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Abstract
We prove a functional transcendence theorem for the integrals of algebraic forms in families of algebraic varieties.
This allows us to prove a geometric version of André’s generalization of the Grothendieck period conjecture, which
we state using the formalism of Nori motives.

More precisely, we prove a version of the Ax–Schanuel conjecture for the comparison between the flat and
algebraic coordinates of an arbitrary admissible graded polarizable variation of integral mixed Hodge structures.
This can be seen as a generalization of the recent Ax–Schanuel theorems of [13, 18] for mixed period maps.
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1. Introduction
1.1. Transcendence of periods
1.1.1. Periods
Given a smooth algebraic variety X defined over a field 𝑁 ⊂ C, we may take an algebraic di!erential
p-form 𝜖 defined over k (or more generally a degree p algebraic de Rham cohomology class defined
over k) and form the integral

∫
𝐵
𝜖 along a topological p-cycle 𝑃 of 𝑔 (C) (with the euclidean topology).

Such numbers are called periods of 𝑝 𝑌 (𝑔). They collectively determine the Hodge structure on the
degree p cohomology of X, and conjecturally encode much of the geometry of X. One instance of this
is the Hodge conjecture, which says that Hodge classes are represented by algebraic subvarieties. In
a di!erent direction, the period conjecture says that algebraic relations among the periods themselves
should be of geometric origin.

1.1.2. Classical period conjecture
We may measure the Q-algebraic independence of the periods of 𝑝 𝑌 (𝑔) via the transcendence degree
of the field extension of Q they generate. The algebraic relations arising from geometry are measured
by the motivic Galois group1 Gmot (𝑝 𝑌 (𝑔)) of 𝑝 𝑌 (𝑔). Roughly speaking, it records the Q-algebraic
relations arising from pushing forward or pulling back along geometric maps and applying Stokes’
theorem. The two are related by a conjecture of Grothendieck (see [12] for more history and discussion)
which is phrased more generally for motives, but for the purposes of the above discussion, we may take
𝜌 = 𝑝 𝑌 (𝑔) for a variety X defined over Q:

Conjecture 1.1 (Grothendieck period conjecture). Let M be a Nori motive over Q. Then

trdegQ Q(periods of 𝜌) = dim Gmot(𝜌).

This conjecture is important partly because many interesting numbers arise as periods, such as
log 2, 𝜆.

1.1.3. André’s generalization
While Grothendieck’s conjecture is very general (and currently very, very open) it does not cover many
important situations. For example, even e itself is (conjecturally!) not a period. However, e can still be
described in the language of periods, as log 𝐺 = 1 and log 𝐽 is itself a period function.

1We use the Tannakian category of Nori motives to define the motivic Galois group. Ayoub uses Voevodsky’s triangualated
category of motives, but the resulting motivic Galois group is canonically the same [15].
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André [10] found a very clever way to address this issue by considering periods of varieties not just
over number fields, but of varieties over arbitrary subfields K of C. Of course, one must now be careful,
since K can be chosen so as to engineer ‘coincidences’ between periods, such as

∫ 𝑀2

1
𝑡𝐾
𝐾 = 2. Therefore,

André insists one pay a price for making K very large: the transcendence can come either from the
periods over K, or from K itself. In this way, one may consider the transcendence simultaneously of
quantities like 𝐼 and

∫ ℓ
0 𝜖 by working over the field Q(𝐼).

The general statement is as follows:

Conjecture 1.2 (André–Grothendieck period conjecture). Let M be a Nori motive over K. Then

trdegQ 𝐶 (periods of 𝜌) ≥ dim Gmot (𝜌).

1.1.4. Functional Setup
To formulate a geometric analogue, we must find a replacement for the extension Q ⊂ C, as well as the
integration map. Namely, we think of Q as the base-field over which we consider our varieties, and C
as the extension field over which the period integrals are a priori defined. As such, we replace Q with
a complex function field k, and C with an appropriate field of meromorphic germs 𝑁an (see Definition
4.18 for the precise definition). Essentially, k is the function field of a complex variety S, and varieties
over k are families 𝑔 → ,, so for an algebraic relative de Rham cohomology class 𝜖 ∈ 𝑝 𝑌

𝐼𝑈 (𝑔/,)
and a local flat section 𝑃𝐸 of the p-homology of the fibers, our integration map considers the fiberwise
periods

∫
𝐵!
𝜖𝐸 and yields meromorphic (as opposed to rational or algebraic) functions on the base S.

Moreover, for an intermediate field 𝑁 ⊂ 𝐶 ⊂ 𝑁an, if K is the function field of a complex variety T, then
the embedding 𝑁 ⊂ 𝐶 yields a rational map 𝑐 → , while the embedding 𝐶 ⊂ 𝑁an yields a local analytic
section . of 𝑐 → , with Zariski dense image. We therefore interpret the 𝑁an-valued periods of 𝑝 𝑌 (𝑔)
for 𝑔 → 𝑐 as the pullback via . of the periods over T.

Replacing Q ⊂ C with the extension 𝑁 ⊂ 𝑁an, we may formulate and prove the analogue of the
André–Grothendieck period conjecture:

Theorem 1.1 (see Theorem 4.25). Let k be the function field of a complex algebraic variety and
𝑁 ⊂ 𝐶 ⊂ 𝑁an where 𝐶/𝑁 is finitely generated. Then for any Nori motive M over K, we have

trdeg𝑔 𝐶 (periods𝑔an of 𝜌) ≥ dim Gmot (𝜌/C).

Here, Gmot(𝜌/C) denotes the relative motivic Galois group (see Definition 4.15). The analog of
the Grothendieck period conjecture – namely, the case 𝐶 = 𝑁 – was proven by Nori (unpublished) and
Ayoub [6]. As shown by Nori and Ayoub, in the functional setting the motivic Galois group Gmot(𝜌/C)
has a natural interpretation as the Zariski closure of the topological monodromy group acting on the
local system associated to the Betti realization of M (see Theorem 4.16).2

Remark 1.2. Nori and Ayoub in fact prove the functional analog of the Kontsevich–Zagier period
conjecture which states that the formal period ring injects into 𝑁an via evaluation. This is equivalent to
the 𝐶 = 𝑁 case of Theorem 1.1 together with the irreducibility of the torsor of isomorphisms between
the de Rham and Betti realization functors. See Section 4 for further discussion. The full Kontsevich–
Zagier conjecture does not generalize to the setting of Theorem 1.1 without further assumptions on
K, as K itself may contain some period functions. See [5] (and specifically Remark 15) for a nice
summary.

2In fact, Nori and Ayoub have a slightly artificial setup from this perspective, where they work only with subfields of C. We
find complex function fields to be a more natural context, so in §4 we show how to go from their setup to this one at the cost of
taking a slightly more complicated fiber functor.
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1.2. Ax–Schanuel conjecture
1.2.1. Motivation
We will deduce Theorem 1.1 from a version of the Ax–Schanuel conjecture for the analytic comparison
between the flat and algebraic coordinates of an admissible variation of mixed Hodge structures.
The relation to an Ax–Schanuel type theorem is not surprising as André’s conjecture implies the
classical Schanuel conjecture – see Example 4.4. In fact, it will turn out that these two statements are
formally equivalent if one restricts to studying variations of mixed Hodge structures which come from
geometry.

In the past decade, there has been much progress in functional transcendence, beginning with in-
terest in unlikely intersection problems and Shimura varieties, and specifically on the period maps for
variations of (mixed) Hodge structures [27, 22, 9, 13, 18]. This amounts to studying the transcen-
dence of the coordinates of the Hodge filtration in an appropriate flag variety with respect to a flat
trivialization, which are roughly speaking ratios of certain period functions,3 The main advantage of
Theorem 1.3 below is that it directly applies to the period functions themselves. See §5 for a concrete
example.

1.2.2. Main result
Let S be an algebraic variety and V = (𝐷Z,𝜄•𝐷 , 𝑖•𝐷) an admissible variation of graded-polarizable
integral mixed Hodge structures on S (see, for example, [24] for background), where 𝐷Z is an integral
local system on ,an, 𝜄•𝐷 a (descending) filtration of 𝐷Q := 𝐷Z ⊗Z"an Q𝐴an , and 𝑖•𝐷 an (ascending)
filtration of 𝐷Oan := 𝐷Z ⊗Z"an O𝐴an . Choosing a basepoint 𝜕0 ∈ ,, we introduce the following notation:

◦ 𝐷Z,0 is the fiber of 𝐷Z at 𝜕0, and likewise for 𝐷Q,0,𝐷C,0,
◦ (𝐷O,∇) is the canonical algebraic structure [16] on the flat vector bundle (𝐷Oan ,∇),
◦ V := A(𝐷O) its geometric total space with projection 𝜆 : V→ ,,
◦ Gfull ⊂ GL(𝐷Q,0) is the full algebraic monodromy group – namely, theQ-Zariski closure of the image

Γ of 𝜆1 (,an, 𝜕0) → End(𝐷Q,0).
◦ G ⊂ GL(𝐷Q,0) is the algebraic monodromy group – namely, the identity component of Gfull.

An irreducible subvariety 𝐿 ⊂ , is contained in a proper weak Mumford-Tate subvariety if and only if
the algebraic monodromy group of the restriction V, is smaller than G; see §2.9.

Now, let V0 be the trivial variation whose fiber is the fiber of V over 𝜕0. Consider the variation
E := Hom(V ,V0), its underlying algebraic flat vector bundle 𝑛O with total space E, and let I ⊂ E be the
open set of isomorphisms of the fibers (as vector spaces) in the geometric total space, which is naturally
a GL(𝐷C,0)-torsor over S by post-composition. We let ,̃an be the minimal covering space of ,an which
trivializes the local system𝐷Z. Then solving the connection naturally gives a flat section 𝛿̃V : ,̃an → Ĩan

by sending a path to its flat transport operator. Projecting down, we get a natural injective ,an-map
𝛿V : ,̃an → Ian, whose image we denote by ΣV . We may also think of ΣV as the flat leaf of E through
the identity id : 𝐷C,0 → 𝐷C,0 thought of as a point in the fiber above 𝜕0.

Note that we may write the coordinates of this map as follows: if we pick a basis 𝐺𝐽 for 𝐷Z,0 and a
global meromorphic basis 𝜖 𝜇 for 𝐷O, then the coordinates for 𝛿V are precisely the expansion of the 𝜖 𝜇
in the flat continuation of the basis 𝐺𝐽 . In the case that 𝐷Z = ℓ/ 𝛽∗Z0 , where 𝛽 : 𝑔 → , is a smooth
projective morphism, then the 𝜖 𝜇 are relative de Rham cohomology classes and the coordinates of 𝛿V
are the period integrals of the 𝜖 𝜇 over the dual homology basis to the 𝐺𝐽 along the fibers.

We shall show (see Lemma 2.7) that the Zariski closure ΩV := (ΣV )Zar of ΣV has underlying set the
Gfull(C)-orbit of ΣV , and is therefore naturally a Gfull-torsor which we call the period torsor. It has a
natural flat connection restricted from I (see §2.4). Moreover, we have dimΩV ( dim , = dim G, which
is the analog of Conjecture 1.1.

3Indeed, for an elliptic curve, the coordinate 1 for the Hodge filtration is the ratio of the two periods.
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Our main theorem is as follows:

Theorem 1.3. Suppose𝜄 ⊂ ΩV is an algebraic subvariety and U a component of𝜄 ) ΣV such that

codim2 𝑗 < dim G.

Then the projection of U to S is contained in a weak Mumford–Tate subvariety.

Given the setup of the discussion in §1.1.4, this theorem immediately implies Theorem 1.1 by taking
W to be the Zariski closure of the image of the composition 𝛿V ◦ . (recall that there we have a rational
map , → ,+ with function field extension 𝑁 ⊂ 𝐶 and analytic section . inducing the embedding
𝐶 ⊂ 𝑁an). In fact, Theorem 1.1 implies Theorem 1.3, at least for variations coming from geometry (see
Remark 4.27). We give two proofs of Theorem 1.3, first as an application of the Ax–Schanuel theorem
for principal bundles of [11] and second using o-minimality, generalizing and using the results of [27,
22, 9, 13, 18]. The above theorem easily recovers previous Hodge-theoretic Ax–Schanuel theorems
(see §5.3).

1.3. Outline
In §2, we collect some background needed for the proof of Theorem 1.3, and in §3, we give both proofs
of our main result.

In §4, we give a straightforward generalization of Nori’s construction of motives over subfields
𝑁 ⊂ C to complex function fields and establish the necessary ingredients to deduce Theorem 1.1 from
Theorem 1.3. Since there seems to be a gap in the literature for Nori motives over function fields, we
take this opportunity to also write down Nori’s proof of the Grothendieck period conjecture in this
setting. We do this by gathering theorems already present in the literature, mostly from [20]. We also
point out that one can quickly deduce the full Kontsevich-Zagier conjecture (a theorem of Ayoub [6])
from the Grothendieck period conjecture, combined with our analytic description of the period torsor.

In §5, we discuss as an example an application to families of elliptic curves and show how to use
Theorem 1.3 to formulate some related statements. We also prove the Ax–Lindemann conjecture for
abelian di!erentials (recently conjectured by Klingler–Lerer [21]). Finally, we explain how our main
theorems implies all previously known Hodge–theoretic Ax–Schanuel theorem.

2. Background Results
In this section, we briefly recall the statements from o-minimal geometry and Hodge theory that we will
need. We also prove some preliminary results that will be used in the proof of Theorem 1.3.

2.1. o-minimality
We shall be working throughout in the o-minimal structure Ran,exp, see [29] for background. We shall
use the following definable Chow theorem of Peterzil–Starchenko:

Theorem 2.1 (Peterzil–Starchenko [25, Thm 4.5]). Let Y be a quasiprojective algebraic variety, and let
𝑟 ⊂ 𝜇 be definable, complex analytic, and closed in Y. Then A is algebraic.

For an algebraic variety S with a local system 𝐷C (on ,an), the total space V has a natural definable
structure (the ‘algebraic definable structure’) coming from its canonical algebraic structure. Also another
definable structure onVan (the ‘flat definable structure’) is obtained by taking a definable cover of ,an by
simply connected open sets and using flat coordinates. In our case, the two are the same by the following:
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Theorem 2.2 (Bakker–Mullane [8, Theorem 1.2]). Let 𝐷C be a local system underlying an admissible
variation of graded-polarizable integral mixed Hodge structures on S. Then the flat and algebraic
definable structures on the total space Van are equivalent.

We shall use the following precise corollary to provide a definable fundamental domain for ΣV .

Corollary 2.3. For 𝐷C as in Theorem 2.2, let 𝛽 : ; → ,an be a definable map from a definable analytic
space and 𝛿 a flat section of 𝛽 ∗𝐷C. Then the corresponding lift 𝛽 : ; → Van is definable.

We fix F ⊂ ,̃an to be an open definable analytic subspace with simply connected components with
a surjective map < : F → ,an. Then by Proposition 2.3, we have that Σ3∗V ⊂ <∗I is definable, and
therefore, so is its image FV in ΣV . Observe that FV surjects onto ,an and thus Γ · FV = ΣV .

2.2. Point counting on transcendental sets
Recall that the height of a rational point 4

5 with gcd(=, >) = 1 is 𝑝 ( 45 ) := max(|= |, |> |). For a point
? = (?1, . . . , ?/) ∈ Q/, we define 𝑝 (?) := max𝐽 𝑝 (?𝐽). Finally, for any subset 𝑔 ⊂ R/, we define

@ (𝑔 ,𝑐) := #{? ∈ 𝑔 ) Q/ | 𝑝 (?) ≤ 𝑐}.

Given a set 𝑔 ⊂ R/, we set 𝑔alg to be the union of all connected, positive dimensional, semi-algebraic
subsets of X. Then we have the following theorem of Pila–Wilkie:

Theorem 2.4 (Pila–Wilkie [28, Thm 1.8]). For a set 𝑔 ⊂ R/ definable in an o-minimal structure, and
any A > 0, we have

@ (𝑔 ( 𝑔alg,𝑐) = 𝑐6 (1) .

In fact, we shall need the slightly stronger version:

Theorem 2.5 (Pila–Wilkie [26, Thm 3.6]). For a set 𝑔 ⊂ R/ definable in an o-minimal structure, and
any A > 0, there is a definable family𝜄 ⊂ 𝑔 ×𝜇 with semialgebraic fibers𝜄7 , such that for any positive
real number T, the rational points in X of height at most T are contained in the union of 𝑐6 (1) of the
fibers𝜄7 .

2.3. Mumford–Tate groups
We follow the conventions of [1]. For a rational mixed Hodge structure 𝐷 = (𝐷Q,𝜄•𝐷 , 𝑖•𝐷), recall that
the group of weight zero Hodge classes of V is𝜄0𝐷)𝑖0𝐷 . We define the Mumford–Tate group of V to be
the subgroup of GL(𝐷Q) stabilizing each weight zero Hodge tensor in all tensor powers𝐷 ⊗8 ⊗ (𝐷∨)⊗/.

Theorem 2.6 (André). For an admissible variation of graded-polarizable integral mixed Hodge struc-
tures (𝐷Z,𝜄•𝐷 , 𝑖•𝐷) on a smooth algebraic variety S, we denote by G𝐸 the the Mumford–Tate group
of the fiber (𝐷Q,𝐸 ,𝜄•𝐷Q,𝐸 , 𝑖•𝐷C,𝐸) at s and H𝐸 the connected component of the Zariski closure of the
image of 𝜆1 (,an, 𝜕) in GL(𝐷Q,𝐸). Then

1. For a very general 𝜕 ∈ ,, we have H𝐸 ⊂ G𝐸;
2. G𝐸 is locally constant outside of a meager set;
3. For very general 𝜕 ∈ ,, the monodromy group H𝐸 is a normal subgroup of the derived subgroup of G𝐸 .

Proof. These are [1, Lemma 4, Thm 1]. !

Lemma 2.7. In the notation of the introduction, ΩV = G(C)ΣV and Gfull(C) acts simply transitively
on fibers of ΩV over S.

Proof. As ΣV is G(Z)-invariant, it follows that (ΣV )Zar is G(C)-invariant, and therefore contains
G(C)ΣV . Also it follows from Lemma 2.3 and locally choosing a flat section that G(C)ΣV is definable,
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and it is evidently a closed analytic subvariety. By Theorem 2.1, it follows that it is algebraic, and thus,
ΩV = G(C)ΣV .

For the second part of the claim, note first that ΣV and hence ΩV are invariant by the image of
monodromy, and thus ΩV is invariant under Gfull(C). Now, locally on ,an, we have ΣV is given by a
union of sections 𝜕𝐽 any two of which di!er by an element of Gfull(Z), and thus analytically locally on
the base Ωan

V = Gfull(C)𝜕1. !

2.4. Flat torsors
Let G be a complex algebraic group. Recall that an algebraic G-torsor over a smooth variety S is an
algebraic S-variety 𝜆 : B → , equipped with an algebraic left action by G such that the induced map

G ×𝐴 B → B ×𝐴 B, (C, 𝐽) /→ (C𝐽, 𝐽)

is an isomorphism. This means G(C) acts simply transitively on the fibers of B → ,.
An algebraic flat connection on P is an algebraic splitting of the extension

0 → 𝑐9/𝐴 → 𝑐9 → 𝜆∗𝑐𝐴 → 0

which is G-invariant and with the property that the induced map 𝜆∗𝑐𝐴 → 𝑐9 is a foliation. The leaves
of P are the leaves L of this foliation.

Given an algebraic flat G-torsor 𝜆 : B → ,, choosing a point D0 ∈ B and setting 𝜕0 = 𝜆(D0),
we obtain a monodromy representation E : 𝜆1 (,, 𝜕0) → G(C) by solving the connection. This data
determines 𝜆 : B → , analytically, as we recover

Ban = (,̃an × G(C))/Γ,

where 𝑃 ∈ Γ acts via the canonical right action on the first factor and via right multiplication by E(𝑃) on
the second. Moreover, the constant sections ,̃an × C map to the leaves of P. We define the full algebraic
monodromy group (resp. algebraic monodromy group) of P to be the Zariski closure (resp. identity
component of the Zariski closure) of the image of E in G.

Lemma 2.8. ΩV is naturally an algebraic flat Gfull-torsor for which ΣV ⊂ ΩV is a leaf and with
algebraic monodromy G.

Proof. The geometric vector bundle E has a natural flat connection, which restricts to a flat connection
on I ⊂ E giving I the structure of an algebraic flat GL(𝐷C,0)-torsor, with GL(𝐷C,0) acting by post-
composition. By Lemma 2.7, ΩV ⊂ I is a union of leaves of I, so the connection restricts to a flat
connection on ΩV . The action of Gfull(C) is simply transitive on fibers (again by Lemma 2.7), and ΣV
is a leaf by definition. !

2.5. Period domains and period maps
We recall some definitions regarding weak Mumford–Tate domains. See [19, 7] for details.

Let D0 be a period domain of graded-polarized integral mixed Hodge structures with generic
Mumford–Tate group G0. For any point D ∈ D, let G be a normal Q-subgroup of its Mumford–Tate
group MT𝑌 and U the unipotent radical of G. The orbit D := G(R)U(C) · D is a closed complex sub-
space of D0 whose generic Mumford–Tate group is MT𝑌 . We call such a subspace a weak Mumford-Tate
(sub)domain of D0. Each such D is naturally contained as a semialgebraic subset in a complex algebraic
variety Ď called its dual.

The quotient G(Z)\D has the natural structure of a definable analytic variety, and for any period map
<̃ : ,an → G0(Z)\D0, the inverse image of G(Z)\D is an algebraic subvariety of S [7]. We call each
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component a weak Mumford–Tate subvariety of S. Note that by Theorem 2.6 and the above definitions,
we have the following important property:

Corollary 2.9. Let V be an admissible variation of graded-polarizable integral mixed Hodge structures
on S. Then a subvariety ,+ ⊂ , is contained in a proper weak Mumford–Tate subvariety if and only if the
algebraic monodromy group G+ of the restriction V𝐴+ is strictly smaller than the algebraic monodromy
group G of V .

Suppose V = (𝐷Z,𝜄•𝐷Q, 𝑖•𝐷) is an admissible variation of graded-polarizable integral mixed Hodge
structures, and let < : ,̃an → D be the associated period map, where 𝜆 : ,̃an → , is the minimal cover
trivializing 𝐷Z. Consider the map 𝜆 × < : ,̃an → ,an ×D, which is a closed embedding of a component
of ,an ×G(Z)\D D. For the next section, we observe that 𝜆 × <|F is definable by [7, Theorem 1.1], where
F is as in §2.1.

3. Two proofs of Theorem 1.3
3.1. First proof
We first give a proof using the Ax–Schanuel for principal bundles of [11]. For this, we shall need the
following definition:

Definition 3.1. A complex algebraic group G is sparse if every proper complex analytic Lie subgroup
is contained in a proper complex algebraic Lie subgroup.

Lemma 3.2 [14, Lemma 3.3]. The algebraic monodromy of an admissible variation of polarizable
integral mixed Hodge structures is sparse.

Theorem 3.3 [11, Thm. A]. Suppose G is sparse. Let 𝜆 : B → , be an algebraic flat G-torsor,𝜄 ⊂ B
a subvariety, L a leaf of P, and U a component of𝜄an ) L. If

codim2 𝑗 < dim G,

then 𝜆(𝑗)Zar ⊂ , has algebraic monodromy of strictly smaller dimension than G.

Proof of Theorem 1.3 Note by Lemma 2.8 that ΩV is an algebraic flat Gfull-torsor and that ΣV is a leaf.
Thus, the theorem follows immediately from Theorem 3.3 and Lemma 3.2. !

Remark 3.4. The proof only uses Hodge theory to establish that the algebraic monodromy of the
underlying local system is sparse, and it is natural to ask whether Theorem 3.3 is true for any local
system. The following example shows it is not.

Example 3.5. Let , = 𝑟 be a simple abelian surface and let𝜖 be a nonzero di!erential 1-form. Consider
the local system with monodromy

𝜆1 (𝑟, 0) → G2
8, 𝑃 /→

(
𝐺
∫
#
: , 𝐺;

∫
#
:
)
.

The associated G2
8-torsor 𝜆 : B → 𝑟 (equipped with its canonical algebraic structure) has a section

𝜕 : 𝑟→ B whose lift is given by

𝜕 : 𝑟̃an /→ G2
8, = /→

(
𝐺
∫ $

0 : , 𝐺;
∫ $

0 :
)
,

which is algebraic by GAGA. For F irrational, the fibers of 𝜕 are one-dimensional and project to the
intersections L ) 𝜕(𝑟), which are therefore one-dimensional as well. The algebraic monodromy is all
of G2

8, but if a fiber were not Zariski dense in A, it would necessarily be an elliptic curve factor of A.
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3.2. Second proof
In this section, we describe the proof of Theorem 1.3 using o-minimality in the spirit of [22, 9, 13, 18].

With the notation as in the setup of Theorem 1.3, we prove the conclusion by induction on the triple
(dim ,, dim𝜄 ( dim𝑗,( dim𝑗) with the lexicographical ordering, the base case of dim , = 0 being
trivial. We thus assume that the theorem is valid for all lexicographically previous triples. Suppose we
have a 𝜄 ⊂ ΩV as in the statement of the theorem and a component U of 𝜄 ) ΣV whose projection
𝜆(𝑗) is not contained in a proper weak Mumford–Tate subvariety of S. Note that 𝜆(𝑗) is Zariski dense
in S by the inductive hypothesis, as otherwise, we could replace S with the Zariski closure ,+ of 𝜆(𝑗)
and W with the intersection𝜄 )ΩV"+ .

Recall that G(C) acts on ΩV (algebraically) by post-composition. Let Γ ⊂ G(Q) be the image of
the monodromy representation of 𝐷Z (possibly after replacing S with a finite cover). As in [22, §3],
we consider the component M of the Hilbert scheme Hilb

(
ΩV

)
containing the closure of W for some

equivariant algebraic compactification ΩV of ΩV . Let W ⊂ ΩV × 𝜌 be the universal family and WΣ
the intersection with ΣV × 𝜌an, which is Γ-invariant and proper over ΣV . The quotient U := Γ\WΣ
is naturally a definable analytic variety as follows. Letting FV ⊂ ΣV be the subset from §2.1, we
set GV = FV × 𝜌an, which is an open definable fundamental set for Γ on Σ< × 𝜌an. Let ∼ be the
induced definable étale equivalence relation on GV , and we take the definable structure induced by the
identification U ! (WΣ ) GV )/∼.

The natural map U → ,an is proper definable analytic. We think of U as parametrizing Γ-orbits
of pairs (𝜄 +, D) with [𝜄 +] ∈ 𝜌 and D ∈ 𝜄 +an ) ΣV . There is a closed Γ-invariant definable analytic
subvariety 𝑟 ⊂ U parametrizing pairs (𝜄 +, D) with dim𝑌 (𝜄 +an ) ΣV ) ≥ dim𝑗. If 𝑟0 is an irreducible
component of A containing (𝜄 , D) for all D ∈ 𝑗, then 𝑟0 descends to a closed definable analytic
subvariety ;0 ⊂ U by taking the quotient ;0 := (𝑟0 ) GV )/∼.

We have a natural proper definable analytic map ? : ;0 → ,an. By Theorem 2.1, the image is
algebraic, and therefore, q is surjective by the inductive hypothesis and the properness of the map. Note
that the monodromy Γ0 of the pullback ?∗𝐷Z stabilizes 𝑟0. Since ;0 surjects onto S, we have that Γ0 ⊂ Γ
is finite index, so the identity component of the Q-Zariski closure of Γ0 is G.

Letting 𝜇 ⊂ 𝜌an be the projection of 𝑟0, we let 𝑝gen be the stabilizer of a very general point of Y,
and H the identity component of its Q-Zariski closure. Note that every point of Y – in particular, [𝜄] –
is stabilized by H(C). Moreover, since Γ0 sends a very general point to a very general point, it follows
that 𝑝gen is normalized by Γ0, and hence, H ⊂ G is normal.

Claim 3.6. 𝑝 = G.

Proof. Let 𝐿 = ,an ×G(Z)\D D ⊂ ,an × Ďan where D is the relevant weak Mumford–Tate domain and Ď
its dual. Let 𝑖 ⊂ 𝐿 be a definable fundamental set for the action of G(Z). We have the following result
of Chiu [13]:

Proposition 3.7. Let H ⊂ G be a normalQ-subgroup and 𝐶 ⊂ 𝐿 a closed irreducible complex analytic
subvariety which is stabilized by H(Z) and for which 𝐶 ) 𝑃𝑖 is definable for any 𝑃 ∈ G(Z). Let

H = {𝑃 ∈ G(Z) | 𝐶 ) 𝑃𝑖 ≠ ∅}

and note that H(Z) acts on J. Then either H(Z)\H is finite or has polynomially many integer points.

Proof. This is proven in [13]. The case that H(Z)\H has polynomially many points corresponds to
cases (1) and (2) in the trichotomy at the end of Section 7 in [13], and is proven in Sections 8 and 9,
respectively. The case that H(Z)\H is finite is case (3).

Chiu proves it for the specific set U in his notation, but the proof works verbatim for an arbitrary K
as in the statement of Proposition 3.7. !
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We apply this proposition to ΣV , which is identified with a component of Z as in §2.5, using
𝐶 = 𝜄an ) ΣV and 𝑖 = FV . Consider

I = {C ∈ G(R) | dim(C(1𝜄an ) FV ) = dim𝑗}.

Note that the J in Proposition 3.7 is a subset of I (Z). Moreover, I is definable. Thus, by Theorem 2.4,
either

1. I contains a semi-algebraic curve C with non-constant image in H(R)\I, or
2. H(Z)\H is finite.

Suppose first that we are in case (1). Then I contains a semialgebraic curve C. We claim that W is
not stabilized by C. If it were, then it would be stabilized by J · J(1, which contains an integer point
not in H(Z) (in fact, we can arrange it to contain arbitrarily many by the conclusion of the stronger 2.5).
This is a contradiction by the definition of H.

Therefore, K(1𝜄 varies with K ∈ J. If K(1𝑗 does not vary with K ∈ J, then we may replace W
with 𝜄 ) K(1𝜄 for a generic element c and obtain a lexicographically smaller counterexample. Else,
if K(1𝑗 does vary with K ∈ J, we may replace W with JZar𝜄 and obtain a lexicographically smaller
counterexample.

Thus, we may assume we are in case (2). In this case, it follows that the image 𝜆(𝑗) of U in S is
definable, and hence algebraic by Theorem 2.1. Since the monodromy of 𝜆(𝑗) and U are the same, if
we have H ≠ G, then 𝜆(𝑗) would be contained in a proper weakly special subvariety, which contradicts
the assumption on U. !

We may therefore suppose W is G-invariant, but then it is obvious that codim2 𝑗 ≥ dim G, and this
contradiction proves the theorem.

4. Nori motives over complex functions fields
4.1. Outline
In this section, we prove Theorem 1.1, whose statement is formulated in terms of functions fields of
complex algebraic varieties. Nori’s category of motives is defined only for subfields of C, and due to its
reliance on a Betti realization functor, the generalization of his construction to complex function fields
requires a little care. In §4.2, we recall the original construction of Nori, and in §4.3, we precisely state
the classical Grothendieck period conjecture and its generalization due to André. In §4.4, we make the
necessary modifications to Nori’s construction, and in §4.5, we relate the relative motivic Galois group
to the algebraic monodromy. In §4.6, we relate the torsor of comparisons between Betti and de Rham
realizations to our period torsor ΩV . In §4.7, we show has this perspective gives a simple perspective
on the geometric Kontsevich–Zagier conjecture. Finally in §4.8, we formulate and prove the precise
version of Theorem 1.1. The reader who is willing to assume a reasonable category of motives over a
complex function field together with the statement of Theorem 4.17 can skip directly to the proof.

4.2. Nori motives
In this section, we briefly recall Nori motives, which will provide for us a Tannakian category of motives
in both the classical and functional setting, and therefore a motivic Galois group. Ayoub [6] (see also
[4]) takes a slightly di!erent approach, using Voevodsky’s theory to define such a group directly, but
they are canonically the same [15]. Essentially, for any subfield 𝑁 ⊂ C, the category of Nori k-motives
will be the abelian subcategory of Q-mod generated by singular cohomology groups 𝑝𝐽 ((𝑔C)an,Q) of
k-varieties X together with all morphisms that can be constructed naturally from maps of k-varieties.
The main reference is [20].
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By a diagram D, we mean a directed graph4 with the obvious notion of morphism. Note that for any
category C, there is a natural underlying diagram, and for every functor C → C + an underlying morphism
of diagrams. A representation 𝑖 : L → C of a diagram D in a category C is a morphism on the level of
diagrams. Concretely, F assigns an object of C to each vertex of D, and a morphism of C to each edge
of D with the obvious compatibility on the source and target.

Let k be a field with an embedding M : 𝑁 → C. The diagram Pairse! (𝑁 , M) has as vertices triples
(𝑔 ,𝜇 , N) with X an algebraic variety over k, 𝜇 ⊂ 𝑔 a closed subvariety (defined over k), and N ∈ Z. The
edges of Pairse! consist of
◦ for each morphism 𝛽 : 𝑔 → 𝑔 + with 𝛽 (𝜇 ) ⊂ 𝜇 + and integer i, there is an edge 𝛽 ∗ : (𝑔 +,𝜇 +, N) →

(𝑔 ,𝜇 , N);
◦ for each chain 𝑔 ⊃ 𝜇 ⊃ 𝐿 of varieties (the inclusions being of closed subvarieties) and each integer

i, there is an edge O : (𝜇 , 𝐿 , N) → (𝑔 ,𝜇 , N + 1).
Betti cohomology (𝑔 ,𝜇 , N) /→ 𝑝𝐽 ((𝑔C)an, (𝜇C)an,Q) defines a natural representation

Betti = : Pairse! (𝑁) → Q-mod

where the edge 𝛽 ∗ is sent to the pullback via f and O is sent to the coboundary map in the long exact
sequence of the triple.
Theorem 4.1 (Nori, see [20, Theorems 7.1.13 and 9.1.5]). Let k be a field with an embedding M : 𝑁 → C.
1. There is a Q-linear abelian category MMe!

Nori (𝑁 , M) together with a representation H = :
Pairse! (𝑁) → MMe!

Nori(𝑁 , M) and a faithful exact Q-linear functor 𝑝 = : MMe!
Nori(𝑁 , M) → Q-mod

which is uniquely determined by the property that given
◦ a Q-linear abelian category A
◦ a representation F : Pairse! (𝑁) → A
◦ a faithful exact Q-linear functor 𝑖 : A → Q-mod such that the solid part of the diagram below

commutes (on the level of diagrams)

MMe!
Nori (𝑁 , M)

Pairse! (𝑁) Q-mod

A

>%

Φ

H%

F ?

There exists a unique faithful exact Q-linear functor Φ : MMe!
Nori (𝑁 , M) → A making the diagram

commute (on the level of diagrams).
2. The category MMe!

Nori(𝑁 , M) has a natural commutative tensor product with unit such that 𝑝@ is a
tensor functor.

3. The category MMNori (𝑁 , M) obtained from MMe!
Nori (𝑁 , M) by inverting H1

= (G8, {1}) is a rigid tensor
category with fiber functor 𝑝 =. Here, we denote H𝐽

= (𝑔 ,𝜇 ) := H = (𝑔 ,𝜇 , N).
4. MMNori(𝑁 , M) with 𝑝 = as its fiber functor is naturally equivalent to the category of representations

of a pro-algebraic Q-group Gmot (𝑁 , M) with its natural fiber functor.
Note in particular that we have 𝑝 = ◦H = = Betti =. We refer to MMe!

Nori (𝑁 , M) (resp MMNori(𝑁 , M)) as
the category of e!ective Nori (𝑁 , M)-motives (resp. Nori (𝑁 , M)-motives).
Definition 4.2. For a Nori (𝑁 , M)-motive M, we define Gmot (𝜌 , M) to be the image of the natural map
Gmot (𝑁 , M) → GL(𝑝 = (𝜌)). It is an algebraic Q-group.

4with possibly infinitely many vertices and edges.
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4.3. Classical period conjectures
It will be useful to have a category of pairs of vector spaces equipped with a comparison over a fixed
field extension. Let M : 𝑁 → P be an embedding of characteristic 0 fields. Define (𝑁 ,Q)=-mod to
be the category of triples (𝑗,𝐷 , <) of a k-vector space U a Q-vector space V, and an isomorphism
< : 𝑗 ⊗𝑔 P → 𝐷 ⊗Q P with the obvious notion of morphism.

For a field k and an embedding M : 𝑁 → C, we have a natural representation

Pairse! (𝑁) → (𝑁 ,Q)=-mod

given by sending (𝑔 ,𝜇 , N) to (𝑝𝐽𝐼𝑈 (𝑔 ,𝜇 ),𝑝𝐽 (𝑔 ,𝜇 ,Q), <0 ,A ,𝐽), where <0 ,A ,𝐽 is the natural comparison
given by integration. By the universal property, this extends to a functor

MMe!
Nori(𝑁 , M) → (𝑁 ,Q)=-mod, 𝜌 /→ (𝑝𝐼𝑈 (𝜌),𝑝 = (𝜌), <B ),

which in turn extends to a functor

MMNori(𝑁 , M) → (𝑁 ,Q)=-mod, 𝜌 /→ (𝑝𝐼𝑈 (𝜌),𝑝 = (𝜌), <B ).

Definition 4.3. For M : 𝑁 → C a field embedding and M a Nori (𝑁 , M)-motive, we define

𝑁 (periods = of 𝜌) ⊂ C

to be the field of definition of the comparison <B .

Concretely, 𝑁 (periods = of 𝜌) is obtained by adjoining the periods of k-rational de Rham classes of
M to k.

Conjecture 4.1 (Grothendieck period conjecture). Let M : 𝑁 → C be an embedding of a number field
and M a Nori (𝑁 , M)-motive. Then

trdegQ 𝑁 (periods = of 𝜌) = dim Gmot (𝜌 , M).

One downside of the Grothendieck period conjecture is that it does not imply the other major con-
jecture about transcendence: the Schanuel conjecture about exponentials. André proposed the following
strengthening to address this:

Conjecture 4.2 (André–Grothendieck period conjecture). Let M : 𝑁 → C be any field embedding and M
a Nori (𝑁 , M)-motive. Then

trdegQ 𝑁 (periods = of 𝜌) ≥ Gmot(𝜌 , M).

Example 4.4. Let 𝐼1, . . . , 𝐼/ ∈ C∗ be multiplicatively independent, and consider 𝑔 = G8 and
𝜇 = {1, 𝐼1, . . . , 𝐼/} ⊂ G8 over 𝑁 = Q(𝐼1, . . . , 𝐼/). Then 𝑝1

𝐼𝑈 (𝑔 ,𝜇 ) is spanned by 𝑡𝐾
𝐾 , and the

di!erences [1]∨ ( [𝐼𝐽]∨, whereas 𝑝1(𝑔 ,𝜇 ,Q) is spanned by paths between 1 and the di!erent 𝐼𝐽 , and
the loop around 0. Thus, the integrals are all integers, as well as 2𝜆N, log𝐼1, . . . , log𝐼/. Hence, in this
case, André’s conjecture says that

trdegQ(2𝜆N, 𝐼1, . . . , 𝐼/, log𝐼1, . . . , log𝐼/) ≥ dim Gmot(H1
= (𝑔 ,𝜇 )).

Also André shows [2] that Gmot (H1
= (𝑔 ,𝜇 )) is the same as the Mumford–Tate group of the mixed

Hodge structure 𝑝1(𝑔 ,𝜇 ) – and this is easily computed to be an extension of G8 by n copies of G4.
Thus, André’s conjecture says that

trdegQ(2𝜆N, 𝐼1, . . . , 𝐼/, log𝐼1, . . . , log𝐼/) ≥ Q + 1
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and therefore that

trdegQ(𝐼1, . . . , 𝐼/, log𝐼1, . . . , log𝐼/) ≥ Q

which is precisely the statement of Schanuel’s conjecture.

4.4. Nori motives in the functional setting
In the functional setting, we would like to replace k with the function field of a complex algebraic variety,
in which case the Betti realization of a Nori motive M defined over k should be the Betti cohomology of a
generic fiber of M once we spread M out over a model S of k. In this section, we make these ideas precise.

Throughout, we often take M0 : 𝑁0 → C to be a field embedding and 𝑁0 ⊂ 𝑁 a finitely generated
extension. By analytification, we always mean analytification as 𝑁0-varieties, unless otherwise specified.

Definition 4.5. An arc point 𝑃 of a topological space S is an equivalence class of continuous paths
𝑃 : (0, =) → S for = > 0, where we say two arc points 𝑃, 𝑃+ are equivalent if they agree on some interval
(0, R) for R > 0.

Note that classical points may be thought of as arc points via the constant maps.

Lemma 4.6. Let S be a model of k over 𝑁0 and let 𝑃 : (0, =) → ,an be an arc such that

1. 𝑃 extends real analytically over ((A , = + A) for some A > 0
2. 𝑃 is not contained in any proper 𝑁0-algebraic subvariety of ,an.

Then 𝑃 defines an arc point of every model ,+ of k compatibly with respect to morphisms of models.

Proof. Let𝐷 ⊂ , be a (nonempty) open subscheme. Then by the two assumptions, the set 𝑃(1 (,an\𝐷an)
is finite, and therefore, for sufficiently small 0 < > < =, the map 𝑃 |(0,5) factors through V. Thus, 𝑃
defines an arc point of any (nonempty) open subscheme of S, and therefore of any other model, since
any two models agree on an open set. !

For an arc point of ,an satisfying the conditions in the lemma, we say that the arc point induced on
any other model is stable.

Definition 4.7. Let 𝑁0 ⊂ 𝑁 be fields such that k is finitely generated over 𝑁0 and 𝑁0 is algebraically
closed in k. Let M0 : 𝑁0 → C be a field embedding. We say that 𝑃 is a (𝑁0, M0)-arc point of k if 𝑃 is a
compatible choice of stable arc point of ,an for any model S of k over 𝑁0. Note that this is equivalent to a
choice of stable arc point on one model by Lemma 4.6. Note also that a complex embedding M : 𝑁 → C
extending M0 naturally gives a (𝑁0, M0)-arc point of k.

Remark 4.8. Suppose we have two triples (𝑁0, M0, 𝑁) and (ℓ0, F0, ℓ) as in the definition with a containment
(𝑁0, M0, 𝑁) ⊂ (ℓ0, F0, ℓ) in the obvious way. Then any (ℓ0, F0)-arc point of ℓ naturally pushes forward to
a (𝑁0, M0)-arc point of k.

Definition 4.9. We define (𝑁/𝑁0, M0)an to be the pro-manifold obtained by taking the system of manifolds
,an for (smooth) models S of k using the embedding M0 to analytify.

Definition 4.10.
1. Let 𝑃1, 𝑃2 be two arc points of a topological space S . A path from 𝑃1 to 𝑃2 of S is a continuous map
< : (0, 1) → S such that < is equivalent to 𝑃1, and < ◦ (1 ( 𝐽) is equivalent to 𝑃2. A homotopy of
paths <1 and <2 from 𝑃1 to 𝑃2 is an ordinary homotopy <C between <1 and <2 such that each <C is a
path from 𝑃1 to 𝑃2.

2. Let 𝑃1, 𝑃2 be two (𝑁0, M0)-arc points of k. A homotopy class of paths from 𝑃1 to 𝑃2 is a compatible
system of homotopy classes of paths from 𝑃1 to 𝑃2 in (𝑁/𝑁0, M0)an.

3. The resulting fundamental group 𝜆1 ((𝑁/𝑁0, M)an, 𝑃) naturally agrees with the inverse limit of
𝜆1 (,an, 𝑃) over all smooth models S of k.
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In the next section, we will need the following notion:

Definition 4.11. Let S be a topological space and 𝑃 : (0, =) → S an arc point. For 0 < A < =, we may
identify all the 𝜆1 (S , 𝑃(A)) using the path 𝑃. We call the equivalence class of all these groups 𝜆1 (S , 𝑃).
Note that this is (non-canonically) isomorphic to the usual topological fundamental group.

Lemma 4.12. Suppose that 𝑁/𝑁0 is a finitely generated extension of fields such that 𝑁0 is algebraically
closed in k. Then there exists a homotopy class of paths between any two (𝑁0, M0)-arc points of k.

Proof. Note that by the assumption, any model S of k is geometrically connected. Now let 𝑗 ⊂ 𝐷 be
connected open sets, and consider 𝑗an ⊂ 𝐷an. Since the real codimension is at least 2, it is follows
that homotopy classes of paths in 𝑗an surject onto homotopy classes of paths in 𝐷an. Therefore, it is
sufficient to prove that for any connected manifold T, any two arc points 𝑃1, 𝑃2 of T have a path between
them. But this is trivial since connected manifolds are path-connected. !

For X a k-variety, 𝜇 ⊂ 𝑔 a closed k-subvariety, and 𝑃 a (𝑁0, M0)-arc point of k, we define

𝑝𝐽𝐵 (𝑔 ,𝜇 ) := 𝑝𝐽 (𝑔an
𝐵 ,𝜇 an

𝐵 ,Q).

Here, we spread out 𝑔 ,𝜇 over a model S of k, shrink S so that 𝑝𝐽 (𝑔an
𝐸 ,𝜇 an

𝐸 ) forms a local system, and
represent the arc point by 𝑃 : (0, =) → ,an. Then 𝑔an

𝐵 is defined to be the inverse image of img 𝑃 in 𝑔an.
This naturally yields a representation

Betti𝐵 : Pairse! (𝑁) → Q-mod, (𝑔 ,𝜇 , N) /→ 𝑝𝐽𝐵 (𝑔 ,𝜇 ),

where the edge 𝛽 ∗ is sent to the pullback via f and O is sent to the coboundary map in the long exact
sequence of the triple.

Lemma 4.13. Let < be a homotopy class of paths between two (𝑁0, M0)-arc points 𝑃1, 𝑃2 of k. Then <
gives a natural equivalence Betti𝐵1 ! Betti𝐵2 .

Proof. Given 𝑔 ,𝜇 over k we may spread out to a model S of K. Moreover, by shrinking S, we may
assume that the fibers 𝑝∗

𝐵& (𝑔 ,𝜇 ) form a local system over S.
Now < gives a homotopy equivalence class of paths between 𝑃1 and 𝑃2 as arc points of S. Thus, we

get a natural identification of 𝑝∗
𝐵1 (𝑔 ,𝜇 ) with 𝑝∗

𝐵2 (𝑔 ,𝜇 ), as desired. !

Proposition 4.14. Let 𝑃 be a (𝑁0, M0)-arc point of k.

(a) There exist categories of Nori motives MMe!
Nori(𝑁 , 𝑃),MMNori (𝑁 , 𝑃) with representation

H𝐵 : Pairse! (𝑁) → MMe!
Nori (𝑁 , 𝑃) and functors 𝑝𝐵 : MM(e!)

Nori (𝑁 , 𝑃) → Q-mod satisfying all of
the properties of Theorem 4.1.

(b) For any finitely generated extension 𝑁 ⊂ 𝐶 with compatible arc points 𝑃𝑔 and 𝑃D as in Remark 4.8,
there is a natural base-change functor MM(e!)

Nori (𝐶 , 𝑃D ) → MM(e!)
Nori (𝑁 , 𝑃𝑔 ) which respects the

tensor product structure.

Proof. Consider first the case that k (and therefore 𝑁0) is countable. By Lemma 4.12, any two arc
points have a homotopy class of paths between them, so it is sufficient to consider a single point by
Lemma 4.13, and this is the case of Theorem 4.1.

Next, consider the general case of part (a). From the diagram category construction of [20, §7], we
obtain from the representation 𝑝𝐵 : Pairse! (𝑁) → Q-mod a Q-linear abelian category MMe!

Nori (𝑁 , 𝑃)
with representation H𝐵' : Pairse! (𝑁) → MMe!

Nori (𝑁 , 𝑃) and a faithful exact Q-linear functor
𝑝𝐵 : MMe!

Nori(𝑁 , 𝑃) → Q-mod satisfying property (1) of Theorem 4.1.
Consider the directed set I of countable subfields ℓ ⊂ 𝑁 and let ℓ0 = ℓ) 𝑁0. The arc point 𝑃 induces an

arc point 𝑃ℓ of ℓ. For an inclusion ℓ ⊂ ℓ+, the natural base-change morphism Pairse! (ℓ) → Pairse! (ℓ+)
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of diagrams yields a base-change functor MMe!
Nori (ℓ, 𝑃ℓ ) → MMe!

Nori (ℓ+, 𝑃ℓ+). As every variety over
k is defined over some ℓ, we naturally have

Pairse! (𝑁) = colim
ℓ∈F

Pairse! (ℓ)

as diagrams, and moreover,

𝑝𝐵' = colim
ℓ∈F

𝑝𝐵ℓ

as representations. By the universal property, we then have a canonical identification

MMe!
Nori(𝑁 , 𝑃) = 2-colim

ℓ∈F
MMe!

Nori (ℓ, 𝑃ℓ ).

Indeed, the diagram category is constructed as a 2-colimit over finite subdiagrams. Properties (2) and
(3) then follow. Property (4) is by Tannakian duality, though in this case, we can directly see that (4)
holds with Gmot (𝑁 , 𝑃) := limℓ∈F Gmot (ℓ, 𝑃ℓ ).

Part (b) again follows from the corresponding statement in the countable case. !

Definition 4.15. In the situation of part (2) of the above proposition, the relative motivic Galois group
Gmot (𝐶/𝑁 , 𝑃D ) is the kernel of Gmot (𝐶 , 𝑃D ) → Gmot (𝑁 , 𝑃𝑔 ). For any Nori (𝐶 , 𝑃D )-motive M, the
relative motivic Galois group Gmot(𝜌/𝑁 , 𝑃D ) is the image of the natural map Gmot (𝐶/𝑁 , 𝑃D ) →
Gmot (𝜌 , 𝑃D ).

It follows naturally from the construction that paths between stable arc points give compatible
isomorphisms between the 𝜆1 groups, the functors 𝑝𝐵 , the categories of Nori motives, and the motivic
Galois groups.

4.5. The relative motivic Galois group
In this section, we relate the relative motivic Galois group (over a point) to the algebraic monodromy
group. For k a subfield of C, this is a result of Ayoub [4] (in a di!erent but equivalent context by [15],
as mentioned above) and of Nori (unpublished). The details of the latter argument have recently been
worked out by Mostaed [23].

As in the previous section, let 𝑁0 ⊂ 𝑁 be a finitely generated field extension such that 𝑁0 is algebraically
closed in k and let M0 : 𝑁0 → C be a field embedding. Let 𝑃 be a (𝑁0, M0)-arc point of k.

Denote by LocSysQ(𝑁 , 𝑃) the category of finite-dimensional Q-representations of 𝜆1 ((𝑁/C)an, 𝑃),
which is equivalently the category of compatible systems of Q-local systems on sufficiently small
models. The category LocSysQ(𝑁 , 𝑃) is naturally a neutral Tannakian category, whose fiber functor is
the restriction to 𝑃. Concretely, the Tannakian group of the subcategory generated by an object L is the
Zariski closure of the image of the monodromy representation. We denote the full Tannakian group of
LocSysQ(𝑁 , 𝑃) by Π1 (𝑁 , 𝑃).

We have a natural sequence of functors of neutral Tannakian categories (that is, tensor functors
respecting the fiber functor)

MMe!
Nori (C, id) → MMe!

Nori (𝑁 , 𝑃)
ℋ#((→ LocSysQ(𝑁 , 𝑃)

the first given by base-change from C to k as in Proposition 4.14 and the second the functor associated
via the universal property to the representation of Pairse! (𝑁 , 𝑃) which sends (𝑔 ,𝜇 , N) to the local system
ℋ𝐽
𝐵 (𝑔 ,𝜇 ) whose fiber over s is 𝑝𝐽 (𝑔𝐸 ,𝜇𝐸 ,Q), for a sufficiently small model of S. This is a easily checked

to be a tensor functor.
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Theorem 4.16 (Ayoub [4, Théorème 2.57], Nori, Mostaed [23]). The resulting sequence of pro-algebraic
groups

Π1 (𝑁 , 𝑃) → Gmot (𝑁 , 𝑃) → Gmot (𝑁0, M0) → 1

is exact.

Proof. See [23] for details. The main content of the theorem is exactness in the middle. The composition
of the two middle maps is trivial since the base-change of any motive over 𝑁0 to k (which we henceforth
call a constant motive) has trivial monodromy. To show the image is precisely the kernel, we must lift
the theorem of the fixed part to the category of motives. Precisely, we must show that for any motive M
over k, there is a constant submotive 𝜌0 ⊂ 𝜌 whose associated local system is precisely the fixed part
of M. This follows for instance from a theorem of Arapura [3, Theorem 7.1], which lifts the cohomology
of ℋ𝐵 (𝜌) to a constant motive. !

Corollary 4.17. For any Nori (𝑁 , 𝑃)-motive M, the relative motivic Galois group Gmot (𝜌/C, 𝑃) is the
Zariski closure of the monodromy of the Betti local system ℋ𝐵 (𝜌).

4.6. The comparison torsor
From now on, we take 𝑁0 = C and let k be a finite generated extension of C, and 𝑃 a (C, id)-arc point
of k. In this section, we review the construction of the torsor of comparisons between the Betti and de
Rham fiber functors in the context of function fields over C as in [20]. We then identify the comparison
torsor with the torsor ΩV constructed in the introduction.

Our comparision map between Betti and de Rham cohomology will no longer be over C but instead
over a larger field of germs of meromorphic functions. We therefore make the following definition:

Definition 4.18. Let S be a complex manifold and 𝑃 an arc point of S . We define the localization OS ,𝐵

to be

OS ,𝐵 := lim
𝐵⊂G

OS (𝑗),

where the limit is over all open subsets through which the arc point factors.
We define 𝑁an

𝐵 to be the fraction field of O𝐴an ,𝐵 for any model S of k. It is immediate that this is
independent of the model.

For any vertex (𝑔 ,𝜇 , N) of Pairse! (𝐶), we claim there is a natural comparison

<0 ,A ,𝐽 : 𝑝𝐽𝐼𝑈 (𝑔 ,𝜇 ) ⊗𝑔 𝑁an
𝐵 → 𝑝𝐽𝐵 (𝑔 ,𝜇 ) ⊗Q 𝑁an

𝐵 . (1)

By spreading out X and Y and possibly shrinking S, we may think of 𝑔 ,𝜇 as varieties over S such that
𝑝𝐽 (𝑔C ,𝜇C ,Q) forms a local system over ,an, and 𝑝𝐽𝐼𝑈 (𝑔 ,𝜇 ) is naturally the associated algebraic flat
vector bundle. The comparison (1) is then the analytic comparison over ,an via fiberwise integration.

This naturally yields a representation of Pairse! (𝑁), and as above, we therefore have a functor

MMNori(𝑁) → (𝑁 ,Q)𝑔an
#

-mod, 𝜌 /→ (𝑝𝐼𝑈 (𝜌),𝑝𝐵 (𝜌), <B )

and therefore a faithful exact functor 𝑝𝐼𝑈 : MMNori (𝑁) → 𝑁-mod. As in [20, §8.4], there is an affine
k-pro-scheme X whose points over a k-algebra R are the isomorphisms of fiber functors

𝑝𝐼𝑈 ⊗𝑔 ℓ → 𝑝𝐵 ⊗Q ℓ.

Moreover, X (𝑁 , 𝑃) is naturally a torsor for Gmot (𝑁 , 𝑃)𝑔 . Likewise, for any Nori motive M over k, there
is an affine k-scheme X (𝜌 , 𝑃) of such isomorphisms of the restrictions to the tensor category 〈𝜌〉
generated by M, and it is a torsor for Gmot (𝜌 , 𝑃)𝑔 .
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Let X (𝑁/C, 𝑃) ⊂ X (𝑁 , 𝑃) be the closed sub-pro-scheme of isomorphisms which restrict to the canon-
ical comparison (fiberwise integration) on constant motives, which is naturally a torsor for Gmot (𝑁/C, 𝑃),
and likewise define X (𝜌/C, 𝑃) ⊂ X (𝜌 , 𝑃), which is a torsor for Gmot(𝜌/C, 𝑃).

Choose a model S for k such that M is in the diagram category generated by pairs with models
over S whose cohomologies are local systems over ,an. With the notation as in the introduction and
taking V to be the variation of Hodge structures over ,an with underlying local system ℋ𝐵 (𝜌), there
is a natural algebraic closed embedding X (𝜌/C, 𝑃) → I𝑔 by evaluating on M, as an isomorphism of
fiber functors on 〈𝜌〉 is determined by its value on M. Moreover, analytic continuation of the canonical
comparison yields a point of X (𝜌/C, 𝑃) over 𝑁an

𝐵 , so X (𝜌/C, 𝑃) contains the germ of ΣV , and hence,
Ωℋ# (B ) := (ΩV )𝑔 . Also both (ΩV )𝑔 and X (𝜌/C, 𝑃) are torsors for Gmot(𝜌/C, 𝑃) by Corollary 4.17.

Thus, we deduce the following, which is essentially Nori’s proof of the Grothendieck period conjec-
ture:

Proposition 4.19. The canonical map Ωℋ# (B ) → X (𝜌/C, 𝑃) is an isomorphism.

4.7. The geometric Kontsevich–Zagier conjecture
We begin by defining the ring of formal periods in our setting. It shall be convenient to work with
relative homology classes, so we define 𝑝/,𝐵 (𝑔 ,𝜇 ) in precisely the same way we did for cohomology,
as a limit along a path up to equivalence.

Definition 4.20. The space of e!ective formal periods P̃e! (𝑁) is defined as theC - vector space generated
by formal symbols (𝑔 ,𝜇 ,𝜖, ℓ) where X is an algebraic variety over k, 𝜇 ⊂ 𝑔 is a closed subvariety,
𝜖 ∈ 𝑝𝑡𝐼𝑈 (𝑔 ,𝜇 ) and ℓ ∈ 𝑝/,𝐵 (𝑔 ,𝜇 ) with relations given by

1. Linearity in each of 𝜖, ℓ
2. For every 𝛽 : 𝑔 → 𝑔 + with 𝛽 (𝜇 ) ⊂ 𝜇 +, we have

(𝑔 ,𝜇 , 𝛽 ∗𝜖, ℓ) = (𝑔 +,𝜇 +,𝜖+, 𝛽∗ℓ)

3. For every triple 𝐿 ⊂ 𝜇 ⊂ 𝑔 ,

(𝜇 , 𝐿 ,𝜖, Oℓ) = (𝑔 ,𝜇 , R𝜖, ℓ).

We write [𝑔 ,L,𝜖, ℓ] for the image of the generator.

We turn P̃e! (𝑁) into an algebra by setting

[𝑔 ,𝜇 ,𝜖, ℓ] · [𝑔 +,𝜇 +,𝜖+, ℓ+] := [𝑔 × 𝑔 +,𝜇 × 𝜇 +,𝜖 ∧ 𝜖+, ℓ × ℓ+] .

That multiplication is well defined is a standard check; see [20, 13.1.3]. Finally, we define the ring of
formal periods P̃(𝑁) to be the localization of P̃e! (𝑁) at [G8, {1}, 𝑡𝐾𝐾 , ,1].

Theorem 4.21. The scheme Spec P̃(𝑁) is naturally a torsor for the motivic Galois group Gmot (𝑁 , 𝑃)
base-changed to k. Moreover, it is naturally isomorphic to X (𝑁 , 𝑃).

Proof. This follows identically as in [20, 13.1.4], using [20, 8.4.10]. !

Note that there is a natural evaluation map ev𝑔 : P̃(𝑁) → 𝑁 given by fiber-wise integration [20, Def
5.4.1]. Concretely, if 𝑔 ,𝜇 are smooth and a class [𝜖] ∈ 𝑝𝐽DR (𝑔 ,𝜇 ) is represented by a closed di!erential
form 𝜖 whose restriction to Y vanishes, then

ev𝑔 (𝑔 ,𝜇 , [𝜖], ℓ) :=
∫
ℓ
𝜖.
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Next, we define the ring of relative formal periods. The idea is that for constant families (i.e., base-
changed from C), we want to identify the formal period with the actual complex number it evaluates to.

Definition 4.22. Since C ⊂ 𝑁 , there is a natural map P̃(C) → P̃(𝑁). We define

P̃(𝑁/C) := P̃(𝑁) ×P̃(C) C,

where we view C as a P̃(C)-algebra via the period map.

Theorem 4.23. The scheme Spec P̃(𝑁/C) is naturally a torsor for the relative motivic Galois group
Gmot (𝑁/C). Moreover, it is naturally isomorphic to X (𝑁/C, 𝑃).

Proof. The first part of the theorem follows immediately by using Theorem 4.21 for k and for C. Indeed,
there is a natural map Spec P̃(𝑁) → Spec P̃(C) and the fiber over the point <C is precisely Spec P̃(𝑁/C).

Also the relative period torsor is precisely the fiber in the k-period torsor over the C-period torsor of
the point <C.

By definition,Gmot(𝑁/C) is the kernel of the mapGmot (𝑁) → Gmot (C), proving the torsor statement.
Finally, the isomorphism to X (𝑁/C, 𝑃) follows from Theorem 4.21 and the fact that X (𝑁/C, 𝑃) is

the fiber of X (𝑁 , 𝑃) over the canonical comparison point of X (C, 𝑃). !

We now come to our main statement, the integrality of the relative period ring:

Theorem 4.24. The relative period ring P̃(𝑁/C) is an integral domain, and the evaluation map ev𝑔 is
an isomorphism.

Proof. This is an immediate consequence of Theorem 4.23 and Proposition 4.19, sinceΩV is analytically
irreducible and the Zariski closure of an analytically irreducible set is irreducible. !

4.8. The geometric André–Grothendieck period conjecture
Let 𝑁 ⊂ 𝐶 ⊂ 𝑁an

𝐵 be such that 𝐶/𝑁 is a finitely generated extension and .∗ : 𝐶 → 𝑁an
𝐵 a k-embedding.

For any models S (resp. T) of k (resp. K), we then obtain a rational map 𝛽 : 𝑐 → , and a meromorphic
section . : ; → 𝑐an with Zariski dense image for an open, simply connected set ; ⊂ ,. The composition
. ◦ 𝑃 is therefore an arc point of K.

As in §4.6, for any vertex (𝑔 ,𝜇 , N) of Pairse! (𝐶), there is a natural comparison

<0 ,A ,𝐽 : 𝑝𝐽𝐼𝑈 (𝑔 ,𝜇 ) ⊗𝑔 𝑁an
𝐵 → 𝑝𝐽1◦𝐵 (𝑔 ,𝜇 ) ⊗Q 𝑁an

𝐵

by pulling back the comparison (1) over 𝑐an along .. We therefore obtain a functor

MMNori(𝐶) → (𝐶 ,Q)𝑔an
#

-mod, 𝜌 /→ (𝑝𝐼𝑈,1 (𝜌),𝑝1◦𝐵 (𝜌), <B ),

and we define

𝐶 (periods1∗ of 𝜌) ⊂ 𝑁an
𝐵

to be the field of definition of <B . Concretely, this is the field extension obtained by adjoining the
pullbacks via . of flat coordinates of algebraic sections of 𝑝𝐼𝑈 (𝜌) over T.

Theorem 4.25 (Geometric André–Grothendieck period conjecture). Let 𝑁 ⊂ 𝐶 be finitely generated
complex fields, 𝑃 a (C, id)-arc point of k, and .∗ : 𝐶 → 𝑁an

𝐵 an embedding of k-extensions. For any Nori
(𝐶 , . ◦ 𝑃)-motive M, we have

trdeg𝑔 𝐶 (periods1∗ of 𝜌) ≥ dim Gmot (𝜌/C, 𝑃).
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Proof. Note that there is a functor 𝜌𝑝, : MMNori (𝐶 , . ◦ 𝑃) → 𝜌𝑝,(𝐶) where 𝜌𝑝,(𝐶) denotes
the direct-limit category of admissible variations of graded-polarized integral mixed Hodge structures
defined on some model of K. The above functor MMNori(𝐶 , . ◦ 𝑃) → (𝐶 ,Q)𝑔an

#
-mod factors through

𝜌𝑝,.
Using the above notation, for an admissible variation of graded-polarizable integral mixed Hodge

structures V over T, observe that since B is simply connected, the map . lifts to a map ; → 𝑐an, and
therefore, 𝛿V ◦ . : ; → ΣV gives a well-defined map. We have

dim(img𝛿V ◦ .)Zar ( dim , = trdeg𝑔 𝐶 (periods1∗ of V).

Thus, by Theorem 4.17, it suffices to prove the following:

Claim 4.26. For an admissible variation of graded-polarizable integral mixed Hodge structures V over T,

dim(img𝛿V ◦ .)Zar ( dim , ≥ dim G. (2)

As the intersection (img𝛿V ◦ .)Zar ) ΣV obviously contains img𝛿V ◦ . and img𝛿V ◦ . projects to
img . in T which is Zariski dense, the claim is immediate from Theorem 1.3. !

Remark 4.27. The geometric André–Grothendieck period conjecture is almost equivalent to Theo-
rem 1.3, the only issue being that some variations may not come from geometry.5

In fact, the natural generalization of the geometric André–Grothendieck period conjecture to varia-
tions of mixed Hodge structures in the form of Claim 4.26 is equivalent to Theorem 1.3. Indeed, the
backward implication is used in the proof. For the forward implication, let 𝜆(𝑗) be the projection of
U to S and take ,+ = 𝜆(𝑗)Zar. Take an algebraic projection ,+ → AdimG which is generically finite on
𝜆(𝑗), and take 𝑟 = AdimG . The map 𝜆(𝑗) → 𝑟an is generically an isomorphism, and therefore, we
obtain a local section . of ,+an → 𝑟an with Zariski dense image. Applying (2) (with (𝑟, ,+) in the place
of (,,𝑐)) yields

dim G > codim2 𝑗 ≥ dim𝑗Zar ( dim𝑗 ≥ dim G+,

where G+ is the algebraic monodromy of the restriction of V to ,+, so ,+ is contained in a weak
Mumford–Tate subvariety.

5. Applications
In this section, we first give a concrete example of Theorem 1.3 for families of elliptic curves. We then
isolate some of the ideas in the example and show how the Ax–Schanuel conjecture in the form of
Theorem 1.3 allows one to formally deduce some related versions by twisting.

5.1. Elliptic curves
Let S be a smooth irreducible variety of dimension m. Let 𝑛1, . . . , 𝑛/ be non-isotrivial, pairwise non-
isogenous elliptic curves over S and 𝛽1, . . . , 𝛽/ sections of 𝑛1, . . . , 𝑛/ over S. We therefore obtain a
section 𝛽 := ( 𝛽1, . . . , 𝛽/) of 𝑛 := 𝑛1×𝐴 · · ·×𝐴𝑛/. Let𝜖1, . . . ,𝜖/ be corresponding relative di!erentials,
that is, sections of 𝑝0(𝜆∗𝜖H&/𝐴), where 𝜆 : 𝑛 → , is the projection. We assume the 𝛽𝐽 and 𝜖𝐽 to be
nowhere vanishing, which can always be arranged by shrinking S. Finally, let ; ⊂ ,an be an open ball
over which we can trivialize the homology of 𝑛1, . . . , 𝑛/. Then by picking generators 𝐼𝐽 , T𝐽 of the first
homology and a path 𝑃𝐽 from 0 to 𝛽𝐽 , we obtain 3Q functions by integrating the di!erentials along the
relative homology classes 𝐼𝐽 , T𝐽 , 𝑃𝐽 , and thus, we obtain a map 𝑖 : ; → C3/.

5Whether all variations do indeed come from geometry appears to be unclear.
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Theorem 5.1. Let 𝑐 ⊂ C3/ be a codimension k subvariety, and suppose that 𝑖(1 (𝑐) contains an
irreducible component R of codimension < 𝑁 . Then ℓZar ≠ ,, and either two of the elliptic curves
become isogenous on R, or at least two of the sections become torsion on R, or an elliptic curve becomes
isotrivial on R.

Proof. First, note that over S for each pair (𝑛𝐽 , 𝛽𝐽), we have an admissible variation of graded-polarizable
integral mixed Hodge structures V𝐽 = ((𝐷𝐽)Z,𝜄•𝐷𝐽 , 𝑖•𝐷𝐽) given by assigning to 𝜕 ∈ , the relative
cohomology group 𝑝1 (𝑛𝐽,𝐸 , {0, 𝛽𝐽 (𝜕)},Z). Note that this is an extension of the form

0 → Z(0) → 𝑝1(𝑛𝐽,𝐸 , {0, 𝛽𝐽 (𝜕)},Z) → 𝑝1 (𝑛𝐽 (𝐽),Z) → 0. (3)

Let V =
⊕

𝐽 V𝐽 . Note that the𝜖𝐽 are algebraic sections of𝐷O = 𝑝1
𝐼𝑈 (𝑛/,) over S. By thinking of 𝛽 ∈ E

above 𝜕 ∈ , as 𝛽 = ⊕ 𝛽𝐽 where 𝛽𝐽 : V𝐽,𝐸 → 𝐷C,0, the evaluation map ( 𝛽𝐽) /→ ( 𝛽𝐽 (𝜖𝐽)) gives an algebraic
map C : ΩV → 𝐷C,0. Then C ◦ 𝛿V : ,̃an → 𝐷C,0 is the map which associates to a point s together
with a homotopy class of path to 𝜕0 the cohomology class ([𝜖𝐽]) ∈

⊕
𝐽 𝑝

1(𝑛𝐽,𝐸 , {0𝐸 , 𝛽𝐽 (𝜕)},C), flatly
continued to 𝜕0 via the path. In particular, using the basis 𝐼∨𝐽 , T∨𝐽 , 𝑃∨𝐽 on 𝐷C,0, this map agrees with F on
a lift of B.

We therefore let 𝜄 ⊂ ΩV be 𝜄 = C(1(𝑐), and observe that R lifts to the intersection 𝜄 ) ΣV . To
apply Theorem 1.3 we must

(a) compute the algebraic monodromy group of V;
(b) compute the dimension of W.

Proposition 5.2. The algebraic monodromy group G of V is (G2
4 ! SL2)/.

Proof. That G surjects onto SL/2 follows from the fact that the elliptic curves are non-isogenous and non-
isotrivial, together with the classification of weakly-special subvarieties of 𝑔 (1)/ (see [17, Proposition
2.1]). Since SL2 acts irreducibly on its standard representation, we claim that it is sufficient to show that
none of the algebraic monodromy groups G𝐽 of any of the factors V𝐽 is SL2. Indeed, if this is the case,
then the unipotent radical is a sum of (G2

4)/ which surjects to each factor and is invariant under SL/2 .
Since the irreducible constituents are simply the fibers and they are mutually non-isomorphic, the claim
follows.

To see that none of the G𝐽 is SL2, we first note by Theorem 2.6 that the algebraic monodromy group
is normal in the derived subgroup of the generic Mumford-Tate group, and thus, it is sufficient to show
that the generic Mumford-Tate group of each V𝐽 is maximal.

Lemma 5.3. Let E be a mixed Hodge structure of the form (3) and suppose gr21 𝑛 is Mumford–Tate
general. Then the Mumford–Tate group of E is GL2 if and only if the extension of mixed Hodge structures

0 → Z(0) → 𝑛 → gr21 𝑛 → 0 (4)

is Q-split.

Proof. Recall (see §2.3) that the Mumford–Tate group of E is the stabilizer of all Hodge classes in all
tensors 𝑛 ⊗8 ⊗ (𝑛∨)⊗/. If the Mumford–Tate group of E is GL2, then there is a fixed vector in 𝑛Q which
therefore splits (4), and the converse is obvious. !

Now it remains to note that the space of extensions (4) up to integral isomorphism is
(𝑖1 gr21 𝑛)∨/(gr21 𝑛)∨Z ! (gr21 𝑛)C/𝑖0 gr21 𝑛 + (gr21 𝑛)Z which is just the elliptic curve correspond-
ing to gr21 𝑛 , and the Q-split points are the torsion points. !

We now compute the dimension of W. Note that C : ΩV → 𝐷C,0 is equivariant with respect to the
action of G(C). Moreover, the class 0 ≠ [𝜖𝐽] ∈ 𝑖1𝐷𝐽 is not contained in𝜄0𝐷𝐽 for any i at any point. Thus,
the orbit of any point in the image of g is an open subset of𝐷C,0, and in particular of dimension 3Q. Thus,
the fibers of g all have the same dimension 3Q, and codimΩV 𝜄 = 𝑁 . We then have codim2 𝑗 < dim G,
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and it follows from Theorem 1.3 that R is contained in a proper weak Mumford–Tate subvariety. In
particular, it is not Zariksi dense, and R must be contained in either:

1. the locus where some 𝑛𝐽 becomes isotrivial, corresponding to the algebraic monodromy group of
the restriction of V𝐽 being contained in G2

4;
2. the locus where some 𝑛𝐽 , 𝑛 𝜇 for N ≠ U become isogenous, corresponding to the algebraic monodromy

group of the restriction of V𝐽 ⊕ V 𝜇 being contained in the preimage of (a conjugate of) the diagonal
under (G2

4 ! SL2)2 → SL2
2;

3. the locus where some section 𝛽𝐽 of some 𝑛𝐽 is torsion, corresponding to the algebraic monodromy
group of the restriction of V𝐽 being contained in (a lift of) SL2.

To complete the proof, we just need to show that if we are only in the last case, then at least two sections
become torsion. Assume that only one section (without loss of generality 𝛽1) becomes torsion. Consider
the variation V + := gr21 V1 ⊕

⊕
𝐽>1 V𝐽 , which is a quotient of V . Let 𝐷C,0 → 𝐷 +

C,0 be the corresponding
quotient and 𝑐 + the image of T. Now codim𝑐 + ≥ 𝑁 ( 1 and codim𝑈Zar ℓ < 𝑁 ( 1, so applying the same
analysis as above, we obtain a contradiction. !

5.2. Ax–Lindemann for abelian differentials
In this section, we prove a recent conjecture of Klingler–Lerer [21]. We first briefly recall strata of
abelian di!erentials.

Let C > 0 be an integer, 𝐼 = (𝐼𝐽) a partition of 2C ( 2, and , = ,ℓ the moduli space of pairs (J,𝜖)
where C is a genus g curve and𝜖 is a regular 1-form on C whose zero divisor 𝐿 (𝜖) has type 𝐼, meaning
it is of the form

∑
𝐼𝐽 D𝐽 for distinct points D𝐽 on C. There is a natural variation of mixed Hodge structures

over ,ℓ whose fiber over (J,𝜖) is the relative cohomology group 𝑝1(Jan, 𝐿 (𝜖),Z).
Fixing a basepoint (J0,𝜖0), let 𝜆 : ,̃an → ,an be the universal cover. The map < : ,̃an → 𝐷0 :=

𝑝1 (J0, 𝐿 (𝜖0),C) mapping (J,𝜖) to the image of the class [𝜖] ∈ 𝑝1(J, 𝐿 (𝜖),C) under the flat
trivialization is a local isomorphism by a theorem of Veech [30, Thm. 7.15].

Following [21], we say an (irreducible) algebraic subvariety 𝜄 ⊂ , is bialgebraic if the Zariski
closure of <(𝜄0) in 𝐷0 has dimension dim𝜄 for some (hence any) component 𝜄0 of 𝜆(1 (𝜄). We
likewise say 𝜄 ⊂ 𝐷0 is bialgebraic if the Zariski closure of 𝜆(𝜄0) has dimension dim𝜄 for some
(hence any) component𝜄0 of <(1(𝜄). The following is the Ax–Lindemann conjecture of [21].

Theorem 5.4. For any algebraic subvariety𝜄 ⊂ 𝐷0, the Zariski closure of 𝜆(𝜄0) is bialgebraic for any
component𝜄0 of <(1(𝜄).

Proof. Let X be the Zariski closure of 𝜆(𝜄0), define 𝑔an to be the universal cover of 𝑔an and let V be the
above variation of mixed Hodge structures restricted to X. The class [𝜖] gives a section s of V , and there
is a natural algebraic map V : ΩV → 𝐷0 by evaluating a comparison on s. It follows that <|0̃ an = V ◦ 𝛿V .

We claim that V (ΩV ) and G(C)𝜄 have the same Zariski closure. Now 𝜇 := G(C)𝜄 is certainly
contained in V (ΩV ). Also𝜇 is G(C)-invariant, so the pullback to 𝑔an descends to an algebraic subvariety
of X by definable Chow 2.1 and contains 𝜆(𝜄0); hence, it must be all of X. Thus, <(𝑔an) is contained
in Y, as therefore is its Zariski closure V (ΩV ), so we have the inclusion in the reverse directions.

As <(𝑔an) ⊂ 𝜇 , for X to be bialgebraic, it suffices to show dim 𝑔 ≥ dim𝜇 . Let 𝜄 + be the pullback
of W to ΩV . The dimension of 𝜄 + is dim 𝑖 + dim𝜄 where F is the generic fiber of V : ΩV → 𝐷0 over
W. By the above, V (ΩV ) and G(C)𝜄 have the same Zariski closure, and since r is G(C)-equivariant, it
follows that the generic fiber dimension of r over its image is equal to the generic fiber dimension over W.
Thus,

dim𝜄 + = dimΩV ( dim𝜇 + dim𝜄

= dim G + dim 𝑔 ( dim𝜇 + dim𝜄 .
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Now 𝜆(𝜄0) is Zariski dense in X but also lifts to the intersection of𝜄 + with a leaf, so by Theorem 1.3,
we must have

dim G ≤ dim𝜄 + ( dim𝜄 = dim G + dim 𝑔 ( dim𝜇 ,

and therefore, dim 𝑔 ≥ dim𝜇 , as desired. !

5.3. Twisting by the period torsor
In this section, we explain formally how one may deduce many of the previous Ax-Schanuel theorems
from Theorem 1.3.

In applications, one often has a variety M with an algebraic (left) G(C)-action and an equivariant
algebraic map C : ΩV → 𝜌 , as in the last subsection. In this case, Theorem 1.3 is readily applied.

Another common situation is to have an algebraic variety P → , over S, an algebraic variety P
equipped with a (left) G(C)-action, and a G(C)-equivariant map

〈 , 〉 : ΩV ×𝐴 P→ B

which we call a twisting map. Such a map yields a map 〈𝛿V , 〉 : ,̃an ×𝐴an Pan → Ban on the base-
change to the universal cover. Note that these two setups are equivalent, as we may take 〈 , 〉 to be the
G(C)-equivariant map

C 〈 , 〉 : ΩV → Hom𝐴 (P, B𝐴),

where B𝐴 = B × ,, and in the other direction we may take P = , and 〈 , 〉I = C.
Examples of twisting maps include the following:

◦ P = V and B = 𝐷C,0 and 〈 , 〉 the obvious evaluation. The map 〈𝛿V , 〉 is then the flat trivialization.
◦ P = the relative flag variety of 𝐷O for which the Hodge filtration yields a section, B = the flag variety

of 𝐷C,0 containing the relevant period domain (that is, its dual), and 〈 𝛽 , 𝑖•𝐷𝐸〉 = 𝛽 (𝑖•𝐷𝐸). The map
〈𝛿V , 〉 is then the period map.

◦ For any artinian ring A and any twisting map 〈 , 〉 : ΩV ×𝐴 P→ B, we get a map on A-jet spaces

HJΩV ×K)𝐴 HJP→ HJB.

The horizontal jets yield a natural subspace ΩV ×𝐴 HJ, ⊂ HJΩV which is preserved by the G(C)
action. We therefore obtain a twisting map 〈 , 〉J : ΩV ×𝐴 HJP→ HJB, and the map 〈𝛿V , 〉J is then
the map on jet spaces induced by 〈𝛿V , 〉. In this way, we may access transcendence statements for
the derivatives of 〈𝛿V , 〉, as in [22].

◦ By taking P to be , × 𝑔 and B = ΩV × 𝑔 for a variety X, we obtain the Ax-Schanuel result ‘in
families’, or ‘relative Ax-Schanuel’ as it has been called in the literature.

Given a twisting map, we define

W := 〈 , 〉 × 𝜆2 : ΩV ×𝐴 P→ B × P.

We say the twisting map is balanced if the fibers of W all have the same dimension. Note that the fiber
over (D+, D) is identified with the stabilizer StabG(C) (D). In practice, given a twisting map, we can
always assume it is balanced by passing to a Zariski open subset.
Proposition 5.5. Let 〈 , 〉 be a balanced twisting map as above and let Δ ⊂ img W be the image of
ΣV ×𝐴an Pan under Wan. Let𝜄 ⊂ img W be an algebraic variety and U a component of𝜄an )Δ such that

codimΔ 𝑗 < codimimg L𝜄 .

Then the projection of U to ,an is contained in a weak Mumford–Tate subvariety.
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Proof. Let k be the dimension of the fibers of W. First, U naturally lifts to ΣV ×𝐴an Pan ⊂ Ωan
V ×𝐴an Pan.

Call this lift 𝑗 +. Let 𝜄 + be the component of the preimage of W under W which contains 𝑗 +, and let
𝜄 ++ ⊂ ΩV (resp. 𝑗 ++ ⊂ ΣV ) be the image of 𝜄 + (resp. 𝑗 +) under the first projection. Clearly, 𝜄 ++ ) ΣV
contains 𝑗 ++, and we also have that dim𝜄 + = dim𝜄 + 𝑁 . The fibers of 𝜄 + → 𝜄 ++ are the intersections
of W with subvarieties of the form D+ × PC , and these are the same fibers as 𝑗 + → 𝑗 ++ over 𝑗 ++. Up to
replacing W with an algebraic subvariety for which the generic fiber of𝜄 + → 𝜄 ++ has the same size as
the generic fiber of𝑗 + → 𝑗 ++ (and without changing U), we therefore have

codim2 ++𝑗 ++ = codim2 +𝑗 +

= codim2 𝑗 + 𝑁
= codimΔ 𝑗 ( codimimg L𝜄 + (𝑁 + dim img W ( dimΔ)
< dim G.

Applying Theorem 1.3, the result follows. !

Note that in the context of the proposition, img W is the Zariski closure of Δ in B × P.
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