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Abstract
We prove a functional transcendence theorem for the integrals of algebraic forms in families of algebraic varieties.
This allows us to prove a geometric version of André’s generalization of the Grothendieck period conjecture, which
we state using the formalism of Nori motives.

More precisely, we prove a version of the Ax—Schanuel conjecture for the comparison between the flat and
algebraic coordinates of an arbitrary admissible graded polarizable variation of integral mixed Hodge structures.
This can be seen as a generalization of the recent Ax—Schanuel theorems of [13, 18] for mixed period maps.
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1. Introduction
1.1. Transcendence of periods

1.1.1. Periods

Given a smooth algebraic variety X defined over a field k¢ ¢ C, we may take an algebraic differential
p-form w defined over k (or more generally a degree p algebraic de Rham cohomology class defined
over k) and form the integral fy w along a topological p-cycle y of X(C) (with the euclidean topology).
Such numbers are called periods of HP (X). They collectively determine the Hodge structure on the
degree p cohomology of X, and conjecturally encode much of the geometry of X. One instance of this
is the Hodge conjecture, which says that Hodge classes are represented by algebraic subvarieties. In
a different direction, the period conjecture says that algebraic relations among the periods themselves
should be of geometric origin.

1.1.2. Classical period conjecture

We may measure the Q-algebraic independence of the periods of H? (X) via the transcendence degree
of the field extension of Q they generate. The algebraic relations arising from geometry are measured
by the motivic Galois group! G (HP (X)) of H? (X). Roughly speaking, it records the Q-algebraic
relations arising from pushing forward or pulling back along geometric maps and applying Stokes’
theorem. The two are related by a conjecture of Grothendieck (see [12] for more history and discussion)
which is phrased more generally for motives, but for the purposes of the above discussion, we may take
M = HP(X) for a variety X defined over Q:

Conjecture 1.1 (Grothendieck period conjecture). Let M be a Nori motive over Q. Then

trdegg Q(periods of M) = dim G (M).

This conjecture is important partly because many interesting numbers arise as periods, such as
log2, .

1.1.3. André’s generalization

While Grothendieck’s conjecture is very general (and currently very, very open) it does not cover many
important situations. For example, even e itself is (conjecturally!) not a period. However, e can still be
described in the language of periods, as log e = 1 and log x is itself a period function.

We use the Tannakian category of Nori motives to define the motivic Galois group. Ayoub uses Voevodsky’s triangualated
category of motives, but the resulting motivic Galois group is canonically the same [15].

https://doi.org/10.1017/fms.2025.10036 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10036

Forum of Mathematics, Sigma 3

André [10] found a very clever way to address this issue by considering periods of varieties not just
over number fields, but of varieties over arbitrary subfields K of C. Of course, one must now be careful,

since K can be chosen so as to engineer ‘coincidences’ between periods, such as /1e2 % = 2. Therefore,
André insists one pay a price for making K very large: the transcendence can come either from the
periods over K, or from K itself. In this way, one may consider the transcendence simultaneously of
quantities like @ and foa w by working over the field Q(a).

The general statement is as follows:

Conjecture 1.2 (André—Grothendieck period conjecture). Let M be a Nori motive over K. Then

trdegg K (periods of M) > dim Guot(M).

1.1.4. Functional Setup
To formulate a geometric analogue, we must find a replacement for the extension Q c C, as well as the
integration map. Namely, we think of Q as the base-field over which we consider our varieties, and C
as the extension field over which the period integrals are a priori defined. As such, we replace Q with
a complex function field k, and C with an appropriate field of meromorphic germs k" (see Definition
4.18 for the precise definition). Essentially, & is the function field of a complex variety S, and varieties
over k are families X — S, so for an algebraic relative de Rham cohomology class w € H Z R (X/S)
and a local flat section y, of the p-homology of the fibers, our integration map considers the fiberwise
periods /y _Ws and yields meromorphic (as opposed to rational or algebraic) functions on the base S.
Moreover,for an intermediate field k ¢ K c k", if K is the function field of a complex variety 7, then
the embedding k C K yields a rational map 7 — S while the embedding K c k" yields a local analytic
section 7 of T — S with Zariski dense image. We therefore interpret the k*"-valued periods of H? (X)
for X — T as the pullback via 7 of the periods over T.

Replacing Q c C with the extension &k C k", we may formulate and prove the analogue of the
André—Grothendieck period conjecture:

Theorem 1.1 (see Theorem 4.25). Let k be the function field of a complex algebraic variety and
k c K C k™ where K [k is finitely generated. Then for any Nori motive M over K, we have

trdeg; K (periods;m of M) > dim Gy (M /C).

Here, Gp,o (M /C) denotes the relative motivic Galois group (see Definition 4.15). The analog of
the Grothendieck period conjecture — namely, the case K = k — was proven by Nori (unpublished) and
Ayoub [6]. As shown by Nori and Ayoub, in the functional setting the motivic Galois group Gyt (M /C)
has a natural interpretation as the Zariski closure of the topological monodromy group acting on the
local system associated to the Betti realization of M (see Theorem 4.16).>

Remark 1.2. Nori and Ayoub in fact prove the functional analog of the Kontsevich—Zagier period
conjecture which states that the formal period ring injects into k" via evaluation. This is equivalent to
the K = k case of Theorem 1.1 together with the irreducibility of the torsor of isomorphisms between
the de Rham and Betti realization functors. See Section 4 for further discussion. The full Kontsevich—
Zagier conjecture does not generalize to the setting of Theorem 1.1 without further assumptions on
K, as K itself may contain some period functions. See [5] (and specifically Remark 15) for a nice
summary.

2In fact, Nori and Ayoub have a slightly artificial setup from this perspective, where they work only with subfields of C. We
find complex function fields to be a more natural context, so in §4 we show how to go from their setup to this one at the cost of
taking a slightly more complicated fiber functor.
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1.2. Ax-Schanuel conjecture

1.2.1. Motivation

We will deduce Theorem 1.1 from a version of the Ax—Schanuel conjecture for the analytic comparison
between the flat and algebraic coordinates of an admissible variation of mixed Hodge structures.
The relation to an Ax—Schanuel type theorem is not surprising as André’s conjecture implies the
classical Schanuel conjecture — see Example 4.4. In fact, it will turn out that these two statements are
formally equivalent if one restricts to studying variations of mixed Hodge structures which come from
geometry.

In the past decade, there has been much progress in functional transcendence, beginning with in-
terest in unlikely intersection problems and Shimura varieties, and specifically on the period maps for
variations of (mixed) Hodge structures [27, 22, 9, 13, 18]. This amounts to studying the transcen-
dence of the coordinates of the Hodge filtration in an appropriate flag variety with respect to a flat
trivialization, which are roughly speaking ratios of certain period functions,® The main advantage of
Theorem 1.3 below is that it directly applies to the period functions themselves. See §5 for a concrete
example.

1.2.2. Main result

Let S be an algebraic variety and V = (Vz, W,V, F*V) an admissible variation of graded-polarizable
integral mixed Hodge structures on S (see, for example, [24] for background), where V7 is an integral
local system on $*", W,V a (descending) filtration of Vg := Vz ®zw Qsa, and F*V an (ascending)
filtration of Vpu := Vz ®z.. Osa. Choosing a basepoint so € S, we introduce the following notation:

Vz,0 is the fiber of Vz at sq, and likewise for Vi o, Vi 0,

(Vo, V) is the canonical algebraic structure [16] on the flat vector bundle (Vpm, V),

V := A(Vp) its geometric total space with projection 7 : V — S,

Grui € GL(Vq,0) is the full algebraic monodromy group —namely, the Q-Zariski closure of the image
r Ofﬂ'] (San’ So) - End(VQ,O).

o G c GL(Vq,o) is the algebraic monodromy group — namely, the identity component of Gy

O O O O

An irreducible subvariety Z C S is contained in a proper weak Mumford-Tate subvariety if and only if
the algebraic monodromy group of the restriction V7 is smaller than G; see §2.9.

Now, let V, be the trivial variation whose fiber is the fiber of )V over sy. Consider the variation
& := Hom(V, Vp), its underlying algebraic flat vector bundle E with total space E, and let I C E be the
open set of isomorphisms of the fibers (as vector spaces) in the geometric total space, which is naturally
a GL(Vc,0)-torsor over S by post-composition. We let S2" be the minimal covering space of S*" which
trivializes the local system Vz. Then solving the connection naturally gives a flat section oy : san _, [an
by sending a path to its flat transport operator. Projecting down, we get a natural injective $*"-map
oy : §% — I*", whose image we denote by X,,. We may also think of Xy, as the flat leaf of E through
the identity id : Vo o0 — V0 thought of as a point in the fiber above so.

Note that we may write the coordinates of this map as follows: if we pick a basis e; for Vz o and a
global meromorphic basis w; for Ve, then the coordinates for o, are precisely the expansion of the w
in the flat continuation of the basis ¢;. In the case that Vz = R" f.Zx, where f : X — § is a smooth
projective morphism, then the w; are relative de Rham cohomology classes and the coordinates of o
are the period integrals of the w; over the dual homology basis to the ¢; along the fibers.

We shall show (see Lemma 2.7) that the Zariski closure Qy := (X,)%¥ of £, has underlying set the
Gy11(C)-orbit of Xy, and is therefore naturally a Gyy-torsor which we call the period torsor. It has a
natural flat connection restricted from I (see §2.4). Moreover, we have dim Qy, — dim § = dim G, which
is the analog of Conjecture 1.1.

3Indeed, for an elliptic curve, the coordinate 7 for the Hodge filtration is the ratio of the two periods.
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Our main theorem is as follows:
Theorem 1.3. Suppose W C Qy, is an algebraic subvariety and U a component of W N Xy, such that
codimy U < dimG.

Then the projection of U to S is contained in a weak Mumford—Tate subvariety.

Given the setup of the discussion in §1.1.4, this theorem immediately implies Theorem 1.1 by taking
W to be the Zariski closure of the image of the composition oy, o 7 (recall that there we have a rational
map § — S’ with function field extension k C K and analytic section 7 inducing the embedding
K c k™). In fact, Theorem 1.1 implies Theorem 1.3, at least for variations coming from geometry (see
Remark 4.27). We give two proofs of Theorem 1.3, first as an application of the Ax—Schanuel theorem
for principal bundles of [11] and second using o-minimality, generalizing and using the results of [27,
22,9, 13, 18]. The above theorem easily recovers previous Hodge-theoretic Ax—Schanuel theorems
(see §5.3).

1.3. Outline

In §2, we collect some background needed for the proof of Theorem 1.3, and in §3, we give both proofs
of our main result.

In §4, we give a straightforward generalization of Nori’s construction of motives over subfields
k c C to complex function fields and establish the necessary ingredients to deduce Theorem 1.1 from
Theorem 1.3. Since there seems to be a gap in the literature for Nori motives over function fields, we
take this opportunity to also write down Nori’s proof of the Grothendieck period conjecture in this
setting. We do this by gathering theorems already present in the literature, mostly from [20]. We also
point out that one can quickly deduce the full Kontsevich-Zagier conjecture (a theorem of Ayoub [6])
from the Grothendieck period conjecture, combined with our analytic description of the period torsor.

In §5, we discuss as an example an application to families of elliptic curves and show how to use
Theorem 1.3 to formulate some related statements. We also prove the Ax—Lindemann conjecture for
abelian differentials (recently conjectured by Klingler—Lerer [21]). Finally, we explain how our main
theorems implies all previously known Hodge—theoretic Ax—Schanuel theorem.

2. Background Results

In this section, we briefly recall the statements from o-minimal geometry and Hodge theory that we will
need. We also prove some preliminary results that will be used in the proof of Theorem 1.3.

2.1. o-minimality

We shall be working throughout in the o-minimal structure Ry exp, see [29] for background. We shall
use the following definable Chow theorem of Peterzil-Starchenko:

Theorem 2.1 (Peterzil-Starchenko [25, Thm 4.5]). Let Y be a quasiprojective algebraic variety, and let
A C Y be definable, complex analytic, and closed in Y. Then A is algebraic.

For an algebraic variety S with a local system V¢ (on §2"), the total space V has a natural definable
structure (the ‘algebraic definable structure’) coming from its canonical algebraic structure. Also another
definable structure on V" (the ‘flat definable structure’) is obtained by taking a definable cover of $*" by
simply connected open sets and using flat coordinates. In our case, the two are the same by the following:
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Theorem 2.2 (Bakker—Mullane [8, Theorem 1.2]). Let Vi be a local system underlying an admissible
variation of graded-polarizable integral mixed Hodge structures on S. Then the flat and algebraic
definable structures on the total space V™" are equivalent.

We shall use the following precise corollary to provide a definable fundamental domain for Zy,.

Corollary 2.3. For V¢ as in Theorem 2.2, let f : B — S™ be a definable map from a definable analytic
space and o a flat section of f*Vc. Then the corresponding lift f : B — V" is definable.

We fix F C 2 to be an open definable analytic subspace with simply connected components with
a surjective map ¢ : F — S Then by Proposition 2.3, we have that Xy, C ¢*] is definable, and
therefore, so is its image Fy, in Xy,. Observe that Fy, surjects onto $?" and thus I" - F, = Zy.

2.2. Point counting on transcendental sets

Recall that the height of a rational point § with ged(a,b) = 1is H({) := max(|al, |b|). For a point
q=1(q1,...,qn) € Q", we define H(q) := max; H(q;). Finally, for any subset X c R", we define

N(X,T) :=#{qe XN Q" | H(q) < T}.

Givenaset X C R”, we set X?# to be the union of all connected, positive dimensional, semi-algebraic
subsets of X. Then we have the following theorem of Pila—Wilkie:

Theorem 2.4 (Pila—Wilkie [28, Thm 1.8]). For a set X C R" definable in an o-minimal structure, and
any € > 0, we have

N(X - x¥ 1) =10,

In fact, we shall need the slightly stronger version:

Theorem 2.5 (Pila—Wilkie [26, Thm 3.6]). For a set X C R" definable in an o-minimal structure, and
any € > 0, there is a definable family W C X XY with semialgebraic fibers Wy, such that for any positive
real number T, the rational points in X of height at most T are contained in the union of T°V of the
fibers Wy,

2.3. Mumford-Tate groups

We follow the conventions of [1]. For a rational mixed Hodge structure V = (Vg, W,V, F*V), recall that
the group of weight zero Hodge classes of V is WoVNFV. We define the Mumford—Tate group of V to be
the subgroup of GL(Vp) stabilizing each weight zero Hodge tensor in all tensor powers V& @ (VV)®".

Theorem 2.6 (André). For an admissible variation of graded-polarizable integral mixed Hodge struc-
tures (Vz, WV, F*V) on a smooth algebraic variety S, we denote by Gy the the Mumford-Tate group
of the fiber (Vq,s, WeVa,s, F*Vc s) at s and Hy the connected component of the Zariski closure of the
image of m1(S*, s) in GL(Vgs). Then

1. For avery general s € S, we have Hy C Gy,
2. Gy is locally constant outside of a meager set;
3. Forvery general s € S, the monodromy group Hy is a normal subgroup of the derived subgroup of Gy.

Proof. These are [1, Lemma 4, Thm 1]. O

Lemma 2.7. In the notation of the introduction, Qy, = G(C)Xy, and Gy (C) acts simply transitively
on fibers of Qy over S.

Proof. As Xy is G(Z)-invariant, it follows that (£y)%% is G(C)-invariant, and therefore contains
G(C)Xy. Also it follows from Lemma 2.3 and locally choosing a flat section that G(C)Xy, is definable,
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and it is evidently a closed analytic subvariety. By Theorem 2.1, it follows that it is algebraic, and thus,
Qy =G(C)Zy.

For the second part of the claim, note first that Xy, and hence Q, are invariant by the image of
monodromy, and thus Qy, is invariant under Gy, (C). Now, locally on S?", we have Xy, is given by a
union of sections s; any two of which differ by an element of Ggy(Z), and thus analytically locally on
the base Q?? = G (C)sy. O

2.4. Flat torsors

Let G be a complex algebraic group. Recall that an algebraic G-torsor over a smooth variety S is an
algebraic S-variety 7 : P — S equipped with an algebraic left action by G such that the induced map

GXxsP—>PxsP, (g,x) (gx,x)

is an isomorphism. This means G(C) acts simply transitively on the fibers of P — S.
An algebraic flat connection on P is an algebraic splitting of the extension

0—>TP/S—>TPH7T*TS—>O

which is G-invariant and with the property that the induced map 7n*7Ts — Tp is a foliation. The leaves
of P are the leaves L of this foliation.

Given an algebraic flat G-torsor 7 : P — S, choosing a point pg € P and setting so = 7(po),
we obtain a monodromy representation p : m1(S, s9) — G(C) by solving the connection. This data
determines & : P — S analytically, as we recover

P™ = (5% x G(O))/T,

where y € I acts via the canonical right action on the first factor and via right multiplication by p(y) on
the second. Moreover, the constant sections $2 X g map to the leaves of P. We define the full algebraic
monodromy group (resp. algebraic monodromy group) of P to be the Zariski closure (resp. identity
component of the Zariski closure) of the image of p in G.

Lemma 2.8. Qy, is naturally an algebraic flat Gy-torsor for which £y, C Qv is a leaf and with
algebraic monodromy G.

Proof. The geometric vector bundle E has a natural flat connection, which restricts to a flat connection
on I c E giving I the structure of an algebraic flat GL(Vc o)-torsor, with GL(Vc ) acting by post-
composition. By Lemma 2.7, Qy, C I is a union of leaves of I, so the connection restricts to a flat
connection on Q. The action of Gy, (C) is simply transitive on fibers (again by Lemma 2.7), and Xy,
is a leaf by definition. O

2.5. Period domains and period maps

We recall some definitions regarding weak Mumford—Tate domains. See [19, 7] for details.

Let Dy be a period domain of graded-polarized integral mixed Hodge structures with generic
Mumford-Tate group Gg. For any point p € D, let G be a normal Q-subgroup of its Mumford—Tate
group MT,, and U the unipotent radical of G. The orbit D := G(R)U(C) - p is a closed complex sub-
space of Dy whose generic Mumford—Tate group is MT ,. We call such a subspace a weak Mumford-Tate
(sub)domain of Dy. Each such D is naturally contained as a semialgebraic subset in a complex algebraic
variety D called its dual.

The quotient G(Z)\D has the natural structure of a definable analytic variety, and for any period map
@ 8™ — Go(Z)\Dy, the inverse image of G(Z)\D is an algebraic subvariety of S [7]. We call each
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component a weak Mumford—Tate subvariety of S. Note that by Theorem 2.6 and the above definitions,
we have the following important property:

Corollary 2.9. Let V be an admissible variation of graded-polarizable integral mixed Hodge structures
on S. Then a subvariety S’ C S is contained in a proper weak Mumford—Tate subvariety if and only if the
algebraic monodromy group G’ of the restriction Vs is strictly smaller than the algebraic monodromy

group G of V.

Suppose V = (Vz, W, Vg, F*V) is an admissible variation of graded-polarizable integral mixed Hodge
structures, and let ¢ : Sa — D be the asspgiated period map, where 7 : Sa — S is the minimal cover
trivializing V. Consider the map 7 X ¢ : §2» — §*" X D, which is a closed embedding of a component
of §*" Xg(z)\p D. For the next section, we observe that 7 X ¢| is definable by [7, Theorem 1.1], where
Fisasin §2.1.

3. Two proofs of Theorem 1.3
3.1. First proof

We first give a proof using the Ax—Schanuel for principal bundles of [11]. For this, we shall need the
following definition:

Definition 3.1. A complex algebraic group G is sparse if every proper complex analytic Lie subgroup
is contained in a proper complex algebraic Lie subgroup.

Lemma 3.2 [14, Lemma 3.3]. The algebraic monodromy of an admissible variation of polarizable
integral mixed Hodge structures is sparse.

Theorem 3.3 [11, Thm. A]. Suppose G is sparse. Let m : P — S be an algebraic flat G-torsor, W C P
a subvariety, L a leaf of P, and U a component of W* N L. If

codimy U < dim G,

then m(U)?™ c S has algebraic monodromy of strictly smaller dimension than G.

Proof of Theorem 1.3 Note by Lemma 2.8 that Qy, is an algebraic flat Ggyy-torsor and that Xy, is a leaf.
Thus, the theorem follows immediately from Theorem 3.3 and Lemma 3.2. m]

Remark 3.4. The proof only uses Hodge theory to establish that the algebraic monodromy of the
underlying local system is sparse, and it is natural to ask whether Theorem 3.3 is true for any local
system. The following example shows it is not.

Example 3.5. Let S = A be a simple abelian surface and let w be a nonzero differential 1-form. Consider
the local system with monodromy

n1(A,0) — an, v (efy w,e’lfvw).

The associated G2 -torsor 7 : P — A (equipped with its canonical algebraic structure) has a section
s : A — P whose lift is given by

§: Aa an, am— (e/oa “’,e/lfoa“’),
which is algebraic by GAGA. For A irrational, the fibers of § are one-dimensional and project to the

intersections £ N s(A), which are therefore one-dimensional as well. The algebraic monodromy is all
of an, but if a fiber were not Zariski dense in A, it would necessarily be an elliptic curve factor of A.
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3.2. Second proof

In this section, we describe the proof of Theorem 1.3 using o-minimality in the spirit of [22, 9, 13, 18].

With the notation as in the setup of Theorem 1.3, we prove the conclusion by induction on the triple
(dim S, dim W — dim U, — dim U) with the lexicographical ordering, the base case of dim S = 0 being
trivial. We thus assume that the theorem is valid for all lexicographically previous triples. Suppose we
have a W C Qy, as in the statement of the theorem and a component U of W N X, whose projection
(U) is not contained in a proper weak Mumford-Tate subvariety of S. Note that 7 (U) is Zariski dense
in S by the inductive hypothesis, as otherwise, we could replace S with the Zariski closure S” of 7 (U)
and W with the intersection W N Qy,, .

Recall that G(C) acts on Q,, (algebraically) by post-composition. Let I' ¢ G(Q) be the image of
the monodromy representation of Vz (possibly after replacing S with a finite cover). As in [22, §3],

we consider the component M of the Hilbert scheme Hilb(ﬁv) containing the closure of W for some

equivariant algebraic compactification Qy of Q. Let W C Qy X M be the universal family and Ws,
the intersection with Xy, X M®", which is I'-invariant and proper over Xy,. The quotient U/ := T'\Wy
is naturally a definable analytic variety as follows. Letting Fy, C Xy be the subset from §2.1, we
set Gy = Fy X M®, which is an open definable fundamental set for I' on Xy x M?". Let ~ be the
induced definable étale equivalence relation on Gy, and we take the definable structure induced by the
identification U = (Wsx N Gy)/~.

The natural map &/ — S*" is proper definable analytic. We think of U/ as parametrizing I"-orbits
of pairs (W', p) with [W’] € M and p € W N Xy,. There is a closed I'-invariant definable analytic
subvariety A C U parametrizing pairs (W’, p) with dim,(W’® N Xy) > dim U. If Ay is an irreducible
component of A containing (W, p) for all p € U, then Ay descends to a closed definable analytic
subvariety By C U by taking the quotient By := (A9 N Gy)/~.

We have a natural proper definable analytic map g : By — S*". By Theorem 2.1, the image is
algebraic, and therefore, g is surjective by the inductive hypothesis and the properness of the map. Note
that the monodromy I'y of the pullback ¢*V stabilizes Ag. Since By surjects onto S, we have that ' ¢ T’
is finite index, so the identity component of the Q-Zariski closure of I'y is G.

Letting ¥ € M*" be the projection of Ag, we let Hye, be the stabilizer of a very general point of Y,
and H the identity component of its Q-Zariski closure. Note that every point of Y — in particular, [W] -
is stabilized by H(C). Moreover, since Iy sends a very general point to a very general point, it follows
that Hye, is normalized by Iy, and hence, H C G is normal.

Claim 3.6. H = G.

Proof. LetZ = §" Xgz)\p D C §*" x D where D is the relevant weak Mumford—Tate domain and D
its dual. Let F' C Z be a definable fundamental set for the action of G(Z). We have the following result
of Chiu [13]:

Proposition 3.7. Let H C G be a normal Q-subgroup and K C Z a closed irreducible complex analytic
subvariety which is stabilized by H(Z) and for which K N yF is definable for any y € G(Z). Let

J={yeGZ)| KnNnyF + @}

and note that H(Z) acts on J. Then either H(Z)\J is finite or has polynomially many integer points.

Proof. This is proven in [13]. The case that H(Z)\J has polynomially many points corresponds to
cases (1) and (2) in the trichotomy at the end of Section 7 in [13], and is proven in Sections § and 9,
respectively. The case that H(Z)\J is finite is case (3).

Chiu proves it for the specific set U in his notation, but the proof works verbatim for an arbitrary K
as in the statement of Proposition 3.7. m}
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We apply this proposition to Xy, which is identified with a component of Z as in §2.5, using
K =W*"NnZXyand F = Fy. Consider

I={g € G(R) | dim(g"'W* N Fy) = dim U}.

Note that the J in Proposition 3.7 is a subset of 1(Z). Moreover, [ is definable. Thus, by Theorem 2.4,
either

1. I contains a semi-algebraic curve C with non-constant image in H(R)\Z, or
2. H(Z)\J is finite.

Suppose first that we are in case (1). Then I contains a semialgebraic curve C. We claim that W is
not stabilized by C. If it were, then it would be stabilized by C - C~!, which contains an integer point
not in H(Z) (in fact, we can arrange it to contain arbitrarily many by the conclusion of the stronger 2.5).
This is a contradiction by the definition of H.

Therefore, ¢™'W varies with ¢ € C. If ¢~'U does not vary with ¢ € C, then we may replace W
with W N ¢'W for a generic element ¢ and obtain a lexicographically smaller counterexample. Else,
if ¢7'U does vary with ¢ € C, we may replace W with CZ*W and obtain a lexicographically smaller
counterexample.

Thus, we may assume we are in case (2). In this case, it follows that the image 7(U) of U in S is
definable, and hence algebraic by Theorem 2.1. Since the monodromy of 7(U) and U are the same, if
we have H # G, then 7(U) would be contained in a proper weakly special subvariety, which contradicts
the assumption on U. O

We may therefore suppose W is G-invariant, but then it is obvious that codimy U > dim G, and this
contradiction proves the theorem.

4. Nori motives over complex functions fields
4.1. Outline

In this section, we prove Theorem 1.1, whose statement is formulated in terms of functions fields of
complex algebraic varieties. Nori’s category of motives is defined only for subfields of C, and due to its
reliance on a Betti realization functor, the generalization of his construction to complex function fields
requires a little care. In §4.2, we recall the original construction of Nori, and in §4.3, we precisely state
the classical Grothendieck period conjecture and its generalization due to André. In §4.4, we make the
necessary modifications to Nori’s construction, and in §4.5, we relate the relative motivic Galois group
to the algebraic monodromy. In §4.6, we relate the torsor of comparisons between Betti and de Rham
realizations to our period torsor Q. In §4.7, we show has this perspective gives a simple perspective
on the geometric Kontsevich—Zagier conjecture. Finally in §4.8, we formulate and prove the precise
version of Theorem 1.1. The reader who is willing to assume a reasonable category of motives over a
complex function field together with the statement of Theorem 4.17 can skip directly to the proof.

4.2. Nori motives

In this section, we briefly recall Nori motives, which will provide for us a Tannakian category of motives
in both the classical and functional setting, and therefore a motivic Galois group. Ayoub [6] (see also
[4]) takes a slightly different approach, using Voevodsky’s theory to define such a group directly, but
they are canonically the same [15]. Essentially, for any subfield & c C, the category of Nori k-motives
will be the abelian subcategory of Q-mod generated by singular cohomology groups H' ((Xc)*", Q) of
k-varieties X together with all morphisms that can be constructed naturally from maps of k-varieties.
The main reference is [20].
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By a diagram D, we mean a directed graph* with the obvious notion of morphism. Note that for any
category C, there is a natural underlying diagram, and for every functor C — C’ an underlying morphism
of diagrams. A representation F : D — C of a diagram D in a category C is a morphism on the level of
diagrams. Concretely, F assigns an object of C to each vertex of D, and a morphism of C to each edge
of D with the obvious compatibility on the source and target.

Let k be a field with an embedding ¢ : k — C. The diagram Pairs®" (k, 1) has as vertices triples
(X,Y,i) with X an algebraic variety over k, Y C X a closed subvariety (defined over k), and i € Z. The
edges of Pairs®™ consist of

o for each morphism f : X — X’ with f(Y) C Y’ and integer i, there is an edge f* : (X',Y’,i) —
(X,Y,0);

o for each chain X DY D Z of varieties (the inclusions being of closed subvarieties) and each integer
i,thereisanedge d : (Y,Z,i) » (X,Y,i+1).

Betti cohomology (X,Y,i) — H'((Xc)™, (Yc)™, Q) defines a natural representation
Betti, : Pairs®™ (k) — Q-mod

where the edge f* is sent to the pullback via f and 9 is sent to the coboundary map in the long exact
sequence of the triple.

Theorem 4.1 (Nori, see [20, Theorems 7.1.13 and 9.1.5]). Let k be a field with an embedding ¢ : k — C.

1. There is a Q-linear abelian category MM;]f(f)ri(k,L) together with a representation H,

Pairs®® (k) — MMeNfzri(k, 1) and a faithful exact Q-linear functor H, : MMeNizri(k, t) — Q-mod
which is uniquely determined by the property that given

o a Q-linear abelian category A

o a representation F : Pairs® (k) — A

o a faithful exact Q-linear functor F : A — Q-mod such that the solid part of the diagram below

commutes (on the level of diagrams)

MMSH (k1)

e L
|
|
|

'@ X
S A

There exists a unique faithful exact Q-linear functor @ : ./\/l/\/lf\gri(k, t) — A making the diagram

commute (on the level of diagrams).

2. The category MMeNfgri(k, t) has a natural commutative tensor product with unit such that Hg is a
tensor functor.

3. The category M Mnori(k, t) obtained from MM;fgri (k,v) by inverting H! (G, {1}) is a rigid tensor
category with fiber functor H,. Here, we denote H'(X,Y) := H,(X,Y,i).

4. MMunoi(k,v) with H, as its fiber functor is naturally equivalent to the category of representations
of a pro-algebraic Q-group G (k, t) with its natural fiber functor.

Note in particular that we have H, o H, = Betti,. We refer to MM (k, 1) (resp MMNori(k, 1)) as

Nori
the category of effective Nori (k, ¢)-motives (resp. Nori (k, ¢t)-motives).

Pairs® (k)

Definition 4.2. For a Nori (k, ¢)-motive M, we define Gno(M, t) to be the image of the natural map
Gnot(k,t) = GL(H,(M)). It is an algebraic Q-group.

4with possibly infinitely many vertices and edges.
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4.3. Classical period conjectures

It will be useful to have a category of pairs of vector spaces equipped with a comparison over a fixed
field extension. Let ¢ : k — L be an embedding of characteristic O fields. Define (k,Q),-mod to
be the category of triples (U, V, ¢) of a k-vector space U a Q-vector space V, and an isomorphism
¢ :U® L — V ®g L with the obvious notion of morphism.

For a field k and an embedding ¢ : kK — C, we have a natural representation

Pairs®™ (k) — (k,Q),-mod

given by sending (X,Y,i) to (H}, . (X,Y), H(X,Y,Q), ¢x,y,i), where ¢x y ; is the natural comparison
given by integration. By the universal property, this extends to a functor

MMi(k.0) = (k,Q)-mod, M — (Hpr(M), H/(M). ¢n),
which in turn extends to a functor
MMpyori(k, ) = (k,Q),-mod, M — (Hpr(M),H. (M), ¢um).
Definition 4.3. For ¢ : k — C a field embedding and M a Nori (k, ¢)-motive, we define
k(periods, of M) c C

to be the field of definition of the comparison ¢,.

Concretely, k(periods, of M) is obtained by adjoining the periods of k-rational de Rham classes of
M to k.

Conjecture 4.1 (Grothendieck period conjecture). Let ¢ : k — C be an embedding of a number field
and M a Nori (k, t)-motive. Then

trdegq k(periods, of M) = dim Gmot (M, 1).

One downside of the Grothendieck period conjecture is that it does not imply the other major con-
jecture about transcendence: the Schanuel conjecture about exponentials. André proposed the following
strengthening to address this:

Conjecture 4.2 (André-Grothendieck period conjecture). Let ¢ : k — C be any field embedding and M
a Nori (k, t)-motive. Then

trdegg k (periods, of M) = Gmot(M, 1).

Example 44. Let a,...,, € C* be multiplicatively independent, and consider X = G,, and
Y={la,...,a,} € G, over k = Q(ay,...,a,). Then HII)R(X,Y) is spanned by %, and the
differences [1]Y — [a;]", whereas H, (X, Y, Q) is spanned by paths between 1 and the different «;, and
the loop around 0. Thus, the integrals are all integers, as well as 2xi,log a1, . . ., log @,. Hence, in this

case, André’s conjecture says that
trdegg (27, @y, . . ., ap,logay, . .., loga,) > dim Guot(H! (X, 7).

Also André shows [2] that Gmot(’H} (X,Y)) is the same as the Mumford-Tate group of the mixed
Hodge structure H'(X,Y) — and this is easily computed to be an extension of G,, by n copies of G.
Thus, André’s conjecture says that

trdegQ(Zni,al, .o aplogay, ..., logay,) = n+1
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and therefore that
trdegg (@1, ..., an, logay, ..., loga,) > n

which is precisely the statement of Schanuel’s conjecture.

4.4. Nori motives in the functional setting

In the functional setting, we would like to replace k with the function field of a complex algebraic variety,
in which case the Betti realization of a Nori motive M defined over k should be the Betti cohomology of a
generic fiber of M once we spread M out over amodel S of k. In this section, we make these ideas precise.

Throughout, we often take ¢y : ko — C to be a field embedding and k¢ C k a finitely generated
extension. By analytification, we always mean analytification as kq-varieties, unless otherwise specified.

Definition 4.5. An arc point y of a topological space S is an equivalence class of continuous paths
v :(0,a) — S fora > 0, where we say two arc points y, y” are equivalent if they agree on some interval
(0,6) for 6 > 0.

Note that classical points may be thought of as arc points via the constant maps.
Lemma 4.6. Let S be a model of k over kg and let y : (0,a) — S* be an arc such that

1. 7y extends real analytically over (—€, a + €) for some € > 0
2. vy is not contained in any proper kg-algebraic subvariety of S*".

Then vy defines an arc point of every model S’ of k compatibly with respect to morphisms of models.

Proof. LetV C S be a (nonempty) open subscheme. Then by the two assumptions, the set y~! (§2"\V2")
is finite, and therefore, for sufficiently small 0 < b < a, the map |, ) factors through V. Thus, y
defines an arc point of any (nonempty) open subscheme of §, and therefore of any other model, since
any two models agree on an open set. m}

For an arc point of §?" satisfying the conditions in the lemma, we say that the arc point induced on
any other model is stable.

Definition 4.7. Let ko C k be fields such that & is finitely generated over ko and kg is algebraically
closed in k. Let ¢y : kg — C be a field embedding. We say that y is a (kq, t9)-arc point of k if y is a
compatible choice of stable arc point of $?" for any model S of k over k(. Note that this is equivalent to a
choice of stable arc point on one model by Lemma 4.6. Note also that a complex embedding ¢ : k — C
extending ¢y naturally gives a (kg, t)-arc point of k.

Remark 4.8. Suppose we have two triples (ko, to, k) and (£y, Ao, €) as in the definition with a containment
(ko, to, k) € (€, Ag, £) in the obvious way. Then any (£y, 1g)-arc point of £ naturally pushes forward to
a (ko, tp)-arc point of k.

Definition 4.9. We define (k/kg, ¢9)*" to be the pro-manifold obtained by taking the system of manifolds
S for (smooth) models S of k using the embedding ¢ to analytify.

Definition 4.10.

1. Let vy, y2 be two arc points of a topological space S. A path from vy to v, of S is a continuous map
¢ : (0,1) — S such that ¢ is equivalent to y;, and ¢ o (1 — x) is equivalent to y,. A homotopy of
paths ¢ and ¢, from 7y to y» is an ordinary homotopy ¢; between ¢; and ¢, such that each ¢; is a
path from y; to ;.

2. Let 1,7y, be two (ko, t9)-arc points of k. A homotopy class of paths from 7y to v, is a compatible
system of homotopy classes of paths from vy to v, in (k/kg, t9)*".

3. The resulting fundamental group mi((k/ko,t)*,y) naturally agrees with the inverse limit of
71 (82", ) over all smooth models S of k.
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In the next section, we will need the following notion:

Definition 4.11. Let S be a topological space and y : (0,a) — S an arc point. For 0 < € < a, we may
identify all the | (S, y(€)) using the path y. We call the equivalence class of all these groups 71 (S, y).
Note that this is (non-canonically) isomorphic to the usual topological fundamental group.

Lemma 4.12. Suppose that k [ ko is a finitely generated extension of fields such that kg is algebraically
closed in k. Then there exists a homotopy class of paths between any two (ko, 1p)-arc points of k.

Proof. Note that by the assumption, any model S of k is geometrically connected. Now let U c V be
connected open sets, and consider U*™ c V. Since the real codimension is at least 2, it is follows
that homotopy classes of paths in U?" surject onto homotopy classes of paths in V*". Therefore, it is
sufficient to prove that for any connected manifold 7', any two arc points y1,y, of T have a path between
them. But this is trivial since connected manifolds are path-connected. O

For X a k-variety, Y C X a closed k-subvariety, and y a (kq, t9)-arc point of k, we define

H(X,Y) := H' (X3 V3", Q).

Here, we spread out X,Y over a model S of k, shrink S so that H (X an y) forms a local system, and
represent the arc point by y : (0, @) — $*. Then XJ" is defined to be the inverse image of img y in X*".

This naturally yields a representation
Bettiy : Pairs”™ (k) - Q-mod, (X.Y,i) — H,(X,Y),

where the edge f* is sent to the pullback via f and 9 is sent to the coboundary map in the long exact
sequence of the triple.

Lemma 4.13. Let ¢ be a homotopy class of paths between two (kg, tg)-arc points y1,ys of k. Then ¢
gives a natural equivalence Betti,, = Betti,,.

Proof. Given X,Y over k we may spread out to a model S of K. Moreover, by shrinking S, we may
assume that the fibers Hy (X,Y) form a local system over S.

Now ¢ gives a homotopy equivalence class of paths between y; and y, as arc points of S. Thus, we
get a natural identification of H}, (X,Y) with H), (X,Y), as desired. O

Proposition 4.14. Let y be a (ko, to)-arc point of k.

(a) There exist categories of Nori motives MMeNiri(k,y),MMNori(k,y) with representation

Hy Pairs® (k) — /\/l./\/l?\f(fm(k,y) and functors H,, : /\/l/\/ll(\?gg(k, v) — Q-mod satisfying all of
the properties of Theorem 4.1.

(b) For any finitely generated extension k C K with compatible arc points yy and yk as in Remark 4.8,
there is a natural base-change functor MMI(\fgl) (K,yk) — MMI(\Iegl) (k,yx) which respects the
tensor product structure.

Proof. Consider first the case that k£ (and therefore kg) is countable. By Lemma 4.12, any two arc
points have a homotopy class of paths between them, so it is sufficient to consider a single point by
Lemma 4.13, and this is the case of Theorem 4.1.

Next, consider the general case of part (a). From the diagram category construction of [20, §7], we
obtain from the representation H, : Pairs® (k) — Q-mod a Q-linear abelian category MM;f(f)ri(k, v)
with representation H,, : Pairs®T (k) — ./\/l/\/lf\]fgri(k, v) and a faithful exact Q-linear functor
H,: MMIC\If(f)ri(k, v) — Q-mod satisfying property (1) of Theorem 4.1.

Consider the directed set  of countable subfields £ C k and let {o = {Nkg. The arc point y induces an
arc point y, of £. For an inclusion £ C ¢’, the natural base-change morphism Pairs® (¢) — PairsT(¢7)
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of diagrams yields a base-change functor ./\/l/\/lefo)ri(f ,Ye) — ./\/l/\/lefo)ri(f ", ve). As every variety over

k is defined over some ¢, we naturally have
Pairs®™ (k) = colim Pairs® (¢)
tel
as diagrams, and moreover,

Hy

= colimH
k rel Ye

as representations. By the universal property, we then have a canonical identification
i . ff
MM (ks y) = 2-colim MM, (€, o).

Indeed, the diagram category is constructed as a 2-colimit over finite subdiagrams. Properties (2) and
(3) then follow. Property (4) is by Tannakian duality, though in this case, we can directly see that (4)
holds with G (k,y) := limge; Gmot (€, ye).

Part (b) again follows from the corresponding statement in the countable case. O

Definition 4.15. In the situation of part (2) of the above proposition, the relative motivic Galois group
Gmot(K/k,yk) is the kernel of G (K, Yx) — Gmot(k,yx). For any Nori (K, yx)-motive M, the
relative motivic Galois group Gyt (M /k,yk) is the image of the natural map Gno(K/k,ykx) —
Gmot (M > YK )

It follows naturally from the construction that paths between stable arc points give compatible
isomorphisms between the 7| groups, the functors H,,, the categories of Nori motives, and the motivic
Galois groups.

4.5. The relative motivic Galois group

In this section, we relate the relative motivic Galois group (over a point) to the algebraic monodromy
group. For k a subfield of C, this is a result of Ayoub [4] (in a different but equivalent context by [15],
as mentioned above) and of Nori (unpublished). The details of the latter argument have recently been
worked out by Mostaed [23].

Asin the previous section, let kg C k be a finitely generated field extension such that k) is algebraically
closed in k and let ¢y : kg — C be a field embedding. Let y be a (kg, ¢p)-arc point of k.

Denote by LocSysg(k,y) the category of finite-dimensional Q-representations of 1 ((k/C)™,y),
which is equivalently the category of compatible systems of Q-local systems on sufficiently small
models. The category LocSysg (k, ) is naturally a neutral Tannakian category, whose fiber functor is
the restriction to y. Concretely, the Tannakian group of the subcategory generated by an object L is the
Zariski closure of the image of the monodromy representation. We denote the full Tannakian group of
LocSysq (k,y) by IT; (k,y).

We have a natural sequence of functors of neutral Tannakian categories (that is, tensor functors
respecting the fiber functor)

H,
MM (C,id) = MMSE (K, y) — LocSysq (k. y)

the first given by base-change from C to k as in Proposition 4.14 and the second the functor associated
via the universal property to the representation of Pairs® (k, y) which sends (X, Y, i) to the local system
%; (X,Y) whose fiber over s is H' (X;, Y, Q), for a sufficiently small model of S. This is a easily checked
to be a tensor functor.
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Theorem 4.16 (Ayoub [4, Théoréme 2.57], Nori, Mostaed [23]). The resulting sequence of pro-algebraic
groups

Iy (k,¥) = Gmot(k,y) = Gmot(ko,t0) — 1

is exact.

Proof. See [23] for details. The main content of the theorem is exactness in the middle. The composition
of the two middle maps is trivial since the base-change of any motive over kg to k (which we henceforth
call a constant motive) has trivial monodromy. To show the image is precisely the kernel, we must lift
the theorem of the fixed part to the category of motives. Precisely, we must show that for any motive M
over k, there is a constant submotive My C M whose associated local system is precisely the fixed part
of M. This follows for instance from a theorem of Arapura [3, Theorem 7.1], which lifts the cohomology
of 7, (M) to a constant motive. O

Corollary 4.17. For any Nori (k,y)-motive M, the relative motivic Galois group Gme(M /C,y) is the
Zariski closure of the monodromy of the Betti local system 7, (M).

4.6. The comparison torsor

From now on, we take ko = C and let k be a finite generated extension of C, and y a (C, id)-arc point
of k. In this section, we review the construction of the torsor of comparisons between the Betti and de
Rham fiber functors in the context of function fields over C as in [20]. We then identify the comparison
torsor with the torsor Qy, constructed in the introduction.

Our comparision map between Betti and de Rham cohomology will no longer be over C but instead
over a larger field of germs of meromorphic functions. We therefore make the following definition:

Definition 4.18. Let S be a complex manifold and y an arc point of S. We define the localization Ogs ,
to be

Os,y = yhcn& Os(U),

where the limit is over all open subsets through which the arc point factors.
We define k3" to be the fraction field of Ogm ,, for any model S of k. It is immediate that this is
independent of the model.

For any vertex (X, Y, ) of Pairs®(K), we claim there is a natural comparison
ox.yv.i Hpp(X,Y) @ k3 — H\(X,Y) ®q k3. (D)

By spreading out X and Y and possibly shrinking S, we may think of X, Y as varieties over S such that

H i(Xt, Y;, Q) forms a local system over $?", and H;) R (X,Y) is naturally the associated algebraic flat

vector bundle. The comparison (1) is then the analytic comparison over S*" via fiberwise integration.
This naturally yields a representation of Pairs®™ (k), and as above, we therefore have a functor

MMNori(k) - (k’ Q)k;"'m()d’ M- (HDR(M)7H7(M)7 SDM)

and therefore a faithful exact functor Hpg : MMyori(k) — k-mod. As in [20, §8.4], there is an affine
k-pro-scheme X whose points over a k-algebra R are the isomorphisms of fiber functors

Hpg ®x R — Hy ®g R.

Moreover, X (k,y) is naturally a torsor for G, (k, v)x. Likewise, for any Nori motive M over k, there
is an affine k-scheme X' (M, y) of such isomorphisms of the restrictions to the tensor category (M)
generated by M, and it is a torsor for Guot (M, y)r.
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Let X (k/C,y) c X(k,7) be the closed sub-pro-scheme of isomorphisms which restrict to the canon-
ical comparison (fiberwise integration) on constant motives, which is naturally a torsor for Gyt (k/C, ),
and likewise define X'(M/C,y) c X (M, y), which is a torsor for Go (M /C,y).

Choose a model S for k such that M is in the diagram category generated by pairs with models
over S whose cohomologies are local systems over §". With the notation as in the introduction and
taking V to be the variation of Hodge structures over $*" with underlying local system 7, (M), there
is a natural algebraic closed embedding X' (M /C,y) — I; by evaluating on M, as an isomorphism of
fiber functors on (M) is determined by its value on M. Moreover, analytic continuation of the canonical
comparison yields a point of X' (M /C,y) over k2", so X (M /C, y) contains the germ of Xy, and hence,
Q. (m) = (Qy). Also both (Qy)x and X (M /C, y) are torsors for Gmet(M /C, y) by Corollary 4.17.

Thus, we deduce the following, which is essentially Nori’s proof of the Grothendieck period conjec-
ture:

Proposition 4.19. The canonical map Qg vy — X (M/C, ) is an isomorphism.

4.7. The geometric Kontsevich—-Zagier conjecture

We begin by defining the ring of formal periods in our setting. It shall be convenient to work with
relative homology classes, so we define H, , (X,Y) in precisely the same way we did for cohomology,
as a limit along a path up to equivalence.

Definition 4.20. The space of effective formal periods P (k) is defined as the C - vector space generated
by formal symbols (X, Y, w, ) where X is an algebraic variety over k, Y C X is a closed subvariety,
w € HgR (X,Y) and ¢ € Hy, ,,(X,Y) with relations given by

1. Linearity in each of w, £
2. Forevery f : X — X’ with f(Y) C Y’, we have

(X,Y, ffw,l) = (X",Y, o, fif)
3. Forevery triple Z CcY C X,
Y,Z,w,0¢) = (X,Y,6w,?).
We write [ X, D, w, €] for the image of the generator.
We turn P (k) into an algebra by setting
[X,Y,w,€] [X,Y, &, ] =[XxX,YXY oA, Ex].

That multiplication is well defined is a standard check; see [20, 13.1.3]. Finally, we define the ring of
formal periods P(k) to be the localization of P (k) at [G,,,, {1}, %, s1.

Theorem 4.21. The scheme Spec P(k) is naturally a torsor for the motivic Galois group G (k,7y)
base-changed to k. Moreover, it is naturally isomorphic to X (k, ).

Proof. This follows identically as in [20, 13.1.4], using [20, 8.4.10]. O

Note that there is a natural evaluation map evy : P(k) — k given by fiber-wise integration [20, Def
5.4.1]. Concretely, if X, Y are smooth and a class [w] € H{)R(X ,Y) is represented by a closed differential
form w whose restriction to Y vanishes, then

evi(X,Y, [w],?) := /gw.
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Next, we define the ring of relative formal periods. The idea is that for constant families (i.e., base-
changed from C), we want to identify the formal period with the actual complex number it evaluates to.

Definition 4.22. Since C C k, there is a natural map P(C) — P(k). We define
B(k/C) :=P(k) X3¢, C,

where we view C as a P(C)-algebra via the period map.

Theorem 4.23. The scheme Spec P(k/C) is naturally a torsor for the relative motivic Galois group
Gmot(k/C). Moreover, it is naturally isomorphic to X (k/C,y).

Proof. The first part of the theorem follows immediately by using Theorem 4.21 for k and for C. Indeed,
there is a natural map Spec P(k) — Spec P(C) and the fiber over the point ¢ is precisely Spec P(k/C).
Also the relative period torsor is precisely the fiber in the k-period torsor over the C-period torsor of
the point ¢c.
By definition, G (k/C) is the kernel of the map G (k) — Gt (C), proving the torsor statement.
Finally, the isomorphism to X (k/C,y) follows from Theorem 4.21 and the fact that X' (k/C,y) is
the fiber of X (k, y) over the canonical comparison point of X'(C,y). O

We now come to our main statement, the integrality of the relative period ring:

Theorem 4.24. The relative period ring P(k/C) is an integral domain, and the evaluation map evy, is
an isomorphism.

Proof. Thisis animmediate consequence of Theorem 4.23 and Proposition 4.19, since Qy, is analytically
irreducible and the Zariski closure of an analytically irreducible set is irreducible. O

4.8. The geometric André—Grothendieck period conjecture

Let k ¢ K C k3" be such that K'/k is a finitely generated extension and 7* : K — k" a k-embedding.
For any models S (resp. T) of k (resp. K), we then obtain a rational map f : T — S and a meromorphic
section T : B — T°" with Zariski dense image for an open, simply connected set B C S. The composition
T o vy is therefore an arc point of K.

As in §4.6, for any vertex (X,Y,i) of Pairseﬁ(K ), there is a natural comparison

oxy.i Hop(X.Y) @ k" — HL (X,Y) ®g k"

by pulling back the comparison (1) over 7%" along 7. We therefore obtain a functor
MMpyori (K) = (K, Q)an-mod, M = (Hpr,r(M), Hroy (M), oum),
and we define
K (periods . of M) C k3!

to be the field of definition of ¢,,. Concretely, this is the field extension obtained by adjoining the
pullbacks via 7 of flat coordinates of algebraic sections of Hpgr(M) over T.

Theorem 4.25 (Geometric André—Grothendieck period conjecture). Let k C K be finitely generated
complex fields, y a (C, id)-arc point of k, and T : K — k' an embedding of k-extensions. For any Nori
(K, T o7y)-motive M, we have

trdeg, K(periods . of M) > dim Gno(M/C,y).
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Proof. Note that there is a functor MHS : MMnoi(K, T 0 y) - MHS(K) where MHS(K) denotes
the direct-limit category of admissible variations of graded-polarized integral mixed Hodge structures
defined on some model of K. The above functor MMyeri (K, T 0 y) — (K, Q)k;n-mod factors through
MHS.

Using the above notation, for an admissible variation of graded-polarizable integral mixed Hodge
structures V over T, observe that since B is simply connected, the map 7 lifts to a map B — 7%, and
therefore, oy o 7 : B — Xy, gives a well-defined map. We have

dim(img oy o 7)%* — dim S = trdeg; K (periods.. of V).

Thus, by Theorem 4.17, it suffices to prove the following:

Claim 4.26. For an admissible variation of graded-polarizable integral mixed Hodge structures V over T,
dim(img oy o 7)% — dim S > dim G. )

As the intersection (img oy o 7)%% N Xy, obviously contains img oy o T and img oy, o T projects to
img 7 in T which is Zariski dense, the claim is immediate from Theorem 1.3. O

Remark 4.27. The geometric André—Grothendieck period conjecture is almost equivalent to Theo-
rem 1.3, the only issue being that some variations may not come from geometry.>

In fact, the natural generalization of the geometric André—Grothendieck period conjecture to varia-
tions of mixed Hodge structures in the form of Claim 4.26 is equivalent to Theorem 1.3. Indeed, the
backward implication is used in the proof. For the forward implication, let 7(U) be the projection of
U to S and take S’ = 7(U)%*. Take an algebraic projection §” — AYMY which is generically finite on
n(U), and take A = AY%™Y_ The map 7(U) — A™ is generically an isomorphism, and therefore, we
obtain a local section 7 of §"*" — A*" with Zariski dense image. Applying (2) (with (A, S’) in the place
of (S,T)) yields

dim G > codimy U > dim U% — dimU > dim G’,

where G’ is the algebraic monodromy of the restriction of V to §’, so S’ is contained in a weak
Mumford-Tate subvariety.

5. Applications

In this section, we first give a concrete example of Theorem 1.3 for families of elliptic curves. We then
isolate some of the ideas in the example and show how the Ax—Schanuel conjecture in the form of
Theorem 1.3 allows one to formally deduce some related versions by twisting.

5.1. Elliptic curves

Let S be a smooth irreducible variety of dimension m. Let E1, ..., E, be non-isotrivial, pairwise non-
isogenous elliptic curves over S and fi,..., f,; sections of Ey,..., E, over S. We therefore obtain a
section f := (f1,..., fu) of E := E;Xg---XsE,.Letwy, ..., w, be corresponding relative differentials,
that is, sections of Ho(n*a)El. /s), where  : E — § is the projection. We assume the f; and w; to be
nowhere vanishing, which can always be arranged by shrinking S. Finally, let B ¢ $*" be an open ball
over which we can trivialize the homology of E1, ..., E,. Then by picking generators «;, 5; of the first
homology and a path y; from O to f;, we obtain 3n functions by integrating the differentials along the
relative homology classes «a;, 8;, vi, and thus, we obtain amap F : B — C3n,

SWhether all variations do indeed come from geometry appears to be unclear.
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Theorem 5.1. Let T C C* be a codimension k subvariety, and suppose that F~'(T) contains an
irreducible component R of codimension < k. Then R # S, and either two of the elliptic curves
become isogenous on R, or at least two of the sections become torsion on R, or an elliptic curve becomes
isotrivial on R.

Proof. First, note that over S for each pair (E;, f;), we have an admissible variation of graded-polarizable
integral mixed Hodge structures V; = ((V;)z, W.V;, F*V;) given by assigning to s € S the relative
cohomology group H' (E; 4, {0, fi(s)},Z). Note that this is an extension of the form

0 — Z(0) » H'(E; 5,0, fi(5)},Z) - H'(E:(x),Z) — 0. A3

LetV = P, V. Note that the w; are algebraic sections of Vo = H b g (E/S) over S. By thinking of f € E
above s € S as f = & f; where f; : V; ; — Vo, the evaluation map (f;) — (f;(w;)) gives an algebraic
map g : Qy — Vco. Then gooy : san Vic,0 is the map which associates to a point s together
with a homotopy class of path to so the cohomology class ([w;]) € €D, H'(E; 5,{0;, fi(s5)},C), flatly
continued to s¢ via the path. In particular, using the basis ', 8/, ¥, on Vc o, this map agrees with F on
a lift of B.

We therefore let W ¢ Q) be W = g~!(T), and observe that R lifts to the intersection W N ;. To
apply Theorem 1.3 we must

(a) compute the algebraic monodromy group of V;
(b) compute the dimension of W.

Proposition 5.2. The algebraic monodromy group G of V is (G = SL,)".

Proof. That G surjects onto SL7 follows from the fact that the elliptic curves are non-isogenous and non-
isotrivial, together with the classification of weakly-special subvarieties of X(1)" (see [17, Proposition
2.1]). Since SL; acts irreducibly on its standard representation, we claim that it is sufficient to show that
none of the algebraic monodromy groups G; of any of the factors V; is SL;. Indeed, if this is the case,
then the unipotent radical is a sum of (G2)" which surjects to each factor and is invariant under SL7.
Since the irreducible constituents are simply the fibers and they are mutually non-isomorphic, the claim
follows.

To see that none of the G; is SL,, we first note by Theorem 2.6 that the algebraic monodromy group
is normal in the derived subgroup of the generic Mumford-Tate group, and thus, it is sufficient to show
that the generic Mumford-Tate group of each V; is maximal.

Lemma 5.3. Let E be a mixed Hodge structure of the form (3) and suppose grYV E is Mumford-Tate
general. Then the Mumford—Tate group of E is GL; if and only if the extension of mixed Hodge structures

O—>Z(0)—>E—>gr¥VE—>O (O

is Q-split.
Proof. Recall (see §2.3) that the Mumford—Tate group of E is the stabilizer of all Hodge classes in all

tensors E®" @ (EY)®". If the Mumford-Tate group of E is GL,, then there is a fixed vector in Eg which
therefore splits (4), and the converse is obvious. |

Now it remains to note that the space of extensions (4) up to integral isomorphism is
(F'grVV E)Y/(gr)Y E)Y = (gr) E)c/F°gr)’ E +(gr}” E)z which is just the elliptic curve correspond-
ing to grYV E, and the Q-split points are the torsion points. O

We now compute the dimension of W. Note that g : Q) — Vo is equivariant with respect to the
action of G(C). Moreover, the class 0 # [w;] € F'V; is not contained in W, V; for any i at any point. Thus,

the orbit of any point in the image of g is an open subset of Vo, and in particular of dimension 3#. Thus,
the fibers of g all have the same dimension 3, and codimg,, W = k. We then have codimy U < dim G,
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and it follows from Theorem 1.3 that R is contained in a proper weak Mumford-Tate subvariety. In
particular, it is not Zariksi dense, and R must be contained in either:

1. the locus where some E; becomes isotrivial, corresponding to the algebraic monodromy group of
the restriction of V; being contained in Gfl;

2. the locus where some E;, Ej fori # j become isogenous, corresponding to the algebraic monodromy
group of the restriction of V; @ V; being contained in the preimage of (a conjugate of) the diagonal
under (G2 = SL,)? — SL3;

3. the locus where some section f; of some E; is torsion, corresponding to the algebraic monodromy
group of the restriction of V; being contained in (a lift of) SL,.

To complete the proof, we just need to show that if we are only in the last case, then at least two sections
become torsion. Assume that only one section (without loss of generality f;) becomes torsion. Consider
the variation V' := grYV V@ @i>l V;, which is a quotient of V. Let V¢ g — Vé,o be the corresponding
quotient and 7’ the image of 7. Now codim 7’ > k — 1 and codimgz« R < k — 1, so applying the same
analysis as above, we obtain a contradiction. O

5.2. Ax-Lindemann for abelian differentials

In this section, we prove a recent conjecture of Klingler—Lerer [21]. We first briefly recall strata of
abelian differentials.

Let g > 0 be an integer, @ = (q;) a partition of 2g — 2, and S = S, the moduli space of pairs (C, w)
where C is a genus g curve and w is a regular 1-form on C whose zero divisor Z(w) has type @, meaning
it is of the form ] a; p; for distinct points p; on C. There is a natural variation of mixed Hodge structures
over S, whose fiber over (C, w) is the relative cohomology group H L™, Z(w), Z). .

Fixing a basepoint (Cy, wp), let 7 : §2» — S$" be the universal cover. The map ¢ : S — V; =
H'(Cy, Z(wyp),C) mapping (C,w) to the image of the class [w] € H'(C,Z(w),C) under the flat
trivialization is a local isomorphism by a theorem of Veech [30, Thm. 7.15].

Following [21], we say an (irreducible) algebraic subvariety W C § is bialgebraic if the Zariski
closure of ¢(Wp) in V, has dimension dim W for some (hence any) component Wy of 7~ (W). We
likewise say W c Vj is bialgebraic if the Zariski closure of 7(Wp) has dimension dim W for some
(hence any) component Wy of ¢! (W). The following is the Ax-Lindemann conjecture of [21].

Theorem 5.4. For any algebraic subvariety W C Vy, the Zariski closure of m(Wy) is bialgebraic for any
component Wy of ¢~ (W).

Proof. Let X be the Zariski closure of (W), define X (o be the universal cover of X*" and let V' be the
above variation of mixed Hodge structures restricted to X. The class [w] gives a section s of V), and there
is a natural algebraic map r : Qy, — Vj by evaluating a comparison on s. It follows that |z =7 0 oy.

We claim that r(Qy) and G(C)W have the same Zariski closure. Now Y := G(C)W is certainly
contained in r(Qy). Also Y is G(C)-invariant, so the pullback to X descends to an algebraic subvariety
of X by definable Chow 2.1 and contains 7(Wy); hence, it must be all of X. Thus, go(ﬁ‘) is contained
in Y, as therefore is its Zariski closure r(£2y,), so we have the inclusion in the reverse directions.

As go(ﬁ) C Y, for X to be bialgebraic, it suffices to show dim X > dimY. Let W’ be the pullback
of W to Qy,. The dimension of W’ is dim F + dim W where F is the generic fiber of r : Q) — Vj over
W. By the above, r(Qy) and G(C)W have the same Zariski closure, and since r is G(C)-equivariant, it
follows that the generic fiber dimension of 7 over its image is equal to the generic fiber dimension over W.
Thus,

dimW’ = dimQy — dimY +dim W
=dimG+dim X —dimY +dim W.
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Now 7(W)) is Zariski dense in X but also lifts to the intersection of W’ with a leaf, so by Theorem 1.3,
we must have

dimG < dimW’ —dimW =dim G +dim X — dimY,

and therefore, dim X > dimY, as desired. O

5.3. Twisting by the period torsor

In this section, we explain formally how one may deduce many of the previous Ax-Schanuel theorems
from Theorem 1[.3.
In applications, one often has a variety M with an algebraic (left) G(C)-action and an equivariant
algebraic map g : Q) — M, as in the last subsection. In this case, Theorem 1.3 is readily applied.
Another common situation is to have an algebraic variety P — § over S, an algebraic variety P
equipped with a (left) G(C)-action, and a G(C)-equivariant map

(,):QuXsP—>P

which we call a twisting map. Such a map yields a map (oyp, ) : S Xgm P — P30 on the base-
change to the universal cover. Note that these two setups are equivalent, as we may take { , ) to be the
G(C)-equivariant map

8¢,y : Qy — Homg(P, Pg),

where Ps = P X S, and in the other direction we may take P = Sand (, ), = g.
Examples of twisting maps include the following:

o P=Vand P =Vcyand (, ) the obvious evaluation. The map (o, ) is then the flat trivialization.

o P = the relative flag variety of V» for which the Hodge filtration yields a section, P = the flag variety
of Vo containing the relevant period domain (that is, its dual), and (f, F*Vs) = f(F*Vy). The map
{0y, ) is then the period map.

o For any artinian ring A and any twisting map (, ) : Q) Xs P — P, we get a map on A-jet spaces

JaQy XJsS JAP — JAP.

The horizontal jets yield a natural subspace Qy Xgs J4S C J4Qy which is preserved by the G(C)
action. We therefore obtain a twisting map (, )4 : Qy Xgs JAP — J4P, and the map (o, )4 is then
the map on jet spaces induced by (o, ). In this way, we may access transcendence statements for
the derivatives of (o, ), as in [22].

o By taking P to be § X X and P = Qy x X for a variety X, we obtain the Ax-Schanuel result ‘in
families’, or ‘relative Ax-Schanuel’ as it has been called in the literature.

Given a twisting map, we define
u={, Yyxm:QyxgP— PxP.

We say the twisting map is balanced if the fibers of y all have the same dimension. Note that the fiber
over (p’, p) is identified with the stabilizer Stabg(c)(p). In practice, given a twisting map, we can
always assume it is balanced by passing to a Zariski open subset.

Proposition 5.5. Let ( , ) be a balanced twisting map as above and let A C img u be the image of
Xy Xga P under u®. Let W C img u be an algebraic variety and U a component of W™ N A such that

codimp U < codimjpg , W.
Then the projection of U to S*" is contained in a weak Mumford—Tate subvariety.
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Proof. Let k be the dimension of the fibers of u. First, U naturally lifts to Xy Xga P C QY Xgan P
Call this lift U’. Let W’ be the component of the preimage of W under u which contains U’, and let
W’ c Qy (resp. U” C Zy) be the image of W’ (resp. U’) under the first projection. Clearly, W’ N Xy,
contains U”’, and we also have that dim W’ = dim W + k. The fibers of W/ — W’ are the intersections
of W with subvarieties of the form p’ X P;, and these are the same fibers as U’ — U”" over U"”’. Up to
replacing W with an algebraic subvariety for which the generic fiber of W — W’ has the same size as
the generic fiber of U’ — U”” (and without changing U), we therefore have

codimy~» U"” = codimy- U’
=codimw U + k
= codimp U — codimipg ; W + (k + dimimg u — dim A)
< dim G.

Applying Theorem 1.3, the result follows. O

Note that in the context of the proposition, img u is the Zariski closure of A in P x P.
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