
Statistical Communications in Infectious Diseases 2024; 16(1): 20240001

Research Article

Zhe Chen, Xinran Li and Bo Zhang*

The role of randomization inference
in unraveling individual treatment effects
in early phase vaccine trials
https://doi.org/10.1515/scid-2024-0001
Received February 25, 2024; accepted July 19, 2024; published online August 12, 2024

Abstract: Randomization inference is a powerful tool in early phase vaccine trials when estimating the causal
e!ect of a regimen against a placebo or another regimen. Randomization-based inference often focuses on
testing either Fisher’s sharp null hypothesis of no treatment e!ect for any participant or Neyman’s weak
null hypothesis of no sample average treatment e!ect. Many recent e!orts have explored conducting exact
randomization-based inference for other summaries of the treatment e!ect profile, for instance, quantiles of
the treatment e!ect distribution function. In this article, we systematically review methods that conduct exact,
randomization-based inference for quantiles of individual treatment e!ects (ITEs) and extend some results to a
special case where naïve participants are expected not to exhibit responses to highly specific endpoints. These
methods are suitable for completely randomized trials, stratified completely randomized trials, and a matched
study comparing two non-randomized arms from possibly di!erent trials. We evaluate the usefulness of these
methods using synthetic data in simulation studies. Finally, we apply these methods to HIV Vaccine Trials Net-
work Study 086 (HVTN 086) and HVTN 205 and showcase a wide range of application scenarios of the methods.
R code that replicates all analyses in this article can be found in first author’s GitHub page at https://github.com/
Zhe-Chen-1999/ITE-Inference.

Keywords: causal inference; early phase clinical trials; immunogenicity; e!ect quantile; randomization infer-
ence; vaccine

Introduction

Early phase vaccine trials; vaccine-induced immune responses; heterogeneity
One primary objective stated in study protocols of early phase clinical trials of experimental vaccines is to eval-
uate the vaccine-induced immunogenicity. Vaccine-induced immune responses are often heterogeneous among
study participants. To illustrate, Figure 1 exhibits the observed serum IgG binding antibody multiplex assay
(BAMA) responses to two antigens, Con 6 gp120/B and gp41, among study participants in a phase 1, multi-arm,
placebo-controlled clinical trial conducted via the HIV Vaccine Trials Network (HVTN) [1, 2]. HVTN 086/SAAVI
103 (HVTN 086 henceforth) enrolled a total of 184 participants into four study arms; within each study arm,
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Figure 1: Observed serum IgG BAMA responses to Con6
gp120/B (left panel) and gp41 (right panel) among study par-
ticipants in the HIV Vaccine Trials Network (HVTN) study 086.
A total of four study arms were plotted. Within each arm, par-
ticipants were randomized to a vaccine regimen or placebo. A
small perturbation was added to each observation to aid data
visualization.

participants were randomized to a candidate vaccine regimen or placebo. It is transparent from Figure 1 that
vaccine recipients’ binding antibody responses ranged from “potent and mostly homogeneous” (e.g., response
to gp41 among recipients of regimens 1 and 4) to “weak and heterogeneous” (e.g., response to Con 6 gp120/B
among recipients of regimen 2). This within-participant heterogeneity in vaccine-induced immune responses
has been well-documented in many vaccines, including those for Covid-19, influenza, dengue, and hepatitis B,
[2] and could at least partially explain the lack of e"cacy in phase 2b/3, HIV-1 vaccine trials.

Researchers routinely characterize a vaccine regimen’s induced immune responses (e.g., the BAMA
responses in Figure 1) by estimating and reporting its sample average treatment e!ect (SATE) against the
placebo, which could be unbiasedly estimated in a randomized clinical trial, and assess and rank multiple regi-
mens by comparing their estimated SATEs.Whendeveloping a challenging vaccine product like anHIV-1 vaccine,
researchers have long realized that the response rates among study participants are often highly variable, and a
significant proportion of participants could exhibit immune responses below the assay limit of detection (LOD)
or lower limit of quantification (LLOQ). Hence, summarizing and comparing immune response profiles based
on themean di!erence alone couldmask significant and perhapsmeaningful heterogeneities. The current stan-
dard practice is to complement the estimated SATE and its 95 % confidence interval by further reporting (i)
descriptive statistics and boxplots summarizing the spread of immune responses elicited by each regimen, (ii)
the percentage of positive or high responderswithin each group, and (iii) themean response among the subset of
positive or high responders. Unfortunately, unlike the SATE which is a well-defined, albeit less than comprehen-
sive, causal estimand, neither the descriptive statistics nor the mean di!erence in responses among positive or
high responders constitutes a formal confidence statement about the “treatment e!ect” of a regimen vs. placebo
or another regimen.

Science table; estimands of interest; outline of the article
What is a well-defined causal estimand that captures treatment e!ect heterogeneity in early phase clinical tri-
als? It is instructive to examine what Rubin [3] refers to as a “science table.” Table 1 summarizes the potential
outcomes and unit-level treatment e!ects of N1 + N0 study participants in a clinical trial, where N1 study par-
ticipants are randomized to Regimen 1 and the otherN0 participants to Regimen 0. In the science table, Yi(1) and
Yi(0) denote study participant i’s potential immune responses of interest under two regimens, respectively, and
only one of the two responses is observed depending on the actual regimen assigned to the participant. The con-
trast in the two potential outcomes, ! i=Yi(1) − Yi(0), denotes the unit-level treatment e!ect [3]. We will refer to
! i as an individual treatment e!ect (ITE) in this article [4, 5]. The collection of ITEs,  = {!i, i = 1,… ,N1 + N0},
is the causal quantity of ultimate interest, in the sense that any summary treatment e!ect can be derived from
 (e.g., the sample average treatment e!ect !). Let ! (i) denote the ith largest treatment e!ect. The immuno-
genicity profile of a vaccine regimen (against placebo or a competing regimen), as revealed in an early phase
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Table 1: Science table of N0 + N1 study participants. A total of N0 are randomized to regimen 0 and the other N1 are randomized to
regimen 1. Each participant is associated with two potential immune responses Yi(0) and Yi(1) corresponding to regimen 0 and 1, though
only the one corresponding to the actual regimen assignment is observed (boldface). Each participant i is associated with an individual
treatment effect ! i .

Participants Regimen Y(1) Y(0) Individual treatment effects

1 Regimen 1 Y() Y(0) !=Y(1)− Y(0)
2 Regimen 1 Y() Y(0) !=Y(1)− Y(0)
...

...
...

...
...

N Regimen 1 YN
() YN1 (0) !N1 = YN1 (1)− YN1 (0)

N + 1 Regimen 0 YN1+1(1) YN+() !N1+1 = YN1+1(1)− YN1+1(0)
...

...
...

...
...

N + N Regimen 0 YN1+N0 (1) YN+N
() !N1+N0 = YN1+N0 (1)− YN1+N0 (0)

clinical trial, is completely characterized by  = {!(i), i = 1,… ,N1 + N0}. Unfortunately, elements in  are
almost never completely observed, so statistical inference is needed.

Outline of the article
Our primary goal in this article is to provide a brief overview of two classical causal null hypotheses, Fisher’s
sharp null hypothesis andNeyman’sweak null hypothesis, and introduce a novel class of null hypotheses regard-
ing the quantiles of individual treatment e!ects. We then review some recently proposed methods that conduct
exact, randomization-based inference for ITE quantiles. These methods are suitable for a range of practical
scenarios, including completely randomized trials, block randomized trials, and amatched-pair design that com-
pares two non-randomized vaccine arms or a new vaccine arm against historical controls. We argue that ITE
quantiles, andmore generally the distribution function of ITEs, o!er a perspective that could complement usual
estimands (e.g., sample average treatment e!ect) in early phase vaccine trials that aim to assess vaccine-induced
immunogenicity. Finally, we present a comprehensive case study of the immunogenicity data derived from HIV
Vaccine Trials Network (HVTN) Study 086 and explore how di!erent methods may facilitate decision-making
and improve the evaluation of vaccine regimens.

Framework, notation, and different null hypotheses

Notation
We consider a two-arm randomized trial on N study participants under Neyman-Rubin’s potential outcomes
framework [6, 7]. Let Yi(1) and Yi(0) denote participant i’s potential outcomes under Regimen 1 and Regi-
men 0 and ! i=Yi(1) − Yi(0) participant i’s ITE. We collect the set of N potential outcomes under Regimen 1 in
Y(1) = (Y1(1), Yi(1),… , YN (1))⊺, those under Regimen 0 in Y(0) = (Y1(0), Yi(0),… , YN (0))⊺, and the set of ITEs in
! = (!1, !2,… , !N )⊺. Let Zi denote the treatment assignment to participant i such that Zi=1 if participant i is
assigned Regimen 1 and 0 otherwise. The set of treatment assignments is collected in Z = (Z1, Z2,… , ZN )⊺. For
each study participant i, the observed outcome Yi satisfies Yi=Zi ⋅ Yi(1) + (1 − Zi) ⋅ Yi(0). We collect N observed
outcomes in the vector Y = (Y1, Y2,… , YN )⊺. In randomization inference, potential outcomes of study partici-
pants are viewed as fixed quantities and researchers rely solely on the treatment assignment mechanism to
draw valid causal conclusions. In other words, randomization forms what Sir Ronald Fisher referred to as the
“reasoned basis” for causal inference [8]. In a completely randomized experiment (CRE), N1 study participants
are randomly assigned to Regimen 1 and the other N0=N − N1 to Regimen 0.
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Fisher’s sharp null hypothesis and Neyman’s weak null hypothesis
Fisher’s sharp null hypothesis [8] considers testing H": !=", where " =

(
"1, "2,… , "N

)⊺ ∈ ℝN is a prespecified
vector of constants. The Fisher randomization test (FRT) scheme is often used to test H". Following Rosenbaum
[9], we consider test statistics of the form t

(Z,YZ,"(0)
)
, where Z is the vector of observed treatment assign-

ments and YZ,"(0) is the vector of imputed potential outcomes under Regimen 0. Given the observed data Y and
underH", we have YZ,"(0)=Y − Z⚬", where ⚬ represents element-wise multiplication. In a CRE design, the null
distribution of the test statistic has the following tail probability:

GZ,"(c) ≡ Pr{t(A,YZ,"(0)) ≥ c} =
(
N
N1

)−1
⋅

∑

a∈{0,1}N :
N∑
i=1

ai=N1

"
{
t(a,YZ,"(0)) ≥ c

}
, (1)

where A denotes a random treatment assignment vector under the CRE design, a denotes a realization, and
the corresponding randomization-based, exact p-value is obtained by evaluating the tail probability in (1) at the
observed value of the test statistic:

pZ," ≡ GZ,"
{
t
(Z,YZ,"(0)

)}
. (2)

In some circumstances, treatment e!ect heterogeneity is likely to exist although its details (e.g., how the
treatment e!ect varies across subgroups) may be unknown. In these cases, testing the following weak null
hypothesis of no sample average treatment e!ect emerges as an alternative [6]:

H0,weak: ! = 1
N

N∑
i=1

!i = 0.

Unlike the FRT that is exact, randomization-based tests for SATE require large-sample approximation,
although some of them also enjoy finite-sample validity for a certain sharp null hypothesis [10–12].

As discussed in Section 1.1, the SATE is one important, albeit not comprehensive, assessment of a regimen’s
treatment e!ect profile. Moreover, when the outcomes have heavy tails, the SATE could be sensitive to the out-
liers and the finite population asymptotic approximation tends to work poorly in these cases [4]. These aspects
are particularly relevant in pre-clinical studies (e.g., nonhuman primates studies) and early phase clinical trials,
where the sample size could be as small as 10–20 per arm and treatment e!ect heterogeneity is often expected.

Beyond the SATE: quantiles and proportions
An exclusive focus on the SATE could arrive at unsatisfactory conclusions in the presence of large treatment
e!ect heterogeneity. For example, a treatment that is harmful to a majority of participants could still have a
positive treatment e!ect on average, due to some large ITEs on a small proportion of the cohort.

Some researchers propose to study the di!erence between quantiles of the marginal distributions of poten-
tial outcomes:

qΔ ≡ q1,k − q0,k,

where qj,k≡infq Pr{Y (j)≤q}≥k, j=0, 1. These works often adopt a superpopulation setting, fromwhich study par-
ticipants are drawn as an independent and identically distributed sample. Firpo [13] proposes a semiparametric
estimation procedure targeting qΔ under the no unmeasured confounding assumption. Frölich and Melly [14]
extend this work to estimating qΔ among compliers using a binary instrumental variable in the presence of
unmeasured confounding. More recently, Powell [15] generalizes the so-called generalized quantile regression
(GQR) method to estimating qΔ with one or more, possibly continuous, treatment variables.

A comprehensive summary of ITE profile is its distribution function. In this paper, we propose to study the
quantiles of ITEs, which involve the joint distribution of Y (1) and Y (0) and di!er from the di!erence in two
quantile functions. In fact, qΔ only coincides with the quantile of ITEs when the rank of the potential outcome
for a given individual is the same regardless of his or her treatment status [13]. Under a superpopulation setting,
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some authors, see, e.g., Fan and Park [16, 17] and references therein, studied sharp bounds on the quantile of
ITEs and establish their asymptotic properties. More recently, Huang et al. [18] proposes a pointwise consistent
confidence set for the proportion of units benefiting from the treatment for a binary or ordinal outcome. In the
rest of this article, including methods reviewed in Section 3 and studied in Section 4, all focus on a finite sam-
ple setting where the potential outcomes of all study participants are fixed, as opposed to the superpopulation
inference which could work poorly in early phase clinical trials with small sample sizes.

Below, we formally introduce our target causal estimand and associated null hypotheses. Let F(c) ≡
N−1∑N

i=1"(!i ≤ c), for c ∈ ℝ, denote the distribution function of ITEs and F−1(#)≡inf{c: F(c)≥#}, for # ∈ (0, 1],
denote the corresponding quantile function. We focus on the N study participants so that the quantile function
can take at most N values, i.e., the sorted ITEs ! (1)≤! (2)≤ . . . ≤! (N). More precisely, we have F−1(#)=! (k), with
k=⌈N#⌉ denoting the ceiling of N# , for # ∈ (0, 1]. In addition, the distribution function can be equivalently
written as F(c)=1−N(c)/N , for c ∈ ℝ, whereN(c) ≡ ∑N

i=1"(!i > c) denotes the number of participants with ITEs
exceeding a threshold c. We consider the following null hypothesis for any 0≤k≤N and c ∈ ℝ:

Hk,c: !(k) ≤ c ⟺ N(c) ≤ N − k. (3)

For descriptive simplicity,we define ! (0)=−∞. Herewe focus on one-sided testingwith alternatives favoring
large treatment e!ects; by inverting the tests, we may then obtain lower confidence limits for ITE quantiles
F−1(#)’s (or equivalently ! (k)’s) and proportions of participants with ITEs exceeding any thresholds 1− F(c)’s (or
equivalentlyN(c)’s). To obtain one-sided tests with alternatives favoring small treatment e!ects, onemay use the
same procedure but with observed outcomes’ signs flipped or the treatment/control status switched. Two-sided
tests can be constructed by combining two one-sided tests using, say, the Bonferroni correction.

A review of randomization inference for ITE profiles

Completely randomized experiments
In a recent article, Caughey et al. [4] extend the FRT to testing the null hypothesis Hk,c in (3). Because Hk,c is
a composite null hypothesis and permits infinitely many imputation schemes, FRT is not directly applicable.
Nevertheless, a valid p-value for testing Hk,c can be obtained by maximizing the randomization p-value pZ,"
in (2) over " ∈ k,c, where k,c denotes the set of vectors whose elements of rank k are bounded by c, i.e.,
k,c ≡ {

" ∈ ℝN : "(k) ≤ c
}
⊂ ℝN . However, optimizing sup"∈k,c

pZ," is computationally challenging and may be
NP-hard. To address this challenge, Caughey et al. [4] propose to use the class of rank score statistics of the
following form:

t(z, y) =
N∑
i=1

zi%{ri(y)}, (4)

where %{⋅} is a monotone increasing function, and ri(y) denotes the rank of the ith coordinate of y using index
ordering to break ties, assuming that the ordering has been randomly permuted before the analysis.

Under a CRE design, the rank score statistic t(⋅, ⋅) defined in (4) is distribution free, in the sense that for
any y, y′ ∈ ℝN , t(Z, y) and t(Z, y′) follow the same distribution. Because of this distribution free property,
the imputed randomization distribution in (1) reduces to a distribution that does not depend on the observed
treatment assignment Z or the hypothesized treatment e!ect ", i.e.,

GZ,"(c) ≡ Pr
{
t
(A,YZ,"(0)

) ≥ c
}
= Pr{t(A, y) ≥ c} ≡ G(c), (5)

where y denotes an arbitrary vector in ℝN . Consequently, the valid p-value sup"∈k,c
pZ," for testing Hk,c in (3)

simplifies to
pRk,c ≡ sup

"∈k,c

pZ," = sup
"∈k,c

G{t(Z,Y − Z ⚬")} = G
{

inf
"∈k,c

t(Z,Y − Z ⚬")
}
, (6)
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where the last equality holds because G is monotone decreasing and t(Z, Y − Z⚬") achieves its infimum over
" ∈ k,c. Equation (6) suggests that, to obtain a valid p-value for testing Hk,c based on a distribution free test
statistic, it su"ces to minimize the value of the test statistic t

(Z,YZ,"(0)
)
over " ∈ k,c. When using the rank

score statistic in (4), the infimum is achieved when the ranks of Yi(0)’s of treated participants are minimized,
or equivalently, treated participants’ ITEs are maximized subject to Hk,c. Because Zi=0 for those in the control
group, their ITEs do not directly contribute to the value of the test statistic. Caughey et al. [4] show that theworst-
case p-value corresponds to assigning arbitrarily large ITEs to the N − k treated participants with the largest
observed outcomes and c to the remaining participants. Moreover, the inference is simultaneously valid in the
sense that there is no need to conduct multiple analysis correction when jointly inferring many quantiles or the
entire distribution function of ITEs.

Caughey et al.’s [4] approach can be conservative, since the worst-case consideration corresponds to assign-
ing largest ITEs to the treated participants; this is unlikely by randomization because ITE can be understood as
a pretreatment variable in a broad sense, and randomization tends to balance the distribution of pretreatment
variables. More recently, Chen and Li [19] propose two enhanced methods that tackle this limitation and can
achieve improved statistical power.

Their first method better leverages the information contained in the control participants by (A1) conduct-
ing level-(1 − &) simultaneous inference for ITEs among treated participants, (A2) flipping treated and control
participants and repeating the level-(1− &) simultaneous inference for control participants, and (A3) combining
the intervals for all participants by ordering the one-sided intervals according to their lower confidence limits.
The resulting ordered intervals can be shown to be simultaneously valid, level-(1− 2&) confidence intervals for
all N ITEs. In this procedure, the choice of the test statistic could be di!erent in Step (A1) and Step (A2). We will
explore the choice of test statistics in some practical settings in the simulation study. In their second method,
instead of presuming that the largest N − k ITEs are all among the treated participants, they view the number
of participants with the largest N − k e!ects in the treatment arm as a nuisance parameter and use Berger and
Boos’s [20] approach to control for the randomness of this nuisance. Their secondmethod can be summarized as
follows: (B1) apply the Berger and Boos’s [20] correction to derive simultaneous confidence intervals for all par-
ticipants; (B2) flip the role of treated and control participants and repeat Step (B1); and (B3) combine the intervals
derived from Step (B1) and Step (B2) using the Bonferroni method. Chen and Li [19] show via simulations that
both approaches deliver more powerful statistical inference compared to the original method in Caughey et al.
[4] while remaining exactly valid in finite sample.

Stratified randomized experiments
Su and Li [21] extend the approach in Caughey et al. [4] to stratified completely randomized experiments (SCRE).
They consider testing the same null hypothesis Hk,c in a study design with S strata. Each stratum consists of ns
study participants such thatN = ∑S

s=1ns. Su and Li [21] consider using the following stratified rank sum statistic:

tstr(z, y) =
S∑
s=1

ts
(zs, ys

)
=

S∑
s=1

ns∑
i=1

zsi%s
{
ri
(ys

)}
, (7)

where %s{⋅} again denotes some monotone increasing rank transformation for stratum S=s, zs and ys denote
the subvectors of z and y corresponding to stratum S=s, and ri(ys) denotes the rank of the ith coordinate of
ys among all coordinates of ys. Again, the stratified rank sum statistic enjoys the distribution free property in a
SCRE, so that a valid p-value for testingHk,c has an equivalent form as in (6). Specifically, the p-value pRk,c defined
as in (6), but with t(⋅, ⋅) replaced by the stratified rank sum statistic tstr(⋅, ⋅) and G(⋅) being the tail probability of
tstr(Z, y) for any y ∈ ℝN , is a valid p-value for testing Hk,c. Su and Li [21] then demonstrate that minimizing the
test statistic over all possible ITEs compatible with the null hypothesis Hk,c can be transformed into a multiple-
choice knapsack problem,which can be solved exactly using dynamic programming, or in a slightly conservative
manner using a greedy algorithm. Implementation of the methods can be found in the R package QIoT [21]. The
first enhanced method in Section 3.1 can also be extended to the SCRE [19].
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Integrated analysis of non-randomized arms
In many circumstances, researchers may be interested in conducting a pooled analysis of data derived from
multiple clinical trials. This can happen in two circumstances. First, researchers may be interested in compar-
ing immunogenicity of two vaccine regimens, one from a current trial and the other from a historical trial.
Second, researchers may be interested in comparing a vaccine regimen to historical controls. Because of a lack
of randomization, a naïve comparison of outcomes from non-randomized arms assuming randomization could
lead to a bias in estimating the treatment e!ects. In these studies, it is essential to adjust for baseline covari-
ates that could predict immunogenicity; for instance, Huang et al. [2] report that host baseline characteristics
could predict a high-level binding antibody response with a cross-validated area under the receiver operating
characteristics curve (AUROC) equal to 0.72 (95 % CI: [0.68 0.76]). Many methods can be used to perform covari-
ance adjustment; in early phase trials with small samples, one reasonable strategy is to conduct a matched
cohort study [9, 22]. One popular downstream data analysis strategy in a matched cohort study is to conduct
randomization inference. Because of the matched-pair or matched-set structure, one needs to conduct strati-
fied randomization inference discussed in Section 3.2. We will illustrate the proposed workflow, from statistical
matching to stratified randomization inference for the ITE profile, in a case study in Section 6.

Relaxing the randomization assumption
In a matched analysis of immunogenicity data derived from non-randomized arms, the key assumption is a
version of the ignorability assumption, which e!ectively says that within the strata defined by observed covari-
ates being matched on, selection into a particular trial or study arm is randomized [23, 24]. In these analyses, it
is essential to examine the consequences of deviating from the randomization assumption, as Rosenbaum [25]
(Chapter 6) put it: “the absence of an obvious reason to think that two groups are di!erent falls well short of
a compelling reason to think they are the same.” In early phase vaccine trials, it is conceivable that healthier
study participants with potentially stronger immune responses may be preferentially enrolled a certain trial or
study arm, for instance, because of the di!erence in the vaccine dosing schedules (bolus vs. fractional dosing),
and adjusting for observed covariates may not be su"cient in removing the selection bias.

Su and Li [21] study a relaxed randomization inference scheme, where in lieu of assuming randomization
within each stratum, the treatment assignment probability is allowed to deviate from randomization under a
model that controls the maximum level of deviation [9, 26]:

1
Γ ≤ 's j∕(1− 's j)

'sj ′∕
(
1− 'sj ′

) ≤ Γ, 1 ≤ j, j ′ ≤ ns, 1 ≤ s ≤ S, (8)

where 'sj and 'sj′ denote the treatment assignment probabilities of participant j and j′ in stratum S=s, respec-
tively, and the sensitivity parameter Γ≥1 specifies the maximum odds ratio across all strata. Inferring the
treatment e!ect under a biased randomization scheme is referred to as a sensitivity analysis in the analysis
of non-randomized or observational data, and the goal is to investigate the maximum degree of deviation from
the randomization assumption when a certain null hypothesis can no longer be rejected. Such sensitivity analy-
sis methods have been developed for Fisher’s sharp null hypothesis [9, 26] and Neyman’s weak null hypothesis
of no sample average treatment e!ect [27]; Su and Li [21] generalize the method to testing the null hypothesis
Hk,c under a matched design.

Placebo-controlled trials with highly specific endpoints
In a placebo-controlled vaccine trial, participants’ potential outcomes under the placebo are often known a pri-
ori, and these controls are nonetheless included in the study primarily for blinding purposes (e.g., preventing
treatment arm information from being revealed to lab technicians). For instance, in many early phase HIV vac-
cine trials, the endpoints of interest are vaccine-induced, antigen-specific immune responses, and healthy and
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naïve study participants receiving the placebo are not expected to exhibit any of these highly specific immune
responses to the antigens. Hence, we often have auxiliary information Yi(0) = LOD for all i=1, . . . , N , where LOD
represents an assay-specific limit of detection. In this stylistic case, we immediately know the ITEs of N1 treated
participants, based onwhich wemay infer the entire ITE distribution. In this section, we formally derive a level-
(1 − &) confidence interval for a single ITE quantile ! (k), prove the equivalence between our result and earlier
results by Sedransk and Meyer [28] in the context of simple random sampling, and derive simultaneously valid
confidence intervals for multiple ITE quantiles or the entire ITE distribution. Methods in this section always
leverage the auxiliary information about Y (0) and therefore are often more powerful than those developed for
generic endpoints reviewed in Section 3. There are two ways to see why leveraging such auxiliary information
makes inference more powerful. First, all Yi(0)’s in the science Table 1 are known a priori and the only potential
outcomes not known are Yi(1)’s of the control participants. A second and related perspective is to consider the
worst-case p-value in expression (6). Auxiliary information on Yi(0) places restriction on the setk,c and hence
the supremum is taken over a smaller space.

Without loss of generality, we assume LOD = 0 so Yi(0)=0 for all i’s. If LOD ≠ 0, then we can always shift
Y (0) and Y (1) by the magnitude of LOD and proceed to make inference on the transformed outcomes. ITEs
will remain unchanged. Consider the null hypothesis Hk,c in (3) for any 1≤k≤N and c ∈ ℝ. Under the CRE
design, treated participants are a simple random sample of size N1 from a total of N participants. Therefore,
n(c) ≡ ∑N

i=1Zi"(Yi > c) = ∑N
i=1Zi"(!i > c) follows a Hypergeometric distribution with parameters (N , N(c), N1).

The Hypergeometric distributionwith parameters (N , n,N1) becomes stochastically larger as n increases; that is,
if X follows a Hypergeometric distribution with parameters (N , n, N1), Y follows a Hypergeometric distribution
with parameters

(
N, n′,N1

)
such that n′≥n, thenℙ(X ≤ t) ≥ ℙ(Y ≤ t) for every t ∈ ℝ. Together, these facts imply

a finite-sample valid p-value for testing Hk,c, as summarized in the following proposition.

Proposition 1. Consider a CRE design and assume Yi(0)=0 for i=1, . . . , N. For any 1≤k≤N and c ∈ ℝ, pHk,c ≡
GH(n(c);N,N − k,N1) is a valid p-value for testing the null hypothesis Hk,c in (3), where GH(x; N, n, N1)≡Pr(X≥x)
denotes the tail probability of a Hypergeometric random variable X with parameters (N, n, N1). Specifically, under
Hk,c, Pr

(
pHk,c ≤ &

) ≤ & for any & ∈ (0, 1).

Proof All proofs in the article can be found in Supplementary Material A.

From Proposition 1, we can then conduct Lehmann-style test inversion to construct confidence intervals for
! (k) and n(c), for any 1≤k≤N and c ∈ ℝ. Moreover, due to the monotonicity of the p-value pHk,c in k and c, the
resulting confidence sets are intervals and have simpler forms that facilitate their computation. Proposition 2
summarizes these results. For descriptive convenience, we let y(1) ≤ y(2) ≤ … ≤ y(N1) denote the sorted observed
outcomes for treated participants and further define y(0)=−∞.

Proposition 2. Under a CRE design where Yi(0)=0 for i=1, . . . , N, we have the following:
(a) pHk,c is monotone increasing in c and decreasing in k.
(b) For any 1≤k≤N and & ∈ (0, 1),

{
c: pHk,c > &, c ∈ ℝ

}
is a 1 − & confidence interval for ! (k), and it can be

equivalently written as [y(k(&)),∞) with k(&)≡N1 − QH(1− &; N, N− k, N1), where QH((; N, n, N1) denotes the
(-th quantile function of a Hypergeometric random variable X with parameters (N, n, N1).

(c) For any c ∈ ℝ and & ∈ (0, 1),
{
N − k: pHk,c > &, 0 ≤ k ≤ N

}
is a 1 − & confidence set for N(c), and it can be

equivalently written as {nc,& , nc,& + 1, . . . , N} with nc,&=N −max{k: GH(n(c); N, N − k, N1)>&, 0≤k≤N}.
Confidence interval results for ! (k) can also be derived by applying results in Sedransk and Meyer [28]

who study inference for quantiles of a finite population based on simple random sampling. In Supplemen-
taryMaterial A.3, we prove the equivalence between the confidence intervals in Proposition 2 and those derived
by directly applying results in Sedransk and Meyer [28]. In Supplementary Material A.3, we also prove that the
confidence intervals for N(c) in Proposition 2 are equivalent to that in Wang [29], who studies inference for
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Hypergeometric distribution parameters. Hence, by the optimality results inWang [29], confidence intervals for
N(c) in Proposition 2(c) are optimal one-sided confidence intervals.

Evaluating the ITE profile of a treatment regimen goes beyond constructing confidence intervals for each
individual ITE. Proposition 3 derives the simultaneous confidence intervals for multiple ITE quantiles, which
provides a valid summary of treatment e!ect profile and is of primary interest in practice.

Proposition 3. Consider a CREdesign and assumeYi(0)=0 for i=1, . . . , N. Suppose thatwe are interested inmultiple
quantiles of ITEs: !(k1), !(k2),… , !(k J ), where 1≤k1≤ . . . ≤kJ≤N. Under a CRE design, the simultaneous coverage
probability for quantiles of ITEs is

Pr
( J⋂

j=1
{!(k j) ≥ y(k j(&))}

)
≥ 1− Pr

( J⋃
j=1

{ N∑
i=1

Zi"(i > k j) > QH(1− &;N,N − k j,N1)
})

, (9)

where the equality holds when all ITEs ! i’s are distinct. Recall that y(k j(&)) is the observed outcome of rank
kj(&)≡N1 − QH(1 − &; N, N − kj, N1) in the treatment group.

Proposition (9) is useful because the lower bound depends only on observed data quantities and thus can be
e"ciently approximately using Monte Carlo methods. Moreover, the lower bound of the simultaneous coverage
probability is sharp in the sense that it is achieved when all ! i’s are distinct across all N participants.

Technically, the assay limit of detection specifies the lowest level of immune response to be detected and
merely places an upper bound on Yi(0) rather than specifies its precise value. Proposition 4 extends previous
results and suggests that p-values and confidence statements derived from Propositions 1–3 remain valid when
Yi(0)≤0 rather than Yi(0)=0.

Proposition 4. Propositions 1–3 hold when all individuals have a non-positive and possibly di!erent potential
outcome under control, that is, Yi(0)≤0 for all i=1, . . . , N.

Simulation

Characterizing ITE profiles with highly specific endpoints
One primary objective in a typical experimental vaccine trial is to characterize the immunogenicity profile of
each candidate regimen. The primary goal of our first simulation study is to compare the power of pointwise
and simultaneous inference of ITE quantiles when Yi(0) = LOD using the methodology introduced in Section 4.
Our simulation studies can be compactly summarized by a 2 × 2 × 3 factorial design. Factors 1 and 2 specify the
clinical trial design and are meant to mimic the size of a typical early phase or experimental medicine trial:

Factor 1: sample size, N: 40 and 100;

Factor 2: proportion assigned to treatment, p≡N1/N=0.5 (balanced design).

We consider a simple pattern for the ITE profile: & ×N units have a null ITE (! i=0) and the other (1− &)×N
positive responders have a positive ITE (! i>0). The distribution of ! i among (1 − &) × N positive responders
follows a truncated normal distribution with parameters ), *=1.5, and truncation at 0.1 and 4. This simple ITE
pattern is meant to mimic a practical setting in HIV vaccine development where the experimental vaccine only
induces an antigen-specific immune response for a subset of study participants. Factors 3 and 4 specify & and ).

Factor 3: proportion of units exhibiting a null ITE, &: 0.2 and 0.5;
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Factor 4: mean parameter of truncated normal among positive responders, ): 1.5, 2.0 and 2.5.

We consider a constant potential outcome under control, Yi(0)=2, corresponding to LOD in our case study.
Each unit has its potential outcome Yi(1)=Yi(0)+ ! i, and the observed outcome Yi satisfies Yi=Zi ⋅ Yi(1)+ (1− Zi)
⋅ Yi(0).

For each of the 12 data generating processes, we performed randomization inference and constructed (i)
individual confidence intervals; and (ii) simultaneous confidence region for selected quantiles (six quantiles
including ⌈0.5 × N⌉, ⌈0.75 × N⌉, ⌈0.8 × N⌉, ⌈0.85 × N⌉, ⌈0.9 × N⌉ and ⌈0.95 × N⌉, 10 quantiles including
k=⌈0.5×N⌉, ⌈0.6×N⌉, ⌈0.65×N⌉, ⌈0.7×N⌉, ⌈0.75×N⌉, ⌈0.8×N⌉, ⌈0.85×N⌉, ⌈0.9×N⌉, ⌈0.95×N⌉ and N , and
15 quantiles including ⌈0.3 × N⌉, ⌈0.35 × N⌉, ⌈0.4 × N⌉, ⌈0.45 × N⌉, ⌈0.5 × N⌉, ⌈0.55 × N⌉, ⌈0.6 × N⌉, ⌈0.65 × N⌉,
⌈0.7 × N⌉, ⌈0.75 × N⌉, ⌈0.8 × N⌉, ⌈0.85 × N⌉, ⌈0.9 × N⌉, ⌈0.95 × N⌉ and N).

For each data generating process, we repeated simulation 1,000 times. We measured the success of each
method in recovering the ITE profile according to the following two criteria. First, for a selected quantile k and
the target estimand ! (k), we recorded L̂(k), the 95 % one-sided lower confidence limits, across 1,000 simulations
and plot its cumulative distribution function. Second, we calculated SS = ||−1∑k∈(L̂(k) − !(k))2, where is a
collection of quantiles of interest, and L̂(k) was derived using the pointwise or simultaneous inference methods.
For non-informative lower confidence limits, we set L̂(k) to−10.We reported SS averaged over 1,000 simulations.
A smaller SS value is more preferable.

Figures S1 and S2 in the Supplementary Material B contrast the distributions of L̂(k) across six quantiles
derived from pointwise (left panel) and simultaneous inference (right panel). Table 2 summarizes SS for each
data generating process. In general, we conclude that the simultaneous inference yielded lower confidence limits
only slightly inferior compared to those derived from pointwise inference, especially when the sample size is
small and number of quantiles is relatively small.

Compare different methods with generic endpoints
The goal of our second simulation study is to assess and compare the power of several competingmethodologies
reviewed in Section 3 when comparing two vaccine regimens with no restrictions on the endpoints. To provide
more relevant guidance for practice, we will use the immune response data generated fromHVTN 086 as a basis
for the data generating process. Specifically, we considered the following two data generating processes:

Table 2: Average SS over 1,000 simulations with Yi(0)=2 for various sample size n, proportion of units with a null treatment effect &, and
mean of truncated normal among positive responders ). Point: pointwise inference. Simul: simultaneous inference over 6, 10 or 15 ITE
quantiles.

n # $ 6 quantiles 10 quantiles 15 quantiles
Point Simul Point Simul Point Simul

40 0.20 1.50 0.37 0.37 0.34 0.38 0.38 0.44
40 0.20 2.00 0.37 0.37 0.34 0.38 0.42 0.49
40 0.20 2.50 0.36 0.36 0.33 0.38 0.51 0.60
40 0.50 1.50 0.59 0.59 0.56 0.63 0.41 0.50
40 0.50 2.00 0.60 0.60 0.67 0.76 0.47 0.60
40 0.50 2.50 0.65 0.65 0.77 0.92 0.56 0.73
100 0.20 1.50 0.13 0.18 0.12 0.17 0.13 0.20
100 0.20 2.00 0.12 0.17 0.11 0.16 0.16 0.25
100 0.20 2.50 0.10 0.14 0.10 0.15 0.17 0.28
100 0.50 1.50 0.20 0.28 0.24 0.33 0.18 0.26
100 0.50 2.00 0.20 0.28 0.31 0.41 0.22 0.32
100 0.50 2.50 0.19 0.27 0.34 0.46 0.26 0.39
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– DGP I: We sampled BAMA responses of size N1 against Con 6 gp120/B with replacement from the vaccine
regimen T1 and of size N0 against Con 6 gp120/B with replacement from the vaccine regimen T2.

– DGP II:We sampled BAMA responses of size N1 against gp41 with replacement from the vaccine regimen
T1 and data of size N0 against gp41 with replacement from the vaccine regimen T2.

For each of the N=N1 + N0 sampled data points, a Gaussian noise , ∼ N(0, 0.152) was added to their log10-
transformed scale.DGP I represents a scenariowhere twovaccine regimens have similar spread in their immune
responses and the treatment e!ects appear homogeneous. DGP II represents a distinct scenario where immune
responses from two vaccine regimens have rather di!erent spread and a heterogeneous ITE profile among vac-
cine recipients seems more plausible. We considered balanced design with the following three sets of sample
sizes: N1=N0=30, N1=N0=50, and N1=N0=100.

For each data generating process, we performed randomization inference for the distribution function of
ITEs (and equivalently the proportion of units with ITEs exceeding di!erent thresholds). We constructed (i)
individual confidence intervals for selected quantiles; and (ii) simultaneous confidence intervals for selected
quantiles using the following methods and choices of test statistics:
– M1: The original method in Caughey et al. [4]. We considered using Stephenson rank sum test with s=2

(M1-S2) and s=6 (M1-S6);
– M2: The first enhanced method in Chen and Li [19] which combines inference for treated and control par-

ticipants. This method involves choosing a test statistic whenmaking inference for the treated and a second
test statistic when making inference for the control. We considered the following 2 × 2=4 combinations of
test statistics: Stephenson rank sum test with s=2 or 6 when inferring ITEs for the treated in Step (A1) and
Stephenson rank sum test with s=2 or 6 when inferring ITEs for the control in Step (A2). These fourmethods
are referred to asM2-S2-S2,M2-S2-S6,M2-S6-S2, andM2-S6-S6. For instance,M2-S2-S6 represents themethod
that uses Stephenson rank sum test with s=2 in Step (A1) and with s=6 in Step (A2).
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Figure 2: Median of the 95 % lower confidence limits of ! (k) over 1,000 simulations derived from each method, for DGP I (Con 6 gp 120/B)
and DGP II (gp41) with N1=N0=30 and k=⌈0.5 × N⌉, ⌈0.75 × N⌉, ⌈0.8 × N⌉, ⌈0.85 × N⌉, ⌈0.9 × N⌉, and ⌈0.95 × N⌉. The red triangle
represents the largest median for each quantile.
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– M3: The second enhanced method in Chen and Li [19] which considers a probabilistic allocation of the
worst-case ITEs. This method also involves making inference twice, once using the raw data and a second
time using datawith flipped treatment assignments and negated outcomes, before combining the inference.
Analogous toM2, we considered the following 2× 2=4 combinations of test statistics: Stephenson rank sum
test with s=2 or 6 when inferring ITEs using raw data in Step (B1) and Stephenson rank sum test with s=2
or 6 when inferring ITEs using data with flipped treatment assignments and negated outcomes in Step (B2).
These four methods are referred to asM3-S2-S2,M3-S2-S6,M3-S6-S2, andM3-S6-S6.

Figures 2 and 3 plot the median of the 95 % lower confidence limits for selected ITE quantiles when N1=N0=30
and N1=N0=100, respectively. Analogous plot when N1=N0=50 can be found in Supplementary Material B. For
each fixed quantile, the red triangle represents the maximummedian across di!erent methods. Table 3 further
summarizes the average SS of each method under di!erent data generating processes.

We identify several consistent trends from the simulation results. First, each of the three methods exhibits
improved power, as reflected by smaller average SS, as the sample size N=N1 + N0 increases. For instance, the
average SS drops from 1.09 to 0.78 when N increases from 60 to 200. Second, methods M2 and M3 in general
largely outperformM1 in both pointwise and simultaneous inference. In fact, the gain of M2 andM3 overM1 in
relatively smaller quantiles like 50 and 75 % quantiles can be quite significant. Third, unlike M1 and M2 whose
pointwise and simultaneous inference coincides, M3 su!ers from multiple testing correction although the loss
in power is negligible when the sample size is only moderately large (e.g.,N1=N0=50). For instance, the average
SS forM3-S2-S6 increases from 1.05 to 1.10 when N1=N0=50.

When we examine di!erent choices of test statistics for M2, methods M2-S2-S6 and M2-S6-S6 have similar
performance andboth outperformM2-S2-S2 andM2-S6-S2 for bothDGP I andDGP II. BothM2-S2-S6 andM2-S6-S6
use the Stephenson rank sum test with a large s, e.g., s=6, when the treatment status is flipped (i.e., Step A2 inM2
and Step B2 inM3). This is consistent with the observation that a large s is preferred when treated participants
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Figure 3: Median of the 95 % lower confidence limits of ! (k) over 1,000 simulations derived from each method, for DGP I and DGP II with
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(or in this case, control participants before flipping the treatment status) have right-skewed outcomes and/or
many large outliers [4]. Similar observation stands for methodM3.

Application to early phase HIV-1 vaccine trials

HVTN 086
Heterogeneity in vaccine-induced immune responses has been widely observed among vaccinees. For instance,
as shown in Figure 1, vaccine-induced immune responses are heterogeneous among participants receiving four
vaccine regimens in the HVTN 086 study, spanning from participants with no response (“nonresponders”) to
those with exceptional responses (“high-responders”). Recently, Huang et al. [2] conducted a comprehensive
meta-analysis exploring the variations in immune responses induced by 26 vaccine regimens. We focus on the
immunogenicity data derived from HVTN 086, a multicenter, randomized, placebo-controlled phase-1 clinical
trial studying four vaccine regimens: SAAVI MVA-C priming with sequential or concurrent Novartis subtype C
gp140/MF59 vaccine boost and SAAVI DNA-C2 priming with SAAVI MVA-C boosting, with or without Novartis
subtype C gp140/MF59 vaccine. The study comprised 4 study arms. Each arm planned to enroll 46 HIV-negative,
healthy, vaccine-naïve adult participants between 18 and 45 in the Republic of South Africa, among whom 38
were randomly assigned to one candidate vaccine regimen and the other eight to the placebo. Study participants
were randomized to one of the four study arms, and within each study arm, further randomized to the active
vaccine regimen or placebo. Below, we follow Huang et al. [2] and consider data from study participants who
successfully completed all study visits and received all scheduled vaccination. Figure 4 summarizes scenarios
determined by the nature of the study (randomized or not randomized), type of endpoints (Yi(0)≤LOD or not),
and the experimental design (CRE or SCRE) and how they are related to methods reviewed or developed in the
article.

Characterizing immunogenicity profiles against placebo
Our first goal is to characterize each vaccine regimen’s immunogenicity profile of antigen-specific immune
responses within each study arm. The primary outcome of interest is the serum IgG response to the antigen
Con6 gp120/B measured by a validated binding antibody multiplex assay (BAMA) two weeks post the last vacci-
nation. Because study participants were all naïve to the antigen, it is reasonable to assume that their potential
outcomes under placebo were less than or equal to 100, the limit of detection of the BAMA assay.

Figure 5 plots the 95 % one-sided confidence intervals for selected ITE quantiles usingmethods described in
Section 4. The vertical dashed red lines indicate the 95 % lower confidence limits of the sample average treatment
e!ect derived from a randomization-based test based on the t-statistic [6, 30]. Inference for the e!ect quantiles

Figure 4: A flow chart relating each study scenario to the
methods reviewed or developed in the article.
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Figure 5: Vaccine regimens vs. placebo: 95 % (a) pointwise and (b) simultaneous one-sided confidence intervals of ! (k) ’s for k=⌈0.5 × N⌉,
⌈0.55 × N⌉, ⌈0.6 × N⌉, ⌈0.65 × N⌉, ⌈0.7 × N⌉, ⌈0.75 × N⌉, ⌈0.8 × N⌉, ⌈0.85 × N⌉, ⌈0.9 × N⌉, and ⌈0.95 × N⌉. (a) Inference for a single
quantile of treatment effects. (b) Simultaneous inference for multiple quantiles of treatment effects.

largely enriches the data summary based on the SATE; for instance, in addition to stating that the lower confi-
dence limit of SATE of the vaccine regimen T1 (comparing to the placebo) is 2.15 (in the log10-scale), researchers
could further report at a specified confidence level that the largest ITE is at least 2.49, the top 25 % ITE is at
least 2.40, and the median ITE is at least 2.30, etc. Moreover, unlike the inference for the SATE that requires
large-sample approximation, inference for the quantiles is exact. Figure 5 also suggests that the simultaneous
confidence intervals are very similar to pointwise confidence intervals, suggesting that conducting simultaneous
inference does not sacrifice much power.

Inferred ITE profiles also facilitate comparing and ranking four candidate regimens via making inference
forN(c), the number of participants with ITEs exceeding a given threshold c. Table 4 summarizes the 95 % lower
confidence limits of N(c) for each regimen and selected values of c. According to Table 4, a 95 % confidence
interval for N(2) is [31, 41] for T1, suggesting that we are 95 % confident that at least 31/41=75.6 % participants
had a treatment e!ect as large as 2 (in the log10-scale). Similarly, we are 95 % confident that at least 17/31=54.8 %
participants had a treatment e!ect as large as 2 (in the log10-scale) for regimen T4. Based on these results, if
researchers are interested in advancing a vaccine regimen that can elicit high immune responses among a large
proportion of participants, then T1 is most promising based on data generated from this early phase clinical
trial.

Head-to-head comparisons of two vaccine regimens
Having a placebo arm and an a priori known Y (0) is a favorable scenario. Below, we consider a direct, head-to-
head comparison of three pairs of vaccine regimens in HVTN 086: T1 vs. T2, T1 vs. T3, and T1 vs. T4. A head-to-head
comparison of two active vaccine regimens is useful because inmost recent early phase vaccine trials, a placebo
arm is no longer employed and study participants are often randomized to di!erent active vaccine regimens.

Table 4: Pointwise 95 % lower confidence limits of N(c) for four vaccine regimens, with c=0, 0.5, 1, 1.5 and 2.

Regimen/c 0 0.5 1 1.5 2

T1 (n=33) vs. C1 (n=8) 40 40 40 40 31
T2 (n=32) vs. C2 (n=8) 27 17 3 1 0
T3 (n=24) vs. C3 (n=8) 15 4 3 0 0
T4 (n=23) vs. C4 (n=8) 29 29 24 23 17
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Figure 6 shows the 95 % one-sided simultaneous confidence intervals for selected ITE quantiles of regimen T1
vs. the other three regimens. The vertical dashed red lines show the 95 % lower confidence limits of the SATE
derived from a randomization test based on the t-statistic. For both Con 6 gp120/B and gp41, we conducted ITE
inference with the method M2. Specifically, we chose the Stephenson rank sum statistic with s=6 in both Step
(A1) and Step (A2) for Con 6 gp120/B; as for gp41, we again used the Stephenson rank sum statistic but with s=2
in Step (A1) and s=6 in Step (A2). These choices were guided by the simulation studies in Section 5.

According to Figure 6(b), the 95 % lower confidence limit for the SATE comparing T1 vs. T2 is 0.74 for gp41.
Inference for ITE further reveals treatment e!ect heterogeneity of T1 vs. T2: we are 95 %confident thatmore than
12.3 % of participants benefited more from T1 compared to T2 by at least 0.74 in the log10-scale (or equivalently a
5.50 times increase in the raw readout) and, at the same time, at least 4.6 % participants benefited by more than
1 unit in the log10-scale (or equivalently 10 times) and 1.5 % benefited by 1.25 (or equivalently 17.78 times). In fact,
because the inference for ITE is simultaneously valid, we can immediately reject a constant additive treatment
e!ect of 0.74 for all participants at 95 % confidence level. Analogous inference can be made when comparing T1
to T3.

On the other hand, according to Figure 6(a), the confidence intervals for ITE quantiles comparing T1 vs.
T2 for Con 6 gp120/B cover 1.61, the lower confidence limit of the SATE, simultaneously. For Con 6 gp120/B, a
constant additive treatment e!ect of 1.61 for all participants is in fact compatible with the observed data and
cannot be rejected at 95 % confidence interval. Compared to gp41, response to Con 6 gp120/B appears to be less
heterogeneous when comparing T1 vs. T2 or T3. These conclusions are consistent with the visual display of the
data in Figure 1.

A matched study of non-randomized arms
Wenext considered ahead-to-head, across-trial comparison of two regimens – regimen T1 fromHVTN086 (n=33)
and regimen T4 from HVTN 205 (n=60) – based on the serum IgG response to antigen gp41 [2]. HVTN 205 was a
phase 2a study designed to evaluate DNA and recombinant modified vaccinia Ankara (MVA62B) vaccines [31]. To
alleviate the “trial selection bias,” we used statistical matching to control for observed baseline characteristics.
Specifically, we used an optimal tripartite matchingmethod [32] and constructed 33matched pairs, each consist-
ing of one study participant receiving vaccine regimen T1 fromHVTN 086 and the other receiving T4 fromHVTN
205. Thematching algorithmcloselymatched on 11 baseline covariates andminimized the earthmover’s distance
between the estimated propensity score distributions of two groups. Table 5 summarizes the covariate balance
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Figure 6: Head-to-head comparison of vaccine regimens in terms of the binding antibody response to (a) Con 6 gp120/B and (b) gp41:
95 % simultaneous one-sided confidence intervals of ! (k) ’s for k=⌈0.5 × N⌉, ⌈0.55 × N⌉, ⌈0.6 × N⌉, ⌈0.65 × N⌉, ⌈0.7 × N⌉, ⌈0.75 × N⌉,
⌈0.8 × N⌉, ⌈0.85 × N⌉, ⌈0.9 × N⌉, and ⌈0.95 × N⌉. (a) Simultaneous inference for Con 6 gp120/B using M2-S6-S6. (b) Simultaneous
inference for gp41 using M2-S2-S6.
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Table 5: Covariate balance before and after matching. SMD=standardized mean difference.

Covariates Before matching After matching
HVTN 086 HVTN 205 SMD HVTN 205 SMD
T1 (n=33) T4 (n=60) T4 (n=33)

Age, years 23.6 26.5 −0.37 23.9 −0.04
Sex assigned at birth (female or male) 0.45 0.67 −0.31 0.58 −0.17
BMI, kg/m 23.4 25.0 −0.24 24.0 −0.09
Systolic blood pressure, mm Hg 119.0 114.6 0.33 116.7 0.17
Diastolic blood pressure, mm Hg 74.3 71.2 0.29 71.9 0.22
Hematocrit, % 42.5 42.6 −0.03 42.7 −0.04
Hemoglobin, /μL 14.1 14.5 −0.19 14.4 −0.13
Lymphocytes, /μL 1,944 1,986 −0.05 1,924 0.03
Mean corpuscular volume, fL/red cell 88.2 89.2 −0.14 89.1 −0.13
Neutrophils, /μL 3,501 3,569 −0.04 3,411 0.05
Platelets, /nL 270.0 244.9 0.28 247.9 0.25

before and after matching; after matching, two groups are more balanced in baseline characteristics, with the
standardizedmeandi!erences ofmost variables below0.20, or one-fifth of onepooled standarddeviation,which
is typically considered good covariate balance [33]. Before proceeding with randomization inference, we con-
ducted a formal diagnostic test for the paired randomization assumption. Specifically, we used Gagnon-Bartsch
and Shem-Tov’s [34] classification permutation test, a flexible, machine-learning-based, yet exact diagnostic test.
The test was implemented using the R package cpt with logistic regression as the classifier. The paired random-
ization assumption cannot be rejected for the matched cohort data (p-value=0.243); see Figure 7 for the null
distribution of the permutation test and the observed test statistic. Hence, we proceeded with randomization
inference as our primary analysis. In the event when the randomization assumption is rejected, we recommend
proceeding with a biased randomization assumption as primary analysis using the residual sensitivity value
method developed in Chen et al. [35].

Figure 8(a) plots the response magnitude among matched study participants. Both regimens elicited strong
binding antibody response to gp41 among participants. We first conducted inference under a randomization
assumption: two study participants in each matched pair have the same probability of receiving HVTN 086 T1
or HVTN 205 T4; in other words, the matched observational study succeeded in embedding data into a finely
stratified randomized experiment [9, 35]. We conducted randomization inference for ITE quantiles of HVTN 086
T1 vs. HVTN 205 T4 using Chen and Li’s method (2024) reviewed in Section 3.2 with the stratified Wilcoxon rank
sum statistic [21]. Figure 8(b) shows the simultaneous one-sided confidence intervals for selected ITEs ! (k)’s.
According to Figure 8(b), the 95 % lower confidence limit for ITE at rank 51 barely exceeds 0. This implies that,
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Figure 7: Null distribution of the test statistic in the Classifi-
cation Permutaiton Test. The red dashed line represents the
value of the observed test statistic.
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Figure 8: Pooled analysis of HVTN 086 T1 and HVTN 205 T4. (a) Observed serum IgG BAMA responses to gp41 among study participants
who received regimen T1 in HVTN 086 and those who received regimen T4 in HVTN 205. (b) 95 % simultaneous one-sided confidence
intervals for ITE quantiles of HVTN 086 T1 vs. HVTN 205 T4 using the stratified Wilcoxon rank sum statistic, assuming that there is no
hidden confounding.

at 95 % confidence level, at least 24 %, or equivalently 16 out of 66, study participants benefited more from
HVTN 086 T1 compared to HVTN 205 T4 in this matched study. We further complemented the analysis by mak-
ing randomization-based inference for SATE in a matched-pair design [36]. The 95 % lower confidence limit of
SATE is 0.086 (in the log10-scale) and quite sensitive due to a few outliers in the HVTN 205 T4 arm. The exact
inference for the proportion of study participants who benefited more from HVTN 086 T1 vs. HVTN 205 T4 helps
complement a standard analysis of the sample average treatment e!ect.

A sensitivity analysis assessing deviation from randomization
As is true for all non-randomized studies, the head-to-head comparison between HVTN 086 T1 and HVTN 205 T4
in Section 6.4 could su!er from unmeasured confounding bias. For instance, this would be the case if HVTN 205
enrolled healthier and more immunopotent participants compared to HVTN 086; hence, any treatment e!ect
comparing HVTN 086 T1 to HVTN 205 T4 could be attributed to this hidden bias [9]. We next conduct a sensitivity
analysis that investigates how a deviation from the randomization assumption could impact the inferred ITE
quantiles in Figure 8(b).

Figure 9 shows the sensitivity analysis results derived from Chen and Li’s method (2024) using the stratified
Wilcoxon rank sum statistic. Figure 9 plots the 95 % confidence intervals for ITE quantiles under Rosenbaum’s
sensitivity analysis model indexed by Γ; see Equation (8) [9]. From Figure 9, when the bias in the treatment
assignment is as large as Γ=1.5, the ITE at rank 57, i.e., approximately 86 % quantile, remains positive at signifi-
cance level 0.05, which implies that HVTN 086 T1would still induce a higher MFI response than HVTN 205 T4 for
at least 15 % of study participants in the study under a moderate bias of magnitude 1.5. According to the method
described in Rosenbaum and Silber [37], an unobserved covariate associated with at least a 2.5–fold increase in
the odds of selecting in the study arm T1/C1 (HVTN 086) as opposed to T4/C4 (HVTN 205) and a 2.75–fold increase
in the odds of a positive matched-pair di!erence in MFI values is needed in order to explain away the top 15 %
ITE. Such a confounding factor appears unlikely after we have controlled for observed covariates using match-
ing. Therefore, wemay conclude that HVTN 086 T1 induces higher MFI response compared to HVTN 205 T4 for at
least 15 % of the cohort even in the presence of a moderately large selection. When Γ increases to 3.3, the result-
ing 95 % confidence intervals no longer cover zero for any participant, implying that we do not have evidence
that any participant would benefit more from HVTN 086 T1 vs. HVTN 205 T4 if the trial selection bias is as large
as Γ=3.3.
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Figure 9: The 95 % simultaneous one-sided confidence intervals for ITE quantiles under various sensitivity models indexed by different Γ
using the enhanced method in Chen and Li [19].

Discussion
Many recent researchhas centered aroundmoving beyondFisher’s sharpnull hypothesis orNeyman’sweaknull
hypothesis and exploring aspects of the collection of individual treatment e!ects other than the sample average
treatment e!ect. In this article, we provide a systematic review of relevantmethods and closely examine the use-
fulness of di!erent methods under a wide range of scenarios. We found that randomization inference that tests
quantile treatment e!ects could be a useful complement to the SATE, especially when the scientific interest lies
in uncovering and quantifying the heterogeneous treatment e!ects. In addition, these methods hold promise in
helping relevant stakeholders advance an experimental therapy that has a meaningfully large treatment e!ect
on possibly a fraction of study participants, as opposed to a competing therapy that has a similar SATE but nev-
ertheless does not show any treatment e!ect at a magnitude of practical relevance. Another interesting and
practically relevant finding is that, perhaps contrary to expectation, when constructing a simultaneous confi-
dence region jointly for many quantiles, or even every quantile, the cost of multiple hypothesis testing could be
minimal.

Overall, our assessment is that the suite of randomization-based inferential methods, testing Fisher’s sharp
null of no e!ect whatsoever, Neyman’s weak null of no SATE, and various quantiles of ITEs discussed in the
current article, should always have a place in empirical researchers’ toolbox when analyzing data derived from
clinical trials because these methods are always reliable and could potentially yield informative results.

Inmany senses, quantiles of ITEs are themost fine-grained estimands. This important line of research could
be furthered in at least two directions. First, choosing an appropriate test statistic is a key component. As demon-
strated in simulation studies, the power of the Stephenson rank sum statistic depends critically on the choice of
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s and an optimal choice of the test statistic could depend largely on the data-generating process. One possibility
is to develop a data-driven, adaptive approach that produces an optimal or near-optimal choice of the test statis-
tic (or the tuning parameter in the test statistic) or combines several test statistics. Second, we have reviewed
and considered methods that (i) assume a constant Y (0); (ii) do not place any restriction on any aspect of the
potential outcomes; (iii) place a uniform upper or lower bound on potential outcomes. There are still plenty of
other possibilities to leverage auxiliary information from historical data and improve the power of statistical
inference. Future work may also explore how to leverage these auxiliary information in experimental designs
other than CRE.
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Appendix
R function method_SM
## Description
# The function generates one−sided confidence intervals for quantiles of individual
treatment effects in placebo−controlled trials with highly specific endpoints.
## Usage
method_SM(Z, Y, LOD, k_vec, simul = FALSE, nperm = 10^6, Z.perm = NULL, alpha = 0.05,
tol = 0.001)
## Arguments
# Z: An N dimensional treatment assignment vector.
# Y: An N dimensional observed outcome vector.
# LOD: An N dimensional vector specifying the limit of detection of outcomes.
# k.vec: A vector whose coordinates are integers between 1 and N specifying which
quantiles of individual treatment effects is of interest.
# nperm: A positive integer representing the number of permutations for approximating
the randomization distribution of the rank sum statistic.
# Z.perm: A N−by−nperm matrix that specifies the permutated assignments for
approximating the null distribution of the test statistic.
# alpha: A numeric object specifies the level of the confidence interval. In particular,
the confidence level is 1−⧵alpha.
# tol: A numerical object specifying the precision of the obtained confidence intervals.
For example, if tol = 0.001, then the confidence limits are precise up to 3 digits.
# simul: A logical object indicating whether performing simultaneous inference or
pointwise inference.
## Value
# One−sided upper confidence intervals for specified effect quantiles of interest.
## Examples

https://atlas.scharp.org/
https://github.com/Zhe-Chen-1999/ITE-Inference
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n = 200
m = n ∗ 0.5
Z = sample(c(rep(1, m), rep(0, n−m) ) )
Y = rnorm(n) + Z ∗ rnorm(n, mean = 0, sd = 5)
method_SM(Z = Z, Y = Y, LOD = rep(2,n), k_vec = 1:n, simul = TRUE)
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