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Abstract
We study closed, simply connected manifolds with
positive 2nd-intermediate Ricci curvature and large sym-
metry rank. In odd dimensions, we show that they are
spheres. In even dimensions other than 6, we show
that they must have positive Euler characteristic. Under
stronger assumptions on the symmetry rank, we show
that such even-dimensional manifolds must have trivial
odd degree integral cohomology, and if the second Betti
number is no more than 1, they are either spheres or
complex projective spaces. In the process, we establish
new tools for studying isometric actions on closed man-
ifolds with positive 𝑘th-intermediate Ricci for values of
𝑘 ⩾ 2. These tools include generalizations of the isotropy
rank lemma, symmetry rank bound, and connectedness
principle from the setting of positive sectional curvature.

MSC 2020
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1 INTRODUCTION

On an 𝑛-dimensional manifold, positive 𝑘th-intermediate Ricci curvature is a condition interpo-
lating between positive sectional curvature (𝑘 = 1) and positive Ricci curvature (𝑘 = 𝑛 − 1). There
has recently been increased interest in studyingmanifoldswith lower bounds on 𝑘th-intermediate
Ricci curvature. For example, many results from the setting of positive or non-negative sectional
curvature have been adapted to this setting, including generalizations of the Synge theorem and
Weinstein fixed point theorem by Wilhelm [41], the Heintze–Karcher inequality by Chahine [6],
and theGromoll–Meyer theorem andCheeger–Gromoll soul theorem for openmanifolds by Shen
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[37]. In addition, many comparison results have been proven by Guijarro and Wilhelm in their
series of papers [18–20]. In this article, to further the study of positive intermediateRicci curvature,
we take inspiration from the Grove symmetry program.
In the setting of positive sectional curvature, the Grove symmetry program has proven to be

a great source of insights. The goal of this program is to classify positively curved manifolds
that have ‘large isometry groups’. Karsten Grove initiated this investigation in 1992, motivated
by a result of Hsiang and Kleiner [23] and the classification of positively curved homogeneous
spaces that was resolved in the 1970s; see [4, 40, 43]. The Grove symmetry program has resulted
inmanymajor classification results while also motivating constructions of new examples of man-
ifolds with lower curvature bounds along with discoveries of unexpected topological structure of
positively curved manifolds. For more information, see [16, 26] and the references therein. One
common notion of ‘large isometry group’ is large symmetry rank.

Definition. The symmetry rank of a Riemannian manifold (𝑀, g) is the rank of its isometry
group. We denote this quantity by symrank(𝑀, g). Equivalently, symrank(𝑀, g) is the maximal
dimension of a torus that can act effectively and by isometries on (𝑀, g).

Grove and Searle proved that any closed, connected, 𝑛-dimensional manifold with positive sec-
tional curvaturemust have symrank(𝑀, g) ⩽ ⌊𝑛+1

2
⌋, and in the case of equality, themanifoldmust

be diffeomorphic to a sphere, complex or real projective space, or a lens space [17]. Since then,
many have studied closed manifolds with positive sectional curvature and large symmetry rank;
see, for example, [1, 15, 25, 26, 35, 42]. Motivated by these works and, more generally, the success
of the Grove symmetry program, we study manifolds with positive intermediate Ricci curvature
and large symmetry rank in this article.

Definition. A Riemannian manifold (𝑀, g) is said to have positive 2𝑛𝑑-intermediate Ricci curva-
ture if, for any choice of orthonormal vectors {𝑢, 𝑒1, 𝑒2}, the sumof sectional curvatures sec(𝑢, 𝑒1) +
sec(𝑢, 𝑒2) is positive. We abbreviate this condition as Ric2(𝑀, g) > 0, omitting𝑀 or g when they
are understood.

For our first main result, we generalize the Grove–Searle maximal symmetry rank theorem
from [17] to the setting of manifolds with Ric2 > 0:

Theorem 1.1. Let (𝑀𝑛, g) be a closed, connected Riemannian manifold of dimension 𝑛 ⩾ 3 with
Ric2 > 0. Then

symrank(𝑀𝑛, g) ⩽
⌊
𝑛 + 1

2

⌋
.

Furthermore, if 𝑀𝑛 is simply connected and a torus 𝑇𝑟 of rank 𝑟 = ⌊𝑛+1
2
⌋ acts effectively and by

isometries on𝑀𝑛, then the following hold.

(i) If the dimension 𝑛 is odd, then𝑀𝑛 is diffeomorphic to a sphere.
(ii) If the dimension 𝑛 is even, 𝑛 ≠ 6, and the second Betti number satisfies 𝑏2(𝑀𝑛) ⩽ 1, then𝑀𝑛 is

either diffeomorphic to a sphere or homeomorphic to a complex projective space.

The dimension 𝑛 = 4 case in Theorem 1.1 follows from purely topological considerations;
see Corollary 7.5. For even dimensions 𝑛 ⩾ 8, the tools developed below (Proposition 1.5 and
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Theorem 1.7) allow us to show that the odd degree integral cohomology groups are trivial
(see Theorem 1.3), and the even degree cohomology is periodic, in the sense that 𝐻2(𝑀𝑛; ℤ) ≅

𝐻4(𝑀𝑛; ℤ) ≅ 𝐻6(𝑀𝑛; ℤ) ≅ ⋯ ≅ 𝐻𝑛−2(𝑀𝑛; ℤ). This is where the assumption that 𝑏2(𝑀𝑛) ⩽ 1

allows us to establish a classification. In dimension 6, these tools do not guarantee similar
restrictions on the cohomology groups, which is why the 𝑛 = 6 case is excluded in Theorem 1.1.
Furthermore, 𝑆3 × 𝑆3 admits ametricwithRic2 > 0 andmaximal symmetry rank; see Example 2.3
for more information. Thus, we cannot hope to have the same conclusion as Theorem 1.1 for a
classification of 6-dimensional manifolds with Ric2 > 0 and maximal symmetry rank.
We note that Alexandrov geometry is a commonly used tool when studying isometric group

actions on manifolds with positive sectional curvature. For example, Grove and Searle use the
concavity of the distance functions from the boundaries of positively curved orbit spaces to estab-
lish their diffeomorphism classification in [17]. However, because sectional curvatures are allowed
to be negative when Ric2 > 0, Alexandrov geometry is far less useful for our purposes. Instead,
we rely on a generalization of Wilking’s connectedness principle (Theorem 1.7) and topological
results by Montgomery and Yang [28] and Fang and Rong [14].
If we weaken the symmetry rank assumption in Theorem 1.1, we show that we can still obtain

classifications. Specifically, in odd dimensions, we prove the following:

Theorem 1.2. Let𝑀𝑛 be a closed, simply connected Riemannian manifold of odd dimension 𝑛 ⩾ 7

with Ric2 > 0. Suppose a torus 𝑇𝑟 of rank 𝑟 ⩾ 3𝑛+10

8
acts effectively and by isometries on𝑀𝑛. Then

𝑀𝑛 is homeomorphic to a sphere.

In even dimensions, we also establish the following:

Theorem 1.3. Let𝑀𝑛 be a closed, simply connected, Riemannianmanifold of even dimension 𝑛 ⩾ 8

with Ric2 > 0. Suppose a torus 𝑇𝑟 of rank 𝑟 ⩾ 3𝑛+6

8
acts effectively and by isometries on 𝑀𝑛. Then

𝐻𝑖(𝑀𝑛; ℤ) = 0 for all odd values of 𝑖. Furthermore, if the second Betti number satisfies 𝑏2(𝑀𝑛) ⩽

1, then 𝑀𝑛 is either homeomorphic to a sphere or tangentially homotopy equivalent to a complex
projective space.

Recall that manifolds 𝑀 and 𝑁 are said to be tangentially homotopy equivalent if there is a
homotopy equivalence ℎ ∶ 𝑀 → 𝑁 such that the pullback bundle ℎ∗𝑇𝑁 is stably isomorphic to
the tangent bundle 𝑇𝑀. Equivalently,𝑀 is tangentially homotopy equivalent to 𝑁 if there exists
𝑙 ⩾ 1 such that𝑀 ×ℝ𝑙 is diffeomorphic to 𝑁 × ℝ𝑙. We use a result of Dessai and Wilking [10] to
establish the complex projective space case of the classification in Theorem 1.3.
Hopf famously conjectured that closed, even-dimensional manifolds with positive sectional

curvature must have positive Euler characteristic. In an effort to make progress toward this con-
jecture, many have shown that even-dimensional manifolds with positive sectional curvature and
large symmetry rankmust have positive Euler characteristic; see, for example, [34], [35], [24], [26].
We establish a similar result for manifolds with Ric2 > 0:

Theorem1.4. Suppose𝑀𝑛 is a closedRiemannianmanifold of even dimension𝑛 ⩾ 8withRic2 > 0.
If a torus 𝑇𝑟 of rank 𝑟 ⩾ 𝑛

4
+ 2 acts effectively and by isometries on𝑀𝑛, then 𝜒(𝑀𝑛) > 0.

The tools we develop to establish the results above should prove to be helpful in studying gen-
eral isometric group actions on closed manifolds with positive 𝑘th-intermediate Ricci curvature
for any 𝑘 ⩾ 2.
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Definition. Wesay an𝑛-dimensional Riemannianmanifold (𝑀𝑛, g)has positive 𝑘th-intermediate
Ricci curvature for 𝑘 ∈ {1, … , 𝑛 − 1} if, for any choice of orthonormal vectors {𝑢, 𝑒1, … , 𝑒𝑘}, the
sum of sectional curvatures

∑𝑘
𝑖=1 sec(𝑢, 𝑒𝑖) is positive

†. We abbreviate this condition by writing
Ric𝑘(𝑀

𝑛, g) > 0, omitting𝑀𝑛 or g when they are understood.

Note that Ric1 > 0 is equivalent to positive sectional curvature, and Ric𝑛−1 > 0 is equivalent to
positive Ricci curvature. Furthermore, if Ric𝑘 > 0, then Ric𝑙 > 0 for all 𝑙 ⩾ 𝑘. Thus Ric2 > 0 is a
strong condition on curvature in this hierarchy, second only to positive sectional curvature.
See Section 2 for basic examples of manifolds with Ric𝑘 > 0. For the classification of compact

symmetric spaces by the minimal value of 𝑘 for which each has Ric𝑘 > 0, see [2] or [12]. We note
that the only compact irreducible symmetric spaces that have Ric2 > 0 are those of rank 1, that
is, those that have positive sectional curvature. For more constructions of Ric𝑘 > 0, see Theorems
E, F, and G in [12].
The first tool we establish in this article guarantees fixed point sets of torus actions on closed

manifolds with Ric𝑘 > 0:

Proposition 1.5. Suppose𝑀𝑛 is a closed 𝑛-dimensional Riemannian manifold with Ric𝑘 > 0 for
some 𝑘 ∈ {2, … , 𝑛 − 1}. If a torus 𝑇𝑟 of rank 𝑟 ⩾ 𝑘 + 1 acts by isometries on 𝑀𝑛, then there is a
codimension-𝑘 torus subgroup 𝑇𝑟−𝑘 ⊂ 𝑇𝑟 such that the 𝑇𝑟−𝑘-action on𝑀𝑛 has a fixed point.

Berger proved in [3] that any Killing field on a closed, even-dimensional manifold with positive
sectional curvature must have a zero. It follows that an isometric circle action on such a manifold
must have a fixed point. Sugahara in [39] extended Berger’s argument to prove that on a closed
manifold of any dimension with positive sectional curvature, any two commuting Killing fields
must be linearly dependent at somepoint. It follows that any isometric torus action on such aman-
ifold must have a circle sub-action with non-empty fixed point set, a result that was established
independently by Grove and Searle in [17]. Grove refers to these collective results as the Isotropy
Rank Lemma in [16]. To prove Proposition 1.5, we use a generalization of Sugahara’s approach;
see Proposition 3.1 below.
Asmentioned above, Grove and Searle proved in [17] that any closed, connected 𝑛-dimensional

manifold with positive sectional curvature cannot have symmetry rank greater than ⌊𝑛+1
2
⌋. The

author proved in [29] that any connected 𝑛-manifoldwithRic𝑘 > 0 at a point cannot have symme-
try rank greater than ⌊𝑛+𝑘

2
⌋, without assuming that the manifold is closed. For our second new

tool, we apply Proposition 1.5 to obtain the following refined symmetry rank bounds for closed
manifolds with Ric𝑘 > 0:

Proposition 1.6. Suppose (𝑀𝑛, g) is a closed, connected,𝑛-dimensional Riemannianmanifoldwith
Ric𝑘 > 0 for some 𝑘 ∈ {3, … , 𝑛 − 1}. Then

symrank(𝑀𝑛, g) ⩽
⌊
𝑛 + 𝑘

2

⌋
− 1.

It follows from Theorem 1.1 and Proposition 1.6 that if 𝑘 ⩽ 3, or if 𝑘 = 4 and 𝑛 is odd, then the
symmetry rank of𝑀𝑛 is at most ⌊𝑛+1

2
⌋, the same bound as for manifolds with positive sectional

† Positive 𝑘th-intermediate Ricci curvature should not be confused with 𝑘-positive Ricci curvature; see, for example, [9]
and the references therein.
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curvature. In particular, the symmetry rank bounds are optimal in these cases; see Examples 4.2,
4.3, and 4.4 for more information. It also follows from these examples that the symmetry rank
bounds are optimal in dimension 𝑛 = 6 for all values of 𝑘.
Recall that for an 𝑛-dimensional manifold, Ric𝑛−1 > 0 is equivalent to positive Ricci curvature.

It follows from work of Pak [31] and Parker [32] that closed manifolds of dimension 𝑛 ⩾ 4 can-
not have positive Ricci curvature while having symmetry rank ⩾ 𝑛 − 1; see Remark 1. Thus, the
symmetry rank for closed manifolds of dimension 𝑛 ⩾ 4with positive Ricci curvature is bounded
above 𝑛 − 2. This fact is reflected in Proposition 1.6 in the case 𝑘 = 𝑛 − 1. In dimensions 𝑛 ⩽ 6,
spheres or their Riemannian products provide examples of Ricci positive manifolds with symme-
try rank 𝑛 − 2. Corro and Galaz-García show in [8] that for dimensions 𝑛 ⩾ 7, there exist closed,
simply connected 𝑛-dimensional manifolds that admit metrics of positive Ricci curvature with
symmetry rank 𝑛 − 4. It is still unknown whether it is possible to find 𝑛-dimensional manifolds
that admit metrics of positive Ricci curvature with symmetry rank 𝑛 − 2 for 𝑛 ⩾ 7.
Our last tool generalizes Wilking’s Connectedness Principle from [42] for fixed point sets of

isometric group actions on closed manifolds with Ric𝑘 > 0:

Theorem 1.7. Let𝑀𝑛 be a compact, 𝑛-dimensionalmanifold withRic𝑘 > 0 for some 𝑘 ∈ {2, … , 𝑛 −

1}. Suppose𝑁𝑛−𝑑 is a compact embedded submanifold of codimension 𝑑 in𝑀𝑛. If there is a Lie group
𝐺 that acts by isometries on𝑀𝑛 and fixes𝑁𝑛−𝑑 point-wise, then the inclusion

𝑁𝑛−𝑑 ↪ 𝑀𝑛 is (𝑛 − 2𝑑 + 2 − 𝑘 + 𝛿(𝐺))-connected,

where 𝛿(𝐺) is the dimension of the principal 𝐺-orbits in𝑀𝑛.

Recall that a map 𝑓 ∶ 𝑁 → 𝑀 is 𝑗-connected if the induced map 𝜋𝑖(𝑓) ∶ 𝜋𝑖(𝑁) → 𝜋𝑖(𝑀) is
an isomorphism for 𝑖 < 𝑗 and an epimorphism for 𝑖 = 𝑗. The proof of Theorem 1.7 relies on a
Morse-theoretic argument on the space of curves in 𝑀 that start and end in 𝑁. Wilking’s proof
of the positive sectional curvature (𝑘 = 1) case does not extend to the setting of Ric𝑘 > 0 for
𝑘 ⩾ 2. This is because he uses a Cheeger deformation argument that relies on the assumption
of positive sectional curvature. However, Wilking does observe in [42, Remark 2.4] that for a
totally geodesic submanifold 𝑁𝑛−𝑑 of a closed manifold 𝑀𝑛 with Ric𝑘(𝑀

𝑛) > 0, the inclusion
𝑁𝑛−𝑑 ↪ 𝑀𝑛 is (𝑛 − 2𝑑 + 2 − 𝑘)-connected, without assuming existence of an isometric group
action. For a generalization of Wilking’s result to submanifolds that are not necessarily totally
geodesic in manifolds with Ric𝑘 > 0, see the work of Fang, Mendonça, and Rong in [13]. Guijarro
and Wilhelm established a quantitative version of Wilking’s Connectedness Principle for man-
ifolds with positive intermediate Ricci curvature in [18] using a Jacobi field comparison result.
Again, they do not assume existence of an isometric group action. Our argument for Theorem 1.7
is adapted from Guijarro and Wilhlelm’s approach.

1.1 Organization

In Section 2, we present examples of closed manifolds with Ric𝑘 > 0 and discuss their symme-
try rank. In Section 3, we study zero sets of commuting Killing fields on closed manifolds with
Ric𝑘 > 0, andwe prove Proposition 1.5. In Section 4, we use Proposition 1.5 to prove our symmetry
rank bounds in Theorem 1.1 and Proposition 1.6. In Section 5, we establish our connectedness prin-
ciple, Theorem 1.7. Finally, in Sections 6 and 7, we study closedmanifolds withRic2 > 0 and large
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symmetry rank, focusing on odd dimensions in Section 6 and even dimensions in Section 7. We
prove the following results in the corresponding subsections: the odd-dimensional case of Theo-
rem 1.1 in Section 6.1, Theorem 1.2 in Section 6.2, Theorem 1.4 in Section 7.1, the even-dimensional
case of Theorem 1.1 in Section 7.2, and Theorem 1.3 in Section 7.3.

2 EXAMPLES

In this section, we present a few examples of closed manifolds with Ric𝑘 > 0 and large torus
actions. First, we recall maximal torus actions for manifolds with positive sectional curvature:

Example 2.1. Grove and Searle proved in [17] that any closed, connected, 𝑛-dimensional Rieman-
nianmanifold (𝑀, g)with positive sectional curvature must have symrank(𝑀, g) ⩽ ⌊𝑛+1

2
⌋, and in

the case of equality, the manifold must be diffeomorphic to a sphere, complex or real projective
space, or a lens space. Here, ⌊𝑥⌋ denotes the largest integer less than or equal to the quantity 𝑥.
A maximal torus action 𝑇𝑚 × 𝑆2𝑚−1 → 𝑆2𝑚−1 on the odd-dimensional unit sphere 𝑆2𝑚−1 ⊂ ℂ𝑚 is
given in complex coordinates by

(𝑒𝑖𝜃1 , … , 𝑒𝑖𝜃𝑚) ⋅ (𝑧1, … , 𝑧𝑚) ∶= (𝑒𝑖𝜃1𝑧1, … , 𝑒𝑖𝜃𝑚𝑧𝑚).

This action induces an effective 𝑇𝑚-action on all lens spaces 𝑆2𝑚−1∕ℤ𝑞. Furthermore, letting
Δ𝑆1 denote the diagonal embedding of the circle in 𝑇𝑚, this 𝑇𝑚-action on 𝑆2𝑚−1 descends to an
effective action by 𝑇𝑚−1 ≅ 𝑇𝑚∕Δ𝑆1 onℂP𝑚−1 = 𝑆2𝑚−1∕Δ𝑆1. Finally, a maximal 𝑇𝑚-action on the
even-dimensional sphere 𝑆2𝑚 ⊂ ℂ𝑚 ⊕ ℝ is given by suspending the action above, that is, with the
action on the ℝ-factor being trivial. This action on 𝑆2𝑚 induces an effective 𝑇𝑚-action on ℝP2𝑚.

Next, we discuss the elementary class of examples given by Riemannian products:

Example 2.2. Consider a collection of Riemannian manifolds {(𝑀𝑖, g𝑖)}
𝑁
𝑖=1
, each of dimension at

least 2 and with Ric𝑘𝑖 (𝑀𝑖, g𝑖) > 0 for some 𝑘𝑖 ∈ {1, … , dim𝑀𝑖 − 1}. It is a straightforward exercise
to check that, with respect to the product metric,

Ric𝑘(𝑀1 ×⋯ ×𝑀𝑁) > 0 only for 𝑘 ⩾ max
𝑖=1,…,𝑁

{
𝑘𝑖 +

∑
𝑗≠𝑖 dim𝑀𝑗

}
. (2.1)

For example, consider spheres 𝑆𝑛 and 𝑆𝑚 of dimension at least 2with the standard roundmetrics.
Thenwith respect to the productmetric, 𝑆𝑛 × 𝑆𝑚 hasRic𝑘 > 0 only for 𝑘 ⩾ max{𝑛 + 1,𝑚 + 1} and
has symmetry rank equal to ⌊𝑛+1

2
⌋ + ⌊𝑚+1

2
⌋.

Note that it follows from (2.1) that no Riemannian product will have Ric2 > 0. Finally, we
present a metric on 𝑆3 × 𝑆3 that has Ric2 > 0 and maximal symmetry rank:

Example 2.3. Consider the sphere 𝑆3 ⊂ ℍ as the Lie group of unit quaternions. Let Δ𝑆3 denote
the diagonal embedding of 𝑆3 as a subgroup of the product 𝑆3 × 𝑆3 × 𝑆3. Suppose 𝑆3 × 𝑆3 × 𝑆3 is
equipped with the standard Riemannian product metric, gprod, where each factor of 𝑆3 has the
standard (round) biinvariant metric. Then the Δ𝑆3-action on 𝑆3 × 𝑆3 × 𝑆3 by right multiplication
is free and by isometries, and hence the quotient (𝑆3 × 𝑆3 × 𝑆3)∕Δ𝑆3 inherits a Riemannianmetric
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gquot such that the quotient map (𝑆3 × 𝑆3 × 𝑆3, gprod) → ((𝑆3 × 𝑆3 × 𝑆3)∕Δ𝑆3, gquot) is a Rieman-
nian submersion.Now, the quotient is diffeomorphic to 𝑆3 × 𝑆3 via themap (𝑆3 × 𝑆3 × 𝑆3)∕Δ𝑆3 →
𝑆3 × 𝑆3 given by (𝑎, 𝑏, 𝑐)Δ𝑆3 ↦ (𝑎𝑐−1, 𝑏𝑐−1). Let g∗ denote the pushforward of the metric gquot
through this map. Then the metric g∗ on 𝑆3 × 𝑆3 is left-invariant, it is invariant under the diag-
onal action of 𝑆3 by right multiplication, and Ric2(𝑆3 × 𝑆3, g∗) > 0. For more information about
this construction, including a generalization to products of compact semisimple Lie groups, see
Theorem E in [12]. It follows that symrank(𝑆3 × 𝑆3, g∗) = 3, which is maximal for closed 6-
dimensional manifolds with Ric2 > 0 by Theorem 1.1. In particular, a maximal isometric torus
action 𝑇3 × (𝑆3 × 𝑆3) → 𝑆3 × 𝑆3 with respect to g∗ is given in quaternionic coordinates by

(𝑝, 𝑞, 𝑟) ⋅ (𝑎, 𝑏) ∶= (𝑝𝑎𝑟−1, 𝑞𝑏𝑟−1).

By taking quotients of free isometric circle actions, it also follows that 𝑆3 × 𝑆2 inherits a metric
with Ric2 > 0 and symmetry rank 2, and 𝑆2 × 𝑆2 inherits a metric with Ric2 > 0 and symmetry
rank 1.

Example 2.3 shows that the classification result by Grove and Searle in [17] fails to generalize to
Ric2 > 0 in dimension 6. Also, the induced metric on 𝑆3 × 𝑆2 shows that the main result by Rong
in [35] fails to generalize to Ric2 > 0. Furthermore, the induced metric on 𝑆2 × 𝑆2 shows that the
Hsiang–Kleiner theorem from [23] fails to generalize to Ric2 > 0.

3 FIXED POINT SETS OF TORUS ACTIONS

In this section,we establish Proposition 1.5,which asserts that a closedmanifoldwithRic𝑘 > 0 and
a large isometric torus actionmust have points with non-trivial isotropy. Because the action fields
induced by isometric torus actions are commuting Killing fields, we will prove Proposition 1.5 by
first proving the following:

Proposition 3.1. Suppose𝑀𝑛 is a closed 𝑛-manifold and Ric𝑘(𝑀𝑛, g) > 0 for some 𝑘 ∈ {1, … , 𝑛 −

1}. If there are 𝑘 + 1 commuting Killing fields on𝑀𝑛, then they must be linearly dependent at some
point in𝑀𝑛.

As discussed in the introduction, Proposition 3.1 generalizes Sugahara’s result from [39] stating
that any two commutingKilling fields on a closedmanifoldwith positive sectional curvaturemust
be linearly dependent at some point; see also the proof of [33, Theorem 8.3.5].
We now setup notation for the proof of Proposition 3.1. Given vector fields 𝑌1,… , 𝑌𝑘 on𝑀 that

are linearly independent in each tangent space, define the distribution

 ∶= span{𝑌1, … , 𝑌𝑘}.

Given a Riemannian metric on 𝑀 and a vector field 𝑋 on 𝑀, define the vector field 𝑋⟂ at each
point𝑝 to be the projection of𝑋|𝑝 onto the orthogonal complement of|𝑝, and define the function
𝑓⟂ ∶ 𝑀 → [0,∞) by

𝑓⟂ ∶=
1

2

|||𝑋⟂|||2.
We relate the Hessian of 𝑓⟂ to the curvature tensor as follows:
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Lemma 3.2. Let 𝑋,𝑌1, … , 𝑌𝑘 be commuting Killing fields on 𝑀 that are linearly independent in
each tangent space. Suppose there is a point 𝑝 ∈ 𝑀 at which 𝑌1|𝑝, … , 𝑌𝑘|𝑝 are orthonormal and
𝑋|𝑝 is orthogonal to the subspace |𝑝 ⊆ 𝑇𝑝𝑀. Then for all 𝑣 ∈ 𝑇𝑝𝑀, the Hessian of the function
𝑓⟂ ∶=

1

2
|𝑋⟂|2 at the point 𝑝 is given by

Hess 𝑓⟂(𝑣, 𝑣) = |∇𝑣𝑋|2 − 𝑅(𝑣, 𝑋, 𝑋, 𝑣) − 4

𝑘∑
𝑖=1

⟨∇𝑣𝑋,𝑌𝑖⟩2.
Proof. Let 𝑋⊤ denote the projection of 𝑋 onto  , and define the functions 𝑓 ∶ 𝑀 → [0,∞) and
𝑓⊤ ∶ 𝑀 → [0,∞) by

𝑓 ∶=
1

2
|𝑋|2, and 𝑓⊤ ∶=

1

2

|||𝑋⊤|||2.
Then 𝑓⟂ = 𝑓 − 𝑓⊤, and because 𝑋 is a Killing field,

Hess 𝑓(𝑣, 𝑣) = |∇𝑣𝑋|2 − 𝑅(𝑣, 𝑋, 𝑋, 𝑣).

Thus, it suffices to show that at the point 𝑝, we have Hess 𝑓⊤(𝑣, 𝑣) = 4
∑𝑘

𝑖=1⟨∇𝑣𝑋,𝑌𝑖⟩2. Because
𝑌1,… , 𝑌𝑘 are linearly independent in each tangent space, we may perform a Gram–Schmidt
process to produce the following (not necessarily Killing) orthonormal vector fields on𝑀:

𝑌̂𝑖 ∶= 𝑌̄𝑖∕|𝑌̄𝑖|, where 𝑌̄𝑖 ∶= 𝑌𝑖 −
∑
𝑗<𝑖

⟨𝑌𝑖, 𝑌̂𝑗⟩𝑌̂𝑗.
Then it follows that

𝑓⊤ = 1

2

𝑘∑
𝑖=1

⟨𝑋, 𝑌̂𝑖⟩2, and grad 𝑓⊤ =

𝑘∑
𝑖=1

⟨𝑋, 𝑌̂𝑖⟩ grad⟨𝑋, 𝑌̂𝑖⟩.
Thus, the Hessian of 𝑓⊤ is given by

Hess 𝑓⊤(𝑣, 𝑣) =

𝑘∑
𝑖=1

[
(𝐷𝑣⟨𝑋, 𝑌̂𝑖⟩)2 + ⟨𝑋, 𝑌̂𝑖⟩Hess (⟨𝑋, 𝑌̂𝑖⟩)(𝑣, 𝑣)].

Nowat the point𝑝, because𝑌1|𝑝, … , 𝑌𝑘|𝑝 are orthonormal and𝑋|𝑝 is orthogonal to|𝑝, it follows
that 𝑌̂𝑖|𝑝 = 𝑌𝑖|𝑝, ⟨𝑋, 𝑌̂𝑖⟩|𝑝 = 0, and 𝐷𝑣⟨𝑋, 𝑌̂𝑖⟩|𝑝 = 𝐷𝑣⟨𝑋,𝑌𝑖⟩|𝑝 for all 𝑖. Furthermore, because
𝑋,𝑌1, … , 𝑌𝑘 are commuting Killing fields, 𝐷𝑣⟨𝑋,𝑌𝑖⟩ = 2⟨∇𝑣𝑋,𝑌𝑖⟩ for all 𝑖. Therefore, the result
follows. □

We can now use Lemma 3.2 to prove Proposition 3.1:

Proof of Proposition 3.1. We will prove the contrapositive of Proposition 3.1. Suppose 𝑋,𝑌1, … , 𝑌𝑘
are 𝑘 + 1 commuting Killing fields on 𝑀 that are linearly independent in each tangent space.
We will show there exists a point 𝑝 ∈ 𝑀 and orthonormal vectors 𝑢, 𝑒1, … , 𝑒𝑘 ∈ 𝑇𝑝𝑀 such that∑𝑘

𝑖=1 sec(𝑢, 𝑒𝑖) ⩽ 0.
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Because 𝑋,𝑌1, … , 𝑌𝑘 are linearly independent, 𝑓⟂ ∶=
1

2
|𝑋⟂|2 must attain a positive minimum

at some point 𝑝. By performing a Gram–Schmidt process at 𝑝, we can find commuting Killing
fields 𝑌1,… , 𝑌𝑘 that span the same distribution  and are orthonormal at 𝑝, and doing so does
not change the values of 𝑓⟂. Similarly, we can replace𝑋 with the Killing field that commutes with
𝑌1,… , 𝑌𝑘 such that 𝑋|𝑝 is orthogonal to |𝑝, and this too will not change the values of 𝑓⟂.
Now, with these new choices of 𝑋,𝑌1, … , 𝑌𝑘, by Lemma 3.2, we know for 𝑣 ∈ 𝑇𝑝𝑀,

Hess 𝑓⟂(𝑣, 𝑣) = |∇𝑣𝑋|2 − 𝑅(𝑣, 𝑋, 𝑋, 𝑣) − 4

𝑘∑
𝑖=1

⟨∇𝑣𝑋,𝑌𝑖⟩2. (3.1)

Let 𝑃⟂ denote the projection onto the orthogonal complement of|𝑝 ⊆ 𝑇𝑝𝑀. Then at 𝑝, we have

|∇𝑣𝑋|2 = ⟨∇𝑣𝑋, 𝑃
⟂(∇𝑣𝑋)⟩ + 𝑘∑

𝑖=1

⟨
∇𝑣𝑋, ⟨∇𝑣𝑋,𝑌𝑖⟩𝑌𝑖⟩

= |𝑃⟂(∇𝑣𝑋)|2 + 𝑘∑
𝑖=1

⟨∇𝑣𝑋,𝑌𝑖⟩2.
Also, because 𝑓⟂ attains a minimum at 𝑝, we have Hess 𝑓⟂(𝑣, 𝑣) ⩾ 0. Thus by equation (3.1), for
all 𝑣 ∈ 𝑇𝑝𝑀,

𝑅(𝑣, 𝑋, 𝑋, 𝑣) ⩽ |𝑃⟂(∇𝑣𝑋)|2 − 3

𝑘∑
𝑖=1

⟨∇𝑣𝑋,𝑌𝑖⟩2. (3.2)

Hence, it suffices to show that ker(𝑃⟂◦∇𝑋) is at least 𝑘 + 1 dimensional, where ∇𝑋 ∶ 𝑇𝑝𝑀 →

𝑇𝑝𝑀 denotes the linear map given by 𝑣 ↦ ∇𝑣𝑋. First, note that

dim(ker(𝑃⟂◦∇𝑋)) = dim(ker∇𝑋) + dim(Im∇𝑋 ∩ ker 𝑃⟂)

= dim(ker∇𝑋) + dim(Im∇𝑋 ∩ )
= dim(ker∇𝑋) + dim(Im∇𝑋) + dim() − dim(Im∇𝑋 + )
= 𝑛 + 𝑘 − dim(Im∇𝑋 + ). (3.3)

Now recall that, because 𝑋 is a Killing field, ∇𝑋 is a skew-symmetric linear map. In particular,
given 𝑢 ∈ ker∇𝑋 and 𝑣 ∈ 𝑇𝑝𝑀,

⟨∇𝑣𝑋, 𝑢⟩ = −⟨∇𝑢𝑋, 𝑣⟩ = 0.

Thus, Im∇𝑋 ⊆ (ker∇𝑋)⟂. Finally, we show that 𝑋 ∈ ker∇𝑋. With our choices of 𝑋,𝑌1, … , 𝑌𝑘,
we have

𝑓⟂ = 1

2
|𝑋⟂|2 ⩽ 1

2
|𝑋|2,

with equality at 𝑝. So defining 𝑓 ∶=
1

2
|𝑋|2, we know 𝑓 also attains a minimum at 𝑝. Hence

grad 𝑓 = −∇𝑋𝑋 = 0 at 𝑝, and thus 𝑋 ∈ ker∇𝑋. Now because 𝑋 is not an element of (ker∇𝑋)⟂
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or  at 𝑝, we have

dim(Im∇𝑋 + ) ⩽ dim((ker∇𝑋)⟂ + ) ⩽ 𝑛 − 1.

Thus, applying this inequality to equation (3.3), we have that ker(𝑃⟂◦∇𝑋) is at least 𝑘 + 1 dimen-
sional. Hence, we can choose orthonormal vectors 𝑣1, … , 𝑣𝑘 so that 𝑋, 𝑣1, … , 𝑣𝑘 is an orthogonal
basis of ker(𝑃⟂◦∇𝑋), and by Inequality (3.2), we have

∑𝑘
𝑖=1 𝑅(𝑣𝑖, 𝑋, 𝑋, 𝑣𝑖) ⩽ 0. Therefore, we have

proven Proposition 3.1 by contraposition. □

We now use Proposition 3.1 to prove Proposition 1.5, which we restate here for convenience:

Proposition 3.3. Suppose𝑀𝑛 is a closed 𝑛-dimensional Riemannian manifold with Ric𝑘 > 0 for
some 𝑘 ∈ {2, … , 𝑛 − 1}. If a torus 𝑇𝑟 of rank 𝑟 ⩾ 𝑘 + 1 acts by isometries on 𝑀𝑛, then there is a
codimension-𝑘 torus subgroup 𝑇𝑟−𝑘 ⊂ 𝑇𝑟 such that the 𝑇𝑟−𝑘-action on𝑀𝑛 has a fixed point.

Proof. Fix 𝑘 ⩾ 2. We will prove Proposition 3.3 by induction on 𝑟. Given a natural number 𝑟, let
𝔱𝑟 denote the Lie algebra for the torus 𝑇𝑟. Given a 𝑇𝑟-action an a manifold𝑀 and a point 𝑝 ∈ 𝑀,
let 𝐾𝑝 ∶ 𝔱𝑟 → 𝑇𝑝𝑀 denote the linear map such that for any 𝑧 ∈ 𝔱𝑟, 𝐾𝑝(𝑧) is the evaluation at 𝑝 of
Killing field induced by 𝑧 on𝑀 via the 𝑇𝑟-action.
For the base case, 𝑟 = 𝑘 + 1, suppose that 𝑇𝑘+1 acts isometrically on (𝑀𝑛, g). Choose a basis

𝑥1, … , 𝑥𝑘+1 for 𝔱𝑘+1. Then the action fields𝑋1,… , 𝑋𝑘+1 are commuting Killing fields on𝑀𝑛. So by
Proposition 3.1, the fields 𝑋1,… , 𝑋𝑘+1 must be linearly dependent at some point 𝑝 ∈ 𝑀𝑛. Thus,
the kernel of the linear map 𝐾𝑝 ∶ 𝔱𝑘+1 → 𝑇𝑝𝑀

𝑛 must be at least 1-dimensional. Thus, there is a
circle subgroup 𝑇1 ⊂ 𝑇𝑘+1 that fixes the point 𝑝.
For the sake of induction, suppose there exists 𝑟0 ⩾ 𝑘 + 2 such that the statement of Propo-

sition 3.3 holds for all 𝑟 ⩽ 𝑟0 − 1. We will now show the same conclusion holds for 𝑟 =

𝑟0.
Suppose 𝑇𝑟0 acts isometrically on (𝑀𝑛, g). Choose a linearly independent set of vectors

𝑥1, … , 𝑥𝑘+1 ∈ 𝔱𝑟0 . By Proposition 3.1, the action fields 𝑋1,… , 𝑋𝑘+1 must be linearly dependent at
some point 𝑝 ∈ 𝑀𝑛. As before, the kernel of the map 𝐾𝑝 ∶ 𝔱𝑟0 → 𝑇𝑝𝑀

𝑛 is at least 1-dimensional,
and we have a circle subgroup 𝑇1 ⊂ 𝑇𝑟0 that fixes 𝑝. Let𝑁 be a connected component of this fixed
point set for the 𝑇1-action on 𝑀𝑛. Then 𝑁 is totally geodesic in (𝑀𝑛, g) and is invariant under
the 𝑇𝑟0 -action. If dim(𝑁) ⩽ 𝑘, then because 𝑟0 > 𝑘, the kernel of the 𝑇𝑟0 -action on 𝑁 must con-
tain a torus subgroup of dimension at least 𝑟0 − 𝑘, and the result follows. If dim(𝑁) ⩾ 𝑘 + 1, then
because𝑁 is totally geodesic in (𝑀𝑛, g), we have Ric𝑘(𝑁) > 0. Thus induction hypothesis applies
to the action of 𝑇𝑟0−1 ∶= 𝑇𝑟0∕𝑇1 on𝑁. So there is a codimension-𝑘 subtorus 𝑇𝑟0−1−𝑘 ⊂ 𝑇𝑟0−1 that
has a fixed point in𝑁. Therefore, because𝑁 is fixed by 𝑇1, the torus 𝑇𝑟0−𝑘 ∶= 𝑇1 × 𝑇𝑟0−1−𝑘 has a
fixed point in𝑀𝑛. □

4 SYMMETRY RANK BOUND

In this section, we prove the symmetry rank bounds from Theorem 1.1 and Proposition 1.6. In
particular, we intend to prove the following:

Proposition 4.1. Suppose (𝑀𝑛, g) is a closed, connected,𝑛-dimensional Riemannianmanifoldwith
Ric𝑘 > 0 for some 𝑘 ∈ {1, … , 𝑛 − 1}.
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(i) If 𝑘 = 1, then symrank(𝑀𝑛, g) ⩽ ⌊𝑛+1
2
⌋. [17]

(ii) If 𝑛 is odd and 𝑘 = 2, then symrank(𝑀𝑛, g) ⩽ ⌊𝑛+1
2
⌋. [29]

(iii) If 𝑛 is odd and 𝑘 ⩾ 3, then symrank(𝑀𝑛, g) ⩽ ⌊𝑛+𝑘
2

⌋ − 1.
(iv) If 𝑛 is even and 𝑘 ⩾ 2, then symrank(𝑀𝑛, g) ⩽ ⌊𝑛+𝑘

2
⌋ − 1.

Note that if 𝑘 = 2, then the symmetry rank bound provided in Item (iv) of Proposition 4.1 is
equal to ⌊𝑛+1

2
⌋. It follows that Proposition 4.1 is equivalent to the symmetry rank bounds stated

in Theorem 1.1 and Proposition 1.6.

Example 4.2. Recall if a Riemannian manifold has positive sectional curvature, then it has
Ric𝑘 > 0 for any 𝑘 ⩾ 1. As shown in [17], spheres, real or complex projective spaces, and lens
spaces all admit metrics with positive sectional curvature and symmetry rank equal to ⌊𝑛+1

2
⌋; see

Example 2.1 for more information. The symmetry rank upper bounds provided in Proposition 4.1
are equal to ⌊𝑛+1

2
⌋ if 𝑛 is odd and 𝑘 ⩽ 4, or if 𝑛 is even and 𝑘 ⩽ 3. Thus, the symmetry rank bound

from Proposition 4.1 is optimal in these cases.

Example 4.3. Given a product of spheres 𝑆𝑛 × 𝑆𝑚, let g𝑛,𝑚 denote theRiemannian productmetric
associated with the standard round metrics on each factor. As mentioned in Example 2.2, the
Riemannian product (𝑆𝑛 × 𝑆𝑚, g𝑛,𝑚) hasRic𝑘 > 0 only for 𝑘 ⩾ max{𝑛 + 1,𝑚 + 1} and symrank =⌊𝑛+1

2
⌋ + ⌊𝑚+1

2
⌋. Thus the following have maximal symmetry rank for the appropriate dimension

and value of 𝑘 by Proposition 4.1:

− Ric3(𝑆
2 × 𝑆2, g2,2) > 0, and symrank(𝑆2 × 𝑆2, g2,2) = 2,

− Ric4(𝑆
3 × 𝑆2, g3,2) > 0, and symrank(𝑆3 × 𝑆2, g3,2) = 3,

− Ric4(𝑆
3 × 𝑆3, g3,3) > 0, and symrank(𝑆3 × 𝑆3, g3,3) = 4.

From the last example, it follows that the symmetry rank bound in Proposition 4.1 is also optimal
in dimension 6 with 𝑘 = 4, 5.

Example 4.4. As we described in Example 2.3, 𝑆3 × 𝑆3 admits a metric which has Ric2 > 0 and
symrank = 3, which is maximal symmetry rank in dimension 6 for Ric2 > 0 by Proposition 4.1.

Now, we will prove Proposition 4.1 for fixed values of 𝑘 by using induction on the dimension 𝑛.
For the base cases, we will use the following:

Lemma 4.5. A closed manifold of dimension 𝑛 ⩾ 4 cannot support a metric of positive Ricci
curvature that is invariant under an effective action by a torus of rank 𝑛 − 1.

Remark 1. Lemma 4.5 follows from the work of Pak in [31] and Parker in [32], who showed that
in dimensions ⩾ 4, closed manifolds which admit cohomogeneity-one torus actions must have
infinite fundamental group. Thus by the Bonnet–Myers theorem, such manifolds cannot admit
invariant metrics of positive Ricci curvature.

Next, we recall the following:

Proposition 4.6 [33, Proposition 8.3.8]. Let𝑀 be compact and assume that𝑋 and𝑌 are commuting
Killing fields on𝑀.
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(i) 𝑌 is tangent to the level sets of |𝑋|2 and, hence, to the zero set of 𝑋.
(ii) If𝑋 and𝑌 both vanish on a totally geodesic submanifold𝑁 ⊂ 𝑀, then some linear combination

of 𝑋 and 𝑌 vanishes on a submanifold in𝑀 of dimension larger than𝑁.

It follows from Proposition 4.6 that if 𝑁 ⊂ 𝑀 is a connected component of a fixed point set for
an isometric 𝑇2-action on𝑀, then there is a circle subgroup 𝑆1 ⊂ 𝑇2 such that the component of
its fixed point set which contains 𝑁 has codimension < codim(𝑁).
We are now ready to prove Proposition 4.1

Proof of Proposition 4.1. Part (i) was established by Grove and Searle in [17]. Part (ii) follows from
[29], in which the author shows that if a manifold hasRic𝑘 > 0 at a point, then symrank(𝑀𝑛, g) ⩽⌊𝑛+𝑘

2
⌋.

We will prove Parts (iii) and (iv) of Proposition 4.1 using induction on the dimension 𝑛. First,
we establish the base cases, dimensions 𝑛 = 4 and 𝑛 = 5. If a 4-dimensional manifold 𝑀4 has
Ric2 > 0 or Ric3 > 0 and 𝑇3 acts isometrically on𝑀4, then the kernel of the actionmust contain a
circle subgroup by Lemma 4.5. Similarly, if a 5-dimensional manifold𝑀5 hasRic3 > 0 orRic4 > 0

and 𝑇4 acts isometrically on 𝑀5, then again the kernel of the action must contain a circle by
Lemma 4.5.
Now, for the sake of induction, suppose that for some 𝑛 ⩾ 6, Proposition 4.1 holds for all dimen-

sions dim(𝑀) ∈ {4, 5, … , 𝑛 − 1}. We wish to show that it holds for dim(𝑀) = 𝑛. So suppose𝑀𝑛 is
either odd dimensional with Ric𝑘 > 0 for some 𝑘 ⩾ 3, or 𝑀𝑛 is even dimensional with Ric𝑘 > 0

for some 𝑘 ⩾ 2, and assume a torus 𝑇𝑟 of rank 𝑟 acts isometrically and effectively on𝑀𝑛. We will
show that 𝑟 ⩽ ⌊𝑛+𝑘

2
⌋ − 1.

If 𝑘 ⩾ 𝑛 − 2, then ⌊𝑛+𝑘
2

⌋ − 1 = 𝑛 − 2, and 𝑟 ⩽ 𝑛 − 2 by Lemma 4.5.
Now assume instead that 𝑘 ⩽ 𝑛 − 3. Then ⌊𝑛+𝑘

2
⌋ − 1 ⩾ 𝑘, so if 𝑟 ⩽ 𝑘, then we are done. So

assume 𝑟 ⩾ 𝑘 + 1. Then by Proposition 1.5, there exists a codimension 𝑘 torus of 𝑇𝑟 which has
a non-empty fixed point set in𝑀𝑛. Define

𝑙 = min{𝑚 ∶ there exists 𝑇𝑟−𝑚 ⊆ 𝑇𝑟 such that𝑀𝑇𝑟−𝑚 ≠ ∅},

and let 𝑇𝑟−𝑙 be a torus subgroup that realizes this minimum. Then by Proposition 1.5, 𝑙 ⩽ 𝑘. Let 𝐹𝑓
be a component of the fixed point set𝑀𝑇𝑟−𝑙 . Then 𝑇𝑙 ∶= 𝑇𝑟∕𝑇𝑟−𝑙 acts effectively on 𝐹𝑓 such that
no circle subgroup of 𝑇𝑙 has a fixed point. Furthermore, 𝑇𝑟−𝑙 acts on the normal sphere 𝑆𝑛−𝑓−1
to 𝐹𝑓 , and because the codimension of 𝐹𝑓 is even and 𝑆𝑛−𝑓−1 has positive sectional curvature, it
follows from [17] that

𝑟 − 𝑙 ⩽
𝑛 − 𝑓

2
.

First, assume 𝑓 ⩾ 𝑘 + 1, so that Ric𝑘(𝐹𝑓) > 0. Then because 𝑘 ⩾ 2, we have 𝑓 ⩾ 3. But in the
case that 𝑘 = 2,𝑀𝑛 is assumed to be even-dimensional, and hence, 𝐹𝑓 is also even dimensional.
Thus, we have 𝑓 ⩾ 4 in all cases, and by the induction hypothesis, 𝑙 ⩽ ⌊𝑓+𝑘

2
⌋ − 1. Then it follows

that 𝑟 ⩽ 𝑛−𝑓

2
+ ⌊𝑓+𝑘

2
⌋ − 1 = ⌊𝑛+𝑘

2
⌋ − 1.

Now assume instead that 𝑓 ⩽ 𝑘. Then because no circle subgroup of 𝑇𝑙 has a fixed point,
we have 𝑙 ⩽ 𝑓. Thus 𝑟 ⩽ 𝑛−𝑓

2
+ 𝑓 ⩽ ⌊𝑛+𝑘

2
⌋. What remains to show is that the equality case can-

not occur. This case is equivalent to having 𝑟 − 𝑙 =
𝑛−𝑓

2
, 𝑙 = 𝑓, and 𝑓 ⩾ 𝑘 − 1. In this case, we
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may choose a subgroup 𝑇𝑟−𝑙−1 ⊂ 𝑇𝑟−𝑙 with a fixed point component 𝐹′ containing 𝐹 such that
dim(𝐹′) = 𝑓 + 2. Thus 𝑘 + 1 ⩽ dim(𝐹′) ⩽ 𝑛 − 2, so Ric𝑘(𝐹′) > 0, and 𝐹′ has an effective 𝑇𝑙+1-
action. Recall that 𝑓 ⩾ 𝑘 − 1 and 𝑘 ⩾ 2, and in the case that 𝑘 = 2, 𝑀𝑛 is assumed to be even
dimensional, so 𝑓 ⩾ 2. Thus, in all cases, it follows that dim(𝐹′) = 𝑓 + 2 ⩾ 4. So by the induc-
tion hypothesis, 𝑙 + 1 ⩽ ⌊𝑓+2+𝑘

2
⌋ − 1, which implies 𝑙 ⩽ ⌊𝑓+𝑘

2
⌋ − 1. Thus, 𝑟 ⩽ 𝑛−𝑓

2
+ ⌊𝑓+𝑘

2
⌋ − 1 ⩽

⌊𝑛+𝑘
2

⌋ − 1. Therefore, the result follows. □

5 CONNECTEDNESS PRINCIPLE

In this section, we prove Theorem 1.7. Our argument is a modification of Guijarro and Wilhelm’s
approach in [18]. We begin by setting up notation and terminology. Given an embedded subman-
ifold𝑁 of𝑀, letΩ𝑁 denote the space of piecewise-smooth curves in𝑀, parametrized on the unit
interval [0, 1], that start and end in 𝑁. Now define the energy functional

𝐸 ∶ Ω𝑁 → [0,∞), 𝐸(𝛾) ∶=
1

2 ∫
1

0

|𝛾′(𝑡)|2 𝑑𝑡.
It follows from the first variation of energy that critical points of the energy functional 𝐸 are
geodesics that start and end perpendicular to 𝑁. To prove Theorem 1.7, we will apply a Morse
theoretic argument using a lower bound for the index of critical points of the energy functional
𝐸.
For the remainder of this section, let 𝛾 ∶ [0, 𝑏] → 𝑀 be a unit speed geodesic that starts and ends

perpendicular to 𝑁. We will use the index of 𝛾 to mean the index of 𝛾 as a critical point of 𝐸. If
we vary 𝛾 by geodesics that start perpendicular to𝑁, the corresponding collection of Jacobi fields
forms a Lagrangian subspace of the collection of all Jacobi fields along 𝛾 that are perpendicular to
𝛾′. For this reason, we will now review Lagrangian subspaces of Jacobi fields, the Riccati operator
on such subspaces, and the Transverse Jacobi Field Comparison from [18].

5.1 Transverse Jacobi Field Comparison

Let 𝛾 ∶ [0, 𝑏] → 𝑀 be a unit speed geodesic that starts and ends perpendicular to an embedded
submanifold 𝑁. Considering geodesic variations of 𝛾 that leave 𝑁 orthogonally at 𝑡 = 0, we will
let 𝑁 denote the vector space of corresponding Jacobi fields:

𝑁 ∶= {Jacobi fields along 𝛾 corresponding to variations

by geodesics that start perpendicular to 𝑁}. (5.1)

In particular, if we let 𝑆𝛾′(0) ∶ 𝑇𝛾(0)𝑁 → 𝑇𝛾(0)𝑁 denote the shape operator of 𝑁 determined by
𝛾′(0), then 𝐽 ∈ 𝑁 if and only if

𝐽(0) ∈ 𝑇𝛾(0)𝑁, and (𝐽′(0))⊤ = 𝑆𝛾′(0)𝐽(0).

Here (𝐽′(0))⊤ denotes the projection of 𝐽′(0) to 𝑇𝛾(0)𝑁. For more information, see Chapter 10
Section 4 of [11].
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The set of times 𝑡 ∈ [0, 𝑏] forwhich {𝐽(𝑡) ∶ 𝐽 ∈ 𝑁} = 𝛾′(𝑡)⟂ is open and dense in [0, 𝑏]. Namely,
these are the times at which no non-trivial Jacobi fields in 𝑁 vanish. For these values of 𝑡, there
is a well-defined Riccati operator

𝑆𝑡 ∶ 𝛾
′(𝑡)⟂ → 𝛾′(𝑡)⟂, 𝑆𝑡(𝑣) = 𝐽′𝑣(𝑡),

where 𝐽𝑣 is the unique Jacobi field in 𝑁 such that 𝐽𝑣(𝑡) = 𝑣. The Jacobi equation can then be
decomposed into two first-order equations:

𝑆𝑡𝐽 = 𝐽′, 𝑆′𝑡 + 𝑆2𝑡 + 𝑅𝛾′ = 0.

Here, 𝑆′𝑡 denotes the covariant derivative of 𝑆 along 𝛾, and 𝑅 denotes the directional curvature
operator along 𝛾, namely 𝑅𝛾′(𝑣) ∶= 𝑅(𝑣, 𝛾′)𝛾′.
Now, given a subspace  ⊆ 𝑁 and a time 𝑡 ∈ [0, 𝑏], we can obtain a subspace (𝑡) ⊆ 𝛾′(𝑡)⟂ by

setting

(𝑡) ∶= {𝐽(𝑡) ∶ 𝐽 ∈ } ⊕ {𝐽′(𝑡) ∶ 𝐽 ∈  and 𝐽(𝑡) = 0}. (5.2)

The second summand, {𝐽′(𝑡) ∶ 𝐽 ∈  and 𝐽(𝑡) = 0}, is trivial for almost all values of 𝑡, and the
subspaces (𝑡) vary smoothly along 𝛾(𝑡). Next, we recall the following terminology introduced by
Guijarro and Wilhelm in [18]:

Definition. Given 𝑡 ∈ [0, 𝑏], we say that a subspace  ⊆ 𝑁 is of full index at 𝑡 if any field in 𝑁
that vanishes at time 𝑡 is an element of  . We say  is of full index on an interval 𝐼 if it is of full
index at 𝑡 for all 𝑡 ∈ 𝐼.

Spaces of Jacobi fields of full index are useful for finding subspaces on which the Riccati opera-
tor has negative trace. For simplicity of notation, given a time 𝑡 ∈ [0, 𝑏] and a subspace𝑊 ⊆ 𝛾′(𝑡)⟂,
we let trace 𝑆𝑡|𝑊 denote the trace of the Riccati operator restricted to 𝑊 composed with the
projection onto𝑊. In the proof of Theorem 1.7, we will use the following:

Lemma 5.1 [18, Lemma 1.5]. Let 𝛾 ∶ [0, 𝑏] → 𝑀 be a unit speed geodesic in a complete Riemannian
manifold 𝑀 with Ric𝑘 ⩾ 𝑘. Let 𝑁 be the space Jacobi fields along 𝛾(𝑡) defined in Equation (5.1),
let 𝑆 be the associated Riccati operator, and let𝑊0 ⟂ 𝛾′(0) be a 𝑘-dimensional subspace such that
trace 𝑆0|𝑊0

⩽ 𝑘 ⋅ cot(𝑠0) for some 𝑠0 ∈ (0, 𝜋). Let denote the subspace of𝑁 formed by those Jacobi
fields that are orthogonal to𝑊0 at 𝑡 = 0. Let (𝑡)⟂ denote the subspace of 𝛾′(𝑡)⟂ that is orthogonal
to (𝑡). If  is of full index on [0, 𝑏], then for all 𝑡 ∈ [0, 𝑏],

trace 𝑆𝑡|(𝑡)⟂ ⩽ 𝑘 ⋅ cot(𝑡 + 𝑠0).

We now define a few subspaces of 𝑁 to be used later which have full index on different subsets
of [0, 𝑏]:

 ∶= span{𝐽 ∈ 𝑁 ∶ 𝐽(𝑡) = 0 for some 𝑡 ∈ [0, 𝑏]} (5.3)

+ ∶= span{𝐽 ∈ 𝑁 ∶ 𝐽(𝑡) = 0 for some 𝑡 ∈ (0, 𝑏]} (5.4)

𝑏 ∶= {𝐽 ∈ 𝑁 ∶ 𝐽(𝑏) = 0} (5.5)
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Note that+ are the Jacob fields that create focal points for𝑁 on (0, 𝑏]. Because a given Jacob field
in + can vanish multiple times in (0, 𝑏], the number of focal points for 𝑁 on (0, 𝑏] is bounded
below by the dimension of +. Furthermore, notice the Riccati operator 𝑆𝑡 is well-defined on(𝑡)⟂ for every 𝑡 ∈ [0, 𝑏]. In particular, if there is a Jacobi field 𝑁 that vanishes at 𝑡 ∈ [0, 𝑏],
then for any vector 𝑣 ∈ (𝑡)⟂, there could be many possible choices of Jacob field 𝐽𝑣 ∈ 𝑁 such
that 𝐽𝑣(𝑡) = 𝑣. However, 𝐽′𝑣(𝑡) does not depend on the choice of 𝐽𝑣. Finally, notice it follows from
Equation (5.2) that𝑏(𝑏) = {𝐽′(𝑏) ∶ 𝐽 ∈ 𝑁 and 𝐽(𝑏) = 0}.

5.2 Morse index theorem for endmanifolds

As mentioned earlier in this section, given a unit speed geodesic 𝛾 ∶ [0, 𝑏] → 𝑀 that starts and
ends perpendicular to𝑁, we will use variations of 𝛾 by geodesics that start and end perpendicular
to 𝑁 to obtain a lower bound on the index of 𝛾. So define

𝑁,𝑁 ∶= {Jacobi fields along 𝛾 corresponding to variations

by geodesics that start and end perpendicular to 𝑁}.

Recall 𝑆𝛾′(𝑏) ∶ 𝑇𝛾(𝑏)𝑁 → 𝑇𝛾(𝑏)𝑁 denotes the shape operator of 𝑁 determined by 𝛾′(𝑏). Now,
define 𝐴 ∶ 𝑁,𝑁 × 𝑁,𝑁 → ℝ to be the symmetric bilinear form given by

𝐴(𝐽1, 𝐽2) ∶=
⟨
𝐽′1(𝑏) − 𝑆𝛾′(𝑏)𝐽1(𝑏), 𝐽2(𝑏)

⟩
. (5.6)

In particular, 𝐴 is the difference between the Riccati operator and the shape operator. Hingston
andKalish proved theMorse index theorem for two endmanifolds in the case when each subman-
ifold lies at a focal point of the other [22]. Formulated for our current setting, their result can be
written as follows:

Lemma 5.2 [22]. Given a geodesic 𝛾 ∶ [0, 𝑏] → 𝑀 that starts and ends perpendicular to𝑁,

index 𝛾 = index 𝐴 + number of focal points in (0, 𝑏] − dim(𝑏(𝑏) ∩ 𝑇𝑁
⟂),

where the number of focal points is counted with multiplicities. In particular, because a given Jacobi
field in+ can vanish multiple times in (0, 𝑏],

index 𝛾 ⩾ index 𝐴 + dim+ − dim(𝑏(𝑏) ∩ 𝑇𝑁
⟂).

To obtain a lower bound for the index of 𝛾, we will bound the index of 𝐴 by combining
Lemma 5.1 with the following algebraic result:

Lemma 5.3 [18, Proposition 4.1]. Let 𝐴 ∶ 𝑈 → 𝑈 be a self-adjoint endomorphism on an 𝑙-
dimensional inner product space. Suppose there exist 𝑘 ∈ {1, 2, … , 𝑙 − 1} and 𝜆 ∈ ℝ such that, for
all 𝑘-dimensional subspaces 𝑊 ⊂ 𝑈, trace𝐴|𝑊 ⩽ 𝑘 ⋅ 𝜆. Then there is an (𝑙 − 𝑘 + 1)-dimensional
subspace 𝑉 ⊆ 𝑈 such that for all unit 𝑣 ∈ 𝑉,

⟨𝐴𝑣, 𝑣⟩ ⩽ 𝜆.
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5.3 Connectedness principle for fixed point sets and 𝐑𝐢𝐜𝒌 > 𝟎

We are now ready to begin the proof of Theorem 1.7, which we restate here for convenience:

Theorem5.4. Let𝑀𝑛 be a compact,𝑛-dimensionalmanifoldwithRic𝑘 > 0 for some 𝑘 ∈ {2, … , 𝑛 −

1}. Suppose𝑁𝑛−𝑑 is a compact embedded submanifold of codimension 𝑑 in𝑀𝑛. If there is a Lie group
𝐺 that acts by isometries on𝑀𝑛 and fixes𝑁𝑛−𝑑 point-wise, then the inclusion

𝑁𝑛−𝑑 ↪ 𝑀𝑛 is (𝑛 − 2𝑑 + 2 − 𝑘 + 𝛿(𝐺))-connected,

where 𝛿(𝐺) is the dimension of the principal 𝐺-orbits in𝑀𝑛.

First, we obtain the appropriate lower bound on the index of an energy-minimizing geodesic:

Lemma 5.5. Let𝑀𝑛,𝑁𝑛−𝑑, 𝐺, and 𝛿(𝐺) be defined as in Theorem 5.4. Suppose 𝛾 ∶ [0, 𝑏] → 𝑀 is a
unit speed geodesic that begins and ends perpendicular to𝑁𝑛−𝑑. Then

index 𝛾 ⩾ 𝑛 − 2𝑑 + 2 − 𝑘 + 𝛿(𝐺).

Proof. If 𝛾 passes through a principal orbit at some point, then the action fields for the 𝐺-action
will contribute a value of 𝛿(𝐺) to the index count for 𝛾 in the argument below. However, we must
account for the possibility that 𝛾 does not pass through any principal orbits. Define the closed
subgroup𝐻 < 𝐺 to be the intersection of the isotropy groups 𝐺𝛾(𝑡) for all 𝑡 ∈ [0, 𝑏]. Then 𝛾 lies in
a component 𝐹𝑛−𝑙 of the fixed point set of the 𝐻-action on𝑀𝑛. In the case that 𝐻 is trivial, 𝐹𝑛−𝑙
is the entire manifold𝑀𝑛, and 𝛾 passes through principal orbits on an open dense subset of (0, 𝑏).
In the general case, because 𝐹𝑛−𝑙 is fixed point-wise by 𝐻, 𝐹𝑛−𝑙 is invariant under the action of
the normalizer 𝑁(𝐻) of 𝐻 in 𝐺. Let 𝛿(𝑁(𝐻)) denote the dimension of the principal 𝑁(𝐻)-orbits
in 𝐹𝑛−𝑙. Note that 𝛿(𝑁(𝐻)) + 𝑙 ⩾ 𝛿(𝐺). Thus to show that the index of 𝛾 is bounded from below by
𝑛 − 2𝑑 + 2 − 𝑘 + 𝛿(𝐺), it suffices to show that the index is at least 𝑛 − 2𝑑 + 2 − 𝑘 + 𝛿(𝑁(𝐻)) + 𝑙.
Throughout this proof, all orthogonal complements (for example,(𝑡)⟂ and 𝑇𝑝𝑁⟂) will be taken
in the tangent bundle of 𝐹𝑛−𝑙.
Recall the definition of + from equation (5.4). If dim(+) ⩾ 𝑛 − 𝑑 − 𝑘 + 𝛿(𝑁(𝐻)) + 1, then

by Lemma 5.2 and because𝑏(𝑏) ⊆ 𝛾(𝑏)⟂, we have

index 𝛾 = index 𝐴 + number of focal points in (0, 𝑏] − dim(𝑏(𝑏) ∩ 𝑇𝛾(𝑏)𝑁
⟂)

⩾ dim+ − dim(𝛾′(𝑏)⟂ ∩ 𝑇𝛾(𝑏)𝑁
⟂)

⩾ (𝑛 − 𝑑 − 𝑘 + 𝛿(𝑁(𝐻)) + 1) − (𝑑 − 𝑙 − 1)

= 𝑛 − 2𝑑 + 2 − 𝑘 + 𝛿(𝑁(𝐻)) + 𝑙.

So if dim(+) ⩾ 𝑛 − 𝑑 − 𝑘 + 𝛿(𝑁(𝐻)) + 1, then the result follows.
Suppose now that dim(+) ⩽ 𝑛 − 𝑑 − 𝑘 + 𝛿(𝑁(𝐻)). Because 𝑁 is the collection of Jacobi

fields along 𝛾 which correspond to variations by geodesics that leave 𝑁 orthogonally at 𝑡 = 0,
the Riccati operator on 𝑁, 𝑆0|𝑇𝛾(0)𝑁 , is precisely the shape operator on 𝑁, 𝑆𝛾′(0). Thus, because 𝑁



TORUS ACTIONS & Ric𝑘 > 0 17

is totally geodesic, we have 𝑆0|𝑇𝛾(0)𝑁 ≡ 0. So if we define

𝑈0 ∶= +(0)
⟂ ∩ 𝑇𝛾(0)𝑁,

we have 𝑆0|𝑈0
≡ 0. Now let

Δ ∶= {𝐽 ∈ 𝑁 ∶ 𝐽 is an action field for the 𝑁(𝐻)-action on 𝐹}.

Note that if 𝐽 ∈ Δ, then 𝐽(0) = 0, 𝐽(𝑏) = 0, 𝐽′(0) ∈ 𝑇𝛾(0)𝑁
⟂ and 𝐽′(𝑏) ∈ 𝑇𝛾(𝑏)𝑁

⟂. In particular,
Δ(0) ⊆ +(0) ∩ 𝑇𝛾(0)𝑁

⟂. It follows that dim(+(0)
⟂ + 𝑇𝛾(0)𝑁) ⩽ dim𝐹 − dimΔ(0). Hence,

dim𝑈0 = dim+(0)
⟂ + dim𝑇𝛾(0)𝑁 − dim(+(0)

⟂ + 𝑇𝛾(0)𝑁)

⩾ (dim𝐹 − dim+(0)) + dim𝑁 − (dim𝐹 − dimΔ(0))

= dim𝑁 + dimΔ(0) − dim+(0) (5.7)

⩾ (𝑛 − 𝑑) + 𝛿(𝑁(𝐻)) − (𝑛 − 𝑑 − 𝑘 + 𝛿(𝑁(𝐻)))

= 𝑘.

Then for every 𝑘-dimensional subspace 𝑊0 ⊂ 𝑈0, 𝑆0|𝑊0
≡ 0 = 𝑘 ⋅ cot(𝜋∕2). Let  ⊂ 𝑁 be the

collection Jacobi fields that are orthogonal to 𝑈0 at 𝛾(0). Then  is of full index on [0, 𝑏], and
dim((𝑡)⟂) = dim(𝑈0). By Lemma 5.1, for every 𝑘-dimensional subspace𝑊𝑏 of (𝑏)⟂, we have
trace 𝑆𝑏|𝑊𝑏

⩽ 𝑘 ⋅ cot(𝑏 + 𝜋∕2) < 0. Define

𝑈𝑏 ∶= (𝑏)⟂ ∩ 𝑇𝛾(𝑏)𝑁.
Then trace 𝑆𝑏 is also negative on every 𝑘-dimensional subspace of𝑈𝑏. Note that because (𝑏)⟂ ⊆

𝑏(𝑏)
⟂ ⊆ 𝛾′(𝑏)⟂, we have

(𝑏)⟂ + 𝑇𝛾(𝑏)𝑁 ⊆ (𝑏(𝑏) ∩ 𝑇𝑁
⟂)⟂ ∩ 𝛾′(𝑏)⟂.

In particular, we have

dim𝑈𝑏 = dim(𝑏)⟂ + dim𝑇𝛾(𝑏)𝑁 − dim((𝑏)⟂ + 𝑇𝛾(𝑏)𝑁)

⩾ dim𝑈0 + dim𝑁 − dim
(
(𝑏(𝑏) ∩ 𝑇𝑁

⟂)⟂ ∩ 𝛾′(𝑏)⟂
)
.

⩾ dim𝑈0 + (𝑛 − 𝑑) −
(
𝑛 − 𝑙 − 1 − dim(𝑏(𝑏) ∩ 𝑇𝑁

⟂)
)

= 𝑙 − 𝑑 + 1 + dim𝑈0 + dim(𝑏(𝑏) ∩ 𝑇𝑁
⟂).

Recall from (5.7) that dim𝑈0 ⩾ dim𝑁 + dimΔ − dim+. Thus,

dim𝑈𝑏 ⩾ 𝑙 − 𝑑 + 1 + (dim𝑁 + dimΔ − dim+) + dim(𝑏(𝑏) ∩ 𝑇𝑁
⟂)

= 𝑙 − 𝑑 + 1 + (𝑛 − 𝑑 + 𝛿(𝑁(𝐻)) − dim+) + dim(𝑏(𝑏) ∩ 𝑇𝑁
⟂)

= 𝑛 − 2𝑑 + 1 + 𝛿(𝑁(𝐻)) + 𝑙 − dim+ + dim(𝑏(𝑏) ∩ 𝑇𝑁
⟂).



18 MOUILLÉ

Hence, by Lemma 5.3, there exists a subspace 𝑈𝑏 ⊆ 𝑈𝑏 with

dim𝑈𝑏 ⩾ 𝑛 − 2𝑑 + 2 − 𝑘 + 𝛿(𝑁(𝐻)) + 𝑙 − dim+ + dim(𝑏(𝑏) ∩ 𝑇𝑁
⟂)

such that for all unit vectors 𝑣 ∈ 𝑈𝑏,

⟨𝑆𝑏(𝑣), 𝑣⟩ ⩽ 0.

Let ̃ ⊂ 𝑁,𝑁 be the subspace such that ̃ (𝑏) = 𝑈𝑏. Then the bilinear form𝐴 is negative-definite
on ̃ . So by Lemma 5.2,

index 𝛾 ⩾ index 𝐴 + dim+ − dim(𝑏(𝑏) ∩ 𝑇𝑁
⟂)

⩾ dim ̃ + dim+ − dim(𝑏(𝑏) ∩ 𝑇𝑁
⟂)

⩾ 𝑛 − 2𝑑 + 2 − 𝑘 + 𝛿(𝑁(𝐻)) + 𝑙.

As mentioned before, because 𝛿(𝑁(𝐻)) + 𝑙 ⩾ 𝛿(𝐺), the result follows. □

Now we use Lemma 5.5 to prove Theorem 5.4:

Proof of Theorem 5.4. Let 𝑀𝑛 be a compact, 𝑛-dimensional manifold with Ric𝑘 > 0 for some
𝑘 ∈ {2, … , 𝑛 − 1}, let 𝑁𝑛−𝑑 be a compact embedded submanifold of codimension 𝑑 in 𝑀𝑛, and
suppose a Lie group 𝐺 that acts by isometries on𝑀𝑛 fixes 𝑁𝑛−𝑑 point-wise. We must show that
the inclusion 𝑁𝑛−𝑑 ↪ 𝑀𝑛 is (𝑛 − 2𝑑 + 2 − 𝑘 + 𝛿(𝐺))-connected.
As in the introduction to this section, letΩ𝑁 denote the space of piecewise-smooth curves in𝑀,

parametrized on the unit interval [0, 1], that start and end in𝑁. Also recall the energy functional

𝐸 ∶ Ω𝑁 → [0,∞), 𝐸(𝛾) ∶=
1

2 ∫
1

0

|𝛾′(𝑡)|2 𝑑𝑡.
Note that 𝑁 embeds in Ω𝑁 as the set of constant paths, and 𝐸−1(0) = 𝑁. We claim that the
inclusion 𝑁 ↪ Ω𝑁 is (𝑛 − 2𝑑 + 1 − 𝑘 + 𝛿(𝐺))-connected.
Recall that critical points of the energy functional 𝐸 are geodesics that start and end perpen-

dicular to 𝑁. By Lemma 5.5, we have that the index of such a critical point is bounded below by
𝑛 − 2𝑑 + 2 − 𝑘 + 𝛿(𝐺). Say that a critical point 𝛾 has energy 𝐸(𝛾) = 𝑒0. 𝐸−1([0, 𝑒0]) ⊂ Ω𝑁 can be
approximated by a finite-dimensional submanifold of broken geodesics in Ω𝑁 . Furthermore, on
this approximation of 𝐸−1([0, 𝑒0]), one can find aMorse function that is𝐶∞-close to 𝐸, is identical
to 𝐸 on a neighborhood of 𝐸−1(0) = 𝑁, and any critical point is non-degenerate and has index at
least 𝑛 − 2𝑑 + 2 − 𝑘 + 𝛿(𝐺). It then follows that, up to homotopy, Ω𝑁 can be obtained from 𝑁 by
attaching cells of dimension at least 𝑛 − 2𝑑 + 2 − 𝑘 + 𝛿(𝐺). For more information, see [27, Part
III Section 16]. Thus, the inclusion 𝑁 ↪ Ω𝑁 is (𝑛 − 2𝑑 + 1 − 𝑘 + 𝛿(𝐺))-connected.
Finally, because 𝜋𝑖(𝑀,𝑁) ≅ 𝜋𝑖−1(Ω𝑁,𝑁), it follows from the long exact sequence of a pair in

homotopy that 𝑁 ↪ 𝑀 is (𝑛 − 2𝑑 + 2 − 𝑘 + 𝛿(𝐺))-connected. □
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6 𝐑𝐢𝐜𝟐 > 𝟎WITH LARGE SYMMETRY RANK IN ODD DIMENSIONS

In this section, we will study closed, simply connected, odd-dimensional manifolds withRic2 > 0

and large symmetry rank. In particular, we obtain a diffeomorphism classification for those
with maximal symmetry rank (the odd-dimensional case of Theorem 1.1), and we obtain
a homeomorphism classification of those with approximately 3∕4-maximal symmetry rank
(Theorem 1.2).

6.1 Diffeomorphism classification

In this section, we will prove the odd-dimensional case in Theorem 1.1, which we restate here for
convenience:

Theorem 6.1. Let 𝑀𝑛 be a closed, simply connected, odd-dimensional Riemannian manifold
with Ric2 > 0. If a torus 𝑇𝑟 of rank 𝑟 = 𝑛+1

2
acts effectively and by isometries on 𝑀𝑛, then 𝑀𝑛 is

diffeomorphic to 𝑆𝑛.

As mentioned in the introduction, Grove and Searle used Alexandrov geometry of posi-
tively curved orbit spaces to establish their diffeomorphism classification of closed, connected
𝑛-manifolds with positive sectional curvature and symmetry rank ⌊𝑛+1

2
⌋. Because sectional cur-

vatures are allowed to be negative whenRic2 > 0, we rely on Theorem 1.7, algebraic topology, and
a result byMontgomery and Yang [28] concerning circle actions on homotopy spheres to establish
the diffeomorphism classification in Theorem 6.1, rather than Alexandrov geometry.

Remark 2. Hamilton used Ricci flow in [21] to show that all closed Ricci-positive 3-manifolds
admitmetrics of constant positive sectional curvature, and hence are spherical space forms. Thus,
Theorem 6.1 holds in dimension 𝑛 = 3.

In light of Remark 2, we focus on odd dimensions 𝑛 ⩾ 5. To prove Theorem 6.1, first we estab-
lish that torus actions of maximal rank must have a circle subaction with fixed point set of
codimension 2:

Lemma 6.2. Suppose 𝑀𝑛 is a closed Riemannian manifold of odd dimension 𝑛 ⩾ 5 with Ric2 >
0. If a torus 𝑇𝑟 of rank 𝑟 = 𝑛+1

2
acts effectively and by isometries on 𝑀𝑛, then there is a subgroup

𝑆1 ⊂ 𝑇𝑟 whose fixed point set has a connected component𝑁𝑛−2 of codimension 2, and the action by
𝑇𝑟−1 ∶= 𝑇𝑟∕𝑆1 on𝑁𝑛−2 is effective.

Proof. Because𝑛 ⩾ 5, 𝑟 = 𝑛+1

2
⩾ 3. Thus by Proposition 1.5, there exists at least one circle subgroup

of 𝑇𝑟 with non-empty fixed point set. Among the collection of components of fixed point sets of
all circle subgroups of 𝑇𝑟, choose an element 𝑁 that has minimal codimension in𝑀𝑛, and let 𝑆1
denote the circle subgroup that fixes𝑁. Then𝑁 has even codimension in𝑀𝑛, and 𝑇𝑟−1 ∶= 𝑇𝑟∕𝑆1

acts on 𝑁.
We first prove that the codimension of 𝑁 must be 2. Because 𝑟 ⩾ 3, we have 𝑟 − 1 ⩾ 2. So if

dim(𝑁) = 1, then the 𝑇𝑟−1-action on 𝑁 has kernel of rank at least 1, and hence 𝑁 is fixed by a
𝑇2 ⊂ 𝑇𝑟. Thus, by Proposition 4.6, the codimension of𝑁 is not minimal, which is a contradiction.



20 MOUILLÉ

Suppose now that 3 ⩽ dim(𝑁) ⩽ 𝑛 − 4. Then because 𝑁 is totally geodesic, Ric2(𝑁) > 0. Thus
because 𝑟 − 1 = 𝑛−1

2
>

(𝑛−4)+1

2
⩾

dim(𝑁)+1

2
, the 𝑇𝑟−1-action on 𝑁 has kernel of dimension at least

1 by Proposition 1.6. So again, by Proposition 4.6, the codimension of 𝑁 is not minimal, which is
a contradiction. Therefore, the codimension of 𝑁 must be 2.
Now we will show that the 𝑇𝑟−1-action on 𝑁𝑛−2 is effective. By Proposition 4.6, the kernel of

the 𝑇𝑟−1-action on 𝑁𝑛−2 is at most finite. If the kernel is non-trivial, because 𝑁𝑛−2 is also fixed
by 𝑆1, it follows that 𝑁𝑛−2 is fixed by a subgroup of 𝑇𝑟 of the form ℤ𝑚 × ℤ𝑚 for some natural
number𝑚. Let 𝜈𝑥𝑁𝑛−2 denote the 2-dimensional normal space to𝑁 at an arbitrary point 𝑥. Then
we have a faithful representationℤ𝑚 × ℤ𝑚 → 𝖦𝖫(𝜈𝑥𝑁

𝑛−2), which is only possible if𝑚 = 2. Thus,
there exists an involution 𝜎 ∈ 𝑇𝑟 that fixes𝑁𝑛−2, and it follows that the component 𝐹 of the fixed
point set of 𝜎 containing 𝑁𝑛−2 is of codimension 1 in𝑀𝑛. 𝐹𝑛−1 is invariant under the 𝑇𝑟-action,
and because 𝐹𝑛−1 is totally geodesic, it follows thatRic2(𝐹𝑛−1) > 0. Then by Proposition 1.6, there
must exist a circle subgroup of𝑇𝑟 that fixes𝐹𝑛−1, which contradicts that fact that𝑁𝑛−2was chosen
to have minimal codimension. Therefore, the 𝑇𝑟−1-action on 𝑁𝑛−2 must be effective. □

Now, we recall the following consequence of Poincaré Duality:

Lemma6.3 [42, Lemma 2.2]. Let𝑀𝑛 and𝑁𝑛−𝑑 be connected, closed, orientablemanifolds. Suppose
the inclusion 𝑁𝑛−𝑑 ↪ 𝑀𝑛 is (𝑛 − 𝑑 − 𝑙)-connected, with 𝑛 − 𝑑 − 2𝑙 > 0. Let [𝑁] ∈ 𝐻𝑛−𝑑(𝑀

𝑛; ℤ)

denote the image of the fundamental class of 𝑁, and let 𝑒 ∈ 𝐻𝑑(𝑀𝑛; ℤ) denote its Poincaré dual.
Then the homomorphisms ∪𝑒 ∶ 𝐻𝑖(𝑀;ℤ) → 𝐻𝑖+𝑑(𝑀;ℤ) given by 𝑥 ↦ 𝑥 ∪ 𝑒 are surjective for 𝑙 ⩽
𝑖 < 𝑛 − 𝑑 − 𝑙 and injective for 𝑙 < 𝑖 ⩽ 𝑛 − 𝑑 − 𝑙.

The following is a simple consequence of Lemma 6.3; for details, see Fang and Rong’s proof of
their Lemma 4.2 in [14].

Corollary 6.4. Suppose 𝑀𝑛 is a closed, odd-dimensional, simply connected, smooth manifold.
Assume𝑀𝑛 contains a closed, connected, embedded submanifold 𝑁𝑛−2 of codimension 2 such that
the inclusion 𝑁𝑛−2 ↪ 𝑀𝑛 is (𝑛 − 3)-connected. Then𝑀𝑛 and 𝑁𝑛−2 are both homotopy equivalent
to spheres.

Finally, we recall a result proven by Montgomery and Yang†.

Lemma 6.5 [28, Proposition 3]. Suppose 𝑀𝑛 is a homotopy sphere, and assume the circle 𝑆1 acts
smoothly on 𝑀𝑛 such that the fixed point set 𝑁𝑛−2 is simply connected and of codimension 2 in
𝑀𝑛. Then𝑀𝑛 is diffeomorphic to the standard sphere 𝑆𝑛 such that the 𝑆1-action on𝑀𝑛 is smoothly
equivalent to a linear circle action on 𝑆𝑛.

We are now ready to classify odd-dimensional manifolds with Ric2 > 0 and maximal
symmetry rank.

Proof of Theorem 6.1. We will prove Theorem 6.1 by induction on the dimension 𝑛. For the base
case, as mentioned in Remark 2, the only simply connected, closed 3-manifold with Ric2 > 0 is
𝑆3. Now, assume Theorem 6.1 holds in odd dimensions 3, … , 𝑛 − 2 for some 𝑛 ⩾ 5, let (𝑀𝑛, g) be

†Montgomery and Yang originally excluded dimensions 4, 5, and 6, but we now know that their argument also holds in
these dimensions due to the resolution of the Poincaré conjecture.
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a closed, simply connected, odd-dimensional Riemannian manifold with Ric2 > 0, and suppose
a torus 𝑇𝑟 of rank 𝑟 = 𝑛+1

2
acts effectively and by isometries on𝑀𝑛. By Lemma 6.2, there is a sub-

group 𝑆1 ⊂ 𝑇𝑟 whose fixed point set has a connected component𝑁𝑛−2 of codimension 2 such that
𝑇𝑟−1 ∶= 𝑇𝑟∕𝑆1 acts effectively on 𝑁𝑛−2. Because 𝑁𝑛−2 is totally geodesic and 𝑛 − 2 ⩾ 3, we have
that Ric2(𝑁𝑛−2) > 0. Thus, by the induction hypothesis,𝑁𝑛−2 is diffeomorphic to 𝑆𝑛−2. By Theo-
rem 1.7, the inclusion 𝑁𝑛−2 ↪ 𝑀𝑛 is (𝑛 − 3)-connected. Then by Corollary 6.4,𝑀𝑛 is homotopy
equivalent to a sphere. It is well known that fixed point sets of circle actions on homotopy spheres
are integral cohomology spheres; see, for example, [5]. In particular, 𝑁𝑛−2 constitutes the entire
fixed point set of the circle action. Therefore, by Lemma 6.5,𝑀𝑛 is diffeomorphic to 𝑆𝑛. □

6.2 Homeomorphism classification

In this section, we will prove Theorem 1.2, which we restate here for convenience:

Theorem6.6. Let𝑀𝑛 be a closed, simply connected, Riemannianmanifold of odd-dimension 𝑛 ⩾ 7

with Ric2 > 0. Suppose a torus 𝑇𝑟 of rank 𝑟 ⩾ 3𝑛+10

8
acts effectively and by isometries on𝑀𝑛. Then

𝑀𝑛 is homeomorphic to 𝑆𝑛.

Our approach is an adaptation of the one outlined in [33, Exercises 8.4.15–17]. For odd dimen-
sions 7 ⩽ 𝑛 ⩽ 13, we have that 𝑛+1

2
= ⌈ 3𝑛+10

8
⌉. Therefore, by Theorem 6.1, we have proven

Theorem 6.6 for dimensions 𝑛 satisfying 7 ⩽ 𝑛 ⩽ 13. To prove Theorem 6.6 for dimensions 𝑛 ⩾ 15,
we now establish the following:

Lemma6.7. Let𝑀𝑛 be a closed𝑛-manifoldwithRic2 > 0 onwhich a torus𝑇𝑟 acts isometrically and
effectively. Among the connected components of fixed point sets of circle sub-actions on𝑀𝑛, choose
𝑁 that is maximal under inclusion. If 𝑛 ⩾ 7 and 𝑟 ⩾ 3𝑛+10

8
, then:

(i) dim(𝑁) ⩾ 3𝑛−2

4
; and

(ii) either codim(𝑁) = 2 or symrank(𝑁) ⩾ 3dim(𝑁)+10

8
.

Proof. Note that because 𝑛 ⩾ 7, we have 𝑟 ⩾ ⌈ 3𝑛+10
8

⌉ ⩾ 4. Let 𝑆1 ⊂ 𝑇𝑟 be the circle subgroup that
fixes𝑁, and define 𝑇𝑟−1 ∶= 𝑇𝑟∕𝑆1. Because𝑁 has minimal codimension, we have that the kernel
of the 𝑇𝑟−1-action on𝑁 is at most finite by Proposition 4.6. Thus dim(𝑁) ⩾ 𝑟 − 1 ⩾ 3, and because
𝑁 is totally geodesic, Ric2(𝑁) > 0. Applying Proposition 1.6 to 𝑁, we have

dim(𝑁)+1

2
⩾ symrank(𝑁) ⩾ 𝑟 − 1 ⩾ 3𝑛+10

8
− 1,

and Part (i) follows.
To prove Part (ii), assume codim(𝑁) ≠ 2 and symrank(𝑁) < 3dim(𝑁)+10

8
. Because the 𝑇𝑟 action

on𝑀𝑛 is effective and the codimension of 𝑁 must be even, we have that dim(𝑁) ⩽ 𝑛 − 4. Thus,

symrank(𝑁) < 3dim(𝑁)+10

8
⩽

3(𝑛−4)+10

8
< 3𝑛+10

8
− 1 ⩽ 𝑟 − 1.

It follows that the kernel of the 𝑇𝑟−1-action on 𝑁 is at least 1-dimensional, which contradicts 𝑁
being chosen to have minimal codimension by Proposition 4.6. □
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We will now use Lemma 6.7 and Theorem 1.7 to prove Theorem 6.6 using the work of Smale in
[38].

Proof of Theorem 6.6. We will prove Theorem 6.6 by induction on 𝑛. For the base case, note
that in off dimensions 𝑛 satisfying 7 ⩽ 𝑛 ⩽ 13, we have 𝑛+1

2
= ⌈ 3𝑛+10

8
⌉. Thus, the base cases are

established by Theorem 6.1. Suppose for the sake of induction that Theorem 6.6 holds for odd
dimensions up to 𝑛 − 2 for some 𝑛 ⩾ 15. We will show it also holds in dimension 𝑛.
Let 𝑀𝑛 be a closed, simply connected, Riemannian manifold of odd-dimension 𝑛 ⩾ 15 with

Ric2 > 0, and suppose a torus 𝑇𝑟 of rank 𝑟 ⩾ 3𝑛+10

8
acts effectively and by isometries on𝑀𝑛. We

will show that 𝑀𝑛 is homeomorphic to 𝑆𝑛. Because 𝑟 ⩾ 3𝑛+10

8
> 3 when 𝑛 ⩾ 15, it follows from

Theorem 1.5 that there are circle subgroups of 𝑇𝑟 whose fixed point sets on 𝑀𝑛 are non-empty.
Among the connected components of fixed point sets of these circle sub-actions on𝑀𝑛, choose𝑁
that is maximal under inclusion.
By Lemma 6.7, dim(𝑁) ⩾ 3𝑛−2

4
and either codim(𝑁) = 2 or symrank(𝑁) ⩾ 3dim(𝑁)+10

8
. If

codim(𝑁) = 2, then by Theorem 1.7 and Corollary 6.4, 𝑀𝑛 is homotopy equivalent to 𝑆𝑛, and
the result follows from Smale’s resolution to the Generalized Poincaré conjecture for dimen-
sions⩾ 5 in [38]. Suppose instead that codim(𝑁) ⩾ 4 and symrank(𝑁) ⩾ 3dim(𝑁)+10

8
. Then because

dim(𝑁) ⩾ 3𝑛−2

4
, we have

𝑛 − 2 codim(𝑁) + 1 ⩾ 𝑛

2

Hence by Theorem 1.7, the inclusion 𝑁 ↪ 𝑀 is at least ⌈𝑛
2
⌉-connected. Thus, because𝑀 is sim-

ply connected, so is 𝑁. Because 𝑛 ⩾ 15, we have dim(𝑁) ⩾ ⌈ 3𝑛−2
4

⌉ ⩾ 11. Hence, the induction
hypothesis implies that 𝑁 is homeomorphic to a sphere. Thus, for 1 ⩽ 𝑖 ⩽ 𝑛−1

2
,

𝐻𝑖(𝑀
𝑛) ≅ 𝐻𝑖(𝑁) ≅ 0.

Applying Poincaré Duality, it follows that 𝐻𝑖(𝑀
𝑛) ≅ 0 for 1 ⩽ 𝑖 ⩽ 𝑛 − 1. Because 𝑀𝑛 is simply

connected, it follows that𝑀𝑛 is homotopy equivalent to a sphere, and again the result follows by
the work of Smale in [38]. □

7 𝐑𝐢𝐜𝟐 > 𝟎WITH LARGE SYMMETRY RANK IN EVEN
DIMENSIONS

In this section, we will study closed, simply connected, even-dimensional manifolds with Ric2 >
0 and large symmetry rank. In particular, we prove those with half-maximal symmetry rank
have positive Euler characteristic (Theorem 1.4), we obtain a strong classification for those with
maximal symmetry rank and bounded second Betti number (the even-dimensional case of The-
orem 1.1), and we obtain a weaker classification of those with 3∕4-maximal symmetry rank and
bounded second Betti number (Theorem 1.3).

7.1 Positive Euler characteristic

First, we establish Theorem 1.4, which we restate here for convenience:
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Theorem7.1. Suppose𝑀𝑛 is a closedRiemannianmanifold of even dimension𝑛 ⩾ 8withRic2 > 0.
If a torus 𝑇𝑟 of rank 𝑟 ⩾ 𝑛

4
+ 2 acts effectively and by isometries on𝑀𝑛, then 𝜒(𝑀𝑛) > 0.

To prove Theorem 7.1, we will use the following topological observation:

Proposition 7.2. Suppose a torus𝑇𝑟 acts isometrically and effectively on a closedmanifold𝑀. If the
fixed point set𝑀𝑇𝑟 is non-empty, then givenany point𝑥 ∈ 𝑀𝑇𝑟 , there exists a chain of subgroups𝑇1 ⊂
𝑇2 ⊂ ⋯ ⊂ 𝑇𝑟−1 ⊂ 𝑇𝑟 such that the following inclusions of components of fixed point sets containing
𝑥 are each of minimal, positive, even codimension:

𝑀𝑇𝑟

𝑥 ⊂ 𝑀𝑇𝑟−1

𝑥 ⊂ ⋯ ⊂ 𝑀𝑇2

𝑥 ⊂ 𝑀𝑇1

𝑥 ⊂ 𝑀.

Proof. Fix a point 𝑥 ∈ 𝑀𝑇𝑟 and choose a circle subgroup 𝑆1
1
⊂ 𝑇𝑟 such that the fixed point set com-

ponent𝑀
𝑆1
1

𝑥 has minimal codimension in𝑀. Because 𝑇𝑟 acts effectively on𝑀, we have𝑀
𝑆1
1

𝑥 ≠ 𝑀.
Set 𝑇1 ∶= 𝑆1

1
. Now choose a circle subgroup 𝑆1

2
⊂ 𝑇𝑟∕𝑇1 such that the fixed point set component

𝑀𝑇2

𝑥 for 𝑇2 ∶= 𝑆1
2
× 𝑇1 has minimal codimension in𝑀𝑇1

𝑥 . Because𝑀𝑇1

𝑥 was chosen to have mini-
mal codimension in𝑀,𝑇𝑟∕𝑇1must act almost effectively on𝑀𝑇1

𝑥 by Proposition 4.6. In particular,
𝑆1
2
does not fix all of𝑀𝑇1

𝑥 , and hence𝑀𝑇2

𝑥 ≠ 𝑀𝑇1

𝑥 .
Now for 𝑖 ∈ {2, … , 𝑟 − 1}, we inductively choose 𝑆1

𝑖+1
⊂ 𝑇𝑟∕𝑇𝑖 such that the fixed point set com-

ponent𝑀𝑇𝑖+1

𝑥 for 𝑇𝑖+1 ∶= 𝑆1
𝑖+1

× 𝑇𝑖 has minimal codimension in𝑀𝑇𝑖

𝑥 . Because𝑀
𝑇𝑖

𝑥 was chosen to
have minimal codimension in 𝑀𝑇𝑖−1

𝑥 , again 𝑇𝑟∕𝑇𝑖 must act almost effectively on 𝑀𝑇𝑖

𝑥 by Propo-
sition 4.6. This shows that 𝑆1

𝑖+1
⊂ 𝑇𝑟∕𝑇𝑖 does not fix all of 𝑀𝑇𝑖

𝑥 , and therefore 𝑀
𝑇𝑖+1

𝑥 ≠ 𝑀𝑇𝑖

𝑥 for
𝑖 ∈ {2, … , 𝑟 − 1}. □

To prove Theorem 7.1, wewill apply Proposition 1.5 for a𝑇𝑟-action on an 𝑛-manifold ofRic2 > 0

with 𝑟 ⩾ 𝑛

4
+ 2 to obtain a fixed point for some 𝑇𝑟−2-subaction. Applying Proposition 7.2 will then

give us the following topological restriction:

Lemma 7.3. Suppose 𝑀𝑛 is closed and even-dimensional, and a torus 𝑇𝑟 acts isometrically and
effectively on𝑀𝑛 with 𝑟 ⩾ 𝑛

4
+ 2. Assume a subgroup 𝑇𝑟−2 ⊂ 𝑇𝑟 has non-empty fixed point set𝑀𝑇𝑟−2

in𝑀, and for any point 𝑥 ∈ 𝑀𝑇𝑟−2 , consider a chain of fixed point set components𝑀𝑇𝑟−2

𝑥 ⊂ 𝑀𝑇𝑟−3

𝑥 ⊂

⋯ ⊂ 𝑀𝑇2

𝑥 ⊂ 𝑀𝑇1

𝑥 ⊂ 𝑀 guaranteed by Proposition 7.2. Then either:

(i) dim(𝑀𝑇𝑟−2

𝑥 ) = 0; or
(ii) at least one of the inclusions in the chain 𝑀𝑇𝑟−2

𝑥 ⊂ 𝑀𝑇𝑟−3

𝑥 ⊂ ⋯ ⊂ 𝑀𝑇2

𝑥 ⊂ 𝑀𝑇1

𝑥 ⊂ 𝑀 is of
codimension 2.

Proof. Suppose dim(𝑀𝑇𝑟−2

𝑥 ) ≠ 0. Let 𝑑𝑖 denote the codimension of𝑀𝑇𝑖

𝑥 in𝑀𝑇𝑖−1

𝑥 for 𝑖 ∈ {2, … , 𝑟 −

2}, and let 𝑑1 denote the codimension of 𝑀𝑇1

𝑥 in 𝑀. Because fixed point sets of torus actions
have even codimension, it follows that dim(𝑀𝑇𝑟−2

𝑥 ) ⩾ 2 and each 𝑑𝑖 is even. Because the inclu-
sions in the chain are proper, it follows that 𝑑𝑖 ⩾ 2 for all 𝑖. Now if 𝑑𝑖 ⩾ 4 for all 𝑖, then because
dim(𝑀𝑇𝑟−2

𝑥 ) ⩾ 2, we have

𝑛 = dim(𝑀𝑛) ⩾ dim(𝑀𝑇𝑟−2

𝑥 ) + 𝑑𝑟−2 + 𝑑𝑟−3 +⋯ + 𝑑2 + 𝑑1

⩾ 2 + 4(𝑟 − 2).
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It then follows that 𝑟 < 𝑛

4
+ 2, which contradicts the assumption that 𝑟 ⩾ 𝑛

4
+ 2. Therefore, 𝑑𝑖 = 2

for some 𝑖 ∈ {1, … , 𝑟 − 2}. □

Finally, we recall the following topological result established by Conner:

Lemma 7.4 [7]. If 𝑇 is a torus acting on amanifold𝑀 with fixed point set𝑀𝑇 , then𝜒(𝑀) = 𝜒(𝑀𝑇).

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. Suppose𝑀𝑛 is closed, even-dimensional, has Ric2 > 0, and 𝑇𝑟 acts isomet-
rically and effectively on 𝑀𝑛 with 𝑟 ⩾ 𝑛

4
+ 2. Because Ric2(𝑀𝑛) > 0, Proposition 1.6 states that

𝑟 ⩽ 𝑛

2
. For even dimensions 𝑛, the inequalities 𝑛

4
+ 2 ⩽ 𝑟 ⩽ 𝑛

2
are only consistent if 𝑛 ⩾ 8. In this

case, 𝑟 ⩾ 4. Thus by Proposition 1.5, there exists a subgroup 𝑇𝑟−2 ⊂ 𝑇𝑟 such that the fixed point
set𝑀𝑇𝑟−2 in𝑀 is non-empty. By Lemma 7.4, it suffices to show that 𝜒(𝑀𝑇𝑟−2) > 0. In particular,
we will show that every connected component𝑀𝑇𝑟−2

𝑥 has positive Euler characteristic.
Choose an arbitrary point 𝑥 ∈ 𝑀𝑇𝑟−2 . By Proposition 7.2, there exists a chain of subgroups

𝑇1 ⊂ 𝑇2 ⊂ ⋯ ⊂ 𝑇𝑟−1 ⊂ 𝑇𝑟 such that the inclusions of fixed point set components containing 𝑥,
𝑀𝑇𝑟

𝑥 ⊂ 𝑀𝑇𝑟−1

𝑥 ⊂ ⋯ ⊂ 𝑀𝑇2

𝑥 ⊂ 𝑀𝑇1

𝑥 ⊂ 𝑀, are proper. By Lemma 7.3, either dim(𝑀𝑇𝑟−2

𝑥 ) = 0, or at
least one of the inclusions in the chain𝑀𝑇𝑟−2

𝑥 ⊂ 𝑀𝑇𝑟−3

𝑥 ⊂ ⋯ ⊂ 𝑀𝑇2

𝑥 ⊂ 𝑀𝑇1

𝑥 ⊂ 𝑀 is of codimension
2. If dim(𝑀𝑇𝑟−2

𝑥 ) = 0, then 𝜒(𝑀𝑇𝑟−2

𝑥 ) > 0, and we are done.
Now assume dim(𝑀𝑇𝑟−2

𝑥 ) ⩾ 2 and one of the inclusions 𝑀𝑇𝑖

𝑥 ⊂ 𝑀𝑇𝑖−1

𝑥 for 𝑖 ∈ {1, … , 𝑟 − 2} is of
codimension 2. Here, we are using the convection that 𝑇0 is the trivial subgroup and 𝑀𝑇0

𝑥 = 𝑀.
We will show that 𝜒(𝑀𝑇𝑖−1) > 0. Let𝑚 = dim(𝑀𝑇𝑖−1

𝑥 ). Because dim(𝑀𝑇𝑟−2

𝑥 ) ⩾ 2, we have𝑚 = 2 +

dim(𝑀𝑇𝑖 ) ⩾ 4. So because𝑀𝑇𝑖−1

𝑥 is totally geodesic in𝑀, we haveRic2(𝑀𝑇𝑖−1

𝑥 ) > 0. Hence the Betti
numbers for 𝑏1(𝑀𝑇𝑖−1

𝑥 ) and 𝑏𝑚−1(𝑀𝑇𝑖−1

𝑥 ) are both zero. So if𝑀𝑇𝑖−1 is 4-dimensional,𝜒(𝑀𝑇𝑖−1) > 0.
Suppose now that𝑀𝑇𝑖−1 has dimension𝑚 ⩾ 6. By Theorem 1.7, because𝑀𝑇𝑖

𝑥 is fixed by the 𝑆1 ≅
𝑇𝑖∕𝑇𝑖−1-action on𝑀𝑇𝑖−1

𝑥 , the inclusion𝑀𝑇𝑖

𝑥 ↪ 𝑀𝑇𝑖−1

𝑥 is (𝑚 − 3)-connected. Thus by Lemma 6.3,
we have homomorphisms 𝐻𝑖(𝑀𝑇𝑖−1

𝑥 ; ℤ) → 𝐻𝑖+2(𝑀𝑇𝑖−1

𝑥 ; ℤ) which are surjective for 1 ⩽ 𝑖 < 𝑚 −

3 and injective for 1 < 𝑖 ⩽ 𝑚 − 3. The hypothesis that 𝑛 − 𝑑 − 2𝑙 > 0 in Lemma 6.3 is satisfied
because𝑚 ⩾ 6, 𝑑 = 2, and 𝑙 = 1 in this case. Therefore, it follows that all of the odd Betti numbers
of𝑀𝑇𝑖−1

𝑥 are zero, which implies 𝜒(𝑀𝑇𝑖−1

𝑥 ) > 0.
Now for all dimensions 𝑚 ⩾ 4, because 𝑀𝑇𝑖−1

𝑥 is invariant under the 𝑇𝑟−2-action and
(𝑀𝑇𝑖−1

𝑥 )𝑇
𝑟−2

= 𝑀𝑇𝑟−2

𝑥 , it follows from Lemma 7.4 that 𝜒(𝑀𝑇𝑟−2

𝑥 ) > 0. Hence, we have shown that
for all 𝑥 ∈ 𝑀𝑇𝑟−2 , the component𝑀𝑇𝑟−2

𝑥 containing 𝑥 has 𝜒(𝑀𝑇𝑟−2

𝑥 ) > 0. Therefore, 𝜒(𝑀𝑇𝑟−2) > 0

and by Lemma 7.4, 𝜒(𝑀) > 0. □

7.2 Classification for maximal symmetry rank

We will now prove the even-dimensional case of Theorem 1.1. Specifically, we must prove if
𝑀𝑛 is closed, simply connected, even-dimensional, 𝑛 ≠ 6, 𝑏2(𝑀𝑛) ⩽ 1, Ric2(𝑀𝑛, g) > 0, and
symrank(𝑀𝑛, g) = 𝑛

2
, then𝑀𝑛 is either diffeomorphic to 𝑆𝑛 or homeomorphic to ℂP𝑛∕2.

First, we note that the dimension 𝑛 = 4 case of Theorem 1.1 follows from purely topological
considerations, not relying on the curvature assumption. Orlik and Raymond prove in [30] that
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any closed, simply connected 4-manifold 𝑀4 with an effective 𝑇2-action is equivariantly diffeo-
morphic to a connected sum of finitely many copies of 𝑆4, ±ℂP2, or 𝑆2 × 𝑆2. Now if 𝑏2(𝑀4) ⩽ 1,
then 2 ⩽ 𝜒(𝑀4) ⩽ 3. Thus, we have the following:

Corollary 7.5. Suppose𝑀4 is a closed, simply connected, 4-dimensional manifold with a smooth,
effective 𝑇2-action. If 𝑏2(𝑀4) ⩽ 1, then𝑀4 is equivariantly diffeomorphic to either 𝑆4 or ℂP2.

Sha and Yang proved in [36] that any connected sum of finitely many copies of 𝑆4, ±ℂP2, or
𝑆2 × 𝑆2 admits a metric of positive Ricci curvature. This leads naturally to the following:

Question 1. Are there any closed, simply connected 4-manifolds with 𝑏2 ⩾ 2 which admit metrics
of Ric2 > 0 that are invariant under an effective 𝑇2-action?

Example 7.6. Recall from Example 2.3 that 𝑆2 × 𝑆2 admits a metric with Ric2 > 0 and symmetry
rank 1. Hsiang and Kleiner prove in [23] that any closed, orientable, 4-dimensional manifold with
positive sectional curvature that has a non-trivial Killing field must be homeomorphic to 𝑆4 or
ℂP2. Consequently, it is impossible for 𝑆2 × 𝑆2 to admit a metric of positive sectional curvature
with symmetry rank 1. It remains to be seen whether 𝑆2 × 𝑆2 can admit a metric with Ric2 > 0

and symmetry rank 2.

Now we will establish Theorem 1.1 for dimensions 𝑛 ⩾ 8. Namely, we intend to prove the
following:

Theorem 7.7. Let𝑀𝑛 be a closed, simply connected Riemannianmanifold of even dimension 𝑛 ⩾ 8

with Ric2 > 0. Suppose a torus 𝑇𝑟 of rank 𝑟 = 𝑛

2
acts effectively and by isometries on𝑀𝑛.

(i) If 𝑏2(𝑀𝑛) = 0, then𝑀𝑛 is diffeomorphic to 𝑆𝑛.
(ii) If 𝑏2(𝑀𝑛) = 1, then𝑀𝑛 is homeomorphic to ℂP𝑛∕2.

First, we will use Theorems 7.1 and 1.7 to justify the following:

Lemma 7.8. Let𝑀𝑛 be a closed, simply connected Riemannian manifold of even dimension 𝑛 ⩾ 8

with Ric2 > 0. Suppose a torus 𝑇𝑟 of rank 𝑟 = 𝑛

2
acts effectively and by isometries on 𝑀𝑛. Then

there exist closed, simply connected, totally geodesic submanifolds 𝑀4 ⊂ 𝑀6 ⊂ ⋯ ⊂ 𝑀𝑛−2 ⊂ 𝑀𝑛

and torus subgroups 𝑇1 ⊂ 𝑇2 ⊂ ⋯ ⊂ 𝑇𝑟−1 ⊂ 𝑇𝑟 such that:

(i) each submanifold𝑀2𝑖 is fixed by the 𝑇𝑟−𝑖 action;
(ii) the action of 𝑇𝑖 ∶= 𝑇𝑟∕𝑇𝑟−𝑖 on𝑀2𝑖 is effective for all 𝑖; and
(iii) each inclusion𝑀2𝑖 ↪ 𝑀2𝑖+2 is (2𝑖 − 1)-connected.

Proof. By Theorem 7.1, because 𝑟 = 𝑛

2
⩾

𝑛

4
+ 2 when 𝑛 ⩾ 8, we have 𝜒(𝑀𝑛) > 0. Thus, the 𝑇𝑟-

action on𝑀𝑛 has non-empty fixed point set. By Proposition 7.2, given a point 𝑥 in𝑀𝑇𝑟 , there exists
a chain of subgroups 𝑇1 ⊂ 𝑇2 ⊂ ⋯ ⊂ 𝑇𝑟−1 ⊂ 𝑇𝑟 such that the following inclusions of components
of fixed point sets containing 𝑥 are of positive, even codimension:

𝑀𝑇𝑟

𝑥 ⊂ 𝑀𝑇𝑟−1

𝑥 ⊂ ⋯ ⊂ 𝑀𝑇2

𝑥 ⊂ 𝑀𝑇1

𝑥 ⊂ 𝑀.
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Because 𝑟 = 𝑛

2
and because each of the inclusions above are of positive, even codimension, it

follows that𝑀𝑇𝑟

𝑥 is zero-dimensional and each inclusion𝑀𝑇𝑗

𝑥 ⊂ 𝑀𝑇𝑗−1

𝑥 is of codimension 2. Define
𝑀2𝑖 = 𝑀𝑇𝑟−𝑖

𝑥 . Because each submanifold 𝑀2𝑖 is totally geodesic, we have Ric2(𝑀2𝑖) > 0 for 2𝑖 ⩾
4. By Theorem 1.7, each inclusion 𝑀2𝑖 ↪ 𝑀2𝑖+2 is (2𝑖 − 1)-connected, and because 𝑀 is simply
connected, so are𝑀2𝑖 for 2𝑖 ⩾ 4.
Now,wewill show that the𝑇𝑖 ∶= 𝑇𝑟∕𝑇𝑟−𝑖 action on𝑀2𝑖 is effective for all 𝑖. Suppose for the sake

of contradiction that the kernel of the action is non-trivial for some 𝑖. By choosing the largest such
index 𝑖, we may assume that the 𝑇𝑖+1 action on𝑀2𝑖+2 is effective. As in the proof of Lemma 6.2,
it follows that there exists an involution 𝜎 ∈ 𝑇𝑟 that fixes𝑀2𝑖 , and the component 𝐹 of the fixed
point set of 𝜎 containing 𝑥 has dimension strictly larger than𝑀2𝑖 . Let 𝑆1 ⊂ 𝑇𝑟 be any circle sub-
group containing 𝜎. Then the codimension of the fixed point set component𝑀𝑆1

𝑥 in 𝐹 is even, and
the codimension of𝑀𝑆1

𝑥 in𝑀2𝑖+2 is also even. Thus, it follows that the codimension of 𝐹 in𝑀2𝑖+2

must be even and smaller than 2. This implies that the codimension of 𝐹 in 𝑀2𝑖+2 is zero, and
hence the 𝑇𝑖+1 action on𝑀2𝑖+2 is not effective, which is a contradiction. Therefore, the 𝑇𝑖 action
on𝑀2𝑖 must be effective for all 𝑖. □

We are now prepared to classify even-dimensional manifolds with 𝑏2 ⩽ 1, Ric2 > 0, and
maximal symmetry rank.

Proof of Theorem 7.7. Let 𝑀𝑛 be a closed, simply connected Riemannian manifold of even
dimension 𝑛 ⩾ 8 with Ric2 > 0, and suppose a torus 𝑇𝑟 of rank 𝑟 = 𝑛

2
acts effectively and by

isometries on𝑀𝑛. By Lemma 7.8, there exist closed, simply connected, totally geodesic subman-
ifolds 𝑀4 ⊂ 𝑀6 ⊂ ⋯ ⊂ 𝑀𝑛−2 ⊂ 𝑀𝑛 and torus subgroups 𝑇1 ⊂ 𝑇2 ⊂ ⋯ ⊂ 𝑇𝑟−1 ⊂ 𝑇𝑟 such that
each submanifold𝑀2𝑖 is fixed by the 𝑇𝑟−𝑖 action, the action of 𝑇𝑖 ∶= 𝑇𝑟∕𝑇𝑟−𝑖 on𝑀2𝑖 is effective
for all 𝑖, and each inclusion 𝑀2𝑖 ↪ 𝑀2𝑖+2 is (2𝑖 − 1)-connected. Thus 𝑏2(𝑀4) = 𝑏2(𝑀

6) = ⋯ =

𝑏2(𝑀
𝑛−2) = 𝑏2(𝑀

𝑛). So if 𝑏2(𝑀𝑛) ⩽ 1, then 𝑏2(𝑀4) ⩽ 1, and it follows from Corollary 7.5 that𝑀4

is equivariantly diffeomorphic to either 𝑆4 or ℂP2.
Because𝑀4 ↪ 𝑀6 is 3-connected, we have that 𝜋3(𝑀6) = 0, and 𝜋2(𝑀6) = 0 (respectively, ℤ)

if𝑀4 ≅ 𝑆4 (respectively,ℂP2). It follows fromPoincaré duality and theHurewicz theorem that𝑀6

is homotopy equivalent to 𝑆6 or ℂP3. By iterating the same argument for𝑀8,… ,𝑀𝑛, we conclude
that 𝑀𝑛 is homotopy equivalent to 𝑆𝑛 if 𝑏2(𝑀𝑛) = 0, or 𝑀𝑛 is homotopy equivalent to ℂP𝑛∕2 if
𝑏2(𝑀

𝑛) = 1.
If 𝑏2(𝑀𝑛) = 0, then similar to the proof of Theorem 6.1, by inductively applying Lemma 6.5 to

the submanifolds𝑀4 ⊂ 𝑀6 ⊂ ⋯ ⊂ 𝑀𝑛, it follows that𝑀𝑛 is diffeomorphic to 𝑆𝑛.
Suppose instead that 𝑏2(𝑀𝑛) = 1, and hence𝑀4 is homeomorphic to ℂP2 and𝑀6,… ,𝑀𝑛 are

homotopy complex projective spaces. Fang and Rong proved that any homotopy ℂP𝑛 with a sub-
manifold homeomorphic to ℂP𝑛−1 such that the inclusion map is at least 3-connected must be
homeomorphic toℂP𝑛 [14]. Because𝑀4 is homeomorphic toℂP2 and each inclusion𝑀2𝑖 ↪ 𝑀2𝑖+1

is (2𝑖 − 1)-connected,we can apply Fang andRong’s result to each inclusion𝑀4 ⊂ 𝑀6 ⊂ ⋯ ⊂ 𝑀𝑛,
concluding that𝑀𝑛 is homeomorphic to ℂP𝑛∕2. □

7.3 Classification for 𝟑∕𝟒-maximal symmetry rank

In this final section, we will prove Theorem 1.3, which we restate here for convenience:
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Theorem 7.9. Let𝑀𝑛 be a closed, simply connected, Riemannianmanifold of even dimension 𝑛 ⩾ 8

with Ric2 > 0. Suppose a torus 𝑇𝑟 of rank 𝑟 ⩾ 3𝑛+6

8
acts effectively and by isometries on 𝑀𝑛. Then

𝐻𝑖(𝑀𝑛; ℤ) = 0 for all odd values of 𝑖. Furthermore:

(i) if 𝑏2(𝑀𝑛) = 0, then𝑀𝑛 is homeomorphic to 𝑆𝑛;
(ii) if 𝑏2(𝑀𝑛) = 1, then𝑀𝑛 is tangentially homotopy equivalent to ℂP𝑛∕2.

First, we establish an even dimensional analogue of Lemma 6.7:

Lemma 7.10. Let𝑀𝑛 be a closed even-dimensionalmanifold withRic2 > 0 onwhich a torus𝑇𝑟 acts
isometrically and effectively with non-empty fixed point set. If 𝑟 ⩾ 3𝑛+6

8
, then there exists a connected

submanifold𝑁 ⊂ 𝑀 of minimal codimension fixed by a circle subgroup of 𝑇𝑟 such that:

(i) dim(𝑁) ⩾ 3𝑛−2

4
; and

(ii) either codim(𝑁) = 2 or symrank(𝑁) ⩾ 3dim(𝑁)+6

8
.

Proof. Suppose the 𝑇𝑟-action on 𝑀𝑛 has non-empty fixed point set, and consider the chain of
fixed point set components𝑀𝑇𝑟

𝑥 ⊂ 𝑀𝑇𝑟−1

𝑥 ⊂ ⋯ ⊂ 𝑀𝑇2

𝑥 ⊂ 𝑀𝑇1

𝑥 ⊂ 𝑀 guaranteed by Proposition 7.2.
We will choose 𝑁 to be𝑀𝑇1

𝑥 . Because the inclusions𝑀𝑇𝑖

𝑥 ⊂ 𝑀𝑇𝑖−1

𝑥 are each of positive, even codi-
mension, we have that dim(𝑁) ⩾ 2𝑟 − 2, and because 𝑟 ⩾ 3𝑛+6

8
, it follows that dim(𝑁) ⩾ 3𝑛−2

4
.

This proves Part (i).
To prove Part (ii), assume codim(𝑁) ≠ 2 and symrank(𝑁) < 3dim(𝑁)+6

8
. Recall from Proposi-

tion 7.2 that the inclusion 𝑁 ⊂ 𝑀𝑛 is minimal in the sense that if a circle subgroup of 𝑇𝑟 fixes
another connected submanifold 𝑁′ ⊂ 𝑀𝑛, then codim(𝑁′) ⩾ codim(𝑁). Now, because the 𝑇𝑟-
action on𝑀𝑛 is effective and the codimension of 𝑁 ⊂ 𝑀𝑛 must be even, we have that dim(𝑁) ⩽
𝑛 − 4. Thus

symrank(𝑁) < 3dim(𝑁)+6

8
⩽

3(𝑛−4)+6

8
< 3𝑛+6

8
− 1 ⩽ 𝑟 − 1.

So setting 𝑇𝑟−1 = 𝑇𝑟∕𝑇1, it follows that there is a circle subgroup of 𝑇𝑟−1 that fixes 𝑁, meaning
that 𝑁 is fixed by a two-dimensional torus subgroup of 𝑇𝑟. By Proposition 4.6, this implies that
there is a circle subgroup of 𝑇𝑟 that fixed a submanifold of larger dimension than 𝑁, which is a
contradiction. Therefore, Part (ii) follows. □

In proving Theorem 7.9, if the submanifold 𝑁 from Lemma 7.10 is of codimension 2, then we
will apply the following:

Lemma 7.11. Suppose 𝑀𝑛 is a closed, even-dimensional, simply connected, smooth manifold of
dimension 𝑛 ⩾ 4. Assume 𝑀𝑛 contains a closed, connected, embedded submanifold 𝑁𝑛−2 of codi-
mension 2 such that the inclusion 𝑁𝑛−2 ↪ 𝑀𝑛 is (𝑛 − 3)-connected. Then 𝐻𝑖(𝑀𝑛; ℤ) = 0 for all
odd values of 𝑖.

Proof. In dimension 𝑛 = 4, the result follows from Poincaré duality. Suppose 𝑛 ⩾ 6. Because𝑀𝑛

is simply connected, so is 𝑁𝑛−2. Let [𝑁] ∈ 𝐻𝑛−2(𝑀
𝑛; ℤ) denote the image of the fundamental

class of 𝑁, and let 𝑒 ∈ 𝐻2(𝑀𝑛; ℤ) denote its Poincaré dual. By Lemma 6.3, the homomorphisms
∪𝑒 ∶ 𝐻𝑗(𝑀𝑛; ℤ) → 𝐻𝑗+2(𝑀𝑛; ℤ) are surjective for 1 ⩽ 𝑗 < 𝑛 − 3 and injective for 1 < 𝑗 ⩽ 𝑛 − 3.
Because𝑀𝑛 is simply connected,𝐻1(𝑀𝑛; ℤ) ≅ 0 ≅ 𝐻𝑛−1(𝑀𝑛; ℤ), and it follows that𝐻𝑖(𝑀𝑛; ℤ) =

0 for all odd values of 𝑖. □
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Example 7.12. As we described in Example 2.3, 𝑆3 × 𝑆3 admits a metric with Ric2 > 0 invariant
under an effective 𝑇3-action. It follows from Lemma 7.11 that no action of any of the circle sub-
groups of 𝑇3 has fixed point set of codimension 2. In fact, one can show that the possible fixed
point sets in 𝑆3 × 𝑆3 of circle subgroups in this example are either empty or diffeomorphic to 𝑇2.

We will now prove Theorem 7.9 using the work of Smale in [38] and Dessai andWilking in [10]:

Proof of Theorem 7.9. Wewill prove Theorem 7.9 by induction on the dimension, 𝑛. First note that
in dimensions 𝑛 = 8, 10, and 12, we have ⌈ 3𝑛+6

8
⌉ = 𝑛

2
. So the result holds in these dimensions by

Theorem 7.7, thus establishing our base case.
Now, suppose for the sake of induction that Theorem 7.9 holds in even dimensions 8, … , 𝑛 − 2

for some 𝑛 ⩾ 14. We will show it also holds in dimension 𝑛. Consider a manifold 𝑀𝑛 satisfying
the hypotheses of Theorem 7.9, and suppose 𝑇𝑟 acts isometrically and effectively on 𝑀𝑛 with
𝑟 = symrank(𝑀𝑛) ⩾ 3𝑛+6

8
. Then by Theorem 1.4,𝜒(𝑀𝑛) > 0, and hence the𝑇𝑟-action on𝑀𝑛 has a

fixed point. By Lemma 7.10, there exists a connected submanifold𝑁 ⊂ 𝑀 ofminimal codimension
fixed by a circle subgroup of𝑇𝑟 such thatdim𝑁 ⩾

3𝑛−2

4
and either codim(𝑁) = 2 or symrank(𝑁) ⩾

3dim𝑁+6

8
.

If codim(𝑁) = 2, then by Theorem 1.7, the inclusion 𝑁𝑛−2 ↪ 𝑀𝑛 is (𝑛 − 3)-connected, and by
Lemma 7.11, 𝐻odd(𝑀𝑛; ℤ) = 0. By Lemma 6.3, if [𝑁] ∈ 𝐻𝑛−𝑑(𝑀

𝑛; ℤ) denotes the image of the
fundamental class of 𝑁 and 𝑒 ∈ 𝐻𝑑(𝑀𝑛; ℤ) denotes its Poincaré dual, then the homomorphisms
∪𝑒 ∶ 𝐻𝑖(𝑀;ℤ) → 𝐻𝑖+𝑑(𝑀;ℤ) are isomorphisms for 2 ⩽ 𝑖 ⩽ 𝑛 − 4. If 𝑏2(𝑀𝑛) ⩽ 1, then because𝑀𝑛

is simply connected, it has the cohomology ring of either a sphere or a complex projective space,
and hence is homotopy equivalent to one of these spaces. For the case of a sphere,𝑀𝑛 is homeo-
morphic to 𝑆𝑛 by Smale’s resolution to the Poincaré conjecture for dimensions ⩾ 5 in [38]. In the
case of a complex projective space, Dessai and Wilking proved in [10] if a manifold is homotopy
equivalent to ℂP𝑚 and admits a smooth effective action by a torus 𝑇𝑟 such that𝑚 < 4𝑟 − 1, then
the manifold is tangentially homotopy equivalent to ℂP𝑛. Thus, it follows in this case that𝑀𝑛 is
tangentially homotopy equivalent to ℂP𝑛∕2.
Suppose instead symrank(𝑁) ⩾ 3dim𝑁+6

8
. Then because dim𝑁 ⩾

3𝑛−2

4
⩾ 10 and 𝑁 is totally

geodesic in 𝑀, we have that Ric2(𝑁) > 0. Thus, the induction hypothesis implies that
𝐻odd(𝑁; ℤ) = 0. Furthermore, because

𝑛 − 2 codim𝑁 + 1 ⩾ 𝑛

2
,

the inclusion𝑁 ↪ 𝑀𝑛 is at least 𝑛
2
-connected by Theorem 1.7. Thus it follows that𝐻odd(𝑀𝑛; ℤ) =

0. If 𝑏2(𝑀𝑛) ⩽ 1, then 𝑏2(𝑁) ⩽ 1, and𝑁 is either homeomorphic to a sphere are tangentially homo-
topy equivalent to a complex projective space by the induction hypothesis. Because the inclusion
𝑁 ↪ 𝑀𝑛 is 𝑛

2
-connected, it follows that𝑀𝑛 has the cohomology ring of either a sphere or a com-

plex projective space. Then, just as in the previous case, 𝑀𝑛 is either homeomorphic to 𝑆𝑛 or
tangentially homotopy equivalent to ℂP𝑛∕2. □
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