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Abstract

For a closed and orientable surface S with genus at least 2, we prove the m(5)-
extensions of the stabilizers of multicurves on S are hierarchically hyperbolic groups.
This answers a question of Durham, Dowdall, Leininger, and Sisto. We also include an
appendix that employs work of Charney, Cordes, and Sisto to characterize the Morse
boundaries of hierarchically hyperbolic groups whose largest acylindrical action on a
hyperbolic space is on a quasi-tree.
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1 Introduction

For an orientable closed surface S and any group G, a m(S)-extension of G is any group E
that fits into the short exact sequence

l->m(S) - E—-G—-1

Topologically, 7 (S)-extensions arise as the fundamental groups of surface bundles.

When S has genus at least 2, the Birman exact sequence tells us that the mapping class
group of S and the mapping class group fixing a marked point z € S fit into the short exact
sequence

1 - m(S) —» MCG(S; z) > MCG(S) — 1

where 71(S) is identified with the point pushing subgroup of MCG(S; z). This allows us to
create a 1 (5)-extension of any subgroup G < MCG(S) by taking the full preimage of G in
MCG(S; 2).

Because the mapping class group of S is naturally isomorphic to the outer automorphism
group of m1(5), every m (S)-extension of an abstract group G produces a monodromy homo-
morphism G — MCG(S). The extension groups arising from the Birman exact sequence are
therefore the extensions whose monodromies have trivial kernel. Since a 7 (S)-extension is
determined up to isomorphism by the monodromy into MCG(.S), understanding how proper-
ties of the monodromy influence the properties of the m (5)-extension group is an important
problem in mapping class groups.

The first examples of 7 (S)-extensions arise from 3-manifolds that fiber over the circle
with fiber S. In these examples, G =~ Z and, by Thurston’s Geometerization Theorem, any
such 3-manifold admits a hyperbolic structure if and only if the image of the monodromy is
generated by a pseudo-Anosov element of MCG(S); see [Ota96]. Work of Farb and Mosher
[FMO02] plus Hamenstadt [Ham] expanded Thurston’s result to prove that a m(S)-extension
of a group G is Gromov hyperbolic if and only if the monodromy has finite kernel and convex
cocompact image; see also [MS12].



In the present work, we study the geometry of m(S)-extensions when G is the stabilizer
in MCG(S) of a multicurve on S. While the presence of Dehn twists in G prevents these
extensions from ever being Gromov hyperbolic, we prove they are hierarchically hyperbolic.
This gives a positive answer to a question of Dowdall, Durham, Leininger, and Sisto [DDLS,
Question 1.12] asked as part of a search for a robust definition of geometric finiteness in the
mapping class group; see Section 1.1 for further discussion of this motivation.

Theorem 1.1. Let S be a closed orientable surface with genus at least 2. Let o be a mul-
ticurve on S and G, be the stabilizer of o in MCG(S). If E, is the full preimage of G, in
MCG(S; z), then E, is a hierarchically hyperbolic group.

Hierarchical hyperbolicity was introduced by Behrstock, Hagen, and Sisto to axiomatize
the coarse geometric structure of the mapping class group arising from the machinery of
Masur and Minsky [BHS17b, BHS19]. Masur and Minsky proved that the curve complex is
Gromov hyperbolic and used projections of MCG(SS) onto the curve complexes of subsurfaces
of S to greatly illuminate the geometry of the mapping class group [MM99, MMO00]. A
number of subsequent results built on this work, producing a beautify theory of how the
geometry of MCG(S) can be decoded from a combination of the geometry of these curve
complexes and combinatorial information about the subsurfaces of S, e.g., [Beh06, BDM09,
BKMM12, BM08, Bow14|. Hierarchical hyperbolicity axiomatizes this theory, describing a
class of spaces whose coarse geometry is encoded in a collection of projections onto hyperbolic
metric spaces that are organized by a set of combinatorial relations. Remarkably, the class of
hierarchically hyperbolic spaces encompasses a variety of groups beyond the mapping class
group including the fundamental group of most 3-manifolds [BHS19], many cocompactly
cubulated groups [BHS17b, HS20], Artin groups of extra large type [HMS|, and several
combinations of hyperbolic groups [BR20, RS, ?]. Hierarchical hyperbolicity also describes
the coarse geometry of a number of other groups and spaces associated to surfaces such as
Teichmiiller space with both the Teichmiiller and Weil-Peterson metrics [BHS17b, MM99,
MMO00, BKMM12, Bro03, Durl6, Raf07, EMR17], the genus 2 handlebody group [Che22],
the 7 (5)-extensions of lattice Veech groups [DDLS], certain quotients of the mapping class
group [BHS17a, BHMS20], and a wide variety of graphs built from curves on surfaces [Vok22].

Hierarchical hyperbolicity produces a large number of geometric and algebraic conse-
quences, e.g., [BHS17b, BHS19, BHS21, HHP20, RST23]. The following corollary states
some salient examples of the new results that are gained automatically as a result of the
hierarchical hyperbolicity of F,,.

Corollary 1.2. Let S be a closed orientable surface with genus at least 2. Let o be a
multicurve on S and let E, be the full preimage in MCG(S; z) of the stabilizer of « in
MCG(S).

1. E, has quadratic Dehn function.
2. E, has finitely many conjugacy classes of finite order subgroups.

3. E, is semi-hyperbolic and hence has solvable conjugacy problem.

Our proof of Theorem 1.1 uses the recent combinatorial hierarchical hyperbolicily ma-
chinery of Behrstock, Hagen, Martin, and Sisto [BHMS20]. The key to this approach is to
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construct a hyperbolic simplicial complex X, for E, that is analogous to the curve complex
for MCG(S). To define X, let S* denote the surface obtained from S by adding z € S as a
marked point, and let IT: S* — S be the map given by forgetting that z is a marked point.
The vertices of X,, are all isotopy classes of curves ¢ on S* so that II(c) is either contained
in or disjoint from «. There are edges between two vertices of X, if the isotopy classes have
disjoint representatives.

We prove that X, is not only hyperbolic, but in fact a quasi-tree. Combining this with
results on hierarchical hyperbolicity from the literature produces several additional properties
of E,.

Theorem 1.3. The graph X, is uniformly quasi-isometric to a tree and the group E, has
the following properties.

e E, acts acylindrically on X, and this action is largest in the sense of [ABO19].

o A subgroup H < E, is stable if and only if the orbit map of H in X, is a quasi-isometric
embedding. In particular, every stable subgroup of E, is virtually free.

e The Morse boundary of E, is an w-Cantor space.

The proof that the Morse boundary of F, is an w-Cantor space uses a technique developed
by Charney, Cordes, and Sisto [CCS23|. In the appendix, we work out this application not
just for E,, but for all hierarchically hyperbolic groups whose largest acylindrical action on
a hyperbolic space is on a quasi-tree.

1.1 Geometric finiteness in MCG(S)

There is a longstanding and fruitful analogy between discrete subgroups of Isom(H") and
the subgroups of MCG(S); see [KL07] for an detailed overview. In the case of Isom(H"),
the best behaved discrete subgroups are the geometrically finite subgroups and the convex
cocompact subgroups. A discrete subgroup I' < Isom(H") is geometrically finite if T acts
with finite co-volume on the convex hull of its limit set, and it is convex cocompact if it
instead acts cocompactly.

Building on this analogy, Farb and Mosher defined a convex cocompact subgroup of
MCG(S) as a subgroup whose orbit in the Teichmiiller space of S is quasiconvex [FMO02].
Convex cocompact subgroups have since seen immense study, yielding a variety of charac-
terizations [KL08a, KLO8b, DT15, BBKL20]. Notable to the study of m(S)-extensions, a
subgroup of MCG(S) is convex cocompact if and only if the full preimage in MCG(S; z) is
Gromov hyperbolic [FM02, Ham, MS12].

While convex cocompactness has been well studied in the mapping class group, the lack of
negative curvature in the Teichmiiller space of S has prevented the formulation of a robust
analogue of geometric finiteness for MCG(S). Despite this, there are several subgroups
of MCG(S) that one could naturally consider as geometrically finite. The most notable
examples are the Veech groups, all of MCG(S) itself, and the stabilizers of multicurves on
S. These subgroup are all not convex cocompact, but each acts with finite co-volume on a
well-behaved subset of the Teichmiiller space of S.



Dowdall, Durham, Leininger, and Sisto proposed that geometric finiteness (however it is
defined) in MCG(SS) should be characterized by some sort of hyperbolicity of the extension
group that encompasses Gromov hyperbolicity in the convex cocompact case [DDLS]. In
support of this idea, they proved that the full preimage in MCG(S;z) of a lattice Veech
group is hierarchically hyperbolic and asked if the same could be proven for other candidates
of geometrically finite subgroups [DDLS, Question 1.12]. Theorem 1.1 affirmatively answers
this question for the stabilizers of multicurves. Combining these results with the obser-
vation that the full preimage of the entire MCG(S) is MCG(S; z)—which is hierarchically
hyperbolic—we now know that all three of the most naturally geometrically finite subgroups
have hierarchically hyperbolic extension groups.

1.2 Outline of the paper

Section 2 reviews background material and notation on simplicial complexes, coarse geome-
try, group actions on graphs, curves on surfaces, and combinatorial hierarchically hyperbolic
spaces. In Section 3, we provide a sketch of the hierarchical hyperbolicity of E, when « is a
single curve. Section 4 presents the criteria we will use to prove the graph X, is a quasi-tree.

The proof that E, is a hierarchically hyperbolic group is spread over two sections. In
Section 5, we construct the quasi-tree X, and use it to build a combinatorial HHS that FE,
acts on non-properly. The source of this non-properness is the fact that Dehn twists in F,, will
stabilize simplices in X,. In Section 6, we address this lack of properness by constructing
a new combinatorial HHS using a “blow-up” of the graph X,. This blow-up of X, will
prevent Dehn twists from fixing simplices by recording the action of twists around curves in
X,. This in-turn causes F, to act metrically properly on the resulting combinatorial HHS.

Section 7 is largely expository, elaborating on the hierarchically hyperbolic structure of
E, and some of its consequences. We start by giving a description of the hierarchically
hyperbolic group structure on F, using the topology of curves and subsurfaces. We then
use this description to show that a minor modification of the HHG structure produces an
HHG structure for E, that has an additional property introduced by Abbott, Behrstock,
and Durham called unbounded products. This allows us to use results from the literature
plus the fact that X, is a quasi-tree to achieve the conclusions of Theorem 1.3.

We include an appendix that shows how a technique developed by Charney, Cordes, and
Sisto to understand the Morse boundary of right-angled Artin groups and graph manifolds
groups can be extended to certain hierarchically hyperbolic groups. This extension is required
to conclude the Morse boundary of E,, is an w-Cantor space.
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2 Background and notation

2.1 Simplicial Complexes

Throughout, if X is a simplicial complex or graph, then X° will denote the set of vertices of X .
If the notation for the simplicial complex or graph depends on some parameter, for example
C(95), then we will instead insert the superscript 0 between the identifying symbol and the
parameter, for example, C°(S) is the vertices of the complex C(S). We equip each graph
with the path metric coming from declaring each edge to have length 1. When considering a
simplicial complex as a metric space we will implicitly be referring to the metric space that
is the 1-skeleton of the simplicial complex equipped with this path metric.
We will make frequent use of the following notions of join, link, and star.

Definition 2.1 (Join, link, and star). Let X be a flag simplicial complex. If Y and Z are
disjoint flag subcomplexes of X so that every vertex of Y is joined by an edge to every vertex
of Z, then the join of Y and Z, Y < Z, is the subcomplex of X spanned by Y and Z. Given
a subcomplex Y of X, the link of Y, 1k(Y), is the subcomplex of X spanned by the vertices
of X that are joined by an edge to all the vertices of Y. The star of Y, st(Y), is the join
Y s 1k(Y).

We say a simplex A of a simplicial complex X is mazimal if Ik(A) = ¢F. This is equivalent
to saying A € A’ implies A = A’ for any simplex A’. Note that the maximal simplices of
X need not all have the same number of vertices. Finally, if Y € XY then we let X — Y
denote the subcomplex of X spanned by the vertices of X that are not in Y.

2.2 Coarse geometry and hyperbolic spaces

Throughout, when we measure the distances between sets in a metric space (or between a
set a point), we are taking the minimum distance between the two sets.

A map f: X — Y between two metric spaces is a (A, €)-quasi-isometric embedding if
A>=1and e > 0 and for all x1, x5 € X we have

L (21, 29) — € < dy (F(@n), F(22) < Mo (1, 22) + €

A
A (), e)-quasi-isometric embedding f: X — Y is a (A, €)-quasi-isometry if for each y € Y,
there exists x € X with dy (y, f(z)) < e. Because we will largely be interested in geometry up
to quasi-isometry, we will often work with coarse maps instead of genuine functions. A coarse
map between metric spaces X and Y is a function f: X — 2¥ so that f(x) is a non-empty
subset of Y with uniformly bounded diameter for all x € X. By abuse of notation, we will
often use the notation f: X — Y to signify coarse maps. We say a coarse map is a (A, €)-
quasi-isometric embedding (resp. a quasi-isometry) if it satisfies the same inequalities given
above (with distances between sets being the minimum distance). A coarse map f: X — Y
is (A, €)-coarsely Lipschitz if

dy (f(x1), f(x2)) < Adx(w1,72) + €

for each x1, 29 € X.



When X is a graph, a coarse map defined on the vertices X" induces a coarse map on
the entire graph by sending points on edges to the union of the images of the vertices of that
edge. In this case, we freely use the following lemma to ensure that the induced map is a
coarsely Lipschitz coarse map.

Lemma 2.2. Let X be a connected graph and f: X° — Y be a coarse map. If there exist
A =1 so that diamy (f(z)) < X for each x and dy (f(x1), f(x2)) < X for every x1, x5 € X°
that are joined by an edge, then the map f: X — Y induced by the map on the vertices is
(38X, 0)-coarsely Lipschitz coarse map.

Proof. Extend f to points on edges by defining the image of an edge point to be the union
of the images of the vertices of that edge. This is a coarse map by the hypotheses. Let
x,x' € X and wg, x1,...,x, be the vertices on a geodesic in X connecting x to x’. Since we
are measuring distance between sets as the minimum distance, we have

dy (f(2), f(&")) < dy(f(wo), f(wn)) < 3 diamy (f(zi1) v f(2:))

<3An = 3\dx (o, z,) < 3Ndx(z,2"). O

We will also frequently use the following criteria to prove that subsets of a graph are quasi-
isometrically embedded.

Lemma 2.3. Let H and Y be connected graphs equipped with the path metric. Suppose that
H is a subgraph of Y. If there exists a coarse map v:Y — H so that

e ) is the identity on H;
e 1 is (A €)-coarsely Lipschitz;
then, the inclusion of H into Y is a (\, € + 2\)-quasi-isometric embedding.

Proof. Let hy,hy € H°. Since H is a connected subgraph, we have dy (hy, ho) < dg(hy, hs).
Since ¥(hy) = hy and ¥(hy) = hy we have dy(hy, hy) < Ady (hy, he) + €, hence the inclusion
is a (A, €)-quasi-isometry on the vertices. Since each point on an edge is at most 1 from two
vertices, this implies the inclusion is a (\, € + 2))-quasi-isometric embedding on all of H. [

We say that a geodesic metric space is d-hyperbolic if for every geodesic triangle in the
space, the d-neighborhood of any two sides covers the third side. If X and Y are quasi-
isometric geodesic metric spaces and X is d-hyperbolic, then Y is §’-hyperbolic for some ¢’
depending on § and the constants of the quasi-isometry X — Y. A connected graph X is
0-hyperbolic if and only if X is a tree. We say that a geodesic metric space is a quasi-tree if
it is quasi-isometric to a tree.

If X is a 0-hyperbolic graph and H is a connected subgraph so that the inclusion H — X
is a (\, €)-quasi-isometric embedding, then for each z € X the set

{he H :dx(z,h) =dx(z,H)}

is uniformly bounded in terms of §, A, and e. We therefore have a coarse map p: X — H
given by p(z) = {h € H : dx(x,h) = dx(z, H)} (note, p is the identity on H). We call this
map the coarse closest point projection onto H. The coarse closest point projection is always
coarsely Lipschitz [BH99, Proposition II1.I".3.11].
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2.3 Groups acting on graphs

Let G be a finitely generated group acting on a connected simplicial graph X by graph
automorphisms. Let ball,(x) denote the closed ball of radius r = 0 in X around the vertex
x € X°. The action of G on X is metrically proper if for every r = 0 and x € X, the set

{ge G :g-ball,(z) nball,(z) # &}

is finite. The action of G on X is cocompact if the quotient of X by the action of G is
compact. Similarly, the action is cobounded if the quotient has finite diameter.

2.4 Surfaces, curves, and mapping class groups

Let 57, denote a connected orientable surface with genus g, p punctures, and n marked
points. The complexity of 57, is §(SZP) =39 — 3 + p+ n. Given a non-marked point z on
the surface S = 57, let 5% denote the surface obtained from S by adding z as an additional
mark point.

By a curve on S, we mean an isotopy class of a simple closed curve on S that is essential
on S minus the marked points of S. Here, two curves are considered isotopic if they are
isotopic on S minus the marked points. We say two curves are disjoint if they are not equal
and have disjoint representatives. A multicurve on S is a set of pairwise disjoint curves on
S. For two curves ¢ and ¢, we define the intersection number, i(c,c’), to be the minimal
number of intersection points between representatives of ¢ and . Note, i(c, ) = 0 means
either ¢ = ¢ or ¢ and ¢ are disjoint.

By a subsurface of S, we mean an isotopy class of an open essential subsurface of S,
where two subsurfaces are considered isotopic if they are isotopic on S minus the marked
points. Subsurfaces of S are not required to be connected. For a subsurface U < S, we
use 0U to denote the isotopy class of the curves on S that are the boundary curves for any
representative of U. If A is an annular subsurface of S, then the core curve of A is the
isotopy class of 0A.

The set of all subsurface of S has a partial order denoted < and a difference denoted —.
For connected non-annular subsurfaces U and V', we write U < V if U has a representative
that is contained in a representative of V. In this case, we can subtract U from V' as follows:
fix a complete hyperbolic metric on S minus the marked points and pick representatives for
V and U whose boundary curves are geodesic. The subsurface V' — U is the open subsurface
that is the interior of the difference of these representatives of V' and U. For an annular
subsurface A and a connected subsurface V', we write A € V if either V' = A or V is not an
annulus and there is a representative of A that is a non-peripheral annulus on a representative
of V. f V.=A then V — A = . If A< V, then there is a representative of dA that is
contained in a representative of V. Define V — A to be the isotopy class of the subsurface
obtained by subtracting this representative of 0A from this representative of V. If U and V
are possibly disconnected surfaces, then U < V' if every component of U is contained in some
component of V', where containment is defined in the above case of connected subsurfaces.
Similarly, V' — U is defined for disconnected surfaces with U € V by extending the difference
defined above over connected components.



There is also a containment relation between multicurves and subsurfaces as well as a
difference operation whenever a subsurface contains a multicurve. If U is a connected non-
annular subsurface and a curve ¢ has a representative that is a non-peripheral curve on some
representative of U, then we say c is contained in U and write ¢ € U. If A is an annulus,
then we declare that the only curve that is contained in A is the core curve of A and we write
¢ € A only if ¢ is the core curve of A. If every component of a multicurve p is contained in
a (possibly disconnected) subsurface U, then we say p is contained in U and write p € U.
We say a collection of multicurves fills a subsurface U if U is the smallest isotopy class of
subsurfaces that contains the collection of multicurves. Any collection of curves fills a unique
subsurface which we call the fill of that collection. Note, since we are considering an annulus
to contain its core curve, the fill of a single curve ¢ is the annulus with core curve c. If a curve
¢ is contained in U, and U is the annulus with core curve ¢, then U — ¢ = ¢#. Otherwise,
U — c is the isotopy class of the subsurface obtained by deleting the representative of ¢ that
is contained in a representative of U. We extend this to define U — p for a multicurve that
is contained in the subsurface U.

Two subsurfaces are disjoint if they have no connected components in common and have
disjoint representative. If the subsurfaces U and V are not disjoint and neither contains the
other, we say U and V' overlap. A curve ¢ and subsurface U are disjoint if the annulus with
core curve c is disjoint from U. This extends to define the disjointness of a multicurve and
a subsurface. If a multicurve y is not disjoint from a subsurface U, then we say p and U
intersect. If the multicurve p intersects a subsurface U, but is disjoint from 0U, then some
component of x4 is contained in U and we let ;1 n U denote this subset of components of p.

A pants subsurface is any subsurface homeomorphic to Sg, with p +n = 3. Given a
subsurface U of S we call a multicurve that is contained in U and has maximal cardinality
among multicurves on U a pants decomposition of U. Note, when U has any annular compo-
nents, then every pants decomposition of U contains the core curve for each of the annular
components of U.

The mapping class group, MCG(S), of a surface S is the group of diffeomorphism of
S modulo isotopies that fix the marked points. If z € S is not a marked point, then
MCG(S; 2) is the subgroup of MCG(S?) that fixes the marked point z. When S = S .
then MCG(S; z) = MCG(S?). The point pushing subgroup, Push(S; z), is the subgroup of
MCG(S; z) comprised of all pushes of the point z along loops in S based at z. The Birman
exact sequence tells us that Push(S; z) is naturally isomorphic to 7(S) and is the kernel of
the surjective map MCG(S; z) — MCG(S) induced by forgetting the marked point z.

2.5 Complexes of curves and subsurface projection

Let S = 5, Given a non-annular subsurface U < S, the curve complez, C(U), of U is
the flag simplicial complex whose vertices are curves on U and with an edge between two
distinct curves if they are disjoint. If U is connected and has complexity 1, then all curves
of U intersect, so we modify the definition of the edges to allow for an edge between any two
curves that intersect minimally on U—twice if (g, p+n) = (0,4) and once if (g, p+n) = (1,1).

When U is an annulus, then C(U) has an alternative description and is often called the
annular complex instead of the curve complex. To define C(U) when U is an annulus, fix
a complete hyperbolic metric on S where the marked points are viewed as punctures. Let



U be the annular cover of S _corresponding to the annulus U equipped with the lift of this
hyperbolic metric on S. Let U denote the compactification of U to a closed annulus obtained
from the usual compactification of the hyperbolic plane. The vertex set of C(U) is the set of
isotopy classes (relative the boundary at infinity of U ) of arcs that connect the two boundary
components of U. Two vertices of the annular complex C(U) are then joined by an edge if
they have representatives with disjoint interiors.

Masur and Minsky proved that C(U) is hyperbolic in all cases where it is non-empty
[IMM99]. A number of other authors have since proved that the constant of hyperbolicity is
independent of the surface S or subsurface U [Aoul3, Bowl4, CRS14, HPW15].

For each subsurface U < S, Masur and Minsky defined a subsurface projection map
7y CO(S) — 200, We direct the reader to [MMOO0] for the full definition of the projection
maps and instead recall the properties we will need for the present work.

Lemma 2.4 ([MMO00, Lemma 2.2, 2.3]). Let ¢ and ¢ be curves on a surface S and U be a
non-pants subsurface of S.

o y(c) # & if and only if ¢ intersects U and ¢ # oU when U is an annulus.
e diam(7my(c)) < 3 whenever my(c) # &.

o [fcand ¢ are disjoint, then dew)(my(a), 7y (8)) < 2 whenever my(c) and my(c') are
both non-empty. If additionally ¢ < U, then every curve in my(c) will not intersect
d =my(d).

Notation 2.5. When ¢ and ¢ are two curves with my(¢) # & and 7y (c) # &, we use
dy(c, ') to denote deqy(mu(c), mu(c’)). As before this is the minimum distance between the
sets Ty (c) and 7y ().

Distances in the curve complex are known to be bounded above in terms of the intersec-
tion number of curves; for example [Bow06]. This means we can modify the edge relation
in C(U) to allow for a uniformly bounded number of intersections between curves without
changing the quasi-isometry type of C(U). In our case, it will sometimes be convenient to
work with the following variant of the curve complex that is quasi-isometric to C(U) and
hence uniformly hyperbolic.

Definition 2.6 (Modified curve graph). For a non-annular, non-pants subsurface U < S,
define C'(U) to be the graph with has vertex set C°(U) and with an edge between curves
if they are either disjoint or intersect at most 4 times inside of a connected complexity 1
subsurface of S.

When S is a closed surface and z € S, the map II: S* — S induced by forgetting
the marked point z has the property that the image of every essential curve on S* is still
essential on S. Thus, IT induces a map II: C°(S?) — C°(S). A theorem of Kent, Leininger,
and Schleimer proves that the preimage of a curve under II is a tree.

Theorem 2.7 ([KLS09, Theorem 7.1]). Let S = S, with g = 2. For each o € C°(S), the
subset of C(S?) spanned by 1171 (a) is a tree.
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The pants graph, P(S), of a surface S is the graph whose vertices are all pants decom-
position of S and where two pants decompositions p and p’ are joined by an edge if there
exists curves ¢ € p and ¢’ € p’ such that (p—c)ud = p’ and ¢ and ¢ are joined by an edge in
the curve complex of the complexity 1 component of S — (p — ¢). Pictorially, edges in P(.S)
correspond to one of the two “flip” moves shown in Figure 1.

Figure 1: Replacing the gray curve in each picture with the black curve it intersects gives
an example of the two different types of flip moves in the pants graph.

A marking® ju of a surface S is a set {(c1,t1), ..., (ck,tx)} Where ¢y, ..., ¢ are curves that
make a pants decomposition of S and each t; is a vertex of the annular complex for the
annulus whose core curve is ¢;. We use base(u) to denote the set {cy, ..., ¢} and markarc(pu)
to denote {t1,...,tx}. A marking p is clean if for each i € {1,...,k}, the arc t; is the
lift of a curve ¢, such that ¢} and ¢; fill a complexity 1 subsurface U and dy(c}, ¢;) = 1.
Given a marking 4 and a non-pants subsurface U, Masur and Minsky defined the subsurface
projection of u as follows:

e If U is an annulus with core curve ¢; € base(), then my () = ;.
e If U is any other subsurface, then 7y (1) = my(base(p)).

Masur and Minsky defined the marking graph M(S). This graph has the set of all clean
markings of S as vertices, with edges defined by a “twist move” and a “fip plus clean-up”
move. The next result summarizes the properties of the marking graph that we will need.

Theorem 2.8 ([MMO0O]). The marking graph M(S) is a proper connected graph with the
following properties:

1. The action of MCG(S) on S induces a metrically proper and cocompact action of

MCG(S) on M(S) by isometries.

2. There is a function f: |0,00) — [0,00) depending only on S so that for any two clean
markings p,v € M(S) if dy(u,v) < r for each non-pants subsurface U < S, then

damesy (i, v) < f(r).
3. There is D > 0 depending only on S so that for each (not necessarily clean) marking
W, there ezists a set of clean markings cl(u) satisfying:
e base(u') = base(u) for each u' € cl(u);

o if i’ € cl(n), then for each (c;,t;) € w and (¢;, t}) € (', we have dy, (t;,t;) < 3 where
U; 1s the annulus with core curve c;;

"What we call a marking, Masur and Minsky called a complete marking. As we will have no need for
incomplete markings, we forgo the distinction.
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e cl(u) has diameter at most D in M(S).

The set of clear markings cl(u) defined in Item 3 of Theorem 2.8 are called the clean
markings compatible with . Item 2 is a special case of Masur and Minsky’s celebrated
distance formula for the marking graph; see [MMO00, Theorem 6.12].

2.6 Combinatorial HHSs

Behrstock, Hagen, and Sisto’s original definition of a hierarchically hyperbolic space required
the construction of a large number of hyperbolic spaces and the verification of nine axioms
[BHS19]. Recently, Behrstock, Hagen, Martin, and Sisto introduced combinatorial hierarchi-
cally hyperbolic spaces which reduces the construction of a hierarchically hyperbolic space to
the construction of a pair of spaces (X, W) [BHMS20]. As we will not need to work directly
with the full definition of a hierarchically hyperbolic space, we will forgo giving the definition
and instead describe the combinatorial HHS machinery.

The starting place for a combinatorial hierarchically hyperbolic space is a pair of spaces
(X, W) where X is a flag simplicial complex and W is an graph whose vertices are all the
maximal simplices of X. We call such a graph W an X-graph. To help illuminate the
definitions we will maintain a running example where X will be the curve complex C(S) and
W is the pants graph P(S); P(S) is a C(S)-graph as pants decompositions of S are exactly
the vertices of the maximal simplices in C(S).

The definition of a combinatorial HHS (X, W) includes a number of properties that the
pair (X, W) need to satisfy. Stating these properties requires a bit of set up. First, we need
the following augmented version of X.

Definition 2.9 (Augmented graph). If W is an X-graph for the flag simplicial complex X,
we define the W-augmented graph XV as the graph with the same vertex set as X and
with two types of edges:

1. (X-edge) If two vertices x1, x5 € X? are joined by an edge in X, then z; and z, are
joined by an edge in X*W.

2. (W-edge) If Ay and A, are maximal simplices of X that are joined by an edge in W,
then each vertex of A is joined by an edge to each vertex of Ay in X*W.

Example 2.10. For the case of (C(S),P(S)), the augmented graph C(S)*7) is a copy of
the 1-skeleton of C(S) with additional edges between curves that intersect minimally in a
complexity 1 subsurface.

Next we define an equivalence relation among simplices of X.

Definition 2.11. Let A and A’ be simplices of the flag simplicial complex X. We write
A ~ A" if Ik(A) = Ik(A'). We define the saturation of A, Sat(A), to be the set of vertices
of X contained in a simplex in the ~-equivalence class of A. That is x € Sat(A) if and only
if there exists A’ ~ A so that x is a vertex of A’
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Example 2.12. If A is a simplex of C(S), then A defines a subsurface Ux that is the disjoint
union of all the non-pants components of S — A. The link of A in C(.S) is then spanned by
all curves on Up, that is, Ik(A) = C(Ua). Two simplices A and A’ will therefore have equal
links if and only if Un = Uas. Further, the saturation of A will be the set of curves of on
S — Ua plus the curves in 0U,, that is, Sat(A) = C%(S — Ua) U 0Ua. This is because every
non-peripheral curve on S — U, is part of a pants decomposition of S — Ua, and the join of
this pants decomposition with 0Ux produces a simplex A’ with Uxr = Ua.

Finally we define two subspaces of X ™" that are associated to every simplex of X.

Definition 2.13. Let X be a flag simplicial complex and let W be an X-graph. For each
simplex A of X, define

e YA to be X*W — Sat(A);
e H(A) to be the subgraph of Y spanned by the vertices in 1k(A).

For H(A), we are taking the link in X, not in X" and then considering the subgraph of
Y induced by those vertices. We give both YA and H(A) their intrinsic path metrics. By
construction, we have YA = Yar and H(A) = H(A') whenever A ~ A’

Example 2.14. As discussed in Example 2.12, for a simplex A of C(S), the saturation of
A is the set of curves on S — Ux plus the multicurve dUx. Thus C(S) — Sat(A) is spanned
by the set of all curves that intersect Un. The space Yx is then C(S) — Sat(A) with extra
edges between curves that intersect minimally in a complexity 1 subsurface of S. Because
Ik(A) = C(Ua), the space H(A) is a copy of C(Ua) with additional edges between pairs of
curves that intersect minimally in a complexity 1 subsurface of Ua.

We can now state the definition of a combinatorial hierarchically hyperbolic space.

Definition 2.15 (Combinatorial HHS). Let § > 0, X be a flag simplicial complex, and W
be an X-graph. The pair (X, W) is a d-combinatorial HHS if the following are satisfied.

1. If Ay,..., A, are non-maximal simplices of X with lk(A;) < lk(Ay) < --- < k(A,),
then n < 4.

2. The W-augmented graph X ™" is connected and d-hyperbolic.

3. For each non-maximal simplex A € X, the space H(A) is §-hyperbolic and the inclu-
sion H(A) — Ya is a (0, d)-quasi-isometric embedding.

4. Whenever A; and A, are non-maximal simplices for which there exists a non-maximal
simplex A such that lk(A) < k(A1) n1k(As) and diam(H (A)) = 0, then there exists a
simplex €2 in the link of A, so that lk(Ag > ) € 1k(A;) and all simplices A as above
satisfy 1k(A) € 1k(Aq x Q).

5. For each non-maximal simplex A and z,y € 1k(A), if x and y are not joined by an
X-edge of X but are joined by a W-edge of X ™ then there exits simplices A, A,
so that A € A, Ay and x = A, y pa A, are vertices of W that are joined by an edge
of W.
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Remark 2.16. We will colloquially refer to conditions (1), (4), and (5) as the combinatorial
conditions and conditions (2) and (3) as the geometric conditions.

Example 2.17. For (C(5),P(S)), the spaces H(A) are hyperbolic because they are quasi-
isometric to C(Ua). This is because distances in C(Ua) are bounded above by the intersection
number of curves. Because the space Y is spanned by curves that intersect the subsurface
Ua, subsurface projection gives a coarsely Lipschitz map mp,: Ya — H(A). This makes
H(A) quasi-isometrically embedded in YA by Lemma 2.3.

For the combinatorial conditions, observe that lk(A) < lk(A') if and only if Ux S Uar.
Thus, the finite complexity of S gives a uniform bound on chains of properly nested links of
simplices. For Item 4, it suffices to verify the condition for simplices A; and Ay where Ux,
and Un, overlap. Let @ be the largest subsurface contained in both Ua, and Ua,, then let
I' be a simplex so that Ay > I' is a pants decomposition of S — (), The desired simplex €2
will be I' joined with the set of boundary curves of () that are not curves of A,. For Item
5, if z and y are two curves joined by a P(S)-edge but not a C(S)-edge, then z and y fill a
complexity 1 subsurface V. If  and y are in the link of A, then V' < Ua. Hence, we can find
A, and A, by taking the join of A with dUa and pants decompositions of Ux that contain
x and y respectively.

When (X, W) is a combinatorial HHS, the space W is a hierarchically hyperbolic space.
Further, a group G will be hierarchically hyperbolic if it acts as described below on both X
and W. In Section 7, we provide a brief summary of the salient parts of the definition of
hierarchical hyperbolicity as well as a description of the hierarchically hyperbolic structure
imparted on combinatorial HHSs.

Theorem 2.18 ([BHMS20, Theorem 1.18, Remark 1.19]). If (X, W) is a d-combinatorial
HHS, then W is connected and a hierarchically hyperbolic space. Further, a finitely generated
group G will be a hierarchically hyperbolic group if

1. G acts on X by simplicial automorphisms with finitely many orbits of links of simplices;

2. the action of G on maximal simplices of X induces a metrically proper and cobounded
action of G on W by isometries.

Remark 2.19. We emphasis that there is no a priori requirement that either X or W is
connected. In the proof of Theorem 2.18, it is shown that the definition of a combinatorial
HHS implies W is connected; see Sections 1 and 5.2 of [BHMS20]. We will take advantage
of this in Section 5 to skip a direct proof of connectedness for our combinatorial HHS.

3 A sketch of the proof

Before embarking on the work for our main result, we give an outline of the proof in the case
where « is a single curve on S. This case captures all of the key ideas of our proof while
avoiding some technicalities that arise from « having multiple components. Recall, S* is the
surface obtained from S by adding z as a marked point of S. Let G, be the stabilizer of «
in MCG(S) and E, be the preimage of G, in MCG(S;z). Recall, II: S* — S is the map
that forgets the marked point, and it induces a map II: C°(S*) — C°(S) because S is closed.
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Our first step is to build a combinatorial HHS (X, W) where the vertex stabilizers of E,,
on W, are each generated by Dehn twists about disjoint curves. Let F,, be the subset of C(S?)
spanned by II7'(«). Theorem 2.7 established that F, is a tree. While F, is a hyperbolic
space that F, acts on, this action only “sees” the action of the m(S) = Push(S; z) subgroup
of F,; we need our hyperbolic space X, to “see” the action of all of E,. To accomplish this,
we define X, to be the subset of C(S*) spanned by the preimages of all curves in the star of
a in C(S). That is X2 = {c € C°(S?) : II(c) is disjoint from or equal to a}.

The rationale for this choice of X, is that the star of o in C(S) plus the pants graph on
the surface S — a make a combinatorial HHS that sees all of the action of G, except for
Dehn twists. Thus, by including the preimage of the whole star of a, we capture both the
m(S) portion and the G,, portion of E,.

The key lemma we prove about X, is that it is F,-guided. This means for each vertex
r e X2 — F,, the set Ik(z) n F, is a subtree T}, of F,, and if z, y are adjacent vertices of X,,
then T, n T, is non-empty. This allows for points in X, to be connected by well behaved
paths in F), instead of X, and allows us to prove that X, is a quasi-tree using a variant of
Manning’s bottleneck criteria.

The maximal simplices of X, are pants decomposition of S* that use only curves in X,.
Our X,-graph W, is therefore defined analogously to the pants graph: the vertices are pants
decomposition using only curves in X, with an edge between two pants decompositions that
differ by flipping one curve to another curve that intersects it at most 4 times. The choice of
intersection number 4 to define the edges is because 4 is the smallest number of intersections
that two distinct element of F,, can have inside of a 4-punctured sphere subsurface.

For a multicurve p © X,, we define a subsurface U, to be the subsurface filled by the
curves in the X,-link of pu. Unlike in the case of the pants graph, U, can have annular
components. Because the edges of X, correspond to disjointness of curves, the nesting of
links in X, can then be translated into the nesting of these U, subsurfaces in S*. Thus, the
combinatorial conditions for (X,, W,) to be a combinatorial HHS follow from the topology
of the U, subsurfaces similarly to how they are proved in the case of the pants graph.

For the geometric conditions, we split the links of multicurves into two cases. If p is a
simplex for X, so that o € II(u), then every curve on the subsurface S* — i is a curve in
X, Thus, the link of 4 in X, will be the entire curve complex C(S* — ). This means we
can prove the quasi-isometric embedding and hyperbolicity conditions using the subsurface
projection map mg=—,. On the other hand, if o & II(x), then not every curve on S* — p
will be a curve in X, and the link of x4 in X, is some proper subcomplex of C(S* — p).
This makes using the subsurface projection map mg-_, problematic, as we might get a curve
that is not in X, when we project a curve in X, — Sat(u) to S* — u. Instead, we show
that X, — Sat(u) is still guided by the fiber F,, because o & II(p). This implies 1k(p) will
be a quasi-tree like X, and allows us to build a coarsely Lipschitz map onto lk(u) by first
mapping a curve z € X —Sat(u) into the fiber F, and then taking a closest point projection
in F, to lk(p) N F,.

Once we have proved (X,, W, ) is a combinatorial HHS, we need to modify both spaces
to produce a combinatorial HHS where E, has a metrically proper action. Since the F,-
stabilizer of a vertex of W, is generated by the Dehn twists around the curves in the pants
decomposition, we need to modify X, to account for these Dehn twists. We do this by
“blowing up” each vertex of X, as follows: for each curve ¢ € X,, we add as additional
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vertices the set B(c) of vertices of the annular complex for the annulus with core curve c.
We add an edge between ¢ and each element of B(c) as well as between each element of B(c)
and every element of B(c) u {¢'} whenever ¢ and ¢ are disjoint. We use B(X,) to denote
this blow-up of X,.

The maximal simplices of B(X,) are now (not necessarily clean) markings on S?, and
we define the graph B(W,,) to have vertices all the markings that are maximal simplices of
B(X,) with edges corresponding to both twist and flip moves. Since the vertices of B(W,)
are markings instead of pants decompositions, the action of E, on B(W,,) will be metrically
proper. At almost all steps, the proof that (B(X,), B(W,)) is a combinatorial HHS reduces
to the proof that (X,,W,) is an combinatorial HHS. The only truly new conditions to
be verified are the geometric conditions for the links of simplices p where p is a pants
decomposition with all but one curve ¢ marked. The hyperbolic space associated to such
a link is quasi-isometric to the annular complex of the annulus with core curve ¢, thus we
can use the subsurface projection onto this annulus to verify the quasi-isometric embedding
condition.

4 Tree guided spaces

We now introduce the technique that we will use to verify that a graph or simplicial complex
is a quasi-tree.

Definition 4.1. Let X be a graph and F € X be a connected subgraph. For each z € X°
define L(z) = {z} if x € F and L(z) = lk(x) n F if 2 ¢ F. We say X is F-guided if

1. for each x € X°, L(z) is a non-empty connected subset of F’;

2. if z,y € XY are joined by an edge, then either x and y are joined by an edge of F or
L(z) n L(y) is a non-empty connected subset of F.

When F'is a tree and X is F-guided, then we say X is tree guided.

The key property imparted by Definition 4.1 is that every path in the graph X produces
a connected subset of the guiding subgraph F' connecting the end points of the path.

Definition 4.2. Let X be a graph and F' £ X be a connected subgraph so that X is F-
guided. If « is an edge path in X with vertices x1,...,x,, the sequence L(z1), ..., L(z,) is
called the F'-sequence for . Definition 4.1 implies that for any edge path of X, the union
of the L(z;) in the F-sequence span a connected subset of F.

The main result we will need is that tree guided graphs are quasi-isometric to trees.

Lemma 4.3. Let X be a graph and F < X be a connected subgraph. If X is F-guided and
F is a tree, then X is uniformly quasi-isometric to a tree.

To prove Lemma 4.3, we use the following variant of Manning’s bottleneck criteria
[Man05]. A proof of the this variant was given in Proposition 2.5 of [DDLS].
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Proposition 4.4 ([Man05, DDLS]). Let X be a graph. Suppose that there exists a constant
R with the following property: for each pair of vertices w,w' € X there exists an edge
path n(w,w’) from w to w' so that for any vertex v of n(w,w’), any path from w to w' in
X intersects ballg(v). Then X is quasi-isometric to a tree, with quasi-isometry constants
depending on R only.

Proof of Lemma 4.3. For each x,y € X, let p(z,y) be the shortest path in F connecting
L(z) to L(y) in F. Define n(x,y) to be the edge path spanned by z U p(z,y) U y. Let v be
any edge path of X connecting x and y. The F-sequence for v gives a connected subset of
F that contains the end points of p(z,y). Since F is a tree, the F-sequence of v must then
contain all of p(z,y). In particular, for each v € p(z,y), the path v must intersect the ball of
radius 1 around v. Hence, X is uniformly quasi-isometric to a tree by Proposition 4.4. [

We will also need the following lemma that will allow us to preserve F-guidedness when
removing a set of vertices that are distinct from F'.

Lemma 4.5. Let X be a graph and F < X be a connected subgraph so that X is F'-guided.
If Z< X% with Z nF =, then X — Z is F-quided

Proof. Because Z n F = &, the set L(x) is unchanged for each vertex x € X — Z. Further,
if 1 and x5 are adjacent vertices of X — Z, then they are also adjacent vertices of X and
either x1, x5 € F or L(x1) n L(xs) is a non-empty connected subset of F as desired. O

We conclude by recording a more general version of Lemma 4.3 that will we will not
need, but may be useful for future work.

Lemma 4.6. Let X be a graph and FF < X be a connected subgraph. If X is F-guided,
then X is (2,0)-quasi-isometric to the graph obtained from F by adding a vertex v, for each
r € XY — F° and connecting v, to every vertex of L(x). Moreover, if F is hyperbolic and
each L(x) is uniformly quasiconvex in F, then X is hyperbolic.

Proof. Let I denote the graph obtained from F by adding a vertex v, for each z € X° — F°
and connecting v, to every vertex of L(x). Let f: F' — X be given by f(w) =w forwe F
and f(v,) = z for v € X° — FO.

We first prove that f is a quasi-isometry. Let 21 = wp,wy, ..., w, = 22 be the vertices
of the F-geodesic connecting 21, z» € F°. Since X is F-guided, f(wo), f(w1),..., f(w,) are
the vertices of a path in X connecting f(z1) and f(z2). Thus, dx(f(z1), f(22)) < dp(z1, 22)
for all 2y, 2, € F. For the other inequality, assume f (z1) and f(z2) are joined by an edge of
X while zq, z5 are not joined by an edge of F'. This only occurs if 2, = v, and 2z, = v, for
z,y € X — F° Since f(z1) = v, and f(z2) = v, are joined by an edge of X, the second
condition in the definition of a F-guided space ensures that L(x) n L(y) # . But this
means dz(z,y) = 2. Hence, we have dz(21, 22) < 2dx(f(21), f(22)) for all 21, 25 € F

When F' is hyperbolic and each L(z) is uniformly quasiconvex in F', Proposition 2.6 of
[KR14] shows that F is hyperbolic with constant depending only on the hyperbolicity of F
and the quasiconvexity constant of the L(z)’s. Since X is uniformly quasi-isometric to F ,
X must be hyperbolic as well. O
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5 A combinatorial HHS without annuli

Fix a closed surface S =~ 5870 with g > 2 and let S* be the surface obtained from S by making
z € S a marked point. Fix a multicurve a on S and let G, be the stabilizer of o in MCG(S).
Let E, be the full preimage in MCG(S; z) of G,. Recall that the map II: C°(S*) — C°(95)
is the map on curves induced by removing the marked point of S*.

In this section, we build a combinatorial HHS (X, W,) on which E, acts with large
vertex stabilizers. In Section 6, we will modify (X,, W,) to produce a combinatorial HHS
denoted (B(X,), B(W,)) where E, does have a metrically proper action on B(W,). As we
can reduce the proof for (B(X,), B(W,)) to the case of (X,,W,), this intermediate step
allows us to present a simpler and more transparent proof. Further, the spaces X, and W,
are of intrinsic interest as they are the most direct analogues of the curve complex and pants
graph for FE,.

Hence forth, we say that constants are uniform if they do not depend on the surface S,
the multicurve «, or a simplex of X,. A uniform quasi-tree is thus a quasi-tree where the
quasi-isometry constants to a tree does not depend on any of these quantities.

5.1 Definition of X, and W,

We define the hyperbolic space X, by taking the preimage of the star of the multicurve a
under the marked point forgetting map II: C°(S%) — C°(.9).

Definition 5.1. Define X, to be the subgraph of C(S*) spanned by the curves ¢ so that

II(c) is either disjoint from or contained in o on S. If oy, ..., ,, are the curves comprising
«, then define F; to be the subset of X, € C(S?) spanned by IT"(«;). We call F; the fiber
over ;. By Theorem 2.7, F; is a tree for each i € {1,...,m}.

The simplices of X, are precisely the multicurves on 5% whose components are all curves
in X,. Thus, we will freely go between a multicurve of curves in X, and the simplex its
vertices span.

We will exploit the fact that the fibers F; are trees to prove X, is itself a quasi-tree. Our
key tool is the fact that whenever a simplex p does not intersect a fiber F;, then the link of
1 intersects F; in a subtree of Fj.

Lemma 5.2. Let i be a simplex in X,,, and suppose there exists a fiber F; so that unF; = .
For all ay, as € Ik(u) n F, there is a path in 1k(u) N F; connecting ay to as.

Proof. Let 1 € X, be a simplex and F; be a fiber so that u n F; = ¢. This means II(p) is
disjoint from «; on S ensuring that lk(u) N F; # &. Let ay,a9 € Ik(p) n F;. We prove by
induction on the intersection number i(a;, as) that a; is connected to ay in lk(p) N F;.

The base case of i(aj,as) = 0 is automatic since i(a, az) = 0 implies a; is joined to as
by an edge of F; and this edge is in lk(u) n F; since ay, as € k().

Assume that the lemma holds for curves of lk(u) n F; that intersect strictly less than n
times and suppose 0 < i(ay,as) = n. Since a; and as are not disjoint and are both elements
of F;, we know a; Uas must form a bigon that contains the marked point of S*. In particular,
there exists an innermost bigon of a; U as around the marked point. We can surger a, across
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Figure 2: The surgery of a curve across a bigon containing the marked point.

this inner most bigon as shown in Figure 2 to produce a curve a}, so that a), is disjoint from
az and i(ay,ah) < n. Now, af is disjoint from g on S?, since as is disjoint from g on S*.
Further, a) € F; since aj would be isotopic to as if the marked point of S* was removed.
Thus, a), € Ik(u) N F; with i(a1,ay) < n and the induction hypothesis implies the path in F;
from ay to @, is contained in lk(u). Since i(ag, ay) = 0, this gives a path in k() N F; from
a1 to as. ]

Using Lemma 5.2, we can prove X, is a quasi-tree by proving it is F;-guided for each
fiber F;.

Proposition 5.3. For each i € {1,...,m}, the graph X, is F;-guided. In particular, X, is
a uniform quasi-tree.

Proof. Since each fiber Fj is a tree, the final clause follows from the first clause by Lemma
4.3.

Fix a fiber F; over ;. For x € X0, define L;(z) = {z} if x € F; and L;(z) = lk(z) n F; if
r ¢ F;. By definition of X,, L;(x) is a non-empty subset of F; for all z € X2, and by Lemma
5.2, L;y(x) is connected. We now verify the second requirement of being Fj-guided: that z
being adjacent to y in X, implies =,y € F; or L;(x) n L;(y) is non-empty and connected.

Let 7,y € X be joined by an edge in X,. Thus, x and y are disjoint curves on S~.
Without loss of generality, assume = ¢ F;. If y € F}, then y € L;(z) by definition and we are
done because L;(z) n L;(y) = {y}. We can therefore assume y ¢ F; as well. Similar to the
proof of Lemma 5.2, we will use induction on intersection number to prove that there exists
a curve a in L;(z) n L;(y). Since F; is a tree and L;(z) and L;(y) are already connected, this
suffices to prove L;(x) n L;(y) is connected.

Let a be any curve in L;(x). If i(a,y) = 0, then a € L;(y) by definition, so suppose
i(a,y) > 0. Since a € F; and y ¢ F;, we must have that II(y) and II(a) are disjoint on S.
Thus, y and a must form an innermost bigon that contains the marked point of S*. We can
surger a across the marked point, to produce a curve a' with i(d', y) < i(a,y) and o’ disjoint
from x (this surgery is identical to the surgery in Figure 2 with y = a1, ay = a an a), = d’).
Since o' is obtained from a by surgery across the marked point, [I(a) = II(a'). This means
a' € F; and we have o’ € L;(x). Since i(a’,y) < i(a,y), we can now induct on the intersection
number to find a” € L;(z) with i(a”,y) = 0. Such a curve a” will be in L;(y) by the definition
of edges in X,,. O]

The next lemma verifies that the maximal simplices of X, are exactly the pants decom-
position of S* consisting of curves in X2. We give a more technical version of this fact that
we will need later.

19



Lemma 5.4. Let QQ be any subsurface of S* and v be a (possibly empty) multicurve on Q.
If both v and 0Q) are simplices of X, then there exists a pants decomposition T of Q) so that
yerc Xl

Proof. First we show that we can assume () has no annular components without losing any
generality. Since 0Q) < X,, the core curve of every annular component of () is a curve of
X0, Thus, if Qq is the union of the non-annular components of @ and 75  X,, is a pants
decomposition of )y containing v N @)y, then we can define 7 to be the union of 7, and
the core curves of the annular components of (). Hence, we can assume () has no annular
component.

In addition to assuming () has no annular component, we can also assume ) has no pants
components as pairs of pants do not contain any curves. These two assumptions mean that
I1(Q) does not contain any annular components.

If II(Q) € S — «, then every curve on () must be a curve in X,. This means any pants
decomposition of ) that contains 7 is a simplex of X,.

Assume then that TI1(Q) € S — a. Since 0Q) is a simplex of X,, no component of «
will intersect OI1(Q) = I1(0Q). Because II(Q) has no annular components, the only way for
II(Q) € S — a without « intersecting JII(Q) is for a curve of a to be contained in I1(Q).

If @ does not contain the marked point z, then II restricted to @) is a homeomorphism.
Hence, for each curve «o; € a n II(Q) there is exactly one curve a; on @ with II(a;) = «;.
Thus, there is a multicurve n that contains all of the curves of II7'(a) that are on Q.
Moreover, every curve of () — 7 is a curve in X,. Therefore, any pants decomposition of @)
that contains n will be a simplex of X,. Since v € X, v cannot intersect 7. Hence any
pants decomposition 7 that contains v u n will suffice.

Finally, assume @) does contain the marked point z. If () — ~ has a pants component P
that contains the marked point, then II restricted to () — P is a homeomorphism. Hence, the
same reasoning as the previous paragraph yields a pants decomposition 7" of () — P that is a
simplex of X, and contains v (Q — P). The desired simplex is then 7 = 7/ u~. If Q —~v does
not have a pants component that contains the marked point, then for some «; € a N I1(Q)
there exist a;,as € II7 () so that a3, as € Q and Q — (a; U ay) has a pants component P
that contains the marked point. We can additionally choose a; and as so that every curve
of v is either equal to or disjoint from each a;. As before, there is a pants decomposition 7/
of @ — P that is a simplex of X, and contains v n (Q — P). In this case 7 = 7" U a; U ay is
the desired pants decomposition. ]

We now define the X ,-space W,.
Definition 5.5. Define W, to be the the following graph.

e Vertices: Maximal simplices of X,,.

e Edges: Distinct vertices p and p’ are joined by an edge if there exists curves c € p and
d e p' so that i(c,d) <4 and p=(p —d) uc

By Lemma 5.4, the vertices of W, are all pants decomposition of S* that are built from
curves in X,. Two such pants decomposition are joined by an edge precisely when they
differ by at most one curve that intersect at most 4 times. Hence, W,, is an analogue of the
pants graph for the group E,.

20



5.2 Combinatorial conditions for (X,, W,)

This subsection is devoted to verifying that (X,, W,,) satisfies the combinatorial properties
of the definition of combinatorial HHS (Items 1, 4, and 5 of Definition 2.15). We start by
explaining how the combinatorics of links of simplices of X, are encoded in the topology
of subsurfaces of S*. Through out this subsection, lk(-) will denote links in the simplicial
complex X,,.

Definition 5.6 (Subsurface for a multicurve). Given a simplex p of X,,, define U,, to be the
(possibly disconnected) subsurface filled by the curves of X, that are disjoint from u. That
is, U, is the subsurface filled by the curves in lk(zu).

The subsurface U, is automatically a subsurface of S* — u, but U, might be strictly
smaller than the collection of non-pants subsurfaces of S* —u. To describe U,,, let M, be the
component of 5% — u that contains the marked point of S* then let ay, be the set of curves
{ae ™ (a):a< (5% —p) — M,}. Since (S* — ) — M, does not contain the marked point,
a, is a multicurve on S* — p. The next lemma asserts that U, is the union of the non-pants
components of S* — (u U a,) and the annuli whose core curves are in «,. Figure 3 gives an
example of U, that illustrates the lemma.

Lemma 5.7. Let ;1 be a simplex of X,. In the notation of the proceeding paragraph, U, is
the disjoint union of the non-pants components of S* — (L a,) plus the annuli whose core
curves are in oy,. Moreover, oU,, < X, since every curve of oU, is either a curve of ji or a
curve of o,.

Proof. Let V, be the disjoint union of the non-pants components of S* — (¢ U a,) plus the
annuli whose core curves are in «,. The curves in o, U lk(p U oy,) fill V,,. Since U, is filled
by the curves in lk(y), it suffices to prove lk(p) = o, Ulk(p U vy,). Since o, < k(1) we have
a, ulk(pua,) € lk(p). For the other direction, let ¢ € lk(;) and let K be the component
of 5% — p that contains c¢. If K = M,, then c is disjoint from each curve in «, making
cea,ulk(pua,). If K # M,, then II restricted to K is a homeomorphism. Hence every
curve of X, that is on K must be either an element of ay, N K or disjoint from each curve
in ay, N K. Thus, either c € o, or c e lk(p v o). O

Using the subsurfaces U,, we can relate the combinatorics of the links in X, to the
topology of subsurfaces on S*.

Lemma 5.8 (Topology to cHHS dictionary). Let o and p/ be non-mazximal simplices of X,,.

1. k(u) is spanned by the set of all curves {x € X0 : x < U,}. In particular, Ik(p) is a
join whenever U, is disconnected.

2. Ik(p) < Ik(p') if and only if U, < U,y.
3. Ik(p) = k(') if and only if U, = U,y.

4. Sat(p) is the set of all curves of X, on S* — U, plus the set of curves in 0U,, that are
not core curves of any annular components of U,,.
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Figure 3: An example of the subsurface U,. The top picture shows the fixed multicurve a
on the closed surface S. The second picture is of the multicurve p < X, on the surface S*
(where # denotes the marked point z). The bottom picture is the subsurface U,. The core
curve of the annulus in the bottom picture is a,.

Proof. 1. The first item is a direct consequence of the fact that edges in X, correspond
to the disjointness of curves plus the definition of U, as the fill of lk(u).

2. Since U, and U, are the subsurfaces filled by the curves in lk(p) and lk(4) respectively,
Ik(p) < k(') implies U, < Uyy.

On the other hand, if U, < U, and c is a curve in lk(u), then ¢ < U, < U,. This
makes ¢ € 1k(p') by the first item.

3. This item is an immediate consequence of the second item.

4. Let 7 be the subset of curves in U, that are not core curves of any annular components
of U,. By the first item, if a curve ¢ is in Sat(u), then ¢ must be disjoint from U,,.
Hence either ¢ € S* — U, or ¢ € 7. To see that Sat(u) contains every curve ¢ € X
that is a curve on S* — U, observe that Lemma 5.4 provides a pants decomposition p
of 8% — U, that contains ¢ and uses only curves in X,. Thus, p > 7 is a simplex of X,
with lk(p s 7) = lk(p) because U, = U,. Hence c € Sat(p). O

Armed with Lemma 5.8, we now verify the combinatorial criteria for (X,, W,) to be a
combinatorial HHS.

Proposition 5.9. Suppose u and p' are non-mazimal simplices of X, so that there exists
a non-mazimal simplex v of X, with Ik(v) € lk(u) n1k(y') and Ik(v) not a join or a single
vertex. There exists a (possibly empty) simplex p < 1k(i') so that 1k(p' » p) < lk(u) and if
v is any simplex as in the proceeding sentence, then lk(v) < lk(y' > p).

Proof. Assume p and p' are simplices of X, as described in the proposition. Let V; be the
subsurface of S* filled by the curves in lk(u) N 1k(y'), then let V' be the disjoint union of the
non-annular components of V. Note, if V' = ¢, then lk(u) n k(') is either empty or is a
simplex of X,. However, the assumption that there is a non-maximal simplex v of X, so
that 1k(v) is not a join or a single vertex and lk(r) < lk(u) n lk(p’) prevents lk(u) m 1k(y')
from being empty or a simplex. Thus, we know that V' # ¢ and contains an infinite number
of curves of X,.

Suppose there is a simplex p < lk(y') with the property that Uy, = V and let v be a
non-maximal simplex of X, so that
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1. k(v) € Ik(p) mIk(u');
2. 1k(v) is not a join or a single vertex.

Then U, < Vj because lk(v) < lk(u) n 1k(y'). Since lk(rv) is not a join, no curve in lk(v)
can be a core curve for an annular component of V4. Hence U, € V = U, which means
lk(v) < Ik(y' > p) by Lemma 5.8. Since U, = V < U, implies lk(p' > p) < lk(u), the
simplex p would satisfy the proposition.

The proof will therefore be complete if we can find a simplex p < lk(p) so that Uy, = V.
We will find p by applying Lemma 5.4 to the subsurface U, — V. In order to do so, we need
to verify that the boundary curves of V' are also curves in X,.

Claim 5.10. 0V is a simplex of X,,.

Proof. For the purposes of contradiction, assume 0V ¢ X?2. This means there exists a €
[T () so that II(a) and II(0V) intersect. Further, by performing surgery across the marked
point as in Figure 2, we can pick a so that a and dV do not form any bigons around the
marked point. Pick a representative of a that minimizes the intersection number with oV’
and let a’ be the set of arcs produced by intersecting that representative with V.

First assume that V' does not contain the marked point z. In this case, the forgetful map
IT restricted to V' is a homeomorphism. Thus no curve of lk(u) n lk(y') on V' can intersect
a’. Hence V — a’ is a proper subsurface of V' that contains all the curves of 1k(u) m k(i)
that are not the core curves of an annular component of V. However this is impossible as
V is the subsurface filled by these curves. Hence, 0V must be a simplex of X,,.

Now assume that V' does contain the marked point z. Because a is not contained in Vj,
it must be the case that a intersects either pu or u’. Without loss of generality, assume a
intersects p. Since II(a) does not intersect I1(x), a and g must form an inner most bigon B
around the marked point. Because V' contains the marked point, the bigon B must intersect
the subsurface V. Since a and JV do not intersect in any bigon around the marked point,
the only way for B to intersect V is for u to also intersects V. However, this is impossible
because V' is filled by curves from lk(x). Hence 0V must be a simplex of X, |

Since both 0V and 0U, are both simplices of X,, the boundary of U, — V is also a
simplex of X,. Hence, Lemma 5.4 provides a pants decomposition 7 of U, — V made up of
curves of X,. Define p to be the simplex spanned by 7 v dV'.

Claim 5.11. Uy, = V.

Proof. Every curve on V is disjoint from p’ U p by construction. Since V' is filled by the
curves of X, that it contains and U, is the subsurface filled by lk(x' > p), this means
Vcr, wp

For the other direction, consider ¢ € lk(y' > p). Such a curve must be contained in a
component of U, and must be disjoint from p. Since p contains both a pants decomposition
of Uy —V and 0V, the only way for that to happen is for ¢ € V. This implies Uy, S V
since Uy, 1s filled by the curves in lk(z' i p). |

As described before Claim 5.10, Claim 5.11 completes the proof of Proposition 5.9. [
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Proposition 5.12. Let p be a non-mazximal simplex of X, and let x,y be curves of X,
contained in Ik(p). If x and y are joined by a W,-edge but not an X,-edge in X W, then
there exists a multicurve v so that u S v and v v x and v Uy are adjacent vertices of W,.

Proof. 1f z,y € XWe are vertices that are joined be a W,-edge but not an X,-edge, then the
curve z and the curve y fill a complexity 1 subsurface V' of S*. Further, 0V < X, because
the curves of 0V are part of the maximal simplices of X, that contain x and y and are joined
by an edge in W,.

Since x,y € lk(u), every curve in pu is either a boundary curve of V' or contained in
S* — V. By Lemma 5.4, we can extend p n (S* — V') to a pants decomposition p of S* —V
that contains only curves of X,. Thus, v = p U dV is the desired multicurve. [

5.3 Geometric conditions for (X,,W,)

We begin the verification of the geometric conditions of a combinatorial HHS by checking
that X" is uniformly quasi-isometric to X,. By Proposition 5.3, this makes X a quasi-
tree.

Corollary 5.13. X W« is uniformly E,-equivariantly quasi-isometric to X, and hence is
a uniform quasi-tree.

Proof. Because X"« is a copy of X,, with additional edges, it suffices to verify that whenever
two vertices x,y of X}We are joined by a W,-edge, then the distance between x and y in X,
is uniformly bounded. If x and y are joined by a W,-edge, then there exists a multicurve v so
that v U x and v U y are adjacent edges of W,,. As the vertices of W, are maximal simplices
in X,, both x and y are joined by an X,-edge to each curve of v. Hence dx,_(z,y) <2. O

For the remainder of this section, we analyze the links in X, to verify the second geometric
condition for (X,,W,) to be a combinatorial HHS (Item 3 of Definition 2.15). We begin by
recalling the notation we set out in Section 2.6. Note, all links of simplices in this section
are taken in the the complex X,.

Recall, that if Z is a subset of vertices of a graph X, then X — 7 is the subgraph spanned
by the vertices in X that are not in Z. For a simplex p in X, the space Y, is defined as the
space XWe — Sat(u) and H(u) is the subset of Y, spanned by lk(u). We endow both Y,
and H(u) with their intrinsic path metrics and not the subspace metric from X,. Over the
next two subsections, we will prove that H () is uniformly hyperbolic and that the inclusion
of H(u) into Y, is uniformly a quasi-isometric embedding.

The simplices of X, come in two types and we split our arguments accordingly.

Definition 5.14. Let p be a non-maximal simplex of X, and Fj, ..., F}, be the fibers over
A1,y Oy

1. (Subsurface type) We say p is of subsurface type if 1 contains a vertex of each fiber Fj.
In this case, 1k(p) is precisely C(S* — u), because any curve on S* that is disjoint from
p will be disjoint from « in the image of II. By Lemma 5.7, U, will have no annular
components, ensuring that C(S* — p) = C(U,,) in this case.

2. (Tree guided type) We say pu is of tree guided type if there exists a fiber F; so that u
does not contain a vertex of F;. In this case, lk(u) is a proper subset of C(S* — p).
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5.3.1 Subsurface type links

We handle the case where u is of subsurface type first. Because of the definition of W,
and the construction of X "o Proposition 5.12 implies that H(p) is a copy of 1k(u) with
additional edges between curves that intersect at most four times in a connected, complexity
1 subsurface of S*. Since lk(u) = C(S* — u), this makes H(u) equal to C'(S* — u), the
modified curve graph from Definition 2.6. We can therefore use the subsurface projection
map to prove H () is quasi-metrically embedded in Y),.

Proposition 5.15. If u is a subsurface type simplex of X, then H(u) = C'(S* — u). In
particular, H(u) is uniformly hyperbolic.

Proof. The vertices of H(u) are all of the curves of S* that are contained in S* — u. By
Proposition 5.12, there is an edge between two vertices of H(u) if the curves are either
disjoint or if they intersect at most four times inside of a complexity 1 subsurface of 5% — p.
However, this is precisely the definition of C'(S* — p). O

Proposition 5.16. If i is a subsurface type simplex of X, then the inclusion of H(u) into
Y, is a uniform quasi-isometric embedding.

Proof. Because Y,, = X[We — Sat(u), every curve y € Y£ must intersect the subsurface
U, € 5% — pu by part 4 of Lemma 5.8. Thus, subsurface projection gives a coarse map
=y Y, — C'(S* —p) = H(p). This map is uniformly coarsely Lipschitz by Lemmas 2.4
and 2.2. Since mg-=_, is also the identity on the vertices of H(x), Lemma 2.3 ensures that
the inclusion of H () into Y), is a uniform quasi-isometric embedding. O

5.3.2 Tree guided type links

We now handle the case when p is not of subsurface type. In this case, lk(x) is not all of
C(S* — ) as there are curves on S* that are disjoint from g but not in X, because their
image under IT intersects cv. This means we cannot rely on the hyperbolicity of C'(S* — )
or use the subsurface projection map. Instead, we prove that X, — Sat(u) is F;-guided for
each fiber F; where yun F; = ¢#. This implies Y}, is a quasi-tree. We then show that H (1)
is quasi-isometrically embedded by using a combination of the subsurface projection maps
and the tree guided structure of X, — Sat(u).

Proposition 5.17. Let p be a tree guided type simplex of X,. For each F;, if pn F; = &,
then Sat(p) NF; = & and X, —Sat(y) is Fy-guided. Further, Y, is uniformly quasi-isometric
to the uniform quasi-tree X, — Sat(u).

Proof. Let F; be a fiber so that u n F; = . We first show that Sat(u) n F; must also be
empty. Let ¢ be a curve in Sat(p). By part 4 of Lemma 5.8, ¢ is either a curve on S* — U,
or a curve of 0U, that is not a core curve for an annular component of U,. This means II(c)
can not be contained in II(U,). However, we have o; < II(U,) because u n F; = &. Thus,
c ¢ F; when c € Sat(pu).

Since Sat(u) N F; = ¢, Lemma 4.5 says X, — Sat(u) is also Fj-guided. Lemma 4.3 then
implies X, — Sat(x) is a uniform quasi-tree. To see that Y, is uniformly quasi-isometric
to X, — Sat(u), we will show that for every x,y € YHO that are not joined by an edge in
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X, — Sat(u) but are joined by an edge in Y, the distance between = and y in X, — Sat(u)
is at most 2.

The definition of edges in W, ensures that there exists a multicurve v so that v v x and
v Uy are adjacent vertices of W,. Since II(v U z) is a pant decomposition of S that contains
a, there exists ¢ € v that is a curve in F;. Since Sat(u) N F; = ¢J, the curve c is a vertex of
X, —Sat(u). Hence x and y are 2 apart in X, — Sat(u) as they are both disjoint from ¢. O

Proposition 5.18. Let p be a tree guided type simplex of X,. The inclusion of H(u) into
the quasi-tree Y, is a (15,0)-quasi-isometric embedding, making H (1) a uniform quasi-tree.

Proof. By the first item of Lemma 5.8, lk(y) is a join whenever U, is disconnected. Since
diam(H (p)) < 2 whenever lk(p) is a join, we can assume U, is connected. Further, we can
assume that U, is not a single annulus as lk(x) would be a single vertex in that case. Since
i is not of subsurface type, Lemma 5.7 says U, must contain the marked point z as well as
an infinite number of curve in II7!(a).

We will construct a coarsely Lipschitz map v,: Y, — H(u). Since each curve in Y£ must
intersect U, 7y, (y) is non-empty for each y € Y. However, because N F; = & it might be
the case that none of the curve of 7y, (y) are vertices of X, that is, the curves in II(7y, (y))
could intersect & on S. This prevents us from using the subsurface projection map alone to
construct 1,; instead we will use a combination of the subsurface projection map and the
tree-guided structure of X, — Sat(u).

If the fiber F; has pu n F; = (J, then Proposition 5.17 implies that Sat(u) N F; = & and
Lemma 5.2 showed that lk(p) n F; €Y, is connected (in fact, it is the subtree of curves in
F; that are contained in U,). Because lk(u) n F; is a connected subset of the tree Fj, the
closest point projection of F; onto lk(u) n F; is well defined and Lipschitz. We will use this
map to build a coarsely Lipschitz map from Y, to H(p). The first step is to project each
yeY, — H(p) with k(y) n k() n F; = & onto lk(u) n F;.

Let y € Y — H(p) and suppose y is not disjoint from any curve in lk(p) N F; where
wn Fy = de, k(y) nlk(u) n F; = . Let y = y if y € F; and ¢ be any element of
k(y) n F; if y ¢ F;. By Lemma 5.2, lk(y) n F; is a connected subset of F; in the latter case.
Define ;(y) to be the closest point projection in F; of 3 onto lk(u) n F;. This is does not
depend on the choice of 3 because lk(y) N lk(u) N F; = & means lk(y) n F; is a subtree of
F; that is disjoint from the subtree lk(p) N F; when y ¢ F;.

We now verify that for each y € ;) — H%(u) the set {1(y) : Ik(y) nlk(u) n F; = J} is a
diameter 1 subset of H(u) when it is non-empty:.

Claim 5.19. Suppose y € Y;)—H°(u) so that lk(y) nlk(p)nF; = & and lk(y) nlk(p) nF; = &
where i # j and p N F; = & and g n F; = . Then 1;(y) is connected by an X,-edge to

V().

Proof. Because F; and F; are both contained in Y, and because II(y) will be disjoint from
or equal to each of a; and «; on S, there exists a; € F; and a; € Fj so that a; and a; are
disjoint and i(a;,y) = 0 and i(a;,y) = 0; see Figure 4a. By the definition of ¢; and 1;, we
have ¢;(y) = vi(a;) and ¢;(y) = ¥;(ay).

Since N F; and p n F; are both empty, there must exist a curve b; € F} so that b; is
disjoint from both g and ;(a;); see Figure 4b. Similarly, there must exists b; € F; so that
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Figure 4: Schematic for the proof of Claim 5.19

b; is disjoint from both p and 1;(a;). Let v; be the geodesic in the tree F; that connects a;
to ¢;(a;). Because ¢;(a;) is connected by an X,-edge to b; and X, — Sat(u) is Fj-guided,
the union of the Fj-sequence (Definition 4.2) for 7; is a connected subset of F}; that contains
both a; and b;. Hence, the Fj-sequence of v; contains 1;(a;). There is therefore some vertex
¢; of 7; that is joined by an X,-edge to 1;(a;); see Figure 4c. Since both ¢; and b; are in the
subtree Ik(¢;(a;)) N F;, the F;-geodesic connecting ¢; and b; is also contained in Ik(¢;(a;)) N F;
by Lemma 5.2. However, because b; is in lk(u) n Fj, the Fj-geodesic connecting ¢; and b;
must pass through v;(a;). This implies ¢;(a;) € Ik(¢;(a;)) N F. |

We now use the 1);’s and subsurface projection to define a coarse map ,,: Y;? — HO%p):
e For y € H'(1u), define 1, (y) = y. In this case, y is a curve on Uy, so ¢,(y) = 7y, (y).
e For yeY) — H(u) we have two subcases:

1. For all the fibers F; where un F; = &, we have lk(y) nlk(u) n F; # . Thus, for
each fiber with u n F; = ¢, there is a; € k(i) n F; that is disjoint from y. Since
a; € U, for every such a;, 7y, (y) is disjoint from each a; as well. Thus, 7y, (y) is a
collection of curves in X, that is contained in lk(x) and we define ¢¥,,(y) = 7y, (y).
This is a uniformly bounded subset by Lemma 2.4.

2. There exists a fiber F; so that lk(y) nlk(u) n F; = &, i.e., y is not disjoint from
any curve in lk(u) n F;. In this case, we define

Duly) = {¥ily)  1k(y) 0 lk(p) N Fi = i}
By Claim 5.19, v, (y) is a diameter 1 subset of H(u).

This definition means we can break 1,(y) into two mutually exclusive case: one where
Y, (y) = 7y, (y) and one where Ik(y) nlk(p) N F; = & for some fiber F;. In both case, 1,(y)
is uniformly bounded by either Lemma 2.4 or Claim 5.19.

Let y1,y2 be vertices of Y, that are connected by an edge of Y. We will show that the
H (p1)-distance between 1, (y1) and 9,(y2) is uniformly bounded. This implies 1, is coarsely
Lipschitz (Lemma 2.2), which finishes the proof by Lemma 2.3. We first handle the case
when y; and y, are actually disjoint curves, i.e., joined by an X,-edge.
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Claim 5.20. If y;,y, € Y} are disjoint curves, then dp.) (¢, (y1), ¥u(12)) < 2.

Proof. Let y1,y2 € Y/? be disjoint curves.

Assume first that v, (y1) = 7y, (y1) and ¥, (y2) = 7y, (y2). Without loss of generality,
we can assume y; ¢ H(p). If y, € H(p), then yo = 9,(y2) = 7y, (y2) does not intersect
V(1) = 7y, (y1) by Lemma 2.4. If instead y, ¢ H (1), then Ik(p) N F; contains a curve of both
k(y1) N F; and k(yo) N F; for each fiber with F; np = . Further, Ik(y;) nlk(ys) N F; is non-
empty and connected because y; and ys are joined by an edge of X, —Sat(u) and X, —Sat(yu) is
F;-guided. Therefore, the Helly property of trees implies that 1k(y;) nlk(ys) nlk(p) N F; # .
Thus, there is a curve ¢ € X,—Sat(yu) that is contained in U, and disjoint from both y; and ys,.

This implies dg(u (Y (Y1), Yu(y2)) < 2 because both v, (y1) = 7y, (y1) and ¥, (y2) = 7y, (¥2)
will not intersect c.

Next assume lk(y;) n lk(pu) n F; = & and lk(yz) n lk(p) n F; = & for single fiber F;.
There must exist a € Fj so that i(a,y;) = 0 and i(a,y2) = 0. Thus, dg()(Vu(¥1), Yu(y2)) =0
because ¥i(y1) = vi(a) = Vi(y2).

Now assume lk(y;) nlk(p) n F; = & and lk(y2) n lk(p) n F; = & for distinct fibers
F; and Fj with pu n F; and g n Fj both empty. There exist a; € I} and a; € F}; that are
both disjoint from or equal to each of y; and y, (however a; and a; might not be disjoint).
We can now employ a similar argument to the proof of Claim 5.19. There must be curves
b; € F; and b; € Fj that are disjoint from g and respectively disjoint from v, (y2) = 9;(a;)
and ¥;(y1) = ¥i(a;). Let v; be the concatenation of a Fj-geodesic connecting ;(a;) to a;
with the X,-edge from a; to y;. By examining the Fj-sequence for 7;, we find a vertex ¢; on
the Fj-geodesic between a; and ;(a;) that is disjoint from v;(a;). As in the end of Claim
5.19, this forces ¥;(a;) = ¥;(y2) to be joined by an X,-edge to 1;(a;) = ¥;(y1) because
Ik(vj(a;)) N F; is connected. Since ;(y1) < ¥, (y1) and ¥;(y2) S 1, (y2), this shows that the
H (p1)-distance between v, (y1) and ¢, (y2) is at most 1.

Finally, assume lk(y;) n1k(p) n F; = &, but 9, (y2) = 7y, (y2). In this case, yo must be
disjoint from a curve in lk(p) N Fj, i.e., Ik(y2) nlk(p) N F; # . In particular, ¢, (y2) = v, (42)
does not intersect an element of Ik(y2) Nlk(p) N E;. Thus, we can prove du) (Vu (1), ¥u(y2)) <
1 by proving that ¥;(y1) < ¥, (y1) is an element of lk(y2) N lk(n) N F;.

Since y; and yo are disjoint, there exists a € F; so that i(a,y;) = 0 and i(a,y,) = 0.
Since a € lk(yz) N F; and 1k(y,) N F; is a subtree of F; (Lemma 5.2), the geodesic in F; from
a to any point in lk(ys) N lk(x) N F; is contained in 1k(yo) n F;. By construction ;(y;) is
the endpoint of the unique geodesic in F; connecting a to lk(u) n F;. Since this path is a
subpath of any geodesic in F; that connects a to a point in lk(ys) N lk(p) N F;, we have that
Yi(y1) € lk(y2) N lk(p) N F; as desired. |

To complete the proof that 1, is coarsely Lipschitz, suppose y1,y2 € Y/? are Y,-adjacent
but not X,-adjacent. There then exists some multicurve v so that v u y; and v U y, are
adjacent pants decompositions in W,. Since v is a single curve away from being a maximal
simplex of X, ¥ must contain a curve from each fiber F;. Because Sat(u) N F; = & for some
fiber F;, Y, = X" — Sat(u) contains all of this fiber F;. Hence, the multicurve v must
contain a curve c that is a vertex of Y,. Thus there is ¢ € Y, with ¢ disjoint from both
and yo. Therefore, Claim 5.20 implies

dH(M)(@bu(yl)v Q/Ju(y?)) < dH(u) (@%(?Jl%ﬂ%(@) + dH(u) (@Du(c)v ¢u(y2)) +1<5.
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Lemma 2.2 now implies 9, is (15, 0)-coarsely Lipschitz. O

Remark 5.21 (¢, versus closest point projection). Because H(u) is quasi-isometrically
embedded in Y, and Y, is hyperbolic there is a coarse closest point projection p,: Y, — H (1)
defined by sending y to the uniformly bounded set {x € H(u) : dy,(z,y) = dy,(z, H(1))}.
This closest point projection is within uniformly bounded distance of the map ), defined in
the proof of the above theorem. To see this, let y € Y. If ¥, (y) = 7y, (y), then y and v, (y)
are at most 2 apart by Lemma 2.4. If instead lk(y) n lk(u) n F; = & for some fiber with
pn F; = &, then let y be the Y),-geodesic connecting y to p,(y). Let z be the endpoint of
in p,(y). There must exist a curve b e F; nlk(u) so that either b = z or z and b are disjoint.
Thus, as in the proof of Claim 5.19, examining the Fj-sequence of v produces vertex ¢ of ~
that is distance 1 from ;(y). Since ¥;(y) € H(p) and z minimizes the distance from y to
H(p1), ¢ and z must be at most 1 apart. Thus, 1, (y) within distance 2 from p,(y).

5.4 (X,,W,) is a combinatorial HHS.

We now combine the result of the previous two sections to conclude that (X,,W,) is a
combinatorial HHS with a cobounded action by £,

Theorem 5.22. The graph W, is connected and a hierarchically hyperbolic space because the
pair (Xq, Wy) is a combinatorial HHS. Further, the action of E, on S* induces a cobounded
action of E, on W,.

Proof. We first check the five parts of Definition 2.15 for some § > 2 ultimately depending
only on S. Theorem 2.18 will then imply that W is connected and a hierarchically hyperbolic
space.

1. If pq, ...,y is a sequence of non-maximal simplices of X, so that

k(i) & Ik(pa) < -+ - < k(pun),
then Lemma 5.8 implies n is bounded in terms of the complexity of S.
2. Corollary 5.13 proves that X" is quasi-isometric to a tree and hence hyperbolic.

3. The links of simplices of X, split into subsurface and tree-guided types; see Definition
5.14. The proof of uniform hyperbolicity and uniform quasi-isometric embedding for
subsurface type is shown in Propositions 5.15 and 5.16, while the proof for the tree-
guided type is completed in Proposition 5.18.

4. Because diam(H (u)) > 2 implies k() is not a join or a single vertex, this follows from
Proposition 5.9.

5. This condition is ensured by Proposition 5.12.

To see that the action of F, on W, is cobounded, start with the fact that II will map
each vertex of W, to a pants decomposition of S containing the curves in «. Recall, E, fits
into the short exact sequence

1 — Push(S,2) > E, > G, — 1
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and II is equivariant with respect to the quotient map E, — G,. For each pants decom-
position p of S with av € p, there only exists finitely many Push(S; z)-orbits of elements of
{pe W2 : II(n) = p}. Moreover, there exist only finitely many G, = Stabycg(s)()-orbits
of pants decompositions of S — . Hence, there are only finitely many FE,-orbits of vertices
of W,, making the E,-action cobounded. O

6 Adding in annuli

We continue with the assumptions of Section 5. That is, S = 5270 with ¢ > 2, and a =
Q1 U - U Qy, is a fixed multicurve on S. For a fixed z € S, the group F, is then the full
preimage in MCG(S; z) of the stabilizer of o in MCG(S). The spaces X, and W, are as
defined in Definitions 5.1 and 5.5.

The extension group FE, does not act metrically properly on the space W,. This is
because the action of F, on a maximal simplex in X, has large stabilizer, namely the Dehn
twists around the curves in the simplex. To fix this, we need to “blow-up” X, by adding
marking arcs for each of the curves in X, that account for the action of Dehn twists. We
denote this blow up B(X,). The corresponding B(X,)-graph will be denoted B(W,). As in
the previous section, we will as a quantity is uniform if it does not depend on the multicurve
a, the surface S, or specific simplices/vertices of B(X,) and B(W,,).

6.1 Defining the blow-ups of X, and W,

For a curve c in 57, let A. be the annulus with core curve ¢. For each ¢ € X?, let B(c) denote
the set of vertices of the annular complex C(A.). We call the elements of B(c) the marking
arcs for c. Let B(X,) be the space obtained from X, by adding in the following vertices
and edges:

1. For each curve ¢ € X, add the elements of B(c) as additional vertices.
2. For each curve c € X,, add an edge between ¢ and each element of B(c).

3. If ¢ and ¢ are disjoint curves in X, then for each v € B(c) and v' € B(¢') u {¢'} add
an edge connecting v and v’.

For a simplex u of B(X,) we define three sets of vertices of B(X,):
e base(u) is the set {ce X2 : ce u}.
e supp(p) is the set base(u) U {c € X2 : B(c) np # &}
e markarc(yu) is the set of vertices of 1 — base(u).

We call the curves in base(u) and supp(u) the base and support curves of u respectively. The
vertices of markarc(u) are called the marking arcs of . Note, each curve of supp(u) —base(u)
corresponds to a marking arc of p that does not have a base curve in pu. We say that
c € base(p) is an unmarked base curve of p if B(c) m markarc(u) = ¢§. We denote the set
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of unmarked base curves of p by unmark(u). The maximal simplices of B(X,) are precisely
the (not necessarily clean) markings of S* whose base curves are maximal simplices in X,.

We now define our B(X,)-graph which we denote B(W,). Recall, for ¢,t' € B(c) =
C°(A.), da.(t,t') denotes the distance between ¢ and ' in the annular complex C(A.). The
graph B(W, ) has vertex set the maximal simplices of B(X,) with edges between two vertices
w, v € B(W,) corresponding to twist and flip moves:

e (twist) base(u) = base(r) and there exists exactly one curve ¢ € base(u) so that
markarc(u) N B(c) # markarc(v) n B(c). Further, for this curve ¢, if ¢ € markarc(u) n
B(c) and t' € markarc(v) n B(c), then da,(t,t') = 1.

e (flip) There exists curves ¢ € base(u) and d € base(v) so that

— (base(u) — ¢) U d = base(v) and i(c,d) < 4, i.e., base(u) and base(v) differ by an
edge in Wy;

— if ¢, € markarc(p) and ¢, € markarc(v) are the marking arcs for ¢ and d, then
da,(te,d) <1 and da,(tg, c) < 1;

— for all curves b € base(i1) — ¢ = base(r) — d, the marking arc of b in p is the same
as the marking arc of b in v.

The graphs B(X,) and B(W,) are related to X, and W, by simplicial maps induced
by sending every simplex u € B(X,) to supp(p). This will allow us to reduce properties of
(B(X.), B(W,)) to properties about (X,, W,).

Lemma 6.1. The following maps on vertices extend to simplicial maps between the given
complexes.

o B°(X,) — Xq by @ — supp(z).
o B(X,)"PVe) — X W by — supp().
o B(W,) — W, by j1 — supp(u).

Proof. In all three cases, it suffices to show that two vertices joined by an edge in the domain
graph have supports that are either equal or joined by an edge in the codomain graph.

Let z,y be vertices of B(X,) that are joined by an edge. Thus either supp(x) = supp(y)
or supp(z) is disjoint from supp(y). Hence supp(z) and supp(y) are either equal or joined
by an edge in X,.

Let z,y be vertices of B(X,)*%Wa) that are joined by an edge. By the previous para-
graph, we can assume z and y are joined by a B(W,)-edge. If  and y are joined by an edge
coming from a twist move in B(W,,), then supp(z) = supp(y). If instead x and y are joined
be an edge coming from a flip move, then supp(x) and supp(y) fill a connected complexity
1 subsurface of S* and intersect at most 4 times. Hence, supp(z) and supp(y) will be joined
by a W,-edge of XWe.

Let p,v be vertices of B(W,) that are joined by an edge. If p and v are joined by a
twist move, then supp(u) = supp(v). If p and v are joined by a flip move, then supp(u) and
supp(v) are joined by a flip move in W,, by definition. O
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6.2 The combinatorial conditions with annuli

We now verify that (B(X,), B(W,)) satisfies the combinatorial condition of being a combi-
natorial HHS. We begin by describing the links of simplices of B(X,). Henceforth, we use
lkp(-) to denote the link of simplices in B(X,) and lkx(:) to denote the link of simplices in
Xa.

Lemma 6.2. For any non-mazimal simplex p of B(X,), the link of u in B(X,) is the
subgraph spanned by the union of the following vertices:

1. The vertices of B(c) for each ¢ € unmark(pu).
2. The set of vertices {x € B°(X,) : supp(x) € lkx (supp(u))}.

3. The vertices of supp(p) — base(f).

Moreover, if supp(p) # base(u), then lkg(p) is either a single vertex (which will be supp(u)—
base(u)) or is a join of some graph with supp(u) — base(u).

Proof. 1f ¢ € unmark(u), then all the vertices of B(c) are in lkg(u) by the definition of the
edges in B(X,).

If v € B°(X,) with supp(z) € lkx(supp(u)), then supp(z) is disjoint from all the curves
in supp(u). By the edge relations in B(X,), this makes x € lkg ().

Finally, suppose ¢ is a vertex of supp(u) — base(u). Since p is a simplex, ¢ must be
disjoint from base(u). However, this means ¢ must be joined by an edge of every element of
w by the definition of the B(X,) edges.

To verify these are the only elements of lkp(u) let @ be a vertex of lkp(p). If z € X2,
then either x € lkx (supp(u)) or x € supp(pu) — base(u). If instead z is in B(c) for some curve
c € XY, then either ¢ € unmark(p) or ¢ € lky (supp(u)).

For the moreover statement, let ¢ € supp(u) — base(u) and let ¢. be the element of
markarc(p) n B(c). Any vertex z € lkg(p) will be joined by an edge to t. by definition.
However, this makes = and ¢ joined by an edge from the the definition of edges in B(X,). O

We now describe the nesting of links of B(X,) by using the topology of subsurfaces of S*.
This is an extension of Lemma 5.8 from X, to B(X,) and is our main tool in this section.
Recall that Definition 5.6 defined Usypp(y) as subsurface filled by the curves in lkx (supp(s)).
We remark that it is possible that Usupp(.) is empty for a non-maximal simplex p < B(X,).
This occurs when supp(y) is a pants decomposition of S#, but not every base curve of p has
a marking arc.

Lemma 6.3. Suppose i and i/ are non-mazimal simplices of B(X,) with supp(p) = base(p)
and supp(p') = base(y'). We have lkg(u) € lkg(p) if and only if

® Usupp(u) € Usupp(ry; and
e for each c € unmark(u), either ¢ € unmark (') or ¢ S Ugypp(w)-

Remark 6.4. The above conditions for the nesting of links can be stated purely in terms of
subsurfaces by using annuli. For a simplex p where supp(u) = base(u) define C), to be the
disjoint union of the annuli {A. : ¢ € unmark(u)}. The conclusion of Lemma 6.3 can then
be phrased as lkg(u) < lkg(') if and only if Usupp(u) S Usupp(y and Cy, S Usupp(y U Co-
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Proof of Lemma 6.3. Before starting the proof, observe that by applying Lemma 6.2, the
assumption that base(u) = supp(u) implies that a vertex x € lkg(u) if and only if supp(zx) €
Ik x (supp(p)) or x € B(c) for some ¢ € unmark(p).

Suppose lkp(p) € lkp(p'). For the first bullet, we prove lkx (supp(p)) € lkx (supp(i')),
which implies Usupp(y S Usupp(y by Lemma 5.8. If = € lkx(supp(u)), then z € lkp(p) and
x € X,. Since lkg(u) € lkp(p'),  must be an element of lkg(u') that is also an element of
X,. By the above observation, this only occurs if # = supp(z) € lkx (supp(x')) as well. This
shows 1k x (supp(p)) < lkx(supp(p’)) as desired.

For the second bullet, let ¢ be an unmarked base curve of y. By Lemma 6.2, this implies
B(c) € lkp(p), which means B(c) is also contained in lkg(i'). Thus either ¢ € unmark(u')
or ¢ € lky(supp(x)). In the latter cases, we have that ¢ S Usupp(y by Definition 5.6.

Now suppose Usupp(u) S Usupp(y and for all ¢ € unmark(p), either ¢ < Usupp(u’) OF
c € unmark(y'). Let x € k(). By the observation at the beginning, we know that either
supp(z) € lkx(supp(p)) or z is a marking arc for some unmarked base curve ¢ of p. In the
first case, Lemma 5.8 implies supp(z) € lkx (supp(p')) because Usipp(u) S Usupp(u)- Thus,
x € lkp(¢') by Lemma 6.2. In the second case, we either have ¢ € unmark(y') or ¢ S Usupp(w)
by hypothesis. In both cases = € lkg(i') by Lemma 6.2. Thus we have lkg(pn) € lkp(p/) O

Using Lemma 6.3, we show that (B(X,), B(W,)) satisfies the combinatorial conditions
of being a combinatorial HHS. The essence of these arguments are the same as Proposition
5.9 and Proposition 5.12 in the non-annular case.

Proposition 6.5. Suppose u and i’ are non-mazimal simplices of B(X,) so that there exists
a non-mazimal simplex v of X, with lkg(v) € lkg(p) N lkp(y') and lkg(v) not a join or
a single vertex. There exists a (possibly empty) simplex p of Ikg(p') so that lkg(p' = p) <
Ikg(p) and if v is any simplex as in the proceeding sentence, then lkg(v) € lkg(p' > p).

Proof. Let n = markarc(u) > supp(p) and ' = markarc(p') > supp(y'). Lemma 6.2 implies
that lkp(n) is lkp(x) minus the vertices of supp(u) — base(u) and that the same holds for 7’
and g/. Thus, lkg(u) = lkg(n) = (supp(u) — base(u)) and the same holds for " and p/. We
first verify that it suffices to prove the proposition is true for n and 7', instead of p and p'.
The advantage of working with 1 and n’ over p and ' is that Lemma 6.3 applies to n and
1’ because supp(n) = base(n) and supp(n’) = base(n/).

Claim 6.6. If p is a simplex that satisfies Proposition 6.5 for  and 7', then the join of p
and supp(u') — base(y') is a simplex that satisfies the proposition for p and g/

Proof. Let p be the simplex that satisfies Proposition 6.5 for n and 7 and let p’ = p
(supp()) — base(u')). Since p < lkp(n') and lkp(p') = lkp(n') > (supp(y)) — base(u')), o/
is in fact a simplex of B(X,). Moreover, ' U p = u' U o', hence lkg(n' = p) = lkg(y' > p’
As p satisfies Proposition 6.5 for n and ', we have lkg(n’ = p) = lkg(p' = p') < lkg(n
Since lkp(n) < kp(p), this gives k(' > p') < lkp(p) as desired.

We now show the second requirement of Proposition 6.5 for p’ and p/, u. If there exists
a non-maximal simplex v € B(X,), so that lkg(v) < lkg(u) and lkg(v) & lkg(n), then
supp(u) — base(u) # & and lkp(r) must contain vertices of supp(u) — base(p). In this case,
Lemma 6.2 says lkg(u) is either a single vertex contained in supp(u) — base(u) or the join of
some graph with the vertices in supp(u) — base(u). Hence, lkp(r) would need to be either a

).
).
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single vertex or a join as well. Since the same reasoning applies to lkg(r) < lkg (1), we have
that whenever lkg(v) < lkg(u) N lkg(y') and lkp(v) is not a join or a single vertex, then
k() must be contained in lkg(n) N lkg(n'). Since p satisfies Proposition 6.5 for n and 7/,
then any such simplex v will have lkg(v) € lkg(n' > p) = lkg(u' > p'). [

We now construct the required simplex p for n and r’. We will define two simplices, py
and pa, of B(X,) so that the desired p will be py > pa.

To define pa, let A to be the set of curves ¢ € unmark(n’) so that ¢ ¢ unmark(n) and
¢ & Usuppny- If A = &, then define py = . Otherwise, for each ¢ € A, pick any vertex
t. € B(c), then define ps = {t.: c€ A}.

The definition of py will be similar to the definition of p in the proof of Proposition 5.9
for the non-annular case, with extra care to keep track of the set B(c) that are contained
in lkp(n) nlkp(n'). Let Vg be the subsurface of S* filled by the curves in lkx(supp(n)) N
lkx (supp(n’)), then let V' be the disjoint union of the non-annular components of V4. Let o
be the set of curves in unmark(n) that are contained in Ugypp(y). Since o contains base curves
of 7, none of the curves of o can be contained in Vp, thus 0 S Ugyppyy — Vo. The proof of
Claim 5.10 implies 0V is a simplex of X, hence Lemma 5.4 produces a pants decomposition
7 of Usuppyy — Vo so that 0 € 7 and 7 € X,,. For each c € 7 U 0V, if ¢ ¢ unmark(n) and
¢ & Usupp(n); select a marking arc t. € B(c). Define

pr =T oVyu {t.: ce T UV with c ¢ unmark(n) and ¢ & Usupp(n) }-

We now verify that p = pa > py has the three desired properties given in the proposition.
Note, supp(n’ 1 p) = base(n x p) = base(n) U base(py) by construction.

e p C lkg(n'): This is immediate from the construction of p, as every vertex z € p is
either a marking arc for an unmarked base curve of 7’ or has supp(x) € lkx (supp(n')).

o lkp(n' > p) < lkp(n): Since base(py) = 7 U IV, we have Usupp(ysip) = Usupp(n)sa(ruav)-
Thus, a repeat of the proof of Claim 5.11 proves that Usupp(ysp) = Usupp(r)m(roavy = V.
Since V' is filled by a subset of curves in lkx(supp(n)), we have Usyppiynp) = V S
Usupp(n)- This verifies the first condition in Lemma 6.3.

For the second condition in Lemma 6.3, let ¢ be an unmarked base curve of ' = p.
If ¢ € base(n), then the choice of p4 ensures that ¢ is either an unmarked base curve
of n or is contained on Usypp(y. If instead c € base(py), then the choice of marking
arcs in py again ensures that c is either an unmarked base curve of 1 or is contained
in Usupp(n)- Hence, Ikp(n' = p) < lkg(n).

e If v is a non-maximal simplex of B(X,) with lkg(v) < lkg(n) n lkg(n'), then either
lkp(v) < lkp(n = p) or lkp(v) is a single vertex or a join: Assume lkp(v) is not a single
vertex or a join and lkp(v) € lkg(n)nlkg(n'). Because supp(r) # base(r) would imply
that lkp(v) is a join or a single vertex by Lemma 6.2, we know supp(rv) = base(r) and
can apply Lemma 6.3 to v.

If v contains an unmarked base curve ¢, then every vertex in lkg(r) — B(c) will be
joined by an edge to every vertex of B(c). Since lkg(v) is not a join, this means either
lkp(v) = B(c) or v does not have any unmarked base curves.
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If Ikp(v) = B(c), then Usyppy = & and ¢ is the only unmarked base curve of v. Since
lkp(v) < lkg(n) nlkg(n'), we have four possibilities coming from Lemma 6.3. In each
case we verify that ¢ is either an unmarked base curve of 1’ = p or is contained in
Usupp(n’mp) =V.

— If ¢ € unmark(n) n unmark(n’) or ¢ S Usypp(y and ¢ € unmark(n'), then c is an
unmarked base curve of 7' = p, because of the choice of the marking arcs in p4.

— If ¢ € unmark(n) and ¢ S Ugypp(y), then c is a curve in the multicurve o defined
while constructing py. Hence ¢ € base(py) and ¢ is unmarked by the choice of
marking arcs in py.

—If ¢ € Uspppn) and ¢ S Usupp(y), then ¢ S Vj because ¢ € lkx(supp(n)) n
Ik x (supp(n’)). If ¢ is a core curve of an annular component of Vj, then ¢ € V.
Thus ¢ € base(py) and ¢ will be unmarked in 7' = p because of the choice of
marking arcs in py. If instead ¢ €V, then ¢ € Uy,

Since Usupp(v) = &, this verifies lkp(v) < lkp(n' > p) by Lemma 6.3.

Now assume v has no unmarked base curves. Since v is non-maximal, this means
Usupp(v) Mmust be non-empty. Since lkg(v) S lkg(n) nlkp(n'), we must have Ugppy S
Vo. If Usupp(r) contains an annular component of 1, then every vertex of kg (r) would
have to be equal to or joined by an edge to the core curve of that component. However,
this cannot be the case since lkg(v) is not a join. Thus, Usupp) S V' = Usupp(nmp)-
Since v has no unmarked base curves, Lemma 6.3 implies lkgp(v) S lkg(n’ = p). O

Proposition 6.7. Let p be a non-mazximal simplex of B(X,) and let x,y be vertices of
k(i) If v and y are joined by a B(W,)-edge in B(X,)*PWe) but not a B(X,)-edge, then
there exists simplices v, and v, of B(X,) so that p S vy, vy, and v, Uz and v, Uy are adjacent
vertices of B(W,,).

Proof. Assume first that x,y are joined by a B(W,)-edge coming from a twist edges of
B(W,). Then there exists ¢ € X? so that z,y € B(c). Because x,y € lkg(u), the curve c
must be in either base(u) or lkx (base(u)). By Lemma 5.4, there exists a pants decomposition
p of S% — ¢ so that base(u) N (S —¢) € p and p € X,,. For each d € p, select a marking arc
tq € B(d) so that t; is the element of markarc(u) n B(d) whenever markarc(u) n B(d) # &.
Then, v, = v, = pu {tq: d € p} U c are the desired simplices.

Now assume that x and y are joined by a B(W,,)-edge coming from a flip edge of B(W,,).
In this case, supp(z) and supp(y) fill a complexity 1 subsurface V' of S and there exist
marking arcs ¢, € B(supp(z)) and t, € B(supp(y)) so that da ., (tz,supp(y)) < 1 and
d 4yppiy (ty>sUPP(2)) < 1. Such marking arc t,,t, are vertices of the maximal simplices in
B(X,) determined by the flip edge of B(W,). Moreover x (resp. y) is equal to either ¢, or
supp(z) (resp. t, or supp(y)).

Since x,y € lkg(p), every curve of base(u) must be equal to or disjoint from each of
supp(z) and supp(y). Hence base(u) does not intersect dV. There then exists a pants
decomposition p of S* —V so that base() N (S* — V) € p and p < X, (Lemma 5.4). For
each c € pu dV, select a marking arc t. € B(c) so that t. is the element of markarc(u) N B(c)
whenever markarc(u) N B(c) # . We now define a maximal simplex v, depending on the
options for x.
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o If v = supp(z), then v, = pu dV U {t.:cepudV} ut,.
o Ifx=t,, thenv,=pudV u{t.:cepudV}usupp(x).

We similarly define v,. Thus, v, » 2 and v, > y are joined by an edge of B(W,). O

6.3 Reducing the geometric conditions to the non-annular case

Despite the addition of the marking arcs, the proof that (B(X,), B(W,)) satisfies the geo-
metric conditions of a combinatorial HHS is nearly identical to the proof for (X,, W,). In
this subsection, we will describe how to reduce the proof for (B(X,), B(W,)) to the case of
(Xa, Wa).

To start, we prove the hyperbolicity of B(X,)#Wa),

Lemma 6.8. B(X,)*PWe) is E,-equivariantly quasi-isometric to both B(X,) and Xa.
Hence B(Xo)™2We) and B(X,) are both uniform quasi-trees.

Proof. The definition of B(W,) implies that the inclusion of B(X,) into B(X,)™BW) is
a quasi-isometry. This is because if two vertices = and y of B(X,)*#M«) are joined by a
B(W,)-edge and not a B(X,)-edge, then x € p and y € v where p and v are maximal
simplices that are joined by an edge of B(W,). However, u and v will have at least one base
curve in common and this curve will need to be at most distance 1 from both x and y in
B(X,). Thus dpx,)(z,y) < 2.

Next we check that the inclusion of X, into B(X,) is also a quasi-isometry. Consider the
map B%(X,) — X? that sends z — supp(z). Lemma 6.1 showed this map is (1, 0)-coarsely
Lipschitz, making the inclusion of X, into B(X,) an isometric embedding. Since each vertex
of B(X,) is at most 1 away from a vertex of X,, the two spaces are quasi-isometric. O

We now prove the quasi-isometric embedding and hyperbolicity of the links of simplices
of B(X,). We will continue to use lkp(u) to denote the link of 4 in B(X,) and we will use
BSat(x) to denote the saturation of y in B(X,). Define B(Y,,) to be B(X,)"?"W=) —BSat ()
and let BH (1) be the subset of B(Y),) spanned by lkg(n)—as before we are taking the link
in B(X,) then taking the span in B(Y},). The spaces Yyase(u) and H(base(u)) are the spaces
defined in Section 5.3. All graphs are given their intrinsic path metrics.

Proposition 6.9. For each non-mazximal simplex p of B(X,), the space BH () is hyperbolic
and the inclusion of BH (u) into B(Y,) is a uniform quasi-isometric embedding. Moreover,
BH(u) falls into one of three cases:

e BH(u) has bounded diameter because lkg(p) is a join or a single vertex.

e base(u) = supp(p), base(u) is not a pants decomposition of S*, and p contains no
unmarked base curves. In this case, the inclusion of H(base(u)) into BH(u) is a
uniform quasi-isometry.

e base(u) is a pants decomposition of S* and u contains exactly one unmarked base curve
c. In this case, BH(u) is equal to C(A.).
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We break the proof into four cases based on p. In the first two cases, the B(X,)-link
of p is join, so BH(u) has bounded diameter, automatically satisfying the hyperbolicity
and quasi-isometric embedding properties. In the third case, we reduce the problem to the
results we established for H (base(u)) in the non-annular case. The final case addresses links
consisting only of marking arcs. In this case, we use the subsurface projection to annular
complexes.

Proof of Proposition 6.9.
1. Suppose supp(p) # base(u). By Lemma 6.2, lkg(p) is either a join or a single vertex.

2. Suppose supp(u) = base(u), base(u) is not a pants decomposition of S#, and there is
an unmarked base curve ¢ € base(u). In this case, every vertex of lkg(u) — B(c) is
joined by an edge to each vertex of B(c), so lkp(u) is a join.

3. Suppose supp(p) = base(u), base(u) is not a pants decomposition of S*, and u has no
unmarked base curves. In this case, lkg(u) is a copy of lky(base(u)) with the B(c)-

vertices attached to each X,-vertex. Thus, we have an inclusion of Y}, into B°(Y},)

that sends H°(base(u)) into BH®(p1). Further, this map can be extended over edges as
follows: if z,y € ngse( ) are joined by an X,-edge (i.e. they are disjoint curves), then
they are joined by a B(X,)-edge as well. If instead 2 and y are joined by a W,-edge,
then the proof of Proposition 6.7 shows that we can also find two maximal simplices
that are joined by a flip edge of B(W,) and contain x and y respectively.

We argue that this inclusion is actually a quasi-isometry on all of Yjase(u) and when
restricted to H (base(p)). Consider the map B°(Y,) — Yboase(“) defined by y — supp(y).
An identical argument as given in Lemma 6.1 shows that this map induces a (1,0)-
coarsely Lipschitz map B(Y),) — Ypase(u)- Thus the inclusion Yiuee(n) — B(Y),) is an
isometric embedding by Lemma 2.3. However, since each vertex of B(Y),) is at most 1
away from a vertex of Yiase(u), the inclusion of Ypaee(y) into B(Y),) is a quasi-isometry.
Further, the subset H (base(u)) is quasi-isometric to the subset BH (1).

Since H (base(y)) is hyperbolic and quasi-isometrically embeds in Yjaee(u) by Proposi-
tion 5.18, we have that BH (u) is hyperbolic and quasi-isometrically embeds in B(Y),).
Uniformity of the constants follows from the uniformity of the constants in Proposition
5.18.

4. Suppose supp(p) = base(u) is a pants decomposition and unmark(u) # &. If u
has more than one unmarked base curve, then lkg(u) is a join of the B(c) for these
unmarked base curves and hence BH (1) is bounded. Thus we can assume there exists
exactly one unmarked base curve ¢. Hence, lkg(n) = B(c) and BH(u) is the graph
with vertex set B(c) and an edge between to vertices ¢ and t' if d4_(¢,¢) = 1. Since
B(c) is the vertex set of C(A.), this means BH (y1) = C(A.) which is hyperbolic.

We claim that every vertex y € B(Y,) — BH(p) has supp(y) intersecting c¢. First, we
know supp(y) # ¢ as supp(y) = ¢ would imply that y € B(c) = BH’(u). If supp(y)
was disjoint from ¢, then we could find a simplex v of B(X,) that contains y and has
lkp(v) = B(c) = lkp(p). To do this, start with a pants decomposition of S* — ¢ that
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contains supp(y) and uses only curves from X,. Then select marking arcs for each of
these curve so that y is a marking arc if y € B(supp(y)). Since the existence of such a
simplex v would imply y ¢ B(Y,), it must be the case that supp(y) intersects c.

Since the curve supp(y) intersects ¢ for each y € B(Y,) — BH(u), the subsurface
projection 74, (supp(y)) is non-empty. Thus, we can define ¢,: B(Y,) — BH(u) =

gg‘&))by Yu(y) = ma (supp(y)) when y ¢ BH(u) and v, (y) = y when y € BH®(u) =

To prove 1, is uniformly coarsely Lipschitz, we uniformly bound the distance be-
tween a pair of vertices of B(Y),) that are joined by an edge. If two curves z,y €
BY(Y,) — BH(uu) are joined by an edge of B(Y,) and supp(z) # supp(y), then
i(supp(x),supp(y)) < 4. By construction of the annular complex, d 4, (supp(z), supp(y))
is uniformly bounded in terms of the intersection number i(supp(z),supp(y)). Thus
dpn(uy(Yu(x), ¥(p)) is uniformly bounded. If y € B°(Y,) — BH®(y) and « € BH(y)
are joined by an edge of B(Y),), then d, (supp(y),z) < 1 because they are joined by
a B(W,)-edge coming from a flip move. The map 1), is therefore uniformly coarsely
Lipschitz, proving BH (u) is quasi-isometrically embedded in B(Y),). O

6.4 FE,is an HHG

We now conclude our proof that E|, is a hierarchically hyperbolic group.

Theorem 6.10. The pair (B(X,), B(W,)) is a combinatorial HHS and the group E, acts
on B(X,) with finitely many orbits of links of simplices. In particular, E, is a hierarchically
hyperbolic group.

Proof. We have proved the requirements for (B(X,), B(W,)) to be a combinatorial HHS in
the following results:

o If puq,..., 1y, is a sequence of simplices of B(X,) so that lk(u;) < -+ < 1k(u,), then
there is a corresponding sequence of properly nested subsurface of S* by Lemma 6.3
and Remark 6.4. Hence, n is bounded in terms of the complexity of 5%, which is
determined by S.

e The hyperbolicity of B(X,)*?We) (Item 2) was shown in Lemma 6.8.

e The hyperbolicity and quasi-isometric embedding conditions (Item 3) were verified in
Proposition 6.9.

e The combinatorial conditions (Items 4 and 5) where shown in Propositions 6.5 and
6.7 respectively. Note, the condition proved is Proposition 6.5 is strictly stronger than
what is required by the definition of a combinatorial HHS, since diam(BH (u)) > 2
implies lkp(4) is not a join.

This implies that B(W,,) is connected and a hierarchically hyperbolic space. We now verify
the additional requirements from Theorem 2.18 for E, to be a hierarchically hyperbolic

group.
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Because the action of E, on B(X,) is induced by the action (up to isotopy) of E, on S%,
the action of F, on the maximal simplices of B(X,) induces the same action on B(W,) as
the action induced by E, acting on S*. It remains to verify that the action of E, on B(W,)
is metrically proper and cobounded plus that there are finitely many FE,-orbits of links of
simplices of B(X,).

Coboundedly. Because E, acts coboundedly on W, it suffices to prove that for any
w,v € BO(W,), if dw, (base(n), base(r)) < 1, then there exist ¢, € E, so that

dB(Wa)(¢(N)a Y(v))

is uniformly bounded.

Suppose u,v € BY(W,) with dy, (base(1), base(r)) < 1. Recall, there exists universal
number D > 1 (independent of S) so that for each curve b on S*, the quotient of the annular
complex C(Ay) by the subgroup generated by the Dehn twist around b has diameter D. Thus,
if base(u) = base(v), then there exists ¢ € MCG(S; z) so that ¢ is product of Dehn twists
around curves in base(u), and for each b € base(u), the marking arc of ¢(u) for b is C(Ay)-
distance D from the marking arc of v for b. Further, ¢ € E, since it is the product of Dehn
twist about curves in X,. Hence, by performing at most D twist moves on each curve of v,
we can bound dpgw,)(¢(1),v) by D times the number of curves in a pants decomposition of
S* as desired.

If instead base(u) is joined by an edge of W, to base(v), then there must exist ¢ € base(u)
and d € base(v) so that (base(u) — ¢) U d = base(v) and i(c,d) < 4. This implies 74 (d) <
C°(A.) = B(c) and 7a,(c) € C°(Aq) = B(d).

Similarly to the previous case, there exists ¢,9 € MCG(S;z) so that ¢(u) and (v)
satisty:

1. base(¢(u)) = base(u) and base(1)(r)) = base(r) because ¢ and v are products of Dehn
twists about curves in base(y) and base(r) respectively. Since each of these Dehn
twists are around a curve in X, ¢ and ¢ are both elements of E,,.

2. For each b € base(u) — ¢ = base(v) — d, the marking arc of ¢(u) for b is C(Ap)-distance
D from the marking arc of ¥ (v) for b.

3. The marking arc of ¢(u) for ¢ is C(A.)-distance D from 74, (d) and the marking arc of
Y(v) for d is C(Ag)-distance D from m4,(c).

By performing at most D twist moves for each curve in base(¢(n)) and at most D twist
moves in the annular complex for d € base(¢(r)) we can produce two markings that differ
by a flip between ¢ and d. Thus, we have that dgaw,)(¢(t), ¥(v)) is bounded above by 2D
times the number of curves in a pants decomposition of SZ.

Metrically properly. Our argument uses Masur and Minsky’s graph of clean markings
M(S?) and the subsurface projection of markings. We direct the reader to Section 2.4 to
recall the necessary definitions and properties that we will need for working with M (S?).

For each u € B(W,), let cl(u) be the set of clean markings that are compatible with p;
see Theorem 2.8. There is a uniform bound on the diameter of cl(x) in M(S) depending on
S*. We first show that the map B(W,) — M(S*) by u — cl(u) is coarsely Lipschitz.
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Let pu,v € B(W,) be joined by an edge. The definition of the edges plus Lemma 2.4
ensures that dy(u,v) is uniformly bounded for every subsurface V' of S*. This implies
dy (cl(p), cl(v)) is uniformly bounded because for each p’ € cl(u) and v/ € cl(v) and for each
subsurface V', we have

dy (i, V') < dy (i, m) + dv(p,v) +dy(v, V') + 6 < dy(p,v) + 12.

By applying the second item in Theorem 2.8, we can therefore find D > 0, depending only
on S% so that for any u,v € B(W,) joined by an edge we have

dasy(cl(p), cl(v)) < D.

Further, by possibly enlarging D, we can assume diamxsy(cl(p)) < D for each p e B(W,,).
By Lemma 2.2, the map B(W,) — M(S?) by u — cl(p) is (3D, 0)-coarsely Lipschitz.

Now, let ball?(-) and ball(-) denote the balls of radius 7 in B(W,) and M(S) respec-
tively. For each r > 0 and y € B(W,), the set {g € E, : g - ball?(u) nball?(u) # &} is a
subset of

{g€ E, : g-bally}, (cl(p)) mbally}, (cl(n) # &}

Because E, is a subgroup of MCG(S; z), E, acts metrically properly on M(S) (Theorem
2.8). Thus,

{g€ E, :g-bally}, (cl(p)) mbally? (cl(n)) # &}

contains finitely many elements of E,. This implies {g € F, : g-ball? () nball? (1) # &} also
contains only finitely many elements of E,, making the action of E, on B(W,) metrically
proper.

Finitely many orbits of links. For a simplex p of B(X,), define i = supp(u)
markarc(p). Note, for any simplex u, we have base(fi) = supp(zz) = supp(u). Because
base(7z) = supp(f), Lemma 6.3 implies that lkpz(jz) is determined by the subsurface Usupp(a)
and the unmarked base curves of u. Because there are finitely many E,-orbits of both curves
in X, and subsurfaces V < S% where 0V < X, there can only be a finite number of F,-
orbits of B(X,)-links of the @’s. By Lemma 6.2, lkg(u) — lkp(n) = supp(p) — base(u) for
each . Since supp(u) —base(u) is a multicurve of curves in X, there are only finitely many
E,-orbits of possibilities for supp(u) — base(u) as well. Thus, there are only finitely many
E,-orbits of B(X,)-links of simplices. O

7 A description of the HHG structure for £,

We now provide an explicit description of the hierarchically hyperbolic group structure that
E,, receives from Theorem 6.10. We start by recalling the defining information of a hierarchi-
cally hyperbolic structure (Sections 7.1). We embrace a slightly non-standard set of notation
in this subsection to draw a distinction between curve complexes/subsurface projection maps
and the hyperbolic spaces/projection maps of an abstract HHS. Next we describe the hierar-
chically hyperbolic structure that Theorem 2.18 imparts on an abstract combinatorial HHS
(Section 7.2). The two subsequent subsections take this hierarchically hyperbolic structure
for the space W, (Section 7.3) and the group E, (Section 7.4) and reinterpret it using the
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topology of the surface . The final subsection uses this specific structure to show that some
previously established results in the literature apply to £, (Section 7.5).

This section is largely expository and intentionally does not provide the full definition of
hierarchically hyperbolic spaces and groups. We direct the reader to [BHS19] and [Sis19] for
detailed discussion of hierarchically hyperbolic spaces and to [BHMS20] for combinatorial
hierarchically hyperbolic spaces.

7.1 The defining data of an HHS structure

An E-hierarchically hyperbolic space structure on a geodesic metric space X is a set &
indexing a collection of E-hyperbolic spaces {H(V)}yes and equipped with three relations:
nesting (£), orthogonality (L), and transversality (). For each V € &, there exists a
surjective (E, E')-coarsely Lipschitz map 7y : X — H(V) called the projection to V. The
relation E is a partial order on & that contains a unique maximal element. Whenever
V = U in & there exists a distinguished subset pf; in H(U) with diameter at most F.
The relations | and M are both symmetric and anti-reflexive. Whenever VAU, there exist
distinguished subsets py; € H(U) and p! = H(V) each of diameter at most £. When V & U
or VAU, we call the subset py; the relative projection from V to U. Every pair of distinct
elements of & is related by exactly one of the relations =, 1, or . To be a hierarchically
hyperbolic space structure for X, the set G and these relations and projection need to satisfy
a number of axioms; see [BHS19] or [Sis19] for a complete definition.

An HHS structure & for a geodesic space X" is an hierarchically hyperbolic group structure
for a finitely generated group G if GG acts metrically properly and coboundedly on X and
there is an =, 1, and M preserving action of G on & by bijections satisfying:

1. & has finitely many G-orbits;

2. For each V € & and g € G, there exists an isometry gy : H(V) — H(gV) satisfying the
following for all V.U € & and ¢, h € G.

e The map (gh)y: H(V) — H(ghV) is equal to the map gpyohy: H(V) — H(ghV).
e For each z € X, gy (7v(x)) and 7,1 (g - x) are at most E far apart in H(gV').
o If UMV or U & V, then gy (p) and pgg are at most F far apart in H(gV).

7.2 The HHS structure for combinatorial HHSs

Let (X,W) be a combinatorial HHS. Recall the equivalence relation on simplices of X:
A ~ A’ if Ik(A) = Ik(A'). Let [A] denote the ~-equivalence class of the simplex A. We
adopt the convention that the empty set is a simplex of X whose link is all of X. Let G be
the set of ~-equivalence classes of all non-maximal simplices of X, including the empty set.

This set & is the index set for the HHS structure for W provided by Theorem 2.18.
We define [A] & [A'] if k(A) < 1k(A’) and define [A] L [A'] if Ik(A) < 1k(Ik(A"))—or
equivalently 1k(A’) < Ik(lk(A)). We define [A]h[A'] if [A] £ [A'] and neither is nested into
the other. The E-maximal element of & is [F] and its associated hyperbolic space is X V.
For each [A] € & — {[J]}, the associated hyperbolic space is H(A). Note, this means the
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hyperbolic space associated to [A] has bounded diameter whenever lk(A) is a join or a single
vertex.

The projection map 7ja1: W — H(A) is defined as follows. Let o € W°. Since o is a
maximal simplex in X, there must be a vertex of ¢ contained in the space Yo = X+tW —
Sat(A). The space Ya is shown to be hyperbolic in Section 3 of [BHMS20]. Since H(A) quasi-
isometrically embeds into Ya, there is a coarse closest point projection pa: Ya — H(A).
Define 7pa1(0) = pa(o n YR). The relative projections are similarly defined by p%ﬁi] =
pa(YR n YY) whenever [A] & [A'] or [A]h][A’]. The hyperbolic spaces and projections are
well defined because YA = Yar and H(A) = H(A') whenever A ~ A’

7.3 The HHS structure for W,

Let &, be the HHS structure given to W, by virtue of (X,, W,) being a combinatorial HHS.
We give an interpretation of the relations and hyperbolic spaces for elements of &, using
the topology of subsurfaces and curves of S*.

By Lemma 5.8, there is a bijection between links of simplices p in X, and the compli-
mentary subsurfaces U,. Thus, we can identify the index set &, with the set of subsurfaces
{U, : pis a non-maximal simplex of X,}. Lemma 5.8 also says that the nesting of links
Ik(p) < lk(p') is equivalent to the containment of subsurfaces U, < U,. Lemma 7.1 below
verifies that lk(p) < lk(lk(p)) if and only if U, and U, are disjoint. Thus the nesting, orthog-
onality, and transversality of the elements of &, respectively correspond to the containment,
disjointness, and overlapping of the subsurfaces in {U), : p is a non-maximal simplex of X,}.

The hyperbolic spaces associated to subsurfaces come in two types. If u is of subsurface
type, then the hyperbolic space H (1) is the modified curve graph C’'(U,) given in Definition
2.6. If u is of tree guided type, then the hyperbolic space H(p) is the subset of C'(S* — p)
spanned by the curves ¢ with II(c) disjoint from «. This subset is quasi-isometric to tree.

Lemma 7.1. For any non-maximal simplices u, ji' < X,, we have lk(u) < lk(Ik(y')) if and
only if U, and U, are disjoint

Proof. Since lk(p) and lk(y') are spanned by the curves of X, that are on U, and U,
respectively, if U, and U, are disjoint, then lk(x) < lk(lk(p')) because every curve in lk(zu)
is disjoint from every curve in lk(y').

Conversely if lk(u) < lk(Ik(y')), then U, must be disjoint from U, since U, and U, are
filled by the curves in lk(u) and lk(u') respectively. O

7.4 The HHG structure for F,

Let ®BS,, denote the HHS structure for B(W,,) arising from (B(X,), B(W,)) being a com-
binatorial HHS. By Theorem 6.10, 8&,, is also an HHG structure for E,. Let ’BGZ denote
the set of equivalence classes of simplices u S B(X,) with supp(u) = base(u). We start by
describing in topological terms the HHS data for equivalence classes of simplices in ‘BGg.
At the end we will describe why the other simplices can essentially be ignored when working
with the HHG structure 86, for E,.

Define C, to be the disjoint union the set of annuli {A. : ¢ € unmark(y)}. Lemma 6.3
implies that lkg(p) = k(') if and only if Usypp(uy = Usupp(y and C, = Cyy . Thus, the
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set BS! can be identified with the set of all pairs of subsurfaces (Usupp(p)> Cu)- Lemma
6.3 showed that lkp(u) < lkp(1'), and hence the T relation, is equivalent to the following
“dictionary nesting” of subsurfaces:

(Usupp(u)» Cr) E (Usupp(u), Cr) = Usupp() S Usupp(uy and C S Usupp(ury Y Cpar-

Lemma 7.2 below shows that lkg(u) S lkp(lkp(x')) if and only if Usyppuy U C, is disjoint
from Usypp(y v Cpv. Hence

(Usupp(u)> Cu) L Usupp(rys Cpr) == Usupp(uy Y Cp and Ugupp(ury W Cyp are disjoint,

Proposition 6.9 showed that there are three possibilities for the hyperbolic space BH (1)
when [1] € BS,. When Ugypp(,) U Cy is not connected, then BH (1) has bounded diameter
since lkp(p) is a join. If C), = & and Ugypp(y) is connected, then BH (y1) is quasi-isometric to
H (supp(x)), which in turn falls into one of the two case described in the previous section.
Finally, when Usyppy = & and C), is an single annulus A., then BH () is the annular
complex C(A.).

Finally consider a simplex p where base(u) # supp(u). For such a simplex, define i =
supp(u) > markarc(p). Then lkg(u) = lkg(@) = (supp(p) — base(u)). Thus, the hyperbolic
spaces associated to equivalence classes of such simplices will have finite diameter. Further,
for any simplex p if Ikg(u') < lkp(p), then either kg (') is a join or lkp(p') < lkp (). With
these two facts, one can essentially ignore the elements of B&, with base(u) # supp(u)
when working with the hierarchically hyperbolic structure of B(W,,) (or E,); Lemma 7.6 in
the next section is an example of this philosophy. In fact, one could use these two facts to
prove that B& itself an HHS structure for B(W,). We have forgone this work as we have
no need for it.

Lemma 7.2. Let p, i/ € B(X,) be non-mazimal simplices with supp(p) = base(u) and
supp(u') = base(u'). Thenlkp(u) < Ikp(lkp(1')) if and only if Usipp(uy 9 Cy and Usypp(uy W C,r
are disjoint.

Proof. We start by describing lkg(lkg(n)) when n € B(X,) is a simplex with supp(n) =
base(n). By Lemma 6.2, lkg(n) is spanned by the set of vertices:

{x € B(X,) : supp(z) € lkx(supp(n))} u U B(c). (%)

ceunmark(n)
Let y € lkg(lkg(n)). There are two facts we shall need about y.

L. supp(y) is disjoint from Usypp(y): to start, supp(y) ¢ lkx(supp(n)), since y ¢ lkg(n).
Thus, the only way for y to joined by edge to each vertex of lkg(n), is for supp(y) to be
disjoint from every curve in lky (supp(n)). Since Usypp(y) is defined to be the subsurface
filled by the curves in lkx (supp(n)), we must have that y is disjoint from Usupp(r)-

II. for each unmarked base curve ¢ of 7, either y = ¢ or supp(y) is disjoint from ¢: if ¢ is an
unmarked base curve of 1, then B(c) < lkg(n). Hence, y must be joined by an edge to
each vertex of B(c). The only way for that to happen is if y = ¢ or supp(y) is disjoint
from c.
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Assume lkp(p) < Ikp(lkp(p')). Because of (%), Usupp(u) ¥ Cy is precisely the subsurface
filled by the set of curves {supp(y) : y € lkg(r)}. By Item I, supp(y) is disjoint from Usypp(,
for all y € k(). Hence Usypp(uy © Cy is also disjoint from Ugypp(,)-

To show that Usypp(uy w Cy is disjoint from C)r, we will prove that every curve in the
set {supp(y) : y € lkg(p)} is disjoint from every unmarked base curve of p/. This implies
Usupp(p) Y Cy is disjoint from C)y, since the unmarked base curves of y/ fill C,y. By Item II,
if y € lkp(p) and ¢’ is an unmarked base curve of i/, then either y = ¢ or supp(y) is disjoint
from ¢. Since supp(p) = base(u), () implies that B(c') < lkg(p) if y = ¢/. However,
B(d) < lkg(y') by (*), implying B(¢’) & lkg(lkg(x')). Since lkp(n) < lkp(lkg(r')), this
means y # ¢ and hence supp(y) must be disjoint from ¢’ as desired.

Now assume that Usypp(u) Y Cp and Ugyppry U O,y are disjoint and let y € lkp(u). Hence
we have either supp(y) S Usupp(u) or supp(y) < C,. Thus, supp(y) is disjoint from both
Usupp(py and Cyy. Since supp(y) is disjoint from Usypp(y, supp(y) is disjoint from every curve
in lky (supp(y')) and hence y joined be an edge to every vertex of

{z € B(X,) : supp(z) € Ikx (supp())}.

Similarly, supp(y) begin disjoint from C,, implies that supp(y) is disjoint from each unmarked
base curve of y/. But this implies y is joined by an edge to each vertex in B(c’) for each
¢ € unmark(y'). By (%), this makes y € lkg(lkg(u')) O

7.5 Some applications of the HHS structure

We now use the HHG structure 8&,, to prove the remaining statements from Theorem 1.3
of the introduction. These results rely on two facts: (1) X" is a quasi-tree (2) a minor
modification of B8G,, produces an HHG structure of F, that has an additional property called
unbounded products originally defined by Abbott, Behrstock, and Durham [ABD21]. The
definition we give below of unbounded products is equivalent to the original definition in the
setting of hierarchically hyperbolic groups and avoids having to describe unneeded additional
aspects of the theory of hierarchically hyperbolic spaces. The proof of the equivalence is a
straight forward application of the distance formula in an HHG [BHS19, Theorem 4.5] and
the fact that G acts on G with finitely many orbits.

Definition 7.3. A hierarchically hyperbolic group (G, &) has unbounded products if for all
non-C-maximal U € &, whenever there exists V & U with diam(H(V')) = oo, there also

exists @ L U so that diam(H(Q)) = oo.

Given any hierarchically hyperbolic group (G, &), Abbott, Behrstock, and Durham pro-
vide an explicit construction of a new hierarchically hyperbolic group structure ¥ with un-
bounded products for G. In certain cases, this new structure maintains the same =-maximal
hyperbolic space.

Theorem 7.4 ([ABD21, Theorem 3.7]). Let (G,&) be a hierarchically hyperbolic group.
There exists a hierarchically hyperbolic groups structure ¥ for G with unbounded products.
Moreover, if for every non-E-mazimal U € & with diam(H(U)) = oo there is V € & so that
V L U and diam(H(V')) = oo, then the E-mazimal hyperbolic space of T can be taken to be
the E-maximal hyperbolic space of &.
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Remark 7.5. While the moreover clause of Theorem 7.4 is not given in the statement in
[ABD21], it is explicit in Abbott, Behrstock, and Durham’s construction of the hyperbolic
spaces for the new structure ¥.

Our HHG structure 86, for F, does not have unbounded products itself, but the next
lemma verifies that 2BG,, does satisfy the hypotheses of the moreover clause of Theorem 7.4.
This allows us to use Abbott, Behrstock, and Durham’s construction without changing the
E-maximal hyperbolic space.

Lemma 7.6. For every [u| € B6,, if p # & and diam(BH(n)) = oo, then there exist
[v] € &, with [v] L [p] and diam(BH (v)) = .

Proof. Let p be a non-maximal, non-empty simplex of B&,, so that diam(BH (u)) = oo.
If supp(u) # base(y), then Lemma 6.2 makes lkg(u) a join. Since this would imply that
diam(BH (u)) < 2, we know supp(u) = base(u).

Recall, C), is the disjoint union of annuli whose core curves are the unmarked base curves
of p. By Lemma 6.2, Usypp (u) v Cy, is filled by the set of curves {supp(y) : y € lkg()}. Hence,
if Usupp (u) © C), 1s disconnected, then lkp(4) would have to be a join. Since this would imply
BH(4) has bounded diameter, we know Usypp 4y U C), is connected.

Since Ugypp (n) W C), is connected, we have two cases: either C), = & and Ugypp(y) is
connected or Ugypp) = & and C) is an single annulus. In either case, there is a curve
c € X? that is disjoint from Usupp (n) © €y and is not the core curve of C), in the case
Usupp(u) = . Lemma 5.4 implies that there exists a simplex o of B(X,) so that

e c € base(o);
e base(o) is a pants decomposition of S?;
e c is the only unmarked base curve of o.

The B(X,)-link of o is exactly B(c), and hence BH (o) has infinite diameter as it is a quasi-
isometric to a line (Proposition 6.9). Further, [¢] € BSL, Usupp(o) = &, and C, is precisely
the annulus with core curve c. Since C, is disjoint from Usypp () W Cp and Usyppoy = &, we
have [¢] L [p] by Lemma 7.2. O

Abbott, Behrstock, and Durham prove the following results about HHGs with unbounded
products; see [ABD21] for the relevant definitions.

Theorem 7.7 ([ABD21]). Let (G,%) be a hierarchically hyperbolic group with unbounded
products and let T' be the &-maximal element of X.

e The action of G on H(T) is the largest cobounded acylindrical action of G on a hyper-
bolic space.

o A subgroup H < G is stable if and only if the orbit map of H into H(T) is a quasi-
1sometric embedding.
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Cordes, Charney, and Sisto recently provided a complete topological characterization of
the Morse boundaries of certain groups [CCS23]. While they do not tackle hierarchically
hyperbolic groups directly, their methods are readily adapted to certain hierarchically hyper-
bolic groups with unbounded products. In the appendix, we use their techniques along with
the work of Abbott, Behrstock, and Durham to establish the following; see the appendix or
[CCS23] for the definition of the Morse boundary and w-Cantor space.

Theorem 7.8. Let (G,T) be a hierarchically hyperbolic group with unbounded products and
let T be the E-mazximal element of T. If H(T) is a quasi-tree and G is not hyperbolic, then
the Morse boundary of G is homeomorphic to an w-Cantor space.

Proof. This is Corollary A.8 in the appendix. O
Combining these results, we can provide a proof of the remaining claims of Theorem 1.3.
Corollary 7.9.

1. The action of E, on X, is the largest cobounded acylindrical action of E, on a hyper-
bolic space.

2. A subgroup H < E, is stable if and only if the orbit map of H into X, is a quasi-
isometric embedding. In particular, every stable subgroup of E, is virtually free.

3. The Morse boundary of E, is an w-Cantor set.

Proof. Combining Lemma 7.6 with Theorem 7.4, there is an HHG structure ¥ for £, where
the E-maximal hyperbolic space of ¥ is the E-maximal hyperbolic space of BG,. Lemma
6.8 showed that the =-maximal element of %8G, is E,-equivariantly quasi-isometric to the
quasi-tree X,. The conclusions then follow from Theorems 7.7 and 7.8 plus the fact that
any finitely generated group whose orbit map in a quasi-tree is a quasi-isometric embedding
is virtually free. O

A Appendix: HHGs and w-Cantor set boundaries

Charney, Cordes, and Sisto recently gave the first topological descriptions of the Morse
boundaries of non-hyperbolic groups [CCS23]. They proved the Morse boundaries of most
right-angled Artin groups and graph manifold groups are homeomorphic to a specific limit
of Cantor spaces that they call an w-Cantor space. This appendix describes how their
techniques can be straight forwardly extended to prove the same result for a broader class of
groups. The main motivation is to show that certain hierarchically hyperbolic groups will also
have w-Cantor space boundaries. However, as the full power of hierarchical hyperbolicity will
not be needed for our proof, we will instead work in the simpler setting of Morse detectable
groups introduced by the author, Spriano, and Tran [RST22].
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Notation

Throughout, GG will be a finitely generated group with a fixed finite generating set. Whenever
we discuss G as a metric space, we are referring to the path metric on the Cayley graph of
G with respect to this finite generating set. We will denote the Morse boundary of G by
0n G and the Gromov boundary of a hyperbolic space X by ¢X. Throughout, I will denote
a closed interval of the real line. We remark that we are intentionally glib about the theory
of Morse boundaries and direct the reader to Cordes’ excellent survey on the topic for more
details [Cor19].

Morse Boundaries

Given a function N: [1,00) x [0,00) — [0,00) we say that a geodesic v: I — G is N-Morse if
every (k,c)-quasi-geodesic a with endpoints on 7y is contained in the N(k, c)-neighborhood
of v. We call the function N the Morse gauge of v. Let M denote the set of Morse gauges
of all geodesics in G. The set M has a partial order where N < N’ if N(k,c) < N'(k,c) for
all k > 1 and ¢ > 0.

For each N € M, we let GV denote the set of elements g € G so that there exists a N-
Morse geodesic connecting the identity e to g. Cordes and Hume proved that the restriction
of the metric of G to G makes GV into a d-hyperbolic metric space, where ¢ is determined
by N [CD17, Proposition 2.3]. Let 03;G denote the Gromov boundary of G with e as the
base point. By definition, if N < N’, then GY < GV and 9),G < oY G.

The Morse boundary of G is the direct limit of the 0;G. That is,

ouG = lim o G.
M

A consequence of this definition is that each strata 03;G is a compact subset of the Morse
boundary.

Lemma A.1 ([CH17, Theorem 3.14]). For each Morse gauge N, 0},G is a compact subset
of oG

An important property of the Morse boundary is that the Gromov boundaries of stable
subgroup embed into the Morse boundary of the entire group; see [CD17] or [DT15] for the
definition of a stable subgroup.

Lemma A.2 ([CD17, Corollary 2.12]). If H is a stable subgroup of G, then H is hyperbolic
and the inclusion of H into G induces a continuous injection of 0H into 0y G.

Charney, Cordes, and Sisto defined an w-Cantor space as the direct limit of countably
many Cantor spaces where each Cantor space has empty interior in the next Cantor space;
see [CCS23] for full details. They prove that all w-Cantor sets are homeomorphic and give
the following sufficient condition for the Morse boundary of a group to be an w-Cantor set.

Theorem A.3 ([CCS23, Theorem 1.4]). If 0yG is totally disconnected, o-compact, and
contains a Cantor space, then Oy G is homeomorphic to either a Cantor space or an w-
Cantor space. Moreover, 0yG is a Cantor space if and only if G is virtually free.
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Morse detectability

Our proof that certain HHGs have w-Cantor space boundaries only needs the following Morse
detectable property.

Definition A.4 (Morse Detectable). A finitely generated group G is Morse detectable if
there exists a hyperbolic space X and a coarsely Lipschitz map n: G — X so that for any
(k, ¢)-quasi-geodesic v: I — G the following hold.

1. For each N € M, if v is N-Morse, then there exists A > 1 depending on N, k, and ¢,
so that m o~ is a (A, A)-quasi-geodesic of X.

2. For each A\ > 1, if m oy is an (A, A\)-quasi-geodesic, then v is N-Morse for some N
determined by k, ¢, and .

If the space X is a quasi-tree, then we say G is Morse detectable in a quasi-tree.

Abbott, Behrstock, and Durham prove that unbounded products imply a hierarchically
hyperbolic groups is also Morse detectable.

Theorem A.5 ([ABD21, Corollary 6.2]). If (G, &) is a hierarchically hyperbolic group with

unbounded products, then G is Morse detectable in the =-maximal hyperbolic space of S.

Morse detectability allows us to conclude that the Morse boundary is o-compact and
continuously embeds in the Gromov boundary of the detecting space.

Lemma A.6. If G is Morse detectable in the space X, then
1. 0y G is o-compact;
2. the map m: G — X induces a continuous injection om: Oy G — 0X.

Proof. o-compact. For each \ € N, define 03,G to be the subset of points in dj,G that are
represented by a geodesic ray v: I — G so that w o+ is a (A, A)-quasi-geodesic ray in X. We
claim that the closures of the d3,G give an exhaustion of d,;G by compact sets.

Because G is Morse detectable, for each A € N, there exists N € M so that d},G is
contained in some 03;G for N determined by A. Thus the closure of each d},G is compact
since each 04;G is compact (Lemma A.1). On the other hand, Morse detectability also
implies that for each Morse gauge N € M, there is some A € N so that 0),G < 03,G. Thus,
OuG is contained in the union of the closures of the 93,G.

Continuous embedding. The definition of Morse detectable make the restriction of =
to GV a quasi-isometric embedding with constants depending ultimately only on N. Since
quasi-isometric embeddings of hyperbolic spaces extend to continuous injections on their
boundaries, we have that 7 induces a continuous injection 053G — 0X for each N € M. Since
On G is the direct limit of the 03,G’s, this induces a continuous injection or: dyG — 0X. [

When our group is Morse detectable in a quasi-tree, we can verify Charney, Cordes, and
Sisto’s condition for the boundary to be an w-Cantor set.

48



Theorem A.7. Suppose 0pG is non-empty. If G is Morse detectable in a quasi-tree and
not hyperbolic, then 0y;G is homeomorphic to an w-Cantor space.

Proof. Let X be the quasi-tree that detects the Morse quasi-geodesics of G. By Lemma A.6,
Ou G is o-compact. Since the Gromov boundary of a quasi-tree is totally disconnected, the
continuous injection dr: 0);G — 0X forces dy;G to be totally disconnected. Therefore, the
only requirement of Theorem A.3 that we still need to verify is that d);G contains a Cantor
space.

Corollary 4.9 of [RST22| says any Morse detectable group that has non-empty Morse
boundary is either virtually cyclic or contains a stable free subgroup of rank at least 2. The
desired Cantor subspace thus comes from the Gromov boundary of this stable free subgroup
by Lemma A.2. O

As a corollary of Theorem A.7, we show that the Morse boundaries of some HHGs are
w-Cantor spaces. This proves Theorem 7.8 from the main text.

Corollary A.8. Let (G, &) be a non-hyperbolic hierarchically hyperbolic group with non-
empty Morse boundary. If & has unbounded products and the E-mazimal hyperbolic space
of & is a quasi-tree, then dyG 1s homeomorphic to an w-Cantor space.

Proof. By Theorem A.5, the group G is Morse detectable with the E-maximal hyperbolic
space in &. Thus, the conclusion is a special case of Theorem A.7. O

We conclude by highlighting another hierarchically hyperbolic group whose Morse bound-
ary is an w-Cantor space because of Corollary A.8.

Example A.9. Let H be the handlebody group of a genus 2 handlebody. Che sser proved H
has a hierarchically hyperbolic group structure with unbounded products [Che22]. Further,
Chesser shows that the E-maximal space in this structure is a quasi-tree because it is the
contact graph of a CAT(0) cube complex (they also prove this space is quasi-isometric to
the disk graph of the genus 2 handlebody). Thus, dy H is an w-Cantor space. In the case of
genus 3 or larger, the handlebody group is known to not be hierarchically hyperbolic [HH21]
although the question of whether it is or is not Morse detectable is open.
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