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1 | INTRODUCTION

On an n-dimensional manifold, positive kth-intermediate Ricci curvature is a condition interpo-
lating between positive sectional curvature (k = 1) and positive Ricci curvature (k = n — 1). There
hasrecently been increased interest in studying manifolds with lower bounds on kth-intermediate
Ricci curvature. For example, many results from the setting of positive or non-negative sectional
curvature have been adapted to this setting, including generalizations of the Synge theorem and
Weinstein fixed point theorem by Wilhelm [41], the Heintze-Karcher inequality by Chahine [6],
and the Gromoll-Meyer theorem and Cheeger-Gromoll soul theorem for open manifolds by Shen
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[37]. In addition, many comparison results have been proven by Guijarro and Wilhelm in their
series of papers [18-20]. In this article, to further the study of positive intermediate Ricci curvature,
we take inspiration from the Grove symmetry program.

In the setting of positive sectional curvature, the Grove symmetry program has proven to be
a great source of insights. The goal of this program is to classify positively curved manifolds
that have ‘large isometry groups’. Karsten Grove initiated this investigation in 1992, motivated
by a result of Hsiang and Kleiner [23] and the classification of positively curved homogeneous
spaces that was resolved in the 1970s; see [4, 40, 43]. The Grove symmetry program has resulted
in many major classification results while also motivating constructions of new examples of man-
ifolds with lower curvature bounds along with discoveries of unexpected topological structure of
positively curved manifolds. For more information, see [16, 26] and the references therein. One
common notion of ‘large isometry group’ is large symmetry rank.

Definition. The symmetry rank of a Riemannian manifold (M, ¢) is the rank of its isometry
group. We denote this quantity by symrank(M, g). Equivalently, symrank(M, g¢) is the maximal
dimension of a torus that can act effectively and by isometries on (M, g).

Grove and Searle proved that any closed, connected, n-dimensional manifold with positive sec-
tional curvature must have symrank(M, g) < ”THJ ,and in the case of equality, the manifold must
be diffeomorphic to a sphere, complex or real projective space, or a lens space [17]. Since then,
many have studied closed manifolds with positive sectional curvature and large symmetry rank;
see, for example, [1, 15, 25, 26, 35, 42]. Motivated by these works and, more generally, the success
of the Grove symmetry program, we study manifolds with positive intermediate Ricci curvature

and large symmetry rank in this article.

Definition. A Riemannian manifold (M, g) is said to have positive 2"%-intermediate Ricci curva-
ture if, for any choice of orthonormal vectors {u, e;, e,}, the sum of sectional curvatures sec(u, e;) +
sec(u, e,) is positive. We abbreviate this condition as Ric,(M, ¢g) > 0, omitting M or g when they
are understood.

For our first main result, we generalize the Grove-Searle maximal symmetry rank theorem
from [17] to the setting of manifolds with Ric, > 0:

Theorem 1.1. Let (M", g) be a closed, connected Riemannian manifold of dimension n > 3 with
Ric, > 0. Then

symrank(M", ¢) < ln + lJ .

n+1

Furthermore, if M" is simply connected and a torus T" of rank r = | >

isometries on M", then the following hold.

| acts effectively and by

(i) Ifthe dimension n is odd, then M" is diffeomorphic to a sphere.
(ii) Ifthe dimension n is even, n # 6, and the second Betti number satisfies b,(M") < 1, then M" is
either diffeomorphic to a sphere or homeomorphic to a complex projective space.

The dimension n = 4 case in Theorem 1.1 follows from purely topological considerations;
see Corollary 7.5. For even dimensions n > 8, the tools developed below (Proposition 1.5 and
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Theorem 1.7) allow us to show that the odd degree integral cohomology groups are trivial
(see Theorem 1.3), and the even degree cohomology is periodic, in the sense that H*(M"; Z) =
H*(M";7) ~ H(M";7) =~ --- ~ H""?(M"; Z). This is where the assumption that b,(M") <1
allows us to establish a classification. In dimension 6, these tools do not guarantee similar
restrictions on the cohomology groups, which is why the n = 6 case is excluded in Theorem 1.1.
Furthermore, S* x S® admits a metric with Ric, > 0 and maximal symmetry rank; see Example 2.3
for more information. Thus, we cannot hope to have the same conclusion as Theorem 1.1 for a
classification of 6-dimensional manifolds with Ric, > 0 and maximal symmetry rank.

‘We note that Alexandrov geometry is a commonly used tool when studying isometric group
actions on manifolds with positive sectional curvature. For example, Grove and Searle use the
concavity of the distance functions from the boundaries of positively curved orbit spaces to estab-
lish their diffeomorphism classification in [17]. However, because sectional curvatures are allowed
to be negative when Ric, > 0, Alexandrov geometry is far less useful for our purposes. Instead,
we rely on a generalization of Wilking’s connectedness principle (Theorem 1.7) and topological
results by Montgomery and Yang [28] and Fang and Rong [14].

If we weaken the symmetry rank assumption in Theorem 1.1, we show that we can still obtain
classifications. Specifically, in odd dimensions, we prove the following:

Theorem 1.2. Let M" be a closed, simply connected Riemannian manifold of odd dimension n > 7
with Ric, > 0. Suppose a torus T" of rank r > @ acts effectively and by isometries on M". Then

M™" is homeomorphic to a sphere.
In even dimensions, we also establish the following:

Theorem 1.3. Let M" be a closed, simply connected, Riemannian manifold of even dimensionn > 8
with Ric, > 0. Suppose a torus T" of rank r > % acts effectively and by isometries on M". Then
H(M";Z) = 0 for all odd values of i. Furthermore, if the second Betti number satisfies b,(M™") <
1, then M" is either homeomorphic to a sphere or tangentially homotopy equivalent to a complex

projective space.

Recall that manifolds M and N are said to be tangentially homotopy equivalent if there is a
homotopy equivalence h : M — N such that the pullback bundle h*TN is stably isomorphic to
the tangent bundle TM. Equivalently, M is tangentially homotopy equivalent to N if there exists
I > 1 such that M x R! is diffeomorphic to N x R.. We use a result of Dessai and Wilking [10] to
establish the complex projective space case of the classification in Theorem 1.3.

Hopf famously conjectured that closed, even-dimensional manifolds with positive sectional
curvature must have positive Euler characteristic. In an effort to make progress toward this con-
jecture, many have shown that even-dimensional manifolds with positive sectional curvature and
large symmetry rank must have positive Euler characteristic; see, for example, [34], [35], [24], [26].
We establish a similar result for manifolds with Ric, > 0:

Theorem 1.4. Suppose M" is a closed Riemannian manifold of even dimension n > 8 with Ric, > 0.
IfatorusT" of rankr > % + 2 acts effectively and by isometries on M", then y(M") > 0.

The tools we develop to establish the results above should prove to be helpful in studying gen-
eral isometric group actions on closed manifolds with positive kth-intermediate Ricci curvature
for any k > 2.
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Definition. We say an n-dimensional Riemannian manifold (M", ¢) has positive kth-intermediate
Ricci curvature for k € {1,...,n — 1} if, for any choice of orthonormal vectors {u, ey, ...,e;}, the
sum of sectional curvatures Zle sec(u, e;) is positive’. We abbreviate this condition by writing
Ric, (M", g) > 0, omitting M" or g when they are understood.

Note that Ric; > 0 is equivalent to positive sectional curvature, and Ric,_; > 0is equivalent to
positive Ricci curvature. Furthermore, if Ric, > 0, then Ric; > 0 for all [ > k. Thus Ric, > 0isa
strong condition on curvature in this hierarchy, second only to positive sectional curvature.

See Section 2 for basic examples of manifolds with Ric, > 0. For the classification of compact
symmetric spaces by the minimal value of k for which each has Ric, > 0, see [2] or [12]. We note
that the only compact irreducible symmetric spaces that have Ric, > 0 are those of rank 1, that
is, those that have positive sectional curvature. For more constructions of Ric;, > 0, see Theorems
E, F, and G in [12].

The first tool we establish in this article guarantees fixed point sets of torus actions on closed
manifolds with Ric;, > 0:

Proposition 1.5. Suppose M" is a closed n-dimensional Riemannian manifold with Ric;, > 0 for
some k € {2,...,n—1}. If a torus T" of rank r > k + 1 acts by isometries on M", then there is a
codimension-k torus subgroup T"~* c T" such that the T"~*-action on M" has a fixed point.

Berger proved in [3] that any Killing field on a closed, even-dimensional manifold with positive
sectional curvature must have a zero. It follows that an isometric circle action on such a manifold
must have a fixed point. Sugahara in [39] extended Berger’s argument to prove that on a closed
manifold of any dimension with positive sectional curvature, any two commuting Killing fields
must be linearly dependent at some point. It follows that any isometric torus action on such a man-
ifold must have a circle sub-action with non-empty fixed point set, a result that was established
independently by Grove and Searle in [17]. Grove refers to these collective results as the Isotropy
Rank Lemma in [16]. To prove Proposition 1.5, we use a generalization of Sugahara’s approach;
see Proposition 3.1 below.

As mentioned above, Grove and Searle proved in [17] that any closed, connected n-dimensional
manifold with positive sectional curvature cannot have symmetry rank greater than [”THJ. The
author proved in [29] that any connected n-manifold with Ric; > 0 ata point cannot have symme-
try rank greater than [%J, without assuming that the manifold is closed. For our second new
tool, we apply Proposition 1.5 to obtain the following refined symmetry rank bounds for closed
manifolds with Ric, > 0:

Proposition 1.6. Suppose (M", g) is a closed, connected, n-dimensional Riemannian manifold with
Ric, > 0 for somek € {3,...,n — 1}. Then

symrank(M", ¢) < [n ; kJ -1.

It follows from Theorem 1.1 and Proposition 1.6 that if k < 3, or if k = 4 and n is odd, then the

symmetry rank of M" is at most L"THJ, the same bound as for manifolds with positive sectional

T Positive kth-intermediate Ricci curvature should not be confused with k-positive Ricci curvature; see, for example, [9]
and the references therein.
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curvature. In particular, the symmetry rank bounds are optimal in these cases; see Examples 4.2,
4.3, and 4.4 for more information. It also follows from these examples that the symmetry rank
bounds are optimal in dimension n = 6 for all values of k.

Recall that for an n-dimensional manifold, Ric,_; > 0is equivalent to positive Ricci curvature.
It follows from work of Pak [31] and Parker [32] that closed manifolds of dimension n > 4 can-
not have positive Ricci curvature while having symmetry rank > n — 1; see Remark 1. Thus, the
symmetry rank for closed manifolds of dimension n > 4 with positive Ricci curvature is bounded
above n — 2. This fact is reflected in Proposition 1.6 in the case k = n — 1. In dimensions n < 6,
spheres or their Riemannian products provide examples of Ricci positive manifolds with symme-
try rank n — 2. Corro and Galaz-Garcia show in [8] that for dimensions n > 7, there exist closed,
simply connected n-dimensional manifolds that admit metrics of positive Ricci curvature with
symmetry rank n — 4. It is still unknown whether it is possible to find n-dimensional manifolds
that admit metrics of positive Ricci curvature with symmetry rank n — 2 forn > 7.

Our last tool generalizes Wilking’s Connectedness Principle from [42] for fixed point sets of
isometric group actions on closed manifolds with Ric;, > 0:

Theorem 1.7. Let M" be a compact, n-dimensional manifold with Ric, > 0 forsomek € {2,...,n —
1}. Suppose N"~4 is a compact embedded submanifold of codimension d in M". If there is a Lie group
G that acts by isometries on M" and fixes N"~¢ point-wise, then the inclusion

N4 & M"is(n —2d + 2 — k + 8(G))-connected,
where 8(G) is the dimension of the principal G-orbits in M".

Recall that a map f : N - M is j-connected if the induced map 7;(f) : m;(N) - m;(M) is
an isomorphism for i < j and an epimorphism for i = j. The proof of Theorem 1.7 relies on a
Morse-theoretic argument on the space of curves in M that start and end in N. Wilking’s proof
of the positive sectional curvature (k = 1) case does not extend to the setting of Ric, > 0 for
k > 2. This is because he uses a Cheeger deformation argument that relies on the assumption
of positive sectional curvature. However, Wilking does observe in [42, Remark 2.4] that for a
totally geodesic submanifold N"~¢ of a closed manifold M" with Ric,(M") > 0, the inclusion
N"=4 < M" is (n — 2d + 2 — k)-connected, without assuming existence of an isometric group
action. For a generalization of Wilking’s result to submanifolds that are not necessarily totally
geodesic in manifolds with Ric; > 0, see the work of Fang, Mendonga, and Rong in [13]. Guijarro
and Wilhelm established a quantitative version of Wilking’s Connectedness Principle for man-
ifolds with positive intermediate Ricci curvature in [18] using a Jacobi field comparison result.
Again, they do not assume existence of an isometric group action. Our argument for Theorem 1.7
is adapted from Guijarro and Wilhlelm’s approach.

1.1 | Organization

In Section 2, we present examples of closed manifolds with Ric, > 0 and discuss their symme-
try rank. In Section 3, we study zero sets of commuting Killing fields on closed manifolds with
Ric, > 0, and we prove Proposition 1.5. In Section 4, we use Proposition 1.5 to prove our symmetry
rank bounds in Theorem 1.1 and Proposition 1.6. In Section 5, we establish our connectedness prin-
ciple, Theorem 1.7. Finally, in Sections 6 and 7, we study closed manifolds with Ric, > 0 and large
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symmetry rank, focusing on odd dimensions in Section 6 and even dimensions in Section 7. We
prove the following results in the corresponding subsections: the odd-dimensional case of Theo-
rem 1.11in Section 6.1, Theorem 1.2 in Section 6.2, Theorem 1.4 in Section 7.1, the even-dimensional
case of Theorem 1.1 in Section 7.2, and Theorem 1.3 in Section 7.3.

2 | EXAMPLES

In this section, we present a few examples of closed manifolds with Ric; > 0 and large torus
actions. First, we recall maximal torus actions for manifolds with positive sectional curvature:

Example 2.1. Grove and Searle proved in [17] that any closed, connected, n-dimensional Rieman-
nian manifold (M, ¢) with positive sectional curvature must have symrank(M, g) < "THJ ,and in
the case of equality, the manifold must be diffeomorphic to a sphere, complex or real projective
space, or a lens space. Here, | x| denotes the largest integer less than or equal to the quantity x.
A maximal torus action T x §?"~1 — §2"~1 on the odd-dimensional unit sphere S*~! c C" is

given in complex coordinates by
(eiel, ...,eiQM) (215 ey Zpy) = (eielzl, ...,eiamzm).

This action induces an effective T"-action on all lens spaces S*"~1/ Z,. Furthermore, letting
AS! denote the diagonal embedding of the circle in T™, this T"-action on S?"~! descends to an
effective action by T"~! = T /AS! on CP"~! = §2"~1 /AS!. Finally, a maximal T™-action on the
even-dimensional sphere S?™ C C" @ R is given by suspending the action above, that is, with the
action on the R-factor being trivial. This action on S*™ induces an effective T™-action on RP?",

Next, we discuss the elementary class of examples given by Riemannian products:

Example 2.2. Consider a collection of Riemannian manifolds {(M;, gl-)}fi |» each of dimension at
least 2 and with Ricy, (M;, g;) > 0 for some k; € {1, ..., dim M; — 1}. It is a straightforward exercise
to check that, with respect to the product metric,

Ric; (M X -+ X M) > 0 only for k > max {ki + 2, dimM; } (21)
i=1,...,

For example, consider spheres S” and S™ of dimension at least 2 with the standard round metrics.
Then with respect to the product metric, S” X S has Ric;, > 0 only for k > max{n + 1,m + 1}and
has symmetry rank equal to [”THJ + ['"TH .

Note that it follows from (2.1) that no Riemannian product will have Ric, > 0. Finally, we
present a metric on S° x S° that has Ric, > 0 and maximal symmetry rank:

Example 2.3. Consider the sphere S° C H as the Lie group of unit quaternions. Let AS® denote
the diagonal embedding of S as a subgroup of the product S* x S* x S3. Suppose S3 x S3 x S3 is
equipped with the standard Riemannian product metric, g4, Where each factor of S3 has the
standard (round) biinvariant metric. Then the AS3-action on S* x S x S3 by right multiplication
is free and by isometries, and hence the quotient (S* x S* x S3)/AS? inherits a Riemannian metric
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Jquot Such that the quotient map (S* X > X S, gy0q) = ((S* X S* X §)/AS?, gg0) is @ Rieman-
nian submersion. Now, the quotient is diffeomorphic to S* x S via the map (S* x S3 x S3)/AS> —
S x 3 given by (a,b,c)AS? = (ac™!,bc™"). Let g, denote the pushforward of the metric gy,
through this map. Then the metric g, on S x S3 is left-invariant, it is invariant under the diag-
onal action of S® by right multiplication, and Ric,(S* x S3, g,) > 0. For more information about
this construction, including a generalization to products of compact semisimple Lie groups, see
Theorem E in [12]. It follows that symrank(S3? x S3, g,) = 3, which is maximal for closed 6-
dimensional manifolds with Ric, > 0 by Theorem 1.1. In particular, a maximal isometric torus
action T3 x (S® x S®) — S3 x S3 with respect to g, is given in quaternionic coordinates by

(p,q.7r) - (a,b) := (par™*,gbr™).

By taking quotients of free isometric circle actions, it also follows that S* x S? inherits a metric
with Ric, > 0 and symmetry rank 2, and S X S? inherits a metric with Ric, > 0 and symmetry
rank 1.

Example 2.3 shows that the classification result by Grove and Searle in [17] fails to generalize to
Ric, > 0 in dimension 6. Also, the induced metric on S* x S? shows that the main result by Rong
in [35] fails to generalize to Ric, > 0. Furthermore, the induced metric on S? x S? shows that the
Hsiang-Kleiner theorem from [23] fails to generalize to Ric, > 0.

3 | FIXED POINT SETS OF TORUS ACTIONS

In this section, we establish Proposition 1.5, which asserts that a closed manifold with Ric, > 0and
a large isometric torus action must have points with non-trivial isotropy. Because the action fields
induced by isometric torus actions are commuting Killing fields, we will prove Proposition 1.5 by
first proving the following:

Proposition 3.1. Suppose M" is a closed n-manifold and Ric, (M", g) > 0 for somek € {1,...,n —
1}. If there are k + 1 commuting Killing fields on M", then they must be linearly dependent at some
pointin M".

As discussed in the introduction, Proposition 3.1 generalizes Sugahara’s result from [39] stating
that any two commuting Killing fields on a closed manifold with positive sectional curvature must
be linearly dependent at some point; see also the proof of [33, Theorem 8.3.5].

‘We now setup notation for the proof of Proposition 3.1. Given vector fields Y, ..., Y; on M that
are linearly independent in each tangent space, define the distribution

Y :=span{Yy,..., Y}

Given a Riemannian metric on M and a vector field X on M, define the vector field X1 at each
point p to be the projection of X| , onto the orthogonal complement of Y| ,, and define the function
ft M —[0,00) by

ft= %’Xlr.

We relate the Hessian of f* to the curvature tensor as follows:
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Lemma 3.2. Let X,Y,,..., Y, be commuting Killing fields on M that are linearly independent in
each tangent space. Suppose there is a point p € M at which Y|, ..., Y|, are orthonormal and
X, is orthogonal to the subspace Y|, C T ,M. Then for all v € T, M, the Hessian of the function

fto= %|Xl |2 at the point p is given by

k
Hess f1(v,0) = |V, X[* = R(u, X, X,0) =4 D (V,X,Y;).
i=1

Proof. Let X' denote the projection of X onto Y, and define the functions f : M — [0, o) and
fT : M - [0,00) by

2
fi=LIXP and fT:= §|XT| .
Then f+ = f — T, and because X is a Killing field,

Hess f(v,v) = |VUX|2 —R(v,X,X,v).

Thus, it suffices to show that at the point p, we have Hess f ' (v,v) = 4 ZL(VUX ,Y,)?. Because
Y,,.., Y, are linearly independent in each tangent space, we may perform a Gram-Schmidt
process to produce the following (not necessarily Killing) orthonormal vector fields on M:

Yi = Y_[/ly_il’ Whel‘e Y_i = YL_Z<Y[,YAJ>YAJ
Jj<i
Then it follows that
k

k
DUX,¥;)%, and  grad /T = D (X, V) grad(X, Y;).
i=1 i=1

fh=

SEE

Thus, the Hessian of fT is given by

k
Hess f T (v,v) = Z [(D(X,Y;)* + (X, Y;) Hess ((X,Y;))(v,0)].
i=1

Now at the point p, because Y | o Yl pare orthonormal and X | p is orthogonal to Y| s it follows
that Y;|, = Y;|,, (X,Y;)|, =0, and Dy(X,Y;)|, = D,(X,Y})|, for all i. Furthermore, because
X,Yq,..., Y, are commuting Killing fields, D, (X, Y;) = 2(V X, Y;) for all i. Therefore, the result
follows. O

We can now use Lemma 3.2 to prove Proposition 3.1:

Proof of Proposition 3.1. We will prove the contrapositive of Proposition 3.1. Suppose X, Y, ..., Y},
are k + 1 commuting Killing fields on M that are linearly independent in each tangent space.
We will show there exists a point p € M and orthonormal vectors u, ey, ...,e; € T,M such that

T sec(u,e;) < 0.
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Because X, Y7, ..., Y} are linearly independent, f L.= %|X 1 |2 must attain a positive minimum
at some point p. By performing a Gram-Schmidt process at p, we can find commuting Killing
fields Y7, ..., Y} that span the same distribution Y and are orthonormal at p, and doing so does
not change the values of f*. Similarly, we can replace X with the Killing field that commutes with
Yy,..., Y, such that X| » is orthogonal to Y| s and this too will not change the values of f 1

Now, with these new choices of X, Y7, ..., Y}, by Lemma 3.2, we know for v € TpM s

k
Hess f4(v,0) = |V, X|> = R(u, X, X,0) =4 D (V, X, Y;). €R))

i=1
Let P+ denote the projection onto the orthogonal complement of V| p € T,M.Thenat p, we have
k

VX 17 = (V,X, PHV, X)) + D (V. X, (V,X, Y)Y;)
i=1

k
= [PL(V, X1 + D (VX V)2
i=1

Also, because f* attains a minimum at p, we have Hess f* (v, v) > 0. Thus by equation (3.1), for
allv € TpM s

k
R(v,X,X,0) < [PHV,X)* =3 D (V,X,Y))". (3.2)

i=1

Hence, it suffices to show that ker(PLoVX) is at least k + 1 dimensional, where VX : T,M -
T,M denotes the linear map given by v — V X. First, note that

dim(ker(P+oVX)) = dim(ker VX) + dim(Im VX n ker P1)
= dim(ker VX) + dim(Im VX N Y)
= dim(ker VX) + dim(Im VX) + dim(Y) — dim(Im VX + J)

=n+k—dim(Im VX + Y). (3.3)

Now recall that, because X is a Killing field, VX is a skew-symmetric linear map. In particular,
givenu € kerVX andv € TpM,

(V,X,u) = —(V,X,v) = 0.

Thus, Im VX C (ker VX)'. Finally, we show that X € ker VX. With our choices of X, Y,...Y,,
we have

L lixl2 < Lixp2
fm =51 X717 < SIXT,

with equality at p. So defining f := %|X |2, we know f also attains a minimum at p. Hence
grad f = —VyX = 0 at p, and thus X € ker VX. Now because X is not an element of (ker VX)*
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or Y at p, we have
dim(Im VX + ) < dim((ker VX)* + Y) <n —1.

Thus, applying this inequality to equation (3.3), we have that ker(PtoVX) is at least k + 1 dimen-
sional. Hence, we can choose orthonormal vectors vy, ..., vy so that X, v, ..., v, is an orthogonal
basis of ker(P-oVX), and by Inequality (3.2), we have 2;{21 R(v;,X,X,v;) £ 0. Therefore, we have
proven Proposition 3.1 by contraposition. [

We now use Proposition 3.1 to prove Proposition 1.5, which we restate here for convenience:

Proposition 3.3. Suppose M" is a closed n-dimensional Riemannian manifold with Ric; > 0 for
some k € {2,...,n—1}. If a torus T" of rank r > k + 1 acts by isometries on M", then there is a
codimension-k torus subgroup T"~* c T" such that the T"~*-action on M" has a fixed point.

Proof. Fix k > 2. We will prove Proposition 3.3 by induction on r. Given a natural number r, let
t" denote the Lie algebra for the torus T". Given a T"-action an a manifold M and a point p € M,
letK, : t" — T,M denote the linear map such that for any z € t", K ,(z) is the evaluation at p of
Killing field induced by z on M via the T"-action.

For the base case, r = k + 1, suppose that Tk+1 acts isometrically on (M", g). Choose a basis
X1, s Xjyq fOr t+1. Then the action fields X, ..., X, ; are commuting Killing fields on M". So by
Proposition 3.1, the fields X1, ..., X, ; must be linearly dependent at some point p € M". Thus,
the kernel of the linear map K p th+l TpM " must be at least 1-dimensional. Thus, there is a
circle subgroup T' € T¥*! that fixes the point p.

For the sake of induction, suppose there exists r, > k + 2 such that the statement of Propo-
sition 3.3 holds for all r <r,—1. We will now show the same conclusion holds for r =
ro-

Suppose T’ acts isometrically on (M", g). Choose a linearly independent set of vectors
X1,..., X4 € t'0. By Proposition 3.1, the action fields X1, ..., X ., must be linearly dependent at
some point p € M". As before, the kernel of the map K, : t"0 — T, M" is at least 1-dimensional,
and we have a circle subgroup T! C T"o that fixes p. Let N be a connected component of this fixed
point set for the T'-action on M™. Then N is totally geodesic in (M", g) and is invariant under
the T"o-action. If dim(N) < k, then because r(, > k, the kernel of the T"0-action on N must con-
tain a torus subgroup of dimension at least r, — k, and the result follows. If dim(N) > k + 1, then
because N is totally geodesic in (M", g), we have Ric, (N) > 0. Thus induction hypothesis applies
to the action of 70! := T"0 /T" on N. So there is a codimension-k subtorus T"0~1=% ¢ T"0~! that
has a fixed point in N. Therefore, because N is fixed by T?, the torus T"0™* := T x T"o"1"K has a
fixed point in M". O

4 | SYMMETRY RANK BOUND

In this section, we prove the symmetry rank bounds from Theorem 1.1 and Proposition 1.6. In
particular, we intend to prove the following:

Proposition 4.1. Suppose (M", g) is a closed, connected, n-dimensional Riemannian manifold with
Ric, > 0 for somek €1{1,...,n —1}.
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() Ifk = 1, then symrank(M", g) < [”“J [17]
(ii) Ifnisodd and k = 2, then symrank(M", g) < U‘;rlj [29]
(iii) Ifnisodd and k > 3, then symrank(M", ) < | X | — 1
<

z 2
(iv) Ifniseven and k > 2, then symrank(M", g) L"—ij -1

Note that if k = 2, then the symmetry rank bound provided in Item (iv) of Proposition 4.1 is
equal to L"+1J It follows that Proposition 4.1 is equivalent to the symmetry rank bounds stated
in Theorem 1.1 and Proposition 1.6.

Example 4.2. Recall if a Riemannian manifold has positive sectional curvature, then it has
Ric, > 0 for any k > 1. As shown in [17], spheres, real or complex projective spaces, and lens
spaces all admit metrics with positive sectional curvature and symmetry rank equal to ["“J see
Example 2.1 for more information. The symmetry rank upper bounds provided in Proposmon 41
are equal to [”THJ ifnisodd and k < 4, or if n is even and k < 3. Thus, the symmetry rank bound

from Proposition 4.1 is optimal in these cases.

Example 4.3. Given a product of spheres S X S, let g, ,, denote the Riemannian product metric
associated with the standard round metrics on each factor. As mentioned in Example 2.2, the
Riemannian product (S" x S, g, ,,) has Ric; > 0only for k > max{n + 1,m + 1} and symrank =
L"+1J + [mHJ Thus the following have maximal symmetry rank for the appropriate dimension
and value of k by Proposition 4.1:

— Ric3(5% X S%, g5,) > 0, and symrank(S? X $%, g, ,) = 2,
— Ricy(S® X S%, g3,) > 0, and symrank(S® X §%, g5 ,) = 3,
— Ricy(S® X S, g3.3) > 0, and symrank(S® x S°, g5 ;) = 4

From the last example, it follows that the symmetry rank bound in Proposition 4.1 is also optimal
in dimension 6 with k = 4, 5.

Example 4.4. As we described in Example 2.3, S* X S* admits a metric which has Ric, > 0 and
symrank = 3, which is maximal symmetry rank in dimension 6 for Ric, > 0 by Proposition 4.1.

Now, we will prove Proposition 4.1 for fixed values of k by using induction on the dimension n.
For the base cases, we will use the following:

Lemma 4.5. A closed manifold of dimension n > 4 cannot support a metric of positive Ricci
curvature that is invariant under an effective action by a torus of rank n — 1.

Remark 1. Lemma 4.5 follows from the work of Pak in [31] and Parker in [32], who showed that
in dimensions > 4, closed manifolds which admit cohomogeneity-one torus actions must have
infinite fundamental group. Thus by the Bonnet-Myers theorem, such manifolds cannot admit
invariant metrics of positive Ricci curvature.

Next, we recall the following:

Proposition 4.6 [33, Proposition 8.3.8]. Let M be compact and assume that X and Y are commuting
Killing fields on M.
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(i) Y is tangent to the level sets of | X|*> and, hence, to the zero set of X.
(ii) IfX andY bothvanish on a totally geodesic submanifold N C M, then some linear combination
of X and Y vanishes on a submanifold in M of dimension larger than N.

It follows from Proposition 4.6 that if N C M is a connected component of a fixed point set for
an isometric T2-action on M, then there is a circle subgroup S! C T2 such that the component of
its fixed point set which contains N has codimension < codim(N).

We are now ready to prove Proposition 4.1

Proof of Proposition 4.1. Part (i) was established by Grove and Searle in [17]. Part (ii) follows from
[29]},{ in which the author shows that if a manifold has Ric, > 0 at a point, then symrank(M", g) <
151

We will prove Parts (iii) and (iv) of Proposition 4.1 using induction on the dimension n. First,
we establish the base cases, dimensions n = 4 and n = 5. If a 4-dimensional manifold M* has
Ric, > 0 or Ric; > 0 and T*? acts isometrically on M*, then the kernel of the action must contain a
circle subgroup by Lemma 4.5. Similarly, if a 5-dimensional manifold M> has Ric; > 0 or Ric, > 0
and T* acts isometrically on M>, then again the kernel of the action must contain a circle by
Lemma 4.5.

Now, for the sake of induction, suppose that for some n > 6, Proposition 4.1 holds for all dimen-
sions dim(M) € {4, 5, ..., n — 1}. We wish to show that it holds for dim(M) = n. So suppose M" is
either odd dimensional with Ric, > 0 for some k > 3, or M" is even dimensional with Ric, > 0
for some k > 2, and assume a torus 7" of rank r acts isometrically and effectively on M". We will
show that r < [ 25| — 1.

Ifk > n— 2, then [#J —1=n-2,andr < n—2byLemma 4.5.
Now assume instead that k < n — 3. Then ["+kJ — 12>k, so if r < k, then we are done. So

assume r > k + 1. Then by Proposition 1.5, there exists a codimension k torus of T" which has
a non-empty fixed point set in M". Define

I = min{m : there exists T"~™ C T" such that M" " # @},

and let T"~! be a torus subgroup that realizes this minimum. Then by Proposition 1.5, < k. Let F/
be a component of the fixed point set M. Then T' := T" /T"~! acts effectively on F/ such that
no circle subgroup of T' has a fixed point. Furthermore, T"~! acts on the normal sphere S"~/~1
to F/, and because the codimension of F/ is even and $"~/~ has positive sectional curvature, it
follows from [17] that

n—f
B

r—1<g

First, assume f > k + 1, so that Ric, (F f ) > 0. Then because k > 2, we have f > 3. But in the
case that k = 2, M" is assumed to be even-dimensional, and hence, F/ is also even dimensional.
Thus, we have f > 4 in all cases, and by the induction hypothesis, [ < Lf +kJ — 1. Then it follows
thatr < L 4 |25 1= |22k g,

Now assume instead that f < k. Then because no circle subgroup of T! has a fixed point,
we have | < f. Thus r < nl g f< [”+kJ What remains to show is that the equality case can-

not occur. This case is equlvalent to having r — [ = % I=f,and f > k — 1. In this case, we
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may choose a subgroup T"~/=1 ¢ T"~! with a fixed point component F’ containing F such that
dim(F") = f + 2. Thus k 4+ 1 < dim(F’) < n — 2, so Ric, (F’) > 0, and F’ has an effective T'*!-
action. Recall that f > k —1 and k > 2, and in the case that k = 2, M" is assumed to be even
dimensional, so f > 2. Thus, in all cases, it follows that dim(F’) = f + 2 > 4. So by the induc-
tion hypothesis, [ + 1 < Lf+++kj — 1, which implies I < Lf%kj —1.Thus, r % + L%J -1<

[HTH{ — 1. Therefore, the result follows. 0

5 | CONNECTEDNESS PRINCIPLE

In this section, we prove Theorem 1.7. Our argument is a modification of Guijarro and Wilhelm’s
approach in [18]. We begin by setting up notation and terminology. Given an embedded subman-
ifold N of M, let Q denote the space of piecewise-smooth curves in M, parametrized on the unit
interval [0, 1], that start and end in N. Now define the energy functional

1
E:Qy-[0,0), EQ) := %/0 Y’ dt.

It follows from the first variation of energy that critical points of the energy functional E are
geodesics that start and end perpendicular to N. To prove Theorem 1.7, we will apply a Morse
theoretic argument using a lower bound for the index of critical points of the energy functional
E.

For the remainder of this section, lety : [0,b] — M be a unit speed geodesic that starts and ends
perpendicular to N. We will use the index of y to mean the index of y as a critical point of E. If
we vary y by geodesics that start perpendicular to N, the corresponding collection of Jacobi fields
forms a Lagrangian subspace of the collection of all Jacobi fields along y that are perpendicular to
y'. For this reason, we will now review Lagrangian subspaces of Jacobi fields, the Riccati operator
on such subspaces, and the Transverse Jacobi Field Comparison from [18].

5.1 | Transverse Jacobi Field Comparison
Lety : [0,b] — M be a unit speed geodesic that starts and ends perpendicular to an embedded
submanifold N. Considering geodesic variations of y that leave N orthogonally at ¢ = 0, we will

let Jy denote the vector space of corresponding Jacobi fields:

Jy := {Jacobi fields along y corresponding to variations

by geodesics that start perpendicular to N}. (5.1)

In particular, if we let S,y : T))N = T, )N denote the shape operator of N determined by
y/(0), then J € Jy if and only if

JO)ET,N, and  ('(0)" =5,/ J(0).

Here (J/(0))" denotes the projection of J’(0) to T,)N. For more information, see Chapter 10
Section 4 of [11].
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The setof times ¢ € [0, b] for which {J(¢) : J € Jy} = ¥’ (t)* isopen and dense in [0, b]. Namely,
these are the times at which no non-trivial Jacobi fields in .7, vanish. For these values of ¢, there
is a well-defined Riccati operator

S YO -y O S, =T,

where J, is the unique Jacobi field in Jy such that J, (t) = v. The Jacobi equation can then be
decomposed into two first-order equations:

SJ=1, S +S}+R,=0.

Here, Sz, denotes the covariant derivative of S along y, and R denotes the directional curvature
operator along y, namely R,/ (v) := R(v,y")y’.

Now, given a subspace ¥ C Jy and a time ¢ € [0, b], we can obtain a subspace V(t) C y’ )+ by
setting

V(@) :={J@) : Jeviey'(t) : J € VandJ(t) = 0} (5.2)

The second summand, {J'(t) : J € V and J(t) = 0}, is trivial for almost all values of ¢, and the
subspaces V(¢) vary smoothly along y(t). Next, we recall the following terminology introduced by
Guijarro and Wilhelm in [18]:

Definition. Given t € [0, b], we say that a subspace V C Jy is of full index at ¢ if any field in Jy
that vanishes at time ¢ is an element of V. We say V is of full index on an interval I if it is of full
index at t forallt € I.

Spaces of Jacobi fields of full index are useful for finding subspaces on which the Riccati opera-
tor has negative trace. For simplicity of notation, given atime ¢ € [0, b] and asubspace W C y'(¢)*,
we let trace S, |, denote the trace of the Riccati operator restricted to W composed with the
projection onto W. In the proof of Theorem 1.7, we will use the following:

Lemma 5.1 [18, Lemma 1.5]. Lety : [0,b] — M be a unit speed geodesic in a complete Riemannian
manifold M with Ric, > k. Let Jy be the space Jacobi fields along y(t) defined in Equation (5.1),
let S be the associated Riccati operator, and let W, L y'(0) be a k-dimensional subspace such that
trace Sy |y, < k - cot(sy) for some s, € (0, ). Let V denote the subspace of Jy formed by those Jacobi
fields that are orthogonal to W, at t = 0. Let V(t)* denote the subspace of y'(t)* that is orthogonal
to V(t). If V is of full index on [0, b], then forall t € [0, b],

trace S; |1 < k - cot(f + 5p).

We now define a few subspaces of Jy to be used later which have full index on different subsets
of [0,b]:

K :=span{J € Jy : J(t) = 0 for some t € [0, b]} (5.3)
K, :=span{J € Jy : J(t) = 0 for some t € (0,b]} (5.4)

Ky = €Jy : J(b) =0} (5.5)
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Note that X, are the Jacob fields that create focal points for N on (0, b]. Because a given Jacob field
in £, can vanish multiple times in (0, b], the number of focal points for N on (0, b] is bounded
below by the dimension of K. Furthermore, notice the Riccati operator S, is well-defined on
K(t)* for every ¢ € [0,b]. In particular, if there is a Jacobi field J that vanishes at ¢ € [0, b],
then for any vector v € K(t)*, there could be many possible choices of Jacob field J, € Jy such
that J,(t) = v. However, J/(t) does not depend on the choice of J,,. Finally, notice it follows from
Equation (5.2) that X, (b) = {J'(b) : J € Jy and J(b) = 0}.

5.2 | Morse index theorem for endmanifolds

As mentioned earlier in this section, given a unit speed geodesic y : [0,b] — M that starts and
ends perpendicular to N, we will use variations of y by geodesics that start and end perpendicular
to N to obtain a lower bound on the index of y. So define

Jn.n = {Jacobi fields along y corresponding to variations

by geodesics that start and end perpendicular to N}.

Recall S,y @ TyyN — T, )N denotes the shape operator of N determined by y'(b). Now,
define A : Jy y X Jyn — R to be the symmetric bilinear form given by

Ay, 05) i= (J1(B) = S, J1(b), T5(b)). (5.6)

In particular, A is the difference between the Riccati operator and the shape operator. Hingston
and Kalish proved the Morse index theorem for two endmanifolds in the case when each subman-
ifold lies at a focal point of the other [22]. Formulated for our current setting, their result can be
written as follows:

Lemma 5.2 [22]. Given a geodesicy : [0,b] = M that starts and ends perpendicular to N,
index y = index A + number of focal points in (0, b] — dim(K(b) N TN,

where the number of focal points is counted with multiplicities. In particular, because a given Jacobi
field in K can vanish multiple times in (0, b],

index y > index A + dim K, — dim(K,(b) N TN?).

To obtain a lower bound for the index of y, we will bound the index of A by combining
Lemma 5.1 with the following algebraic result:

Lemma 5.3 [18, Proposition 4.1]. Let A : U — U be a self-adjoint endomorphism on an I-
dimensional inner product space. Suppose there exist k € {1,2,...,1 — 1} and 1 € R such that, for
all k-dimensional subspaces W C U, trace Ay, < k - 1. Then there is an (I — k + 1)-dimensional
subspace V' C U such that for all unitv € V,

(Av,v) < L.



16 | MOUILLE

5.3 | Connectedness principle for fixed point sets and Ric, > 0
We are now ready to begin the proof of Theorem 1.7, which we restate here for convenience:

Theorem 5.4. Let M" be a compact, n-dimensional manifold with Ric, > 0 forsomek € {2,...,n —
1} Suppose N4 is a compact embedded submanifold of codimension d in M". If there is a Lie group
G that acts by isometries on M" and fixes N"~¢ point-wise, then the inclusion

N4 & M"is(n —2d + 2 — k + 8(G))-connected,
where 8(G) is the dimension of the principal G-orbits in M".
First, we obtain the appropriate lower bound on the index of an energy-minimizing geodesic:

Lemma 5.5. Let M", N"=%, G, and 8(G) be defined as in Theorem 5.4. Supposey : [0,b] = M isa
unit speed geodesic that begins and ends perpendicular to N"~¢. Then

indexy >n —2d+ 2 —k + 6(G).

Proof. If y passes through a principal orbit at some point, then the action fields for the G-action
will contribute a value of §(G) to the index count for y in the argument below. However, we must
account for the possibility that y does not pass through any principal orbits. Define the closed
subgroup H < G to be the intersection of the isotropy groups G, forall t € [0, b]. Then y lies in
a component F"~ of the fixed point set of the H-action on M". In the case that H is trivial, F"~!
is the entire manifold M", and y passes through principal orbits on an open dense subset of (0, b).
In the general case, because F~! is fixed point-wise by H, F"~! is invariant under the action of
the normalizer N(H) of H in G. Let §(N(H)) denote the dimension of the principal N(H)-orbits
in F"~!. Note that S(N(H)) + I > 6(G). Thus to show that the index of y is bounded from below by
n—2d + 2 — k + 8(G), it suffices to show that the index is at least n —2d + 2 — k + 6(N(H)) + L.
Throughout this proof, all orthogonal complements (for example, X(t)* and T N 1) will be taken
in the tangent bundle of F"~!.

Recall the definition of K, from equation (5.4). If dim(X,) > n —d — k + §(N(H)) + 1, then
by Lemma 5.2 and because K, (b) C y(b)*, we have

index y = index A + number of focal points in (0, b] — dim(K,(b) N T, ;)N H
> dim K, — dim(/(b)" N T,,)N+)
>n—d—-k+6INH)+1)—-(d-1-1)

=n—-2d+2—-k+dNH))+1L.

Soifdim(K,) > n —d — k + 6(N(H)) + 1, then the result follows.

Suppose now that dim(K,) < n—d —k + §(N(H)). Because Jy is the collection of Jacobi
fields along y which correspond to variations by geodesics that leave N orthogonally at t = 0,
the Riccati operator on N, S, |T, ON? is precisely the shape operator on N, S,/(gy. Thus, because N
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is totally geodesic, we have S |T7(0) ~ = 0. So if we define
Uy := K, (0)" N TN,
we have Sy |y = 0. Now let
A :={J € Jy : Jisan action field for the N(H)-action on F}.

Note that if J € A, then J(0) =0, J(b) =0, J'(0) € T, )N+ and J'(b) € T,,4;,)N*. In particular,
A(0) € K,(0) N T, )N+ It follows that dim(K, (0)* + T,()N) < dim F — dim A(0). Hence,

dim U, = dim £, (0)* + dim T,,)N — dim(K, (0)*" + T,,)N)
2 (dimF — dim £, (0)) + dim N — (dim F — dim A(0))
= dim N + dim A(0) — dim K(0) (5.7)
> (n—d)+8(N(H)) - (n—d -k + 8(N(H)))
=k.

Then for every k-dimensional subspace W, C Uy, Syly, =0 = k - cot(7/2). Let ¥ C Jy be the
collection Jacobi fields that are orthogonal to U, at y(0). Then V is of full index on [0, b], and
dim(V(t)*) = dim(U,). By Lemma 5.1, for every k-dimensional subspace W, of V(b)*, we have
trace Sp |y, < k - cot(b + m/2) < 0. Define

Ub = V(b)l n T}/(b)N

Then trace S, is also negative on every k-dimensional subspace of U,. Note that because V(b)* C
Ky(b)*t C y'(b)*, we have

V(b)" + TN C (Kyp(b) N TN ny'(b)*.
In particular, we have
dim U, = dim V(b)* + dim T, ;)N — dim(V(b)" + T,(;,N)
> dim U, + dim N — dim ((K,(b) N TN ny/(b)*).
>dimUy+(n—d)— (n—1-1-dim(K,(b) nTN"))
=1—d+1+dimU, + dim(K,(b) N TNL).

Recall from (5.7) that dim U, > dim N + dim A — dim £, . Thus,

dimU, > 1—d+1+ (dimN +dim A — dim K,) + dim(K,(b) N TN*)
=l-d+1+(n—d+3N(H))—dim K, ) + dim(K,(b) N TN')

=n—2d+1+8(N(H))+ 1 —dim K, +dim(K,(b) N TN').
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Hence, by Lemma 5.3, there exists a subspace Ub C U, with
dim U, > n—2d + 2 — k + S(N(H)) + | — dim K. + dim(K,(b) N TN1)
such that for all unit vectors v € U,
(Sp(v),v) < 0.

Let U C Jy y be the subspace such that U/(b) = U,,. Then the bilinear form A is negative-definite
on U". So by Lemma 5.2,

index y > index A + dim K, — dim(K,(b) N TN*)
> dim U + dim £, — dim(K,(b) n TN*)

>n—2d+2—-k+6(INH))+ L
As mentioned before, because §(N(H)) + [ > 6(G), the result follows. O
Now we use Lemma 5.5 to prove Theorem 5.4:

Proof of Theorem 5.4. Let M" be a compact, n-dimensional manifold with Ric, > 0 for some
ke{2,.,n—1} let N n—d phe g compact embedded submanifold of codimension d in M", and
suppose a Lie group G that acts by isometries on M" fixes N"~¢ point-wise. We must show that
the inclusion N~ & M" is (n — 2d + 2 — k + 6(G))-connected.

Asin the introduction to this section, let Q,; denote the space of piecewise-smooth curves in M,
parametrized on the unit interval [0, 1], that start and end in N. Also recall the energy functional

1
E : Qy — [0, ), E(y) = %/0 ly'(0)|? dt.

Note that N embeds in Q as the set of constant paths, and E~1(0) = N. We claim that the
inclusion N & Qu is (n — 2d + 1 — k + 8(G))-connected.

Recall that critical points of the energy functional E are geodesics that start and end perpen-
dicular to N. By Lemma 5.5, we have that the index of such a critical point is bounded below by
n—2d + 2 — k + 6(G). Say that a critical point y has energy E(y) = ¢,. E"1([0,¢,]) C Qy can be
approximated by a finite-dimensional submanifold of broken geodesics in Q. Furthermore, on
this approximation of E~1([0, ¢,]), one can find a Morse function that is C*-close to E, is identical
to E on a neighborhood of E~1(0) = N, and any critical point is non-degenerate and has index at
least n — 2d + 2 — k + 6(G). It then follows that, up to homotopy, Q, can be obtained from N by
attaching cells of dimension at least n — 2d + 2 — k + 8(G). For more information, see [27, Part
IIT Section 16]. Thus, the inclusion N & Qy is (n — 2d + 1 — k + §(G))-connected.

Finally, because 7;(M,N) = m;_,(Qy, N), it follows from the long exact sequence of a pair in
homotopy that N & M is (n — 2d + 2 — k + 8(G))-connected. O
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6 | Ric, > 0 WITH LARGE SYMMETRY RANK IN ODD DIMENSIONS

In this section, we will study closed, simply connected, odd-dimensional manifolds with Ric, > 0
and large symmetry rank. In particular, we obtain a diffeomorphism classification for those
with maximal symmetry rank (the odd-dimensional case of Theorem 1.1), and we obtain
a homeomorphism classification of those with approximately 3/4-maximal symmetry rank
(Theorem 1.2).

6.1 | Diffeomorphism classification

In this section, we will prove the odd-dimensional case in Theorem 1.1, which we restate here for
convenience:

Theorem 6.1. Let M" be a closed, simply connected, odd-dimensional Riemannian manifold
with Ric, > 0. If a torus T" of rank r = ”TH acts effectively and by isometries on M", then M" is
diffeomorphic to S".

As mentioned in the introduction, Grove and Searle used Alexandrov geometry of posi-
tively curved orbit spaces to establish their diffeomorphism classification of closed, connected
n-manifolds with positive sectional curvature and symmetry rank ["THJ. Because sectional cur-
vatures are allowed to be negative when Ric, > 0, we rely on Theorem 1.7, algebraic topology, and
aresult by Montgomery and Yang [28] concerning circle actions on homotopy spheres to establish
the diffeomorphism classification in Theorem 6.1, rather than Alexandrov geometry.

Remark 2. Hamilton used Ricci flow in [21] to show that all closed Ricci-positive 3-manifolds
admit metrics of constant positive sectional curvature, and hence are spherical space forms. Thus,
Theorem 6.1 holds in dimension n = 3.

In light of Remark 2, we focus on odd dimensions n > 5. To prove Theorem 6.1, first we estab-
lish that torus actions of maximal rank must have a circle subaction with fixed point set of
codimension 2:

Lemma 6.2. Suppose M" is a closed Riemannian manifold of odd dimension n > 5 with Ric, >
0. If a torus T" of rank r = "TH acts effectively and by isometries on M", then there is a subgroup
S' C T" whose fixed point set has a connected component N"~2 of codimension 2, and the action by
T~ :=T" /S on N"~2 is effective.
Proof. Becausen > 5,r = "TH > 3. Thus by Proposition 1.5, there exists at least one circle subgroup
of T" with non-empty fixed point set. Among the collection of components of fixed point sets of
all circle subgroups of T, choose an element N that has minimal codimension in M", and let St
denote the circle subgroup that fixes N. Then N has even codimension in M",and T"~! :=T"/S!
actson N.

We first prove that the codimension of N must be 2. Because r > 3, we have r — 1 > 2. So if
dim(N) = 1, then the T"!-action on N has kernel of rank at least 1, and hence N is fixed by a
T2 c T". Thus, by Proposition 4.6, the codimension of N is not minimal, which is a contradiction.
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Suppose now that 3 < dim(N)

< n — 4. Then because N is totally geodesic, Ric,(N) > 0. Thus
becauser — 1 = =1 > (”_g)ﬂ >

> dim(N )H, the T"1-action on N has kernel of dimension at least
1 by Proposition 1.6. So again, by Proposition 4.6, the codimension of N is not minimal, which is
a contradiction. Therefore, the codimension of N must be 2.

Now we will show that the T"~!-action on N"~? is effective. By Proposition 4.6, the kernel of
the T"~1-action on N2 is at most finite. If the kernel is non-trivial, because N"2 is also fixed
by S, it follows that N~ is fixed by a subgroup of T" of the form Z,, X Z,,, for some natural
number m. Let v, N2 denote the 2-dimensional normal space to N at an arbitrary point x. Then
we have a faithful representation Z,, X Z,, — GL(v, N"~2), which is only possible if m = 2. Thus,
there exists an involution o € T" that fixes N"~2, and it follows that the component F of the fixed
point set of o containing N"~2 is of codimension 1 in M". F"~! is invariant under the T"-action,
and because F"! is totally geodesic, it follows that Ric,(F"~!) > 0. Then by Proposition 1.6, there
must exist a circle subgroup of T” that fixes F*~!, which contradicts that fact that N"~2 was chosen
to have minimal codimension. Therefore, the T"~!-action on N2 must be effective. O

Now, we recall the following consequence of Poincaré Duality:

Lemma 6.3 [42, Lemma 2.2]. Let M" and N n—d po connected, closed, orientable manifolds. Suppose
the inclusion N~ < M" is (n — d — l)-connected, with n —d — 21 > 0. Let [N] € H,_,(M";Z)
denote the image of the fundamental class of N, and let e € HY(M"; Z) denote its Poincaré dual.
Then the homomorphisms Ue : H'(M;Z) — H'*4(M; Z) given by x + x U e are surjective for | <
i<n—d-landinjectiveforl<i<n-—d-L

The following is a simple consequence of Lemma 6.3; for details, see Fang and Rong’s proof of
their Lemma 4.2 in [14].

Corollary 6.4. Suppose M" is a closed, odd-dimensional, simply connected, smooth manifold.
Assume M" contains a closed, connected, embedded submanifold N n—2 of codimension 2 such that
the inclusion N"~2 < M" is (n — 3)-connected. Then M" and N"~2 are both homotopy equivalent
to spheres.

Finally, we recall a result proven by Montgomery and Yang'.

Lemma 6.5 [28, Proposition 3]. Suppose M" is a homotopy sphere, and assume the circle S* acts
smoothly on M" such that the fixed point set N"=2 is simply connected and of codimension 2 in
M". Then M" is diffeomorphic to the standard sphere S™ such that the S*-action on M" is smoothly
equivalent to a linear circle action on S™.

We are now ready to classify odd-dimensional manifolds with Ric, > 0 and maximal
symmetry rank.

Proof of Theorem 6.1. We will prove Theorem 6.1 by induction on the dimension n. For the base
case, as mentioned in Remark 2, the only simply connected, closed 3-manifold with Ric, > 0 is
S3. Now, assume Theorem 6.1 holds in odd dimensions 3, ...,n — 2 for some n > 5, let (M", ¢) be

T Montgomery and Yang originally excluded dimensions 4, 5, and 6, but we now know that their argument also holds in
these dimensions due to the resolution of the Poincaré conjecture.
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a closed, simply connected, odd-dimensional Riemannian manifold with Ric, > 0, and suppose
atorus T" of rank r = ”TH acts effectively and by isometries on M". By Lemma 6.2, there is a sub-
group S' C T” whose fixed point set has a connected component N"~2 of codimension 2 such that
T :=T"/S! acts effectively on N"~2. Because N2 is totally geodesic and n — 2 > 3, we have
that Ric,(N"~2) > 0. Thus, by the induction hypothesis, N*~2 is diffeomorphic to S"~2. By Theo-
rem 1.7, the inclusion N*~2 < M" is (n — 3)-connected. Then by Corollary 6.4, M" is homotopy
equivalent to a sphere. It is well known that fixed point sets of circle actions on homotopy spheres
are integral cohomology spheres; see, for example, [5]. In particular, N n—2 constitutes the entire
fixed point set of the circle action. Therefore, by Lemma 6.5, M" is diffeomorphic to S”. O

6.2 | Homeomorphism classification
In this section, we will prove Theorem 1.2, which we restate here for convenience:
Theorem 6.6. Let M" be a closed, simply connected, Riemannian manifold of odd-dimensionn > 7

with Ric, > 0. Suppose a torus T" of rank r > 310 ets effectively and by isometries on M". Then
M™" is homeomorphic to S™.

Our approach is an adaptation of the one outlined in [33, Exercises 8.4.15-17]. For odd dimen-
sions 7 < n <13, we have that ”T“ = [M] . Therefore, by Theorem 6.1, we have proven
Theorem 6.6 for dimensions # satisfying 7 < n < 13. To prove Theorem 6.6 for dimensions n > 15,
we now establish the following:

Lemma 6.7. Let M" be a closed n-manifold with Ric, > 0 onwhich a torusT" acts isometrically and
effectively. Among the connected components of fixed point sets of circle sub-actions on M", choose

N that is maximal under inclusion. If n > 7and r > 3”;10, then:

(i) dim(N) > **=; and

(ii) either codim(N) = 2 or symrank(N) >

3dim(N)+10
—

> 4. Let S! c T" be the circle subgroup that
fixes N, and define 7"~! :=T" / S1. Because N has minimal codimension, we have that the kernel
of the T"~!-action on N is at most finite by Proposition 4.6. Thus dim(N) > r — 1 > 3, and because
N is totally geodesic, Ric,(N) > 0. Applying Proposition 1.6 to N, we have

Proof. Note that because n > 7, we have r > [3"8;10]

dim(N)+1

3n+10
2T 1
2

> symrank(N)>r—12> . ,

and Part (i) follows.
To prove Part (ii), assume codim(N) # 2 and symrank(N) < . Because the T" action
on M" is effective and the codimension of N must be even, we have that dim(N) < n — 4. Thus,

3dim(N)+10

symrank(N) <

3d1m(£1;\])+10 < 3(n—;1)+10 < 3n;—10 —1<r—1.

It follows that the kernel of the T"1-action on N is at least 1-dimensional, which contradicts N
being chosen to have minimal codimension by Proposition 4.6. O
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We will now use Lemma 6.7 and Theorem 1.7 to prove Theorem 6.6 using the work of Smale in
[38].

Proof of Theorem 6.6. We will prove Theorem 6.6 by induction on n. For the base case, note
that in off dimensions n satisfying 7 < n < 13, we have 2% = [+19] Thys, the base cases are
established by Theorem 6.1. Suppose for the sake of induction that Theorem 6.6 holds for odd
dimensions up to n — 2 for some n > 15. We will show it also holds in dimension .

Let M" be a closed, simply connected, Riemannian manifold of odd-dimension n > 15 with

Ric, > 0, and suppose a torus T" of rank r > 3":;10 acts effectively and by isometries on M". We
3n+10

will show that M" is homeomorphic to S”. Because r > > 3 when n > 15, it follows from
Theorem 1.5 that there are circle subgroups of T" whose fixed point sets on M" are non-empty.
Among the connected components of fixed point sets of these circle sub-actions on M", choose N
that is maximal under inclusion.

By Lemma 6.7, dim(N) > -2 and either codim(N) =2 or symrank(N) >
codim(N) = 2, then by Theorem 1.7 and Corollary 6.4, M" is homotopy equivalent to S”, and
the result follows from Smale’s resolution to the Generalized Poincaré conjecture for dimen-
sions > 5in [38]. Suppose instead that codim(N) > 4 and symrank(N) > 3dimN)+10 Then hecause

dim(N) > 3” 2 we have

3dim(N)+10 ¢

n—2codim(N) +1 > g

Hence by Theorem 1.7, the inclusion N & M is at least [ﬂ] -connected. Thus, because M is sim-
3n—
[

4
hypothesis implies that N is homeomorphic to a sphere. Thus, for 1 < i < "Tl,

ply connected, so is N. Because n > 15, we have dim(N) > 2] > 11. Hence, the induction

H,(M")=2H;(N)=0

Applying Poincaré Duality, it follows that H;(M™) = 0 for 1 <i < n — 1. Because M" is simply
connected, it follows that M" is homotopy equivalent to a sphere, and again the result follows by
the work of Smale in [38]. O

7 | Ric, > 0 WITH LARGE SYMMETRY RANK IN EVEN
DIMENSIONS

In this section, we will study closed, simply connected, even-dimensional manifolds with Ric, >
0 and large symmetry rank. In particular, we prove those with half-maximal symmetry rank
have positive Euler characteristic (Theorem 1.4), we obtain a strong classification for those with
maximal symmetry rank and bounded second Betti number (the even-dimensional case of The-
orem 1.1), and we obtain a weaker classification of those with 3/4-maximal symmetry rank and
bounded second Betti number (Theorem 1.3).

7.1 | Positive Euler characteristic

First, we establish Theorem 1.4, which we restate here for convenience:
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Theorem 7.1. Suppose M" is a closed Riemannian manifold of even dimension n > 8 with Ric, > 0.
Ifatorus T" of rank r > % + 2 acts effectively and by isometries on M", then y(M™) > 0.

To prove Theorem 7.1, we will use the following topological observation:

Proposition 7.2. Suppose a torus T" acts isometrically and effectively on a closed manifold M. If the
fixed pointset M™" is non-empty, then given any point x € M"", there exists a chain of subgroups T* C
T? C --- C T"! C T" such that the following inclusions of components of fixed point sets containing
X are each of minimal, positive, even codimension:

i r—1 2 1
MM cooc M cM! cm.

Proof. Fixapoint x € M™" and choose a circle subgroup S% C T" such that the fixed point set com-
S .. . Lo . S
ponent M, ' has minimal codimension in M. Because T" acts effectively on M, we have M ! # M.

Set T' := S}. Now choose a circle subgroup S} € T”/T" such that the fixed point set component
M” for T? := S) x T' has minimal codimension in M. Because MT' was chosen to have mini-
mal codimension in M, T" /T' must act almost effectively on M)fl by Proposition 4.6. In particular,
S} does not fix all of M)fl, and hence M§2 # Mgl.

Now fori € {2, ...,r — 1}, we inductively choose Si1+1 C T"/T! such that the fixed point set com-
ponent M){M for T"*! :=S! | x T' has minimal codimension in M?. Because M " was chosen to
have minimal codimension in Mgi_l, again T" /T' must act almost effectively on Mf by Propo-
sition 4.6. This shows that Si1+1 C T"/T" does not fix all of Mf, and therefore Mf” + Mf for
ief{2,..,r—1} O

To prove Theorem 7.1, we will apply Proposition 1.5 for a T"-action on an n-manifold of Ric, > 0
with r > g + 2 to obtain a fixed point for some T"~2-subaction. Applying Proposition 7.2 will then
give us the following topological restriction:

Lemma 7.3. Suppose M" is closed and even-dimensional, and a torus T" acts isometrically and
effectively on M" withr > 7 + 2. Assume a subgroup T"~> C T" has non-empty fixed point set M L
in M, and for any point x € MT"™, consider a chain of fixed point set components M;r_z C M){H C
e C Mzz C M? C M guaranteed by Proposition 7.2. Then either:

. . TV—Z .
(i) dim(M, ") =0;or . . i 1
(ii) at least one of the inclusions in the chain M " c ML~ c--cML cM! cM is of
codimension 2.

Proof. Suppose dim(M){r_z) # 0. Let d; denote the codimension of Mf in M?_l forie{2,..,r—
2}, and let d, denote the codimension of le in M. Because fixed point sets of torus actions
have even codimension, it follows that dim(Mf_z) > 2 and each d; is even. Because the inclu-

sions in the chain are proper, it follows that d; > 2 for all i. Now if d; > 4 for all i, then because
dim(MiH) > 2, we have
n=dimM") > dimML ) +d,_, +d,_5 + -+ dy + 4,

>2+4(r —2).
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It then follows that r < % + 2, which contradicts the assumption thatr > % + 2. Therefore, d; = 2
for somei €{1,...,r —2}. O

Finally, we recall the following topological result established by Conner:
Lemma 7.4 [7]. If T is a torus acting on a manifold M with fixed point set M", then y(M) = y(M7).
‘We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. Suppose M" is closed, even-dimensional, has Ric, > 0, and T" acts isomet-
rically and effectively on M" with r > % + 2. Because Ric,(M"™) > 0, Proposition 1.6 states that
r< % For even dimensions n, the inequalities % +2<r< g are only consistent if n > 8. In this
case, r > 4. Thus by Proposition 1.5, there exists a subgroup T"~2 C T” such that the fixed point
set M7 in M is non-empty. By Lemma 7.4, it suffices to show that y(M Tr_z) > 0. In particular,
we will show that every connected component M ){ " has positive Euler characteristic.

Choose an arbitrary point x € M2, By Proposition 7.2, there exists a chain of subgroups
T' c T? C --- C T"~! C T’ such that the inclusions of fixed point set components containing x,
M;r C M;H C - C M)fz C M;l C M, are proper. By Lemma 7.3, either dim(M)fH) =0, or at
least one of the inclusions in the chain M){H C M)fH Cc-C M)fz C M;l C M is of codimension
2.1f dim(M){r_z) =0, then )((M){r_z) > 0, and we are done.

Now assume dim(MiH) > 2 and one of the inclusions M;i C M;H forief{l,..,r —2}isof
codimension 2. Here, we are using the convection that T? is the trivial subgroup and M;O =M.
We will show that y(MT" ) > 0. Let m = dim(Mf_1 ). Because dim(M)f’_z) >2,wehavem =2+
dim(MT") > 4. So because M;H is totally geodesic in M, we have Ric,(M~ ') > 0. Hence the Betti
numbers for bl(Mf_l) and b, (M ;H) are both zero. So if M7 is 4-dimensional, y(MT" ") > 0.

Suppose now that M "' has dimension m > 6. By Theorem 1.7, because Mf is fixed by the S =~
T! /T~ '-action on M)fH, the inclusion M){i < MgH is (m — 3)-connected. Thus by Lemma 6.3,
we have homomorphisms H i(M)fH;Z) - H”Z(Mf*l; 7) which are surjective for 1 <i <m —
3 and injective for 1 < i < m — 3. The hypothesis that n —d — 2] > 0 in Lemma 6.3 is satisfied
because m>6,d =2,andl = 1in this case. Therefore, it follows that all of the odd Betti numbers
of M)fH are zero, which implies )((M){H) > 0.

Now for all dimensions m > 4, because Mf*l is invariant under the T'2-action and
(M;H YT = MEH, it follows from Lemma 7.4 that )((M)fH) > 0. Hence, we have shown that

for all x € M™", the component M’ containing x has y(M’") > 0. Therefore, y(M™) > 0
and by Lemma 7.4, (M) > 0. n

7.2 | Classification for maximal symmetry rank

We will now prove the even-dimensional case of Theorem 1.1. Specifically, we must prove if
M"™ is closed, simply connected, even-dimensional, n # 6, b,(M") < 1, Ric,(M", g) > 0, and
symrank(M", g) = %, then M" is either diffeomorphic to S” or homeomorphic to CP"/2,

First, we note that the dimension n = 4 case of Theorem 1.1 follows from purely topological
considerations, not relying on the curvature assumption. Orlik and Raymond prove in [30] that
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any closed, simply connected 4-manifold M* with an effective T?-action is equivariantly diffeo-
morphic to a connected sum of finitely many copies of S*, +CP?, or S? X S%. Now if b,(M*) < 1,
then 2 < y(M*) < 3. Thus, we have the following:

Corollary 7.5. Suppose M* is a closed, simply connected, 4-dimensional manifold with a smooth,
effective T?-action. If b,(M*) < 1, then M* is equivariantly diffeomorphic to either S* or CP2.

Sha and Yang proved in [36] that any connected sum of finitely many copies of S*, +CP?, or
52 x §? admits a metric of positive Ricci curvature. This leads naturally to the following:

Question 1. Are there any closed, simply connected 4-manifolds with b, > 2 which admit metrics
of Ric, > 0 that are invariant under an effective T?-action?

Example 7.6. Recall from Example 2.3 that S? X S? admits a metric with Ric, > 0 and symmetry
rank 1. Hsiang and Kleiner prove in [23] that any closed, orientable, 4-dimensional manifold with
positive sectional curvature that has a non-trivial Killing field must be homeomorphic to S* or
CP2. Consequently, it is impossible for S? x S? to admit a metric of positive sectional curvature
with symmetry rank 1. It remains to be seen whether S? x S? can admit a metric with Ric, > 0
and symmetry rank 2.

Now we will establish Theorem 1.1 for dimensions n > 8. Namely, we intend to prove the
following:

Theorem 7.7. Let M" be a closed, simply connected Riemannian manifold of even dimensionn > 8
with Ric, > 0. Suppose a torus T" of rank r = % acts effectively and by isometries on M".

(i) Ifb,(M"™) = 0, then M" is diffeomorphic to S™.
(ii) Ifb,(M") =1, then M" is homeomorphic to cp/2,

First, we will use Theorems 7.1 and 1.7 to justify the following:

Lemma 7.8. Let M" be a closed, simply connected Riemannian manifold of even dimension n > 8
with Ric, > 0. Suppose a torus T" of rank r = g acts effectively and by isometries on M". Then
there exist closed, simply connected, totally geodesic submanifolds M* c M® C --- c M"=2 c M"
and torus subgroups T C T?> C --- ¢ T"~' C T" such that:

(i) each submanifold M is fixed by the T" " action;
(ii) the action of T' := T" /T"~" on M?! is effective for all i; and
(iii) each inclusion M? < M?%2 js (2i — 1)-connected.

n

Proof. By Theorem 7.1, because r = 72 % + 2 when n > 8, we have y(M") > 0. Thus, the T"-

action on M" has non-empty fixed point set. By Proposition 7.2, given a point x in M”", there exists
a chain of subgroups T' ¢ T? C --- ¢ T"~! € T" such that the following inclusions of components
of fixed point sets containing x are of positive, even codimension:

r—1 2 1
MM cooc M cM! cm.
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Because r = 2 and because each of the inclusions above are of positive, even codimension, it
2
r. . . . . j j—1 . . . .
follows that ML is zero-dimensional and each inclusion MZ' ¢ MT'"" is of codimension 2. Define
X X p

M2 = M){H. Because each submanifold M? is totally geodesic, we have Ric,(M?) > 0 for 2i >
4. By Theorem 1.7, each inclusion M? < M?+2 is (2i — 1)-connected, and because M is simply
connected, so are M2 for 2i > 4.

Now, we will show that the T? := T" /T"~! action on M? is effective for all i. Suppose for the sake
of contradiction that the kernel of the action is non-trivial for some i. By choosing the largest such
index i, we may assume that the T*! action on M?+? is effective. As in the proof of Lemma 6.2,
it follows that there exists an involution o € T" that fixes M, and the component F of the fixed
point set of ¢ containing x has dimension strictly larger than M?. Let S C T" be any circle sub-
group containing o. Then the codimension of the fixed point set component M ;fl in F is even, and
the codimension of M il in M2*2 is also even. Thus, it follows that the codimension of F in M?2i*2
must be even and smaller than 2. This implies that the codimension of F in M?*2 is zero, and
hence the Ti*! action on M2+2 is not effective, which is a contradiction. Therefore, the T! action
on M?% must be effective for all i. O

We are now prepared to classify even-dimensional manifolds with b, <1, Ric, > 0, and
maximal symmetry rank.

Proof of Theorem 7.7. Let M" be a closed, simply connected Riemannian manifold of even
dimension n > 8 with Ric, > 0, and suppose a torus T" of rank r = g acts effectively and by
isometries on M". By Lemma 7.8, there exist closed, simply connected, totally geodesic subman-
ifolds M* c M® c --- ¢ M2 c M" and torus subgroups T' C T?> C --- C T"~! C T" such that
each submanifold M? is fixed by the T"~! action, the action of T := T" /T"~! on M? is effective
for all i, and each inclusion M? < M?*2 is (2i — 1)-connected. Thus b,(M*) = b,(M®) = ... =
b,(M"=2) = by,(M™). So if b,(M") < 1, then b,(M*) < 1, and it follows from Corollary 7.5 that M*
is equivariantly diffeomorphic to either S* or CP2.

Because M* < M? is 3-connected, we have that 77;(M®) = 0, and 7,(M®) = 0 (respectively, Z)
if M* = S* (respectively, CP2). It follows from Poincaré duality and the Hurewicz theorem that M°®
is homotopy equivalent to S® or CP. By iterating the same argument for M5, ..., M"*, we conclude
that M" is homotopy equivalent to S” if b,(M") = 0, or M" is homotopy equivalent to CP"/2 if
b,(M™") =1.

If b,(M"™) = 0, then similar to the proof of Theorem 6.1, by inductively applying Lemma 6.5 to
the submanifolds M* ¢ M® C --- ¢ M", it follows that M" is diffeomorphic to S”.

Suppose instead that b,(M") = 1, and hence M* is homeomorphic to CP? and MS, ..., M" are
homotopy complex projective spaces. Fang and Rong proved that any homotopy CP" with a sub-
manifold homeomorphic to CP*~! such that the inclusion map is at least 3-connected must be
homeomorphic to CP" [14]. Because M* ishomeomorphic to CP? and each inclusion M? < M?+1
is (2i — 1)-connected, we can apply Fang and Rong’s result to each inclusion M* ¢ M® C --- ¢ M",
concluding that M" is homeomorphic to CP"/2, O

7.3 | Classification for 3/4-maximal symmetry rank

In this final section, we will prove Theorem 1.3, which we restate here for convenience:
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Theorem 7.9. Let M" be a closed, simply connected, Riemannian manifold of even dimensionn > 8
with Ric, > 0. Suppose a torus T" of rank r > 3”+6 acts effectively and by isometries on M". Then

H{(M™;Z) = 0 for all odd values of i. Furthermore.
(1) ifb,(M™) =0, then M" is homeomorphic to S";
(i) if b,(M™) = 1, then M" is tangentially homotopy equivalent to CP"/2,

First, we establish an even dimensional analogue of Lemma 6.7:

Lemma 7.10. Let M" be a closed even-dimensional manifold with Ric, > 0 onwhich a torus T" acts
isometrically and effectively with non-empty fixed point set. If r > 316 then there exists a connected
submanifold N ¢ M of minimal codimension fixed by a circle subgroup of T" such that:

(i) dim(N) >
(ii) either codlm(N ) = 2 or symrank(N) >

3dim(N)+6
—

Proof. Suppose the T"-action on M" has non-empty fixed point set, and consider the chain of
fixed point set components M! C M;H c-C M)fz C M)fl C M guaranteed by Proposition 7.2.
We will choose N to be M;l. Because the inclusions M? CM, '™ are each of positive, even codi-
mension, we have that dim(N) > 2r — 2, and because r > 3"+6 , it follows that dim(N) > 3n- 2.
This proves Part (i).

To prove Part (ii), assume codim(N) # 2 and symrank(N) < . Recall from Proposi-
tion 7.2 that the inclusion N C M" is minimal in the sense that if a circle subgroup of T" fixes
another connected submanifold N’ ¢ M", then codim(N’) > codim(N). Now, because the T’ -
action on M" is effective and the codimension of N C M" must be even, we have that dim(N) <
n — 4. Thus

3dim(N)+6

3 d1m(N)+6
8 < 8

3(n—4)+6 3n+6 1<r—1
—_— < .

symrank(N) < <

So setting T"~! = T" /T?, it follows that there is a circle subgroup of T"~! that fixes N, meaning
that N is fixed by a two-dimensional torus subgroup of T". By Proposition 4.6, this implies that
there is a circle subgroup of T" that fixed a submanifold of larger dimension than N, which is a
contradiction. Therefore, Part (ii) follows. O

In proving Theorem 7.9, if the submanifold N from Lemma 7.10 is of codimension 2, then we
will apply the following:

Lemma 7.11. Suppose M" is a closed, even-dimensional, simply connected, smooth manifold of
dimension n > 4. Assume M" contains a closed, connected, embedded submanifold N n—2 of codi-
mension 2 such that the inclusion N"=2 < M" is (n — 3)-connected. Then H'(M";Z) = 0 for all
odd values of i.

Proof. In dimension n = 4, the result follows from Poincaré duality. Suppose n > 6. Because M"
is simply connected, so is N*~2. Let [N] € H,,_,(M"; Z) denote the image of the fundamental
class of N, and let e € H2(M"; Z) denote its Poincaré dual. By Lemma 6.3, the homomorphisms

e : HI(M";Z) - H/*>(M"; Z) are surjective for 1 < j < n — 3 and injective for 1 < j < n — 3.
Because M" is simply connected, H'(M"; Z) =~ 0 ~ H""'(M"; Z), and it follows that H/(M"; Z) =
0 for all odd values of i. O
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Example 7.12. As we described in Example 2.3, S3 X S? admits a metric with Ric, > 0 invariant
under an effective T3-action. It follows from Lemma 7.11 that no action of any of the circle sub-
groups of T3 has fixed point set of codimension 2. In fact, one can show that the possible fixed
point sets in S* x S* of circle subgroups in this example are either empty or diffeomorphic to T2.

We will now prove Theorem 7.9 using the work of Smale in [38] and Dessai and Wilking in [10]:

Proof of Theorem 7.9. We will prove Theorem 7.9 by induction on the dimension, n. First note that
in dimensions n = 8,10, and 12, we have [3”8+ 6] = g So the result holds in these dimensions by
Theorem 7.7, thus establishing our base case.

Now, suppose for the sake of induction that Theorem 7.9 holds in even dimensions 8, ...,n — 2
for some n > 14. We will show it also holds in dimension n. Consider a manifold M" satisfying
the hypotheses of Theorem 7.9, and suppose T" acts isometrically and effectively on M" with
r = symrank(M") > 3146 Then by Theorem 1.4, y(M") > 0, and hence the T"-action on M" has a
fixed point. By Lemma 7.10, there exists a connected submanifold N ¢ M of minimal codimension

fixed by a circle subgroup of 7" such that dim N > 3122 and either codim(N) = 2or symrank(N) >
3dim N+6

Ifgcodim(N ) = 2, then by Theorem 1.7, the inclusion N"~2 < M" is (n — 3)-connected, and by
Lemma 7.11, H°4(M"; 7) = 0. By Lemma 6.3, if [N] € H,_;(M"; Z) denotes the image of the
fundamental class of N and e € H d(M . 7) denotes its Poincaré dual, then the homomorphisms
Ue : H'(M;Z) — H*4(M; 7) areisomorphisms for 2 < i < n — 4.1fb,(M") < 1, then because M"
is simply connected, it has the cohomology ring of either a sphere or a complex projective space,
and hence is homotopy equivalent to one of these spaces. For the case of a sphere, M" is homeo-
morphic to S” by Smale’s resolution to the Poincaré conjecture for dimensions > 5 in [38]. In the
case of a complex projective space, Dessai and Wilking proved in [10] if a manifold is homotopy
equivalent to CP™ and admits a smooth effective action by a torus T" such that m < 4r — 1, then
the manifold is tangentially homotopy equivalent to CP". Thus, it follows in this case that M" is
tangentially homotopy equivalent to CP"/2,

Suppose instead symrank(N) > 3dmN+6 Then because dim N > > 10 and N is totally
geodesic in M, we have that Ric,(N) > 0. Thus, the induction hypothesis implies that
H°44(N; Z) = 0. Furthermore, because

3n—2

n—2codimN +1 > g

the inclusion N & M" is at least %-connected by Theorem 1.7. Thus it follows that H°d(M"; 7) =
0.1fb,(M™) < 1,then b,(N) < 1,and N is either homeomorphic to a sphere are tangentially homo-
topy equivalent to a complex projective space by the induction hypothesis. Because the inclusion
N o M™is %—connected, it follows that M" has the cohomology ring of either a sphere or a com-
plex projective space. Then, just as in the previous case, M" is either homeomorphic to S" or
tangentially homotopy equivalent to CP"/2, O
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