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Newly restructured generalized polynomial chaos expansion (GPCE) methods for high-dimensional design optimiza-

tion in the presence of input random variables with arbitrary, dependent probability distributions are reported. The

methods feature a dimensionally decomposed GPCE (DD-GPCE) for statistical moment and reliability analyses asso-

ciated with a high-dimensional stochastic response; a novel synthesis between the DD-GPCE approximation and score

functions for estimating the first-order design sensitivities of the statistical moments and failure probability; and a

standard gradient-based optimization algorithm, constructing the single-step DD-GPCE and multipoint single-step

DD-GPCE (MPSS-DD-GPCE) methods. In these new design methods, the multivariate orthonormal basis functions

are assembled consistent with the chosen degree of interaction between input variables and the polynomial order, thus

facilitating to deflate the curse of dimensionality to the extent possible. In addition, when coupled with score functions,

the DD-GPCE approximation leads to analytical formulae for calculating the design sensitivities. More importantly,

the statistical moments, failure probability, and their design sensitivities are determined concurrently from a single

stochastic analysis or simulation. Numerical results affirm that the proposed methods yield accurate and computation-

ally efficient optimal solutions of mathematical problems and design solutions for simple mechanical systems. Finally,

the success in conducting stochastic shape optimization of a bogie side frame with 41 random variables demonstrates

the power of the MPSS-DD-GPCE method in solving industrial-scale engineering design problems.

KEY WORDS: RDO, RBDO, statistical moment analysis, reliability analysis, GPCE, dimensionally
decomposed GPCE, design sensitivity analysis, score functions, stochastic optimization

1. INTRODUCTION

Robust design optimization (RDO) and reliability-based design optimization (RBDO), commonly referred to as

stochastic design optimization, are the predominant drivers for engineering design when confronted with uncertain-

ties stemming from material properties, manufacturing processes, and operating environments [1–8]. RDO strives to

improve the product quality by minimizing the objective function considering the mean and variance of a performance

function, leading to an insensitive design. On the other hand, RBDO—another major archetype of stochastic design

optimization—aims to achieve high reliability of an optimal design by satisfying the constraints at desired proba-

bility levels [9]. The objective function of RDO can be unified with the probabilistic constraints of RBDO, which

is regarded as an extension of RBDO or reliability-based robust design optimization. A growing number of studies

concerning RDO and RBDO are being published every year with real-world applications, such as those found in the

design of aerospace [10,11], automotive [12,13], civil [14], and electronic structures [15] or devices [16].

A stochastic design optimization, whether RDO or RBDO, is grounded on uncertainty quantification (UQ) analy-

sis of complex systems where an output function of interest is often defined algorithmically via finite-element analysis

(FEA). In this regard, RDO and RBDO easily become too expensive when UQ is performed via traditional Monte
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Carlo simulation (MCS). Therefore, numerous studies on RDO and RBDO have been conducted using multiple sur-

rogate approximations, including polynomial response surface [17], polynomial chaos expansion [18,19], polynomial

dimensional decomposition [8], support vector machine [20], artificial neural network [21], and Gaussian process

or Kriging [22,23], to name a few. Additionally, the works of Kouri and Shapiro [24], Kolvenbach et al. [25], and

Conti et al. [26] in solving stochastic optimization problems constrained by partial differential equations deserve at-

tention. Some of these methods, especially the expansion or decomposition methods, are based on the assumption

that the input random variables follow independent probability distributions. However, in reality, there exists signifi-

cant correlation or dependence among input variables. Indeed, neglecting these correlations or dependencies, whether

emanating from loads, material properties, or manufacturing variables, may produce inaccurate or unknowing risky

designs [9,27–29]. Having said so, there exist surrogate methods, prominently the Gaussian process models, which

can handle independent or dependent probability distributions.

Only a few works introduce polynomial chaos expansion [30–33] or its variants [34,35] for UQ analysis un-

der arbitrary, dependent input variables. More significantly, a generalized polynomial chaos expansion (GPCE) has

been successfully employed for the statistical moment and reliability analyses and their design sensitivity analy-

sis, leading to accurate and computationally efficient solutions of RDO and RBDO problems under dependent input

random variables; see Refs. [9,29]. There are also other surrogate-based design works [27,36]. However, for truly

high-dimensional systems, the RDO and RBDO methods require astronomically large numbers of basis functions,

succumbing to the curse of dimensionality. For practical applications, encountering a large number of input variables,

say, over 30, is not uncommon. Therefore, developments of new or appropriately modified computational methods,

capable of tackling high-dimensional RDO and RBDO problems above and beyond the foregoing works, are desir-

able.

This paper presents novelly restructured GPCE methods for high-dimensional stochastic design optimization

of complex engineering systems under dependent input random variables. The method entails (1) a dimensionally

decomposed GPCE (DD-GPCE) for statistical moment and reliability analyses of a high-dimensional stochastic re-

sponse; (2) a novel fusion of the DD-GPCE approximation and score functions for estimating the first-order design

sensitivities of the statistical moments and failure probability; and (3) a standard gradient-based optimization algo-

rithm, constructing single-step DD-GPCE and multipoint single-step DD-GPCE (MPSS-DD-GPCE) methods. Here,

the MPSS leverages the single-point method [7] and the multipoint approximation method [37] for obtaining accurate

optimal solutions with fewer evaluations of the surrogate.

The paper is organized as follows. Section 2 defines typical RDO and RBDO problems with their concomitant

mathematical statements. Section 3 introduces DD-GPCE for statistical moment and reliability analyses, exploiting a

three-step algorithm to construct a measure-consistent multivariate orthonormal polynomial basis and standard least-

squares regression to estimate the expansion coefficients. Section 4 presents the explicit form of the score function and

discloses new analytical sensitivity methods by embedding score functions with the DD-GPCE approximation. Sec-

tion 5 illustrates the single-step and multipoint single-step design process for solving RDO and RBDO problems and

explains how the DD-GPCE-based methods for the statistical moment, failure probability, and their design sensitiv-

ity analyses are coupled with a gradient-based optimization algorithm. Section 6 involves three numerical examples,

ranging from simple mathematical functions to an industrial-scale engineering problem, conducted to determine the

accuracy, convergence properties, and computational efforts of the proposed methods. In the end, Section 7 presents

the conclusions of this work.

2. ROBUST AND RELIABILITY-BASED DESIGN OPTIMIZATION

Let N, N0, R, and R
+
0 be the sets of positive integers, non-negative integers, real numbers, and non-negative real

numbers, respectively. For a positive integer N ∈ N, denote by R
N the N -dimensional real vector space. Then,

denote by A
N ⊆ R

N and Ā
N ⊆ R

N two bounded or unbounded domains.

Consider a measurable space (Ωd,Fd), where Ωd is a sample space and Fd is a σ-field on Ωd. Defined over

(Ωd,Fd), let {Pd : Fd → [0, 1]} be a family of probability measures where, for M ∈ N and N ∈ N, d =
(d1, . . . , dM )T ∈ D is an M -dimensional design vector with nonempty closed set D ⊂ R

M . Here,

X := (X1, . . . , XN )T : (Ωd,Fd) → (AN ,BN ) is an A
N -valued input random vector with BN representing the
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Borel σ-field on A
N , describing the randomness arising in loads, material properties, and geometry of a complex

mechanical system. It is assumed that X has an absolutely continuous joint distribution function and a continuous

joint probability density function (PDF) fX(x; d) with a bounded or unbounded support A
N ⊆ R

N . Therefore, the

probability law of X is completely defined by a family of the PDF
{

fX(x; d) : x ∈ R
N , d ∈ D

}

that is associated

with probability measures {Pd : d ∈ D}, so that the probability triple (Ωd,Fd, Pd) of X depends on d. In theory,

a design variable dk can be any distribution parameter or a statistic; however, here, dk is limited to the mean of ran-

dom variable Xk. Many engineering problems related to manufacturing variables, as verified in Refs. [38–40], seek

optimal design solutions as the mean values of random variables. If the deterministic parameters are design variables,

the resulting problems require additional regularity conditions that describe the differentiability of performance func-

tions with respect to such deterministic parameters [41–44]. The associated sensitivity analysis required for design

optimization can be performed without much computational difficulty.

Let yl(X) := yl(X1, . . . , XN ), l = 0, 1, . . . , K, represent a collection of (K + 1) real-valued, square-integrable,

measurable transformations on (Ωd,Fd), describing performance functions of a complex system. It is assumed that

yl : (AN ,BN ) → (R,B) is not an explicit function of d, although yl implicitly depends on d via the probability law

of X. Also, let D = ×M
k=1[dk,L, dk,R] be a closed rectangular subregion of R

M , where dk,L and dk,U are the lower

and upper bounds, respectively, of the kth design variable dk.

Two mathematical formulations of each RDO and RBDO—one narrated with respect to the original input random

variables and the other stated with respect to transformed input random variables—are discussed in the rest of this

section. The formulations are equivalent because they lead to matching solutions to a general design optimization

problem. However, the latter is more advantageous than the former in light of DD-GPCE approximations, as will be

further explained in upcoming sections.

2.1 Original Formulation

Define an objective function c0 : D → R and constraint functions cl : D → R, where l = 1, . . . ,K and 1 ≤ K < ∞.

• RDO

The mathematical formulation of RDO in most engineering applications requires one to solve [29,45–47]

min
d∈D⊆RM

c0(d) := G
(

Ed[y0(X)],
√

vard[y0(X)]
)

,

subject to cl(d) := αl

√

vard[yl(X)] − Ed[yl(X)] ≤ 0,

l = 1, . . . ,K,

dk,L ≤ dk ≤ dk,U , k = 1, . . . ,M,

(1)

where

Ed[yl(X)] :=

∫

AN

yl(x)fX(x; d)dx (2)

is the mean of yl(X) and

vard[yl(x)] := Ed[yl(X) − Ed[yl(X)]]
2

(3)

is the variance of yl(X). Here, Ed and vard are the expectation and variance operators, respectively, with

respect to the probability measure Pd or fX(x; d)dx of X; αl ∈ R
+
0 , l = 1, . . . ,K, are non-negative, real-

valued constants associated with the probabilities of constraint satisfaction; and G(·, ·) is an arbitrary function

determined by the choice of scalarization. A commonly used variant of the scalarized objective function is the

weighted sum of the first two moments [29,47], yielding

G
(

Ed[y0(X)],
√

vard[y0(X)]
)

:= w1
Ed[y0(X)]

µ∗
0

+ w2

√

vard[y0(X)]

σ∗
0

,
(4)
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where w1 ∈ R
+
0 and w2 ∈ R

+
0 are two non-negative, real-valued weights such that w1 +w2 = 1; µ∗

0 ∈ R\{0}
and σ∗

0 ∈ R
+
0 \ {0} are two non-zero, real-valued scaling factors.

For the scalarization, equal weight values are usually selected, but they can be distinct and biased, depending

on the objective set forth by a designer. In contrast, the scaling factors are relatively arbitrary and chosen to

achieve better optimal results, for example, by normalizing the objective function.

• RBDO

The mathematical formulation of RBDO requires one to solve [2,8,9]

min
d∈D⊆RM

c0(d),

subject to cl(d) := Pd[X ∈ ΩF,l(d)] − pl ≤ 0,

l = 1, . . . ,K,

dk,L ≤ dk ≤ dk,U , k = 1, . . . ,M,

(5)

where ΩF,l(d) is the lth failure domain, and 0 ≤ pl ≤ 1 is the lth target failure probability. The objective

function c0 is commonly prescribed as a deterministic function of d, describing relevant system geometry,

such as area, volume, and mass. In contrast, the constraint functions cl, l = 1, 2, . . . , K, are generally more

complicated than the objective function. Depending on the failure domain ΩF,l, a component or a system fail-

ure probability can be envisioned. For component reliability analysis, the failure domain is often adequately

described by a single performance function yl(X), for instance, ΩF,l := {x : yl(x) < 0}, whereas multiple,

interdependent performance functions yl,i(x), i = 1, 2, . . . , are required for system reliability analysis, lead-

ing, for example, to ΩF,l := ∪i{x : yl,i(x) < 0} and ΩF,l := ∩i{x : yl,i(x) < 0} for series and parallel

systems, respectively. Here, ∪i and ∩i present a union and intersection, respectively, of the ith components.

In either case, the evaluation of the failure probability in Eq. (5) is fundamentally equivalent to calculating a

high-dimensional integral over a complex failure domain.

The evaluation of probabilistic constraints cl(d), l = 1, 2, . . . ,K, in RDO and RBDO requires calculating

statistical moments and probabilities of failure defined by the corresponding performance functions. A cou-

pling with a gradient-based optimization algorithm demands that the gradients of cl(d) also be formulated,

thus warranting design sensitivity analysis of moments and failure probability.

2.2 Alternative Formulation

Since the design variables are considered as the statistical means of some or all input random variables, a linear

transformation, such as the shifting or scaling of random variables, yields alternative formulations of RDO and RBDO.

To do so, let (Xi1
, . . . , XiM

)ᵀ be an M -dimensional subvector of X := (X1, . . . , XN )ᵀ, 1 ≤ i1 ≤ . . . ≤ iM ≤ N ,

M ≤ N , such that the mean of its kth component is the kth design variable, as follows: Ed[Xik
] = dk, k = 1, . . . , M .

Shifting. Let Z := (Z1, . . . , ZN )ᵀ be an N -dimensional vector of new random variables obtained by shifting X as

Z = X + r, (6)

where r := (r1, . . . , rN )ᵀ is an N -dimensional vector of deterministic variables. Denote by (Zi1
, . . . , ZiM

)ᵀ a sub-

vector of Z, where the ikth new random variable Zik
corresponds to the ikth original random variable Xik

. Define

gk := Ed[Zik
] as the mean of the ikth component of Z. Then, the mean of Zik

from the shifting transformation is

Ed[Zik
] = dk + rik

= gk, (7)

and the PDF of Z is

fZ(z; g) = |J|fX(x; d) = fX(x; d) = fX(z − r; d), (8)
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supported on the domain of Z, say, Ā
N ⊆ R

N . Here, the absolute value of the determinant of the Jacobian matrix

is |J| = |det[∂x/∂z]| = 1 and the M -dimensional vector g := (g1, . . . , gM )ᵀ has its kth component such that

gk = Ed[Zik
], k = 1, . . . ,M .

Scaling. Let Z := (Z1, . . . , ZN )ᵀ be an N -dimensional vector of new random variables obtained by scaling X as

Z = diag[r1, . . . , rN ]X, (9)

where r := (r1, . . . , rN )ᵀ is an N -dimensional vector of deterministic variables. Denote by (Zi1
, . . . , ZiM

)ᵀ a sub-

vector of Z, where the ikth new random variable Zik
corresponds to the ikth original random variable Xik

. Define

gk := Ed[Zik
] as the mean of the ikth component of Z. Then, the mean of Zik

from the scaling transformation is

Ed[Zik
] = dkrik

= gk, (10)

and the PDF of Z is

fZ(z; g) = |J|fX(x; d) =

∣

∣

∣

∣

1

r1 . . . rN

∣

∣

∣

∣

fX(x; d)

=

∣

∣

∣

∣

1

r1 . . . rN

∣

∣

∣

∣

fX(diag[1/r1, . . . , 1/rN ]z; d),

(11)

supported on the domain of Z, say, Ā
N ⊆ R

N . Here, the absolute value of the determinant of the Jacobian matrix is

|J| = |det[∂x/∂z]| = |1/(r1 . . . rN )| and the M -dimensional vector g := (g1, . . . , gM )ᵀ has its kth component such

that gk = Ed[Zik
], k = 1, . . . ,M .

For each l = 1, 2, . . . ,K, define hl(Z; r) := yl(X) to be the generic output function of the new random variables

Z, where the relation between Z and X is obtained by either the shifting transformation in Eq. (6) or the scaling

transformation in Eq. (9). Correspondingly, a stochastic design optimization, whether RDO or RBDO, can be stated

as follows.

• RDO

In both shifting and scaling cases, the RDO formulation in Eq. (1) is reformulated, yielding [29]

min
d∈D⊆RM

c0(d) := G

(

Eg(d)[h0(Z; r)],
√

varg(d)[h0(Z; r)]

)

,

subject to cl(d) := αl

√

varg(d)[hl(Z; r)] − Eg(d)[hl(Z; r)] ≤ 0,

l = 1, . . . , K,

dk,L ≤ dk ≤ dk,U , k = 1, . . . ,M,

(12)

where

Eg(d)[hl(Z; r)] :=

∫

ĀN

hl(z; r)fZ(z; g)dz (13)

is the mean of hl(Z; r) and

varg(d)[hl(Z; r)] := Eg(d)

[

hl(Z; r) − Eg(d)[hl(Z; r)]
]2

(14)

is the variance of hl(Z; r). Here, Eg(d) and varg(d) are the expectation and variance operators, respectively,

with respect to the probability measure fZ(z; g)dz, which depends on g. For brevity, the subscript “g(d)” of

the expectation operator will be denoted by “g” in the rest of the paper.
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• RBDO

In both shifting and scaling cases, the RBDO formulation in Eq. (5) is reformulated, yielding [9]

min
d∈D⊆RM

c0(d),

subject to cl(d) := Pg(d)[Z ∈ Ω̄F,l(d)] − pl ≤ 0,

l = 1, . . . ,K,

dk,L ≤ dk ≤ dk,U , k = 1, . . . , M,

(15)

where Ω̄F,l(d) is the lth failure domain such that Ω̄F,l := {z : hl(z; r) < 0} for component reliability analysis

of a performance function hl(z; r), and Ω̄F,l := ∪i{z : hl,i(z; r) < 0} or ∩i{z : hl,i(z; r) < 0} if at least

two performance functions hl,i(z; r), i = 1, 2, . . . , are involved in series or parallel systems, respectively, for

system reliability analysis.

The alternative formulations in Eqs. (12) and (15) are the restatement of Eqs. (1) and (5), respectively, with

respect to the transformed input random variables Z. In these alternative formulations, the probability measure

of Z is locked during design iterations, thus sidestepping the need to recalculate measure-associated quantities.

For the remainder of the paper, the solutions of RDO and RBDO problems will be reported with respect to the

alternative formulation. Furthermore, X or Z and yl or hl will be referred to, interchangeably, as input random

vector and output function, respectively.

A gradient-based optimization solution to the RDO or RBDO problem in Eq. (12) or Eq. (15), respectively,

mandates adequate smoothness of objective and constraint functions. Therefore, these functions are assumed to be

differentiable with respect to design variables. Usually, the optimal solution of Eqs. (12) and (15) can be determined

by a suitable programming method, such as the sequential linear or quadratic programming methods.

3. DIMENSIONALLY DECOMPOSED GENERALIZED POLYNOMIAL CHAOS EXPANSION

Given an input random vector X := (X1, . . . , XN )ᵀ or its transformed version Z := (Z1, . . . , ZN )ᵀ with known PDF

fX(x; d) or fZ(z; g), let h(Z; r) represent any one of the random output functions h0(Z; r) and hl(Z; r), l = 1, . . . , K,

in Eqs. (12) and (15). Here, h(Z; r) is assumed to belong to a reasonably large class of random variables, such as the

Hilbert space:

L2(Ωd,Fd, Pd) :=

{

h : Ωd → R :

∫

Ωd

h2(Z; r)dPd <∞
}

. (16)

This is analogous to saying that the real-valued function h(z; r) lives in the equivalent Hilbert space:

{

h : Ā
N → R :

∫

ĀN

h2(z; r)fZ(z; g)dz < ∞
}

. (17)

When Z = (Z1, . . . , ZN )ᵀ comprises statistically dependent random variables, the resultant probability mea-

sure, in general, is not a product type, meaning that the joint distribution of Z cannot be obtained strictly from its

marginal distributions. Consequently, measure-consistent multivariate orthonormal polynomials in z = (z1, . . . , zN )ᵀ

cannot be built from an N -dimensional tensor product of measure-consistent univariate orthonormal polynomials. In

this case, a three-step algorithm founded on a whitening transformation of the monomial basis can be employed to

determine multivariate orthonormal polynomials consistent with an arbitrary, non-product-type probability measure

fZ(z; g)dz of Z.

Appendix A briefly summarizes GPCE that expands any output random variable h(Z) ∈ L2(Ωd,Fd, Pd) into

a Fourier series comprising measure-consistent multivariate orthonormal polynomials. The truncated GPCE in Ap-

pendix A is referred to as regular GPCE in this work.
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3.1 Construction of DD-GPCE

For truly high-dimensional problems, the aforementioned regular GPCE approximation requires an astronomically

large number of basis functions or coefficients, thus succumbing to the curse of dimensionality. However, in many

real-world applications, high-variate interaction effects among input variables are often negligible to the output func-

tion value of interest. In this section, a DD-GPCE approximation, reorganizing the basis functions of regular GPCE

in a dimensionwise manner, is introduced for the first time. The DD-GPCE has an ability to safely and effectively

select the basis functions or coefficients of the regular GPCE further in terms of degree of interaction among input

variables, thereby tackling the curse of dimensionality to some extent. The chosen multivariate orthonormal polyno-

mials that are consistent with an arbitrary, non-product-type probability measure fZ(z; g)dz of Z are determined by

the three-step algorithm founded on a whitening transformation of the monomial basis as follows.

3.1.1 Monomial Basis

For N ∈ N, denote by {1, . . . , N} an index set, so that u ⊆ {1, . . . , N} is a subset, including the empty set ∅, with

cardinality 0 ≤ |u| ≤ N . The complementary subset of u is denoted by −u := {1, . . . , N}\u. For each m ∈ N0 and

0 ≤ S ≤ N , consider the elements of the reduced multi-index set,

JS,m :=
{

j = (ju, 0−u) ∈ N
N
0 : ju ∈ N

|u|, |u| ≤ |ju| ≤ m, 0 ≤ |u| ≤ S
}

, |ju| := ji1
+ . . . + ji|u|

,

which is arranged as j
(1), . . . , j

(LN,S,m), j
(1) = 0, according to a monomial order of choice. Here, (ju, 0−u) denotes

an N -dimensional multi-index whose ith component is ji if i ∈ u and 0 if i /∈ u. It is elementary to show that the

JS,m has cardinality LN,S,m, given by

LN,S,m := |JS,m| = 1 +
S

∑

s=1

(

N

s

)(

m

s

)

≤ LN,m, (18)

where LN,m is the cardinality of the multi-index set Jm for the regular GPCE, which is also defined in Appendix A.

Here, JS,m represents a subset of Jm, determined from the chosen S relevant for the DD-GPCE. Denote by

PS,m(z) =
(

zj(1)

, . . . , zj
(LN,S,m)

)ᵀ

an LN,S,m-dimensional column vector where the elements are the monomials zj for j ∈ JS,m arranged in the afore-

mentioned order. For u ⊆ {1, . . . , N}, let zu := (zi1
, . . . , zi|u|

)ᵀ, 1 ≤ i1 < . . . < i|u| ≤ N , be a subvector of z. The

complementary subvector is defined by z−u := z{1,...,N}\u. Then, for j ∈ JS,m,

zj = zju
u 0−u

j−u = zju
u .

Therefore, PS,m(z) is the monomial vector in zu = (zi1
, . . . , zi|u|

)ᵀ of degree 0 ≤ |u| ≤ S and |u| ≤ |ju| ≤ m.

3.1.2 Monomial Moment Matrix

When the input random variables Z1, . . . , ZN , instead of the real variables z1, . . . , zN , are inserted in the argument,

PS,m(Z) becomes a vector of random monomials. This leads to an LN,S,m × LN,S,m monomial moment matrix of

PS,m(Z), defined as

GS,m := Eg[PS,m(Z)Pᵀ

S,m(Z)] :=

∫

ĀN

PS,m(z)Pᵀ

S,m(z)fZ(z; g)dz, (19)

with its (p, q)th element

GS,m,pq := Eg[Z
j(p)

Zj(q)

] :=

∫

ĀN

zj(p)

zj(q)

fZ(z; g)dz =

∫

ĀN

zj(p)+j(q)

fZ(z; g)dz, p, q = 1, . . . , LN,S,m. (20)
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When 0 ≤ S ≤ N and S ≤ m < ∞, GS,m,pq represents the expectation of a product of two random monomials

Zj(p)

and Zj(q)

, where j
(p) and j

(q) are the pth and qth elements, respectively, of JS,m in the aforementioned order.

For u, v ⊆ {1, . . . , N}, 0 ≤ |u|, |v| ≤ S, zj(p)

= z
ju
u and zj(q)

= z
jv
v , yielding

GS,m,pq :=

∫

Ā|u∪v|

zju
u zjv

v fZu∪v
(zu∪v; g)dzu∪v, p, q = 1, . . . , LN,S,m. (21)

Here, zu∪v = (zi1
, . . . , zi|u∪v|

)ᵀ, 1 ≤ i1 < . . . < i|u∪v| ≤ N of a subvector of z. Therefore, the calculation of a

monomial moment matrix demands the |u∪ v|-dimensional integration. When compared with the monomial moment

matrix Gm in Eq. (A.4) from Appendix A, the merit in calculating GS,m in Eq. (19) can be significant in terms of

the computational cost. For example, if N = 10, and m = 10, the calculation of GS,m with S = 1 requires at

most two-dimensional integration with respect to a bivariate marginal distribution. In contrast, the calculation of Gm,

whose (p, q)th elements are

Gm,pq :=

∫

ĀN

zj(p)+j(q)

fZ(z; g)dz, p, q = 1, . . . , LN,m, (22)

requires at most ten-dimensional integration with respect to a decavariate joint distribution. Moreover, such high-

dimensional joint distribution in the latter is more difficult to obtain than its lower-dimensional or marginal version

or may not be possible to obtain when the type of probability distribution is arbitrary or unknown.

It is elementary to show that GS,m is symmetric and positive-definite. Therefore, GS,m is invertible, facilitating

a whitening transformation, to be discussed next.

3.1.3 Whitening Transformation

Given 0 ≤ S ≤ N , S ≤ m < ∞, and the previously chosen monomial order, denote by

ΨS,m(z; g) := (Ψj(1)(z; g), . . . ,Ψ
j
(LN,S,m)(z; g))ᵀ := (Ψ1(z; g), . . . ,ΨLN,S,m

(z; g))ᵀ (23)

an LN,S,m-dimensional column vector of orthonormal polynomials, which is consistent with the probability measure

fZ(z; g)dz. Such polynomials can be generated from the monomial vector PS,m and properties of the monomial mo-

ment matrix GS,m. In Eq. (23), Ψj(p)(z; g), p = 1, . . . , LN,S,m, represents the pth element of ΨS,m(z; g) consistent

with the monomial order of choice, whereas, for simplicity, the subscript j
(p) has been replaced with p in the second

equality to denote the same element. To construct such orthonormal polynomials, recognize that the monomial mo-

ment matrix GS,m, as it is symmetric and positive-definite, is invertible. Therefore, for 0 ≤ S ≤ N and S ≤ m < ∞,

there exists a nonsingular LN,S,m × LN,S,m whitening matrix WS,m, satisfying

W
ᵀ

S,mWS,m = G
−1
S,m or W−1

S,mW
−ᵀ

S,m = GS,m. (24)

Thereafter, apply a whitening transformation to create the orthonormal polynomial vector,

ΨS,m(z; g) = WS,mPS,m(z), (25)

from the known monomial vector PS,m(z). The whitening matrix WS,m involved in Eq. (24) is not uniquely deter-

mined from the invertibility of GS,m. Indeed, there are multiple options to select WS,m, all fulfilling the condition

described in Eq. (24).

A prominent choice of the whitening matrix involves Cholesky factorization [32], which leads to the following

selection of

WS,m = Q
−1
S,m, GS,m = QS,mQ

ᵀ

S,m. (26)

Here, QS,m is an LN,S,m × LN,S,m real-valued lower-triangular matrix determined from the Cholesky factorization

of GS,m. Interested readers are encouraged to review the prior work [32] on additional choices for the whitening

matrix.
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It is important not to confuse the whitening transformation with measure transformations frequently used for

mapping dependent variables to independent ones. The latter transformations are generally nonlinear for non-Gaussian

variables. In contrast, the transformation introduced here is linear and maps monomials to orthonormal polynomials

for any input probability measure. As long as the monomial moment matrix GS,m exists and can be constructed, as

discussed more in a forthcoming subsection, orthonormal polynomials consistent with a wide variety of dependent

variables can be created.

Finally, for i, j = 1, . . . , LN,S,m, the ith and jth elements of the polynomial vector ΨS,m(z; g) also have the

first- and second-order moments, satisfying Eqs. (A.7) and (A.8), respectively.

Note that these orthonormal polynomials are described in terms of z, not x. This is mainly because g and hence

Ψm(z; g) are desired to be invariant when the design vector d is updated during design iterations. Readers interested

in further details should review prior works of the authors [9,29].

3.1.4 An Illustrative Example

From the general three-step algorithm just described, a specific yet clarifying example in generating orthonormal

polynomials for DD-GPCE and regular GPCE would be illuminating. For instance, consider two (N = 2) statistically

dependent zero-mean Gaussian random variables Z1 and Z2 with identical standard deviations σ1 = σ2 = 1/4 and

correlation coefficient ρ = 9/10.

Case 1: Set S = 1 and m = 3 to generate at most univariate, third-order measure-consistent orthonormal polynomi-

als in z = (z1, z2)
ᵀ ∈ R

2 of DD-GPCE.

From Eq. (18), L2,1,3 = 1 +
∑1

s=1

(

2
s

)(

3
s

)

= 7. Hence, the reduced multi-index set and the monomial vector

are

J1,3 = {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (3, 0), (0, 3)},

P1,3(z1, z2) = (1, z1, z2, z
2
1 , z

2
2 , z

3
1 , z

3
2)

ᵀ.

Using Eqs. (19) and (26), the monomial moment matrix and whitening matrix are exactly calculated as

G1,3 =





























1 0 0 1
16

1
16

0 0

0 1
16

9
160

0 0 3
256

27
2560

0 9
160

1
16

0 0 27
2560

3
256

1
16

0 0 3
256

131
12,800

0 0

1
16

0 0 131
12,800

3
256

0 0

0 3
256

27
2560

0 0 15
4096

6237
2,048,000

0 27
2560

3
256

0 0 6237
2,048,000

15
4096





























,

W1,3 =





























1 0 0 0 0 0 0

0 4 0 0 0 0 0

0 − 36√
19

40√
19

0 0 0 0

− 1√
2

0 0 8
√

2 0 0 0

−
√

19
362

0 0 −648
√

2
3439

800
√

2
3439

0 0

0 −2
√

6 0 0 0 32
√

2
3

0

0 1458
√

6
468,559

−2000
√

6
468,559

0 0 −7776
√

6
468,559

32000
√

2
1,405,677





























.
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Thereafter, Eq. (25) yields an orthonormal polynomial vector as

Ψ1,3(z1, z2) =































1

4z1
40z2√

19
− 36z1√

19

8
√

2z2
1 − 1√

2

−648
√

2
3439

z2
1 + 800

√

2
3439

z2
2 −

√

19
362

32
√

2
3
z3

1 − 2
√

6z1

−7776
√

6
468,559

z3
1 + 1458

√

6
468,559

z1 + 32,000
√

2
1,405,677

z3
2 − 2000

√

6
468,559

z2































.

Case 2: In reference to Appendix A, set m = 3 to generate at most third-order measure-consistent orthonormal

polynomials in z = (z1, z2)
ᵀ ∈ R

2 of regular GPCE.

From Eq. (A.1), L2,3 =
(

2+3
3

)

= 10. Hence, the unreduced total-degree multi-index set and the monomial

vector are

J3 = {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (3, 0), (0, 3), (1, 1), (2, 1), (1, 2)},
P3(z1, z2) = (1, z1, z2, z

2
1 , z

2
2 , z

3
1 , z

3
2 , z1z2, z

2
1z2, z1z

2
2)

ᵀ.

Using Eqs. (A.4) and (A.5), the monomial moment matrix and whitening matrix are exactly calculated as

G3 =















































1 0 0 1
16

1
16

0 0 9
160

0 0

0 1
16

9
160

0 0 3
256

27
2560

0 27
2560

131
12,800

0 9
160

1
16

0 0 27
2560

3
256

0 131
12,800

27
2560

1
16

0 0 3
256

131
12,800

0 0 27
2560

0 0

1
16

0 0 131
12,800

3
256

0 0 27
2560

0 0

0 3
256

27
2560

0 0 15
4096

6237
2,048,000

0 27
8192

159
51,200

0 27
2560

3
256

0 0 6237
2,048,000

15
4096

0 159
51,200

27
8192

9
160

0 0 27
2560

27
2560

0 0 131
12,800

0 0

0 27
2560

131
12,800

0 0 27
8192

159
51200

0 159
51,200

6237
2,048,000

0 131
12,800

27
2560

0 0 159
51,200

27
8192

0 6237
2,048,000

159
51,200















































,

W3 =



















































1 0 0 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0 0 0

0 − 36√
19

40√
19

0 0 0 0 0 0 0

− 1√
2

0 0 8
√

2 0 0 0 0 0 0

−
√

19
362

0 0 −648
√

2
3439

800
√

2
3439

0 0 0 0 0

0 −2
√

6 0 0 0 32
√

2
3

0 0 0 0

0 1458
√

6
468,559

−2000
√

6
468,559

0 0 −7776
√

6
468,559

32,000
√

2
1,405,677

0 0 0

9√
181

0 0 − 14,400

19
√

181
− 14,400

19
√

181
0 0 160

√
181

19
0 0

0 36
√

131
24,661

− 380√
3,230,591

0 0 − 5,212,800

19
√

3,230,591
− 2,592,000

19
√

3,230,591
0

320
√

24,661
131

19
0

0 −4
√

131
19

540√
2489

0 0 259,200

19
√

2489
− 288,000

19
√

2489
0 − 809,280

19
√

2489

6400
√

131
19

19



















































.

Thereafter, Eq. (A.6) yields an orthonormal polynomial vector as
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Ψ3(z1, z2)=



























































1

4z1
40z2√

19
− 36z1√

19

8
√

2z2
1 − 1√

2

−648
√

2
3439

z2
1 + 800

√

2
3439

z2
2 −

√

19
362

32
√

2
3
z3

1 − 2
√

6z1

−7776
√

6
468,559

z3
1 + 1458

√

6
468,559

z1 + 32,000
√

2
1,405,677

z3
2 − 2000

√

6
468,559

z2

− 144
19

√
181z2

1 +
11,664z2

1

19
√

181
+ 160

19

√
181z2z1 − 14,400z2

2

19
√

181
+ 9√

181

− 288
19

√

24,661
131

z3
1 +

1,889,568z3
1

19
√

3,230,591
+ 320

19

√

24,661
131

z2z
2
1 + 18

19

√

24,661
131

z1 − 354,294z1

19
√

3,230,591
− 2,592,000z3

2

19
√

3,230,591
− 20

19

√

24,661
131

z2 + 486,000z2

19
√

3,230,591

− 51,840,000
√

131
19

z3
1

468,559
+

13,183,171,200z3
1

468,559
√

2489
− 809,280z2z

2
1

19
√

2489
+ 6400

19

√

131
19

z2
2z1 − 4

√

131
19

z1 − 104,256,000
√

131
19

z3
2

468,559
+

6,555,168,000z3
2

468,559
√

2489
+

50,580
√

19
131

z2

24,661
+

94,320
√

131
19

z2

24,661



























































.

In Case 1, the truncation of S = 1 and m = 3 in DD-GPCE requires L2,1,3 = 7 basis functions, while in Case 2,

the truncation of m = 3 in regular GPCE mandates L2,3 = 10 basis functions. The basis functions of the former form

a subset of basis functions of the latter. More importantly, DD-GPCE involves fewer basis functions than regular

GPCE. The difference in the number of basis functions, while not meaningfully large for only two variables, can be

enormous as N increases. For example, when N = 20, S = 1, and m = 3, then the number of regular GPCE’s basis

functions jumps to 1771, whereas the number of DD-GPCE’s basis functions stands at only 61. Similar examples can

be given for higher-variate (S < N ) truncations when N is large. Therefore, DD-GPCE is markedly more effective

than regular GPCE in dealing with high-dimensional UQ and design optimization problems, provided that a lower-

variate truncation is adequate for calculating the statistical properties of output performance functions. This is the

principal motivation behind pursuing the DD-GPCE approximation, which will be formally defined in the following

section.

Whether using the regular GPCE or DD-GPCE, it is elementary to verify that their orthonormal polynomials

satisfy the statistical properties described in Eqs. (A.7) and (A.8). In general, measure-consistent orthonormal poly-

nomials cannot be determined exactly for an arbitrary probability measure. In such a case, they can be obtained

numerically and hence approximately using a Gauss-quadrature method or sampling method. Readers interested in

further details should consult the prior work [33].

3.2 DD-GPCE Approximation

A DD-GPCE approximation, dictated by truncation parameters m ≤ S ≤ N and S ≤ m < ∞, retains the degree

of interaction among input variables less than or equal to S and preserves polynomial orders less than or equal to m.

The result is an S-variate, mth-order DD-GPCE approximation

hS,m(Z; r) =

LN,S,m
∑

i=1

Ci(r)Ψi(Z; g) (27)

of h(Z; r), which contains expansion coefficients Ci ∈ R, i = 1, . . . , LN,S,m, defined by

Ci(r) := Eg[h(Z; r)Ψi(Z; g)]

:=

∫

ĀN

h(z; r)Ψi(z; g)fZ(z; g)dz.
(28)

Appendix B summarizes the estimation of expansion coefficients of DD-GPCE via standard least-squares (SLS).

The DD-GPCE presented here entails arbitrarily truncating the GPCE expansion. A more rational or automatic

approach to truncate the expansion based on the anisotropy, degree of interaction, and other features of objective and

constraint functions will require an adaptive approach, controlled by user-defined error thresholds. The amount of

work required to develop such adaptivity is nontrivial, outside the scope of the present work, and currently being

studied in the authors’ group.
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3.3 Stochastic Analysis

The S-variate, mth-order DD-GPCE approximation hS,m(Z; r) can be viewed as an inexpensive surrogate of an

expensive-to-calculate function h(Z; r). Therefore, relevant statistical properties of h(Z; r), such as its first two mo-

ments and failure probability, can be estimated from those of hS,m(Z; r).

3.3.1 Statistical Moments

Applying the expectation operator on hS,m(Z; r) in Eq. (27) and recognizing Eq. (A.7), its mean

Eg[hS,m(Z; r)] = C1(r) = Eg[h(Z; r)] (29)

matches the exact mean of h(Z; r) for 0 ≤ S ≤ N and S ≤ m < ∞. Enforcing the expectation operator again, this

time on (hS,m(Z; r) − Eg(d)[hS,m(Z; r)])2, and using Eq. (A.8) results in the variance

varg[hS,m(Z; r)] =

LN,S,m
∑

i=1

C2
i (r) − C2

1 (r)

=

LN,S,m
∑

i=2

C2
i (r) ≤ varg[h(Z; r)]

(30)

of hS,m(Z; r), where the equality before the last term operates when S = N and m → ∞. Therefore, the second-

moment statistics of a DD-GPCE approximation are solely determined by an appropriately truncated set of expansion

coefficients.

3.3.2 Failure Probability

For reliability analysis of performance functions h(Z; r) in Section 2, the estimation of the failure probability can be

conducted using MCS of hS,m(Z; r), as follows.

Depending on component or system reliability analysis, let Ω̄F,S,m := {z : hS,m(z; r) < 0} or Ω̄F,S,m := {z :
∪ihi,S,m(z; r) < 0} or {z : ∩ihi,S,m(z; r) < 0} be a failure set, as a result of the S-variate, the mth-order DD-GPCE

hS,m(Z; r) of h(Z; r) or hi,S,m(Z; r) of hi(Z; r). Then, the DD-GPCE estimate of the failure probability is

Pg

[

Z ∈ Ω̄F,S,m

]

:=

∫

ĀN

IΩ̄F,S,m
(z; r)fZ(z; g)dz

:= Eg

[

IΩ̄F,S,m
(Z; r)

]

= lim
L̄→∞

1

L̄

L̄
∑

l=1

IΩ̄F,S,m
(z(l); r),

(31)

where z(l) is the lth realization of Z, L̄ is the sample size, and IΩ̄F,S,m
is another indicator function such that

IΩ̄F,S,m
=

{

1, z ∈ Ω̄F,S,m,

0, z /∈ Ω̄F,S,m.
(32)

Note that the MCS of DD-GPCE approximation in Eq. (31) should not be confused with crude MCS commonly used

for producing benchmark results. The crude MCS, which requires numerical calculations of h or hi for input samples

z(l), l = 1, . . . , L, can be expensive or even prohibitive, particularly when the sample size L̄ needs to be very large

for estimating small failure probabilities. In contrast, the MCS embedded in the DD-GPCE approximation requires

evaluations of simple polynomial functions that describe hS,m or hi,S,m. Therefore, an arbitrarily large sample size

can be accommodated in the DD-GPCE approximation.
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The DD-GPCE presented here can be viewed as a reconfigured GPCE, where the basis set of multivariate or-

thonormal polynomials of regular GPCE has been reshuffled and pruned according to the chosen degree of interaction

and expansion order. However, DD-GPCE is not the same as the generalized polynomial dimensional decomposition

(GPDD) [35,48], where the basis set of multivariate orthogonal polynomials is also developed dimensionwise and

hierarchically but satisfying a few distinguishing properties of the generalized analysis-of-variance dimensional de-

composition [49]. A meticulous comparison between DD-GPCE and GPDD is beyond the scope of this current work.

4. DESIGN SENSITIVITY ANALYSIS

When solving RDO or RBDO problems with a gradient-based optimization algorithm, such as sequential linear

or quadratic programming, at least the first-order derivatives of the first two moments or the failure probability of

hl(Z; r), l = 0, 1, . . . ,K, with respect to each design variable dk, k = 1, . . . ,M , are demanded. In this section, an

analytical design sensitivity formulation, coupling the DD-GPCE approximation and score functions for dependent

input random variables, is presented. For such sensitivity analysis, the following regularity conditions are necessary:

1. The PDF fZ(z; g) of Z is continuous. Also, the partial derivative ∂fZ(z; g)/∂gk, k = 1, . . . ,M , exists and

is finite for all possible values of z and gk. Moreover, the failure probability associated with the performance

function h(Z; r) is a differentiable function of g.

2. There exists a Lebesgue integrable dominating function t(z) such that, for r = 1, 2 and k = 1, . . . , M ,

∣

∣

∣

∣

hr(z; r)
∂fZ(z; g)

∂dk

∣

∣

∣

∣

≤ t(z), (33)

and
∣

∣

∣

∣

IΩ̄F
(z; r)

∂fZ(z; g)

∂dk

∣

∣

∣

∣

≤ t(z). (34)

Note that the sensitivity formulation proposed in the following subsections is not limited to either independent or

dependent random variables.

4.1 Score Function

Suppose the first-order derivatives of the first two moments Eg[h
r(Z; r)], r = 1, 2, and the failure probability

Pg

[

Z ∈ Ω̄F

]

corresponding to a generic performance function h(Z; r) with respect to design variables dk, k =
1, . . . ,M , have to be computed in solving the RDO in Eq. (12) and RBDO in Eq. (15) by a gradient-based design

optimization algorithm. Let

Eg[g(Z; r)] :=

∫

ĀN

g(z; r)fZ(z; g)dz (35)

be a generic probabilistic response, where g(z; r) is either hr(z; r), r = 1, 2, for statistical moment analysis or

IΩ̄F
(z; r) for reliability analysis. Then, applying the partial derivative with respect to dk to Eg[g(Z; r)] and invoking

the chain rule and the Lebesgue dominated convergence theorem [50], which allows one to interchange the differential

and integral operators, produces the first-order sensitivities

∂Eg[g(Z; r)]

∂dk

=
∂

∂dk

∫

ĀN

g(z; r)fZ(z; g)dz

=
∂gk

∂dk

∂

∂gk

∫

ĀN

g(z; r)fZ(z; g)dz

=
∂gk

∂dk

∫

ĀN

g(z; r)
∂ ln fZ(z; g)

∂gk

fZ(z; g)dz, k = 1, . . . ,M,

(36)

where ∂gk/∂dk = 1 or rik
for the shifting or scaling transformations, respectively. Define by
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sk(Z; g) :=
∂ ln fZ(Z; g)

∂gk

(37)

the first-order score function [51,52] for the variable gk. Usually, the score functions can be determined numerically

or analytically.

Combining Eqs. (36) and (37) results in

∂Eg[g(Z; r)]

∂dk

=
∂gk

∂dk

∫

ĀN

g(z; r)sk(z; g)fZ(z; g)dz

=
∂gk

∂dk

Eg[g(Z; r)sk(Z; g)], k = 1, . . . ,M.

(38)

According to Eqs. (35) and (38), the generic probabilistic response and its sensitivities have both been formulated

as expectations of stochastic quantities with respect to the same probability measure, facilitating their concurrent

evaluations in a single stochastic simulation or analysis.

4.2 Sensitivity of Statistical Moments

Selecting g(z; r) to be hr(z; r) and then replacing h(z; r) with its S-variate mth-order DD-GPCE approximation

hS,m(z; r) in the last line of Eq. (38), the resultant approximation of the sensitivities of the rth-order moment is

obtained as
∂gk

∂dk

Eg[h
r
S,m(Z; r)sk(Z; g)] =

∂gk

∂dk

∫

ĀN

hr
S,m(z; r)sk(z; g)fZ(z; g)dz. (39)

If sk is square-integrable, then it can be expanded with respect to the same orthornormal basis functions. For 0 ≤
S′ ≤ N and S′ ≤ m′ < ∞, the result is S′-variate, m′th-order DD-GPCE

sk,S′,m′(Z; g) =

LN,S′,m′
∑

i=2

Dk,i(g)Ψi(Z; g), (40)

with its expansion coefficients

Dk,i(g) =

∫

ĀN

sk(z; g)Ψi(z; g)fZ(z; g)dz, i = 2, . . . ,∞,

and Dk,1(g) = 0 [29].

Finally, setting r = 1 and r = 2 in Eq. (39) yields the approximate sensitivity of the first and second moments

as follows:

∂Eg[hS,m(Z; r)]

∂dk

=
∂gk

∂dk

Lmin
∑

i=2

Ci(r)Dk,i(g) (41)

and

∂Eg[h
2
S,m(Z; r)]

∂dk

=
∂gk

∂dk

LN,S,m
∑

i1=1

LN,S,m
∑

i2=1

LN,S′,m′
∑

i3=2

Ci1
(r)Ci2

(r)Dk,i3
(g)Eg

[

3
∏

p=1

Ψip
(Z; g)

]

, (42)

respectively, where Lmin := min(LN,S,m, LN,S′,m′). The approximate sensitivities in Eqs. (41) and (42) converge to

∂Eg[h(Z; r)] / ∂dk and ∂Eg[h
2(Z; r)] / ∂dk, respectively, when S = N , S′ = N , m → ∞, and m′ → ∞.

In Eq. (42), the expectations of products of three distinct multivariate orthonormal polynomials need to be calcu-

lated LN,S,m ×LN,S,m ×LN,S′,m′ times. For an arbitrary dependent random vector Z, such expectations or integrals

cannot be calculated exactly. This is in contrast to independent variables where exact solutions exist for a few classi-

cal distributions [53,54]. Therefore, for dependent variables, they must be estimated, say, by numerical integration or

sampling methods. If the dimension is too high, then the sampling methods, such as MCS, QMCS, or Latin hypercube

sampling, can be used to estimate these integrals [29].
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4.3 Sensitivity of Failure Probability

Selecting g(z; r) to be IΩF
(z; r) and then replacing h(z; r) with its S-variate, mth-order DD-GPCE approximation

hS,m(z; r) in the second line of Eq. (38), the resultant approximation of the sensitivities of the failure probability is

obtained as

∂gk

∂dk

Eg

[

IΩ̄F,S,m
(Z; r)sk(Z; g)

]

=
∂gk

∂dk

lim
L̄→∞

1

L̄

L̄
∑

l=1

[

IΩ̄F,S,m
(z(l))sk(z(l); g)

]

, (43)

where L̄ is the sample size and z(l) is the lth realization of Z. Again, the sensitivity in Eq. (43) is easily and inex-

pensively determined by sampling elementary polynomial functions that describe hS,m and known score function

sk.

It is important to clarify that the approximate sensitivities in Eqs. (41)–(43) are obtained not by taking partial

derivatives of the approximate first two moments and failure probability in Eqs. (29)–(31), respectively, with respect

to gk. Instead, it results from replacing h with hS,m in the expectation describing Eqs. (39) and (43).

The incorporation of score functions has the desirable property that it requires differentiating only the underlying

PDF fZ(z; g). The resulting score functions can be easily and, in most cases, analytically determined. If the perfor-

mance function is not differentiable or discontinuous—for example, the indicator function that comes from reliability

analysis—the proposed method still allows evaluation of the sensitivity if the density function is differentiable. In

reality, the density function is often smoother than the performance function, and therefore the proposed sensitivity

methods are able to calculate sensitivities for a wide variety of complex mechanical systems.

5. PROPOSED METHOD FOR STOCHASTIC DESIGN OPTIMIZATION

The DD-GPCE approximations, described in the preceding sections, are intended to evaluate the objective and/or

constraint functions cl(d), l = 0, . . . , K, and their design sensitivities from a single stochastic analysis. For the

RBDO problem in Eq. (15), its objective function is a simple and explicit deterministic mapping between design

variables and output, thus not demanding such a stochastic analysis. However, it is conceivable that the objective

function may also be defined as the first two moments of a response function of random variables whose distribution

parameters are specified by design variables, yielding reliability-based robust design optimization. For instance, let

h0(z; r) ∈ L2(Ωd,Fd, Pd) be a random output function of an input random vector z := (z1, . . . , zN )ᵀ with known

PDF fZ(z; g). Then, the objective function in Eq. (15) can be

c0(d) := w1

Ed(g)[h0(Z; r)]

µ∗
0

+ w2

√

vard(g)[h0(Z; r)]

σ∗
0

,

where Eg(d)[h0(Z; r)] :=
∫

ĀN h0(z; r)fZ(z; g(d))dz; varg(d)[hl(Z; r)] := Eg(d)

[

hl(Z; r) − Eg(d)[hl(Z; r)]
]2

; w1 ∈
R

+
0 and w2 ∈ R

+
0 are two non-negative, real-valued weights such that w1 + w2 = 1; and µ∗

0 ∈ R \ {0} and

σ∗
0 ∈ R

+
0 \ {0} are two non-zero, real-valued scaling factors.

A straightforward integration of stochastic analyses, design sensitivity analysis, and an appropriate optimization

algorithm is expected to yield a convergent solution of the RDO and RBDO problems in Eqs. (12) and (15), respec-

tively. However, new stochastic analyses and design sensitivity analysis by recomputing the DD-GPCE coefficients

are demanded at every design iteration, thus easily becoming computationally intensive. To reduce such computa-

tional costs, the single-step and multipoint single-step processes will be introduced in the following subsections,

which were studied to be employed with the regular GPCE in the authors’ prequels [9,29].

5.1 Single-Step DD-GPCE

The single-step DD-GPCE is intended to solve all of the RDO and RBDO problems in Eqs. (12) and (15) from a

single stochastic analysis by circumventing the demand to recalculate the DD-GPCE coefficients from a new input-

output data set in every design iteration. However, it is predicated on two important assumptions: (1) an S-variate,
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mth-order DD-GPCE approximation hS,m(Z; r) of h(Z; r) at the initial design is adequate for all possible designs;

and (2) the DD-GPCE coefficients for a new design, determined by recycling those for an old design, are acceptable

for their accuracy.

Under these two assumptions, let vectors r and r′ represent the old and new designs, respectively. Assume that

DD-GPCE coefficients Ci(r), i = 1, . . . , LN,S,m, for the old design r have been already estimated from the old

input-output data {z(l), h(z(l); r)}L
l=1. Then, DD-GPCE coefficients Ci(r

′), i = 1, . . . , LN,S,m, for the new design r′

are determined by adjusting the input data set {z(l)}L
l=1 to the following one {z′(l)}L

l=1, as

z′(l) =







z(l) − r′ + r, in shifting,

diag

(

r1

r′1
, . . . ,

rN

r′N

)

z(l), in scaling.
(44)

In the shifting case of Eq. (44), the new output value at the lth input sample is

h(z(l); r′) := y(z(l) − r′) = y(z(l) − r′ + r − r)

= y(z′(l) − r) =: h(z′(l); r),
(45)

where z′(l) := z(l) − r′ + r is the adjusted lth input sample. In the scaling case of (44), the new output value at the lth
input sample is

h(z(l); r′) := y

(

diag

[

1

r′1
, . . . ,

1

r′N

]

z(l)

)

= y

(

diag

[

1

r1

, . . . ,
1

rN

]

diag

[

r1

r′1
, . . . ,

rN

r′N

]

z(l)

)

= y

(

diag

[

1

r1

, . . . ,
1

rN

]

z′(l)
)

=: h(z′(l); r),

(46)

where z′(l) := diag[r1/r′1, . . . , rN/r′N ]z(l) is the adjusted lth input sample. These adjustments are meant to construct

an input-output data set for new designs from DD-GPCE coefficients Ci(r) for the old design, that is,

h(z(l); r′) = h(z′(l); r) ≈
LN,S,m
∑

i=1

Ci(r)Ψi(z
′(l); g), (47)

where the last term indicates the S-variate, mth-order DD-GPCE approximation. Applying Eq. (47) to Eq. (B.3)

yields an estimate of the mean square residual,

ê′′S,m :=
1

L

L
∑

l=1

[

LN,S,m
∑

i=1

Ci(r)Ψi(z
′(l); g) −

LN,S,m
∑

i=1

Ci(r
′)Ψi(z

(l); g)

]2

, (48)

the minimization of which by SLS produces the best estimates of DD-GPCE coefficients for the new design. Com-

pared with the minimization of êS,m in Eq. (B.3), the calculation of new output data using the original performance

function h(z(l); r′) is not demanded. Instead, the new output data are estimated by recycling the old coefficients and

calculating basis function values at the adjusted input data z′, as shown in Eq. (44). Subsequently, new stochastic

analyses and design sensitivity analysis, both employing S-variate, mth-order DD-GPCE approximations from the

initial design, are performed with little extra cost during all design iterations. Therefore, the single-step process holds

the potential to substantially reduce the computational effort in solving RDO and RBDO problems.

5.2 Multipoint Single-Step DD-GPCE

The single-step process, described in the foregoing section, is predicated on accurate DD-GPCE approximations

of stochastic responses, supplying surrogates of objective and/or constraint functions for the entire design space.
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Therefore, if the truncation parameters S and m of DD-GPCE are demanded to be exceedingly large to capture a high-

dimensional nonlinear stochastic response, this global method may lead to a computationally taxing design process.

In such a case, employing DD-GPCE of only a low-variate, low-order approximation may be inappropriate, failing

to find a true optimal solution. An appealing substitute, referred to as the multipoint single-step DD-GPCE (MPSS-

DD-GPCE) method, asks for local implementations of the DD-GPCE approximation that are built on subregions of

the entire design space. According to this latter method, the original RDO or RBDO problem is swapped for a series

of local RDO or RBDO problems, respectively, where the objective and/or constraint functions in each local RDO

or RBDO problem represent their multipoint approximations [37]. The design solution of an individual local RDO

or RBDO problem, obtained by the single-step DD-GPCE method, constitutes the initial design for the next local

RDO or RBDO problem. Then, the move limits are updated, and the optimization is repeated iteratively until the

optimal solution is acquired. Due to the local approach, the MPSS-DD-GPCE method is expected to solve practical

engineering problems using low-degree DD-GPCE approximations.

For the rectangular design space

D =
k=M�

k=1

[dk,L, dk,U ] ⊆ R
M (49)

of the RDO and RBDO problems described in Eqs. (12) and (15), denote by q′ = 1, 2, . . . , Q′ ∈ N an index indicating

the q′th subregion of D with the initial design vector d
(q′)
0 = (d

(q′)
1,0 , . . . , d

(q′)
M,0)

ᵀ. Given a sizing factor 0 < β
(q′)
k ≤ 1,

the domain of the q′th subregion is expressed by

D(q′) =
k=M�

k=1

[

d
(q′)
k,0 − β

(q′)
k

(dk,U − dk,L)

2
, d

(q′)
k,0 + β

(q′)
k

(dk,U − dk,L)

2

]

⊆ D ⊆ R
M , q′ = 1, . . . , Q′. (50)

According to the multipoint design process, the RDO and RBDO problems in Eqs. (12) and (15) are transformed to

a succession of local RDO and RBDO problems for Q′ subregions as follows.

• Local RDO problem.

For the q′th subregion, the local RDO problem requires one to solve

min
d∈D(q′)⊆RM

c̃
(q′)
0,S,m(d) := G

(

Eg[h̃
(q′)
0,S,m(Z; r)],

√

varg[h̃
(q′)
0,S,m(Z; r)]

)

,

subject to c̃
(q′)
l,S,m(d) := αl

√

varg[h̃
(q′)
l,S,m(Z; r)] − Eg[h̃

(q′)
l,S,m(Z; r)] ≤ 0,

dk ∈
[

d
(q′)
k,0 − β

(q′)
k (dk,U − dk,L) / 2, d

(q′)
k,0 + β

(q′)
k (dk,U − dk,L) / 2

]

,

l = 1, . . . ,K, k = 1, . . . , M,

(51)

where

Eg

[

h̃
(q′)
l,S,m(Z; r)

]

:=

∫

ĀN

h̃
(q′)
l,S,m(z; r)fZ

(

z; g(d)
)

dz, (52)

varg

[

h̃
(q′)
l,S,m(Z; r)

]

:= Eg

[

h̃
(q′)
l,S,m(Z; r) − Eg[h̃

(q′)
l,S,m(Z; r)]

]2
, (53)

and c̃
(q′)
l,S,m(d) and h̃

(q′)
l,S,m(Z; r), l = 0, 1, . . . ,K, are the S-variate, mth-order DD-GPCE approximations

of cl(d) and hl(Z; r), respectively, for the q′th subregion. Also, d
(q′)
k,0 − β

(q′)
k (dk,U − dk,L)/2 and d

(q′)
k,0 +

β
(q′)
k (dk,U −dk,L)/2, known as the move limits, are the lower and upper bounds, respectively, of the subregion

D(q′).

• Local RBDO problem.

For the q′th subregion, the local RBDO problem requires one to solve

Volume 13, Issue 4, 2023



40 Lee & Rahman

min
d∈D(q′)⊆RM

c̃
(q′)
0,S,m(d)

subject to c̃
(q′)
l,S,m(d) := Pg[Z ∈ ˜̄Ω

(q′)
F,l,S,m(d)] − pl ≤ 0,

dk ∈
[

d
(q′)
k,0 − β

(q′)
k (dk,U − dk,L) / 2, d

(q′)
k,0 + β

(q′)
k (dk,U − dk,L) / 2

]

,

l = 1, . . . , K; k = 1, . . . , M,

(54)

where c̃
(q′)
0,S,m, ˜̄Ω

(q′)
F,l,S,m(d), and c̃

(q′)
l,S,m(d), l = 1, . . . ,K, are the S-variate, mth-order DD-GPCE approxi-

mations of c0(d), Ω̄F,l(d), and cl(d), respectively, for the q′th subregion problem, and ˜̄Ω
(q′)
F,l,S,m(d) is defined

using the S-variate, mth-order DD-GPCE approximation h̃
(q′)
l,S,m(z; r) of hl(z), and d

(q′)
k,0 −β

(q′)
k (dk,U−dk,L)/2

and d
(q′)
k,0 + β

(q′)
k (dk,U − dk,L) / 2, known as the move limits, are the lower and upper bounds, respectively, of

the subregion D(q′).

The multipoint single-step process is schematically depicted in Fig. 1. Here, d(q′)
∗ is the optimal design solution

obtained using the single-step process for the q′th local RDO and RBDO problems in Eqs. (51) and (54). Setting the

initial design d
(q′+1)
0 to d(q′)

∗ for the next local RDO and RBDO problems on D(q′+1), the process is repeated until a

final, convergent solution d∗ that satisfies all constraint conditions is attained. The flow chart of the method, referred

to as MPSS-DD-GPCE, is presented in Figs. 2 and 3 with supplementary explanations of each step of the method, as

follows.

Step 1. Set termination criteria 0 < ε1, ε2 ¿ 1; set tolerances for sizing subregions 0 < ε3, ε4, ε5, ε6, ε7 <

1; initialize size parameters 0 < β
(q′)
k ≤ 1, k = 1, . . . ,M , of D(q′); and set an initial design vector

d
(q′)
0 = (d

(q′)
1,0 , . . . , d

(q′)
M,0). The initial design can be in either feasible or infeasible domains with respect to

the constraints.

Step 2. Transform the input random vector X to a new random vector Z such that Ed[Zik
] = gk = 0 or 1, k =

1, . . . ,M , by shifting or scaling, respectively, described in Section 2.2.

Step 3. Select 0 ≤ S ≤ N and S ≤ m < ∞ of DD-GPCE approximations for performance functions hl(z; r),
l = 0, 1, . . . , K. Construct an LN,S,m-dimensional vector of measure consistent orthonormal polynomials

ΨS,m(Z; g) through the three-step algorithm, described in Section 3.2.

FIG. 1: A schematic description of the multipoint single-step design process during Q′ iterations to get the final optimum d∗
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FIG. 2: A flow chart of the MPSS-DD-GPCE method

Step 4. Update the current design vector d, as follows. If q′ = 1, create input samples {z(l)}l=L
l=1 and {z(l)}l=L̄

l=1 ,

where usually L̄ À L, via the MCS or other experimental design method. Use the input samples to construct

an input-output data set {z(l), h(z(l); r)}L
l=1 of sample size L > LN,S,m (say, L/LN,S,m ≥ 3). If q′ > 1,

reuse the input samples to generate new input-output data sets {z(l), h(z(l); r′)}L
l=1. In every q′ step, use

SLS to estimate DD-GPCE coefficients with respect to ΨS,m(z; g) using the new input-output data set.
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FIG. 3: A flow chart of sizing the q′th subregion in the multipoint single-step design process

Step 5. In each iteration, conduct stochastic analyses and compute the sensitivity of the stochastic quantities with

respect to design variables dk, k = 1, . . . , M , both using S-variate, mth-order DD-GPCE approxima-

tions. For the design sensitivity analysis, if q′ = 1, construct an input-output data sets for score functions,

{z(l), sk(z(l); g)}L
l=1 and {z(l), sk(z(l); g)}L̄

l=1, k = 1, . . . , M , for statistical moment analysis and reliability

analysis, respectively. Otherwise, reuse the input-output data sets of q′ = 1. Finally, obtain the objective

and constraint function values and their gradients at d = d
(q′)
0 .

Step 6. If q′ = 1 and s = 1, use the initial or default values of size parameters 0 < β
(q′)
k ≤ 1, k = 1, . . . , M , in

Step 1. If q′ > 1 and s = 1, modify the size parameters according to three criteria: (1) the accuracy of DD-

GPCE approximations, (2) the active/inactive condition of subregion boundaries, and (3) the converging

condition of current designs. Otherwise, skip Step 6. The details of the three conditions mentioned earlier

are explained in the following steps.

Step 6-1. First condition: For any of l = 0, . . . , K, if ||c̃(q′)
l,S,m(d

(q′)
0 ) − c̃

(q′−1)
l,S,m (d

(q′)
0 )|| ≤ ε3||c̃(q′)

l,S,m(d
(q′)
0 )||, increase

β
(q′)
k for all k = 1, . . . ,M . Otherwise, go to Step 6-2. One may need to control the enlargement rate,

depending on the problems at hand. For instance, set β
(q′)
k = (2 − 1/φ)β

(q′−1)
k , where the golden ratio

φ ≈ 1.618.

Step 6-2. First condition: For any l = 0, . . . ,K, if ||c̃(q′)
l,S,m(d

(q′)
0 ) − c̃

(q′−1)
l,S,m (d

(q′)
0 )|| ≥ ε4||c̃(q′)

l,S,m(d
(q′)
0 )||, decrease

β
(q′)
k for all k = 1, . . . , M . As an instance of the decrement rate, set β

(q′)
k = β

(q′−1)
k /φ, where the golden

ratio φ ≈ 1.618. Otherwise, go to Step 6-3.

Step 6-3. Second condition: If ||d(q′)
k,0 − d

(q′−1)
k,L || ≤ ε5 or ||d(q′)

k,0 − d
(q′−1)
k,U || ≤ ε5, increase β

(q′)
k , k = 1, . . . , M .

As an instance of the enlargement rate, set β
(q′)
k = (2 − 1/φ)β

(q′−1)
k , where the golden ratio φ ≈ 1.618.

Otherwise, go to Step 6-4.
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Step 6-4. Third condition: If ||d(q′)
k,0 − d

(q′−1)
k,0 || ≤ ε6, decrease β

(q′)
k , k = 1, . . . , M . As an instance of the decrement

rate, set β
(q′)
k = β

(q′−1)
k /φ, where the golden ratio φ ≈ 1.618. Otherwise, go to Step 6-5.

Step 6-5. Move limit: If β
(q′)
k (dk,U − dk,L) < ε7, set β

(q′)
k = ε7/(dk,U − dk,L). Otherwise, k = k + 1 and repeat

the process until the loop condition k ≤ M is satisfied.

Step 7. If the current design d is not feasible, that is, at least one constraint condition is violated, go to Step 8.

Otherwise, set d to the current feasible design d
(q′)
f , then go to Step 9.

Step 8. Interpolate between the current design d and the previous feasible design d
(q′−1)
f . For instance, set d =

d
(q′−1)
f /φ + (1 − 1/φ)d, where the golden ratio φ ≈ 1.618. If an initial design at q′ = 1 is infeasible,

interpolate it with upper or lower bounds of the design space, or another initial guess, depending on the

problems at hand.

Step 9. If any of the two termination conditions, such that (1) ‖d
(q′)
f − d

(q′−1)
f ‖ ≤ ε1 and/or (2) ‖c̃(q′)

0,S,m(d
(q′)
f ) −

c̃
(q′)
0,S,m(d

(q′−1)
f )‖ ≤ ε2, are met, terminate the optimization process and set the final optimal design as

d∗ = d
(q′)
f . Otherwise, go to Step 10.

Step 10. Solve the q′th local RDO or RBDO problem with the single-step process using a gradient-based algorithm,

such as sequential quadratic programming, to obtain a local optimal solution d(q′)
∗ . Then, increase the

subregion count as q′ = q′ + 1. Set d
(q′)
0 = d(q′−1)

∗ and go to Step 4.

The multipoint single-step DD-GPCE method will be referred to as the MPSS-DD-GPCE method for the remain-

der of this paper.

6. NUMERICAL EXAMPLES

Three numerical examples are presented to illustrate the proposed methods for stochastic design optimization: the

single-step DD-GPCE method for RDO in Example 1 and the MPSS-DD-GPCE methods in Examples 2 and 3 for

RDO and RBDO, respectively. The weighted sum approach was applied to the bi-objective problem in Example 2,

and single objective functions were employed in Examples 1 and 3. Readers interested in approaches other than the

weighted sum should consult the authors’ prior work [29]. The objective and constraint functions are either elementary

mathematical functions or derived from a space truss or a more complex, industrial-scale mechanical system. Both

size and shape design problems in the context of RDO and/or RBDO were solved. In all examples, the design variables

are the statistical means of some or all input random variables following dependent probability distributions. Each

component of the M -dimensional vector g is either zero or one, depending on the shifting or scaling transformations,

respectively, for input random variables.

In Examples 1 and 2, the proposed DD-GPCE-based solutions are compared with those obtained by the cor-

responding regular GPCE-based methods. For instance, in Example 1, the regular GPCE approximation was em-

ployed in the single-step process, resulting in the single-step regular GPCE method for RDO solutions. In Example 2,

the regular GPCE approximation was applied to the multipoint single-step process as well, then named the MPSS-

regular-GPCE method, for comparison with the proposed MPSS-DD-GPCE method. The multivariate orthonormal

polynomials consistent with the probability measure of z were determined using the three-step algorithms explained

in Section 3.1 or 3.2 for regular GPCE or DD-GPCE approximations, respectively. The monomial moment matrix,

either GS,m in Eq. (19) or Gm in Eq. (A.4), was estimated by QMCS with 5 × 106 samples together with the Sobol

sequence [33]. The truncation parameters 0 ≤ S ≤ N and S ≤ m < ∞ of DD-GPCE approximations and sample

sizes L and L̄ depend on the examples and are listed in Table 1. Both DD-GPCE and regular GPCE coefficients were

estimated using SLS and QMCS-generated input-output data.

As a gradient-based optimization, the sequential quadratic programming was employed to solve stochastic de-

sign optimization problems in all examples. For both the MPSS-DD-GPCE and MPSS-regular-GPCE methods, the
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TABLE 1: The list of parameters (Examples 1–3): DD-GPCE and regular GPCE truncation parameters (S,

m), sample sizes (L, L̄)

Methods Sa mb Lc L̄d

y0 y1 sk y0 y1 sk y0 y1 sk

Example 1 (Case 1)

Single-step DD-GPCE 1 1 1 8 1 1 51 9 30 —

Single-step regular GPCE — — — 8 1 1 135 9 30 —

Example 1 (Case 2)

Single-step DD-GPCE 1 1 1 8 1 1 51 9 30 —

Single-step regular GPCE — — — 8 1 1 135 9 30 —

y0 yl, l = 1–37 sk y0 yl, l = 1–37 sk y0 yl, l = 1–37 sk

Example 2

MPSS-DD-GPCE 1 1 1 2 2 1 63 63 110 —

1 1 1 3 3 1 93 93 110 —

2 2 1 3 3 1 498 498 110 —

MPSS-regular-GPCE — — — 2 2 1 198 198 110 —

— — — 3 3 1 858 858 110 —

y0 y1 sk y0 y1 sk y0 y1 sk

Example 3

MPSS-DD-GPCE 1 1 2 2 2 2 249 249 9030 1,000,000
a The degree of interaction among input variables of the DD-GPCE approximation for an output or score functions.
b The total degree or order of the DD-GPCE approximation for an output or a score function.
c The sample size of the input-output data set used for estimating expansion coefficients of an output or score function.
d The sample size of input-output data set for reliability analysis.

tolerances and initial size parameter are as follows: ε1 = 1×10−3, ε2 = 1×10−3, ε3 = 0.01, ε4 = 0.07, ε5 = 0.01,

ε6 = 0.5, ε7 = 0.05, ε8 = 1 × 10−4, and β
(1)
k = 0.3, k = 1, . . . ,M , in Examples 2 and 3.

6.1 Example 1: Optimization of a Mathematical Function

Consider a mathematical problem involving a two-dimensional Gaussian random vector X = (X1, X2)
ᵀ with depen-

dent components, which have means Ed[X1] = d1 and Ed[X2] = d2. Given the design vector d = (d1, d2)
ᵀ, the

objective of this example is to

min
d∈D

c0(d) :=

√

vard[y0(X)]
√

vard0
[y0(X)]

,

subject to c1(d) := 3
√

vard[y1(X)] − Ed[y1(X)] ≤ 0,

0 ≤ d1 ≤ 10, 0 ≤ d2 ≤ 10,

(55)

where

y0(X) = (X1 − 4)3 + (X1 − 3)8 + (X2 − 5)4 + 10 (56)

and

y1(X) = X1 + X2 − 6.45 (57)

are two random output functions of X. The initial design vector d0 = (5, 5)ᵀ. The approximate optimal solution is

denoted by d̃
∗

= (d̃∗
1 , d̃

∗
2)ᵀ.
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Two distinct cases of dependent variables, demonstrating the respective needs of the shifting (Case 1) and scaling

(Case 2) transformations, were examined as follows.

Case 1: The standard deviations of X1 and X2 are the same as 0.4. The correlation coefficient between X1 and X2

is 0.4.

Case 2: The standard deviations of X1 and X2 are 0.15d1 and 0.15d2, respectively. The correlation coefficient be-

tween X1 and X2 is –0.5.

A former version of this example, originally studied by the authors [29], was slightly revised by increasing the order

of y0.

Table 2 summarizes the approximate optimal solutions for Cases 1 and 2, including the requisite numbers of

design iterations and function evaluations, by the single-step, univariate (S = 1) DD-GPCE methods. For comparison,

the approximate solutions by the single-step regular GPCE methods are included in the third column from the left in

Table 2. In addition, the exact solution, obtained from the exact analytical representations of objective and constraint

functions and their design sensitivities, are tabulated in the fourth column. In the second and third columns from the

left of Table 2, all DD-GPCE- or regular GPCE-based design methods deliver almost identical optimal solutions to

the exact one for Cases 1 and 2, all indicating that the constraint is active (c1 ' 0). This is possible as the selected

order (m = 8) of each DD-GPCE or regular GPCE approximation is the same as those of the original y0 and y1.

Furthermore, both y0 and y1 are effectively univariate functions with no interactions between random variables. Thus,

these DD-GPCE and regular GPCE approximations reproduce y0 and y1 exactly. Furthermore, both y0 and y1 are

TABLE 2: Optimization results of mathematical formulations (Example 1)

Results Single-step DD-GPCEa Single-step regular GPCEb Exactc

Case 1 (shifting)

d̃1

∗
3.0713 3.0713 3.0700

d̃2

∗
5.3867 5.3867 5.3880

c0(d̃
∗
) 0.0016 0.0016 0.0016

c1(d̃
∗
) 2.7466 × 10−7 2.7454 × 10−7 −7.9936 × 10−15

√

vard̃
∗ [y0(X)] 1.9014 1.9014 1.9014

No. of iterations 15 15 7

No. of y0 evaluations 51 135 —

No. of y1 evaluations 9 9 —

Case 2 (scaling)

d̃1

∗
3.2026 3.2026 3.2017

d̃2

∗
5.3434 5.3434 5.3449

c0(d̃
∗
) 0.0009 0.0009 0.0009

c1(d̃
∗
) −4.2406 × 10−7 −4.2069 × 10−7 2.3843 × 10−7

√

vard̃
∗ [y0(X)] 8.6253 8.6260 8.6031

No. of iterations 10 10 7

No. of y0 evaluations 51 135 —

No. of y1 evaluations 9 9 —
a The univariate (S = 1), eighth-order (m = 8) DD-GPCE approximation was employed for y0, while the univariate (S = 1),

first-order (m = 1) DD-GPCE was employed for y1.
b The eighth-order (m = 8) regular GPCE approximation was employed for y0, while the first-order (m = 1) regular GPCE was

employed for y1.
c Exact closed forms of objective, constraint, and their gradient functions were used.
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effectively univariate functions with no interactions between random variables. Thus, these DD-GPCE and regular

GPCE approximations reproduce y0 and y1 exactly.

While the accuracy of both versions of GPCE is excellent, it is important to examine their cost. According to

Table 2, the number of y0 function evaluations for both Cases 1 and 2 required to attain optimal solutions is 51

when the single-step DD-GPCE is employed, which is almost one-third of the 135 function evaluations by the regular

GPCE counterpart. This is because the former method is capable of reducing or eliminating the degree of interaction

between input variables. In contrast, the latter method should carry all interaction terms of input variables as the order

(m) increases. Having said so, both DD-GPCE and regular GPCE approximations at an initial design are adequate

for the entire design space. In this case, their coefficients need to be calculated only once during all design iterations.

Finally, this example illustrates the merit of the propsed single-step DD-GPCE method over the regular GPCE method

in terms of computational efficiency for RDO.

6.2 Example 2: Optimal Sizing Design of a 36-Bar Space Truss Structure

In the second example, a linear-elastic 36-bar space truss, studied by [55], was modified to evaluate the proposed

MPSS-DD-GPCE method. As shown in Fig. 4, the truss is simply supported at nodes 1, 2, and 3, and is subjected to a

vertically downward concentrated force of 100,000 lb at node 10. The material is aluminum alloy, which has a Young’s

modulus of 107 psi and a mass density of 0.1 lb/in3. There are 10 (N = 10) random variables X = (X1, . . . , X10)
ᵀ,

representing random cross-sectional areas of 36 bars, as described in Table 3.

Modeled as correlated Gaussian random variables, for i, j = 1, . . . , 10, they have means Ed[Xi]; standard devi-

ations equal to 0.05Ed[Xi]; and correlation coefficients ρij = 0.5, i 6= j. There are ten design variables, as follows:

dk = Ed[Xk], k = 1, . . . , 10. The objective is to minimize the second-moment properties of the mass of the entire

truss structure, constrained by specifying the upper limits of the vertical displacement (v10) at node 10 and axial

stresses σi, i = 1, . . . , 36, at all 36 bars, such that the limits are satisfied with 99.865% probability if the distribution

of each response yl(X), l = 1, . . . , 37, is standard Gaussian. More specifically, the RDO problem is defined to

FIG. 4: A 36-bar space truss structure
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TABLE 3: Ten random variables Xi, i = 1, . . . , 10, for a 36-bar space

truss (Example 2)

Random variablesa

(Cross section areas of bars) Bar element numbers

X1 4, 7

X2 5, 8

X3 6, 9

X4 13–15

X5 1–3

X6 25–30

X7 19–24, 31–36

X8 10, 16

X9 11, 17

X10 12, 18
a Each random variable represents the area of each bar element in the group.

min
d∈D⊆RM

c0(d) := 0.5
Ed[y0(X)]

Ed0
[y0(x)]

+ 0.5

√

vard[y0(X)]
√

vard0
[y0(X)]

,

subject to cl(d) := 3
√

vard[yl(X)] − Ed[yl(X)] ≤ 0,

l = 1, . . . , 37,

1 in2 ≤ dk ≤ 35 in2, k = 1, . . . , 10,

(58)

where

y0(X) = 0.1
10

∑

i=1

liXi (59)

is the random mass of the truss with li, i = 1, . . . , 10, representing bar lengths and

yl(X) =

{

15,000 − |σl(X)|, if l = 1, . . . , 36,

5 − |v10(X)|, if l = 37,
(60)

representing 37 stochastic performance functions. The initial design is d0 = (30, . . . , 30)ᵀ in2. The approximate

optimal solution is denoted by d̃
∗

= (d̃∗1 , . . . , d̃
∗
10)

ᵀ.

Table 4 summarizes the assorted results by the proposed MPSS-DD-GPCE and MPSS-regular-GPCE methods.

Three approximate optimal designs, presented in the second through fourth columns from the left in Table 4, were

obtained by the MPSS-DD-GPCE with the bivariate, third-order (S = 2, m = 3) approximation; univariate, third-

order (S = 1, m = 3) approximation; and univariate, second-order (S = 1, m = 2) approximation, respectively.†

For univariate (S = 1) DD-GPCE approximations of the proposed method, the respective optimal designs converge

to those by the bivariate (S = 2) version as the number of the order (m) increases. For comparison, the optimization

results from the MPSS-regular-GPCE method using the third-order (m = 3) and the second-order (m = 2) approx-

imations for response and score functions, respectively, are tabulated in the fifth and sixth columns of Table 4. All

of these optimal designs, obtained by the proposed method and its regular GPCE counterpart, are very close to each

other, all satisfying the constraint conditions.

†In each case of the design results, the same truncation parameters of the DD-GPCE method were used for objective and constraint functions. Since

the objective function is known as a linear function, as shown in Eq. (59), the univariate (S = 1), first-order (m = 1) DD-GPCE approximation

represents the objective function exactly. However, employing higher-variate, higher-order DD-GPCE methods provides solutions identical to

those obtained by its linear version for the objective function, which was verified in the case of S = 2 and m = 3.
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TABLE 4: Optimization results of a 36-bar space truss (Example 2)

MPSS-DD-GPCE MPSS-regular-GPCE MCS/FDa

S = 2, m = 3 S = 1, m = 3 S = 1, m = 2 m = 3 m = 2 Ib IIc

d̃∗
1 20.7079 20.7595 20.2586 20.6944 20.9581 21.8505 21.7180

d̃∗
2 12.2492 12.2663 12.4741 12.2327 12.2326 13.4408 13.3868

d̃∗
3 4.1362 4.1474 4.2172 4.1210 4.6160 3.3252 3.2726

d̃∗
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

d̃∗
5 29.3687 29.2770 29.3697 29.4036 29.6739 29.3458 29.6267

d̃∗
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

d̃∗
7 6.2517 6.2820 6.2479 6.2527 6.1061 6.0896 6.0700

d̃∗
8 1.0000 1.0000 1.1212 1.0000 1.0895 1.0000 1.0000

d̃∗
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

d̃∗
10 3.9222 3.6877 4.1921 3.8985 4.2420 3.5590 3.5315

c0(d̃
∗
) 0.2256 0.2256 0.2259 0.2256 0.2259 0.2251 0.2247

max[cl(d̃
∗
)]d, l = 1–37 −7.9566 × 10−8 −1.6147 × 10−7 −4.3102 × 10−6 2.0730 × 10−7 −1.0992 × 10−6 1.4095 × 10−8 4.0499 × 10−6

Ed̃
∗ [y0(X)], lb 1.0502 × 105 1.0499 × 105 1.0517 × 105 1.0501 × 105 1.0527 × 105 1.0483 × 105 1.0482 × 105

√

vard̃∗ [y0(X)], lb 4.1568 × 103 4.1572 × 103 4.1607 × 103 4.1569 × 103 4.1590 × 103 4.1457 × 103 4.1464 × 103

No. of FEA 8466 1209 1008 14,586 2970 157,500,000 96,600,000
a Crude MCS with 105 sample size for statistical moment and design sensitivity analysis based on the central finite difference method.
b The initial design was set to the optimal solution of the MPSS-regular-GPCE (m = 3).
c The initial design was set to the optimal solution of the MPSS-regular-GPCE (m = 2).
d The maximum value among constraint values cl at the optimum d∗, l = 1, . . . , 37.
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To seek further credibility for the accuracy of the RDO solutions by the proposed method, QMCS entailing 1×105

samples for stochastic moment analysis and design sensitivity analysis based on the central finite-difference method

was employed. However, due to its extensive computational cost, the RDO problem was solved for two different initial

designs assigned as two optimal designs by the MPSS-regular-GPCE methods, presented in the fifth and sixth columns

of Table 4, respectively. The resulting two reference solutions, denoted by MCS/FD I and II for the former and the

latter cases of the initial design, respectively, are listed in the seventh and eighth columns of Table 4. As expected,

these two reference solutions are very close to their initial designs. However, d∗
3 and d∗10 show some discrepancy

between those solutions obtained by the MPSS methods and MCS/FD. Since the sample size used for these reference

solutions is limited due to its high computational cost, such differences need to be further examined. Having said

so, these results still indicate that the optimal designs obtained by the MCSS-DD-GPCE methods are accurate and

reliable. Furthermore, when compared with hundreds of millions of FEA mandated to obtain reference solutions,

both the MPSS-DD-GPCE and MPSS-regular-GPCE methods achieve a dramatic reduction of computational cost,

requiring only 1008–14,586 FEA. More importantly, the proposed third-order (m = 3) MPSS-DD-GPCE methods

of the univariate (S = 1) and bivariate (S = 2) approximations require only 1209 and 8466 FEA to obtain the

converged optimal design, while the third-order (m = 3) regular GPCE counterpart demands 14,586 FEA. Therefore,

the proposed MPSS-DD-GPCE method is not only accurate but also more computationally efficient than the MPSS-

regular-GPCE method in solving this practical RDO problem.

6.3 Example 3: Shape Optimization of a Train Bogie Side Frame

The last example establishes the efficacy of the proposed MPSS-DD-GPCE method in designing an industrial-scale

mechanical component, known as a train bogie side frame. In rail vehicles, a bogie usually remains affixed to a

railway carriage or locomotive. As illustrated in Fig 5(a), a four-wheeled bogie provides support for the vehicle body

and is also used to provide its traction and braking. The bogie side frame is a chassis or framework that carries wheels

affixed to the train, serving as a modular subassembly of wheels and axles to provide some degree of cushioning

against severe stresses and shocks transmitted from the track during the train motion. Therefore, the bogie side frame

should be designed to possess adequate fatigue durability under multiple loading conditions, including longitudinal,

lateral, or vertical loading, and must sustain satisfactory performances during its expected service lifetime. However,

any uncertainties arising in material properties or manufacturing variables, if they exist, result in the randomness of

fatigue life. A traditional deterministic design optimization incorporating large safety factors may lead to increased

weight of a vehicle, causing a loss of fuel efficiency. Therefore, incorporating uncertainty in fatigue life under multiple

loading conditions is essential for creating a lightweight bogie side frame design.

Forty-one input random variables were introduced to model the randomness in manufacturing tolerances of the

bogie side frame geometry. Figure 5(b) depicts a computer-aided design (CAD) model of a bogie side frame with 41

random manufacturing variables Xk, k = 1, . . . , 41, which are marked in the front and isometric views.

For k = 1, . . . , 41, the random variables follow a multivariate lognormal distribution with the means Ed[Xk] and

standard deviations 0.02Ed[Xk]. These random variables are correlated with each other with a correlation coefficient

of 0.4. There are 41 design variables, such that dk = Ed[Xk], k = 1, . . . , 41. The bogie side frame is made of cast

steel with the following deterministic material properties: elastic modulus E = 203 GPa, Poisson’s ratio ν = 0.3,

mass density ρ = 7800 kg/m3, fatigue strength coefficient σ′
f = 1332 MPa, fatigue ductility coefficient ε′

f = 0.375,

fatigue strength exponent b = −0.1085, and fatigue ductility exponent c = −0.6354.

The stochastic performance of the bogie side frame was determined by fatigue durability analysis under a vertical

loading condition F on the rectangular surface of the bottom side of the center holes of the frame, as shown in

Fig. 6(a). The loading condition is created when the train body with a mass of 500 tons is subject to a vertical

acceleration of 1 g by the gravity force or a vertical acceleration of 1.4 g by the gravity force and a vertical crush

load due to track-induced forces in the train motion. As a result, the bogie side frame experiences constant-amplitude

cyclic loads with the maximum and minimum load values as follows: 2452.5 kN (1 g) ≤ F ≤ 3433.5 kN (1.4 g). The

essential boundary condition includes fixing the inner surface of the two arms in the three translational directions.

The fatigue durability analysis involved (1) calculating maximum principal strain and mean stress at a critical point;

and (2) calculating the fatigue crack-initiation life at the critical point from the Coffin-Manson-Morrow equation [56].
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FIG. 5: A train bogie side frame (Example 3); (a) a photo of the train bogie assembly; (b) a CAD model of the bogie side frame

(unit: mm)

The critical point is where the von Mises stress is the largest, provided that the maximum principal stress is tensile.

Such point location is nonstationary due to the random geometry; thus the critical point was identified from FEA at

each design iteration.

The objective is to minimize the mean mass of the bogie side frame by changing the geometry such that its fatigue

crack-initiation life N1(X) at the critical point under the cyclic loading condition F must exceed a design threshold

of 10 million cycles with (1 − Φ(−3)) × 100 = 99.865% probability, where Φ(·) is the standard normal distribution

function. Mathematically, the RBDO for this problem is defined as

min
d∈D

c0(d) :=
Ed[y0(X)]

Ed0
[y0(X)]

,

subject to c1(d) := Pd[y1(X) < 0] − Φ(−3) ≤ 0,

dk,L ≤ dk ≤ dk,U , k = 1, . . . , 41,

(61)
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FIG. 6: An FEA of the bogie side frame (Example 3); (a) vertical load and boundary conditions; (b) a tetrahedral mesh comprising

157,647 elements

where

y0(X) = ρ

∫

D′(X)

dD′ (62)

is the random mass of the bogie side frame, and

y1(X) = log

[

N1(X)

1 × 107

]

(63)

is a stochastic performance function given by the log-scale normalized fatigue crack-initiation life for the bogie side

frame. The initial design d0 = (d1,0, . . . , d41,0)
ᵀ; the upper and lower bounds of the design vector d = (d1, . . . , d41)

ᵀ

mm ∈ D ⊂ R
41 are tabulated in Table 5. Figure 6(b) presents an FEA mesh for the bogie side frame at mean input

and initial design, which comprises 157,647 tetrahedral elements. The approximate optimal solution is denoted by

d̃
∗

= (d̃∗
1 , . . . , d̃

∗
41)

ᵀ.

The MPSS-DD-GPCE method with the univariate, second-order (S = 1, m = 2) DD-GPCE approximation was

employed in solving this RBDO problem. The obtained optimal design solutions are tabulated in the third column

from the left in Table 5. At optimum, d3 and d10–d16 almost reached their lower limits, and the rest of the design

variables are between their lower and upper limits, satisfying an almost active constraint c1 ' −5.06 × 10−4. The

mean mass of the optimal bogie side frame is 4.2169 tons, which presents a 50.39% reduction from the initial mean

mass of 8.5008 tons. To complete the design process, the requisite number of FEA is 4980.
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TABLE 5: Initial and optimal values, and bounds of design variables

for the bogie side frame problem (Example 3)

k dl,0 mm d̃l

∗

mm dl,L mm dl,U mm

1 230 95.04 80 250

2 600 437.76 400 600

3 40 30.04 30 50

4 50 81.37 50 100

5 500 332.97 330 500

6 50 94.28 50 100

7 230 146.89 80 250

8 600 448.10 400 600

9 40 46.62 30 50

10 900 850.84 850 900

11 900 752.84 750 900

12 900 801.72 800 900

13 900 851.16 850 900

14 900 752.79 750 900

15 900 801.69 800 900

16 900 851.80 850 900

17 20 19.58 10 30

18 20 18.33 10 50

19 20 12.20 10 30

20 20 27.04 10 50

21 300 170.60 100 300

22 300 203.32 100 300

23 200 160.09 100 200

24 300 150.33 100 300

25 200 122.40 100 200

26 300 181.59 100 300

27 300 230.82 100 300

28 200 125.28 100 200

29 300 113.75 100 300

30 200 104.39 100 200

31 200 186.15 100 200

32 40 37.62 20 40

33 40 39.58 20 40

34 200 193.06 100 200

35 40 30.81 20 40

36 40 33.92 20 40

37 30 39.43 30 40

38 30 38.44 30 40

39 400 301.69 300 400

40 30 41.85 30 60

41 30 39.05 30 60

Figures 7(a)–7(d) present the contour plots of the logarithm of the fatigue crack-initiation life at the mean shapes

of the bogie side frame for several design iterations (q′), including the initial design and the optimal design. The

RBDO process started with a conservative initial design such that its minimum fatigue crack-initiation life of 2.11 ×
1015 cycles is much larger than the target value of 107 cycles. Through the proposed method with tolerances and
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FIG. 7: Contours of logarithmic fatigue crack-initiation life at the mean shapes of the bogie side frame (Example 3): (a) initial

design; (b) iteration (q′) 3; (c) iteration (q′) 6; (d) iteration (q′) 11 (optimum), obtained from the MPSS-DD-GPCE method with

the univariate, second-order (S = 1, m = 2) approximation

subregion size parameters appropriately selected, a total of 11 iterations (q′) led to a final optimal design. Indeed, at

optimum, there is a considerable reduction in the overall volume of the bogie side frame, satisfying the target fatigue

crack-initiation life, as presented in Fig. 7(d). Consequently, the minimum weight and target reliability of the bogie

side frame were both achieved, a distinctive advantage of RBDO over traditional deterministic design optimization.

This culminating example confirms that the proposed RBDO method is capable of solving industrial-scale engineering

design problems using only a few thousand FEA.
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7. CONCLUSIONS

Two innovative reconfigurations of GPCE, leading to the single-step DD-GPCE method and the MPSS-DD-GPCE

method, were invented for high-dimensional stochastic design optimization of complex mechanical systems in the

presence of input random variables with arbitrary, dependent probability distributions. The methods feature the DD-

GPCE approximation for statistical moment and reliability analyses of a high-dimensional stochastic response; a

novel synthesis between DD-GPCE and score functions for estimating the first-order design sensitivities of the statis-

tical moments and failure probability; and a standard gradient-based optimization algorithm, constructing single-step

DD-GPCE and MPSS-DD-GPCE methods. In these new design methods, the multivariate orthonormal basis func-

tions are built consistent with the desired degree of interaction between input variables and the polynomial order,

thus helping to alleviate the curse of dimensionality to a substantial magnitude. In addition, when integrated with

score functions, the DD-GPCE approximation leads to analytical formulae for calculating the design sensitivities.

More significantly, the statistical moments, failure probability, and their respective design sensitivities are determined

concurrently from a single stochastic analysis or simulation.

Of the two design methods developed, the single-step DD-GPCE method, formulated globally on the entire

design space, is highly efficient due to recycling of the expansion coefficients. However, it may not remain accurate or

effective when confronted with overly large design spaces and/or high-dimensional stochastic responses. In contrast,

the MPSS-DD-GPCE method ushers in a local enforcement of DD-GPCE approximations, where the original RDO

or RBDO problem is converted into a series of concomitant local problems defined on subregions of the entire

design space. As a result, the method allows employing a low-degree DD-GPCE approximation to obtain a reliable

design solution even when a design space is large. Also, the latter method avoids the necessity of recomputing the

expansion coefficients by reprocessing the old expansion coefficients whenever possible, thus dramatically reducing

the computational cost. Therefore, the MPSS-DD-GPCE method is capable of solving practical engineering problems,

as demonstrated by shape design optimization of an industrial-scale bogie side frame with 41 random variables.
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APPENDIX A. GENERALIZED POLYNOMIAL CHAOS EXPANSION

Let j := (j1, . . . , jN ) ∈ N
N
0 be an N -dimensional multi-index. For z = (z1, . . . , zN )ᵀ ∈ Ā

N ⊆ R
N , a monomial in

the real variables z1, . . . , zN is the product zj = zj1

1 . . . zjN

N with a total degree |j| = j1 + . . . + jN . Consider for each

m ∈ N0 the elements of the multi-index set

Jm := {j ∈ N
N
0 : |j| ≤ m},
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which is arranged as j
(1), . . . , j

(LN,m), j
(1) = 0, according to a monomial order of choice. The set Jm has cardinality

LN,m obtained as

LN,m := |Jm| =
m

∑

l=0

(

N + l − 1

l

)

=

(

N + m

m

)

. (A.1)

Denote by

Ψm(z; g) = (Ψ1(z; g), . . . ,ΨLN,m
(z; g))ᵀ (A.2)

an LN,m-dimensional vector of multivariate orthonormal polynomials that is consistent with the probability measure

fZ(z; g)dz of Z. It is determined by the following three steps [29,33].

Step 1. Given m ∈ N0, create an LN,m-dimensional column vector

Pm(z) = (zj(1)

, . . . , zj
(LN,m)

)ᵀ, (A.3)

whose elements are the monomials zj for |j| ≤ m arranged in the aforementioned order. It is referred to as

the monomial vector in z = (z1, . . . , zN )ᵀ of degree at most m.

Step 2. Construct an LN,m × LN,m monomial moment matrix of Pm(Z), defined as

Gm := Eg[Pm(Z)Pᵀ

m(Z)]

:=

∫

ĀN

Pm(z)Pᵀ

m(z)fZ(z; g)dz.
(A.4)

For an arbitrary PDF fZ(z; g), Gm cannot be determined exactly, but it can be estimated with good accuracy

by numerical integration or sampling methods [33].

Step 3. Select the LN,m ×LN,m whitening matrix Wm from the Cholesky decomposition of the monomial moment

matrix Gm such that

Wᵀ

mWm = G
−1
m or W−1

m W−ᵀ

m = Gm. (A.5)

Then, employ the whitening transformation to generate multivariate orthonormal polynomials from

Ψm(z; g) = WmPm(z). (A.6)

For an ith element Ψi(Z; g) of the polynomial vector Ψm(Z; g) = (Ψ1(Z; g), . . . ,ΨLN,m
(Z; g))ᵀ, the first- and

second-order moments are [33]

Eg[Ψi(Z; g)] =

{

1, if i = 1,

0, if i 6= 1,
(A.7)

and

Eg[Ψi(Z; g)Ψj(Z; g)] =

{

1, i = j,

0, i 6= j,
(A.8)

respectively.

According to Eqs. (A.7) and (A.8), any two distinct elements Ψi(z; g) and Ψj(z; g), i, j = 1, . . . , LN,m, of

the polynomial vector Ψm(z; g) are mutually orthonormal with respect to the probability measure of Z. Therefore,

the set {Ψi(z; g), 1 ≤ i ≤ LN,m}, constructed from the elements of Ψm(z; g), is linearly independent. Moreover,

the set has cardinality LN,m, which matches the dimension of the polynomial space of degree at most m [33]. As

m → ∞, LN,m → ∞ as well. In this case, the resulting set {Ψi(z; g), 1 ≤ i < ∞} comprises an infinite number

of basis functions. If the PDF of random input Z is compactly supported or is exponentially integrable [32], as

assumed here, then the set of random orthonormal polynomials {Ψi(Z; g), 1 ≤ i < ∞} forms an orthonormal basis
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of L2(Ωd,Fd, Pd). Consequently, any output random variable h(Z; r) ∈ L2(Ωd,Fd, Pd) can be expanded as a Fourier

series comprising multivariate orthonormal polynomials in Z, referred to as the GPCE of ‡

h(Z; r) ∼
∞
∑

i=1

Ci(r)Ψi(Z; g), (A.9)

where the expansion coefficients Ci ∈ R, i = 1, . . . ,∞, are defined as

Ci(r) := Eg[h(Z; r)Ψi(Z; g)]

:=

∫

ĀN

h(z; r)Ψi(z; g)fZ(z; g)dz.
(A.10)

According to [33], the GPCE of h(Z; r) ∈ L2(Ωd,Fd, Pd) converges in mean-square, in probability, and in distribu-

tion.

The GPCE contains an infinite number of orthonormal polynomials or coefficients. In a practical setting, the

number must be finite, meaning that the GPCE must be truncated. However, there are multiple ways to perform a

truncation, such as those involving tensor-product, total-degree, and hyperbolic-cross index sets. In this work, the

truncation stemming from the total-degree index set is considered, as done in the previous work [33], which entails

retaining polynomial expansion orders less than or equal to m ∈ N0. The result is an mth-order GPCE approximation

hm(Z; r) =

LN,m
∑

i=1

Ci(r)Ψi(Z; g) (A.11)

of h(Z; r), comprising LN,m basis functions or expansion coefficients defined by Eq. (A.10). According to Eq. (A.1),

the GPCE approximation in Eq. (A.11) is truncated according to a total-degree index set Jm.

Note that the GPCE in Eqs. (A.9) and (A.11) should not be conflated with that of [57]. The GPCE, presented here,

is meant for an arbitrary dependent probability distribution of random input. In contrast, the existing PCE, whether

classical [58] or generalized [57], still needs independence of random input.

APPENDIX B. CALCULATION OF EXPANSION COEFFICIENTS

The definition of expansion coefficients Ci(r), i = 1, . . . , LN,S,m, of an S-variate, mth-order DD-GPCE approx-

imation hS,m(Z; r) mandates various high-dimensional integrations. For an arbitrary function h and an arbitrary

probability distribution of random input Z, their exact evaluations from the definition alone are impractical. Numer-

ical integration entailing a multivariate, tensor-product Gauss-type quadrature rule is computationally intensive, if

not prohibitive, for high-dimensional (N ≥ 10, say) RDO and RBDO problems. To resolve this difficulty, standard

least-squares (SLS) was employed to estimate the coefficients. Here, only a brief summary of SLS is given for the

paper to be self-contained. For additional details, readers are advised to consult a related work [33].

From the known distribution of random input Z and an output function h : Ā
N → R, consider an input-output

data set {z(l), h(z(l); r)}L
l=1 of size L ∈ N, where r is decided from the knowledge of d and g, as discussed earlier.

The data set, often referred to as the experimental design, is generated by calculating the function h at each input data

z(l). Various sampling methods, namely, standard MCS, quasi-MCS (QMCS), and Latin hypercube sampling, can be

used to build the experimental design. Using the experimental design, the approximate DD-GPCE coefficients C̃i(r),
i = 1, . . . , LN,S,m, satisfy the linear system

Ac = b, (B.1)

where

‡Here, the symbol ∼ represents equality in a weaker sense, such as equality in mean-square, but not necessarily pointwise, nor almost everywhere.
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A :=







Ψ̃1(z
(1); g) . . . Ψ̃LN,S,m

(z(1); g)
...

. . .
...

Ψ̃1(z
(L); g) . . . Ψ̃LN,S,m

(z(L); g)






,

b := (h(z(1); r), . . . , h(z(L); r))ᵀ, and

c := (C̃1(r), . . . , C̃LN,S,m
(r))ᵀ.

(B.2)

From Eq. (B.2), Ψ̃i(z
(l); g) represents an estimate of Ψi(z

(l); r) due to approximations resulting from the construction

of the monomial moment matrix in Section 3.2. According to SLS, the best set of expansion coefficients is estimated

by minimizing the mean-squared residual

êS,m :=
1

L

L
∑

l=1



h(z(l); r) −
LN,S,m
∑

i=1

C̃iΨ̃i(z
(l); g)





2

. (B.3)

As a result, the SLS solution Ĉi, i = 1, . . . , LN,S,m, is obtained from

A
ᵀ

Aĉ = A
ᵀ

b, (B.4)

where ĉ := (Ĉ1(r), . . . , ĈLN,S,m
(r))ᵀ and the LN,S,m ×LN,S,m matrix A

ᵀ
A is referred to as the information or data

matrix. Finally, the inversion of the data matrix, if it is positive-definite, produces the best estimate,

ĉ = (Aᵀ
A)−1A

ᵀ
b (B.5)

of the approximate DD-GPCE coefficients. When using SLS, the number of experimental data must be larger than the

number of coefficients, that is, L > LN,S,m. Even if this condition is met, the experimental design must be carefully

chosen to ensure that the resulting matrix A
ᵀ

A is well-conditioned.
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