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Abstract. Aerosol particles are an important part of the Earth climate system, and their concentrations are spa-

tially and temporally heterogeneous, as well as being variable in size and composition. Particles can interact

with incoming solar radiation and outgoing longwave radiation, change cloud properties, affect photochemistry,

impact surface air quality, change the albedo of snow and ice, and modulate carbon dioxide uptake by the land
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and ocean. High particulate matter concentrations at the surface represent an important public health hazard.

There are substantial data sets describing aerosol particles in the literature or in public health databases, but they

have not been compiled for easy use by the climate and air quality modeling community. Here, we present a new

compilation of PM2.5 and PM10 surface observations, including measurements of aerosol composition, focus-

ing on the spatial variability across different observational stations. Climate modelers are constantly looking for

multiple independent lines of evidence to verify their models, and in situ surface concentration measurements,

taken at the level of human settlement, present a valuable source of information about aerosols and their human

impacts complementarily to the column averages or integrals often retrieved from satellites. We demonstrate a

method for comparing the data sets to outputs from global climate models that are the basis for projections of fu-

ture climate and large-scale aerosol transport patterns that influence local air quality. Annual trends and seasonal

cycles are discussed briefly and are included in the compilation. Overall, most of the planet or even the land

fraction does not have sufficient observations of surface concentrations – and, especially, particle composition –

to characterize and understand the current distribution of particles. Climate models without ammonium nitrate

aerosols omit ∼ 10 % of the globally averaged surface concentration of aerosol particles in both PM2.5 and PM10

size fractions, with up to 50 % of the surface concentrations not being included in some regions. In these regions,

climate model aerosol forcing projections are likely to be incorrect as they do not include important trends in

short-lived climate forcers.

1 Introduction

Intergovernmental Panel on Climate Change (IPCC) reports

(IPCC, 2021; Gulev et al., 2021; Szopa et al., 2021) and other

community assessments have highlighted the role of uncer-

tainties in human-induced changes in aerosol concentration

and composition in limiting our ability to project future cli-

mate. Aerosol particles are also a major contributor to air pol-

lution, which reduces life expectancy and quality of life (Bur-

nett et al., 2018). Aerosol particles are suspended liquids or

solids in the atmosphere originating from diverse natural and

anthropogenic sources and are composed of a wide variety of

chemicals (e.g., sea salts, dust, sulfate, nitrate, black carbon,

organic carbon). Particles interact with incoming solar radi-

ation and outgoing longwave radiation, change cloud prop-

erties and lifetimes, and modify atmospheric photochemistry

(Mahowald et al., 2011; Kanakidou et al., 2018; Bellouin et

al., 2020). Once deposited on the surface, they can modify

land and ocean biogeochemistry, as well as the albedo of

snow and ice surfaces (Mahowald et al., 2017; Hansen and

Nazarenko, 2004; Skiles et al., 2018). Satellite remote sens-

ing retrievals provide important information about the tem-

poral and spatial distribution of aerosol particles, but chal-

lenges remain in quantifying the aerosol size and chemi-

cal composition (Kahn et al., 2005; Tanré et al., 1997; Re-

mer et al., 2005; Castellanos et al., 2024; Marshak et al.,

2021). In addition, the AERONET surface remote sensing

network provides some information about the loading, size,

and absorption of aerosol properties in relation to compo-

sition (Holben et al., 2001; Dubovik et al., 2002; Schuster

et al., 2016; Gonçalves Ageitos et al., 2023; Obiso et al.,

2024). Both the magnitude of the aerosol effects on climate

and, sometimes, their sign are dependent on the composition

and size of particles (Mahowald et al., 2011, 2014; Bond et

al., 2013; IPCC, 2021). In addition, one cannot understand

the impact of humans on aerosol particles without identify-

ing the sources of particles, which determine their chemical

composition. Obtaining information about the composition

and size of particles in many cases requires in situ observa-

tions, which are often limited in space and time (Hand et al.,

2017; Philip et al., 2017; Yang et al., 2018; Collaud Coen et

al., 2020).

The climate and aerosol modeling community, especially

under the auspices of AeroCom, has compiled data sets and

organized comparison projects that have provided substan-

tial information to improve aerosol models (Huneeus et al.,

2011; Textor et al., 2006; Dentener et al., 2006; Schulz et

al., 2006, 2012; Gliß et al., 2021) or knowledge of aerosol

impacts like cloud condensation nucleation (Laj et al., 2020;

Fanourgakis et al., 2019). However, most of the available data

come from North America and Europe (e.g., Szopa et al.,

2021; Reddington et al., 2017). In addition, previous compi-

lation studies have focused primarily on understanding fine-

aerosol particles (here defined as particles with a diameter

of less than 2.5 μm) and on improving model simulation of

these particles because of their importance for air quality,

respiratory health, cloud interactions, and shortwave forcing

(Collaud Coen et al., 2020; Bellouin et al., 2020; Fanour-

gakis et al., 2019; Reddington et al., 2017). Coarse-mode

particles (defined as those particles with a diameter larger

than 2.5 μm) are important for longwave radiation interac-

tions, cloud seeding, and biogeochemistry, but these interac-

tions have received less attention (Jensen and Lee, 2008; Ma-

howald et al., 2011; Karydis et al., 2017; Chatziparaschos et

al., 2023). In contrast to the many fine-aerosol compilations

and comparisons (usually considering particles with aero-

dynamic diameters of less than 2.5 μm or PM2.5), there are

fewer studies focusing on aerosol compilations for both fine
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and coarse particles and their comparison to models (Kok et

al., 2014b; Albani et al., 2014; Huneeus et al., 2011; Gliß et

al., 2021; Kok et al., 2021). Nonetheless, there are many ob-

servations of the coarse-particle mass with diameters of less

than 10 μm (PM10) (e.g., Hand et al., 2017), and most climate

models include these particles (e.g., Huneeus et al., 2011).

Compilations of in situ data are available for dust and iron

particles (Kok et al., 2014b; Albani et al., 2014; Mahowald

et al., 2009) and for sea salts (Gong et al., 1997). Other stud-

ies have focused on the important topics of wet deposition

(Vet et al., 2014) or trends in aerosol properties (e.g., AOD,

surface PM) (Mortier et al., 2020; Aas et al., 2019). Obser-

vations of PM10 or coarse and fine particles are available for

many regions and individual sites (e.g., Malm et al., 2007;

Hand et al., 2019; Maenhaut and Cafmeyer, 1998; Artaxo

and Maenhaut, 1990; McNeill et al., 2020) but have not pre-

viously been compiled into one database that would facilitate

the evaluation of global climate models that are an important

tool for projections of future climate change, air quality, and

their impacts upon human society. Aerosol modelers need as

much information as possible about the observed composi-

tion of the particles and their transport. Thus, there is a need

to compile both PM2.5 and PM10 in situ concentration data

into one database to make it easy for modelers to compare

global model results with observations. One goal the aerosol

community should work towards is making aerosol measure-

ment data sets publicly and conveniently available while ac-

knowledging the principal investigators who produced these

data sets; we hope this paper serves as a step towards achiev-

ing this.

The current generation of Earth system models used for

the IPCC simulations tends to include the dominant aerosol

species (desert dust, sea spray, black carbon (BC), organic

matter (OM), and sulfate) while omitting other potentially

important aerosol constituents. For example, some Earth sys-

tem models ignore ammonium nitrate particles despite the

fact that these are known to be important for climate and bio-

geochemistry and are impacted by human activities (Paulot et

al., 2016; Adams et al., 1999; Thornhill et al., 2021). In this

study, we use available observations to compare to a global

model estimate of the total PM10 and PM2.5, and we deduce

the importance of these often-neglected aerosol species. We

also propose a method for comparing species that are often

not directly measured (such as dust or sea salts) using their

elemental composition. Note that we exclude super-coarse

(> PM10) particles here because of the sparsity of available

measurements, although studies have suggested their impor-

tance for climate interactions (e.g., Adebiyi et al., 2023).

Climate modelers are constantly looking for multiple inde-

pendent lines of evidence to verify their models, and in situ

surface concentration data present a valuable source of infor-

mation about aerosols that are often near human society. Un-

derstanding spatial variability in aerosols and the composi-

tion of those aerosols is key to understanding how aerosols in

different regions have evolved in the past and how they will

evolve in the future. Some regions are dominated by fossil-

fuel-derived aerosols, which may have peaked in magnitude,

even as greenhouse gas concentrations continue to increase,

while, in other regions, aerosols are driven by agriculture or

by natural aerosols (Bauer et al., 2016; Turnock et al., 2020;

Kok et al., 2023). In addition, different aerosol species have

different impacts on climate: for example, knowing whether

aerosols are scattering or absorbing changes the sign of the

interaction (Li et al., 2022). Some aerosols also serve as

better cloud or ice nuclei than others, while biogeochemi-

cal impacts are very sensitive to composition (Mahowald et

al., 2011). Knowing even the order of magnitude in regions

with aerosols (e.g., contrasting 0.1 to 0.001) is important for

aerosol–cloud interactions that can be non-linear, especially

at low aerosol levels (Carslaw et al., 2013). Having surface

concentration observational data sets with large spatial cov-

erage based on independent data can be valuable for aerosol

model comparisons, especially for models with a global do-

main. We focus most of this paper on the spatial distribution

of the climatological mean as this is easily obtained from

models and is the most important variable for many climate

impacts like radiative effects or aerosol-0cloud interactions,

except for aerosols dispersed by large infrequent events (e.g.,

Clark et al., 2015; Fasullo et al., 2022). Since aerosols are

thought to cause between 2 and 10 million deaths per year

(Landrigan et al., 2018; Lelieveld et al., 2019; Murray et al.,

2020; Vohra et al., 2021), understanding and being able to

model correctly the annual mean aerosol concentrations in

the surface layer are vital; thus, this data set provides valu-

able information for understanding aerosol contributions to

mortality. Nonetheless, there have been trends in emissions,

especially of anthropogenic aerosols, over the last 40 years

(Quaas et al., 2022; Bauer et al., 2022), and we consider these

as well.

For this study we focus on the following: (a) identifying

and compiling available PM2.5 and PM10 aerosol data, in-

cluding aerosol composition, into a new publicly available

database (AERO-MAP) for the modeling community across

as much of the globe as possible; (b) presenting a methodol-

ogy to compare the spatial distribution of the climatological

mean observations to the aerosols in an Earth system model;

(c) briefly presenting some temporal trends and comparisons

available from this data set; and (d) identifying the measure-

ment and modeling gaps from this comparison. While our

model evaluation is not exhaustive, we hope that the conve-

nience of this observational compilation enables an expan-

sion and a more thorough set of comparisons by future in-

vestigators.

2 Description of methods

2.1 Observational data

PM observations are made by multiple networks or during

specific field campaigns and for different size cut-offs, with

Atmos. Chem. Phys., 25, 4665–4702, 2025 https://doi.org/10.5194/acp-25-4665-2025
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Figure 1. Distribution of observations in the database showing the number of observations of PM2.5 (a) and PM10 organic carbon (OC) (b)
(with the colors indicating different numbers according to the top color bar), as well as the number of stations within each 2 × 2 grid

locations for PM2.5 (c) and PM10 OC (d) (using the second color bar), illustrating that there are much more PM2.5 or PM10 data compared

to speciated data. (e) The number of observations (bars) for total particulate matter (PM) or speciated data is summarized for the PM2.5

(blue) and PM10 (orange) fraction using the left-hand-side y axis. The number of stations included in the study is shown as a dotted line (e)
and uses the right-hand-size y axis. (f) Normalized (1 standard deviation over the mean) observational uncertainty for PM2.5 based on

measurement errors, interannual variability, measurement method, within-grid variability, and within-year variability at the same station.

Interannual variability and within-grid uncertainty are defined as the normalized standard deviation in the variability for stations that have

more than 10 years of data. Within-grid variability is the normalized standard deviation of 2 × 2 grid cells that have more than 10 stations.

Measurement errors are the normalized standard deviation of the reported measurement errors for PM2.5. Measurement method error is

derived from the differences between different measurement methods (e.g., Prank et al., 2016; Burgos et al., 2020; Hand et al., 2017).

The stations included are derived from the following sources (see the Supplement for more details): Alastuey et al. (2016), Almeida et

al. (2005), Amato et al. (2016), Andreae et al. (2002), Arimoto et al. (2003), Artaxo et al. (2002), Barkley et al. (2019), Barraza et al. (2017),

Bergametti et al. (1989), Bouet et al. (2019), Bozlaker et al. (2013), Chen et al. (2006), Chuang et al. (2005), Cipoli et al. (2023), Cohen

et al. (2004), da Silva et al. (2008), Dongarrà et al. (2007, 2010), Engelbrecht et al. (2009), Formenti et al. (2003), Fuzzi et al. (2007),

Hand et al. (2017), Heimburger et al. (2012), Herut and Krom (1996), Herut et al. (2001), Hsu et al. (2016), Hueglin et al. (2005), Furu et

al. (2022, 2015), García et al. (2017), Gianini et al. (2012a, b), Kalivitis et al. (2007), Kaly et al. (2015), Kubilay et al. (2000), Kyllönen

et al. (2020), Laing et al. (2014b, a), Lucarelli et al. (2014, 2019), Mackey et al. (2013), Maenhaut et al. (1996c, a, b, 1997a, b, 1999,

2000a, 2000b, 2002a, b, 2005, 2008, 2011), Maenhaut and Cafmeyer (1998), Malm et al. (2007), Marticorena et al. (2010), Mihalopoulos

et al. (1997), Mirante et al. (2010, 2013), Mkoma (2008), Mkoma et al. (2009), Morera-Gómez et al. (2018, 2019), Nava et al. (2015,

2020), Nyanganyura et al. (2007), Oliveira (2009), Oliveira et al. (2010), Pérez et al. (2008), Pio et al. (2022), Prospero et al. (1989, 2012,

2020), Prospero (1996, 1990), Putaud et al. (2004, 20100), Rodríguez et al. (2011, 2015), Salma et al. (1997), Savoie et al. (1993), Silva

et al. (2010), Smichowski et al. (2004), Swap et al. (1992), Tørseth et al. (2012), Uematsu et al. (1983), Vanderzalm et al. (2003), Virkkula

et al. (1999), Xiao et al. (2014), and Zihan and Losno (2016). Data from several online networks are also included (e.g., https://www.

airnow.gov/international/us-embassies-and-consulates/, last access: 10 June 2022, https://quotsoft.net/air/, last access: 10 August 2022; https:

//app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/data, last access: 20 September 2022, https://sinca.mma.gob.cl/index.php/, last

access: 3 June 2022; https://tenbou.nies.go.jp/download/, last access: 25 November 2023). See the Supplement for more details and the DOI

links for the data sets.
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and without a description of chemical composition. Data

sets were identified by advertising at international meetings

(Wiedinmyer et al., 2018), searching the literature, contact-

ing principal investigators, and accessing publicly available

data sets. As expected, most of the observations are over

North America or Europe, with many of the rest of the land

areas and most of the ocean being much more poorly ob-

served (Fig. 1; Data set 1 in the Supplement). For this study,

we include data sets of both PM2.5 and PM10 daily (or multi-

day) averages that were made available by the investigators

or that are available from public web sites (Fig. 1; Data set 1

in the Supplement). Some measurement sites measure PM2.5

and coarse (PM2.5 to PM10) aerosols. For those sites, we con-

vert the latter to PM10 for comparison. Some measurement

sites have only a few observations of composition or mass,

while others have multiple years: we included less complete

data sets for sites in regions with limited data (e.g., field data:

these are identified as station data sets with less than 1 year of

data in the data sets in the Supplement). In some poorly mea-

sured regions, we include total suspended particle (TSP) data

sets (information on the size fraction measured is in the data

set in the Supplement). The time period for different data sets

is included in Data set 1 in the Supplement.

Detailed studies have shown that PM10 and PM2.5 sam-

plers can differ in the sharpness of their size cut-off (Hand

et al., 2019). As an example, comparisons between data from

the US Environmental Protection Agency (EPA) Federal Ref-

erence Method sites and data from the Interagency Monitor-

ing of Protected Visual Environments (IMPROVE) network

show that the coarse matter from collocated sites in both net-

works was offset by 28 % (Hand et al., 2019). There was a

bias when data were compared (slope of 0.9), but the corre-

lation coefficient was high (0.9), suggesting good agreement

overall. Here, we focus on surface station measurements of

PM10 and PM2.5 since our model and most models only con-

sider mass up to PM10. For that reason, our model deposition

is not directly comparable to observational bulk and/or total

atmospheric deposition since larger particles may dominate

the deposition close to the source areas (Kok et al., 2017;

Mahowald et al., 2014; Neff et al., 2013). Measuring abso-

lute dry- and wet-deposition rates is also technically more

challenging (especially for dry deposition since the particles

can be re-entrained into the atmosphere) but worthwhile (He-

imburger et al., 2012; Prospero et al., 1996). In regions with

little data (e.g., outside of North America and Europe) we

include measurements of total suspended particulates (TSPs)

with the PM10 because of the lack of size-resolved data. Data

from the Japanese air quality network use a different inlet

for the PM10 cut-off as well, which will include a slightly

larger size fraction (https://tenbou.nies.go.jp/download/, last

access: 25 November 2023).

In addition to particulate matter in the PM10 and PM2.5

size fractions, we also compile the following observations to

compare to the model: black carbon (BC), elemental carbon

(EC), organic carbon (OC) (or particulate organic material

or OM, which, here, is considered to be 1.8× OC in mass;

Aiken et al., 2008; Font et al., 2024; Turpin and Lim, 2001),

sulfate, nitrate, aluminum, sodium, and chloride. To include

both BC (based on light absorption measurements) and EC

(based on thermal-oxidation-induced combustion measure-

ments) data is also a source of uncertainty; both are prox-

ies of the soot combustion particles since they are based on

different measurement techniques, and there is no accepted

equivalence between them (Mbengue et al., 2021). Details on

the measurement methods and types are shown in Table 1 and

vary between measurements of fine and coarse versus PM2.5

and PM10, with different measurement types for elemental

and chemical analysis (Table 1). Details on how the model is

compared to data for different elements are in Sect. 2.3.

For this paper, we focus on the climatological means for

1986–2023 and the decadal means for 2010–2019. The first

period is chosen as the full durations of the individual data

sets comprising the compilation are available; the second

is chosen to recognize decadal variations in anthropogenic

emissions within the longer period and to isolate a particular

decade when data are most plentiful. In addition, the annual

means for each year the data are available are also calcu-

lated, as well as the climatological monthly means. The tem-

poral means are calculated for all values at each station that

are above the detection limit and are reported here. At some

stations or times, concentrations can be below the detection

limit, and excluding these data or time periods could bias our

average values. We focus on the stations that have more than

50 % of the data above the detection limit and exclude other

sites. For those included stations, if the values were reported

to be below the detection limit, we include in the average

one-third of the minimum detection limit. The reported de-

tection limits should bound the upper limit of aerosol mass

and allow us to include sites whose observations were other-

wise too low to include while reducing the potential biasing

of our compilation towards higher values (Data set 1 in the

Supplement).

Our goal is to create easy-to-use data sets for model–data

comparisons. Included in this data set are several files with

different levels of description and analysis. One file pro-

vides traceability information, including a detailed citation;

the types and numbers of measurements included; and the

time period, climatological and decadal (2010–2019) means,

and standard deviations for each time period (Data set 1 in

the Supplement). For each station data set included in the

database, there will be one line in this file. This means that,

for some stations (for example, K-puszta), there are multi-

ple lines in the file in the Supplement indicating the two

different time periods where measurements were made, as

well as the two sizes that are measured during each time

period. For each station data set, there are latitude values,

longitude values, annual mean values, the number of ob-

servations, the year extent of the observations, standard de-

viations, etc., along with the citation and where to obtain

the data. There are also several NetCDF files available at

Atmos. Chem. Phys., 25, 4665–4702, 2025 https://doi.org/10.5194/acp-25-4665-2025



N. M. Mahowald et al.: AERO-MAP: a data compilation and modeling approach 4671

Table 1. Aerosol measurement types.

Composition Measurement method Variables Example networks Example citations

Fine and coarse Stacked filter unit

(SFU)

Fine, coarse UGent Maenhaut et al.

(2002a)

PM2.5 and PM10 Federal Reference

Method and Federal

Equivalent Method

(FRM/FEM)

PM2.5, PM10 IMPROVE,

CASTNET, EMEP

Hand et al. (2019);

Putaud et al. (2004)

PM2.5 and PM10 Hi-volume sampler EMEP, SINCA Putaud et al. (2004)

Elemental Particle-induced X-ray

emission (PIXE)

spectrometry,

instrumental nuclear

activation analysis

(INAA)

Al, S, Na UGent, EMEP Maenhaut et al.

(2002a)

Elemental Inductively coupled

plasma mass

spectrometry (ICP-MS)

Al, S, Na EMEP, SPARTAN Putaud et al. (2004);

Philip et al. (2017)

Elemental XRF (X-ray

fluorescence)

Al, S, Na IMPROVE, CASTNET Hand et al. (2019)

Chemistry Ion chromatography SO−
4−, NO−

3 , NH4 IMPROVE,

CASTNET, EMEP

Hand et al. (2019);

Putaud et al. (2004)

Carbonaceous Thermal optical

reflectance

EC, OC IMPROVE, CASTNET Hand et al. (2019)

Evolved gas analysis

non-dispersive infrared

(EGA+NDIR)

OC, EC EMEP Putaud et al. (2004)

https://doi.org/10.5281/zenodo.10459653 (Mahowald et al.,

2024) for this data set. The most useful is likely to be the

Allobservation.AEROMAP.nc file, which contains the same

quantitative data for each station data set as the Supplement,

except the data are processed to be only PM2.5 and PM10

(with some TSP data in places with little data, as discussed

above). This means that PM2.5 and coarse aerosol mass are

added together if the station data sets are collocated to cre-

ate a PM10 data set (e.g., see Table 1). In addition, this file

contains climatological monthly means and annual means for

each year for each station data set so that temporal infor-

mation is also easily available. Another file includes the cli-

matological mean observations averaged for a 2° × 2° grid

that is used for plotting the figures shown in the paper (Al-

lobservation.AEROMAP.2x2.nc). As indicated in the “Data

availability” section, only the time means are available, and

the underlying data for some data sets cannot be openly pub-

lished; however, one should contact the authors (identified by

the citation) if other time periods are desired.

The location of each site is as accurate as possible and,

for most sites, is accurate to less than 1 km. Some data

sets provided more limited information, and those loca-

tions are accurate only to less than 10 km (data down-

loaded from the following air quality networks: Mex-

ico City – http://www.aire.cdmx.gob.mx/default.php?opc=

’aKBh’, last access: 3 November 2022; South Africa – https:

//saaqis.environment.gov.za/, last access: 8 September 2022;

India – https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/

caaqm-landing/data, last access: 20 September 2022; and

Chile – https://sinca.mma.gob.cl/index.php/, last access:

3 June 2022).

2.2 Model description

Most of the simulations of aerosol particles were conducted

using the aerosol parameterizations within the Community

Atmosphere Model version 6 (CAM6), the atmospheric com-

ponent of the Community Earth System Model (CESM) de-

veloped at the National Center for Atmospheric Research

(NCAR) (Hurrell et al., 2013; Scanza et al., 2015; Liu et al.,

2012). The aerosol module in this version is closely related

to the module used in the Energy Exascale Earth System

Model (Golaz et al., 2019; Caldwell et al., 2019). Simulations

were conducted at approximately 1° × 1° horizontal resolu-
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tion with 56 vertical layers for 4 years, with the last 3 years

(2013–2015) being used for the analysis (Computational and

Information Systems Laboratory, 2019). The model simu-

lates three-dimensional transport and wet and dry deposition

for gases and particles by nudging toward MERRA2 winds

(Gelaro et al., 2017).

The model included prognostic dust, sea salts, BC, OM,

and sulfate particles in the default version, using a modal

scheme based on monthly mean emissions for the year 2010

(Liu et al., 2012, 2016; Li et al., 2021). The model includes

separate primary and secondary organic species which are

both emitted directly, but the primary organic- and black-

carbon aerosols are allowed to age in the model from hy-

drophobic to hydroscopic, and their optical properties also

change (Liu et al., 2016). The coarse mode is included for

sulfate, dust, and sea salts. For this study, the coarse size

mode (mode 3) was returned to the size parameters used in

the previous version of the model, CAM5 (geometric stan-

dard deviation of 1.8), to better simulate coarse-mode par-

ticles and to improve the dry-deposition scheme and optics

used in the model for simulating coarse-mode particles like

dust as described in Li et al. (2022).

Desert dust is entrained into the atmosphere in dry,

sparsely vegetated regions subject to strong winds. We use

the Dust Entrainment and Deposition scheme (Zender et al.,

2003), with the emitted size distribution given by the updated

brittle fragmentation theory (Kok et al., 2014b, a) and with

improved incorporation of aspherical particles for optics and

deposition (Li et al., 2022; Huang et al., 2021; Kok et al.,

2017). Anthropogenic emissions of sulfate, OM, and BC fol-

low the Climate Model Intercomparison Project 6 historical

data for 2010 (Gidden et al., 2019). Emissions and mean con-

centrations for each of these constituents are included in Ta-

ble 2.

Modeling of additional aerosol sources and types

Ammonium nitrate aerosol particles are not included in the

standard CAM6 but are thought to be important for aerosol

optical depth and surface concentrations (Paulot et al., 2016;

Adams et al., 1999; Thornhill et al., 2021; Bauer et al., 2007,

2016), and so they are included in this study. Nitrate can also

react with dust particles, for example, but that is ignored in

this study (Dentener et al., 1996). Ammonium nitrate parti-

cles require tropospheric chemistry interactions because the

nitrogen-containing particles are both a source and a sink

for gaseous nitrogen species, which are key elements of tro-

pospheric photochemistry, and the particles are in chemi-

cal equilibrium with the gas phase (e.g., Nenes et al., 2021;

Baker et al., 2021; Bauer et al., 2007, 2016), and so simula-

tions using the CAM-CHEM model with tropospheric pho-

tochemistry are used, covering the same time period (Vira

et al., 2022). Simulations with chemistry were conducted at

2°×2° resolution and are linearly interpolated to 1°×1° res-

olution as used for the other modeled particles. Sulfate in the

Table 2. Global aerosol modeling budgets. Global modeled deposi-

tion (Tg yr−1), percentage of aerosols that are PM2.5, and globally

and annually averaged surface concentration (μg m−3) and aerosol

optical depth for each of the sources used in the model. An aster-

isk indicates that there are additions to the model from the default

CAM6.

PM10 PM2.5

Deposition % Conc AOD

(Tg yr−1) (μg m−3) (unitless)

Sulfate 121 100 2.1 0.018

Black carbon 10 100 0.5 0.009

Primary organic 34 100 1.6 0.008

aerosol

Secondary organic 37 100 1.0 0.007

aerosol

Sea salts 2520 3 13.0 0.045

Dust 2870 1 19.4 0.030

NH4NO3* 20 100 0.4 0.013

CAM6 is assumed to be in the form of ammonium sulfate,

and the nitrate is assumed to be in the form of ammonium

nitrate for these studies, and so, as a rough approximation,

only the model ammonium nitrate is compared to the ob-

served nitrogenous aerosol optical depth. Ammonium nitrate

is assumed to only form when there is surplus ammonium

(and nitrate) after the ammonium sulfate is formed. While

aerosol amounts are simulated, ammonium nitrate aerosol

optical depth is not calculated within the model but rather is

calculated offline. The model does calculate sulfate aerosol

optical depth, which has a roughly similar increase in size

with humidity compared to nitrates and similar optical prop-

erties as long as the nitrates and sulfates are in similar size

fractions (Paulot et al., 2016; Bellouin et al., 2020). There-

fore, the aerosol optical depth from ammonium nitrate (per

unit mass) is assumed to be proportional to the sulfate aerosol

optical depth per unit mass in each grid box at each time in-

terval. A detailed comparison of the nitrate and ammonia par-

ticles and other species was conducted in Vira et al. (2022).

Overall, the model can simulate some of the spatial distribu-

tion but overestimates the nitrate aerosol amounts (Vira et al.,

2022).

2.3 Model–observation comparison methodology

Comparisons of the observations to model concentrations

were done using BC, OC, SO2−
4 , Al, NO−

3 , NH+
4 , and

Na composition measurements. Some of these elements or

compounds map directly onto model constituents (BC, OC,

SO2−
4 , NO−

3 , and NH+
4 ), while others serve as proxies for

modeled constituents (Al for dust, Na for sea salts, S for

sulfate, etc.). We summarize the relationships used to ob-
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tain the values from the model (Table S1 in the Supplement)

and to establish what observations should be combined to

include as much information as possible from the observa-

tions. (Table S2). We use non-sea-salt sulfate in ocean re-

gions for estimating sulfate. We use the mean Na amounts

in sea salt (31 %; Schlesinger, 1997) to characterize the Na

amounts, and we include the soluble-Na measurements as

well (Na+), if available, when Na measurements are not

available. Note that Cl cannot be used to evaluate sea salts

as the Cl is degassed from aerosols, primarily due to sulfate

interactions (e.g., Pio and Lopes, 1998). Some observing net-

works like IMPROVE use a composite of elements to deduce

dust amounts (e.g., Hand et al., 2017). We do not choose to

do this for two reasons: (1) at some sites, not all the elements

are available, and (2) these elements are derived not only

from desert dust but also from industrial sources. Note that

model values come from the midpoint of the bottom level of

the model (∼ 30 m), while the observations are usually taken

at heights of 2 or 10 m. There are several sources of measure-

ment differences between different networks, as well as be-

tween model and observations. Modeled values of PM con-

tent, which assume dry particles, are used here, while gravi-

metric measurements in some networks are equilibrated at

50 % relative humidity; thus, 5 %–25 % of the mass of mea-

sured PM can be water (Prank et al., 2016; Burgos et al.,

2020). In addition, comparisons of coarse-mode composition

at co-located sites in the US show that the inlet type can cause

∼ 30 % difference in measured mass (Hand et al., 2017). We

include these differences in our error estimate in Sect. 3.2.

For the most part, we use model outputs for which there is

a one-to-one relationship with what is being measured (BC,

sulfate, etc.). However, for dust, this is not straightforward as

dust is composed of multiple elements. Here, we use Al as a

proxy for dust as it is relatively constant (∼ 7 %) in dust (as

opposed to Ca, which varies highly, or Fe, which varies mod-

erately) (Zhang et al., 2015). Al sources are primarily from

dust (Mahowald et al., 2018). Assumptions about the model

composition and how they are compared to observations are

summarized in Table S1. For example, OM is assumed to be

1.8 times OC if OC measurements are available but not OM

measurements. Different ratios of OM to OC appear in the

literature, but 1.8 appears to be the best average for a mix-

ture of aged and fresh plumes (Aiken et al., 2008; Font et al.,

2024; Turpin and Lim, 2001).

Harmonizing models with different types of measurements

is a critical and yet difficult task (Huang et al., 2021). Models

operate with the geometric or aerodynamic particle diameter,

whereas, in practice, the measurements are done with a va-

riety of particle-equivalent diameters, e.g., optical, volume

equivalent, projected-area equivalent, or aerodynamic diam-

eter, depending on the instrument used (Hinds, 1999; Reid et

al., 2003; Rodríguez et al., 2012). In the inlets of the samplers

used for the mass measurements and collection of PM2.5 and

PM10 particles for subsequent chemical analysis, a size cut-

off such as at 2.5 and/or 10 μm is defined in terms of aero-

dynamic diameter (i.e., Stokes diameter (involving size and

shape) weighed by the square root of the particle density;

Hinds, 1999). The sharpness of the cut-off of such inlets in-

fluences the PM2.5 and PM10 mass concentration (Hand et

al., 2019; Wilson et al., 2002). The PM10 size cut-off aero-

dynamic diameter is equivalent to the PM6.3 geometric diam-

eter for spherical dust particles (Hinds, 1999; Rodríguez et

al., 2012) and to PM6.9 in the case of dust elliptical particles

(Huang et al., 2021). Similarly, for dust, PM2.5 (aerodynamic

diameter) is equivalent to PM1.6 (geometric diameter). These

differences are important to keep in mind, but the information

is not available for all networks, and so we include the size

cut-off as an uncertainty in the model–data comparisons as

described in Sect. 3.2.

For ease of viewing the data from the densely sampled

regions in this paper, as well as to compare model outputs

to more representative spatial scales, observational records

from different sites were combined into a mean within a grid

cell that is 2 times the model resolution or approximately

2°×2°. This process averages the observations over a spatial

scale appropriate for comparison with the chemistry model

(Schutgens et al., 2016). We provide both the climatological

annual average data at each site and the 2°×2° grid-averaged

data (the modeled data can be found at the following DOI:

https://doi.org/10.5281/zenodo.10459653, Mahowald et al.,

2024). In this data set, the number of station data sets in-

cluded in the average is included (stations), and the num-

ber of observations add up across all the station data sets in-

cluded.

Notice that we include both urban regions and rural or re-

mote sites in the same data set. Some of the original metadata

did not include the resolution of the location to better than

0.1°, and so the coordinates of the locations provided here

with the gridded data should not be used for finer-resolution

studies. Because of the importance and size of megacities,

which cross multiple grid boxes, as well as the difficulty in

separating urban vs. rural sites, we include urban and rural air

quality data in the same data set, and previous studies show

the expected differences between urban and rural concentra-

tions and trends (e.g., Hand et al., 2019).

Statistical comparisons across the globe and different re-

gions are included in the tables in the Supplement. These in-

clude model and observational averages, Kendall correlation

coefficients (rank correlations), linear regression slopes and

uncertainties, and root mean squared differences. We also in-

clude the fraction of the model–data comparison which is

outside the error bounds defined in Sect. 3.2. These results

are included in the tables in the Supplement and are referred

to in the text as is appropriate.

There are multiple sources of uncertainties in the obser-

vations used in the model–data comparisons of PM concen-

trations at the global model grid scale: errors in the mea-

surements, differences in measurement methods, variability

in aerosol concentrations during events versus background

conditions, spatial variability within a model grid box, and
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interannual variability. To assess the size of these uncertain-

ties, we look at the normalized standard deviation (defined

as the standard deviation over the mean) in the observations

due to these factors for a year, within a 2° × 2° degree grid,

and for interannual variability. To evaluate within-year and

between-year variability, we focus on stations that have more

than 10 years of data. To evaluate spatial variability within

grid boxes, we use grid boxes that have more than 10 sta-

tions within them. Notice that these grid boxes are likely to

lie close to cities and fossil fuel source regions because the

measurement network is more dense there, perhaps exagger-

ating the importance of spatial variability. In addition, differ-

ent measurement methods (dry vs. moist aerosol mass, dif-

ferent inlet geometries) complicate the comparison of data.

Here, we assume a measurement method uncertainty of 30 %,

which is on the high side of that used in previous studies

(Prank et al., 2016; Burgos et al., 2020; Hand et al., 2017).

Many of the measurements also include an assessment of

their uncertainty or of the minimum detected limit: we use

that to assess the average uncertainty of individual measure-

ments (measurement errors).

2.4 Temporal aerosol variability

While the main goal of this study is to highlight and

compile in one place the many surface concentration ob-

servational data sets available to compare against models,

and while we focus on the climatological annual mean,

the data sets also include temporal variability. Annual

means, standard deviations, and the number of observa-

tions for each station for each year are included to allow

for the analysis of interannual variability or trends. In ad-

dition, the climatological monthly mean, standard devia-

tion, and number of observations are also available in or-

der to assess the seasonal cycle. These values are all avail-

able in the Allobservvations.AEROMAP.nc file available at

https://doi.org/10.5281/zenodo.10459653 (Mahowald et al.,

2024).

To illustrate the included data, the trends in the PM2.5 and

PM10 aerosols are calculated over 2000–2023 over eight dif-

ferent regions: North America, South America, Africa, Eu-

rope, Asia, and the high latitudes. Only data after 2000 are

included because there are much more data after 2000 than

prior to 2000 (see Sect. 3.1). All station data sets with more

than 8 years of data are included in the calculation. In order

to decrease the bias and uncertainty due to the large tempo-

ral and spatial variability (similarly to Hand et al., 2024), we

divide the annual mean at each station by the climatologi-

cal annual mean over the two time periods, and we average

this with the other stations within the region. We then use a

Theil regression which calculates the slopes excluding dif-

ferent data points and takes the median slope to reduce de-

pendence on outliers (Hand et al., 2024). The median and the

33rd- and 66th-percentile slopes are calculated to show the

median and 1σ uncertainties for each region.

The seasonal cycle of aerosols can provide important in-

formation about the source strength and variability, as well as

the meteorological constraints (Gui et al., 2021; Rasch et al.,

2000). To illustrate the value of the evaluation of the seasonal

cycle in models, we calculate the climatological monthly

mean in the observations and model and compare the corre-

lation of these values, as well as the standard deviation of the

12-month means in the model versus the observations. This

method allows us to separately evaluate the seasonal cycle

from the spatial distribution. The correlation is only calcu-

lated at stations where the seasonal cycle is large enough: in

math terms, our criteria is where the observed standard devia-

tion across months is larger than half of the average observed

within-month variability.

3 Results

3.1 AERO-MAP observational data set

First, we assessed the amount of data and the number of sta-

tion data sets within each ∼ 2°×2° gridded area (Fig. 1). The

observational data set provides coverage predominately over

North America and Europe for PM2.5 and PM10, as noted by

previous studies (e.g., Szopa et al., 2021); however, in addi-

tion, we provide here a synthesis of more air quality data in

other regions, especially Asia (Fig. 1). This compilation data

set comprises most of the individual observations (at daily

or longer time periods) of total PM2.5 (Fig. 1a, e: blue bars)

and most of the observing stations (Fig. 1e and blue line).

Approximately 15 000 stations and over 20 million observa-

tions are included in this compilation.

Notice that there are more individual observations by 2 to

3 orders of magnitude for the total mass (PM) of particles

compared to information about the composition of particles

(Fig. 1e), which is also shown also by contrasting the spatial

distribution of measurements between PM2.5 and measured

amounts of OM (Fig. 1a versus b), as well as by the large

difference between the number of station data sets measur-

ing the total mass versus the speciated aerosol particles like

OM (Fig. 1c versus d). While this data set presents a huge

increase in the amount of data available to the aerosol mod-

eling community (for example, an 8-fold increase compared

to the data sets included in Reddington et al., 2017), still, the

dominant proportion of the total PM2.5 or PM10 data are clus-

tered over a few industrialized land regions, and there is little

composition information over most of the globe (Fig. 1).

3.2 Uncertainties in model–data comparisons

Our goal in this study was to identify observational data sets

and to compile them into one easy-to-use data set for climate

and air quality modelers. To do that, we collected all avail-

able data sets, prioritizing long-term stations with composi-

tion data; however, in regions with few measurements, we in-

clude only PM data or data collected during field campaigns,
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which may last for only 1 or 2 months. Previous studies have

shown that even 1 d average aerosol measurements, carried

out on cruises, can constrain aerosol concentrations within 1

order of magnitude (1σ ) for phosphorus in dust, which varies

spatially by 4 orders of magnitude (Mahowald et al., 2008).

Other studies have highlighted that, even for particles that

have highly variable sources, such as dust, only a few months

of observations are enough to characterize the mean and stan-

dard deviation in most places across the globe (Smith et al.,

2017). However, the latter study highlighted that, for places

where dust events do not occur every year or in varying num-

bers, like near South America, several years are required to

characterize the mean (Smith et al., 2017).

Uncertainties in the observation–model comparisons can

include both uncertainties in the observations and interan-

nual variability in both the model and the observations that

are temporally averaged. Uncertainties used in the compar-

isons of aerosols at the global model grid scale come from

multiple sources, e.g., errors in the measurements, differ-

ences in measurement methods, variability in aerosol con-

centrations during events versus background conditions, spa-

tial variability within a model grid box, and interannual vari-

ability, as discussed in Sect. 2.3. To assess the size of the

variability contribution to the uncertainties, we look at the

normalized standard deviation (defined as the standard devi-

ation over the mean) in the observations due to these factors

for within a year and within a grid and for interannual vari-

ability. Nonetheless, our estimate of spatial variability will

underestimate the true value in the absence of sufficient spa-

tial coverage. In addition, different measurement methods

(dry vs. moist aerosol mass, different inlet geometries) com-

plicate the comparison of data (Sect. 2.3 discusses sources

of uncertainties in more detail). We assume here a measure-

ment method uncertainty of 30 %, which is on the high side

of that used in previous studies (Prank et al., 2016; Burgos

et al., 2020; Hand et al., 2017). Many of the measurements

also include an assessment of their uncertainty: we use this

to assess the average uncertainty of individual measurements

due to measurement errors.

We focus on the uncertainties in the PM2.5 measurements

first. The largest uncertainties are associated with within-year

variability (0.53) (Fig. 1f; Table S3). This is because most

of the aerosol mass can sometimes come with a few pollu-

tion events. Uncertainties due to combining different mea-

surement methods (0.3) and from spatial variability within

a model grid cell (0.24) are also important (Fig. 1g). Both

interannual variability (0.18) and measurement errors (0.08)

are smaller but important contributions to uncertainty. The

importance of within-year variability (which is similar to

within-month variability; see Table S4) is consistent with

studies showing that, in most places, there are a few pollu-

tion events carrying much of the mass with, otherwise, much

lower background concentrations (Luo et al., 2003; Fiore et

al., 2022). Obviously, interannual variability is important for

secular trends (Gupta et al., 2022; Watson-Parris et al., 2020;

Mahowald et al, 2010), but, in this compilation, the interan-

nual variability is much smaller than the 2–4 orders of mag-

nitude of the spatial variability across the globe and thus can

be neglected for understanding global spatial distributions

(Fig. 1f).

These sources of uncertainty occur simultaneously, and, if

we sum them assuming orthogonality, we obtain a normal-

ized uncertainty of ∼ 0.68 (Table S3), which was interpreted

as meaning that model–data comparisons within a factor or

3 should be considered to be adequate. To ease the visual

evaluation of the comparison, we show in the following scat-

terplots both the 1 : 1 line and the range within a factor of

3. We discuss an example of uncertainties in more detail in

Sect. 3.3. Notice that, if we use the same metric (normal-

ized standard deviation) to evaluate the variability across the

climatological concentrations measured in the observations

at different locations (Fig. 3a) or across the grid averages

in the model, we obtain 1.0 and 2.2, respectively, which are

much larger than the uncertainties (0.6): there is much more

variability across different grid boxes (4–5 orders of magni-

tude; see Fig. 2d) than across different years (up to 50 % nor-

malized standard deviation; Fig. 2f). As expected, the model

contains more spatial variability than the observations as the

model reports concentrations in very high (North Africa) and

very low (Antarctica) aerosol regions where we have no data,

although, where we have data, the model simulates a simi-

lar range (Fig. 3a). For composition measurements, there is

larger uncertainty in some individual species (e.g., BC and

Al) than for PM. However, there are many fewer composi-

tion observations (Table S3). Since the statistics of the un-

certainty calculations are likely to be more robust with the

bulk PM measurements due to the fact that there are more

data, by 1 order of magnitude, for the bulk PM data, we use

the uncertainty estimate derived for PM for all of the compo-

sition data in this paper.

There is a time variation in how much data is available

for both PM2.5 and PM10 data (Fig. 2a and b), with the most

data being available between 2010 and 2020. Different re-

gions have slightly different trends in terms of the amount

of data (Fig. 2). For much of this paper, we will discuss

global and regional comparisons, and the regions we focus

on are Africa, Asia, Australia, Europe, North America, South

America, and the high latitudes (Fig. 2c).

Trends in aerosols are an important scientific topic, al-

though, for most of this paper, we use the climatological an-

nual mean. What if there were strong trends in the aerosols?

Would that lead to differences between our climatological

means and what we expect for some decades? In order to as-

sess this, we look at the individual annual means for each sta-

tion with more than 8 years of data and see if the individual

annual mean is ever outside of the 3× uncertainty calculated

here. Out of the 13 320 station data sets for PM2.5 or PM10

which have more than 8 years of data, only 175 (1.3 %) have

an annual average outside the uncertainty estimated here. Of

those with a value outside the uncertainty, only 10 (< 0.01%)
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Figure 2. The temporal change in the number of observations of PM2.5 (a) and PM10 (b) available in this study (black) and by region. Dark

blue: Australia; blue: Asia; light blue: Europe; yellow: Africa; orange: South America; dark orange: North America; red: high latitudes. The

regions are shown in (c) and are used throughout this study. Scatterplots compare the climatological mean versus the decadal (2010–2019)

mean surface concentration for PM2.5 (d) and PM10 (e) using symbols which indicate the region of the data set point plotted.

have a statistically significant trend. This suggests that, for

the temporal interval we have chosen for the climatology,

long-term trends are not a significant source of differences in

the spatial climatological data set presented here. Nonethe-

less, we acknowledge that, in regions where aerosol emis-

sions increase and then decrease over our multi-decadal ob-

servational records (e.g., China), our test for trends will not

reveal where the climatology over the full period is less rep-

resentative of individual decades. We also supply in the com-

piled data set a decadal mean for the time period of 2010–

2019, which is made publicly available. A comparison of the

climatological mean versus the decadal mean for the PM2.5

and PM10 concentrations shows that, for almost all locations,

there is a small difference between the two values, and they

lie on a one-to-one line (Fig. 2d and e; Table S4). There are

a few station data sets (< 5%) which have a difference be-

tween the climatological mean and the decadal mean that is

larger than 20 %, and very few (< 0.05%) have a difference

which is larger than the uncertainties described in this section

(factor of 3; Table S4). The biggest difference between the

climatological and decadal average values is the number of

station data sets and observations and, thus, the spatial cov-

erage: we lose between 20 % and 100 % of the station data

sets, depending on the size and composition, when we use

the decadal means (Table S5). This is because, even though

this is the most observed decade, still, some data sets are out-

side of this time period. In order to emphasize the spatial

distribution of the data sets and because the climatological

values are so similar to the decadal means, we will show just

the climatological values in the next few sections, although

both are available (Data set 1 in the Supplement; see also

https://doi.org/10.5281/zenodo.10459653, Mahowald et al.,

2024).
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Figure 3. Model results and gridded observations for PM2.5 in μg m−3: spatially mapped globally (a) and focused on only Asia (b); the

model is plotted as the background, and the observations are circles, with the colors indicating the amount of PM2.5 using the same scale. A

comparison of the model (x axis) to the observations (y axis) is shown for the gridded data (c) and including all stations (d). In the scatterplots,

the colors and symbols indicate the regions, the bold black symbols are the average across each region (indicated by the symbol), the dotted

line is the 1:1 line, and the dashed lines are the factor-of-3 uncertainty estimates. More statistics are shown in Table S7, and maps focused on

different regions are available in Fig. S1 in the Supplement.

3.3 PM2.5 model–data comparison

Modeled concentrations of PM2.5 are compared against ob-

servations more often than for PM10 or other size fractions

and comprise an important portion of the particulate matter

associated with human activities. Therefore, we describe first

the observational synthesis and comparison to model results

for PM2.5. Because the high number of observations in some

parts of the world would make the figures unreadable, the ob-

servations are gridded onto an approximately 2°×2° grid for

comparisons with the model, although individual data points

are still difficult to read (Fig. 3a). The maps illustrate where
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the observational comparison in the scatterplot is made, and

focused maps of each major region are available in the Sup-

plement (Fig. S1), along with global and regional statistics

(Table S5). As expected, in the model, the highest concentra-

tions are over the desert dust regions, such as North Africa,

and over heavily industrialized regions in Asia. For the heav-

ily industrialized regions in Asia, these high values are con-

sistent with the observations, but the regions in North Africa

with the highest modeled values do not have similar observa-

tional validation for high concentration values due to a lack

of data (Fig. 3a).

Overall, the model is able to simulate much of the spa-

tial variability in PM2.5 that is over 2 orders of magnitude

(Fig. 3a and c); however, there is a tendency to overesti-

mate the PM2.5 over India and China (Fig. 3b), although the

mean over all the regions is within the factor-of-3 uncertainty

(Fig. 3c, bold symbols). In addition, there are some observa-

tions (globally ∼ 6 %, Table S6) that are outside the factor-of-

3 uncertainty estimates (Fig. 3c and d). The scatterplots show

the comparisons of the model to the observations using the

gridded data (Fig. 3c) and all original data (Fig. 3d), and the

correlation coefficients are similar (0.60 vs. 0.67 in Fig. 3c

and d, respectively). It is interesting that the correlation us-

ing the ungridded data (Fig. 3d) is slightly higher, perhaps

because the model does better in regions with more data, al-

though this is not a statistically significant result. The aver-

ages over different regions show that, on average, the model

simulates the regions within the uncertainty (bold black sym-

bols in Fig. 3d; Table S5).

As an example of the source of the uncertainties discussed

in Sect. 3.2, we discuss the differences over India and China

in the Asian region in more detail. It seems likely that at

least some of these errors are due to an overestimation in

the emission databases since satellite-based remote sensing

has suggested that models overestimate SO2 over China (Luo

et al., 2020). In addition, these discrepancies could be due

to an error in the aerosol transport or chemical modeling,

such as incorrect reaction rates or deposition rates, or, al-

ternatively, could be due to differences in the time period:

the observations are more recent, while the assumptions for

the emissions are for the year 2010 (Quass et al., 2022). The

comparison using the decadal averages (2010–2019) shows

similar biases (Fig. S2), as expected, since the decadal aver-

ages are so similar to the climatological averages (Fig. 2d),

which suggests that the time differences may not be the

most important factor. In addition, notice that, once aver-

aged over the 2° × 2° grids, more observations are within a

factor of 3, our uncertainty bound (contrast Fig. 3c and d).

However, there could also be methodological and analytical

differences relating to which group or network did the ob-

servations or the exact locations of the different monitors.

Much of the data in those regions are not usually included in

routinely used previous compilations of data (e.g., Redding-

ton et al., 2017), and so the fact that previous model studies

have not been able to assess emission data sets in these re-

Figure 4. Comparison of PM2.5 observations from the US Em-

bassy’s AirNow network (https://www.airnow.gov/international/

us-embassies-and-consulates/, last access: 10 June 2022) versus

observations from the Chinese air quality network (downloaded

from https://quotsoft.net/air/, last access: 10 August 2022) (Beijing:

39.9° N, 116.4° E; Guangzhou: 23° N, 113° E; Shanghai: 31° N,

121° E); from the Indian network (https://app.cpcbccr.com/ccr/{#}/

caaqm-dashboard-all/caaqm-landing/data, last access: 20 Septem-

ber 2022) (Chennai: 13° N, 80° E; Kolkata: 23° N, 88° E; New

Delhi: 27° N, 77° E); and from Santiago, Chile (Barraza et al., 2017)

(23.7° S, 70.4° W), from the Chilean air quality network (https:

//sinca.mma.gob.cl/index.php/, last access: 3 June 2022). The num-

bers after each city name are the number of stations found within 1°

distance from the AirNow (or Chile observation) station.

gions could also partially explain this discrepancy. Compar-

ison between different observations in some cities (Fig. 4)

shows that, in these grid boxes, there can be very large dif-

ferences (∼ factor of 3) between the annually averaged val-

ues reported at nearby stations within 1° distance radially.

Notice that the AirNow measurements (https://www.airnow.

gov/international/us-embassies-and-consulates/, last access:

10 June 2022) tend to be higher than those reported from gov-

ernment air quality networks. The sites compared are in large

cities and, thus, are likely to have strong local sources and in-

tense gradients in pollutants. For now, we keep in mind this

large difference but continue to use the observations. As indi-

cated below, in these regions, we do not have measurements

of composition, and so we do not know which constituents

are poorly simulated in our emissions or transport modeling.

More statistics describing the model data comparisons are

shown in Table S5.

Next, we consider the composition of the PM2.5 aerosol

in the model versus the observations. The model simulates

high and low values of sulfate, observed with a correlation

coefficient of 0.64. Sulfate particle concentrations are on the

high side in the model in several regions, more so in North

America and Africa but less so for Europe and other regions
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Figure 5.

(Figs. 5a and b; S3; Table S5), although all of the regional

means are within the factor-of-3 uncertainty (bold symbols

in Fig. 5b). Previous studies have compared SO2−
4 aerosol

observations to some model simulations and have not noted

this bias (e.g., Barrie et al., 2001; Aas et al., 2019), but this

bias was seen in this model and was attributed to the simple

chemistry included in the model (Liu et al., 2012; Yang et al.,

2018). About 18 % of the climatological mean model values

are outside the factor-of-3 uncertainty, and a larger fraction
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Figure 5. Model results and gridded observations for different types of PM2.5 in μg m−3, spatially mapped globally, where the model is

plotted as the background, and the observations are circles, with the colors indicating the amount of PM2.5 using the same scale for (a) SO2−
4 ,

(c) BC (black carbon), (e) OM (organic material, equating to 1.8 times organic carbon (OC)), (g) Na, (i) Al, (k) NO−
3 , and (m) NH+

4 . A

scatterplot comparison of the model (x axis) to the observations (y axis) is shown for the gridded observational data for (b) SO2−
4 , (d) BC,

(f) OM, (h) Na, (j) Al, (l) NO−
3 , and (n) NH+

4 . In the scatterplots, the colors and symbols indicate the regions, the bold black symbols are

the average across each region (indicated by the symbol), the dotted line is the 1 : 1 line, and the dashed lines are the factor-of-3 uncertainty

estimates. More statistics are shown in Table S5, and the maps focused on specific regions are available in Figs. S3–S9 for SO2−
4 , BC, OM,

Na, Al, NO−
3 , and NH+

4 , respectively.

is outside of the uncertainty for Africa, Australia, and South

America, where there are less data (Table S5).

BC comparisons suggest that the model results are roughly

able (r = 0.63, within the factor-of-3 uncertainty) to capture

the spatial dynamics of this aerosol across more than 2 or-

ders of magnitude, although, in some regions, model values

are on the low side (Europe and Asia) (Figs. 5c and d; S4; Ta-

ble S5). This is similar to previous model intercomparisons

(Koch et al., 2009; Bond et al., 2004, 2013; Liu et al., 2012,

2016). About 18 % of the model values are outside the un-
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certainty bounds, and many of these values come from Eu-

rope, where 36 % of the values are outside of the uncertainty

bounds (Table S5). Simulations of OM in the default model

(Fig. 5e) suggest that the model is within the uncertainty of

most of the data, and the regional averages are close to the

1 : 1 line (Fig. 5f). Correctly modeling organic material is

very difficult due to both the sparsity of data for compari-

son and the importance of both primary and secondary OM

in PM (Heald et al., 2010; Kanakidou et al., 2005; Olson et

al., 1997; Tsigaridis et al., 2014), and previous studies with

this model have noted an overestimation in comparison with

surface observations (Liu et al., 2012).

As a proxy for sea salts, we use the elemental data of the

major component, Na, and we see the highest values over

oceans and lower values over land, as expected and seen in

the observations (Fig. 5g). Although most of the data are

within the uncertainties (30 % are outside the uncertainties;

Table S5), the model tends to be too high at low Na and too

low at high Na in North America, where much of the data

are available (Fig. 5g and h; also seen in the slopes in Ta-

ble S5), which has been seen previously with this model (Liu

et al., 2012). Notice that we do not include industrial emis-

sions of Na, but the concentrations far inland include some

Na, suggesting land-based natural or industrial sources. As

a proxy for dust, we use Al amounts (Fig. 5i and j), which,

globally and over dust regions, are dominated by dust, al-

though there are few observational data sets in high-dust re-

gions. The comparisons suggest the model is able to simulate

dust (correlation coefficient of 0.5, Table S5) across 4 orders

of magnitude, similarly to previous studies (Liu et al., 2012;

Albani et al., 2014; Li et al., 2022; Huneeus et al., 2011), al-

though there is a tendency towards a high bias in the models

over low-dust regions and a low bias in high-dust regions,

similarly to sea salts (Fig. 5i and j; also seen in the slopes in

Table S5). One reason for this overestimate of PM2.5 aerosol

mass for constituents like sea salt and dust, which are pre-

dominantly in the coarse mode, is that the coarse mode in

this model has a wide enough standard deviation that it con-

tributes significantly to the PM2.5 size fraction (Ke et al.,

2022; Li et al., 2025). A better resolution of the coarse-mode

aerosol may be required to better simulate these aerosols (Ke

et al., 2022; Li et al., 2025).

Next, we consider the ammonium nitrate that requires

complicated gas-phase–aerosol-phase equilibrium to be cor-

rectly simulated (e.g., Bauer et al., 2007; Thornhill et al.,

2021; Adams et al., 2001; Regayre et al., 2018; Seinfeld and

Pandis, 2006; Wolff, 1984). To summarize these complicated

interactions, because SO2−
4 is a stronger acid than NO−

3 in

the atmosphere, the basic NH+
4 is preferentially found with

SO2−
4 . Thus, NO−

3 particles will only form if there is suf-

ficient NH+
4 available. As described in the “Description of

methods” section, to include these particles, we added the

aerosol mass simulations from a different version of the same

model which includes chemistry (Vira et al., 2022) and a

more process-based source of ammonia (Vira et al., 2020)

since the default CESM2 version used here does not include

chemistry. Note that, even in the chemistry version of the

model for CESM2, the complicated gas-phase–aerosol-phase

thermodynamic equilibrium calculations are not included,

which causes errors in the simulation of the amounts of nitro-

gen aerosols (e.g., Bauer et al., 2007; Thornhill et al., 2021;

Adams et al., 2001; Regayre et al., 2018; Nenes et al., 2021).

Thus, while the NH3 agricultural emission scheme used in

this model is state of the art, the lack of an adequate gas-

phase–aerosol-phase separation may lead to biases, as dis-

cussed in Vira et al. (2022). In addition, recent studies have

suggested that emissions of NH4 from vehicles should be

1.8× higher than previously estimated (Toro et al., 2024),

highlighting the difficulty of obtaining adequate emission

data sets for nitrogenous aerosol precursors. NO−
3 particles

compared against available observations show that, over 2

orders of magnitude, the model results are able to simulate

the spatial variability (correlation coefficient = 0.55), but the

model tends to overestimate the observations by about a fac-

tor of 2 (except in South America), similarly to what was

seen in Vira et al. (2022) (Fig. 5k and l, Table S5). The model

surface concentration NO3 values are, with most of the data,

within the uncertainties (Fig. 5k and l; 46 % are outside the

uncertainty bounds in Table S6). The model and data distri-

butions of NH+
4 show high values of NH+

4 over agricultural

regions in particular (e.g., Vira et al., 2022), like the mid-

western US or central Europe (Fig. 5m and n; correlation

coefficient of 0.52). The NH+
4 in the simulation used here

compares well to the available observations across the dif-

ferent regions, with the regional averages being close to the

1 : 1 line (Fig. 5n) and with most of the individual model–

data comparisons being within the uncertainties at most ob-

servational sites (Fig. 5m and n; 16 % of the data are outside

the uncertainty bounds in Table S5).

How would these comparisons change if we used the

decadal 2010–2019 averages instead of the climatological

averages of the observations? As expected from the similar-

ity between the observations averaged over these two time

periods (Sect. 3.2; Table S4), the results do not change sub-

stantially (> 20%) in most regions where there is a simi-

lar amount of data (Fig. S2a; Table S6). However, for some

regions and composition data sets, there is much less data

(> 25% less data), and, in those cases, there can be large

differences between using the decadal averages versus the

climatological averages (Table S6). This suggests that using

the climatological averages for our comparisons for PM2.5

allows us to include more data and evaluate more regions

without including much bias since interannual variability is a

small source of uncertainty compared to other uncertainties

(Table S4).
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Figure 6. Model results and gridded observations for PM10 in μg m−3, spatially mapped globally (a). A comparison of the model (x axis) to

the observations (y axis) is shown for the gridded data (b) and including all stations (c). In the scatterplots, the colors and symbols indicate

the regions, the bold black symbols are the average across each region (indicated by the symbol), the dotted line is the 1 : 1 line, and dashed

lines are the factor-of-3 uncertainty estimates. More statistics are shown in Table S7, and maps focused on different regions are shown in

Fig. S10.

3.4 PM10 model–data comparison

PM10 was the first size selective standard for particu-

late air quality until more studies showed that smaller

particles (PM2.5 or PM1) were more relevant for health

impacts, following which PM2.5 standards were added (e.g.,

https://www.epa.gov/pm-pollution/timeline-particulate-

matter-pm-national-ambient-air-quality-standards-naaqs,

last access: 4 October 2023). However, there are still many

PM10 measurements being routinely made (Figs. 1d, 7a).

The model is able to simulate PM10 concentrations across

2 orders of magnitude with some skill (correlation of 0.55;

Figs. 7a and 6b) as most of the data are within the uncertain-

ties (Fig. 5a, b, and c; 8 % of data are outside the uncertainty;

see Table S7). Gridding the data before comparing to the

model results in a slightly higher correlation across space

with the inclusion of all data (0.55 vs. 0.72; Fig. 5b vs. c).

More statistical comparisons are shown in Table S7. The

regional averages are all within the uncertainty bounds for

all regions.

There are fewer comparisons with PM10 composition data

available in the literature: usually only sea salts and dust

are compared to observations that include the coarse mode

(Gong et al., 2003; Ginoux et al., 2001; Albani et al., 2014;

Mahowald et al., 2006). Comparisons for SO2−
4 suggest that

the model can estimate the distribution of the high and low
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Figure 7.

concentrations (correlation coefficient of 0.43) but tends to

overpredict PM10 values across most regions (Africa, Aus-

tralia, Europe, North America, and South America) as many

observations are too high and are outside the uncertainty

bounds (Fig. 7a and b; Table S7 indicates that 48 % of the

model values are outside the uncertainty bounds). For BC,

the PM10 simulation captures the range of values (correla-

tion coefficient of 0.47), with most of the model results be-

ing within the uncertainty bounds of the observations across

all the regions (Fig. 7c and d; 16 % outside the uncertainty

bounds in Table S7). There is the suggestion in the obser-

vations that there may be some fraction of BC in the coarse

model since there is more BC in PM10 than in PM2.5, but

in the simulations used here, there is no mass in the coarse
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Figure 7. Model results and gridded observations for different types of PM10 in μg m−3, spatially mapped globally, where the model is

plotted as the background, and the observations are circles, with the colors indicating the amount of PM10 using the same scale for (a) SO+2
4 ,

(c) BC (black carbon), (e) OM (organic material, equating to 1.8 times organic carbon (OC)), (g) Na, (i) Al, (k) NO−
3 , and (m) NH+

4 . A

scatterplot comparison of the model (x axis) to the observations (y axis) is shown for the gridded observational data for (b) SO2
4, (d) BC,

(f) OM, (h) Na, (j) Al, (l) NO−
3 , and (n) NH+

4 . In the scatterplots, the colors and symbols indicate the regions, the bold black symbols are

the average across each region (indicated by the symbol), the dotted line is the 1 : 1 line, and the dashed lines are the factor-of-3 uncertainty

estimates. More statistics are shown in Table S7, and the maps focused on specific regions are available in Figs. S11–S17 for SO2−
4 , BC,

OM, Na, Al, NO−
3 , and NH+

4 , respectively.

mode (compare Fig. 7c versus 5c). The model–data compar-

ison simulations for OM suggest a good spatial distribution

of OM (correlation coefficient of 0.43), and the modeled re-

gional averages are similar to the observations. Again, the

model currently does not simulate coarse-mode OM and does

not include primary biogenics (Jaenicke, 2005; Mahowald

et al., 2008), and, yet, it can match the observations. The

limited Na (indicating sea salt) data suggest that the model

can simulate the spatial distribution (correlation coefficient

of 0.49) but tends to overestimate and has many observations

outside the error bound (Fig. 7g and h; 50 % of the observa-

tions are outside the uncertainty bounds in Table S7), as was

seen previously (Liu et al., 2012). Most of the regional aver-

ages, however, are just on the line of the uncertainty bounds

(Fig. 7h). Comparisons with Al (used here as a proxy for

dust) show that the spatial variability is correlated between

the model and observations (correlation coefficient of 0.46),

but the model overpredicts the concentrations in high-dust
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regions and underestimates them in low-dust region (Fig. 7i

and j; 54 % of the observations are outside the uncertainty

bounds in Table S7). The largest overestimates are in Asia

and Africa (Fig. 7i and j). Dust models are compared against

aerosol optical depth, deposition, and surface concentrations,

and it is currently not possible to simulate all of these dif-

ferent types of measurements at the same time, consistently

with previous studies with this model (Li et al., 2022; Kok

et al., 2014b; Albani et al., 2014; Matsui and Mahowald,

2017; Zhao et al., 2022), and, indeed, across most dust mod-

els (Huneeus et al., 2011).

The model simulations of NO−
3 suggest too-high values in

high-NO−
3 areas and too-low values in low-NO−

3 regions, es-

pecially in the limited data for the South American region

(Fig. 7k and l; Table S7 shows that 69 % of the data are out-

side the uncertainty bounds). NH+
4 shows a slightly better

comparison to the limited available data (Fig. 7m and n), as

seen in Vira et al. (2022). As discussed earlier, the model

does not include other forms of nitrate aerosols which may be

important, such as the reaction of nitrate with dust aerosols

(Wolff, 1984; Dentener et al., 1996; Xu and Penner, 2012).

If, instead, we compared to the decadal averages rather

than the climatological averages, we would obtain similar re-

sults in many cases (Fig. 2b; Table S8), but being limited

to decadal averages substantially reduces the number of ob-

servations available for comparison. The few regions which

lose less than 25 % of the data sets when we temporally limit

our comparison have similar statistics compared to the PM2.5

comparisons. Again, this suggests that using the climato-

logical averages includes more regions in the comparisons

without evidence to suggest that it increases bias because of

the small amount of interannual variability in this data set

(Sect. 3.2).

3.5 Temporal variability

This paper emphasizes the expanded spatial coverage in this

compiled data set with the spatial comparisons in Sect. 3.2–

3.5, but the data set also contains temporal variability as

well. To illustrate the type of temporal data within this data

set, we present briefly some common metrics. First, we con-

sider what trends these data suggest in the surface concen-

trations for PM2.5 and PM10. Because most of these data

come from after 2000 (Fig. 2a and b), we focus on the

trends between 2000–2023. We also average by region in

order to obtain a large-scale trend in surface concentrations

(see details of methods in Sect. 2.5). Overall, the observa-

tions suggest that there is a statistically significant (1σ ) de-

crease in aerosols over this time period of about 1 % yr−1

for PM2.5 in North America, South America, Africa, and Eu-

rope, but the changes over Asia and Australia are not statis-

tically significant (Fig. 8a). These downward trends are sim-

ilar to those seen in other studies including North America

and Europe (Hand et al., 2024; Gui et al., 2021; Gupta et al.,

2022; Mortier et al., 2020) and South America (Mortier et al.,

Figure 8. Trends in the observations of aerosols in different regions

during the 1980–2000 and 2000–2024 time periods for PM2.5 (a)
and PM10 (b). Error bars indicate the 1σ uncertainty using a Theil

regression approach.

2020), and the more ambivalent signals over Asia and Aus-

tralia have also been seen (Gui et al., 2021; Gupta et al., 2020;

Mortier et al., 2020). For PM10, there are different trends:

North America and Europe have a statistically significant

downward trend of about 1 % yr−1, while Asia has a larger

downward trend of about 3 % yr−1, but the error bar overlaps

the 0 line for the South American, African, and Australian

regions, indicating that those regions do not have statistically

significant downward trends. There are no other studies we

know of that looked at trends in PM10 specifically. Note that

we do not compare against the model results here as our ex-

ample model simulation does not include emission trends,

but these data sets include each station’s annual average so

that more detailed comparisons could be conducted. In addi-

tion, apparently, these trends do occur for a long enough time

to cause a large bias in the climatology (Sect. 3.2).

Next, we use the climatological monthly mean data for

PM2.5 and PM10 and compare against the model to see how

well the models simulate the seasonal cycle. There are many

ways to evaluate the seasonality in the literature (Gleckler

et al., 2008; Henriksson et al., 2011; Huneeus et al., 2011;

Rasch et al., 2000). We chose one way here, but this data set

could be used in other ways as well. The models can simu-

late the timing of the seasonal cycle well across most regions,

as seen in correlations between the climatological monthly

mean in the model and observations (Fig. 9a and b), but there

are several regions where the model does not capture the tim-

ing of the seasonal cycle (e.g., northern India, Türkiye, New

Zealand). The spatial distribution of the size of the seasonal

cycle (defined here as the standard deviation in the clima-

tological monthly mean) is less well simulated than the an-

nual mean (contrast Fig. 8d with Fig. 3c and Fig. 8f with

Fig. 6c: the correlation coefficients are smaller, and there is

more spread in the comparisons with the scatterplot). Exam-

ining whether this is a model-specific result or one that oc-

curs more generally in the models would help discriminate

between errors in the input emission data sets and meteoro-

logical errors in the model (e.g., Huneeus et al., 2011).
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Figure 9. Model data comparison for the seasonal cycle. The correlation coefficient between the 12 climatological monthly means in the

observations and the model for those station data sets with a larger seasonal cycle than within-monthly variability (see Sect. 2.5 for more

details) averaged to a 2° × 2° grid for plotting for PM2.5 (a) and PM10 (b). A spatial comparison of the magnitude of the seasonal cycle in

the observations versus the model (defined as the standard deviation of the 12 climatological monthly means) for (c) PM2.5 and (e) PM10

and a scatterplot for PM2.5 (d) and PM10 (f). The correlation coefficient is only calculated in locations where the standard deviation from

the seasonal cycle is stronger than the within-month variability (see Sect. 2.5 for details).
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Figure 10. Observational coverage (%) for gridded observations, showing within each grid box (2° × 2°) the percentage of the constituents

that are measured assuming that PM, SO2−
4 , BC, OM, Na, Al, NO−

3 , and NH+
4 are required to constrain the PM distribution for (a) PM2.5

and (b) PM10.

3.6 Data and model coverage

The compilation shown here is the most comprehensive one

currently available for describing the spatial variability of the

total mass and composition of in situ particulate surface con-

centration data, and yet it highlights the lack of sufficient

data to constrain the current global distribution of particles

and their composition (Fig. 10a and b). Only 3 % of the grid

boxes (2° × 2°) have PM2.5 data (about 10 % of land grid

boxes), and only 0.3 % have sufficient data to constrain most

of the composition (defined as having 90 % of the variables

considered here: total mass, SO2−
4 , BC, OM, Na or Cl, Al

or dust, NO−
3 , and NH+

4 ). There are even less data available

to characterize PM10 (Fig. 10b), which is less important for

air quality and aerosol–cloud interactions but more impor-

tant for aerosol–biogeochemistry interactions and longwave

interactions (Mahowald et al., 2011; Li et al., 2022; Lim et

al., 2012; Kanakidou et al., 2018). Because of the high spa-

tial and temporal variability of coarse aerosols and the lack of

satellite or other remote sensing data to characterize coarse

sizes, this lack of data is a severe handicap in constraining

aerosol radiative forcing, its uncertainties, and other impacts

of particles in the climate system. Indeed, many of these

regions have also been identified as regions lacking suffi-

cient remote sensing data for climate and air quality purposes

(Millet et al., 2024).

In this paper, we included nitrate aerosols, which are not

included in the default CESM simulations conducted for cli-

mate, and represent about 10 % of the globally averaged sur-

face concentration mass (Table 2; Figs. S18 and S19). When

we look spatially, the default particles are the dominant par-

ticles over most of the planet (Fig. 11), but, in many regions

for both PM2.5 and PM10, the default aerosol scheme in-

cludes less than 50 % of the aerosol particles (Fig. 10a and c),

with substantial contributions from the nitrate particles that

we add to the simulation (Fig. 10b and d). The CESM2 (and

some other climate models) does not include nitrogen parti-

cles (NO−
3 and NH+

4 ) because of the substantial complexity
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Figure 11. Modeled estimates of what percentage of the surface concentration of PM2.5 is considered in the default CAM6 climate model

(a) or is new in this study (b). Similarly PM10 is shown for the default model (c) and new sources in this study (d). The new sources added

in this study are the nitrogen oxides as described in Sect. 2.3.

and computational load of chemistry and gas–aerosol equi-

librium (Bauer et al., 2007; Thornhill et al., 2021; Adams et

al., 2001; Regayre et al., 2018). Previous studies have high-

lighted the importance of nitrogen particles for climate, air

quality, and ecosystem impacts (e.g., Adams et al., 2001;

Bauer et al., 2007, 2016; Kanakidou et al., 2016; Baker et

al., 2021). Changes in nitrogen aerosol precursor emissions

are likely to follow different future trajectories than SO2−
4 ,

BC, or OC, whose anthropogenic sources are mostly fossil

fuel derived and should decrease in the future as renewable

energy resources expand (Gidden et al., 2019). Ammonia

has substantial sources from agriculture, which is likely to

stay constant or expand (Gidden et al., 2019; Klimont et al.,

2017; Bauer et al., 2016). This suggests that there could be a

substantial bias, especially regionally, in both historical and

future aerosol forcings due to the exclusion of these impor-

tant sources (e.g., Bauer et al., 2007; Thornhill et al., 2021;

Adams et al., 2001; Regayre et al., 2018).

4 Conclusions

In this study, we collect aerosol surface concentration data

sets and present a new aerosol compilation (AERO-MAP)

designed to evaluate the spatial and temporal variability of

particulate matter in Earth system and air quality models.

The in situ surface measurements complement the column

totals typically retrieved by satellites. This data set includes

both total mass and composition, where available, including

15 000 station data sets and over 20 million daily to weekly

averaged measurements. Climatological and decadal aver-

ages (2010–2019) are presented, and we recommend that the

climatological averages be used because they include more

data sets, and multi-decadal and decadal means are extremely

similar when compared (Sect. 3.2). The spatial variability of

aerosols (Fig. 1f and Sect. 3.2) is important to simulate ac-

curately in models as a prerequisite to identifying the human

impacts. In addition, we make available annual means across

time, along with the climatological monthly means, so that

temporal trends can be assessed. Here, we expand beyond

the usual limited coverage of North America and Europe to

present a more global view for observations of both PM2.5

and PM10 (Fig. 1). Unfortunately, there are still very lim-

ited data characterizing the surface concentration, size, and

composition of aerosol particles (Fig. 10), and the locations

where we lack data have also been identified as lacking suf-

ficient remote sensing data (Millet et al., 2024). While satel-

lite remote sensing can indicate the total atmospheric loading

during cloud-free conditions, it cannot yet provide informa-

tion about the size or composition of particles (Kahn et al.,

2005; Tanré et al., 1997; Remer et al., 2005). Surface-based

remote sensing may provide more information about size and

absorption properties (Holben et al., 2001; Dubovik et al.,

2002; Schuster et al., 2016; Gonçalves Ageitos et al., 2023;

Obiso et al., 2024), but single scattering albedo, for exam-

ple, is only available under very high (> 0.4 AOD) aerosol-

loading conditions and thus is not available most of the time

and in space (Dubovik et al, 2002). Knowing the size and

the composition of aerosols is key to knowing their impacts

on air quality and climate (Mahowald et al., 2011). Knowing

what particles are dominant in a region is required as fossil-

fuel-derived aerosols will likely be reduced, while agricultur-

ally based aerosols may well increase (Gidden et al., 2019).
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We also present a method that is generalizable to other mod-

els that use this data set to evaluate both mass and compo-

sition for intercomparison projects and improvements in air

quality and Earth system models. The novel aspect of this pa-

per is the presentation of this compilation in an easy-to-use

NetCDF format and some example comparisons that can be

used in the future to evaluate and improve model simulations

for individual models or for AeroCom intercomparisons. The

underlying data could also be used for data assimilation ef-

forts or for estimating from the observations what the contri-

butions are from different aerosols (e.g., similarly to Prank et

al., 2016).

This study has highlighted the value of surface concen-

tration data by showing that these data can identify where

models do well or poorly, not just for total mass but also for

different compositions and sizes, complementing other data

sources, such as remote sensing. A recent, independent, and

complementary effort collects all atmospheric composition

data (not just aerosols) from many networks into one easy-

to-use framework called GHOST (Globally Harmonised Ob-

servations in Space and Time; Bowdalo et al., 2024). The

approach used in GHOST includes presenting the data in

NetCDF format at the original resolution, with metadata re-

garding the measurement type and so on included, and is an

important step forward (Bowdalo et al., 2024). At this point,

GHOST only includes a subset of the data available in this

study: we hope that the GHOST effort can be expanded to

include more spatial variability and that it can be maintained

into the future.

This study also highlights the importance of including all

aerosol components into the models and shows that, in the

CESM2, approximately 10 % are missing. In many places,

there is 50 % of the particulate mass missing due to lack

of the nitrate particles (Fig. 10; Paulot et al., 2016; Adams

et al., 1999; Thornhill et al., 2021). Because these particles

are largely driven by agricultural sources and not fossil fuels,

their concentrations will hardly be affected by the transition

to renewable energy and may increase if agricultural pro-

duction expands with populations. Therefore, these nitrate

aerosol particles represent important air quality and climate

impacts that should be represented more accurately in future

studies.

Code availability. The model used here is a version of the Com-

munity Earth System Model, and the modifications and input files to

that code are available at https://doi.org/10.5281/zenodo.10459653

(Mahowald et al., 2024).

Data availability. The data compiled here are available as a

CSV table, with citations as in the Supplement (Data set 1).

This same file is available along with gridded data sets with the

compiled observations and modeled data in NetCDF format at

https://doi.org/10.5281/zenodo.10459653 (Mahowald et al., 2024).

Additional underlying data sets are available upon request to ma-
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Supplement. The supplement related to this article is available
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