping class. For any
subgroup G < T'y, the group p*(G) < Mod(S?) is convex cocompact if and only if it is finitely generated and
purely pseudo-Anosov.



Remark 1.2. We note that any finitely generated, purely pseudo-Anosov subgroup G < I'y as in Theo-
rem 1.1 is necessarily free; see Lemma 3.3.

The analogue of Theorem 1.1 when f is pseudo-Anosov was previously shown to be true in [DKL14]. The
analogue for f finite order is a consequence of the result for subgroups G' < 7.9, proved in [KLS09, Theorem
6.1]. Indeed, in this case p*(I'y) contains 1S with finite index, and convex cocompactness is preserved by
passage to finite index super- and subgroups. Combining these results, we see that the conclusion holds for
any f € Mod(S).

Theorem 1.3. Suppose x(S) < 0 and let f: S — S be any mapping class. For any subgroup G < Ty, the
group p*(G) < Mod(S#) is convex cocompact if and only if it is finitely generated and purely pseudo-Anosov.

1.1. Known results. There are a number of other settings where finitely generated, purely pseudo-Anosov
subgroups have been shown to be convex cocompact, providing an affirmative answer to Farb and Mosher’s
question [FMO02, Question 1.5]. As mentioned above, if G is a subgroup of either 7S or I'y for f pseudo-
Anosov, then the inclusion of G into Mod(S#) via the Birman exact sequence is convex cocompact if and
only if it is finitely generated and purely pseudo-Anosov [KLS09, DKL14]. The same result has been proved
under the assumption that G is either a subgroup of an admissibly embedded® right-angled Artin subgroup
A < Mod(S) [KMT17] or if G is contained in the genus-2 Goeritz group [Tsh21]. In [DT15], it was shown
that G < Mod(5S) is convex cocompact if and only if G is a stable subgroup (except for two sporadic surfaces
S), providing a purely geometric group theoretic characterization. This was strengthened in [BBKL20]
where it was shown that G < Mod(S) is convex cocompact if and only if G is finitely generated, purely
pseudo-Anosov, and undistorted.

1.2. Proof summary. When f: S — S has infinite order, u*: I'y — Mod(S?, z) is injective, and we identify
I'; with u*(I'y). For simplicity, we assume S is closed in this summary, ensuring that ®: S* — S sends every
essential curve on S* to an essential curve on S. To prove Theorem 1.1, we fix a finitely generated and purely
pseudo-Anosov G < I'y and show that the orbit map of G to the curve complex C(S%) is a quasi-isometric
embedding. From [Ham07, KL08a], this is equivalent to G being convex cocompact; see Theorem 2.4. The
central task is then to find a way to relate distances in G to distances in the curve complex.

For subgroups G < 1.5, such a relationship was established in [KLS09] by examining K,,, the stabilizer
in mS < Mod(S*%) of a simplex u C C(S*). Using the isometric action of 7.5 by deck transformations on
the universal cover p: H? — S, we define $),, to be the convex hull of the limit set of K, in OH?. The group
G also has a convex hull for its limit set, H, on which it will act geometrically and which therefore serves as
a geometric model for G. A key argument in [KLS09] proves that $¢ N $, has uniformly bounded diameter,
independent u. The simplices that make up a geodesic edge path between G—orbit points in C(S*) then give
rise to a chain of bounded diameter sets in $. The total diameter of this chain bounds distance by a linear
function of distance in C(S%), as required. A similar approach is used in [DKL14] for G < T'y, when f is a
pseudo-Anosov element of Mod(S). In this case, the mapping torus My is a hyperbolic 3-manifold, thus the
convex hulls for G and for simplex stabilizers can be taken in H? instead of H2. Once again, the key result
is that these convex hulls intersect in uniformly bounded diameter sets.

Our proof in the reducible case is inspired by these methods. The first obstacle is that M is not hyperbolic
when f is reducible, and consequently convex hulls in the universal cover are not as well-behaved. Instead,
we use the Bass—Serre tree T dual to the canonical reducing multicurve a for f. Suspending this canonical
multicurve « in the mapping torus My produces the torus decomposition, and 7' is the tree dual to the tori.
The action of 715 on T' thus extends to an action of I'y = m M; see §3.1. The analogues of the hull for
G and for a multicurve v C C(S*) are then played by a G-invariant subtree Tg C T and a K,~invariant
subtree T,, C T, respectively; see §3.3. Being purely pseudo-Anosov implies that G acts freely on T', and we
show that T is a geometric model for G; see Lemma 3.3. The key to proving Theorem 1.1 rests on showing
that T N T, has bounded diameter, independent of uw C C(S5%); see Proposition 4.1.

To understand T¢NT,, we return to examining the convex hulls in H2. The splitting of I ¢ =2 mSx(f) gives
an action of I'y on OH? by homeomorphisms, extending the isometric action of 715 by deck transformations;
see §3.1. This allows us to define ¢, which admits an isometric action by Gy = G N m1.S. Further, there is

It was shown in [CLM12] that admissibly embedded right-angled Artin subgroups are quite abundant in mapping class
groups. See also [Run21].
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a Go—equivariant inclusion T — $¢, since the action on T is free. The quotient po: He — Ha/Go = Lo
is an infinite type, two ended surface, and T /Gy = oy is a spine; see §3.4. The quotient group G/Go = Z
admits a cocompact, non-isometric action on ¥g. While the action of G/Gy on Xg is not isometric, the
induced action on the spine oy is; see §3.5.

A critical technical step in our proof is the construction of a compact subsurface 1 C ¥ so that for any
simplex u C C(S%), there is an element g € G for which po(Tg N Ty()) C 0o is contained in the subsurface
¥1; see Lemma 4.5. We say a simplex u C C(S?) is deep if po(T N Ty) C X1, and by the previous sentence,
it suffices to bound the diameter of T N T, for deep simplices. The construction of ¥; is outlined in the
subsection below, but we note that 7131 = G; < G is a finitely generated, purely pseudo-Anosov subgroup.

For a deep simplex u C C(S%), the intersection £ N$H, is contained in a uniformly bounded neighborhood
of Ha, N H,. Since G < m S is finitely generated and purely pseudo-Anosov, this has uniformly bounded
diameter from [KLS09], as described above. The vertices of the subtrees T and T, are precisely those which
are dual to regions of H2\ p~!(a) that $g and $, respectively intersect. If we also knew that the vertices
of T N'T, were dual to regions intersected by $HG N $H,, then for deep simplices, the bound on the diameter
of $H5 N H, would imply one for T NT,, and we would be done. However, it is possible for both ¢ and
£, to intersect the region dual to a vertex ¢ € T, while 5 N 9, is disjoint from it. Our proof thus splits
into two parts: bounding the diameter of a single subtree spanned by “hull type” vertices of T NT,, that
do come from $Hg N $H,, and the complementary subtrees of “non-hull type” vertices that do not; see §4.2.2.
The former are handled as just explained; see Lemma 4.7. For the latter, we proceed as follows.

For every path ¢ C Tg N'T, containing only “non-hull type” vertices, we produce geodesics dg C 99 and
5., C 09, that “run parallel” through the regions of H2\p~!(a) corresponding the vertices of £. Hence we
call the non-hull type vertices, “parallel type” vertices. If ¢ is long enough, then we show that po(dg) C X4
must project to a closed boundary geodesic of ;. Since this geodesic represents an element of Gy, it is
pseudo-Anosov, and so further projects to a filling geodesic in S by a result of Kra [Kra81]; see Theorem 2.2.
On the other hand, §,, projects to a simple closed geodesic in S (isotopic to a component of ®(u); see §2.2).
But if Z is too long, then the simple closed geodesic image of §, runs parallel to the filling geodesic image
of dg for a long time, which is a contradiction. This proves a uniform bound on the diameter of f; see
Lemma 4.12. Combining the hull-type and parallel-type subtree bounds for deep simplices, proves a uniform
bound on diam(Tg N7Ty,), for every simplex u C C(S?), as required.

1.3. Construction of ¥;. We now outline the construction of the compact subsurface ¥; C ¥y with the
property that for every simplex u C C(S*), the image po(Tg NT,) can be translated into X1 by an element
of G. Since the spine og = po(T) of X has an isometric action of Z = G /G, it suffices to prove a uniform
bound on po(Te¢ NT,) in op: we then simply take a sufficiently large neighborhood o7 of a fundamental
domain for the action of G/Gq on the spine oy C Yo, and take 31 to be a thickening of o1 in Xo.

To bound the diameter of py(T¢NTy,) in 09, we utilize Masur and Minsky’s subsurface projections [MMO00].
For simplicity we describe the idea in the case where our reducible surface homeomorphism f: S — S is a
Dehn twist about a single curve «. First, we let A — S be the annular cover whose core curve is «, and for
every simplex u C C(S?), let w(v) be the subsurface projection of v = ®(u) C C(S) to the arc graph of A;
see §5.2. Next, for every edge e C Tg, there is a dual geodesic a. C p~!(a), and we can identify the annulus
A with the quotient A = H?/Stab,, s(&.). There are two boundary components of 9 that non-trivially
intersect &, and we let A, denote their image in A, viewed as a subset of the arc graph of A; see §5.1. These
sets A, decorate the edges e of Tz and are G-equivariant, with Ay = f¢9)(A.) where f*(9) is the image
of g € G under the homomorphism G — (f); see Lemma 5.2.

The key idea is now the following: any edge e for which the intersection number of an arc in A, with
one from 7(v) is sufficiently large is a “dead end”, beyond which the hull type subtree and any parallel type
subtree cannot extend; see Lemma 5.6 and Lemma 5.9. Since og has finite valence, distant vertices in og
should basically differ by a large power of the generator of G/Gy, which is isotopic to a large power of the
Dehn twist f. Thus for a geodesic ¢ in Tg N T, with po(¢) sufficiently long, there must be two edges e, ¢’
of £ and an element of g € G so that ¢ = g(e) and |¢(g)| is large. However, if A, and w(v) have small
intersection number (because e is not a “dead end”), then Ay = Ay = f99(A,) and 7(v) will have large
intersection number (depending on |¢(g)|). Thus we get a bound on how large |¢(g)| can be, and hence a
bound on how long po(¢) can be.



Our proof in the general case of arbitrary reducible f follows the same basic idea using the subsurface
projection to the complementary components of S\« to give a decoration on the vertices of T in addition
to decorations of edges coming from the annular covers. The argument is complicated by the fact that f
may act trivially on some subsurfaces and some annuli; see §5 for details.
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2. PRELIMINARIES

Throughout, S will denote a connected orientable finite type surface with negative Euler characteristic.
We will equip this surface with a complete hyperbolic metric of finite area that identifies H? with the universal
cover p: H2 — S. Given a point z € S, we let S* denote the surface obtained by puncturing S at z. We
also equip S* with a complete, finite area hyperbolic metric. The curve complex of S (or S%) is the flag
simplicial complex C(S) whose vertices are isotopy classes of essential, simple closed curves on S with two
isotopy classes joined by an edge if they have disjoint representatives. Fach vertex of C(S) has a unique
geodesic representative and two vertices will be joined by an edge if and only if these geodesic representative
are disjoint. Hence, each simplex of C(S) corresponds to a multicurve on S, which has a unique geodesic
representative. Whenever convenient, we will assume that a simplex/multicurve v C C(S) is represented in
S as a geodesic multicurve.

Given a surface with boundary Y, we define the arc and curve complex to be the flag simplicial complex
AC(Y") whose vertices are isotopy classes of both essential, simple closed curves and isotopy classes of essential
arcs meeting the boundary of Y precisely in their endpoints.? As with the curve complex, two vertices of
AC(Y') are joined by an edge if there are disjoint representatives for the isotopy classes.

When S is a once-punctured torus or four-punctured sphere, one usually makes a different definition for
C(S), but we do not do that here. In particular, these curve complexes are discrete, countable sets. On the
other hand, if Y is a torus with one boundary component or a sphere with at least one boundary component
and the sum of the number of boundary components and punctures equal to 4, then we do take the usual
modified definition for AC(Y") in which vertices are joined by an edge if they intersect once or twice for these
two types of surfaces, respectively. The reason is that for C(.S), we need Theorem 2.3 below to hold, while
for AC(Y"), we will use coarse geometric properties in §5.

If A — S is an annular cover, let A denote the compact annulus obtained from A by adding its ideal
boundary from the hyperbolic metric on S. This compactification, A, of A is independent of the choice of
metric. The arc complez A(A) is the flag simplicial complex whose vertices are isotopy classes of essential
arcs on A, where unlike other surfaces with boundary, isotopies of A are required to be the identity on 0A.
Edges of A(A) correspond to pairs of isotopy classes with representatives having disjoint interiors. The annuli
of primary interest come from curves w € C(S). More precisely, every such curve w determines a conjugacy
class of cyclic subgroups of 7.5 and hence an annular covering (unique up to isomorphism) A = A, — S
for which w lifts to the core curve.

2.1. Mapping class groups and Birman exact sequence. We recall that the mapping class group of
S is the group of orientation preserving homeomorphisms (or diffeomorphisms) of S, modulo the normal
subgroup of those homeomorphisms that are isotopic to the identity,

Mod(S) = Homeo™ (S)/Homeog(S).

Every element of Mod(.S) is thus the isotopy class of a homeomorphism.

Recall that we have fixed a basepoint z € S, and 5% = S~ {z}. We write ®: S — S for the inclusion.
The puncture of S* that accumulates on z via ® is called the z—puncture and we often refer to ® as the map
that “fills the z—puncture back in”.

We are interested in the finite index subgroup Mod(S%, z) < Mod(S#) consisting of isotopy classes of home-
omorphisms that fix the z—puncture. Any homeomorphism ¢: S* — S% defining an element of Mod(S?, z)

20One often allows properly embedded arcs with ends in cusps of Y, if any, but we will not need such arcs in our work, so
omit them in our definition.
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uniquely determines a homeomorphism ¢’: S — S extending over the point z by sending it to itself and by
the formula ¢’ o ® = ® o on S*. When the context makes the meaning clear, we usually abuse notation
and use the same symbol ¢ to denote the mapping class in Mod(S%, z), a representative homeomorphism of
5%, as well as the unique extension to a homeomorphism of S.

The extension of a homeomorphism of (5%, z) over the point z via the map ® defines a surjective homo-
morphism @, : Mod(S%, z) — Mod(S), and the Birman’s ezact sequence [Bir69] identifies an isomorphism of
the kernel of ®, with m1.5:

1 TS Mod(S%, z) 2, Mod(S) —— 1.

It will be useful to describe explicitly the isomorphism of the kernel of &, with mS. If ¢: S — S*
represents an element of the kernel, then the extension ¢: S — S over the point z is isotopic to the identity,
by an isotopy that does not preserve z. If ¢;: S — S is the isotopy so that g = ¢ and ¢; = 1g, then
defining (t) = ¢+(z), we see that + is a loop based at z. The isomorphism of the kernel with 7.5 assigns
the homotopy class of v to ¢ € Mod(S%,z). Alternatively, we can think of producing a homeomorphism
©: §% — 8% by pushing z around the loop y~! by an isotopy on S; we call this the point push around v~'.

Another perspective is useful in our setting. Fix a point zZ € p~1(2). Any homeomorphism ¢: S* — S*
(representing an element of Mod(S?, z)) has a unique lift ¢: H? — H? fixing Z. The lift & is a quasi-isometry,?
and so has a unique extension to a homeomorphism 0H? — OH?2. Any other representative of the isotopy
class of ¢ in Mod(S?, z) has the same extension, since the lift of the isotopy moves all points a bounded
hyperbolic distance, thus we obtain an action of Mod(S%, z) on OH?2.

Next observe that if pg: S* — S* represents an element in the kernel of ®,, and ¢;: S — S is the isotopy
to the identity. This isotopy lifts to an isotopy ¢; from the lift @y fixing 2z to a lift of the identity. The
resulting lift of the identity, @1, is thus a covering transformation, namely the one associated to v (as defined
above by v(t) = ¢¢(z)). Thus, we have the following:

Proposition 2.1 (c.f. [LMS11, §1.2.3]). The restriction of the action of Mod(S?, z) on OH? to m1(S) agrees
with the extension of the isometric covering action of m.S on H2.

Kra’s Theorem [Kra81] describes precisely which elements of 1S represent pseudo-Anosov elements of
Mod(S?, z). Recall that a loop is filling if it cannot be homotoped disjoint from any essential simple closed
curve (and is thus a property of the homotopy class).

Theorem 2.2 ([Kra81]). An element of m1.S represents a pseudo-Anosov element of Mod(S%, z) if and only
if it is represented by a filling loop.

Since being pseudo-Anosov is equivalent to not having any isotopy classes of periodic simple closed curves,
the point pushing description of Birman’s isomorphism suggests a proof of Theorem 2.2; see [FM12, §14.1.4].

2.2. Fibers and trees. We let C*(S*) C C(S%) denote the subcomplex spanned by curves whose image
under ®: S* — S is an essential curve on S. We call the vertices of C*(S%) the surviving curves of S*.
Since ® maps disjoint curves to disjoint curves, it induces a simplicial, surjective map which we also denote
®: C*(5%) — C(S), by an abuse of notation. Given any simplex, v C C(S), we let ®~!(v) denote the preimage
of the barycenter of v. The following is proved in [KLS09].

Theorem 2.3. For any simplex v C C(S), there is a w1 .S —equivariant homeomorphism from the Bass—Serre
tree T dual to v to ®~1(v) C C*(S?). The image of a vertex t € T wunder this homeomorphism is the
barycenter of a simplex uy C C*(S%) for which ®(u:) = v and ®|,, is injective. Moreover, t,t' € T are joined
by an edge if and only if uy Uuy spans a simplex of C%(S?).

The proof of Theorem 2.3 involves some ideas that will be useful for us, which we briefly describe. Given
a simplex u C C(S?), we let K, denote the stabilizer of u in 7S < Mod(S%, z) and $, C H? denote the
convex hull of the limit set of K, in OH? (if it is nonempty). If u C C*(S?), v = ®(u), and ®|, is injective,
then p: H? — S maps the interior $5 C $, to a component of S~ v (where v is realized by its geodesic
representative). Up to isotopy, p(£)S) is the d—image of the component U C S*\u containing the z—puncture.

3When S has cusps we assume any homeomorphism ¢ of S is an isometry in some neighborhood of the cusps; this is a
convenience, however, as the extension of the lift to OH? — 9H? exists independent of this assumption.
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One way to think about this fact is that point pushing around a loop preserves u precisely when the loop is
disjoint from wu, that is, when the loop (intersected with S*) is contained in U. When ®|, is not injective,
the component of S*~\u containing the z—puncture is a once-punctured annulus, making K, an infinite cyclic
group. In any case, the stabilizer of 9, is exactly K, ; see [KLS09, Theorem 4.1].

2.3. Convex cocompactness. Farb and Mosher originally defined convex compactness in the mapping
class group using the action on Teichmiiller space; see [FM02]. For our purposes, it will be most convenient
to use the following formulation due to Kent—Leininger and independently Hamenstéadt.

Theorem 2.4 ([KLO08a, Ham07]). A subgroup of the mapping class group is convex cocompact if and only
if it is finitely generated and the orbit map to the curve complex is a quasi-isometric embedding.

We will apply this to the case of subgroups of Mod(.5%). We note that since the inclusion of a finite index
subgroup into a bigger group is a quasi-isometry, convex cocompactness survives passage between finite index
super- and subgroups.

3. SET UP

We now fix a homeomorphism f: S — S that defines an infinite order, reducible mapping class in Mod(.S).
We let I' denote the w1 S—extension group I'; that is the fundamental group of the mapping torus for f. Since
f defines an infinite order mapping class, the homomorphism p*: T' — Mod(S?, 2) is injective and we identify
I’ with its image in Mod(S?, z). Let a = a1 U.. .U, C S be the canonical reduction system for the reducible
mapping class defined by f; see [Iva92]. Since convex cocompactness is preserved by passing to finite index
super-groups and I'y» < I'y has finite index, we can replace f with a power when it is helpful. We do so,
and thus (after an isotopy if necessary) assume that f fixes each curve «; and each component of S\ a. By
possibly raising to a further higher power, we can also assume that f restricted to each component of S\« is
either the identity or pseudo-Anosov. We also assume throughout that « is realized as a geodesic multicurve
in S with respect to our fixed hyperbolic metric.

A complementary subsurface of « is defined as the path metric completion Y of a component Y° C S\ a.
Such a complementary subsurface Y is a hyperbolic surface with geodesic boundary and the inclusion Y° —
S\« extends to an immersion Y — S that is injective on the interior, and at most 2-to-1 at points of 9Y.
By an abuse of notation, we often write Y C S or refer to the map ¥ — S as the inclusion.

Write Y1, ..., Y} to denote the complementary subsurfaces of . Since each a; and each Y} is invariant by
f, we obtain “restricted” maps f|y,: Y; — Y;. We can re-index the complementary subsurfaces so that there
is some 0 < m < k such that for j < m, fly, is pseudo-Anosov on Y; and for j > m, f|y, is the identity. We
refer to these subsurfaces Y; as the pseudo-Anosov components and the identity components, respectively.

Given f as above, we fix a finitely generated subgroup G < T that is purely pseudo-Anosov as a subgroup
of Mod(S#). If G is in the kernel of the homomorphism ®,.: I' = (f) < Mod(S), then G is contained in m.5,
and hence is convex cocompact in Mod(S*) by [KLS09, Theorem 6.1]. Thus, we may assume that ®, sends
G onto the subgroup of {f) generated by f™ for some n > 0. By passing to a further power if necessary, we
can assume that n = 1; this will be convenient for notational purposes later and does not affect any other
properties of f we have already assumed. If ¢|g is injective, then G = Z, and the theorem also follows, so
we assume Go = ker(¢|g) = G NS is nontrivial (hence infinite).

3.1. Action on H? and 7. We assume that in our fixed hyperbolic metric, the lengths of the components
of a are short enough that any two components of p~!(a) are distance at least 2 apart in H2. The action of
715 on H? preserves p~!(a), and we let T’ denote Bass—Serre tree dual to p~!(a). The action of 715 on H?
and T extend to an action of I' as we now explain.

As in §2.1, given any ¢ € T’ we write ¢: S* — S* for a representative and its extension ¢: S — S (after
filling the z—puncture back in). Since ¢ € I, the homeomorphism ¢: S — S is isotopic (ignoring z) to f*,
for some k € Z. The lift ¢: H? — H? fixing 7 is thus isotopic to a lift of f* (not necessarily fixing Z), and so
has the same extension to OH?. Given any lift f: H? — H? of f, any lift of f* is then obtained by composing
f* with an element of 7;.S. Conversely, any such composition is a lift of f*. Hence, the action of I' on OH?
factors through an isomorphism with the group (]F”V7 m15) acting on OH?2. This isomorphism I' & (f, m1.5) then
defines an action on H? extending the covering action of m;S. Alternatively, the given lift fis equivariantly
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isotopic to the lift @ of some ¢ € T’ with ®,(p) = f. Then I' = 7.5 % (p) acts on H? so that m1.S acts by
covering transformations and " acts by fk for all k € Z. s

An alternative way to see the action of I" on H? is to consider the universal covering M ¢ of the mapping
torus, lift the suspension flow, and consider the quotient by the flow lines. Since the universal cover H? of S
intersects each lifted flow line once, the flow space is identified with H? and the action of I on M} descends
to an action of I' on H? which agrees with the covering action when restricted to m.S.

Since f preserves a, f preserves p~1(a). Therefore, I' acts on the Bass—Serre tree T' dual to a. Since
f fixes each Y; and each curve in «, a pair of vertices/edges of T are in the same I'-orbit if and only if
they are in the same 7 S—orbit. Unlike the action on H?2, this action on T is by isometries. For each edge
e C T, we write &, to denote the component of p~!(a) that is dual to e. We choose a I'-equivariant map
H? — T sending &, to the midpoint of e, and each component of S~ p~!(a) to the %ﬂleighborhood of
the dual vertex. There are many such choices, and we sometimes make a choice of one that is convenient
for certain applications; for example, we may take such a map to be K—Lipschitz, where K depends only
on the minimal distance between pairs of components of p~!(a). We also choose a m;S—equivariant map
T — & (a) C C(S%) C C(S?) as in Theorem 2.3, identifying vertices and edges of T with simplices of
C(S*) in " 1(a).

3.2. Subsurfaces and annuli for vertices and edges. For each vertex t € T, we let 57,50 denote the
component of H2~ p~!(a) dual to ¢, and use Y; for its closure. Let K; = Staby g(Y;) and define V;
to be ﬁ /K;. We can identify each Y; with exactly one of the complementary subsurfaces Yi,...,Y) as
follows: for a vertex ¢t € T, let Y, = H? /K;. The surface Y; is then the convex core of T; and there is
a unique i(t) € {1,...,k} so that the covering map YT; — S maps the interior of Y; isometrically onto
Yiy € {YP,...,Y2}. If t and ¢’ are in the same I'-orbit, then Y; and Y are equivalent covers of S with
different choices of base point. Hence there is an isomorphism of covering spaces T; — T4 that sends Y;
isometrically to Yy/. In particular, Yj;) = Yy and we use this to identify Yy = Yj) = Yy = Yo

For each edge e C T, we let K., = Stab,, s(d.) and define A, to be the annulus H?/K,. There exist a
unique i(e) € {1,...,n} so that p(ae) = a;(). When convenient, we will also write ae = a;(c). When e and
e’ are in the same I'-orbit, A, and A, are equivalent annular covers of S with core curve a,. Hence, we can
isometrically identify all these annuli: A, = Ajo) = Ajer) = Aer-

We note that each vertex ¢ and edge e of T is identified with simplices a; and a. of C*(S#), respectively,
by Theorem 2.3, and K; = K,, and K. = K,_ are indeed special cases of simplex stabilizers (so the notation
is compatible with that in §2.2). Moreover, Y, = $Ha, and e = N, , as in §2.2. Using this, and the fact that
the I'-orbits and w1 S—orbits of vertices and edges of T" are the same, it follows that the 7 S—equivariant map
T — &~ !(a) C C*(S?) C C(S?) is also ['-equivariant.

3.3. Hulls and Trees. We now define invariant subtrees of the Bass—Serre tree T for the simplex stabilizers
K, as well as our purely pseudo-Anosov subgroup G < I'. These subtrees will allow us to translate distances
in C(S?) to distances in G.

For each simplex u C C(S?), the stabilizer K, < m1.S acts by isometries on T'. If the action of K, does
not have a global fixed point, we let T}, be the minimal invariant subtree of K. In this case, T, is the union
of the axes of loxodromic elements; see, e.g. [Bes, Proposition 2.9]. If K, has a global fixed point in T, we
define T, to be the maximal fixed subtree. We can readily determine the structure of T,, by examining the
component of S*~\ u that contains the z—puncture.

Lemma 3.1. Let u C C(S?) be a multicurve and U be the component of S*~u that contains the z—puncture.

(1) The action of K, on T has a global fixed point if and only if a can be isotoped to be disjoint from
O(U) in S.

(2) When K., has a global fized point, T, is either a single vertext € T or a single edge e C T'. Moreover,
T, is an edge e if and only if U is a once-punctured annulus and each component of ®(0U) is isotopic
to the curve a. of a.

(3) If u contains a non-surviving curve, then T, is a single vertex.

(4) When u consist only of surviving curves and T, is not an edge, then t € T, if and only ifﬁuﬂfff # 0.



Proof. As described in §2.2, K, is the group of all pushes along loops in U based at z (after filling the z—
puncture back in). This group is naturally isomorphic to 71 (®(U), z) < 71(S, z) = m1.S. Hence K, contains
a hyperbolic isometry of m1.5 if and only if ®(U) is not a once-punctured disk.

Now observe that ®(U) is a once-punctured disk if and only if w contains a non-surviving curve. In this
case, K, is an infinite cyclic group generated by a parabolic isometry. Hence, there is an invariant horoball
for K, that is contained in }7;’ for some vertex t € T. It follows that K, fixes no geodesic in p~1(a), but
fixes Y;°. This implies T,, = {t}, which proves part (3).

We now focus on the case where ®(U) is not a once-punctured disk, so K, contains a hyperbolic isometry
of m1.5, or equivalently, when £),, is non-empty.

The fixed points in T of the hyperbolic elements of 7,5 are determined by their axes in H? as follows.
Let g € m1.S be hyperbolic and let v, be the axis of g in H?. If , C ﬁo for some vertex t € T, then t is the
unique fixed point of g. If 7, = &, for some geodesic a. C p~*(a), then the edge e C T is the maximal fixed
subtree of g in T. Finally, if v, crosses a geodesic in p~!(a), then periodicity says the set of geodesics in
p~!(a) that ~y, crosses will be the edges of a bi-infinite geodesic ¢, C T In this case, g acts loxodromically
on T', and its axis in T is £4. Conversely, if g acts loxodromically on T" with axis £, C T', then 7y, crosses all
the geodesics in p~!(a) corresponding to the edges of Ly.

Returning to K,, if $), contains a bi-infinite geodesic that intersects a geodesic in p~!(«a) transversely,
then there is some hyperbolic element of K, whose H2-axis crosses a geodesic in p~!(«). Since this element
will act loxodromically on 7', K,, has no global fixed point, and thus T, is the union of axes of the elements
of K, that act loxodromically on T'. A vertex t € T is then on the T—axis of a loxodromic element g € K,
if and only if ¢ is a hyperbolic element of 7S whose H?-axis intersects Y, in a bounded diameter segment.
Thus, t € T, if and only if $, N i/v;" # (), proving part (4). In this case, p(£)) is isotopic to ®(U), so 9,
containing a geodesic that intersects a geodesic in p~!(«a) transversely ensures that a cannot be isotoped to
be disjoint from ®(U), proving (the contrapositive of) one of the implications in part (1).

If $,, does not contain a geodesic that intersects a geodesic in p~!(a) transversely, then either §° is
contained entirely in f’to for some vertex t € T, or £, is one of the geodesics a. C p~'(a). If H2 C }tho,
then T, = {t}. In this case, p()%) is isotopic to ®(U), so H2 C Y, implies ®(U) is disjoint from a. If
$Hu = @, then K, = Stab,, s(9,) is an infinite cyclic group generated by a hyperbolic isometry whose axis
is the geodesic &.. Thus, T,, = e and p($,) = a. C a. It follows that ®(OU) is an annulus with core
curve isotopic to ae. Thus, U is a once-punctured annulus and « can be isotoped to be disjoint from ®(U).
Combined with the case where ®(U) is a once-punctured disk, this proves the other implication of part (1).
Furthermore, when combined with the discussion above from the proof of part (3), we also deduce part (2).
This completes the proof of the lemma. O

These invariant subtrees have the following intersection property for nested simplices. This allows us to
produce paths in T from paths in C(S%).

Lemma 3.2. Let u,w be simplices of C(S?). If u C w, then T, N'Ty # 0.

Proof. Since u C w, we have K,, < K,. If K, has a global fixed point, then T, is the maximal fixed subtree
of K, and hence T, is also the maximal fixed subtree of K,,. In this case, T, C T,,. If neither has a global
fixed point, then T, and T}, are the minimal invariant subtrees of K,, and K,,, respectively, and so T, C T,.
In either of these cases, T, N T}, # 0.

Finally, suppose T, is a minimal invariant subtree for K, and T, is the maximal fixed subtree of K,,. By
Lemma 3.1, either Ty, is a vertex or edge, and in either case, there is an element g € K,, whose fixed point
set is exactly T,,. Since T, has no global fixed point, there is an axis ¢ C T, for an element h € K, acting
loxodromically on T,,. If £ N Ty, # 0, then T,, N Ty, # 0, as required. On the other hand, if £N T, = 0, then
£Ng(f) = 0, and the geodesic from £ to g(£) must non-trivially intersect T,,. Since this geodesic is contained
in Ty, it follows that T, N'T,, # 0. O

Recall that we have fixed a finitely generated and purely pseudo-Anosov subgroup G < I' and have passed
to an appropriate power of f so that ®,(G) = (f). We have Go = G NS, and by our assumptions above,
G is an infinite, normal subgroup. Define $ to be the convex hull of the limit set of the action of G on
OH?. Since we are assuming G # Gy, the action of G on H? is not by isometries and does not necessarily
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preserve $. However, since Gy is a normal subgroup of G, the limit set of Gy and G in OH? are equal and
Gy does act isometrically on H? preserving .

Since G does act by isometries on the Bass—Serre tree T, we can use T to produce a geometric model
for G as follows: since G is purely pseudo-Anosov and torsion free, no element of G fixes any simplex of
C(S%). Hence, G acts freely on T as its vertices and edges are I'-equivariantly identified with simplices of
C*(S#) in ®~!(a). Thus, the minimal invariant subtree, T of the action of G on T is again the union of
axes of loxodromic element of G. A compact fundamental domain for this action can be found by taking
the minimal subtree containing a base vertex v € T and all the translates of v by a finite set of generators
of G. Thus, the action of G on T gives G a graph of groups decomposition with trivial vertex and edge
groups. This proves the following lemma.

Lemma 3.3. The group G is free. Moreover, the tree T has uniformly finite valence and a free, cocompact
G-action.

Remark 3.4. Since Gy is a normal, infinite subgroup of G, the tree T is also the minimal invariant tree
of the action of Gy on T'. Hence T¢ is also the union of the axes of the loxodromic elements of Gy.

Since every element of Gy is loxodromic on T, and since G and G have equal limit sets in 9T and OH?Z,
a similar argument as Item (4) for Lemma 3.1 shows that the same conclusion holds for T and $¢.

Lemma 3.5. A vertext € T is a vertex of Tg if and only if }7;0 NHe # 0.

3.4. The Gy—quotient and its spine. Since Gy acts freely on T, there is a Gy—equivariant embedding
Te — $H¢ sending vertices inside the component they are dual to (in a G-equivariant way) and sending
edges to geodesic segments. Therefore, we get a surface with a spine

Te/Go =00 C Xo = Ha/Go.

Figure 1 gives an example of 3 and its spine oy.

—/——L_'\\

FIGURE 1. Part of ¥y and its spine oy C Yg. Each edge ¢ C oy transversely intersects its
dual arc a..

Each edge e C T intersects exactly one component &, C p~'(a) and we define
Qe = 0 N Ha.

We write a. C ¥y for the image of @, in Yo where e C T is an edge that projects to €; note that for any
two edges €,¢&’ of 09, a. N¢e’ is empty if € # &', while a. N ¢’ is a single point if € = ¢’

3.5. Polygons and G—quotient. For each vertex t € T, the intersection }7} N$H¢ is an even-sided polygon
with sides alternating between arcs contained in p~!(«) and those in $g. Indeed, the sides in p~!(«) are
precisely the arcs a. where e is an edge of T adjacent to t. We let Z C $H¢ be this polygon corresponding
to the vertex t € Tg, and we write aaz to denote the union of the sides a. over all edges e adjacent to t;
see Figure 2.
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FIGURE 2. Left: The polygon Z, C HeNY, (shaded). Right: The “image” polygon Z, in
0.

Let po: H? — Sy = H?/Gy be the quotient by Gy, which contains ¢ as its convex core (by definition),
and write pg = Doln, @ NG — Lo for the restriction. Let n: §0 — S be the associated covering corresponding
to Gy < w18, so that 1o py = p.

Now 7~ 1(a) N Xg is a union of the geodesic arcs a. over all edges € of 0. The further restriction of pg
to Zg is injective on Zt\ﬁaz and maps 8a2t into 77_1(04). For a vertex 7 € gg, write Z, = Z where t is
a vertex of Tg with po(t) = 7, and write Z, — ¥ to denote the restriction of pg. This map is injective,
except possibly on the points of Oaz. As an abuse of notation, we write Z, C Xy (even though it is not
necessarily embedded). See Figure 2.

Since Gy is a normal subgroup of G, we have an action of G/Gy = Z on §0, and we observe that each
element of G/Gy acts as a lift of a power of f to the covering space §0. The action of G/Gy on 50 is free
because the action of G/Gg on oy is free. The action of G/Gy = Z does not preserve ¥y, but we can find
a homeomorphism §: gg — §0 so that f(Xo) = 2o and f is properly isotopic the generator of G/Gy by an
isotopy that preserves n~1(«). If the generator sends a vertex T € o to a vertex 7 € og, then §(Z,) = Z,/;
indeed, we use this to define the isotopy of the generator to the map f. By further proper isotopy preserving
n~1(a) and ¥¢, we may assume §(og) = 0g. The action of (f) on ¥ is a topological covering space action
with compact quotient ¥ containing a spine o = ¢ /(f).

We note that the map g +— j*(9) defines a homomorphism G — (f) that descends to an isomorphism
G/Gy = {f). Since ¢|¢g is surjective, we also note that f is isotopic to a lift of f. Moreover, the projection
Ta — o9 is equivariant with respect to this homomorphism.

4. REDUCTION TO A DIAMETER BOUND FOR po(Tg NTy,)

In this section we reduce the proof of Theorem 1.1 to proving that the diameter of po(TNTy,) is uniformly
bounded for all simplices u C C(S%). This has two steps. First we show that Theorem 1.1 follows from a
uniform bound on the diameter of Tg NT,. Second we show that the diameter bound on Ty N T, follows
from the a priori weaker bound on the diameter of pg(T¢ N T,). The proof of Theorem 1.1 will then be
completed in §5 where we verify that po(T¢ N Ty,) is uniformly bounded.

4.1. First reduction. We give the proof of Theorem 1.1 assuming the following proposition.

Proposition 4.1. Given G < T finitely generated and purely pseudo-Anosov in Mod(S#), there exists D > 0
so that for all w C C(S%) we have
diam(Tg N T,) < D.

Proof of Theorem 1.1 assuming Proposition 4.1. Let P: T — Tg be the closest point projection. Observe
that P maps any connected subset of T'\T to a point. In particular, for any geodesic segment ¢ outside
10



Tg, P(o) is a point. Now suppose v C C(S?) is any simplex and ¢ is a geodesic in Ty,. Then o = ogoi09,
where o7 is a (possibly empty) geodesic segment in T N'T,, and og,02 meet T in at most one point. It
follows that P(o) is either a point, or P(o) = o1. In either case, diam(P(c)) < D by Proposition 4.1.

Fix a vertex t € T and let u € C(S7) be a curve in the simplex that is the image of ¢ in ®~1(a) C C(57).
Consider the orbit map G — C(S%) given by g — g(u). Write dr for the (geodesic) metric on T and d¢ for
the metric on the 1-skeleton of C(S%).

Claim 4.2. dr(t,g(t)) < 2Ddc(u, g(u)) + D.

Assuming the claim, we complete the proof of the theorem. Fix a finite generating set for G and write
dg for the word metric. A standard application of the triangle inequality implies that the orbit map
G — G -u C C(S?) is lipschitz with respect to dg. Next, note that the orbit map G — G -t C T is
a (k, A\)—quasi-isometry, for some k, A, and thus by the claim

da(1, 9) < kdp(t,g(t)) + A < 26Dde(u, g(u)) + £D + A

Therefore, the orbit map G — G-u C C(S%) is a quasi-isometric embedding, and hence G is convex cocompact
by Theorem 2.4.

Proof of Claim 4.2. Let n = de(u,g(u)) and write u = wug, u1,...,u, = g(u) for the vertices of a C(S%)-
geodesic from u to g(u). Consider the set of simplices

wo; = {u;} and wo;y1 = {us, iy},
for j=0,...,nand ¢ =0,...,n— 1. In particular, we;j ;42 C wo;41 forall j =0,...,n—1. By Lemma 3.2,
this implies
Ty, N T,y 0 forall k=0,...,2n— 1.

We also observe that since u is a vertex of the simplex defined by ¢, we have {t} = T; C T, and likewise
{9(t)} = Tyry € Tyu)-
Now construct a path v: [0,2n + 1] — T by
* 7(0) =t,
e y(2n+1) = g(¥),
o y([k,k+1]) C Ty, is a geodesic segment.
This is possible because Ty, N Ty, , # 0 for all K = 0,...,2n — 1. Hence, we can define y(k + 1) to be
any point in the intersection of these subtrees, and then take 7|j; 141 to be a geodesic segment in T,
connecting the points v(k),y(k + 1) € Ty,. At the endpoints, we note that v(0) = t € T, = Ty, and
7(2’” + 1) = g(t) € Tq(u) = T, -
Now consider the path Po~y: [0,2n + 1] — T¢. As noted above, since

Y[k k+ 1)) C Ty,

Proposition 4.1 implies diam(P oy ([k, k+1])) < D. Now, P o~ is a path in T between ¢ and ¢(t), and thus
we have

k+1

dp(t,g(t)) < diam(Po~v) < (2n+ 1)D = 2Dd¢(u, g(u)) + D,

which proves the claim. O
Having proved Claim 4.2, we have proved the theorem assuming Proposition 4.1. (Il

4.2. Second reduction. Having reduced the proof of Theorem 1.1 to Proposition 4.1, which asserts a
uniform bound on the diameter of T N Ty, we proceed to our second reduction. The goal of this section is
thus to deduce such a uniform bound from the following bound in o¢ = Tz/Gp.

Proposition 4.3. Given G < T finitely generated and purely pseudo-Anosov in Mod(S?), there exists D' > 0
so that for any simplex u C C(S%),
diam(po(Te N Tw)) < D',

where the diameter of po(Te NT,) is computed in og.
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We postpone the proof of Proposition 4.3 to §5 and focus this subsection on using Proposition 4.3 to
prove Proposition 4.1. Our proof of Proposition 4.1 has two parts. First we show that it suffices to verify the
proposition for multicurves u where po(Tg N T,,) lands sufficiently deep in a specific subgraph of og. Then,
we verify that po(Tg NT,) is uniformly bounded for these “deep” multicurves.

The following easy fact allows us to adjust simplices by elements of G.

Lemma 4.4. For any g € G and simplex v C C(S?) we have
g(TG N Tu) =T N Tg(u)

Proof. Since g € G, we have g(Tg) = Tg. Since Ky, = gK,g~!, by considering the two cases (minimal
invariant subtree or maximal fixed subtree), we see that g(7,,) = Ty(,). Therefore, we have

Te NTywy = 9(Te) Ng(Tu) = 9(Ta NTy). O

Lemma 3.1(2) says that if T, has finite diameter, then in fact the diameter is at most 1. Thus it will
suffice to examine T N T, only for simplices v C C(S?%) where T, has infinite diameter. In particular, by
Lemma 3.1(3) we can assume all curves of u are surviving.

4.2.1. Reduction to deep simplices. Let eq,...,e, be a set of (f)—orbit representatives of edges of op. Let
o1 C 0g be a connected subgraph containing eq, ..., e, so that the distance in ¢ from any edge e; to a point
outside o1 is at least D' 42, where D’ is the constant from Proposition 4.3. We further assume the following
for each boundary component ¢ of 9%¢: if §* is the minimal length loop in o that is freely homotopic in X
to &, then there exists i € Z so that §/(6*) C 0. This is possible since there are only finitely many (f)—orbits
of boundary components of . Since o has no valence 1 vertices by virtue of being the quotient of axes
of loxodromics, we can enlarge o1 to ensure it also has no valence 1 vertices and that o, contains all edges
with endpoints in its vertex set. We say that a simplex u C C*(S?) is deep if No(po(Tg NTy)) C o1 where
Ny (+) is the 2-neighborhood in oy.

The next lemma, combined with Lemma 4.4, shows that it suffices to verify Proposition 4.1 for deep
simplices.

Lemma 4.5. For any simplex uw C C(S?), there exists g € G so that g(u) is a deep simplex. That is,
Ng(po(TG n Tg(u))) cC o1.
Proof. For any w, there is j € Z and one of the chosen (f)—orbit representatives of edges e; so that

ei CF (po(Ta NTy)).

Then No(f (po(Tg N'Ty))) C o1 by Proposition 4.3.
Now we let g € G be any element that maps to f/ by the homomorphism G — (f). Since po|r.: Tg — 0o
is equivariant with respect to this homomorphism, Lemma 4.4 implies

po(Te N Tywy) = po(9(Te NTy)) = F (po(Te N Ty)).

Combining this with the previous paragraph proves the lemma. O

4.2.2. Subtree decomposition and bounding Tg N'Ty for deep simplices. We now use Proposition 4.3 to uni-
formly bound the diameter of T N T, when u is a deep simplex (and thus for any simplex, by Lemmas 4.4
and 4.5). We start by dividing the vertices of Ti; N7, into two sets.

Definition 4.6. Given a simplex u C C*(S%), say that a vertex t € Tg N T, is of hull type if
He N Hu NV D,
Any vertex that is not hull type is called parallel type.

The reason for the name “parallel type” comes from Lemma 4.10 below, which says parallel type vertices
must arise from single components of 9f)¢ and 0§, running parallel to each other.
The next lemma verifies that the set of hull type vertices span a subtree of Tg NTy,.

Lemma 4.7. If the set of hull type vertices is nonempty, then it spans a subtree of T N'T,,. That is, every
vertex of the smallest subtree containing all the hull type vertices is of hull type.
12



Proof. If t,s € T N'T, are hull type vertices, let z,y € HG N H, be points with = € }7{) and y € 375". Then
the geodesic [z,y] C H? is contained in $g N $H, by convexity. Adjusting our equivariant map H? — T if
necessary (see §3.1), we may assume it sends [z, y] to a geodesic from ¢ to s in Tg NT,. Every vertex of this
geodesic is therefore of hull type. O

We call the subtree of T¢ N T, from Lemma 4.7 the hull subtree, and denote it TfZG. Each maximal
connected subgraph of the complement of Tf)G is also a subtree of Tg NT,. We call these components the
parallel subtrees of T N'T,,. To avoid arguing in separate cases, we allow the possibility that TfZG is empty

(i.e. if there are no hull type vertices) in which case T NTy, is the unique parallel subtree. If T¢ N T, = TfG,
then we consider any parallel subtree to be empty.

Before bounding the diameter of the hull and parallel subtrees, we need some additional terminology. Let
31 be the compact subsurface of ¥ defined by

o= Z-

TEG‘;O)
We note that if 7,7 are endpoints of an edge € C o1, then there are corresponding arcs 0y Z;, 9,2, which
are identified in X (hence in ;) and which transversely intersect e. Conversely, if 7,7’ € U%O) are vertices
for which arcs of 0,7, and 0,7, are identified in ¥, then this arc is transverse to an edge € C oy, which
must be in o7 since its endpoints are. It follows that the inclusion o7 — ¥ is a homotopy equivalence. Let
(1 < Gy be the image of the fundamental group of ¥; in Gy = m%y. Equivalently, G; < Gy is the image
of the fundamental group of ¢; inside Gy = m10y.
Let 01 C Tz be the component of p, 1(01) that is Gj—invariant and define

tes?

Note that 55%, is the minimal, closed, G;—invariant subspace of )¢ that projects to X;. We also let $, be
the convex hull of the limit set of G;.
Let R be the maximum of the diameters of the polygons Z, over all vertices 7 € o7 and observe that

ﬁé} C NR(ﬁGl)a

since o7 contains no valence 1 vertices. To see this, note that any closed loop in ¢; without backtracking
that visits every vertex of o1, has geodesic representative v in ¥y that meets Z, for every vertex T € oy.
Therefore, for every vertex t € oy, there is a geodesic in the preimage of + that is invariant by an infinite
cyclic subgroup of Gy and passes through Z;. Since any such geodesic is contained in H¢,, every point of
$¢& is within R of a point of ¢, .

We now explain how to bound the diameter of the hull subtree of Tz N T, for deep simplices.

Lemma 4.8. There is a constant Dg > 0 so that for any deep simplex uw C C*(S%?), the diameter of TQG is
at most Dy,.

Proof. We may assume that T, has infinite diameter, since otherwise it has diameter at most 1, according
to Lemma 3.1(2), and the conclusion is trivial. In particular, (Z;\8,Z;) N 9, # @ if and only if ¢ € TI?G by

Lemma 3.1(4). Since H¢ = UteT(GO) Z, and ng C 01 (because u is a deep simplex) we have

NN Hy = HE N Ha.

Choose our equivariant map H? — T to be Lipschitz (see §3.1). This map sends $ig N $H, to a set
of Hausdorff distance at most % from TfG, and thus it suffices to prove a bound on the diameter of the
intersection Hg N Hy.-

To prove such a bound, first observe that

96N Hu = H5 N Hu C Nr($H6,) N Hu.
Now G is finitely generated because X7 is compact and Gy is a purely pseudo-Anosov subgroup of 715 <
Mod(S?, z) because Gy is a purely pseudo-Anosov subgroup. The argument in §5 of [KLS09] shows that if

H < 715 < Mod(S%, 2) is finitely generated and purely pseudo-Anosov, then there is uniform bound on the
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diameter of Ng($g)N$H,. In particular, there is a bound on the diameter of Ng(H¢,) N $H, determined only
by G1, which thus also bounds the diameter of Hg N H,. O

Remark 4.9. The proof in §5 of [KLS09] actually proves a bound on Ni($g) N £, but the “1” was an
arbitrary choice, and the same proof applies replacing 1 with any constant R > 0.

To bound the diameter of the parallel subtrees, we need the following result, which justifies the name of
“parallel type” for the vertices that are not hull type.

Lemma 4.10. Let uw C C*(S?) be a multicurve such that T, has infinite diameter, and let to, ..., t, be the
vertices of an edge path in Tg N'T,. Let e; be the edge from t;_1 to t; and &; be the geodesic in p~'(a) that
is dual to the edge e;. If each t; is of parallel type, there then exists geodesics dg C 0Hg and 6, C 09, so
that

e 0, and dg intersect each & transversely;

e §, and 6 do not intersect in ENQ for any i €{0,...,n}

Proof. Note, each t; being of parallel type means that any geodesics satisfying the first item must automat-
ically satisfy the second. Hence it suffices to produce the geodesics g C 9 and 6, C 9%, that intersect
each a;.

Convexity ensures that $g and §, intersect each «; in a (possibly non-compact) non-empty, closed
interval. If the vertices t;_; and t; are both of parallel type, then these intervals are disjoint, hence there
must be x; € 0H¢Na; and y; € 3$H, Na; so that the open interval of a; between x; and y; does not intersect
either H¢ or H,. Moreover, the z; and y; must be arranged so that the geodesic from z; to ;41 does not
cross the geodesic from y; to y;+1. Let af € OH? be the endpoint of the subray of &; starting at y; and
passing through x;. Similarly, let a; € 9H? be the endpoint of the subray of &; starting at z; and passing
through y;; see Figure 3. Since the geodesic from z; to x;41 does not cross the geodesic from y; to y;t1,
there are disjoint arcs I, I C OH? so that & ,...a} C I, and a,...q, CI_.

Let 0; be the component of 9%),, that contains y; for i € {0,...,n — 1}. If §; does not also include y;11,
then §; must have an endpoint on the arc of 9H? between &; and &itrl (contained in 7). But that would
require §; to cross the geodesic from x; to x;41 as shown in Figure 3. Since the geodesic from z; to x;41

F1cURE 3. Arrangement of x; and y;.

is contained in $H and §; is contained in §,, this would contradict that ;1 is a parallel type vertex for
i € {0,...,n — 1}. Hence there is a single boundary component 6, C 0%, that contains all the y;,. A
completely analogous argument shows that there is a single boundary component g C 9$)¢ that contains
all the z;. O

We also need this basic fact about quadrilaterals in the hyperbolic plane, the proof of which is left as an
exercise in hyperbolic geometry.

Lemma 4.11. For each v > 0 and 0 < € < 1, there exists C > 0 so the following holds. Let v1,72,73, V4
be the 4-sides of a convex quadrilateral in H?, labeled so that ~; is opposite v3. If d(y1,7v3) > C, then there
exists subsegments so C 7o, sS4 C Y4, each of length at least v, so that so C N(s4) and s4 C Ne(s2).

We now bound the diameter of the parallel subtrees.
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Lemma 4.12. There is a constant D > 0 so that for any deep simpler u C C*(S%), the diameter of any
parallel subtree of T N'Ty, is at most D).

Proof. By the Collar Lemma [Kee74], we may (and will) assume that the hyperbolic metric on S is chosen
so that each component of « is short enough to ensure that the distance between two different geodesics in
p~1(a) is at least 1. Let tq,...,t, be the vertices of a geodesic edge path in one of the parallel subtrees of
T NT,, then let &; be the geodesic of p~!(a) that is dual to the edge from ¢;_; to t;. By Lemma 4.10, there
are geodesics dg C 09 and §,, C 909, that form a convex quadrilateral with a; and «,,. We first show that
if n is large enough, then py maps d onto a simple closed geodesic ¢ that is contained in 9% N 9%;.

Since ¥; is the union of the polygons Z, for 7 € a§°), every component ¢ C 0% is either a closed curve
in 9% or ¢N 9% is a disjoint union of geodesic arcs. Since X; is compact, there exists L > 0 so that every
component of 0¥y N d%; has length at most L.

Let dy; be the subsegment of dg between a; and a,. Now df; is the concatenation of arcs in aZt\aaZ
where t € {tg,...,t,}. Since the geodesics in p~*(«a) are at least 1 apart, if n > L + 2, then the length of
0 is at least L + 1. Moreover, po(t;) € o1 because each t; € Tg N T, and u is a deep simplex. This means
po(dg N 32@-) is contained in 0%y N 9%, for each ¢ € {1,...,n — 1}, and thus po(dg) C 9%¢ N I%;. Since
the components of ¥ N J%; that are not closed curves in 9% are all arcs of length at most L, py maps dg;
onto a closed curve ¢ C 9%,. Because ¢ is a closed geodesic and ¢, is a subsegment of 0, this means the
entire geodesic d¢ must also map onto c.

Let ¢, ..., ci be the closed curves in 9%y N 0Y,. For each ¢;, there is a geodesic curve ; C S so that the
element of G; = m X1 < m.S that corresponds to ¢; is represented in 7.5 < Mod(S%; ) by the point push of
z along v, ! Because Gy < G and G is purely pseudo-Anosov, Theorem 2.2 says each ~; fills S, and hence
these are not simple. Moreover, p, Y(e;) € p~* () where Py is the covering map H? — So.

The following claim puts a bound on how long a lift of a simple closed curve can travel close to a lift of
one of the ~;.

Claim 4.13. There arer > 0 and 0 < € < 1 independent of u so that for any i € {1,...,k} and any geodesic
5 € p~(vi) the following holds. Let 3 C S be a closed curve and (3 be a geodesic in p~1(B). If N.(B) N7
contains a geodesic of length at least r, then B is not simple.

Proof. Let ¢ < 1/16 be small enough so that if = is a self intersection point of one of the 7;, the 8¢
neighborhood of  on S is isometric to the 8e-ball in H2. Let ro be the maximum of all the lengths of all the
~;, then let r = 3rg + 1. These € and r depend on the hyperbolic metric on S and the group G, but not on
the multicurve wu. _

Let 3 C S be a closed curve, then let 3 € p~1(3) and 7 € p~1(7;) be as described in the statement of the
claim. Fix a self-intersection point x of +;. Since N, (E) contains a subsegment of 4 of length at least r and
r is more than twice as long as the length of ~;, there must exist gy, wy, Yo, Wo € B so that the geodesic on
S that connects p(y1) and p(w;) and the geodesic that connects p(y2) and p(ws) must cross; see Figure 4.

Since these geodesics are subsegments of § = p(f), we have that 3 cannot be simple. O

Let C be the constant from Lemma 4.11 for the r and € from Claim 4.13. Suppose for the purposes of
contradiction that n > max{C + 2, L + 3}. Recall, §, and dc form a convex quadrilateral with with a; and
a.,. By choice of the hyperbolic metric on S, &; and a,, are at least n—2 > C apart. Hence Lemma 4.11 says
there is a subsegment of §,, that is contained in the e-neighborhood of d¢. As shown above, n > L+2 implies
po(da) = ¢; for some i € {1,...,k}. On the other hand, p(d,) is a simple curve because p(99,) C ®(u) as
described in §2.2. However, this contradicts Claim 4.13, so we must have n < max{C + 2, L + 2}. Since C
and L do not depend on u, setting D|| = max{C + 2, L + 3} completes the proof of Lemma 4.12. |

Armed with bounds on the diameter of the hull and parallel subtrees, we can now prove Proposition 4.1.

Proof of Proposition 4.1 assuming Proposition 4.3. Recall, we wish to prove a uniform bound D on the
diameter of T NT, for every simplex u C C(S%). We claim that setting D = Dg + 2D + 2 suffices.

By Lemma 3.1 parts (2) and (3), we can assume u C C*(S%) and T, has infinite diameter, while Lemmas
4.4 and 4.5 say it suffices to bound diam(T¢ NT,) when u is a deep simplex. Let ¢,¢' € T N T, be any
two vertices. The geodesic, £, connecting ¢ and ¢’ decomposes into at most five segments, two contained in
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FIGURE 4. A curve § cannot be simple if there is a lift E that runs close to a lift ¥ of a
non-simple curve ~; for a long enough time.

parallel subtrees, one in the hull subtree, and a pair of edges connecting the segments in parallel subtrees
to the segment in the hull subtree. It follows from Lemmas 4.8 and 4.12 that the length of ¢ is at most D.
Since t,t were arbitrary, this completes the proof. O

5. BOUNDING THE DIAMETER OF po(Ty, N Tq).

The goal of this section is to prove Proposition 4.3, which asserts the existence of a uniform bound D’
on the diameter of po(Ty, N T¢g) in 0g. As shown in the previous section, this will complete the proof of
Proposition 4.1 and hence Theorem 1.1.

Recall from §3 that & = a3 U...Uq,, is the canonical reduction system of the pure, reducible homeomor-
phism f with complementary subsurfaces Y1, ..., Y. For each edge e of T' (or 0p), we write A, = Aj;(.) for the
annular cover of S corresponding to the component a. = ;) C «; if e is an edge in T, then A, = H?/K..

If e C T and g € I, then we have a canonical identification A, = Agy(). Likewise, for each vertex t of T

(or 0g), we write Y; = Y} for the corresponding complementary subsurface of S, given by Y; = Y, /K, for
teT. IfteT, gel, thenY; = Y. Observe that f acts on each AC(Y;) by restricting f|y, and on each
A(A;) by lifting f to A;.

We say that a vertex t € T' is a pseudo-Anosov vertex (resp identity vertex) of T if f acts by a pseudo-
Anosov (resp. by the identity) on Y;; that is, if Y; is a pseudo-Anosov (resp. identity) component of f. Recall,
by [MM99] f will act by a pseudo-Anosov on Y; if and only if f acts loxodromically on AC(Y:). We say e is
a twist edge of T if f acts loxodromically on A(A.). This occurs if the complementary components Y;,Y}/
of o that meet the curve «, are identity components, and hence f acts by a power of a Dehn twist in a,
or if at least one of Y; or Y} are pseudo-Anosov components which effect (possibly fractional) non-canceling
Dehn twists about the boundary component(s) corresponding to a.. Since the assignments of Y; and A, are
G—equivariant, the labeling of pseudo-Anosov/identity vertex and twist edge are also G—equivariant. Hence
they descend to give the same labels to vertices and edges of o9 = T /Go. The next lemma ensures that
every path of length 2 in T' contains either a twist edge or a pseudo-Anosov vertex.

Lemma 5.1. For any non-twist edge, ¢ C T, at least one endpoint is a pseudo-Anosov verter.

Proof. If neither endpoint of e is a pseudo-Anosov vertex, then f must act as a Dehn twist about a., since
otherwise a, would not be in the canonical reduction system for f. Thus, e is a twist edge. O
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5.1. Edge and vertex decorations. To each edge e and vertex ¢ of T we will assign a bounded diameter
subset A, and A; of the arc and curve graph of A, and Y;, respectively. We call these decorations of the
edges and vertices.

For each edge e of T¢, there are exactly two geodesics in 0)¢ that non-trivially intersect a.. Define
A, C A(A.) to be the union of the images of these two geodesics under the covering map H? — A.. If e and
e’ are edges of Tz that are in the same Gy—orbit, then A, = A, because Gy preserves g and A, = Ao .

For each vertex ¢ in T, each geodesic arc 7 in Zg - f@ with endpoints in 8az = Zg Np~1(a) projects to
a geodesic path 7 in Y;; see Figure 5. For each such path v, we consider the self-intersection number I(7),
which is the minimum number of double points of self intersection over all representatives of the homotopy
class rel endpoints (which is realized by the unique geodesic representative orthogonal to the boundary). For
each t, there are only finitely many homotopy classes of such arcs, v1,...,7,(), and we set

Ay ={B e AC(V1) | i(B,;) < 2I(y;) for some j € {1,...,r(t)}}.

Note that by taking a representative of -y; with only double points of self intersection realizing I(v;), we
can construct an arc ; in Y; from surgery on these self intersection points, and then pushing off, so that
i(Bj,7j) < 2I(v;). In particular, A; # 0. Moreover, any S with i(8,~;) < 2I(v;) also has i(8, 8;) < 2I(v,)
since B; is constructed from arcs of ;. Since distance is bounded by a function of intersection number (see
e.g. [MM99)), it follows that A, has finite diameter in AC(Y;). As with the edge decorations, if ¢ and ¢’ are
vertices in the same Gy—orbit, then A; = Ay

FIGURE 5. Left: The polygon Z; C $i¢ (shaded) contained in Y; and essential geodesics
segments contained in it. Right: The image of Z; and its arcs in Y; = Y/ K.

The next lemma describes how these decorations behave under arbitrary elements of G. Recall that
¢: G — Z is the homomorphism so that f?(9) = &, (g) for any g € G.

Lemma 5.2. For any edge e or vertex t of T and g € G, we have
Agey = fPOA)  and  Aypy = 29 (A).

Proof. Observe that each g € G maps each geodesic of 9 to a bi-infinite path that is homotopic, rel the
ideal endpoints, to a geodesic in 99 (since these are completely determined by the components of p~1(«)
that are intersected). Since g descends to the lift of f#(9) on each A, = Ag(e), the first equation follows.

For the second equation, let ¥ C Z; be any geodesic arc with endpoints in d,Z; and v the image path in
Y;. Next, observe that ¢ descends to the restriction of f¢(9) to V; = Y4, and so maps vy to a path f¢(9)('y),
which is homotopic to the image of a geodesic in Z,(;). Therefore, the restriction of 29 to Y; maps the
finite set of homotopy classes of paths defining A; to those defining A (), and hence sends A; to Ay U

As a consequence, we have
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Corollary 5.3. There ezists a constant By > 0 so that
diam(A.), diam(A;) < By
for all vertices t and edges e of Tg.

Proof. There are only finitely many G-orbits of edges and vertices in T and for any g € G, f?9) acts by
simplicial automorphisms on A(A.) and AC(Y;) for every edge e and vertex ¢. By Lemma 5.2, it follows that

diam(A () = diam(f*¥(A,)) = diam(A.) and  diam(Ay ) = diam(f*@(A,)) = diam(A,).

Therefore, we can take By to be the maximum diameter of A, and A; taken over a finite set of G—orbit
representatives of edges e and vertices t. (|

Since A = Ao and Ay = Ay for e, €’ or ¢,t’ in the same Go—orbit, these decorations on edges and vertices
descend to decorations on the edges and vertices of o9 = Tz/Go. We denote these by A, and A, for an
edge € or vertex 7 of gy. Since f is isotopic to a lift of f to Sy preserving ¥y and its spine og, the action
of G/Gy = (f) on 09 = T/Gp and 3y = H¢ /Gy also induces an action on the decorations, satisfying the
analogous formula to Lemma 5.2:

(1) Apney = f"(Ac)  and  Apiry = f"(A7)
for every edge € and vertex 7 of oy and every n € Z.

5.2. Projections. Given a multicurve v C C(S), Masur and Minsky defined a projection of v to the arc and
curve graph of subsurfaces and annular covers of S [MMO00]. We will describe these projection in the special
cases of A, and Y;.

For each vertex t € T, the multicurve v intersects Y; in a collection of disjoint curves and arcs, producing
a (possibly empty) simplex of AC(Y;). Let m(v) C AC(Y;) be this simplex. We observe that m,(v) is precisely
the set of essential arcs and curves that are in the image of p~!(v) N lN/t under the covering map }N/t - Y;
(compare with the definition of A;). Since Y; = Yy if t and ' are in the same G-orbit, we have m(v) = 7y (v)
in this case.

For an edge e C T, we define 7. (v) C A(A.) to be the set of essential arcs in the preimage of v under the
covering map A. — S. As in the case of 7, we note that m.(v) is precisely the essential arcs in the image
of p~!(v) under the covering map H? — A. (compare with the definition of A.). Since v is a collection of
disjoint curves, m.(v) is a simplex of A(A,). Recall, the core curve of A, is (a lift of) one of the curves a.
in a. Thus, we have m.(v) # 0 if and only if i(v,a.) # 0. Since A, = A, when e and ¢’ are in the same
G-orbit, we have 7. (v) = 7/ (v) for such pairs of edges.

Since A, and Y; are determined by the G—orbit of the edge or vertex, we can define projection for vertices
and edges of o( by

7 (v) = 7 (v) and 7, (v) = m(v)
where € = po(e) and 7 = py(t).

Given an edge e or vertex t of T (or 0p), we let d(A¢, me(v)) and d(A, m(v)) denote the diameter of
A, Ume(v) and Ay Ume(v) in A(A.) and AC(Yy), respectively. Our proof of Proposition 4.3 hinges upon
understanding for how many vertices/edges in a row these diameters can be large along a path in Tg.

For an edge € C gg or vertex 7 € gg and B > 0, define:

E(v,B) ={e Cog | e is a twist edge of g9, m(v) # 0, and d(A., 7. (v)) < B}

V(v, B) = {7 € 0g | T is a pA vertex of og, 7, (v) # 0, and d(A,, 7, (v)) < B}
We view these both as sets of edges and vertices, respectively, and as subgraphs of oy (defined by taking
the union of the corresponding set of edges/vertices). Let V, E > 0 be the numbers of G—orbits of vertices
and edges in Tg, respectively. Equivalently, V, E are the numbers of (f)—orbits of vertices and edges in oy,
respectively.

Lemma 5.4. For any B > 0 there exists M > 0 so that the following holds for each multicurve v C C(S):

(1) E(v, B) is a union of at most E sets of diameter at most M.
(2) V(v, B) is a union of at most V sets of diameter at most M.
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Proof. Fix B > 0 and a multicurve v C C(S). For part (1), it suffices to fix a twist edge ¢ C oy and bound
the diameter of the subset of £(v, B) consisting of edges in the set () - by a constant M., independent of v.

For this, suppose 7 (v) # (). Since the monodromy f fixes the annulus A, we have mjn (o) (v) = 7 (v) for
all n € Z. Moreover, Lemma 5.2 says Aoy = f"(Ac). Therefore

A(Ajn ey, Tn(e) (v) = d(f"(Ac), me(v))
for each n € Z.

Since f acts loxodromically on A(A.), the set of integers n for which f™(A.) can intersect the B-
neighborhood of 7.(v) is contained in an interval of integers I. C Z whose width, W, depends only on B
and the loxodromic constants of the action of f on A(A.) (and in particular, it is independent of v). Thus
we have

) -en&(v,B) U (e
nel,
The union on the right has diameter at most W, times the distance in oy between ¢ and §(¢) (or equivalently,
the distance between §*(¢) and {"T!(e), for any n € Z). This bound thus also bounds the diameter of
(f)-en&(v, B), and taking any M which is at least the maximum such bound over all E orbit representatives
of edges, implies part (1).

The proof for part (2) is nearly identical, choosing a pseudo-Anosov vertex and using Y, instead of A,

and the fact that f acts loxodromically on AC(Y;). O

The following is an immediate corollary of Lemma 5.4 plus the bound on the valence of oy (or more
directly from the proof).

Corollary 5.5. For each B > 0 there exists N > 0 so that for each multicurve v C C(S), we have
|E(w,B)] <N and |V(v,B)| <N.

5.3. Parallel type subtrees proof. We now prove that the image under py of any parallel subtree of
T N T, is uniformly bounded. The main fact we need is that large vertex and edge projection can only
occur along the leaves of the parallel subtrees.

Lemma 5.6. There exists By > 0 so that the following holds for each multicurve uw C C*(S*).

(1) Let ¢ be an edge path of length 2 in Tg NTy, t be the middle vertex of ¢, and v = ®(u). If each vertex
of € is of parallel type, then d(A¢,m(v)) < Bj.

(2) Let ¢ be an edge path of length 3 in Tg NT,, e be the middle edge of Ta NTy, and v = ®(u). If each
vertex of e is of parallel type, then d(Ae,m.(v)) < Bj.

Proof. First let £ be path of length 2 in T NT,,. Let e1, es be the edges of £ and ¢ be the middle vertex. Let
&; be the geodesic of p~!(a) that is dual to the edge e;. If each vertex of £ is of parallel type, then Lemma
4.10 says there exist geodesics dg C 09 and §, C G.V)u that intersect a; and as, but do not intersect in
Yt Hence there is a stralght line homotopy relative 8Y} of ¢ N Y,} to 0, N Y,} Since d,, and dg intersect
the same components of aY}, this straight line homotopy descends to a homotopy relative 9Y; of p(dg N fQ)
to p(dy, N fft) In particular, p(dg N fft) is an arc on Y; that is equal to p(d, N i/v}) as an element of AC(Y}).
Since p(d,, N f/t) C m¢(v) and p(dg N fft) C Ay, part (1) of the lemma now follows from Corollary 5.3 for any
B, > By + 1.

Now, let £ be a path of length 3 in T NT,. Let e1,eq,e3 be the edges of £ and a; be the geodesic of
p~1(c) that is dual to the edge e;. If each vertex of ¢ is of parallel type, then Lemma 4.10 says there exist
geodesics dg C 0H¢ and 6, C 09, that intersect each of ay, ao, and ag, but do not intersect each other
between a; and as. Now, a; and as determine a unique convex ideal rectangle R; see Figure 6. Let 8; and
(2 be the other two sides of R.

We claim that for each non-identity element g € K.,, we have g(R) N R = ). If this is true, then the
rectangle R will embed onto the annulus A., = H?/K,,. In particular, the images of §, and dg would be
disjoint from the image of 3 in A.,. Since dg C 9H¢ and §,, C 99, these project to arcs in A., C A(A.,)
and 7., (v) C A(A.,), respectively, which are distance at most 2 apart in A(A,,). Therefore,

d(Aez,ﬂ'ez(U)) <24+ By+1=Byg+3
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FI1GURE 6. The shaded rectangle R is the unique ideal rectangle with sides a; and as.

by Corollary 5.3, and thus, setting By = By + 3 proves part (2) of the lemma.

It therefore remains to prove that g(R) N R = 0 for each non-trivial g € K,,. First recall that K., =
Staby, s(@2) is a cyclic group generated by a hyperbolic isometry of H? with axis do. Since &; and as lie
on different sides of as, the only way for g(R) N R # 0 is for g(a;) N&; # O for either i = 1 or i = 3
(or both). However, no two geodesics in p~!(«a) intersect because « is a collection of disjoint simple closed
curves, and every non-identity element of K., takes every element of p~!(a) — {a2} to a different element of
p~ () — {@a}. Together these imply that g(a;)Na; =0 for i € {1,3} and g € K., not equal to the identity.
Hence g(R) N R = () for each non-trivial g € K,,. This proves the claim above, and hence the lemma. O

Combining Lemma 5.6 with Corollary 5.5 will produce the desired bound on the images of the parallel
subtrees.

Lemma 5.7. There exists D1 > 0 so that for any multicurve uw C C(S#), if P is a parallel subtree of T¢ NT,,
then diam(po(P)) < D;.

Proof. Let N be the constant from Corollary 5.5 for B = B;. We claim that taking D; = 3N + 6 will suffice
to prove the lemma.

Let 7 = po(t) and 7/ = po(t’) be vertices of po(P). Let £ be a geodesic path in P from t to ’and let v be
the path in og that is the image of £ under pg. Let t = ty,...,t, = t' be the vertices of ¢ and let e; be the
edge of ¢ between ¢;_; and t;. Let v = ®(u). By Lemma 5.6, we have

d(Ae,;,me,(v)) < By and d(Ay;, 7, (v)) < By
foreachi € {2,...,n—2} and j € {1,...,n — 1}. Since
d(Aewﬂ-ei (U>) = d(APO(ei)77Tp0(ei)(U)) and d(Atj77th (U)) = d(Apn(tj)>7rp0(tz‘)(U))7

Corollary 5.5 implies that the path v C o contains at most N + 2 distinct twist edges and at most N + 2
distinct pseudo-Anosov vertices. Lemma 5.1 implies that every edge of « is either a twist edge or has a
pseudo-Anosov vertex as an endpoint. Hence, v is contained in

U{Nl(T) | 7 a pA vertex of v} U U{s | € a twist edge of v}.

Since the diameter of Ny(7) is at most 2, and there are at most N + 2 pseudo-Anosov vertices and twist
edges, we have

diam(y) < 2(N +2) + (N +2) = 3N +6.
Since v = po(¢) and £ is an arbitrary path in P, this implies diam(pg(P)) < 3N + 6 = D; as desired. O

5.4. Hull type subtree proof. Recall that ch C T, NTg is the hull subtree, as defined in §4.2.2. In this
subsection we prove the following.

Lemma 5.8. There exists Do > 0 so that if u C C3(S?) is a simplex, then diam(po(TfG)) < Ds.

The first ingredient in the proof of this lemma is the following.
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Lemma 5.9. There exists a constant By > By with the following property. For any multicurve u C C*(S%),
edge e C Tﬁg, and vertex t € ch, we have the following.

(1) If d(Ac, me(®(w))) > Ba, then Ty = e.
(2) If d(A¢, 7 (P(u))) > Ba, then t is a valence 1 vertex of T£G.

Remark 5.10. Note that since By > By, it follows that d(A., m.(v)) > Bs implies 7. (v) # @ by Corollary 5.3.
Similarly, if d(A¢, 7¢(v)) > Bo then m(v) # 0.

Proof. We start with the proof of part (2), which is more direct. For this, it suffices to take any Bs > By. To
see this, suppose v C C*(S5%) is any multicurve, v = ®(u), and t € TfG is a vertex with valence at least 2. This
means that ), N $He must intersect two distinct components ., aer C p~ (), where e, e’ are adjacent to t.
Let 4 be a geodesic arc from @, to @,/ contained in $,, N$H. Observe that 7 is therefore disjoint from p~!(v),
and hence the image, v, in Y; is disjoint from the intersection of v with Y;. But then, every arc and curve
in m;(v) is disjoint from ~ which implies 7,(v) C A;. This means that d(A;, m(v)) < diam(A;) < By < Ba.
Thus, any vertex of TfZG with d(A¢, m¢(v)) > By must have valence 1, proving (2).

We now explain part (1). Fix an edge e C T and let 1,02 be the two geodesics in 91 meeting the
geodesic @, dual to e. The basic idea is that if d(A.,7.(v)) is large, then there must be many geodesics of
p~1(v) that cross both §; and d» and a., so that for any u with ®(u) = v, a component of £, N H that
meets @, is trapped in a bounded region. We now proceed to the proof, and refer the reader to Figure 7 to
aid in the argument.

First observe that there are at most four edges ¢’ adjacent to e such that at least one of §; or do crosses
the geodesic aer. Write & C p~!(«a) for the geodesics corresponding to these edges so that §; non-trivially
intersects &g fori,j=1,2.

Next, choose an n—sheeted covering p,: ﬁe — A, for some n > 0, so that the projection H? — g@ is
injective on the region bounded by ¢; and d2 (which contains $¢) as well as on each ag fori,j7 =1,2. We
denote the images of the §; and 62{ in ge by the same name. We also use p. to denote the induced map
between arc graphs p,: A(Ee) — A(A,). The core curve of ge is an n—fold cover of the core curve o, of A.,
and we denote it by al. See Figure 7. Observe that the degree n necessary to arrange that all of these things
happen can be chosen to depend only on the G—orbit of e, and since there are only finitely many G-orbits
of edges in T, we can in fact assume that n is independent of e.

FIGURE 7. A schematic of /L.

Next, observe that for any arc v € A(A.), we have

i(pe(7),pe(0:)) < (iy,8:) + 1)

for ¢ = 1,2. Since distances in arc graphs of annuli are given by intersection number plus 1, it follows that

d(p€(7)7pe(6l)) S nd(’}/a 61) + 1;



for i = 1,2. In particular, note that

d(me(v),Ae) = d(Te(v),pe(d1) Upe(dz))
< nd(p (. (0).0, U0) +1
<

( ( (We(v))vai)+l)+1v

for each i = 1,2, since d(d1,8,) = 1 in A(A,).

We set By > max{By, 10n+1}. Suppose u C C*(S?) is any multicurve for which Tf,c contains e, v = ®(u),
and d(m.(v),A.) > Bs. Since the diameter of p;!(m.(v)) is 1, it follows that for any v € p; (7 (v)) and
i =1,2, we have

d(5,8) > d(p; * (me(v)).6) — L.

Combining this with the inequalities above gives
1
d(v,0;) > —(d(me(v),Ae) = 1) =2 > — (32 -1)-2> —10n —-2>8.
n

Thus, any ¥ € p; *(me(v)) intersects each of d; and 6, in at least 7 points in A,. Since ¥ and &; are geodesics
in Ze, the difference in the number of intersection points on the two sides of the core geodesic o is at most
1. It follows that there are at least 3 points of intersection of v with each of §; and J on either side of .

We now see that for any o € p; ! (m(v)) there are arcs of intersection of ¥ in A, with the region bounded
by 01 and d2 that contains $)i, on both sides of a. Moreover, there are such segments that meet §; and
J between the geodesics {&?}; ; (since once ¥ meets &’ it can intersect &; in at most one more point), and
therefore, each segment is contained in the image of the corresponding Z;, for ¢t an endpoint of e.

Since T; fc contains e, the projection of $, N Hg to /Nle necessarily intersects a . It is therefore contained
in the regién between two of the segments of any v described above. In fact, it follows that there are
V1,09 € pot(me(v)) such that §, N Hg is contained in the region bounded by these two geodesics together
with é; and Jo; see Figure 7. This implies that szG = e, as required. This completes the proof of (1), and
hence the lemma. O

The second ingredient is the following bound on paths that are not contained in the subsets £(v, B) and
V(v, B) from §5.1. Recall that E denotes the number of G/Gy—orbits of edges in oy.

Lemma 5.11. Let By be as in Lemma 5.9 and suppose u C C*(S%) is any multicurve, v = ®(u), and
v C quc is an embedded edge path such that po(y) C og is disjoint from E(v, Bo) UV (v, B2). Then the length
of v is at most 2F + 2.

Proof. Suppose that the length of ~ is greater than 2F + 2 and let 7y C <y be the subpath obtained by
deleting the first and last edge. Note this path contains no valence 1 vertices of szc, and consequently by
Lemma 5.9, every vertex t of g is either an identity (non-pseudo-Anosov) vertex or has m;(v) = (). Since
T{?,G cannot be a single edge, another application of Lemma 5.9 implies that for every edge e of ~y, either e
is a non-twist edge or m.(v) = 0. In fact, we claim that something stronger holds for edges.

Claim 5.12. For every edge e of vy, me(v) = 0.

Proof. If e is a twist edge, then we have already noted that 7.(v) = 0, so it suffices to assume e is a non-twist
edge. In this case, at least one of its endpoints, call it ¢, is a pseudo-Anosov vertex and hence m(v) = .
Since v cannot intersect the core curve a, C A, without intersecting Y;, it follows that m.(v) = 0. O

Since the length of ~y is greater than 2F, there must be a pair of edges eg,e; of v9 so that ey and
e1;—viewed as oriented edges, oriented by an orientation on ~y—differ by an element g € G. Without loss
of generality, suppose eq is the first of these edges encountered along ~y. Recall (see §3.4) that we have
embedded T¢ into ¢ C H?, G-equivariantly on the vertices. Using this, we let 7; be the subsegment of
~o that begins with ey and ends with e;. Let 14 C 1 be the subpath starting from ey N @, and ending at
e N &51 .

Claim 5.13. The path vy is homotopic, rel endpoints, in H? to a path v, which is disjoint from p~t(v).
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Proof. Since 7. (v) = @ for every edge e of 7, it follows that p~1(v) is disjoint from @, for every such edge
e. Let t € v; be any vertex and let e,e’ C ; be the edges for which t = e N ¢’ with e appearing before ¢’.
Let v; C vy be the subpath from e N @, to € N a,. Either we can homotope vy, rel endpoints, to a path
disjoint from p~!(v), or else some component of v C p~!(v) separates @, from .. The latter situation
cannot happen, however, because then £, NHe would have to lie on one side or the other of v, contradicting
the fact that e and ¢’ are in quG. We can then combine the homotopies for each subpath v; associated to
each vertex t of v1, producing the required homotopy for v. (|

The rest of the proof splits into two cases.
Case 1. There is some vertex ¢ in 17 for which m;(v) # 0.

Note that m;(v) # () implies ¢ is an identity vertex. If m;(v) contains a simple closed curve, then denote
it by w and note that it is a component of v. Otherwise, 7;(v) is a collection of arcs with endpoints on the
boundary of Y;. In this case, let a be an arc of 7;(v) and ¢ C dY; C « be the component(s) of JY; containing
the endpoints of a. The boundary of a small neighborhood of aUc contains either one or two essential curves
on Y;; see [MMOO, §2]. Define w to be one of these curves.

In either case, by further homotopy if necessary, we may assume that v} is disjoint from p~!(w). This is
obvious if w C v, while for the other case, we argue as follows. Since 7.(v) = () for every edge e of vy, no
component of ¢ is in p(a.) for any edge e of vy. Hence, p(v1) is disjoint from both ¢ and the arc a, ensuring
v} is disjoint from p~!(w).

Now, the element g € G maps d,, to &.,. Let v{ be the path obtained by concatenating v with an arc
of @., from the terminal endpoint of v to the g-image of the initial endpoint. Since @&, is disjoint from
p~1(w), it follows that v} is disjoint from p~!(w). Now set

v= U gn(’/il)v
neZ
which is a bi-infinite, g—invariant path. Furthermore, since w is a simple closed curve contained in an identity
complementary region, p~!(w) is invariant by g as well. In particular, ¥ is also disjoint from p~!(w). That
is, 7 is contained in a single component of H?\ p~!(w), and therefore, g is contained in the stabilizer of
this set. The closure of this component is £),,, for some curve ug with ®(ug) = w, and therefore g fixes g,
contradicting the fact that G is purely pseudo-Anosov. This contradiction shows that Case 1 cannot happen.

Case 2. For every vertex t of v; we have m;(v) = (.

Under these assumptions, we note that v is disjoint from every complementary subsurface Y; that p(11)
intersects. In particular, there must be some curve «; € « that is disjoint from p(v1). We can then build
v] and 7 as we did above, but in this case, the bi-infinite path v is disjoint from p~!(«;) instead of p~!(w).
Since p~!(ay) is invariant by g, we again find that v is contained in a set £,, where ug is a curve with
®(ug) = ;. As before, this implies g fixes ug, which is another contradiction. Therefore, Case 2 cannot
happen either. Since these two cases account for all possibilities, we see that the assumption that v had
length greater than 2F + 2 was impossible. (]

The lemma above uniformly bounds the length of any subsegment of po (7. fc) that is outside of the set
E(v, B2)UV(v, By). Combining this with the fact that £(v, B2) and V(v, By) are finite collections of uniformly
bounded diameter sets (Lemma 5.4), we can produce a uniform bound of diam(pO(szG)).

Proof of Lemma 5.8. Recall that E and V respectively denote the number of G/Go—orbits of edges and
vertices in og. Let M > 0 be the constant from Lemma 5.4 for B = By and set Dy = (E+V)(2M +2E + 3).

Recall that £(v, B2)UV (v, By) C 0y is a union of at most E+V sets of diameter at most M by Lemma 5.4.
If TfZG does not intersect any of these sets, then Lemma 5.11 says diam(po(TfG)) < 2E+42 < Dy. Otherwise,
let L < E+V be the number of these sets that non-trivially intersect pO(TjRG), and let X1,..., X be these
sets (whose diameters are thus at most M). According to Lemma 5.11, the maximal length of an edge path
in po (Tuﬁ ) outside the union of these sets is at most 2E + 2. Therefore the maximum distance from any
point of po(ch) to X1 U...UXy is at most 2E + 3. The collection {Npsyop13 (Xj)}]L:1 is then a connected
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cover of pO(TfZG), where each set has diameter at most 2M + 2E + 3. Thus, the diameter of pO(TfZG) is at
most L(2M +2E 4+ 3) < (E+ V)(2M + 2E + 3) = D», as required. O

5.5. Combining bounds. The proof of Proposition 4.3 is now straightforward.

Proposition 4.3. Given G < T finitely generated and purely pseudo-Anosov in Mod(S?), there exists D' > 0
so that for any simplex u C C(S*),

diam(po(Te NTw)) < D',

where the diameter of po(Te N'T,) is computed in og.

Proof. Observe that T, N Ty is a union of quG and some set of parallel type subtrees, each of which is

connected by an edge to TfG. Therefore, by Lemmas 5.7 and 5.8, the diameter of po(7T, N T¢) is at most
2Dy + Dy + 2. |
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