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Newly restructured generalized polynomial chaos expansion (GPCE) methods for high-dimensional design optimiza-
tion in the presence of input random variables with arbitrary, dependent probability distributions are reported. The
methods feature a dimensionally decomposed GPCE (DD-GPCE) for statistical moment and reliability analyses asso-
ciated with a high-dimensional stochastic response; a novel synthesis between the DD-GPCE approximation and score
functions for estimating the first-order design sensitivities of the statistical moments and failure probability; and a
standard gradient-based optimization algorithm, constructing the single-step DD-GPCE and multipoint single-step
DD-GPCE (MPSS-DD-GPCE) methods. In these new design methods, the multivariate orthonormal basis functions
are assembled consistent with the chosen degree of interaction between input variables and the polynomial order, thus
facilitating to deflate the curse of dimensionality to the extent possible. In addition, when coupled with score functions,
the DD-GPCE approximation leads to analytical formulae for calculating the design sensitivities. More importantly,
the statistical moments, failure probability, and their design sensitivities are determined concurrently from a single
stochastic analysis or simulation. Numerical results affirm that the proposed methods yield accurate and computation-
ally efficient optimal solutions of mathematical problems and design solutions for simple mechanical systems. Finally,
the success in conducting stochastic shape optimization of a bogie side frame with 41 random variables demonstrates
the power of the MPSS-DD-GPCE method in solving industrial-scale engineering design problems.

KEY WORDS: RDO, RBDO, statistical moment analysis, reliability analysis, GPCE, dimensionally
decomposed GPCE, design sensitivity analysis, score functions, stochastic optimization

1. INTRODUCTION

Robust design optimization (RDO) and reliability-based design optimization (RBDO), commonly referred to as
stochastic design optimization, are the predominant drivers for engineering design when confronted with uncertain-
ties stemming from material properties, manufacturing processes, and operating environments [1-8]. RDO strives to
improve the product quality by minimizing the objective function considering the mean and variance of a performance
function, leading to an insensitive design. On the other hand, RBDO—another major archetype of stochastic design
optimization—aims to achieve high reliability of an optimal design by satisfying the constraints at desired proba-
bility levels [9]. The objective function of RDO can be unified with the probabilistic constraints of RBDO, which
is regarded as an extension of RBDO or reliability-based robust design optimization. A growing number of studies
concerning RDO and RBDO are being published every year with real-world applications, such as those found in the
design of aerospace [10,11], automotive [12,13], civil [14], and electronic structures [15] or devices [16].

A stochastic design optimization, whether RDO or RBDO, is grounded on uncertainty quantification (UQ) analy-
sis of complex systems where an output function of interest is often defined algorithmically via finite-element analysis
(FEA). In this regard, RDO and RBDO easily become too expensive when UQ is performed via traditional Monte
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Carlo simulation (MCS). Therefore, numerous studies on RDO and RBDO have been conducted using multiple sur-
rogate approximations, including polynomial response surface [17], polynomial chaos expansion [18,19], polynomial
dimensional decomposition [8], support vector machine [20], artificial neural network [21], and Gaussian process
or Kriging [22,23], to name a few. Additionally, the works of Kouri and Shapiro [24], Kolvenbach et al. [25], and
Conti et al. [26] in solving stochastic optimization problems constrained by partial differential equations deserve at-
tention. Some of these methods, especially the expansion or decomposition methods, are based on the assumption
that the input random variables follow independent probability distributions. However, in reality, there exists signifi-
cant correlation or dependence among input variables. Indeed, neglecting these correlations or dependencies, whether
emanating from loads, material properties, or manufacturing variables, may produce inaccurate or unknowing risky
designs [9,27-29]. Having said so, there exist surrogate methods, prominently the Gaussian process models, which
can handle independent or dependent probability distributions.

Only a few works introduce polynomial chaos expansion [30-33] or its variants [34,35] for UQ analysis un-
der arbitrary, dependent input variables. More significantly, a generalized polynomial chaos expansion (GPCE) has
been successfully employed for the statistical moment and reliability analyses and their design sensitivity analy-
sis, leading to accurate and computationally efficient solutions of RDO and RBDO problems under dependent input
random variables; see Refs. [9,29]. There are also other surrogate-based design works [27,36]. However, for truly
high-dimensional systems, the RDO and RBDO methods require astronomically large numbers of basis functions,
succumbing to the curse of dimensionality. For practical applications, encountering a large number of input variables,
say, over 30, is not uncommon. Therefore, developments of new or appropriately modified computational methods,
capable of tackling high-dimensional RDO and RBDO problems above and beyond the foregoing works, are desir-
able.

This paper presents novelly restructured GPCE methods for high-dimensional stochastic design optimization
of complex engineering systems under dependent input random variables. The method entails (1) a dimensionally
decomposed GPCE (DD-GPCE) for statistical moment and reliability analyses of a high-dimensional stochastic re-
sponse; (2) a novel fusion of the DD-GPCE approximation and score functions for estimating the first-order design
sensitivities of the statistical moments and failure probability; and (3) a standard gradient-based optimization algo-
rithm, constructing single-step DD-GPCE and multipoint single-step DD-GPCE (MPSS-DD-GPCE) methods. Here,
the MPSS leverages the single-point method [7] and the multipoint approximation method [37] for obtaining accurate
optimal solutions with fewer evaluations of the surrogate.

The paper is organized as follows. Section 2 defines typical RDO and RBDO problems with their concomitant
mathematical statements. Section 3 introduces DD-GPCE for statistical moment and reliability analyses, exploiting a
three-step algorithm to construct a measure-consistent multivariate orthonormal polynomial basis and standard least-
squares regression to estimate the expansion coefficients. Section 4 presents the explicit form of the score function and
discloses new analytical sensitivity methods by embedding score functions with the DD-GPCE approximation. Sec-
tion 5 illustrates the single-step and multipoint single-step design process for solving RDO and RBDO problems and
explains how the DD-GPCE-based methods for the statistical moment, failure probability, and their design sensitiv-
ity analyses are coupled with a gradient-based optimization algorithm. Section 6 involves three numerical examples,
ranging from simple mathematical functions to an industrial-scale engineering problem, conducted to determine the
accuracy, convergence properties, and computational efforts of the proposed methods. In the end, Section 7 presents
the conclusions of this work.

2. ROBUST AND RELIABILITY-BASED DESIGN OPTIMIZATION

Let N, Ny, R, and R(T be the sets of positive integers, non-negative integers, real numbers, and non-negative real
numbers, respectively. For a positive integer N € N, denote by RY the N-dimensional real vector space. Then,
denote by AN C RY and AN C RY two bounded or unbounded domains.

Consider a measurable space (€24, Fq), where Qq is a sample space and Fq is a o-field on . Defined over

(Qa, Fa), let {Pq : Fq — [0,1]} be a family of probability measures where, for ¥ € Nand N € N, d =
(di,...,dy )T € D is an M-dimensional design vector with nonempty closed set D C RM. Here,
X = (Xp,...,.X0)T : (,Fq) — (AN, BY) is an AVN-valued input random vector with BY representing the
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Borel o-field on A%, describing the randomness arising in loads, material properties, and geometry of a complex
mechanical system. It is assumed that X has an absolutely continuous joint distribution function and a continuous
joint probability density function (PDF) fx(x;d) with a bounded or unbounded support AN C R¥. Therefore, the
probability law of X is completely defined by a family of the PDF { fx(x;d): xe RN de D} that is associated
with probability measures {Pq : d € D}, so that the probability triple (€4, Fq,Pq) of X depends on d. In theory,
a design variable dj, can be any distribution parameter or a statistic; however, here, dj, is limited to the mean of ran-
dom variable X. Many engineering problems related to manufacturing variables, as verified in Refs. [38—40], seek
optimal design solutions as the mean values of random variables. If the deterministic parameters are design variables,
the resulting problems require additional regularity conditions that describe the differentiability of performance func-
tions with respect to such deterministic parameters [41-44]. The associated sensitivity analysis required for design
optimization can be performed without much computational difficulty.

Let y;(X) := y1(X1,...,XnN), Il =0,1,..., K, represent a collection of (K + 1) real-valued, square-integrable,
measurable transformations on (£2q, Fq), describing performance functions of a complex system. It is assumed that
v (AN, BY) — (R, B) is not an explicit function of d, although g; implicitly depends on d via the probability law
of X. Also, let D = xg/[: 1 [dk. L, dp, r| be a closed rectangular subregion of RM where d, 1, and dj, 7 are the lower
and upper bounds, respectively, of the kth design variable dy.

Two mathematical formulations of each RDO and RBDO—one narrated with respect to the original input random
variables and the other stated with respect to transformed input random variables—are discussed in the rest of this
section. The formulations are equivalent because they lead to matching solutions to a general design optimization
problem. However, the latter is more advantageous than the former in light of DD-GPCE approximations, as will be
further explained in upcoming sections.

2.1 Original Formulation

Define an objective function ¢y : D — R and constraint functions ¢; : D — R, wherel =1,..., K and 1 < K < oo.

e RDO

The mathematical formulation of RDO in most engineering applications requires one to solve [29,45-47]

min  co(d):= G<Ed [yo(X)], /varq [yo(X)])7

deDCRM
subjectto  ¢;(d o/ varg [y (X)] — Eq[y: (X)] <0, n
l=1,.. K,
dk,L Sdk < dk,U7 k= 17"'aMa
where
Balu(X))i= [ w00 fx(xid)dx @
A
is the mean of y;(X) and
varg[ys(x)] 1= Ea[yi(X) — Ealy(X)]]” ()
is the variance of y;(X). Here, Eq and varg are the expectation and variance operators, respectively, with
respect to the probability measure Py or fx(x;d)dx of X; oy € ]R(J{ ,l =1,..., K, are non-negative, real-

valued constants associated with the probabilities of constraint satisfaction; and G(-, ) is an arbitrary function
determined by the choice of scalarization. A commonly used variant of the scalarized objective function is the
weighted sum of the first two moments [29,47], yielding

G (Balun(X)). +/varalyo(X])

Bl )] i) @
Ho )
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where w; € R(J{ and w, € R(J{ are two non-negative, real-valued weights such that w; +w, = 1; u§ € R\ {0}
and of € R \ {0} are two non-zero, real-valued scaling factors.

For the scalarization, equal weight values are usually selected, but they can be distinct and biased, depending
on the objective set forth by a designer. In contrast, the scaling factors are relatively arbitrary and chosen to
achieve better optimal results, for example, by normalizing the objective function.

¢ RBDO

The mathematical formulation of RBDO requires one to solve [2,8,9]

min d
deDCRM co(d),

subjectto  ¢;(d):=Pq[X € Qp;(d)] — p; <0,

&)

=1 K

geeey B

dep <dp <dpu, k=1,..., M,

where 1p;(d) is the /th failure domain, and 0 < p; < 1 is the /th target failure probability. The objective
function ¢y is commonly prescribed as a deterministic function of d, describing relevant system geometry,
such as area, volume, and mass. In contrast, the constraint functions ¢;, [ = 1,2, ..., K, are generally more
complicated than the objective function. Depending on the failure domain 27 ;, a component or a system fail-
ure probability can be envisioned. For component reliability analysis, the failure domain is often adequately
described by a single performance function y;(X), for instance, Qp; := {x: y;(x) < 0}, whereas multiple,
interdependent performance functions y; ;(x), ¢ = 1,2,. .., are required for system reliability analysis, lead-
ing, for example, to Qp; = U;{x : y;;(x) < 0} and Qp; := N;{x : y;,;(x) < 0} for series and parallel
systems, respectively. Here, U; and N; present a union and intersection, respectively, of the ¢th components.
In either case, the evaluation of the failure probability in Eq. (5) is fundamentally equivalent to calculating a
high-dimensional integral over a complex failure domain.

The evaluation of probabilistic constraints ¢;(d), I = 1,2,..., K, in RDO and RBDO requires calculating
statistical moments and probabilities of failure defined by the corresponding performance functions. A cou-
pling with a gradient-based optimization algorithm demands that the gradients of ¢;(d) also be formulated,
thus warranting design sensitivity analysis of moments and failure probability.

2.2 Alternative Formulation

Since the design variables are considered as the statistical means of some or all input random variables, a linear
transformation, such as the shifting or scaling of random variables, yields alternative formulations of RDO and RBDO.
To do so, let (X;,,...,X;,,)T be an M-dimensional subvector of X := (Xi,..., Xn§)T,1 < i < ... <ipy <N,
M < N, such that the mean of its kth component is the kth design variable, as follows: Eq[X;, ] = di, k= 1,..., M.

Shifting. Let Z := (Zy,..., Zn)T be an N-dimensional vector of new random variables obtained by shifting X as
Z=X+r, 6)
where r := (r,...,7n)T is an N-dimensional vector of deterministic variables. Denote by (Z;,, ..., Z;,,)T a sub-

vector of Z, where the 7;th new random variable Z;, corresponds to the i;th original random variable X;, . Define
gk := Eq[Z;, ] as the mean of the ith component of Z. Then, the mean of Z;, from the shifting transformation is

Ea[Z;,] = di + i, = g, @)

and the PDF of Z is
f2(z;8) = I fx(x;d) = fx(x;d) = fx(z —r;d), )
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supported on the domain of Z, say, AN C RY. Here, the absolute value of the determinant of the Jacobian matrix
is |J| = |det[0x/0z]| = 1 and the M-dimensional vector g := (g1,...,9gn)T has its kth component such that
(% :Ed[Z”],k = 1,...,M.

Scaling. Let Z := (Z;,..., Zn)7 be an N-dimensional vector of new random variables obtained by scaling X as
Z = diag[ry,...,rn]X, ©)
where r := (r,...,7n)T is an N-dimensional vector of deterministic variables. Denote by (Z;,, ..., Z;,,)T a sub-

vector of Z, where the 7;th new random variable Z;, corresponds to the i;th original random variable X, . Define
gk := Eq[Z;, ] as the mean of the i,th component of Z. Then, the mean of Z;, from the scaling transformation is

Ea[Z;,] = diri), = gr» (10)

and the PDF of Z is

f2(z;8) = I fx(x;d) = fx(x;d)

rT...TN

fx(diag[l/rh ey I/TN]Z;d),

1)

rr...TN

supported on the domain of Z, say, AN C RN, Here, the absolute value of the determinant of the Jacobian matrix is
|J| = |det[0x/0z]| = [1/(ry ...rN)| and the M-dimensional vector g := (gi, ..., gar)T has its kth component such
that g, = Ed[Zik], k=1,..., M.

Foreach! =1,2,..., K, define h;(Z;r) := y;(X) to be the generic output function of the new random variables
Z, where the relation between Z and X is obtained by either the shifting transformation in Eq. (6) or the scaling
transformation in Eq. (9). Correspondingly, a stochastic design optimization, whether RDO or RBDO, can be stated
as follows.

e RDO
In both shifting and scaling cases, the RDO formulation in Eq. (1) is reformulated, yielding [29]

min co(d) := G(Eg(d) [ho(Z; )], \/Vargay[ho(Z; r)]),

de DCRM
subject to  ¢;(d) := o/ Vargq)[hi(Z; )] — Eg(a)[hi(Z;1)] <0, (12)
I=1,...,K,

der <dp <dpu, k=1,...,M,

where
By hi(Z;1)] = / ha(z 1) fu(5 2) (13)
A
is the mean of h;(Z;r) and
varga [ (Z; v)] = Egga) [l (Z; ¥) — Egiay [l (Z;7)]] (14)

is the variance of h;(Z;r). Here, E4q) and varg(g) are the expectation and variance operators, respectively,
with respect to the probability measure fz(z; g)dz, which depends on g. For brevity, the subscript “g(d)” of
the expectation operator will be denoted by “g” in the rest of the paper.
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¢ RBDO
In both shifting and scaling cases, the RBDO formulation in Eq. (5) is reformulated, yielding [9]

i d
qmin co(d),

subject to  ¢;(d) 1= Py)[Z € Qpy(d)] — p <0,
15)
I=1,... K,

der <dp <dpu, k=1,...,M,

where Q5 (d) is the [th failure domain such that Qg := {z : h;(2;r) < 0} for component reliability analysis
of a performance function h;(z;r), and Qp; == U;{z : hi;(z; r) <0} or N;{z : hy;(z; r) < 0} if at least
two performance functions h; ;(z;r), ¢ = 1,2,. .., are involved in series or parallel systems, respectively, for
system reliability analysis.

The alternative formulations in Eqgs. (12) and (15) are the restatement of Eqs. (1) and (5), respectively, with
respect to the transformed input random variables Z. In these alternative formulations, the probability measure
of Z is locked during design iterations, thus sidestepping the need to recalculate measure-associated quantities.
For the remainder of the paper, the solutions of RDO and RBDO problems will be reported with respect to the
alternative formulation. Furthermore, X or Z and y; or h; will be referred to, interchangeably, as input random
vector and output function, respectively.

A gradient-based optimization solution to the RDO or RBDO problem in Eq. (12) or Eq. (15), respectively,
mandates adequate smoothness of objective and constraint functions. Therefore, these functions are assumed to be
differentiable with respect to design variables. Usually, the optimal solution of Egs. (12) and (15) can be determined
by a suitable programming method, such as the sequential linear or quadratic programming methods.

3. DIMENSIONALLY DECOMPOSED GENERALIZED POLYNOMIAL CHAOS EXPANSION

Given an input random vector X := (X, ..., Xn)7 or its transformed version Z := (Zy, ..., Zx)T with known PDF
fx(x;d) or fz(z; g), let h(Z; r) represent any one of the random output functions ho(Z;r) and hy(Z;r),l = 1,..., K,
in Egs. (12) and (15). Here, h(Z;r) is assumed to belong to a reasonably large class of random variables, such as the
Hilbert space:

L*(Qq, Fa, Pa):= {h : Qg — R: /hz(Z;r)dIF’d <oo}. (16)
Qa

This is analogous to saying that the real-valued function h(z; r) lives in the equivalent Hilbert space:

{h:AN—>R:
AN

h2(z; ) fz(z; g)dz < oo}. 17

When Z = (Z),...,Zn)T comprises statistically dependent random variables, the resultant probability mea-
sure, in general, is not a product type, meaning that the joint distribution of Z cannot be obtained strictly from its
marginal distributions. Consequently, measure-consistent multivariate orthonormal polynomialsinz = (zy,...,zn)T
cannot be built from an /NV-dimensional tensor product of measure-consistent univariate orthonormal polynomials. In
this case, a three-step algorithm founded on a whitening transformation of the monomial basis can be employed to
determine multivariate orthonormal polynomials consistent with an arbitrary, non-product-type probability measure
fz(z;g)dz of Z.

Appendix A briefly summarizes GPCE that expands any output random variable h(Z) € L*(Qq, F4,Pq) into
a Fourier series comprising measure-consistent multivariate orthonormal polynomials. The truncated GPCE in Ap-
pendix A is referred to as regular GPCE in this work.
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3.1 Construction of DD-GPCE

For truly high-dimensional problems, the aforementioned regular GPCE approximation requires an astronomically
large number of basis functions or coefficients, thus succumbing to the curse of dimensionality. However, in many
real-world applications, high-variate interaction effects among input variables are often negligible to the output func-
tion value of interest. In this section, a DD-GPCE approximation, reorganizing the basis functions of regular GPCE
in a dimensionwise manner, is introduced for the first time. The DD-GPCE has an ability to safely and effectively
select the basis functions or coefficients of the regular GPCE further in terms of degree of interaction among input
variables, thereby tackling the curse of dimensionality to some extent. The chosen multivariate orthonormal polyno-
mials that are consistent with an arbitrary, non-product-type probability measure fz(z; g)dz of Z are determined by
the three-step algorithm founded on a whitening transformation of the monomial basis as follows.

3.1.1 Monomial Basis

For N € N, denote by {1,..., N} an index set, so that w C {1,..., N} is a subset, including the empty set (), with
cardinality O < |u| < N. The complementary subset of « is denoted by —u := {1, ..., N}\u. For each m € Ny and
0 < S < N, consider the elements of the reduced multi-index set,

Tsm = {j = (i, 0-u) €N 1, e N Ju < j,[ <m, 0 < [u| < S}, Bl == di + - F Fips

which is arranged as j(l), . ,j(LN’S”"), j(l) = 0, according to a monomial order of choice. Here, (j,,,0_,) denotes
an N-dimensional multi-index whose ith component is j; if i« € u and 0 if ¢ ¢ wu. It is elementary to show that the
Js,m has cardinality Ly g, given by

S
N\ /m
LN,S,m = |~75,m‘ =1+ E (S) <8) < LN,mv (18)
s=1

where Ly ,, is the cardinality of the multi-index set 7,,, for the regular GPCE, which is also defined in Appendix A.
Here, Js,, represents a subset of .7,,,, determined from the chosen S relevant for the DD-GPCE. Denote by

(1) (LN s m)\ T
Ps . (z) = (Z'] R )

an Ly g ,-dimensional column vector where the elements are the monomials Ziforj e Js,m arranged in the afore-
mentioned order. For v C {1,..., N}, letz, := (2;,..., Zi|u\)T’ 1 <4y <...<ip < N, beasubvector of z. The
complementary subvector is defined by z_,, := z{; .. n}\u- Then, for j € T m,

7 = zJ;;O_uj*“ =z
Therefore, Ps ,, (z) is the monomial vector in z,, = (2, .., 2, )T of degree 0 < |u[ < S and |u| < |j, | < m.

3.1.2 Monomial Moment Matrix

When the input random variables 71, ..., Zy, instead of the real variables 21, ..., 2z, are inserted in the argument,
Ps . (Z) becomes a vector of random monomials. This leads to an Ly g, X Ly, s, monomial moment matrix of
Ps . (Z), defined as

Gsm == Eg[PSM(Z)Pg)m(Z)] ::/A Ps,m(z)Pgﬂm(z)fZ(z; g)dz, (19)

with its (p, ¢)th element

i(P) o 3(a) () i(a) () o 5(a)
GS,m,pq = Eg[ZJ ’ 7 ! ] = /AN A fZ(Z; g)dl = /A z H fZ(Z; g)dZ, p,q= 17 e 7LN,S,m- (20)
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When 0 < § < Nand S < m < oo, Gg,m pq represents the expectation of a product of two random monomials
i(p) i(@) . . . . .
7" and 73 , where J(p) and J(Q) are the pth and gth elements, respectively, of Js ,, in the aforementioned order.

Foru,v C{l,..., N} 0 < |u|,|v] < S, 27 =2y and 4" = z];,'“,yielding

GS’,m,pq = /A\ 5 ‘Z‘,id"l‘,i[}’fzuuu (Zqu;g)dzqua D,q = 17 .. ~7LN,S,m~ (2])

Here, z,u, = (2, - s Zi | M, 1 <ip < ... < iluuy| < N of a subvector of z. Therefore, the calculation of a
monomial moment matrix demands the |u Uv|-dimensional integration. When compared with the monomial moment
matrix G, in Eq. (A.4) from Appendix A, the merit in calculating G ., in Eq. (19) can be significant in terms of
the computational cost. For example, if N = 10, and m = 10, the calculation of Gg,, with S = 1 requires at
most two-dimensional integration with respect to a bivariate marginal distribution. In contrast, the calculation of G,,,
whose (p, ¢)th elements are

#(p) 4 5(a)
Gm,pq = [ 7 H .fZ(Z; g)dl, b,q= 17 B LN,ma (22)
A

requires at most ten-dimensional integration with respect to a decavariate joint distribution. Moreover, such high-
dimensional joint distribution in the latter is more difficult to obtain than its lower-dimensional or marginal version
or may not be possible to obtain when the type of probability distribution is arbitrary or unknown.

It is elementary to show that Gg ,, is symmetric and positive-definite. Therefore, G g ,, is invertible, facilitating
a whitening transformation, to be discussed next.

3.1.3 Whitening Transformation

Given0 < S < N, § < m < o0, and the previously chosen monomial order, denote by

Wsm(2:8) = (Yo (8), -, Vjnsm (2:8)T = (Vi(28), ..., Viy s, (28)T (23)

an L s, -dimensional column vector of orthonormal polynomials, which is consistent with the probability measure
fz(z; g)dz. Such polynomials can be generated from the monomial vector Pg ,,, and properties of the monomial mo-
ment matrix Gg . In Eq. (23), ¥;) (z;8),p = 1,..., Ly gm. represents the pth element of ¥g ,,(z; g) consistent
with the monomial order of choice, whereas, for simplicity, the subscript j(p ) has been replaced with p in the second
equality to denote the same element. To construct such orthonormal polynomials, recognize that the monomial mo-
ment matrix G g, as it is symmetric and positive-definite, is invertible. Therefore, for 0 < S < Nand S <m < oo,
there exists a nonsingular L x s »m X Ly, s, whitening matrix W ,, satisfying

WEnWem =G or We, Wil = G (24)
Thereafter, apply a whitening transformation to create the orthonormal polynomial vector,
‘I’S,m (Z; g) = WS,mPS,m (Z)a (25)

from the known monomial vector Pg ,,,(z). The whitening matrix W ,,, involved in Eq. (24) is not uniquely deter-
mined from the invertibility of Gg . Indeed, there are multiple options to select W ,,, all fulfilling the condition
described in Eq. (24).
A prominent choice of the whitening matrix involves Cholesky factorization [32], which leads to the following
selection of
Wsm = Qg Gsm = Qs QY- (26)

Here, Qg ,,, is an Ly, 5m X Ly s, real-valued lower-triangular matrix determined from the Cholesky factorization
of Gg,p,. Interested readers are encouraged to review the prior work [32] on additional choices for the whitening
matrix.
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It is important not to confuse the whitening transformation with measure transformations frequently used for
mapping dependent variables to independent ones. The latter transformations are generally nonlinear for non-Gaussian
variables. In contrast, the transformation introduced here is linear and maps monomials to orthonormal polynomials
for any input probability measure. As long as the monomial moment matrix Gg ,,, exists and can be constructed, as
discussed more in a forthcoming subsection, orthonormal polynomials consistent with a wide variety of dependent
variables can be created.

Finally, for 4,5 = 1,..., Ly sm., the ith and jth elements of the polynomial vector ¥g ,,(z; g) also have the
first- and second-order moments, satisfying Eqgs. (A.7) and (A.8), respectively.

Note that these orthonormal polynomials are described in terms of z, not x. This is mainly because g and hence
W, (z; g) are desired to be invariant when the design vector d is updated during design iterations. Readers interested
in further details should review prior works of the authors [9,29].

3.1.4 An lllustrative Example

From the general three-step algorithm just described, a specific yet clarifying example in generating orthonormal
polynomials for DD-GPCE and regular GPCE would be illuminating. For instance, consider two (N = 2) statistically
dependent zero-mean Gaussian random variables Z; and Z, with identical standard deviations 01 = 0, = 1/4 and
correlation coefficient p = 9/10.

Case 1: Set .S = 1 and m = 3 to generate at most univariate, third-order measure-consistent orthonormal polynomi-
alsinz = (21, 22)7 € R? of DD-GPCE.

From Eq. (18), Ly 3 =1+ Y., (2) () = 7. Hence, the reduced multi-index set and the monomial vector
are

jl,3 - {(070)7 (170)5 (07 1)7 (2?0)7 (07 2)7 (350)7 (073)}7
Pi3(z1,2) = (1,21, 22, 21, 23, 21, 53) 7.

Using Eqs. (19) and (26), the monomial moment matrix and whitening matrix are exactly calculated as

10 0 = = 0 0 T
0 % w O 0 % 5
0 &% 1w O 0  FG o 5%
Gi3= % 0 0 2%6 121,38})0 0 0 )
© 0 0 mim om0 0
0 5% #Hm O 0 % zomow
10 5% 3% 0 0 soRaw  we
! 0 0 0 0 0 0 7]
0 4 0 0 0 0 0
36 40
O1 ~ 15 VAT 0 0 0 0
w ~75 0 0 8v2 0 0 0
13— 19 2 2
) 0 0 —6484/ 555 8004/ 355 0 0
0 ~2v6 0 0 0 32/2 0
/ 6 6 / 6 /2
L 0 1458 468,559 _2000\/@ 0 0 —7776 468,559 32000 1,405,677
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Thereafter, Eq. (25) yields an orthonormal polynomial vector as

1

42:1
40z, 362

VI9 V19
Sﬁz%—i

—648 %43921 + 800 343922 V 3169
32,/34 - 262

7776 4686,559 2} + 1458 468?559 21+ 327000\/ 1,40%,677 z — 2000 468 155972

W 3(21,2) =

Case 2: In reference to Appendix A, set m = 3 to generate at most third-order measure-consistent orthonormal
polynomials in z = (21, 2,)T € R? of regular GPCE.

From Eq. (A.1), L3 = (2‘§3 ) = 10. Hence, the unreduced total-degree multi-index set and the monomial
vector are

I3 =1{(0,0),(1,0),(0,1),(2,0),(0,2),(3,0),(0,3),(1,1),(2, 1), (1,2) },
P3(21722) = (17Zlv2272%72’%72%7227212272%227212§)T'

Using Eqs. (A.4) and (A.5), the monomial moment matrix and whitening matrix are exactly calculated as

- 1 1 9 7
1 0 0 6 6 0 0 16 0 0
1 9 3 27 27 131
0 % 1 0 0 356 3560 0 3560 12,500
9 1 27 3 131 27
0 160 16 0 0 2560 256 0 12,300 2560
1 3 131 27
16 0 0 256 12,800 0 0 2560 0 0
1 131 3 27
16 0 0 12,800 256 0 0 2560 0 0
G; = 0 3 27 0 0 15 6237 0 27 159 |
56 2560 4096 2,048,000 8192 51,200
27 3 6237 15 159 27
0 2560 256 0 0 2,048,000 4096 0 51,200 8192
9 27 27 131
160 0 0 2560 2560 0 0 12,800 0 0
0 27 131 0 0 27 159 0 159 6237
2560 12,800 8192 51200 51,200 2,048,000
131 27 159 27 6237 159
0 12,800 2560 0 0 51,200 8192 0 2,048,000 51,200
M1 0 0 0 0 0 0 0 0 0 1
0 4 0 0 0 0 0 0 0 0
_ 36 40
0 71 5 0 0 0 0 0 0 0
1
-7 0 0 8v2 0 0 0 0 0 0
19
/% 0 0 —648,/ 525 8004/ 525 0 0 0 0 0
Wiz| © BN 0 0 0 32,2 0 0 0 0
2
0 1458 /55 —2000,/ 355 0 0 —7776,/ sesss 32,000\ /ate7 O 0 0
9 _ 14,400 _ 14,400 160181
181 0 0 19181 19181 0 0 19 0 0
131 380 5,212,800 2,592,000 3204/ 250
0 36 24,661 "~ /3,230,591 0 0 " 194/3,230,501 " 194/3,230,591 0 19”1 0
0 4, /131 540 0 0 259,200 288,000 0 809,280 6400/ F
L /2489 19/2489 19/2489 19/2489

Thereafter, Eq. (A.6) yields an orthonormal polynomial vector as
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1

4Z]
40z, _ 36z
Vo Vo
S\ﬁzf — %
—6481/ 72527 + 8001/ 55523 — 1/ 2%
32\/323 — V6
Wi (21, 22)= i

=776 468?559 5+ 1458\/ 468?559‘2] + 32’000\/ 1,40?,677 Z - 2000\/ 468?559 22

2 2
144 181 2 11,664z 160 181 14,400z, 9
—lay/ 160 sy — 4400z 9
w5 VI81zt + 0 10 VI8lz221 — S5 + i

_ 288 /24,661 ’% + 1,889, 5682, + 320 24 661 Z LS 24‘6612 _ 354294z 2,59100022 _ 20 /24,661 4 486,000z _ 486,000z
BCE 131 194/3,230,591 227 19 31 ~1 19+/3,230,591 19/3,230,591 1o\ T131 *2 19/3,230,591

51,840,000 iy n 13,183,171,2002]  809,280z2; + 6400 1812, 4, /131, _ 104,256,000/ 23 i 6,555,168,00023 + 50,5804/ 15 z2 + 94,3201/ L2,
468,559 468,559/2489 191/2489 19 %271 — 19 ~1 468,559 468,5591/2489 24,661 24,661

In Case 1, the truncation of § = 1 and m = 3 in DD-GPCE requires L, ; 3 = 7 basis functions, while in Case 2,
the truncation of m = 3 in regular GPCE mandates L, 3 = 10 basis functions. The basis functions of the former form
a subset of basis functions of the latter. More importantly, DD-GPCE involves fewer basis functions than regular
GPCE. The difference in the number of basis functions, while not meaningfully large for only two variables, can be
enormous as N increases. For example, when N = 20, S = 1, and m = 3, then the number of regular GPCE'’s basis
functions jumps to 1771, whereas the number of DD-GPCE’s basis functions stands at only 61. Similar examples can
be given for higher-variate (S < N) truncations when [V is large. Therefore, DD-GPCE is markedly more effective
than regular GPCE in dealing with high-dimensional UQ and design optimization problems, provided that a lower-
variate truncation is adequate for calculating the statistical properties of output performance functions. This is the
principal motivation behind pursuing the DD-GPCE approximation, which will be formally defined in the following
section.

Whether using the regular GPCE or DD-GPCE, it is elementary to verify that their orthonormal polynomials
satisfy the statistical properties described in Eqs. (A.7) and (A.8). In general, measure-consistent orthonormal poly-
nomials cannot be determined exactly for an arbitrary probability measure. In such a case, they can be obtained
numerically and hence approximately using a Gauss-quadrature method or sampling method. Readers interested in
further details should consult the prior work [33].

3.2 DD-GPCE Approximation

A DD-GPCE approximation, dictated by truncation parameters m < S < N and S < m < oo, retains the degree
of interaction among input variables less than or equal to .S and preserves polynomial orders less than or equal to m.
The result is an S-variate, mth-order DD-GPCE approximation

Ln,s,m
hsm(Z; 1) :E: Ci(r ;g) @27)
of h(Z;r), which contains expansion coefficients C; € R, i = 1,..., Ly g,m, defined by

Ci(r) := Bg[h(Z; ¥)U;(Z; g)]

(28)

= /_ h(z;x)V,;(z; 8) fz(z; g)dz

AN
Appendix B summarizes the estimation of expansion coefficients of DD-GPCE via standard least-squares (SLS).

The DD-GPCE presented here entails arbitrarily truncating the GPCE expansion. A more rational or automatic
approach to truncate the expansion based on the anisotropy, degree of interaction, and other features of objective and
constraint functions will require an adaptive approach, controlled by user-defined error thresholds. The amount of
work required to develop such adaptivity is nontrivial, outside the scope of the present work, and currently being
studied in the authors’ group.
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3.3 Stochastic Analysis

The S-variate, mth-order DD-GPCE approximation hg,.,(Z;r) can be viewed as an inexpensive surrogate of an
expensive-to-calculate function h(Z;r). Therefore, relevant statistical properties of h(Z;r), such as its first two mo-
ments and failure probability, can be estimated from those of hg ., (Z; r).

3.3.1 Statistical Moments
Applying the expectation operator on hg ., (Z; r) in Eq. (27) and recognizing Eq. (A.7), its mean
Eglhsm(Z;r)] = Ci(r) = Eg[h(Z; )] (29)

matches the exact mean of h(Z;r) for 0 < S < N and S < m < co. Enforcing the expectation operator again, this
time on (hg,m(Z;r) — Egay[hs,m(Z;r)])?, and using Eq. (A.8) results in the variance

LN,s,m
varg(hgm(Z:v)] = > Ci(r) = Ci(r)
= (30)

LN, s,m

Z C(r) < varg|h(Z;r)]

of hg.m(Z;r), where the equality before the last term operates when S = N and m — oo. Therefore, the second-
moment statistics of a DD-GPCE approximation are solely determined by an appropriately truncated set of expansion
coefficients.

3.3.2 Failure Probability

For reliability analysis of performance functions h(Z; r) in Section 2, the estimation of the failure probability can be
conducted using MCS of hg ,(Z;r), as follows.

Depending on component or system reliability analysis, let Qp g, 1= {z : hsm(z;¥) < 0} or Qp 5., == {z:
Uihi sm(z;r) <0} or {z : N;h; gm(z;1) < 0} be a failure set, as a result of the S-variate, the mth-order DD-GPCE
hs,m(Z;r) of h(Z;x) or hy 5,m(Z;x) of hi(Z;r). Then, the DD-GPCE estimate of the failure probability is

Py[Z € O] = / oy m0) fa(5g)de

=Fy|la,.,, (Z)] 3D

L
.1 !
= lim 7 lgl 1o sm zW:r),

L—oo

where z() is the Ith realization of Z, L is the sample size, and I, . is another indicator function such that

1, ze€ QFSW?
i ) s, 32
QF,s,m {0’ VA ¢ QF)S}m. ( )

Note that the MCS of DD-GPCE approximation in Eq. (31) should not be confused with crude MCS commonly used
for producing benchmark results. The crude MCS, which requires numerical calculations of & or h; for input samples
2z, 1 =1,..., L, can be expensive or even prohibitive, particularly when the sample size L needs to be very large
for estimating small failure probabilities. In contrast, the MCS embedded in the DD-GPCE approximation requires
evaluations of simple polynomial functions that describe hg ,, or h; g m,. Therefore, an arbitrarily large sample size
can be accommodated in the DD-GPCE approximation.
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The DD-GPCE presented here can be viewed as a reconfigured GPCE, where the basis set of multivariate or-
thonormal polynomials of regular GPCE has been reshuffled and pruned according to the chosen degree of interaction
and expansion order. However, DD-GPCE is not the same as the generalized polynomial dimensional decomposition
(GPDD) [35,48], where the basis set of multivariate orthogonal polynomials is also developed dimensionwise and
hierarchically but satisfying a few distinguishing properties of the generalized analysis-of-variance dimensional de-
composition [49]. A meticulous comparison between DD-GPCE and GPDD is beyond the scope of this current work.

4. DESIGN SENSITIVITY ANALYSIS

When solving RDO or RBDO problems with a gradient-based optimization algorithm, such as sequential linear
or quadratic programming, at least the first-order derivatives of the first two moments or the failure probability of
hi(Z;r),l =0,1,..., K, with respect to each design variable dy, k = 1,..., M, are demanded. In this section, an
analytical design sensitivity formulation, coupling the DD-GPCE approximation and score functions for dependent
input random variables, is presented. For such sensitivity analysis, the following regularity conditions are necessary:

1. The PDF fz(z;g) of Z is continuous. Also, the partial derivative 0 fz(z;g)/0gx, k = 1,..., M, exists and
is finite for all possible values of z and gi. Moreover, the failure probability associated with the performance
function h(Z;r) is a differentiable function of g.

2. There exists a Lebesgue integrable dominating function #(z) such that, forr =1,2andk = 1,..., M,
Ofz(z;8)
R (z;r)—————=| <t 33
(0) =% 75| < (o) (33)
and 5
Io, () 22258 | < ). (34)
" ody,

Note that the sensitivity formulation proposed in the following subsections is not limited to either independent or
dependent random variables.

4.1 Score Function

Suppose the first-order derivatives of the first two moments E4[h"(Z;r)], 7 = 1,2, and the failure probability
P, [Z €Q F] corresponding to a generic performance function h(Z;r) with respect to design variables di, k =
1,..., M, have to be computed in solving the RDO in Eq. (12) and RBDO in Eq. (15) by a gradient-based design
optimization algorithm. Let

Blo(zir)] = [ g(ain)falaig)da (9)
A
be a generic probabilistic response, where g(z;r) is either h"(z;r), r = 1,2, for statistical moment analysis or

I, (z;r) for reliability analysis. Then, applying the partial derivative with respect to dj to Eg[g(Z;r)] and invoking
the chain rule and the Lebesgue dominated convergence theorem [50], which allows one to interchange the differential
and integral operators, produces the first-order sensitivities

BT _ 0 [ i
ady, " ady, Jin 9(z; 1) f2(2; g)dz
_ Ogr O . .
B 8dk agk /AN g(Z, r)fZ(Zv g)dz (36)
COn [ OISR
= Bd, /ANg(z,r) D0r fz(z;8)dz, k=1,...,M,

where gy, /0d), = 1 or r;, for the shifting or scaling transformations, respectively. Define by
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0ln f(Z; g)
gk
the first-order score function [51,52] for the variable gi. Usually, the score functions can be determined numerically
or analytically.
Combining Egs. (36) and (37) results in

si(Z;8) == (37

OBylg(Zs)] _ %/ 9(z;r)sk(2; 8) fz(2; 8)dz
ad;. dy, Jiw (38)
39k

——E,[g(Z;r)sx(Z;8)], k=1,...,M.
~Ody,
According to Egs. (35) and (38), the generic probabilistic response and its sensitivities have both been formulated
as expectations of stochastic quantities with respect to the same probability measure, facilitating their concurrent
evaluations in a single stochastic simulation or analysis.

4.2 Sensitivity of Statistical Moments

Selecting g(z;r) to be h"(z;r) and then replacing h(z;r) with its S-variate mth-order DD-GPCE approximation
hs.m(z;r) in the last line of Eq. (38), the resultant approximation of the sensitivities of the rth-order moment is

obtained as
agk r

Sy (2 )5t (Zig)] = 52 [ 05 r)sn (i) falm e (9)

ddy

If s is square-integrable, then it can be expanded with respect to the same orthornormal basis functions. For 0 <
S’ < Nand S’ < m/ < oo, the result is S’-variate, m'th-order DD-GPCE

LN,S’,m’

sk m (Z:8) = Y Dri(g)Vi(Z:g), (40)
=2

with its expansion coefficients

Diie) = [ sulase)Wilaie) flmg)in, i = 2.,

and Dy, ;(g) = 0[29].
Finally, setting » = 1 and » = 2 in Eq. (39) yields the approximate sensitivity of the first and second moments

as follows:
me

OE [hSm Z I‘ 8gk
—_— = C;(r)Dy( 41
ddy, ~ ady, 4 Z 5 @1
and .
aEg[hZS’"L(Z r agk LNsmLNsm NS, l

G Tod X X X CalICu(r)Des

7.] 1 ’L‘> 1 23 =2

f[ ] (42)

respectively, where Ly, := min(L N,S,m> LN,/ m/ ). The approximate sensitivities in Egs. (41) and (42) converge to
OEg[h(Z; )] / Ody, and OEg[h*(Z; )] / Ody, respectively, when S = N, S’ = N, m — oo, and m’ — oo.

In Eq. (42), the expectations of products of three distinct multivariate orthonormal polynomials need to be calcu-
lated LN ,5,m X Ln,s,m X LN s m times. For an arbitrary dependent random vector Z, such expectations or integrals
cannot be calculated exactly. This is in contrast to independent variables where exact solutions exist for a few classi-
cal distributions [53,54]. Therefore, for dependent variables, they must be estimated, say, by numerical integration or
sampling methods. If the dimension is too high, then the sampling methods, such as MCS, QMCS, or Latin hypercube
sampling, can be used to estimate these integrals [29].
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4.3 Sensitivity of Failure Probability

Selecting g(z;r) to be I, (z;r) and then replacing h(z;r) with its S-variate, mth-order DD-GPCE approximation
hs,m(z;r) in the second line of Eq. (38), the resultant approximation of the sensitivities of the failure probability is
obtained as

99k - ( l
o e | (ZiX)onZi8)| = adk PRI g[lﬁmm Dsifasg)] )

where L is the sample size and z(!) is the [th realization of Z. Again, the sensitivity in Eq. (43) is easily and inex-
pensively determined by sampling elementary polynomial functions that describe hg ,, and known score function
Sk

It is important to clarify that the approximate sensitivities in Eqgs. (41)—(43) are obtained not by taking partial
derivatives of the approximate first two moments and failure probability in Egs. (29)—(31), respectively, with respect
to gi. Instead, it results from replacing h with hg ,,, in the expectation describing Eqs. (39) and (43).

The incorporation of score functions has the desirable property that it requires differentiating only the underlying
PDF fz(z; g). The resulting score functions can be easily and, in most cases, analytically determined. If the perfor-
mance function is not differentiable or discontinuous—for example, the indicator function that comes from reliability
analysis—the proposed method still allows evaluation of the sensitivity if the density function is differentiable. In
reality, the density function is often smoother than the performance function, and therefore the proposed sensitivity
methods are able to calculate sensitivities for a wide variety of complex mechanical systems.

5. PROPOSED METHOD FOR STOCHASTIC DESIGN OPTIMIZATION

The DD-GPCE approximations, described in the preceding sections, are intended to evaluate the objective and/or
constraint functions ¢;(d), [ = 0,..., K, and their design sensitivities from a single stochastic analysis. For the
RBDO problem in Eq. (15), its objective function is a simple and explicit deterministic mapping between design
variables and output, thus not demanding such a stochastic analysis. However, it is conceivable that the objective
function may also be defined as the first two moments of a response function of random variables whose distribution
parameters are specified by design variables, yielding reliability-based robust design optimization. For instance, let
ho(z;r) € L*(Qq, Fa,Pa) be a random output function of an input random vector z := (z1, ..., 2x)T with known
PDF f7z(z;g). Then, the objective function in Eq. (15) can be

Ea(e) [ho(Z; varg(g)|ho(Z; T
co(d) = 1w d(g)[HO( )] s d(gz)-[* of )}7
0 0

where Ega)[ho(Z;r)] = [;n ho(z;r) fz(z; g(d))dz; vargq)[hi(Z;r)] = Ega) [hi(Z; 1) — Eg(a [hz(Z;r)Hz; wy €
RS and wy € R{ are two non-negative, real-valued weights such that w; +w; = 1; and p € R\ {0} and
o; € Ry \ {0} are two non-zero, real-valued scaling factors.

A straightforward integration of stochastic analyses, design sensitivity analysis, and an appropriate optimization
algorithm is expected to yield a convergent solution of the RDO and RBDO problems in Eqgs. (12) and (15), respec-
tively. However, new stochastic analyses and design sensitivity analysis by recomputing the DD-GPCE coefficients
are demanded at every design iteration, thus easily becoming computationally intensive. To reduce such computa-
tional costs, the single-step and multipoint single-step processes will be introduced in the following subsections,
which were studied to be employed with the regular GPCE in the authors’ prequels [9,29].

5.1 Single-Step DD-GPCE

The single-step DD-GPCE is intended to solve all of the RDO and RBDO problems in Eqgs. (12) and (15) from a
single stochastic analysis by circumventing the demand to recalculate the DD-GPCE coefficients from a new input-
output data set in every design iteration. However, it is predicated on two important assumptions: (1) an S-variate,
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mth-order DD-GPCE approximation hg ., (Z;r) of h(Z;r) at the initial design is adequate for all possible designs;
and (2) the DD-GPCE coefficients for a new design, determined by recycling those for an old design, are acceptable
for their accuracy.

Under these two assumptions, let vectors r and r’ represent the old and new designs, respectively. Assume that
DD-GPCE coefficients C’Z—(r), t = 1,...,LN,3sm, for the old design r have been already estimated from the old
input-output data {z(V, h(z("); r)}£_,. Then, DD-GPCE coefficients C;(r'), i = 1,..., L g m, for the new design r’
are determined by adjusting the input data set {z(!)}%_, to the following one {z’ l)} L. as

2O — ¢ +r, in shifting,

() — 44
z diag (r:’ ey TN)Z(Z) in scaling. @4
T N

In the shifting case of Eq. (44), the new output value at the /th input sample is
h®;v) = y(a® ') = y(@® — ' +r—1)

(45)

=y(@V —r) = h(z":r),

where /() := z(!) — ¢’ + r is the adjusted /th input sample. In the scaling case of (44), the new output value at the /th

input sample is
1 1
h(z®;r') = y( diag|—, ..., — |z

1 1
= y(diag {, } di ag{ , fv]z(l)> (46)
1 TN 1 N
1
=y (diag {, ) } ’(l)) = h(Z®;r),
T TN
where ') := diag[r| /7], ..,rn /]2 is the adjusted Ith input sample. These adjustments are meant to construct

an input-output data set for new designs from DD-GPCE coefficients C;(r) for the old design, that is,

LN,s,m

h(z®:r') = h(z";r) Z Ci(r) Wiz g), 47)

where the last term indicates the S-variate, mth-order DD-GPCE approximation. Applying Eq. (47) to Eq. (B.3)
yields an estimate of the mean square residual,

LN,s,m LN,sm 2
&m = LZ Z CinWi(Vg) — Y Cir)¥i(ag) | (48)
i= i=1

the minimization of which by SLS produces the best estimates of DD-GPCE coefficients for the new design. Com-
pared with the minimization of ég ,, in Eq. (B.3), the calculation of new output data using the original performance
function 2(z"); ') is not demanded. Instead, the new output data are estimated by recycling the old coefficients and
calculating basis function values at the adjusted input data z’, as shown in Eq. (44). Subsequently, new stochastic
analyses and design sensitivity analysis, both employing S-variate, mth-order DD-GPCE approximations from the
initial design, are performed with little extra cost during all design iterations. Therefore, the single-step process holds
the potential to substantially reduce the computational effort in solving RDO and RBDO problems.

5.2 Multipoint Single-Step DD-GPCE

The single-step process, described in the foregoing section, is predicated on accurate DD-GPCE approximations
of stochastic responses, supplying surrogates of objective and/or constraint functions for the entire design space.
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Therefore, if the truncation parameters .S and m of DD-GPCE are demanded to be exceedingly large to capture a high-
dimensional nonlinear stochastic response, this global method may lead to a computationally taxing design process.
In such a case, employing DD-GPCE of only a low-variate, low-order approximation may be inappropriate, failing
to find a true optimal solution. An appealing substitute, referred to as the multipoint single-step DD-GPCE (MPSS-
DD-GPCE) method, asks for local implementations of the DD-GPCE approximation that are built on subregions of
the entire design space. According to this latter method, the original RDO or RBDO problem is swapped for a series
of local RDO or RBDO problems, respectively, where the objective and/or constraint functions in each local RDO
or RBDO problem represent their multipoint approximations [37]. The design solution of an individual local RDO
or RBDO problem, obtained by the single-step DD-GPCE method, constitutes the initial design for the next local
RDO or RBDO problem. Then, the move limits are updated, and the optimization is repeated iteratively until the
optimal solution is acquired. Due to the local approach, the MPSS-DD-GPCE method is expected to solve practical
engineering problems using low-degree DD-GPCE approximations.
For the rectangular design space

>< (i, dy,v] € RY (49)

of the RDO and RBDO problems described in Egs. (12) and (15), denote by ¢’ = 1,2,...,Q’ € N an index indicating
the ¢'th subregion of D with the initial design vector d(()q ) = (dgqo), cee dﬁ\z %)T. Given a sizing factor 0 < B,&q ) <1,
the domain of the ¢’th subregion is expressed by

y KT @) w@) g —dir) @) | @) (o — dir)
D(q) — >< |:dk;?0 _ qu %, dk?o + kq % gD QRIW7 q/ — 17...,Q/' (50)
k=1

According to the multipoint design process, the RDO and RBDO problems in Eqgs. (12) and (15) are transformed to
a succession of local RDO and RBDO problems for Q" subregions as follows.

e Local RDO problem.

For the ¢’th subregion, the local RDO problem requires one to solve

deDgII’i)nCRM (()qS)m(d) = G( [h(()qS)m(Z7 I‘)], \/Varg[ﬁ(g?s)m (Z7 I‘)]) ’

subject to cl(qs) d) :=oq Varg[h(Q) (Z;r)] — g[hl(fé? (Z;r)] <0, (51)
di, € [dgo) - I(gq )(dk,U —dr,1) /2, d(q )+ B(q )(dk,U —dk.1) /2},
I=1,... K, k=1,..., M,
where
By [0, (Z:1)] = / W% (2) f2 (2 8(d)) dz. (52)
AN
h(q ) = }Nl(q ) 7 h(q ) 7 2 53
varg | 1sm(Z; r)] = Eg| 1sm(Zsr) — Eg[hyg ( ;)] (53)

and c(q) m(d) and ﬁl(q;)m(Z'r) l =0,1,..., K, are the S-variate, mth-order DD-GPCE approximations
of ¢;(d) and hy(Z;r), respectively, for the ¢'th subregion. Also, d(q ) ,(Cq,)(dk v — di,r)/2 and d(q )

(55;1/) (dk, v — dg, 1) /2, known as the move limits, are the lower and upper bounds, respectively, of the subregion
D).

e Local RBDO problem.

For the ¢'th subregion, the local RBDO problem requires one to solve
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. ~(q")
min C, d
deD(a) CRM O,S,m( )

subject to El(?s?m(d) =Py[Z € le?&m(d)] —p <0, (54)

di € [dl(go) - I(cq )(dkyU —drr) /2, d;i‘fo) + Béq )(dk,U —d,1) /2],
I=1,. .. K: k=1, .. M,

where 5(()?:9),771’ (:25;17;) (d), and 5§?é?m(d), l =1,...,K, are the S-variate, mth-order DD-GPCE approxi-

.S m
mations of co(d), Qr,(d), and ¢;(d), respectively, for the ¢’th subregion problem, and é;?'l) 5.m(d) is defined
using the S-variate, mth-order DD-GPCE approximation ﬁl(q;)m (z;r) of hy(z), and d,(g(;) — ,(cq/) (di,u—dg,1)/2
and d,(c%) + ﬁéq/) (dk,u — dg,1) / 2, known as the move limits, are the lower and upper bounds, respectively, of
the subregion D),

The multipoint single-step process is schematically depicted in Fig. 1. Here, dgf") is the optimal design solution
obtained using the single-step process for the ¢’th local RDO and RBDO problems in Egs. (51) and (54). Setting the
initial design déq'H) to dgf’l) for the next local RDO and RBDO problems on D'+ the process is repeated until a
final, convergent solution d* that satisfies all constraint conditions is attained. The flow chart of the method, referred
to as MPSS-DD-GPCE, is presented in Figs. 2 and 3 with supplementary explanations of each step of the method, as
follows.

Step 1. Set termination criteria 0 < €1,€; < 1; set tolerances for sizing subregions 0 < €3, €4, €5, €6, €7 <

1; initialize size parameters 0 < B,(f/) <1, k=1,...,M, of D(Q'); and set an initial design vector
déq ) = (dg?o), cey dg\‘}I})). The initial design can be in either feasible or infeasible domains with respect to

the constraints.

Step 2. Transform the input random vector X to a new random vector Z such that Eq[Z;, | = gr = O0or 1, k =
1,..., M, by shifting or scaling, respectively, described in Section 2.2.

Step3. Select0 < S < N and S < m < oo of DD-GPCE approximations for performance functions h;(z;r),
l=0,1,...,K. Construct an Ly, g ,-dimensional vector of measure consistent orthonormal polynomials
W (Z; g) through the three-step algorithm, described in Section 3.2.

Contour of ¢

Contour of 6&39_’",’

d(()l) =dy

/ / Subregion

(51>0

FIG. 1: A schematic description of the multipoint single-step design process during )’ iterations to get the final optimum d*
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Step 1: Set ¢ = 1; Ini-
tialization; Set d” = do.

!

Step 2: Transform X to Z by the
shifting or scaling in Sec. 2.2.

!

( Step 3: Create orthonormal basis of Z )
L via the three-step algorithm in Sec. 3.2. )

s=1.
s , Y
Step 4: At d = d(()q ), generate S-variate,

mth-order DD-GPCE approxima-
tions for performance functions of Z.

l

Step 5: Compute stochastic quan-
tities and their design sensitivities
using DD-GPCE approximations.

l

Step 6: If ¢ > 1 and s = 1, size
the ¢'th subregion, following steps

=)

in Fig 3. Otherwise, skip Step 6.

l

Step 7: Is the
current design
feasible?

Step 8: Interpolate to
find a feasible design.

Step 9:
Converge?

Step 10: Solve the g'th local
RDO or RBDO problem by the
single-step DD-GPCE to ob-
tain a local optimal design d),

FIG. 2: A flow chart of the MPSS-DD-GPCE method

41

Step 4. Update the current design vector d, as follows. If ¢’ = 1, create input samples {z(")}\=L and {z(V}!=F,
where usually L > L, via the MCS or other experimental design method. Use the input samples to construct
an input-output data set {z(), h(z"); )}/, of sample size L > Ly s, (say, L/Ln.sm > 3). If ¢ > 1,
reuse the input samples to generate new input-output data sets {z(", h(z(;¥')}~_|. In every ¢’ step, use

SLS to estimate DD-GPCE coefficients with respect to ¥ 5 ,,, (2; g) using the new input-output data set.
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Start if ¢ > 1
and s = 1 in
Step 6 of Fig. 3.

Stelp 6-1:
H(’z S, (d)— (q")

m ﬂk —
-~ 1 = . v
&% @l er/ (v — dir)
< esuc?‘s)m(d)

@tep 6-2:
§%),.(d) -

| 1
& D))

> mHCz,s.m(d)\

St/ep 6-3: Is
d\% Y active?

—| Decrease [3,&"/)‘

Go to Step 7. ‘ ‘ Increase /ifcq,)A

FIG. 3: A flow chart of sizing the ¢’th subregion in the multipoint single-step design process

Step 5. In each iteration, conduct stochastic analyses and compute the sensitivity of the stochastic quantities with
respect to design variables di, £ = 1,..., M, both using S-variate, mth-order DD-GPCE approxima-
tions. For the design sensitivity analysis, if ¢’ = 1, construct an input-output data sets for score functions,

{20, 5, (z0; g)} - and {20, 51,2V g) Y2, k = 1,..., M, for statistical moment analysis and reliability
analysis, respectively. Otherwise, reuse the input-output data sets of ¢’ = 1. Finally, obtain the objective
and constraint function values and their gradients at d = d(()q ),

Step 6. If ¢ = 1 and s = 1, use the initial or default values of size parameters 0 < Béq/) <L k=1,...,M,in
Step 1. If ¢’ > 1 and s = 1, modify the size parameters according to three criteria: (1) the accuracy of DD-
GPCE approximations, (2) the active/inactive condition of subregion boundaries, and (3) the converging
condition of current designs. Otherwise, skip Step 6. The details of the three conditions mentioned earlier
are explained in the following steps.

Step 6-1. First condition: For any of | = 0,. .., K, if Hél(qs m(d(()q,)) ](qu,i)(d(q ) < e3|\é§qé)m(déq/))|\, increase
chq/) forallk = 1,..., M. Otherw1se, go to Step 6-2. One may need to control the enlargement rate,
depending on the problems at hand. For instance, set [3;;1 ) = 2-1/ d)) ~ "/, where the golden ratio
d ~ 1.618.

I EPEU. _ ) (qla) ald =1 qta) ) (qla)
Step 6-2. First condition: For any [ = 0,..., K, if [|¢;s,,,(dy ) — &5 ., (dg )| = €4HCZ s.m(dy 7)||, decrease

(5](;1/) forall k = 1,..., M. As an instance of the decrement rate, set [3 h (@) _ [3](C / ®, where the golden
ratio ¢ ~ 1.618. Otherwise, go to Step 6-3.

Step 6-3. Second condition: If Hd(q) (q _I)H < es or Hd(‘” d(ql_l)H < es, increase B;Cq/), k=1,...,M.

As an instance of the enlargement rate, set (:’)(q ) =02-1/ cb)(S(q ), where the golden ratio ¢ ~ 1.618.
Otherwise, go to Step 6-4.
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Step 6-4. Third condition: If | |d](€q(/)) - d;q(;_l) || < e, decrease B;Cq,), k=1,..., M. As an instance of the decrement
rate, set B,(Cq/) = B;Cq/_l)/cb, where the golden ratio ¢ ~ 1.618. Otherwise, go to Step 6-5.

Step 6-5. Move limit: If Bgﬂq”(dk,U —dg,1) < €7, set [3;;”) = €7/(dr,u — di.1). Otherwise, k = k + 1 and repeat
the process until the loop condition k£ < M is satisfied.

Step 7. If the current design d is not feasible, that is, at least one constraint condition is violated, go to Step 8.
Otherwise, set d to the current feasible design dgpq ), then go to Step 9.

Step 8. Interpolate between the current design d and the previous feasible design dgfl,*l). For instance, set d =

dgcq/_l)/d) + (1 — 1/¢)d, where the golden ratio ¢ ~ 1.618. If an initial design at ¢’ = 1 is infeasible,
interpolate it with upper or lower bounds of the design space, or another initial guess, depending on the
problems at hand.

Step 9. If any of the two termination conditions, such that (1) ||d§cq/) - d;qlfl) | < € and/or (2) ||E(()?;)’m(d}q/)) -
6(()?;)%((15‘9’71))” < €y, are met, terminate the optimization process and set the final optimal design as

d* = dgcql). Otherwise, go to Step 10.

Step 10. Solve the ¢’th local RDO or RBDO problem with the single-step process using a gradient-based algorithm,
such as sequential quadratic programming, to obtain a local optimal solution dfkq ). Then, increase the
subregion count as ¢’ = ¢’ + 1. Set d(()q ) = diqlfl) and go to Step 4.

The multipoint single-step DD-GPCE method will be referred to as the MPSS-DD-GPCE method for the remain-
der of this paper.

6. NUMERICAL EXAMPLES

Three numerical examples are presented to illustrate the proposed methods for stochastic design optimization: the
single-step DD-GPCE method for RDO in Example 1 and the MPSS-DD-GPCE methods in Examples 2 and 3 for
RDO and RBDO, respectively. The weighted sum approach was applied to the bi-objective problem in Example 2,
and single objective functions were employed in Examples 1 and 3. Readers interested in approaches other than the
weighted sum should consult the authors’ prior work [29]. The objective and constraint functions are either elementary
mathematical functions or derived from a space truss or a more complex, industrial-scale mechanical system. Both
size and shape design problems in the context of RDO and/or RBDO were solved. In all examples, the design variables
are the statistical means of some or all input random variables following dependent probability distributions. Each
component of the M -dimensional vector g is either zero or one, depending on the shifting or scaling transformations,
respectively, for input random variables.

In Examples 1 and 2, the proposed DD-GPCE-based solutions are compared with those obtained by the cor-
responding regular GPCE-based methods. For instance, in Example 1, the regular GPCE approximation was em-
ployed in the single-step process, resulting in the single-step regular GPCE method for RDO solutions. In Example 2,
the regular GPCE approximation was applied to the multipoint single-step process as well, then named the MPSS-
regular-GPCE method, for comparison with the proposed MPSS-DD-GPCE method. The multivariate orthonormal
polynomials consistent with the probability measure of z were determined using the three-step algorithms explained
in Section 3.1 or 3.2 for regular GPCE or DD-GPCE approximations, respectively. The monomial moment matrix,
either Gg ,,, in Eq. (19) or G, in Eq. (A.4), was estimated by QMCS with 5 x 106 samples together with the Sobol
sequence [33]. The truncation parameters 0 < .S < N and S < m < oo of DD-GPCE approximations and sample
sizes L and L depend on the examples and are listed in Table 1. Both DD-GPCE and regular GPCE coefficients were
estimated using SLS and QMCS-generated input-output data.

As a gradient-based optimization, the sequential quadratic programming was employed to solve stochastic de-
sign optimization problems in all examples. For both the MPSS-DD-GPCE and MPSS-regular-GPCE methods, the
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TABLE 1: The list of parameters (Examples 1-3): DD-GPCE and regular GPCE truncation parameters (.5,
m), sample sizes (L, L)

Methods S3 mP Le¢ L
Yo Y1 Sk | Yo U1 Sk | Yo U1 Sk
Example 1 (Case 1)
Single-step DD-GPCE | 1 1 118 1 1|51 9 30 —
Single-step regular GPCE | — — — 8 1 1135 9 30 —
Example 1 (Case 2)
Single-step DD-GPCE | 1 1 118 1 1|51 9 30 —
Single-step regular GPCE | — — — 8 1 1135 9 30 —
Yo Y1, 1=1-37 sp|yo yi, 1 =1-37 s | yo y,1=1-37 sy
Example 2
MPSS-DD-GPCE 1 1 112 2 1|63 63 110 —
1 1 113 3 1193 93 110 —
2 2 113 3 1 498 498 110 —
MPSS-regular-GPCE | — — —12 2 1 [198 198 110 —
— — —3 3 1 |858 858 110 —
Yo Y1 Sk | Yo Y1 Sk | Yo Y1 Sk
Example 3
MPSS-DD-GPCE 1 1 2|2 2 2 1249 249 9030 | 1,000,000

4The degree of interaction among input variables of the DD-GPCE approximation for an output or score functions.
®The total degree or order of the DD-GPCE approximation for an output or a score function.

¢ The sample size of the input-output data set used for estimating expansion coefficients of an output or score function.
4The sample size of input-output data set for reliability analysis.

tolerances and initial size parameter are as follows: €; = 1 X 1073, e, =1x 1073, e5 = 0.01, e4 = 0.07, 5 = 0.01,
€6 =0.5, 67 =005 €5 =1x10"% and ") = 0.3, k= 1,..., M, in Examples 2 and 3.

6.1 Example 1: Optimization of a Mathematical Function

Consider a mathematical problem involving a two-dimensional Gaussian random vector X = (X, X,)T with depen-
dent components, which have means Eq[X] = d; and E4q[X;] = d,. Given the design vector d = (d;,d;)T, the
objective of this example is to

. y/vara[yo(X)]
min  co(d) = varg, [y (X)]’

(55)
subject to ¢;(d) := 3+/varq[y1(X)] — Ea[y1(X)] <0,
Ogd, <10, 0§d2§10,
where
o (X) = (X1 —4)° +(X; =38+ (X, —5)*+ 10 (56)
and
y(X) =X+ X, — 645 57

are two random output functions of X. The initial design vector dy = (5,5)T. The approximate optimal solution is
denoted by d”~ = (d¥, d3)T.
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Two distinct cases of dependent variables, demonstrating the respective needs of the shifting (Case 1) and scaling
(Case 2) transformations, were examined as follows.

Case 1: The standard deviations of X; and X, are the same as 0.4. The correlation coefficient between X and X,
is 0.4.

Case 2: The standard deviations of X and X, are 0.15d; and 0.15d,, respectively. The correlation coefficient be-
tween X and X5 is —0.5.

A former version of this example, originally studied by the authors [29], was slightly revised by increasing the order
of 9o.

Table 2 summarizes the approximate optimal solutions for Cases 1 and 2, including the requisite numbers of
design iterations and function evaluations, by the single-step, univariate (S = 1) DD-GPCE methods. For comparison,
the approximate solutions by the single-step regular GPCE methods are included in the third column from the left in
Table 2. In addition, the exact solution, obtained from the exact analytical representations of objective and constraint
functions and their design sensitivities, are tabulated in the fourth column. In the second and third columns from the
left of Table 2, all DD-GPCE- or regular GPCE-based design methods deliver almost identical optimal solutions to
the exact one for Cases 1 and 2, all indicating that the constraint is active (¢c; =~ 0). This is possible as the selected
order (m = 8) of each DD-GPCE or regular GPCE approximation is the same as those of the original o and y;.
Furthermore, both y, and y, are effectively univariate functions with no interactions between random variables. Thus,
these DD-GPCE and regular GPCE approximations reproduce g and y; exactly. Furthermore, both y, and y; are

TABLE 2: Optimization results of mathematical formulations (Example 1)

Results Single-step DD-GPCE? Single-step regular GPCE" Exact®
Case 1 (shifting)
dy 3.0713 3.0713 3.0700
dy’ 5.3867 5.3867 5.3880
co(&*) 0.0016 0.0016 0.0016
3 (fl*) 2.7466 x 1077 2.7454 x 1077 —7.9936 x 10~ 1
varg« [yo(X)] 1.9014 1.9014 1.9014
No. of iterations 15 15 7
No. of yy evaluations 51 135 —
No. of y; evaluations 9 9 —
Case 2 (scaling)
ch* 3.2026 3.2026 3.2017
dy” 5.3434 5.3434 5.3449
co(fl*) 0.0009 0.0009 0.0009
c,(&*) —4.2406 x 107’ —4.2069 x 1077 2.3843 x 1077
varg- [yo(X)] 8.6253 8.6260 8.6031
No. of iterations 10 10 7
No. of yy evaluations 51 135 —
No. of y; evaluations 9 9 —

4 The univariate (S = 1), eighth-order (m = 8) DD-GPCE approximation was employed for yo, while the univariate (S = 1),
first-order (m = 1) DD-GPCE was employed for y;.

®The eighth-order (m = 8) regular GPCE approximation was employed for g, while the first-order (m = 1) regular GPCE was
employed for y;.

¢Exact closed forms of objective, constraint, and their gradient functions were used.
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effectively univariate functions with no interactions between random variables. Thus, these DD-GPCE and regular
GPCE approximations reproduce g and y; exactly.

While the accuracy of both versions of GPCE is excellent, it is important to examine their cost. According to
Table 2, the number of ¥, function evaluations for both Cases 1 and 2 required to attain optimal solutions is 51
when the single-step DD-GPCE is employed, which is almost one-third of the 135 function evaluations by the regular
GPCE counterpart. This is because the former method is capable of reducing or eliminating the degree of interaction
between input variables. In contrast, the latter method should carry all interaction terms of input variables as the order
(m) increases. Having said so, both DD-GPCE and regular GPCE approximations at an initial design are adequate
for the entire design space. In this case, their coefficients need to be calculated only once during all design iterations.
Finally, this example illustrates the merit of the propsed single-step DD-GPCE method over the regular GPCE method
in terms of computational efficiency for RDO.

6.2 Example 2: Optimal Sizing Design of a 36-Bar Space Truss Structure

In the second example, a linear-elastic 36-bar space truss, studied by [55], was modified to evaluate the proposed
MPSS-DD-GPCE method. As shown in Fig. 4, the truss is simply supported at nodes 1, 2, and 3, and is subjected to a
vertically downward concentrated force of 100,000 1b at node 10. The material is aluminum alloy, which has a Young’s
modulus of 107 psi and a mass density of 0.1 Ib/in®. There are 10 (N = 10) random variables X = (X1,...,Xi0)7,
representing random cross-sectional areas of 36 bars, as described in Table 3.

Modeled as correlated Gaussian random variables, for i, 5 = 1,..., 10, they have means Eq4[X;]; standard devi-
ations equal to 0.05Eq4[X;]; and correlation coefficients p;; = 0.5, ¢ # j. There are ten design variables, as follows:
di, = Eq[Xk], K = 1,...,10. The objective is to minimize the second-moment properties of the mass of the entire
truss structure, constrained by specifying the upper limits of the vertical displacement (v;9) at node 10 and axial
stresses 0,7 = 1,...,36, at all 36 bars, such that the limits are satisfied with 99.865% probability if the distribution
of each response y;(X), ! = 1,...,37, is standard Gaussian. More specifically, the RDO problem is defined to

FIG. 4: A 36-bar space truss structure
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TABLE 3: Ten random variables X;, ¢ = 1, ..., 10, for a 36-bar space
truss (Example 2)

Random variables®
(Cross section areas of bars) Bar element numbers

X 4,7

X, 5,8

X3 6,9

Xy 13-15

X5 1-3

Xe 25-30

X5 19-24, 31-36
X3 10, 16
Xy 11,17
Xio 12,18

#Each random variable represents the area of each bar element in the group.

E X X
min  co(d) = 0.5 a0 ¢ 5 Vvaralyo(X)]
deDCRM Eq, [yo(x)} Vardo[ 0(X)]
subject to ¢;(d) := 3+/varg[y;(X)] — Ealyi(X)] <0, (58)
l=1,...,37,
lin® <d, <35in’, k=1,...,10,
where
10
X) =013 LX, (59)
is the random mass of the truss with [;, 7 = 1, ..., 10, representing bar lengths and
15,000 — |oy(X)|, if I=1,...,36,
u(X) = louX)), 3 (60)
5— |’U1()(X)|7 if [ = 37,
representing 37 stochastic performance functions. The initial design is dy = (30,...,30)7 in®. The approximate
optimal solution is denoted by d~ = (d¥, ..., d,)T.

Table 4 summarizes the assorted results by the proposed MPSS-DD-GPCE and MPSS-regular-GPCE methods.
Three approximate optimal designs, presented in the second through fourth columns from the left in Table 4, were
obtained by the MPSS-DD-GPCE with the bivariate, third-order (S = 2, m = 3) approximation; univariate, third-
order (S = 1, m = 3) approximation; and univariate, second-order (S = 1, m = 2) approximation, respectively.
For univariate (S = 1) DD-GPCE approximations of the proposed method, the respective optimal designs converge
to those by the bivariate (S = 2) version as the number of the order (m) increases. For comparison, the optimization
results from the MPSS-regular-GPCE method using the third-order (m = 3) and the second-order (m = 2) approx-
imations for response and score functions, respectively, are tabulated in the fifth and sixth columns of Table 4. All
of these optimal designs, obtained by the proposed method and its regular GPCE counterpart, are very close to each
other, all satisfying the constraint conditions.

In each case of the design results, the same truncation parameters of the DD-GPCE method were used for objective and constraint functions. Since
the objective function is known as a linear function, as shown in Eq. (59), the univariate (S = 1), first-order (m = 1) DD-GPCE approximation
represents the objective function exactly. However, employing higher-variate, higher-order DD-GPCE methods provides solutions identical to
those obtained by its linear version for the objective function, which was verified in the case of S = 2 and m = 3.
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TABLE 4: Optimization results of a 36-bar space truss (Example 2)

max|c;(d))9, I = 1-37
Eg-[yo(X)]. Ib

Vvarg [yo(X)], Ib

No. of FEA

MPSS-DD-GPCE MPSS-regular-GPCE MCS/FD?
S=2,m=3 S=1,m=3 S=1,m=2 m=3 m=2 I’ II°
20.7079 20.7595 20.2586 20.6944 20.9581 21.8505 21.7180
12.2492 12.2663 12.4741 12.2327 12.2326 13.4408 13.3868
4.1362 4.1474 4.2172 4.1210 4.6160 3.3252 3.2726
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
29.3687 29.2770 29.3697 29.4036 29.6739 29.3458 29.6267
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
6.2517 6.2820 6.2479 6.2527 6.1061 6.0896 6.0700
1.0000 1.0000 1.1212 1.0000 1.0895 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3.9222 3.6877 4.1921 3.8985 4.2420 3.5590 3.5315
0.2256 0.2256 0.2259 0.2256 0.2259 0.2251 0.2247
—7.9566 x 1078 —1.6147 x 1077 —4.3102 x 107%{2.0730 x 10~7 —1.0992 x 107%|1.4095 x 1073 4.0499 x 10~°
1.0502 x 10° 1.0499 x 10° 1.0517 x 10° | 1.0501 x 10°  1.0527 x 10° | 1.0483 x 10° 1.0482 x 10°
4.1568 x 10° 4.1572 x 103 4.1607 x 10* | 4.1569 x 10°  4.1590 x 10> | 4.1457 x 10° 4.1464 x 10
8466 1209 1008 14,586 2970 157,500,000 96,600,000

4 Crude MCS with 10° sample size for statistical moment and design sensitivity analysis based on the central finite difference method.
® The initial design was set to the optimal solution of the MPSS-regular-GPCE (m = 3).
¢ The initial design was set to the optimal solution of the MPSS-regular-GPCE (m = 2).
4The maximum value among constraint values ¢; at the optimum d*, [ = 1,...,37.
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To seek further credibility for the accuracy of the RDO solutions by the proposed method, QMCS entailing 1x 10°
samples for stochastic moment analysis and design sensitivity analysis based on the central finite-difference method
was employed. However, due to its extensive computational cost, the RDO problem was solved for two different initial
designs assigned as two optimal designs by the MPSS-regular-GPCE methods, presented in the fifth and sixth columns
of Table 4, respectively. The resulting two reference solutions, denoted by MCS/FD I and II for the former and the
latter cases of the initial design, respectively, are listed in the seventh and eighth columns of Table 4. As expected,
these two reference solutions are very close to their initial designs. However, d} and dj, show some discrepancy
between those solutions obtained by the MPSS methods and MCS/FD. Since the sample size used for these reference
solutions is limited due to its high computational cost, such differences need to be further examined. Having said
so, these results still indicate that the optimal designs obtained by the MCSS-DD-GPCE methods are accurate and
reliable. Furthermore, when compared with hundreds of millions of FEA mandated to obtain reference solutions,
both the MPSS-DD-GPCE and MPSS-regular-GPCE methods achieve a dramatic reduction of computational cost,
requiring only 1008-14,586 FEA. More importantly, the proposed third-order (m = 3) MPSS-DD-GPCE methods
of the univariate (S = 1) and bivariate (S = 2) approximations require only 1209 and 8466 FEA to obtain the
converged optimal design, while the third-order (m = 3) regular GPCE counterpart demands 14,586 FEA. Therefore,
the proposed MPSS-DD-GPCE method is not only accurate but also more computationally efficient than the MPSS-
regular-GPCE method in solving this practical RDO problem.

6.3 Example 3: Shape Optimization of a Train Bogie Side Frame

The last example establishes the efficacy of the proposed MPSS-DD-GPCE method in designing an industrial-scale
mechanical component, known as a train bogie side frame. In rail vehicles, a bogie usually remains affixed to a
railway carriage or locomotive. As illustrated in Fig 5(a), a four-wheeled bogie provides support for the vehicle body
and is also used to provide its traction and braking. The bogie side frame is a chassis or framework that carries wheels
affixed to the train, serving as a modular subassembly of wheels and axles to provide some degree of cushioning
against severe stresses and shocks transmitted from the track during the train motion. Therefore, the bogie side frame
should be designed to possess adequate fatigue durability under multiple loading conditions, including longitudinal,
lateral, or vertical loading, and must sustain satisfactory performances during its expected service lifetime. However,
any uncertainties arising in material properties or manufacturing variables, if they exist, result in the randomness of
fatigue life. A traditional deterministic design optimization incorporating large safety factors may lead to increased
weight of a vehicle, causing a loss of fuel efficiency. Therefore, incorporating uncertainty in fatigue life under multiple
loading conditions is essential for creating a lightweight bogie side frame design.

Forty-one input random variables were introduced to model the randomness in manufacturing tolerances of the
bogie side frame geometry. Figure 5(b) depicts a computer-aided design (CAD) model of a bogie side frame with 41
random manufacturing variables Xy, k = 1,...,41, which are marked in the front and isometric views.

For k = 1,...,41, the random variables follow a multivariate lognormal distribution with the means Eq[Xy] and
standard deviations 0.02E4[X}]. These random variables are correlated with each other with a correlation coefficient
of 0.4. There are 41 design variables, such that d, = Eq[Xy], k = 1,...,41. The bogie side frame is made of cast
steel with the following deterministic material properties: elastic modulus £ = 203 GPa, Poisson’s ratio v = 0.3,
mass density p = 7800 kg/m?, fatigue strength coefficient 0} = 1332 MPa, fatigue ductility coefficient e’f = 0.375,
fatigue strength exponent b = —0.1085, and fatigue ductility exponent ¢ = —0.6354.

The stochastic performance of the bogie side frame was determined by fatigue durability analysis under a vertical
loading condition F' on the rectangular surface of the bottom side of the center holes of the frame, as shown in
Fig. 6(a). The loading condition is created when the train body with a mass of 500 tons is subject to a vertical
acceleration of 1 g by the gravity force or a vertical acceleration of 1.4 g by the gravity force and a vertical crush
load due to track-induced forces in the train motion. As a result, the bogie side frame experiences constant-amplitude
cyclic loads with the maximum and minimum load values as follows: 2452.5 kN (1 g) < F' <3433.5kN (1.4 g). The
essential boundary condition includes fixing the inner surface of the two arms in the three translational directions.
The fatigue durability analysis involved (1) calculating maximum principal strain and mean stress at a critical point;
and (2) calculating the fatigue crack-initiation life at the critical point from the Coffin-Manson-Morrow equation [56].
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Bogie side frame

FIG. 5: A train bogie side frame (Example 3); (a) a photo of the train bogie assembly; (b) a CAD model of the bogie side frame
(unit: mm)

The critical point is where the von Mises stress is the largest, provided that the maximum principal stress is tensile.
Such point location is nonstationary due to the random geometry; thus the critical point was identified from FEA at
each design iteration.

The objective is to minimize the mean mass of the bogie side frame by changing the geometry such that its fatigue
crack-initiation life V| (X) at the critical point under the cyclic loading condition F' must exceed a design threshold
of 10 million cycles with (1 — ®(—3)) x 100 = 99.865% probability, where ®(-) is the standard normal distribution
function. Mathematically, the RBDO for this problem is defined as

. _ Ealyo(X)]
2B = Fy X))
subject to ¢;(d) := Pqg[y1(X) < 0] — &(—3) <0,
dk:,L < dk < dk,Uv k= 17' .. 741,

(61)
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Boundary condition Boundary condition

i_. (a)
x

¥

l—' . (b)

FIG. 6: An FEA of the bogie side frame (Example 3); (a) vertical load and boundary conditions; (b) a tetrahedral mesh comprising
157,647 elements

where
wX) =p [ (62)
(X)
is the random mass of the bogie side frame, and
_ Ni(X)
() = tog | 150, (63)

is a stochastic performance function given by the log-scale normalized fatigue crack-initiation life for the bogie side
frame. The initial design do = (d; 0, . . ., da1,0)7; the upper and lower bounds of the design vectord = (d;,...,ds)7
mm € D C R*! are tabulated in Table 5. Figure 6(b) presents an FEA mesh for the bogie side frame at mean input
and initial design, which comprises 157,647 tetrahedral elements. The approximate optimal solution is denoted by
d =(d;,....d;)".

The MPSS-DD-GPCE method with the univariate, second-order (S = 1, m = 2) DD-GPCE approximation was
employed in solving this RBDO problem. The obtained optimal design solutions are tabulated in the third column
from the left in Table 5. At optimum, d; and d;yp—d;¢ almost reached their lower limits, and the rest of the design
variables are between their lower and upper limits, satisfying an almost active constraint ¢; ~ —5.06 x 10~*. The
mean mass of the optimal bogie side frame is 4.2169 tons, which presents a 50.39% reduction from the initial mean
mass of 8.5008 tons. To complete the design process, the requisite number of FEA is 4980.
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TABLE 5: Initial and optimal values, and bounds of design variables
for the bogie side frame problem (Example 3)

k di;p mm cil* mm d;,;, mm d;,y mm
1 230 95.04 80 250
2 600 437.76 400 600
3 40 30.04 30 50
4 50 81.37 50 100
5 500 332.97 330 500
6 50 94.28 50 100
7 230 146.89 80 250
8 600 448.10 400 600
9 40 46.62 30 50
10 900 850.84 850 900
11 900 752.84 750 900
12 900 801.72 800 900
13 900 851.16 850 900
14 900 752.79 750 900
15 900 801.69 800 900
16 900 851.80 850 900
17 20 19.58 10 30
18 20 18.33 10 50
19 20 12.20 10 30
20 20 27.04 10 50
21 300 170.60 100 300
22 300 203.32 100 300
23 200 160.09 100 200
24 300 150.33 100 300
25 200 122.40 100 200
26 300 181.59 100 300
27 300 230.82 100 300
28 200 125.28 100 200
29 300 113.75 100 300
30 200 104.39 100 200
31 200 186.15 100 200
32 40 37.62 20 40
33 40 39.58 20 40
34 200 193.06 100 200
35 40 30.81 20 40
36 40 33.92 20 40
37 30 39.43 30 40
38 30 38.44 30 40
39 400 301.69 300 400
40 30 41.85 30 60
41 30 39.05 30 60

Figures 7(a)-7(d) present the contour plots of the logarithm of the fatigue crack-initiation life at the mean shapes
of the bogie side frame for several design iterations (¢’), including the initial design and the optimal design. The
RBDO process started with a conservative initial design such that its minimum fatigue crack-initiation life of 2.11 x
10" cycles is much larger than the target value of 107 cycles. Through the proposed method with tolerances and

International Journal for Uncertainty Quantification



High-Dimensional Stochastic Design Optimization 53
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60 (a) Initial design
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(d) Iteration (¢") 11

FIG. 7: Contours of logarithmic fatigue crack-initiation life at the mean shapes of the bogie side frame (Example 3): (a) initial
design; (b) iteration (¢) 3; (c) iteration (q") 6; (d) iteration (¢’) 11 (optimum), obtained from the MPSS-DD-GPCE method with
the univariate, second-order (S = 1, m = 2) approximation

subregion size parameters appropriately selected, a total of 11 iterations (¢’) led to a final optimal design. Indeed, at
optimum, there is a considerable reduction in the overall volume of the bogie side frame, satisfying the target fatigue
crack-initiation life, as presented in Fig. 7(d). Consequently, the minimum weight and target reliability of the bogie
side frame were both achieved, a distinctive advantage of RBDO over traditional deterministic design optimization.
This culminating example confirms that the proposed RBDO method is capable of solving industrial-scale engineering
design problems using only a few thousand FEA.
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7. CONCLUSIONS

Two innovative reconfigurations of GPCE, leading to the single-step DD-GPCE method and the MPSS-DD-GPCE
method, were invented for high-dimensional stochastic design optimization of complex mechanical systems in the
presence of input random variables with arbitrary, dependent probability distributions. The methods feature the DD-
GPCE approximation for statistical moment and reliability analyses of a high-dimensional stochastic response; a
novel synthesis between DD-GPCE and score functions for estimating the first-order design sensitivities of the statis-
tical moments and failure probability; and a standard gradient-based optimization algorithm, constructing single-step
DD-GPCE and MPSS-DD-GPCE methods. In these new design methods, the multivariate orthonormal basis func-
tions are built consistent with the desired degree of interaction between input variables and the polynomial order,
thus helping to alleviate the curse of dimensionality to a substantial magnitude. In addition, when integrated with
score functions, the DD-GPCE approximation leads to analytical formulae for calculating the design sensitivities.
More significantly, the statistical moments, failure probability, and their respective design sensitivities are determined
concurrently from a single stochastic analysis or simulation.

Of the two design methods developed, the single-step DD-GPCE method, formulated globally on the entire
design space, is highly efficient due to recycling of the expansion coefficients. However, it may not remain accurate or
effective when confronted with overly large design spaces and/or high-dimensional stochastic responses. In contrast,
the MPSS-DD-GPCE method ushers in a local enforcement of DD-GPCE approximations, where the original RDO
or RBDO problem is converted into a series of concomitant local problems defined on subregions of the entire
design space. As a result, the method allows employing a low-degree DD-GPCE approximation to obtain a reliable
design solution even when a design space is large. Also, the latter method avoids the necessity of recomputing the
expansion coefficients by reprocessing the old expansion coefficients whenever possible, thus dramatically reducing
the computational cost. Therefore, the MPSS-DD-GPCE method is capable of solving practical engineering problems,
as demonstrated by shape design optimization of an industrial-scale bogie side frame with 41 random variables.
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APPENDIX A. GENERALIZED POLYNOMIAL CHAOS EXPANSION

Letj:= (ji,...,j~n) € NY¥ be an N-dimensional multi-index. Forz = (21, ...,2x)T € AN C RY, a monomial in

Ji

the real variables zi, ..., zy is the product z} = 2 ... zva with a total degree |j| = j; + ...+ jn. Consider for each
m € Ny the elements of the multi-index set

Im = {.] S N(J)v : |j‘ < m}7
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which is arranged as j(l)7 ceey j(L Nom) j(l) = 0, according to a monomial order of choice. The set 7,,, has cardinality
L, obtained as
m
N+1-1 N+m
L = = = . .
Nom = [T Z( l ) ( " > (A1)
1=0
Denote by
Uy (z:8) = (V1(2:8), ..., Vi, (28)T (A2)

an Ly ,,-dimensional vector of multivariate orthonormal polynomials that is consistent with the probability measure
fz(z; g)dz of Z. Tt is determined by the following three steps [29,33].

Step 1. Given m & Ny, create an Ly ,,-dimensional column vector
S(1) (LN m)
P.(z)=( ",...,7 )7, (A.3)

whose elements are the monomials z for |il < m arranged in the aforementioned order. It is referred to as
the monomial vector inz = (zy,...,zx)T7 of degree at most m.

Step 2. Construct an Ly ,,, X Ly ,,, monomial moment matrix of P,,,(Z), defined as
G = Eg[Pr(Z)P],(Z)]

(A.4)
= [ Pu@PL@ folas )i

For an arbitrary PDF fz(z;g), G,, cannot be determined exactly, but it can be estimated with good accuracy
by numerical integration or sampling methods [33].

Step 3. Select the Ly, X Ly, whitening matrix W, from the Cholesky decomposition of the monomial moment
matrix G,,, such that
WIW,, =G, or W,'W, T =G,,. (A.5)

m m

Then, employ the whitening transformation to generate multivariate orthonormal polynomials from

W,.(z;8) = W, P, (z). (A.6)

For an ith element W;(Z; g) of the polynomial vector ¥,,,(Z;g) = (V1(Z;g),..., VL., (Z;g))T, the first- and
second-order moments are [33]

Ey0i(Z:8)] = {(1) . Z;i (A7)
and
Eg[Vi(Z;8)¥;(Z; g)] = {é i (A8)
respectively.

According to Eqs. (A.7) and (A.8), any two distinct elements ¥,(z;g) and ¥;(z;g), ¢, = 1,..., Lnm, of
the polynomial vector W,,(z; g) are mutually orthonormal with respect to the probability measure of Z. Therefore,
the set {¥;(z;g),1 < i < Ly}, constructed from the elements of ¥, (z; g), is linearly independent. Moreover,
the set has cardinality Ly ,,, which matches the dimension of the polynomial space of degree at most m [33]. As
m — 00, Ly, — oo as well. In this case, the resulting set {¥;(z;g),1 < i < oo} comprises an infinite number
of basis functions. If the PDF of random input Z is compactly supported or is exponentially integrable [32], as
assumed here, then the set of random orthonormal polynomials {¥;(Z;g),1 < i < oo} forms an orthonormal basis
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of L*(Q4, Fa, Pa). Consequently, any output random variable h(Z;r) € L*(Qq, Fa,Pa) can be expanded as a Fourier
series comprising multivariate orthonormal polynomials in Z, referred to as the GPCE of *

h(Zir) ~ Y Ci(r)¥;(Z; g), (A.9)
i=1
where the expansion coefficients C; € R, 7 =1,. .. 0o, are defined as

Ci(r) == Eg[h(Z; 1)U, (Z; g)]

(A.10)
= / h(z;r)V;(z; ) fz(z; g)dz.

A

According to [33], the GPCE of h(Z;r) € L*(Qq, F4,P4) converges in mean-square, in probability, and in distribu-
tion.

The GPCE contains an infinite number of orthonormal polynomials or coefficients. In a practical setting, the
number must be finite, meaning that the GPCE must be truncated. However, there are multiple ways to perform a
truncation, such as those involving tensor-product, total-degree, and hyperbolic-cross index sets. In this work, the
truncation stemming from the total-degree index set is considered, as done in the previous work [33], which entails
retaining polynomial expansion orders less than or equal to m € Ny. The result is an mth-order GPCE approximation

LN,m

h(Zsx) = Y Ci(r)W;(Z; g) (A.11)

i=1

of h(Z;r), comprising Ly ,, basis functions or expansion coefficients defined by Eq. (A.10). According to Eq. (A.1),
the GPCE approximation in Eq. (A.11) is truncated according to a total-degree index set 7, .

Note that the GPCE in Egs. (A.9) and (A.11) should not be conflated with that of [57]. The GPCE, presented here,
is meant for an arbitrary dependent probability distribution of random input. In contrast, the existing PCE, whether
classical [58] or generalized [57], still needs independence of random input.

APPENDIX B. CALCULATION OF EXPANSION COEFFICIENTS

The definition of expansion coefficients C;(r), i = 1,..., Ly, s,m, of an S-variate, mth-order DD-GPCE approx-
imation hg ,,(Z;r) mandates various high-dimensional integrations. For an arbitrary function h and an arbitrary
probability distribution of random input Z, their exact evaluations from the definition alone are impractical. Numer-
ical integration entailing a multivariate, tensor-product Gauss-type quadrature rule is computationally intensive, if
not prohibitive, for high-dimensional (/N > 10, say) RDO and RBDO problems. To resolve this difficulty, standard
least-squares (SLS) was employed to estimate the coefficients. Here, only a brief summary of SLS is given for the
paper to be self-contained. For additional details, readers are advised to consult a related work [33].

From the known distribution of random input Z and an output function » : AN — R, consider an input-output
data set {z(V h(zV; r)}- | of size L € N, where r is decided from the knowledge of d and g, as discussed earlier.
The data set, often referred to as the experimental design, is generated by calculating the function h at each input data
2. Various sampling methods, namely, standard MCS, quasi-MCS (QMCS), and Latin hypercube sampling, can be
used to build the experimental design. Using the experimental design, the approximate DD-GPCE coefficients C; (r),
1=1,..., LN, g m, satisfy the linear system

Ac=b, (B.1)

where

THere, the symbol ~ represents equality in a weaker sense, such as equality in mean-square, but not necessarily pointwise, nor almost everywhere.
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Uy (z0;g) .o Vg, (20;e)
A= : : :

¥, (z<L> g) ... Up.. (zD);g) (B.2)
b:= (h(zV;r),... h(z'");r))T, and

c:=(Cy(r),..., CLN,s,m (r)T.

From Eq. (B.2), 0, (z(V); g) represents an estimate of ¥;(z"); r) due to approximations resulting from the construction
of the monomial moment matrix in Section 3.2. According to SLS, the best set of expansion coefficients is estimated
by minimizing the mean-squared residual

L LN,s
Z Z Civi(zV;g)| . (B.3)

"L
As aresult, the SLS solution C’i, t=1,..., LN, 3 m,is obtained from
ATAc = ATb, B4
where ¢ := (C|(r),...,Cry <, (1)) and the Ly s.n X Ly, s.m matrix ATA is referred to as the information or data

matrix. Finally, the inversion of the data matrix, if it is positive-definite, produces the best estimate,
¢=(ATA)"'ATb (B.5)

of the approximate DD-GPCE coefficients. When using SLS, the number of experimental data must be larger than the
number of coefficients, thatis, L > Ly g . Even if this condition is met, the experimental design must be carefully
chosen to ensure that the resulting matrix ATA is well-conditioned.
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