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A B S T R A C T

Spline chaos expansion, referred to as SCE, is a finite series representation of an output random variable
in terms of measure-consistent orthonormal splines in input random variables and deterministic coefficients.
This paper reports new results from an assessment of SCE’s approximation quality in calculating higher-order
moments, if they exist, of the output random variable. A novel mathematical proof is provided to demonstrate
that the moment of SCE of an arbitrary order converges to the exact moment for any degree of splines as
the largest element size decreases. Complementary numerical analyses have been conducted, producing results
consistent with theoretical findings. A collection of simple yet relevant examples is presented to grade the
approximation quality of SCE with that of the well-known polynomial chaos expansion (PCE). The results from
these examples indicate that higher-order moments calculated using SCE converge for all cases considered in
this study. In contrast, the moments of PCE of an order larger than two may or may not converge, depending
on the regularity of the output function or the probability measure of input random variables. Moreover, when
both SCE- and PCE-generated moments converge, the convergence rate of the former is markedly faster than
the latter in the presence of nonsmooth functions or unbounded domains of input random variables.
1. Introduction

Uncertainty quantification (UQ) is the science of quantitative char-
acterization and management of uncertainties in computational mod-
eling, simulation, and design of complex engineering systems [1,2].
There exists a myriad of UQ methods or expansions, namely, polyno-
mial chaos expansion (PCE) [3–5], polynomial dimensional decomposi-
tion, [6,7], stochastic collocation [8,9], and sparse-grid quadrature [10,
11], to name just four. These methods and a few others not explicitly
cited for brevity offer significant computational advantages over crude
Monte Carlo simulation (MCS), especially when the output variable
is globally smooth over the entire domain of input random variables.
More recently, the author’s group has delved into spline chaos ex-
pansion (SCE) [12], followed by spline dimensional decomposition
(SDD) [13], for deftly handling UQ problems featuring locally promi-
nent responses, including discontinuous or nonsmooth solutions. The
latter two methods prominently feature orthogonalized basis splines
(B-splines), albeit standard B-splines have been used as well [14].

Once an expansion of an output random variable of interest has
been generated, the natural progression is to develop explicit formu-
lae, if they exist, for calculating its second-moment properties. If the
expansion is founded on measure-consistent orthogonal bases, such
as those rooted in PCE and SCE, then closed-form expressions of the
mean and variance of the output variable can be obtained easily. While
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these second-moment properties are important, additional statistical
measures, such as skewness and kurtosis, are also valuable and may
be necessary in evaluating complex system performance. Therefore, in
general, the approximation quality and convergence properties of these
expansions in calculating not only the first- and second-order moments
but also higher-order moments should be examined thoroughly. Such
a need stems from the fact that the accuracy of an estimated proba-
bilistic characteristic of the output variable, often required in reliability
analysis and design, strongly depends on whether or not the higher-
order moment approximations converge or diverge with respect to the
expansion order or truncation parameters of a UQ method.

The focus of this study is the approximation quality of SCE in
calculating high-order moments of a random variable of interest. A
novel mathematical proof and complementary numerical analysis have
been reported. Therefore, compared with the past works on SCE, which
entail mostly second-moment analysis, the results of this paper are
new. The paper is organized as follows. Section 2 begins with math-
ematical preliminaries and requisite assumptions on input and output
random variables. Section 3 summarizes the construction of measure-
consistent orthonormalized B-splines, leading to the SCE approxima-
tion, and output moments. Section 4 describes new theoretical results
of error analysis, proving convergence of SCE-generated moments for
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an arbitrary order. Four illustrative numerical examples comprising
elementary mathematical functions of single or multiple input random
variable(s) with bounded or unbounded random domains are presented
in Section 5. Section 6 discusses limitations of the current study and
future work. Finally, conclusions are drawn in Section 7.

2. Random variables

Let N ∶= {1, 2,…}, N0 ∶= N ∪ {0}, and R ∶= (−∞,+∞) represent
he sets of positive integer (natural), non-negative integer, and real
umbers, respectively. Denote by [𝑎𝑘, 𝑏𝑘] a finite closed interval, where
𝑎𝑘, 𝑏𝑘 ∈ R, 𝑏𝑘 > 𝑎𝑘. Then, given 𝑁 ∈ N, A𝑁 = ×𝑁𝑘=1[𝑎𝑘, 𝑏𝑘] represents a
closed bounded domain of R𝑁 .

2.1. Input

Let (𝛺, ,P) be a probability space, where 𝛺 is a sample space
representing an abstract set of elementary events,  is a 𝜎-algebra
on 𝛺, and P ∶  → [0, 1] is a probability measure. Defined on
this probability space, consider an 𝑁-dimensional input random vector
𝐗 ∶= (𝑋1,… , 𝑋𝑁 )⊺, describing the statistical uncertainties in all sys-
tem parameters of a stochastic or UQ problem. Denote by 𝐹𝐗(𝐱) ∶=
(∩𝑁𝑖=1{𝑋𝑘 ≤ 𝑥𝑘}) the joint distribution function of 𝐗. The 𝑘th compo-
ent of 𝐗 is a random variable 𝑋𝑘, which has the marginal probability
istribution function 𝐹𝑋𝑘 (𝑥𝑘) ∶= P(𝑋𝑘 ≤ 𝑥𝑘). In the UQ community,

the input random variables are also known as basic random variables.
The non-zero, finite integer 𝑁 represents the number of input random
variables and is often referred to as the dimension of the stochastic or
UQ problem.

A set of assumptions on input random variables used or required by
SCE is as follows.

Assumption 1. The input random vector 𝐗 ∶= (𝑋1,… , 𝑋𝑁 )⊺ satisfies
all of the following conditions:

(1) All component random variables 𝑋𝑘, 𝑘 = 1,… , 𝑁 , are statisti-
cally independent, but not necessarily identical.

(2) Each input random variable 𝑋𝑘 is defined on a bounded interval
[𝑎𝑘, 𝑏𝑘] ⊂ R. Therefore, all moments of 𝑋𝑘 exist, that is, for all
𝑙 ∈ N0,

E
[

𝑋𝑙
𝑘
]

∶= ∫𝛺
𝑋𝑙
𝑘(𝜔)𝑑P(𝜔) <∞, (1)

where E is the expectation operator with respect to the proba-
bility measure P.

(3) Each input random variable 𝑋𝑘 has absolutely continuous
marginal probability distribution function 𝐹𝑋𝑘 (𝑥𝑘) and continu-
ous marginal probability density function 𝑓𝑋𝑘 (𝑥𝑘) ∶= 𝜕𝐹𝑋𝑘 (𝑥𝑘)∕
𝜕𝑥𝑘 with a bounded support [𝑎𝑘, 𝑏𝑘] ⊂ R. Consequently, with
Items (1) and (2) in mind, the joint probability distribution
function 𝐹𝐗(𝐱) and joint probability density function (PDF)
𝑓𝐗(𝐱) ∶= 𝜕𝑁𝐹𝐗(𝐱)∕𝜕𝑥1 ⋯ 𝜕𝑥𝑁 of 𝐗 are obtained from

𝐹𝐗(𝐱) =
𝑁
∏

𝑘=1
𝐹𝑋𝑘 (𝑥𝑘) and 𝑓𝐗(𝐱) =

𝑁
∏

𝑘=1
𝑓𝑋𝑘 (𝑥𝑘),

respectively, with a bounded support A𝑁 ⊂ R𝑁 of the density
function.

Assumption 1 establishes the existence of a relevant sequence of
orthogonal polynomials or splines consistent with the input probability
measure. The discrete distributions and dependent variables are not
dealt with in this paper.

Given the abstract probability space (𝛺, ,P) of 𝐗, there exists an
image probability space (A𝑁 ,𝑁 , 𝑓𝐗𝑑𝐱), where A𝑁 is the image of 𝛺
from the mapping 𝐗 ∶ 𝛺 → A𝑁 and 𝑁 ∶= (A𝑁 ) is the Borel 𝜎-
algebra on A𝑁 ⊂ R𝑁 . Relevant statements and objects in the abstract
probability space have obvious counterparts in the associated image
probability space. Both probability spaces will be exploited in this
2

paper.
2.2. Output

Given an input random vector 𝐗 ∶= (𝑋1,… , 𝑋𝑁 )⊺ ∶ (𝛺, ) →
(A𝑁 ,𝑁 ) with known PDF 𝑓𝐗(𝐱) on A𝑁 ⊂ R𝑁 , denote by 𝑦(𝐗) ∶=
𝑦(𝑋1,… , 𝑋𝑁 ) a real-valued, measurable transformation on (𝛺, ), de-
scribing a general output response of a stochastic system. A major
objective of UQ analysis is to estimate the statistical and probabilistic
characteristics of an output random variable 𝑌 = 𝑦(𝐗), including its
statistical moments and PDF, when the probability law of the input
random vector 𝐗 is prescribed. More often than not, 𝑌 is assumed to
belong to a class of random variables, such as the weighted 𝐿𝑝 space

𝐿𝑝(𝛺, ,P) ∶=

{

𝑌 ∶ 𝛺 → R ∶ ∫𝛺
|𝑦(𝐗(𝜔))|𝑝 dP(𝜔)

= ∫A𝑁
|𝑦(𝐱)|𝑝 𝑓𝐗(𝐱) d𝐱 <∞

}

, (2)

where 2 ≤ 𝑝 < ∞ is an integer and 𝑦(𝐱) is a member of the associated
𝐿𝑝(A𝑁 ,𝑁 , 𝑓𝐗𝑑𝐱) space of real-valued 𝑝-integrable functions. In other
words, 𝐿𝑝 is a class of all random variables on the probability space
(𝛺, ,P) that have at most finite 𝑝-order moments. This is a normed
linear space with the 𝐿𝑝 norm, defined by

‖𝑦(𝐗)‖𝐿𝑝(𝛺, ,P) ∶=
(

∫𝛺
|𝑦(𝐗(𝜔))|𝑝 dP(𝜔)

)1∕𝑝

=

(

∫A𝑁
|𝑦(𝐱)|𝑝 𝑓𝐗(𝐱) d𝐱

)1∕𝑝

. (3)

When 𝑝 = 2, the resultant 𝐿2 space becomes a Hilbert space endowed
with the inner product

(𝑦(𝐗), 𝑧(𝐗))𝐿2(𝛺, ,P) ∶= ∫𝛺
𝑦(𝐗(𝜔))𝑧(𝐗(𝜔)) dP(𝜔) = ∫A𝑁

𝑦(𝐱)𝑧(𝐱)𝑓𝐗(𝐱) d𝐱

(4)

and the associated norm

‖𝑦(𝐗)‖𝐿2(𝛺, ,P) ∶=
√

(𝑦(𝐗), 𝑦(𝐗))𝐿2(𝛺, ,P) =

√

∫𝛺
𝑦2(𝐗(𝜔)) dP(𝜔)

=

√

∫A𝑁
𝑦2(𝐱)𝑓𝐗(𝐱) d𝐱. (5)

It is elementary to show that 𝑦(𝐗(𝜔)) ∈ 𝐿𝑝(𝛺, ,P) if and only if
(𝐱) ∈ 𝐿𝑝(A𝑁 ,𝑁 , 𝑓𝐗𝑑𝐱). Therefore, convergence of random variables

and functions 𝑦(𝐱) from these two related 𝐿𝑝 spaces can be studied
nterchangeably.

. Spline chaos expansion

In this section, the SCE method exploiting measure-consistent B-
plines is described for solving a generic UQ problem subject to the as-
umptions listed in Section 2. The method is founded on Fourier-spline
xpansion of any 𝑝-integrable output function of interest.

.1. Standard univariate B-splines

Let 𝐱 = (𝑥1,… , 𝑥𝑁 ) be an arbitrary point in A𝑁 . For the coordinate
irection 𝑘, 𝑘 = 1,… , 𝑁 , define a non-negative integer 𝑚𝑘 ∈ N0 and a
ositive integer 𝑛𝑘 ≥ 𝑚𝑘+1, representing the degree or order2 and total
umber of basis functions, respectively. The rest of this section briefly
escribes necessary details of univariate B-splines.

For the coordinate direction 𝑘 = 1,… , 𝑁 , define a knot vector

𝑘 ∶= {𝜉𝑘,𝑖𝑘}
𝑛𝑘+𝑚𝑘+1
𝑖𝑘=1

= {𝑎𝑘 = 𝜉𝑘,1, 𝜉𝑘,2,… , 𝜉𝑘,𝑛𝑘+𝑚𝑘+1 = 𝑏𝑘} (6)

2 Degree and order are used interchangeably in this paper.
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on the interval [𝑎𝑘, 𝑏𝑘] by a non-decreasing sequence of real numbers,
where 𝜉𝑘,𝑖𝑘 is the 𝑖𝑘th knot with 𝑖𝑘 = 1, 2,… , 𝑛𝑘 +𝑚𝑘 + 1. Any knot may
ppear up to 𝑚𝑘 + 1 times in the sequence. Hence, the knot vector can
e rewritten as

𝝃𝑘 = {𝑎𝑘 =

𝑀𝑘,1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,1,… , 𝜁𝑘,1,

𝑀𝑘,2 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,2,… , 𝜁𝑘,2,… ,

𝑀𝑘,𝑟𝑘−1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,𝑟𝑘−1,… , 𝜁𝑘,𝑟𝑘−1,

𝑀𝑘,𝑟𝑘 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,𝑟𝑘 ,… , 𝜁𝑘,𝑟𝑘 = 𝑏𝑘},

𝑎𝑘 = 𝜁𝑘,1 < 𝜁𝑘,2 < ⋯ < 𝜁𝑘,𝑟𝑘−1 < 𝜁𝑘,𝑟𝑘 = 𝑏𝑘,

(7)

where 𝜁𝑘,𝑗𝑘 , 𝑗𝑘 = 1, 2,… , 𝑟𝑘, are 𝑟𝑘 unique knots, each of which has
multiplicity 1 ≤ 𝑀𝑘,𝑗𝑘 ≤ 𝑚𝑘 + 1. For more details, readers are referred
to Appendix A of this paper and Chapter 2 of the book by Cottrell
et al. [15]. A knot vector is called (𝑚𝑘 + 1)-open if the end knots have
multiplicities 𝑚𝑘 + 1. In this work, only (𝑚𝑘 + 1)-open knot vectors are
considered.

Denote by 𝐵𝑘𝑖𝑘 ,𝑚𝑘 ,𝝃𝑘 (𝑥𝑘) the 𝑖𝑘th univariate B-spline with degree 𝑚𝑘.
Given the knot vector 𝝃𝑘 and zero-degree basis functions, all higher-
order B-spline functions on [𝑎𝑘, 𝑏𝑘] are defined recursively, where 1 ≤
𝑘 ≤ 𝑁 , 1 ≤ 𝑖𝑘 ≤ 𝑛𝑘, and 1 ≤ 𝑚𝑘 < ∞. See Appendix A for an explicit
definition of 𝐵𝑘𝑖𝑘 ,𝑚𝑘 ,𝝃𝑘 (𝑥𝑘).

The B-splines encompass a number of mathematically desirable
properties, endowing superb approximating power to numerical meth-
ods. More precisely, they are [15,16]: (1) non-negative; (2) locally
supported on the interval [𝜉𝑘,𝑖𝑘 , 𝜉𝑘,𝑖𝑘+𝑚𝑘+1) for all 𝑖𝑘; (3) linearly in-
dependent; (4) committed to partition of unity; and (5) pointwise
𝐶∞-continuous everywhere except at the knots 𝜁𝑘,𝑗𝑘 of multiplicity
𝑀𝑘,𝑗𝑘 for all 𝑗𝑘, where they are 𝐶𝑝𝑘−𝑀𝑘,𝑗𝑘 -continuous, provided that
1 ≤𝑀𝑘,𝑗𝑘 < 𝑚𝑘 + 1.

3.2. Orthonormalized univariate B-splines

The aforementioned B-splines, although they form a basis of the
spline space of degree 𝑚𝑘 and knot vector 𝝃𝑘, are not necessarily
orthogonal with respect to the probability measure 𝑓𝑋𝑘 (𝑥𝑘) d𝑥𝑘 of 𝑋𝑘.
A three-step procedure, originally proposed in a past work [12], is
summarized here to generate their orthonormal version.

(1) Given a set of B-splines of degree 𝑚𝑘, create an auxiliary set by
replacing any element, arbitrarily chosen to be the first, with
one. Arrange the elements of the set into an 𝑛𝑘-dimensional
vector

𝐏𝑘(𝑥𝑘) ∶=
(

1, 𝐵𝑘2,𝑚𝑘 ,𝝃𝑘 (𝑥𝑘),… , 𝐵𝑘𝑛𝑘 ,𝑚𝑘 ,𝝃𝑘 (𝑥𝑘)
)⊺

(8)

comprising the auxiliary B-splines. The linear independence of
the auxiliary B-splines is preserved [12].

(2) Construct an 𝑛𝑘 × 𝑛𝑘 spline moment matrix

𝐆𝑘 ∶= E[𝐏𝑘(𝑋𝑘)𝐏
⊺
𝑘(𝑋𝑘)]. (9)

The matrix 𝐆𝑘 exists because 𝑋𝑘 has finite moments up to order
2𝑚𝑘, as stated in Assumption 1. Furthermore, it is symmetric and
positive-definite [12], ensuring the existence of a non-singular
𝑛𝑘 × 𝑛𝑘 whitening matrix 𝐖𝑘 such that

𝐖⊺
𝑘𝐖𝑘 = 𝐆−1

𝑘 . (10)

(3) Apply a whitening transformation to create a vector of orthonor-
malized B-splines

𝝍𝑘(𝑥𝑘) = 𝐖𝑘𝐏𝑘(𝑥𝑘), (11)

consisting of uncorrelated components

𝑘

3

𝜓𝑖𝑘 ,𝑚𝑘 ,𝝃𝑘 (𝑥𝑘), 𝑖𝑘 = 1,… , 𝑛𝑘, 𝑘 = 1,… , 𝑁.
Note that the invertibility of 𝐆𝑘 does not uniquely determine 𝐖𝑘.
Indeed, there are several ways to choose 𝐖𝑘 such that the condition
described in Step (2) is satisfied [12]. One prominent, relatively stable
option is to invoke the Cholesky factorization 𝐆𝑘 = 𝐐𝑘𝐐

⊺
𝑘, leading to

𝐖𝑘 = 𝐐−1
𝑘 , (12)

where 𝐐𝑘 is an 𝑛𝑘 × 𝑛𝑘 lower-triangular matrix. As a result, the trans-
formation in Step (3) becomes

𝝍𝑘(𝑥𝑘) = 𝐐−1
𝑘 𝐏𝑘(𝑥𝑘), (13)

here the orthonormal splines are obtained by linear combinations
f auxiliary B-splines. The rest of the paper will use the Cholesky
actorization.

Fig. 1(a) presents a set of six second-order (𝑚 = 2) B-spline
unctions on [−1, 1] with the uniformly spaced knot sequence 𝝃 =
−1,−1,−1,−0.5, 0, 0.5, 1, 1, 1}, obtained using the Cox-de Boor formula

from Appendix A. They are non-negative and locally supported but not
orthonormal with respect to the probability measure of the random
variable 𝑋 defined on [−1, 1]. When orthonormalized with respect
to the uniform, truncated Gaussian, and Beta probability measures
supported on [−1, 1], as reported in a prior work [13], the respective
basis functions are illustrated in Figs. 1(b), 1(c), and 1(d). The orthonor-
malized versions depend not only on the spacing of knots but also on
the probability measure of 𝑋. Note that after orthonormalization, the
non-constant B-splines are neither non-negative nor locally supported.
However, since the orthormalized B-splines are linear combinations of
standard B-splines, the former inherits all desirable properties of the
latter.

3.3. Multivariate orthonormalized basis

The input random vector 𝐗, as it comprises independent compo-
nents, is endowed with a product-type probability measure. There-
fore, multivariate orthonormalized B-splines in 𝑁 variables are read-
ily constructed from an 𝑁-dimensional tensor product of univariate
orthonormalized B-splines, resulting in SCE.

Define three multi-indices 𝐢 ∶= (𝑖1,… , 𝑖𝑁 ) ∈ N𝑁 , 𝐧 ∶= (𝑛1,… , 𝑛𝑁 ) ∈
𝑁 , and 𝐦 ∶= (𝑚1,… , 𝑚𝑁 ) ∈ N𝑁0 , representing the knot indices,
umbers of basis functions, and degrees of splines, respectively, in all

coordinate directions. Denote by 𝜩 ∶= {𝝃1,… , 𝝃𝑁} a family of all 𝑁
knot vectors. Associated with 𝐢, define an index set

𝐧 ∶=
{

𝐢 = (𝑖1,… , 𝑖𝑁 ) ∶ 1 ≤ 𝑖𝑘 ≤ 𝑛𝑘, 𝑘 = 1,… , 𝑁
}

⊂ N𝑁 (14)

with cardinality

|𝐧| =
𝑁
∏

𝑘=1
𝑛𝑘. (15)

For the coordinate direction 𝑘, define by

𝐼𝑘 ∶= 𝑟𝑘 − 1 (16)

the number of subintervals corresponding to the knot vector 𝝃𝑘 with
𝑟𝑘 distinct knots. Then the partition defined by the knot sequences 𝝃𝑘,
𝑘 = 1,… , 𝑁 , splits A𝑁 ∶= ×𝑁𝑘=1[𝑎𝑘, 𝑏𝑘] into smaller 𝑁-dimensional
rectangles
{

𝐱 = (𝑥1,… , 𝑥𝑁 ) ∶ 𝜁𝑘,𝑗𝑘 ≤ 𝑥𝑘 < 𝜁𝑘,𝑗𝑘+1, 𝑘 = 1,… , 𝑁
}

, 𝑗𝑘 = 1,… , 𝐼𝑘,

where 𝜁𝑘,𝑗𝑘 is the 𝑗𝑘th distinct knot in the coordinate direction 𝑘. A
mesh is defined by a partition of A𝑁 into such rectangular elements.
Define the largest element size in each coordinate direction 𝑘 by

ℎ𝑘 ∶= max
𝑗𝑘=1,…,𝐼𝑘

(

𝜁𝑘,𝑗𝑘+1 − 𝜁𝑘,𝑗𝑘
)

, 𝑘 = 1,… , 𝑁. (17)

Then, given the family of knot sequences 𝜩 = {𝝃1,… , 𝝃𝑁},

𝐡 ∶= (ℎ1,… , ℎ𝑁 ) and ℎ ∶= max ℎ𝑘 (18)

𝑘=1,…,𝑁
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Fig. 1. A set of B-splines associated with the knot sequence 𝝃 = {−1,−1,−1,−0.5, 0, 0.5, 1, 1, 1} and degree 𝑚 = 2 [13]; (a) non-orthonormal basis; (b) orthonormal basis for uniform
easure; (c) orthonormal basis for truncated Gaussian measure; (d) orthonormal basis for Beta measure.
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efine a vector of the largest element sizes in all 𝑁 coordinates and
he global element size, respectively, for the domain A𝑁 . As a result,
he multivariate orthonormalized B-splines in 𝐱 consistent with the
robability measure 𝑓𝐗(𝐱)𝑑𝐱 are obtained from the product

𝐢,𝐦,𝜩 (𝐱) ∶=
𝑁
∏

𝑘=1
𝜓𝑘𝑖𝑘 ,𝑚𝑘 ,𝝃𝑘 (𝑥𝑘), 𝐢 = (𝑖1,… , 𝑖𝑁 ) ∈ 𝐧. (19)

ssociated with 𝐦 = {𝑚1,… , 𝑚𝑁} and 𝜩 = {𝝃1,… , 𝝃𝑁}, define a
ensor-product spline space

𝐦,𝜩 ∶=
𝑁
⨂

𝑘=1
span

{

𝜓𝑘𝑖𝑘 ,𝑚𝑘 ,𝝃𝑘 (𝑥𝑘)
}

𝑖𝑘=1,…,𝑛𝑘
, (20)

here the symbol ⨂ stands for tensor product. It is elementary to show
hat {𝛹𝐢,𝐦,𝜩 (𝐱) ∶ 𝐢 ∈ 𝐧} is a basis of 𝐦,𝜩 .

When the input random variables 𝑋1,… , 𝑋𝑁 , instead of real vari-
bles 𝑥1,… , 𝑥𝑁 , are inserted in the argument, the multivariate splines
𝐢,𝐦,𝜩 (𝐗), 𝐢 ∈ 𝐧, become functions of input random variables. Their
econd-moment properties are [12]

[

𝛹𝐢,𝐦,𝜩 (𝐗)
]

=

{

1, 𝐢 = 𝟏 ∶= (1,… , 1),
0, 𝐢 ≠ 𝟏,

(21)

nd
[

𝛹𝐢,𝐦,𝜩 (𝐗)𝛹𝐣,𝐩,𝜩 (𝐗)
]

=

{

1, 𝐢 = 𝐣,
0, 𝐢 ≠ 𝐣.

(22)

.4. SCE approximation

Given a degree 𝐦 and a family of knot sequences 𝜩, recall that
𝛹𝐢,𝐦,𝜩 (𝐗) ∶ 𝐢 ∈ 𝐧} represents the set comprising multivariate or-
honormalized B-splines that is consistent with the probability measure
4

𝐗(𝐱)𝑑𝐱. Then, for any random variable 𝑦(𝐗) ∈ 𝐿𝑝(𝛺, ,P), 2 ≤ 𝑝 <
, there exists an orthogonal expansion in multivariate orthonormal

plines in 𝐗, referred to as an SCE approximation [12]

𝐦,𝜩 (𝐗) ∶=
∑

𝐢∈𝐧

𝐶𝐢,𝐦,𝜩𝛹𝐢,𝐦,𝜩 (𝐗) (23)

f 𝑦(𝐗), where the SCE expansion coefficients 𝐶𝐢,𝐦,𝜩 ∈ R, 𝐢 ∈ 𝐧, are
efined as

𝐢,𝐦,𝜩 ∶= E
[

𝑦(𝐗)𝛹𝐢,𝐦,𝜩 (𝐗)
]

∶= ∫A𝑁
𝑦(𝐱)𝛹𝐢,𝐦,𝜩 (𝐱)𝑓𝐗(𝐱)𝑑𝐱, 𝐢 ∈ 𝐧. (24)

trictly speaking, the SCE approximation in (23) was originally defined
or 𝑦(𝐗) ∈ 𝐿2(𝛺, ,P). Since the probability measure is a finite measure
nd 2 ≤ 𝑝 < ∞, 𝐿𝑝(𝛺, ,P) ⊆ 𝐿2(𝛺, ,P). Therefore, the SCE
pproximation is also applicable for 𝑦(𝐗) ∈ 𝐿𝑝(𝛺, ,P).

According to (23), the SCE of any random variable 𝑦(𝐗) ∈ 𝐿𝑝(𝛺, ,
) is an orthogonal projection onto the spline space 𝐦,𝜩 spanning the
et of measure-consistent multivariate orthonormalized B-splines.

.5. Output statistics and other properties

The SCE approximation 𝑦𝐦,𝜩 (𝐗) can be viewed as a surrogate of
(𝐗). Therefore, relevant probabilistic characteristics of 𝑦(𝐗), including
ts moments and PDF, if they exist, can be estimated from the statistical
roperties and probability law of this approximation.

Applying the expectation operator on 𝑦𝐦,𝜩 (𝐗) in (23) and recogniz-
ing (21), the mean of the SCE approximation

𝜇𝐦,𝜩 ∶= E
[

𝑦𝐦,𝜩 (𝐗)
]

= 𝐶𝟏,𝐦,𝜩 =∶ E [𝑦(𝐗)] =∶ 𝜇, 𝟏 = (1,… , 1), (25)

is independent of 𝐦 and 𝜩 and the same as the exact mean 𝜇 of
the original function, provided that the expansion coefficient 𝐶𝟏,𝐦,𝜩 is

determined exactly.
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Applying the expectation operator on [𝑦𝐦,𝜩 (𝐗) − 𝐶𝟏,𝐦,𝜩 ]2 and em-
ploying (21) and (22) results in the variance

𝜎2𝐦,𝜩 ∶= E
[

𝑦𝐦,𝜩 (𝐗) − 𝜇𝐦,𝜩
]2 =

∑

𝐢∈𝐧

𝐶2
𝐢,𝐦,𝜩 − 𝐶2

𝟏,𝐦,𝜩 ≤ E [𝑦(𝐗) − 𝜇]2 =∶ 𝜎2

(26)

f the SCE approximation, which is bounded by the exact variance 𝜎2
f the original function. Therefore, the second-moment properties of
he SCE approximation are solely determined by the relevant expan-
ion coefficients. The formulae of the second-moment properties for
he SCE approximation are the same as those reported for the PCE
pproximation, although the respective expansion coefficients involved
re not. The primary reason for this similarity is rooted in the use of
he orthonormal basis in both expansions.

For high-order moments of 𝑦(𝐗) and its SCE approximation 𝑦𝐦,𝜩 (𝐗),
define their respective skewnesses

𝛾 ∶= E

[

{

𝑦(𝐗) − 𝜇
𝜎

}3
]

, 𝛾𝐦,𝜩 ∶= E

[

{ 𝑦𝐦,𝜩 (𝐗) − 𝜇𝐦,𝜩
𝜎𝐦,𝜩

}3]

, (27)

and respective kurtoses

𝜅 ∶= E

[

{

𝑦(𝐗) − 𝜇
𝜎

}4
]

, 𝜅𝐦,𝜩 ∶= E

[

{ 𝑦𝐦,𝜩 (𝐗) − 𝜇𝐦,𝜩
𝜎𝐦,𝜩

}4]

. (28)

nfortunately, no simple formulae from the SCE approximation, as ob-
ained for the second-moment properties, can be derived for skewness
nd kurtosis. However, once the SCE approximation is constructed,
ny 𝑝-order moments can be calculated by analytical or numerical
ntegration or resampling 𝑦𝐦,𝜩 (𝐗) in conjunction with Monte Carlo or
uasi Monte Carlo simulation or others.

In the following section, the convergence of SCE-generated 𝑝-order
moments, including convergences in probability and in distribution,
will be demonstrated. In this case, the PDF of 𝑦(𝐗), if it exists, can also
be estimated economically by resampling 𝑦𝐦,𝜩 (𝐗), to be illustrated in
numerical examples.

3.6. Computational cost

The computational cost and complexity of SCE approximation with
respect to stochastic dimension 𝑁 can be judged by examining the cor-
responding numbers of basis functions involved. To do so, consider the
SCE approximation in (23), where the total number of basis functions
is

𝐿𝐦,𝜩 =
𝑁
∏

𝑘=1
𝑛𝑘. (29)

Here, the number of basis functions 𝑛𝑘 in the 𝑘th coordinate direction
can be ascertained from the length of selected knot sequence 𝝃𝑘 and
degree of splines 𝑚𝑘. If 𝑛𝑘 = 𝑛 for all 𝑘 = 1,… , 𝑁 , then 𝐿𝐦,𝜩 = (𝑛𝑁 ).

ence, given a fixed value of 𝑛, the computational effort with respect to
grows exponentially for the SCE approximation. Therefore, SCE like

CE also suffers from the curse of dimensionality. Having said this, SCE
s still useful for fundamental studies on low-dimensional UQ problems,
o be presented in Section 5.

. 𝑳𝒑 convergence of SCE

When using SCE or any other approximations it is important to
rovide estimates of the error measure. A convenient approach for such
rror analysis entails the modulus of smoothness of the function being
pproximated [17–19].
5

.1. Modulus of smoothness

Loosely speaking, the modulus of smoothness describes the struc-
ural properties of the function and, prominently, its smoothness. In
eneral, the smoother a function is, the faster it is approximated.
ormal definitions of the modulus of smoothness in each coordinate
irection 𝑘, followed by a tensorized version, are presented as follows.

Definition 2 (Schumaker [18]). For the interval [𝑎𝑘, 𝑏𝑘] in the coordi-
nate direction 𝑘, let 𝛼𝑘 ∈ N be a positive integer, 𝐿𝑝(𝑎𝑘, 𝑏𝑘), 2 ≤ 𝑝 <∞,
n unweighted normed space, and 0 < ℎ𝑘 ≤ (𝑏𝑘 − 𝑎𝑘)∕𝛼𝑘. Then the 𝛼𝑘th
odulus of smoothness of a function 𝑦(𝑥𝑘) ∈ 𝐿𝑝[𝑎𝑘, 𝑏𝑘] in the 𝐿𝑝-norm

s a function defined by

𝛼𝑘 (𝑦;ℎ𝑘)𝐿𝑝[𝑎𝑘 ,𝑏𝑘] ∶= sup
0≤𝑢𝑘≤ℎ𝑘

‖

‖

‖

𝛥𝛼𝑘𝑢𝑘 𝑦(𝑥𝑘)
‖

‖

‖𝐿𝑝[𝑎𝑘 ,𝑏𝑘−𝛼𝑘𝑢𝑘]
, ℎ𝑘 > 0, (30)

here

𝛼𝑘
𝑢𝑘 𝑦(𝑥𝑘) ∶=

𝛼𝑘
∑

𝑖=0
(−1)𝛼𝑘−𝑖

(

𝛼𝑘
𝑖

)

𝑦(𝑥𝑘 + 𝑖𝑢𝑘)

s the 𝛼𝑘th forward difference of 𝑦 at 𝑥𝑘 for any 0 ≤ 𝑢𝑘 ≤ ℎ𝑘.
Moreover, for a multi-index 𝜶 = (𝛼1,… , 𝛼𝑁 ) ∈ N𝑁 and any vector

≥ 𝟎, let

𝜶
𝐮 =

𝑁
∏

𝑘=1
𝛥𝛼𝑘𝑢𝑘 .

hen, given the unweighted normed space 𝐿𝑝
(

A𝑁
)

, the 𝜶-modulus of
moothness of a function 𝑦(𝐱) ∈ 𝐿𝑝(A𝑁 ) in the 𝐿𝑝-norm is the function
efined by

𝜶(𝑦;𝐡)𝐿𝑝(A𝑁 ) ∶= sup
𝟎≤𝐮≤𝐡

‖

‖

𝛥𝜶𝐮𝑦(𝐱)‖‖𝐿𝑝(A𝑁𝜶,𝐮) , 𝐡 > 𝟎, (31)

here
𝑁
𝜶,𝐮 =

{

𝐱 ∈ A𝑁 ∶ 𝐱 + 𝜶 ⊗ 𝐮 ∈ A𝑁
}

, 𝜶 ⊗ 𝐮 = (𝛼1𝑢1,… , 𝛼𝑁𝑢𝑁 ).

.2. Error analysis

A proposition and two lemmas are presented here to aid in devel-
pment of a mathematical proof for the convergence of SCE.

roposition 3. For 𝑦(𝐱) ∈ 𝐿𝑝(A𝑁 ,𝑁 , 𝑓𝐗𝑑𝐱), 2 ≤ 𝑝 < ∞, and the spline
pace 𝐦,𝜩 associated with degree 𝐦 and family of knot sequences 𝜩, the
rthogonal projection operator 𝑃𝐦,𝜩 ∶ 𝐿𝑝(A𝑁 ,𝑁 , 𝑓𝐗𝑑𝐱) → 𝐦,𝜩 , defined
y

𝐦,𝜩 𝑦 ∶=
∑

𝐢∈𝐧

𝐶𝐢,𝐦,𝜩𝛹𝐢,𝐦,𝜩 (𝐱), (32)

s linear and bounded.

The proof is omitted here as it is similar to the one presented for an
2 projection operator [12]. Interested readers should consult the prior
ork.

emma 4 (Hölder’s Inequality). Let 𝑠, 𝑡 ∈ [1,∞] such that 1∕𝑠 + 1∕𝑡 = 1.
hen for all measurable real-valued functions 𝑔, ℎ on A𝑁

𝑔ℎ‖𝐿1(A𝑁 ) ≤ ‖𝑔‖𝐿𝑠(A𝑁 ) ‖ℎ‖𝐿𝑡(A𝑁 ) , (33)

here ‖⋅‖𝐿𝑞 (A𝑁 ) is an 𝐿𝑞-norm of the unweighted normed space 𝐿𝑞
(

A𝑁
)

,
∈ [1,∞].

emma 5. Let

𝑝 (A𝑁
)

∶=
{

𝑦 ∶ A𝑁 → R ∶ |𝑦(𝐱)|𝑝𝑑𝐱 <∞
}

, 2 ≤ 𝑝 <∞, (34)
∫A𝑁



Probabilistic Engineering Mechanics 77 (2024) 103666S. Rahman

H

be an unweighted normed space of functions 𝑦(𝐱) with the standard norm

‖𝑦(𝐱)‖𝐿𝑝(A𝑁 ) ∶=
(

∫A𝑁
𝑦2(𝐱)d𝐱

)1∕𝑝
. (35)

Then, for any function 𝑦(𝐱) ∈ 𝐿𝑝(A𝑁 ,𝑁 , 𝑓𝐗𝑑𝐱) and 𝑓𝐗 ∈ 𝐿∞(A𝑁 ), it
holds that

‖𝑦(𝐱)‖𝐿𝑝(A𝑁 ,𝑁 ,𝑓𝐗𝑑𝐱) ≤ ‖𝑦(𝐱)‖𝐿𝑝(A𝑁 )

(

‖

‖

𝑓𝐗(𝐱)‖‖𝐿∞(A𝑁 )

)1∕𝑝
, (36)

where ‖ ⋅ ‖𝐿∞(A𝑁 ) is the infinity norm.

Proof. From definition,

‖𝑦(𝐱)‖𝑝
𝐿𝑝(A𝑁 ,𝑁 ,𝑓𝐗𝑑𝐱)

∶= ∫A𝑁 |𝑦(𝐱)|𝑝 𝑓𝐗(𝐱)𝑑𝐱
= ‖

‖

|𝑦(𝐱)|𝑝 𝑓𝐗(𝐱)‖‖𝐿1(A𝑁 )
≤ ‖

‖

|𝑦(𝐱)|𝑝‖
‖𝐿1(A𝑁 ) ⋅

‖

‖

𝑓𝐗(𝐱)‖‖𝐿∞(A𝑁 )
= ‖𝑦(𝐱)‖𝑝

𝐿𝑝(A𝑁 )
⋅ ‖
‖

𝑓𝐗(𝐱)‖‖𝐿∞(A𝑁 )

(37)

where the third line stems from Hölder’s inequality in Lemma 4 with
the selection of 𝑠 = 1 and 𝑡 = ∞. As ‖

‖

𝑓𝐗(𝐱)‖‖𝐿∞(A𝑁 ) is positive, applying
the 𝑝th-root on the last line of (37) yields the desired result. □

Theorem 6. For any 𝑦(𝐗) ∈ 𝐿𝑝(𝛺, ,P), 2 ≤ 𝑝 < ∞, and a chosen
degree 𝐦 and family of knot sequences 𝜩, let {𝑦𝐦,𝜩 (𝐗)}𝐡>𝟎, with 𝐡 =
(ℎ1,… , ℎ𝑁 ) representing the vector of largest element sizes, be a sequence
of SCE approximations such that 𝑦𝐦,𝜩 (𝐗) ∈ 𝐿𝑝(𝛺, ,P). Then the sequence
{𝑦𝐦,𝜩 (𝐗)}𝐡>𝟎 converges to 𝑦(𝐗) in the 𝑝th mean or 𝐿𝑝 sense, that is,

lim
𝐡→𝟎

E
[

|

|

𝑦(𝐗) − 𝑦𝐦,𝜩 (𝐗)||
𝑝] = 0.

Proof. According to Proposition 3, 𝑃𝐦,𝜩 is a linear, bounded oper-
ator. Therefore, with the tensor modulus of smoothness in mind, use
Theorem 12.8 of Schumaker’s book [18] to claim that the unweighted
𝐿𝑝-error from the SCE approximation is bounded by

‖

‖

𝑦(𝐱) − 𝑦𝐦,𝜩 (𝐱)‖‖𝐿𝑝(A𝑁 ) ≤ 𝐶 ′𝜔𝐦+𝟏(𝑦;𝐡)𝐿𝑝(A𝑁 ), 2 ≤ 𝑝 <∞, (38)

where 𝐦+𝟏 = (𝑚1+1,… , 𝑚𝑁+1), 𝜔𝐦+𝟏(𝑦;𝐡)𝐿𝑝(A𝑁 ) is the (𝐦+𝟏)-modulus
of smoothness of 𝑦(𝐱), and 𝐶 ′ is a constant that depends only on 𝐦, 𝑝,
and 𝑁 but not on the function 𝑦. Combining (37) from Lemma 5 and
(38) produces

‖

‖

𝑦(𝐱) − 𝑦𝐦,𝜩 (𝐱)‖‖𝐿𝑝(A𝑁 ,𝑁 ,𝑓𝐗𝑑𝐱) ≤ 𝐶𝜔𝐦+𝟏(𝑦;𝐡)𝐿𝑝(A𝑁 ), (39)

as the weighted 𝐿𝑝-error from the SCE approximation, where

𝐶 ∶= 𝐶 ′
(

‖

‖

𝑓𝐗(𝐱)‖‖𝐿∞(A𝑁 )

)1∕𝑝

is another constant that depends on 𝐦, 𝑝,𝑁 , and now also 𝑓𝐗. However,
it is still independent of the function 𝑦.

Eq. (39) describes an 𝐿𝑝 distance of a function 𝑦 to the spline space
𝐦,𝜩 in terms of the modulus of smoothness of 𝑦. From Definition 2, as
the element size ℎ𝑘 approaches zero, so does 0 ≤ 𝑢𝑘 ≤ ℎ𝑘. Taking the
limit 𝑢𝑘 → 0 inside the integral of the 𝐿𝑝 norm, which is permissible
for a finite interval and uniformly convergent integrand, the forward
difference

lim
𝑢𝑘→0

𝛥𝛼𝑘𝑢𝑘 𝑦(𝑥𝑘) = 𝑦(𝑥𝑘)
𝛼𝑘
∑

𝑖=0
(−1)𝛼𝑘−𝑖

(

𝛼𝑘
𝑖

)

= 0,

as the sum vanishes for any 𝛼𝑘 ∈ N. Consequently, the coordinate
modulus of smoothness

𝜔𝛼𝑘 (𝑦;ℎ𝑘)𝐿𝑝[𝑎𝑘 ,𝑏𝑘] → 0 as ℎ𝑘 → 0 ∀𝛼𝑘 ∈ N.

Following similar considerations, the tensor modulus of smoothness

𝜔𝜶(𝑦;𝐡)𝐿𝑝(A𝑁 ) → 0 as 𝐡 → 𝟎 ∀𝜶 ∈ N𝑁 .

Therefore, the weighted 𝐿𝑝-error

lim ‖𝑦(𝐱) − 𝑦 (𝐱)‖ = 0, (40)
6

𝐡→𝟎 ‖ 𝐦,𝜩 ‖𝐿𝑝(A𝑁 ,𝑁 ,𝑓𝐗𝑑𝐱) f
thus proving the 𝐿𝑝 convergence of 𝑦𝐦,𝜩 (𝐗) to 𝑦(𝐗) for any degree
𝐦 ∈ N𝑁0 and 2 ≤ 𝑝 < ∞. Moreover, the smoother the function 𝑦 is,
the faster its modulus or the error vanishes and vice versa. □

4.3. A few remarks

From Theorem 6, the 𝐿𝑝 convergence implies convergence in 𝐿𝑞 ,
where 0 < 𝑞 ≤ 𝑝. Therefore, the SCE approximation converges in at
most the 𝑝𝑡ℎ mean. In other words, all moments of 𝑦𝐦,𝜩 (𝐗) of order up
to and including 𝑝 converge to the respective moments of 𝑦(𝐗), if they
exist.

In addition, as the SCE approximation converges in the 𝑝th mean
(2 ≤ 𝑝 <∞), it does so in probability. Moreover, as the expansion con-
verges in probability, it also converges in distribution. This is because
an 𝐿𝑝 convergence, where 𝑝 ≥ 2, is stronger than the convergence in
probability or in distribution.

5. Numerical examples

Four sets of numerical examples describing one-, two-, and four-
dimensional output functions of input random variables are presented.
While these functions are elementary, they are relevant, if not ade-
quate, for conducting higher-order moment analysis. In all examples,
the random input 𝐗 fulfills Assumption 1, and the output function
𝑦(𝐗) is in 𝐿𝑝(𝛺, ,P), 𝑝 ≥ 2. Therefore, all second- and higher-order
moments studied exist and are finite. The chief objective is to evaluate
the power of the SCE approximation in computing various statistical
moments and/or PDF of 𝑦(𝐗) and contrast the SCE results with those
obtained from the existing PCE approximation.

The coordinate degrees for the SCE approximation in the third and
fourth examples are identical, that is, 𝑚1 = 𝑚2 = 𝑚3 = 𝑚4 = 𝑚 (say).
So are the knot sequences for SCE, that is, 𝝃1 = 𝝃2 = 𝝃3 = 𝝃4 = 𝝃
(say) with a uniform mesh of element sizes ℎ1 = ℎ2 = ℎ3 = ℎ4 = ℎ.
In all three examples, the spline degree 𝑚 and/or the element size ℎ
were varied as appropriate. The basis functions for an 𝑚th-order PCE
approximation are orthonormal Legendre (Examples 1, 3, and 4) or
Hermite (Example 2) polynomials in input variables, whereas the basis
functions for an SCE approximation, given a degree 𝑚 and an element
size ℎ, are orthonormalized B-splines generated using the Cholesky fac-
torization of the spline moment matrix. From the uniform or Gaussian
distribution, the spline moment matrix was constructed analytically. All
knot sequences are (𝑚+1)-open and consist of uniformly spaced distinct
knots with even and/or odd numbers of elements, depending on the
example.

For a given function 𝑦(𝐗), denote by 𝑦𝑚,ℎ(𝐗) ∶= 𝑦𝐦,𝜩 (𝐗) an SCE
approximation with degree 𝐦, family of knot vectors 𝜩, and largest
element size ℎ, and by 𝑦𝑚(𝐗) an 𝑚th-order PCE approximation with
the tensor-product truncation. The tensor-product truncation of PCE
is consistent with the tensor-product truncation of SCE, ensuring a
fair comparison between the two approximations. Let 𝜎2𝑚,ℎ ∶= 𝜎𝐦,𝜩 ,
𝛾𝑚,ℎ ∶= 𝛾𝐦,𝜩 , and 𝜅𝑚,ℎ ∶= 𝜅𝐦,𝜩 be the variance, skewness, and kurtosis,
respectively, of the SCE approximation and 𝜎2𝑚, 𝛾𝑚, and 𝜅𝑚 the vari-
ance, skewness, and kurtosis, respectively, of the PCE approximation.
Correspondingly, the respective relative errors committed by SCE in
variance, skewness, and kurtosis are

𝑒2,𝑚,ℎ ∶=
|

|

|

𝜎2 − 𝜎2𝑚,ℎ
|

|

|

𝜎2
, 𝑒3,𝑚,ℎ ∶=

|

|

𝛾 − 𝛾𝑚,ℎ||
𝛾

, 𝑒4,𝑚,ℎ ∶=
|

|

𝜅 − 𝜅𝑚,ℎ||
𝜅

(41)

and the respective relative errors perpetrated by PCE in the variance,
skewness, and kurtosis are

𝑒2,𝑚 ∶=
|

|

|

𝜎2 − 𝜎2𝑚
|

|

|

𝜎2
, 𝑒3,𝑚 ∶=

|

|

𝛾 − 𝛾𝑚||
𝛾

, 𝑒4,𝑚 ∶=
|

|

𝜅 − 𝜅𝑚||
𝜅

. (42)

ere, 𝜎2, 𝛾, and 𝜅 are the variance, skewness, and kurtosis of the output
unction 𝑦(𝐗), as defined in (26) through (28).
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In all four examples, the variance, skewness, and kurtosis of the
original function were determined by analytical integration and hence
exactly. The SCE and PCE coefficients, which by definition are one-
to four-dimensional integrals, were calculated analytically whenever
possible or using adaptive numerical integration. While the second-
moment properties of SCE/PCE were calculated using the formula in
(25) and (26), the skewness and kurtosis of SCE/PCE approximations
were calculated by either analytical or adaptive numerical integra-
tion. Therefore, all approximation errors reported in this paper were
determined exactly or very accurately.

Although SCE provides a greater flexibility than PCE in exploiting
low expansion orders, a comparison between the two approximations
pertaining to their accuracy against computational effort is justified.
The computational effort for such a comparison can be made by ex-
amining the total numbers of requisite basis functions from these
approximations. As the numbers of univariate basis functions in all
coordinate directions are identical – say, 𝑛 for SCE and 𝑚+1 for PCE –
the total number of basis functions from SCE and PCE approximations
of an 𝑁-dimensional function are 𝑛𝑁 and (𝑚 + 1)𝑁 , respectively.

5.1. Example 1: two univariate functions and bounded interval

Consider two univariate functions of a real-valued, uniformly dis-
tributed random variable 𝑋 over the bounded interval [−1, 1]:

𝑦(𝑋) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
1 + 5𝑋2

, (smooth),

exp(−3|𝑋|), (nonsmooth).

(43)

They comprise both smooth and non-differentiable (nonsmooth) func-
tions, where the latter is more difficult to approximate by polynomials.

The analysis involved assessing (1) PCE approximations with nine
increasingly large expansion orders 𝑚 = 1, 2, 4, 8, 12, 16, 20, 24, 30
and (2) linear or first-order (𝑚 = 1) and quadratic or second-order (𝑚 =
) SCE approximations, each endowed with six progressively refined
esh sizes of ℎ = 1, 1/2, 1/4, 1/8, 1/12, 1/16. The knot sequences

nclude uniformly spaced distinct knots and consist of even numbers of
lements. For SCE, all internal knots are simple knots for the smooth
unction. However, for the nonsmooth function, all internal knots are
ither simple knots when 𝑚 = 1 or include a repeated central knot
hen 𝑚 = 2. The repeated central knot engenders aptly enriched basis

unctions, acquiring the nonsmooth behavior of the original function.
Figs. 2 and 3 display the comparisons of PCE and SCE approxima-

ions for the smooth and nonsmooth functions, respectively, of Example
. For the smooth function [Fig. 2(a)], the maps of PCE approximations
mprove with 𝑚 as expected. However, for the nonsmooth function
Fig. 3(a)], 20th- or higher-order PCE approximations are warranted
or an acceptable map. In contrast, the maps of SCE approximations
or the smooth function, exhibited in Fig. 2(b), look satisfactory, if
ot great, even for a linear spline (𝑚 = 1), as long as the mesh is
dequately fine (ℎ ≤ 1∕4). For the quadratic (𝑚 = 2) spline with
≤ 1∕4, any distinction between the maps of an SCE approximation

nd actual function in Fig. 2(c) is indistinguishable to the naked eye.
or the nonsmooth function, the maps of the original function and
ts quadratic SCE approximations in Fig. 3(c) for any mesh size are
ractically coincident.

All moments of orders of at least four obtained by SCE and PCE exist
nd are finite. Figs. 2(d) through 2(f) and Figs. 3(d) through 3(f) present
he errors in variance (𝑒2𝑚,ℎ, 𝑒2𝑚), skewness (𝑒3𝑚,ℎ, 𝑒3𝑚), and kurtosis
𝑒4𝑚,ℎ, 𝑒4𝑚), obtained using SCE/PCE approximations of the smooth and
onsmooth functions, respectively. These errors are plotted against the
equisite numbers of basis functions of SCE/PCE. When the function is
lobally smooth, as in Figs. 2(d) through 2(f), the errors caused by PCE
re lower and decay faster than those committed by linear or quadratic
CE approximations for all three moments, especially when the number
7

of basis functions is large. Therefore, existing PCE is adequate and there
is no significant advantage of SCE over PCE approximations for smooth
functions.

However, when calculating the three aforementioned moments of
the nonsmooth function, as depicted in Figs. 3(d) through 3(f), there
are notable differences in results from the SCE and PCE approxima-
tions. Clearly, the SCE approximation, regardless of its degree, commits
much lower errors in variance, skewness, and kurtosis than does the
PCE approximation for the same number of basis functions. Addition-
ally, by placing a repeated central knot (multiplicity of two) in the
knot sequence, the resulting quadratic SCE approximation has become
substantially better than the linear SCE approximation. For all three
moment calculations, the decay rate of error by either version of SCE
is faster than that by PCE. Therefore, the SCE approximation proposed
is desirable when there exist locally prominent and highly nonlinear
stochastic responses, including discontinuity and nonsmoothness.

5.2. Example 2: two univariate functions and unbounded interval

Previously studied by Field and Grigoriu [20], the second example
involves two univariate functions of a real-valued, standard Gaussian
random variable 𝑋 over the unbounded interval (−∞,∞):

𝑦(𝑋) =

⎧

⎪

⎨

⎪

⎩

𝛷(𝑋), (smooth),

|𝑋|, (nonsmooth).
(44)

Here, 𝛷(𝑢) = (1∕
√

2𝜋) ∫ 𝑢−∞ exp(−𝜉2∕2)𝑑𝜉 is the cumulative probability
distribution function of a Gaussian random variable with zero mean
and unit variance. Again, both smooth and nonsmooth functions were
selected. As opposed to Example 1, the unboundedness of random
domain in Example 2 poses a challenge on the integrability of functions
for higher-order moment analysis.

Here, the basis functions of PCE are orthonormal Hermite poly-
nomials that are consistent with the standard Gaussian probability
distribution of the input random variable. In contrast, the basis func-
tions of SCE are orthonormal splines that are consistent with the
truncated Gaussian probability distribution on the bounded interval
[−4,+4] of the input random variable. In addition, for SCE, the output
function was transformed to a function of truncated Gaussian variable
by matching the probability distribution functions of standard and
truncated Gaussian variables. It is necessary to do so because splines
require bounded support by definition. It is best practice to select a
transformation yielding as little difference between the original and
mapped distributions as is possible. Hence, the truncated Gaussian
distribution is an appropriate choice for the transformation.

The analysis involves (1) PCE approximations for eight or nine
distinct expansion orders of 𝑚 = 1, 3, 5, 9, 13, 21, 29, 37 for the smooth
function or 𝑚 = 2, 4, 6, 8, 12, 16, 20, 24, 30 for the nonsmooth function
and (2) linear (𝑚 = 1) and quadratic (𝑚 = 2) SCE approximations, each
associated with eight distinct mesh sizes of ℎ = 8/3, 8/5, 8/7, 8/9,
8/13, 8/17, 8/25, 8/33 for both functions. All internal knots are simple
knots for both functions. By selecting odd numbers of elements, there
are no central repeated knots for the nonsmooth function. If the number
of elements were even, then SCE would reproduce the function exactly,
creating an unfair comparison with PCE.

As before, Figs. 4 and 5 display the results of PCE and SCE ap-
proximations for the smooth and nonsmooth functions, respectively,
from this example. The maps of both approximations improve with the
order of PCE or the mesh refinement of the SCE, especially around
the origin. However, as the distance from the origin increases, PCE
yields greater oscillations than SCE. Still, the variance of the smooth
function calculated by PCE, as presented in Fig. 4(d), is more accurate
than that calculated by SCE for a fixed number of basis functions. The
same behavior was observed for the smooth function in Example 1.This
means that for a smooth function with bounded or unbounded random
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Fig. 2. Smooth function of Example 1: 𝑦(𝑋) = 1∕(1 + 5𝑋2); (a) PCE approximations for 𝑚 = 1, 2, 4, 8, 20; (b) linear (𝑚 = 1) SCE approximations for ℎ = 1, 1/2, 1/4, 1/8, 1/12;
c) quadratic (𝑚 = 1) SCE approximations for ℎ = 1, 1/2, 1/4, 1/8, 1/12; (d) relative errors in variance from SCE (𝑒2,𝑚,ℎ) and PCE (𝑒2,𝑚); (e) relative errors in skewness from SCE
𝑒3,𝑚,ℎ) and PCE (𝑒3,𝑚); (f) relative errors in kurtosis from SCE (𝑒4,𝑚,ℎ) and PCE (𝑒4,𝑚).
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omains, there is no need for SCE, as long as at most second-moment
nalysis is concerned. Conversely, when calculating higher-order mo-
ents, such as kurtosis in this example, PCE produces upward trending
ivergent solutions, as evidenced by Fig. 4(e). Here, as 𝑥 → ±∞, the
scillation from the fourth power of the PCE approximation escalates
aster than the speed at which the Gaussian density function attenuates,
onsequently losing integrability when computing the fourth moment.
his numerical result is consistent with the mathematical proof of
ivergence for the fourth moment of this function [21]. In contrast,
he kurtosis estimated by SCE – be it linear or quadratic – in the same
igure is convergent, as also proved theoretically in Section 4.

According to Figs. 5(a) and 5(b), the maps of SCE approximations
or the nonsmooth function are stable even when extrapolated beyond
−4,+4], whereas the maps of PCE approximations again exhibit consid-
rable oscillations for large expansion orders. While these oscillations
o not have yet deleterious effect on PCE’s eventual convergence of
ariance [Fig. 5(d)], the decay rate slows down substantially. More
8

mportantly, the oscillations eventually become detrimental for higher-
rder moments of PCE, as alluded to earlier, leading to divergence
hen estimating skewness and kurtosis in Figs. 5(e) and 5(f). In fact,
ll PCE-generated moments of orders greater than four are divergent,
s proved mathematically [21]. In contrast, the skewness and kurtosis
valuated by SCE approximations converge, albeit slowly owing to the
onsmoothness of the function. It would be interesting to study any
mprovement in the convergence properties of SCE for intervals larger
han [−4,+4] and non-uniform knot sequences.

.3. Example 3: a nonsmooth bivariate function

Defined on the square A2 = [−1, 1]2, consider a nonsmooth func-
ion of two uniformly distributed random variables 𝑋1 and 𝑋2, each
istributed over [−1, 1] [13]:

(𝑋 ,𝑋 ) = 𝑔(𝑋 ) + 𝑔(𝑋 ) + 1 𝑔(𝑋 )𝑔(𝑋 ), (45)
1 2 1 2 5 1 2



Probabilistic Engineering Mechanics 77 (2024) 103666S. Rahman

1

𝑔

A

Fig. 3. Nonsmooth function of Example 1: 𝑦(𝑋) = exp(−3|𝑋|); (a) PCE approximations for 𝑚 = 1, 2, 4, 8, 20; (b) linear (𝑚 = 1) SCE approximations for ℎ = 1/2, 1/4, 1/8, 1/12,
/16; (c) quadratic (𝑚 = 2) SCE approximations for ℎ = 1/2, 1/4, 1/8, 1/12, 1/16; (d) relative errors in variance from SCE (𝑒2,𝑚,ℎ) and PCE (𝑒2,𝑚); (e) relative errors in skewness

from SCE (𝑒3,𝑚,ℎ) and PCE (𝑒3,𝑚); (f) relative errors in kurtosis from SCE (𝑒4,𝑚,ℎ) and PCE (𝑒4,𝑚).
where, for 𝑖 = 1, 2,

(𝑥𝑖) =

{

1, −1 ≤ 𝑥𝑖 ≤ 0,
exp(−10𝑥𝑖), 0 < 𝑥𝑖 ≤ 1.

(46)

graph of the function in Fig. 6(a) indicates that 𝑦 has a flat region
on [−1, 0]2, and then it falls off exponentially on both sides. Clearly,
the function is continuous, but it has discontinuous partial derivatives
across the lines 𝑥1 = 0 and 𝑥2 = 0. Figs. 6(b), 6(c), and 6(d) present
graphs of a 20th-order PCE, a linear SCE with the mesh size of ℎ = 1∕10,
and a quadratic SCE with the mesh size of ℎ = 1∕10, respectively.
Given such a high order of expansion, the PCE approximation captures
the overall trend well, but it is smoother than the original function. In
contrast, the SCE approximations match the function very accurately,
including replicating discontinuity of partial derivatives across the lines
𝑥1 = 0 and 𝑥2 = 0.

The analysis entails (1) PCE approximations for ten distinct val-
ues of 𝑚 = 1, 2, 4, 6, 8, 10, 12, 14, 16, 20 and (2) linear (𝑚 = 1) and
quadratic (𝑚 = 2) SCE approximations and ten distinct mesh sizes
of ℎ = 2, 1, 1∕2, 1∕3, 1∕4, 1∕5, 1∕6, 1∕7, 1∕8, 1∕10. The knot sequences
9

include uniformly spaced distinct knots and consist of even numbers
of elements. All internal knots are either simple knots when 𝑚 = 1 or
include a repeated central knot when 𝑚 = 2.

Figs. 7(a) through 7(c) depict how the relative errors in variance,
skewness, and kurtosis, calculated by various methods, decline against
the number of basis functions. From these figures, the PCE approxima-
tion struggles to provide results as accurate as those obtained by the
quadratic SCE approximation. This is largely due to the nonsmoothness
in the original function 𝑦, as also observed in previous examples.
Moreover, the convergence is steeper for quadratic SCE than linear
SCE. However, the linear SCE becomes worse than PCE in calculating
kurtosis when the number of basis functions is large. This is largely
because of the uniform knots employed in such an SCE, mandating ad-
ditional mesh refinements to reveal its true convergence properties. For
instance, with the ad-hoc selection of a non-uniform knot sequence 𝝃𝑘 =
{−1,−1,−0.5, 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.1, 0.15, 0.2, 0.25, 0.3,
0.35, 0.4, 0.45, 0.5, 0.75, 1, 1}, 𝑘 = 1, 2, and requiring 441 basis functions,
the linear SCE achieves the following errors: 1.94 × 10−6 for variance;

−5 −6
2.68 × 10 for skewness; and 1.25 × 10 for kurtosis. These errors are
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Fig. 4. Smooth function of Example 2: 𝑦(𝑋) = 𝛷(𝑋); (a) PCE approximations for 𝑚 = 1, 3, 5, 9, 21; (b) linear (𝑚 = 1) SCE approximations for ℎ = 8/3, 8/5, 8/7, 8/9, 8/13; (c)
quadratic (𝑚 = 1) SCE approximations for ℎ = 8/3, 8/5, 8/7, 8/9, 8/13; (d) relative errors in variance from SCE (𝑒2,𝑚,ℎ) and PCE (𝑒2,𝑚); (e) relative errors in kurtosis from SCE
(𝑒4,𝑚,ℎ) and PCE (𝑒4,𝑚).
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substantially lower than those committed by the 20th-order PCE or
linear SCE with uniform knots (ℎ = 1∕10) in Figs. 7(a) through 7(c)
(last points), each comprising 441 basis functions as well. In other
words, an SCE with non-uniform knots is capable of producing more
accurate statistics of the output variable than an SCE with uniform
knots, depending on the function. The topic merits further study.

5.4. Example 4: a nonsmooth function of four variables

In the final example, a nonsmooth function

𝑦(𝐗) =
4
∏

𝑖=1

|4𝑋𝑖 − 2|𝑏𝑖 + 𝑎𝑖
1 + 𝑎𝑖

, 𝑎𝑖, 𝑏𝑖 ∈ R, 𝑖 = 1, 4, (47)

of four independent random variables 𝑋𝑖, 𝑖 = 1, 2, 3, 4, each of which
is uniformly distributed over [0, 1], was studied [12]. The function
arameters are as follows: 𝑎1 = 0, 𝑎2 = 1, 𝑎3 = 2, 𝑎4 = 4; 𝑏1 = 𝑏2 =
3 = 𝑏4 = 3∕5. Clearly, 𝑦 is a non-differentiable function where the
xponent 𝑏𝑖 controls its nonlinearity. Compared with 𝑏𝑖 = 1, the smaller
he value of the exponent, the more nonlinear the function becomes in
10

e

he 𝑖th coordinate direction. This type of function, especially with unit
xponents, has been used for global sensitivity analysis [22].

Three approximation methods were used for UQ analysis in this
example: (1) linear (𝑚 = 1) SCE approximations with two mesh sizes of
ℎ = 1∕2 and ℎ = 1∕8; (2) quadratic (𝑚 = 2) SCE approximations with
two mesh sizes of ℎ = 1∕2 and ℎ = 1∕6; and (3) 2nd- and 8th-order
PCE approximations. Here, the two different mesh sizes of SCE and
the two expansion orders of PCE represent their low-fidelity and high-
fidelity approximations. In SCE calculations, there are even numbers of
elements for the chosen meshes with repeated central knots (𝑥𝑘 = 0.5)
n each coordinate direction. All distinct internal knots are uniformly
paced.

Table 1 lists the relative errors in calculating the variance, skewness,
nd kurtosis of 𝑦(𝐗) by the aforementioned three methods. The numbers
f basis functions required for the low- and high-fidelity computations,
efined by two respective variants of SCE and PCE approximations, are
4 = 81 and 94 = 6561, respectively. Therefore, the approximation
uality of PCE and SCE can be assessed for the same computational
ffort. From Table 1, regardless of the fidelity of computations, the
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Fig. 5. Nonmooth function of Example 2: 𝑦(𝑋) = |𝑋|; (a) PCE approximations for 𝑚 = 2, 4, 8, 16, 24; (b) linear (𝑚 = 1) SCE approximations for ℎ = 8/3, 8/5, 8/7, 8/9, 8/13;
(c) quadratic (𝑚 = 1) SCE approximations for ℎ = 8/3, 8/5, 8/7, 8/9, 8/13; (d) relative errors in variance from SCE (𝑒2,𝑚,ℎ) and PCE (𝑒2,𝑚); (e) relative errors in skewness from
CE (𝑒3,𝑚,ℎ) and PCE (𝑒3,𝑚); (f) relative errors in kurtosis from SCE (𝑒4,𝑚,ℎ) and PCE (𝑒4,𝑚).
T
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rrors in all three moments committed by SCE (linear or quadratic)
re orders of magnitudes lower than those perpetrated by PCE. This
s mainly due to the non-differentiability of 𝑦(𝐗).

Since there does not exist analytical means to determine the prob-
bilistic characteristics of 𝑦(𝐗) and its surrogates, the PCE and SCE
pproximations once built were re-sampled to generate their associ-
ted PDFs. In addition, crude MCS of the original function was also
erformed to obtain a reference PDF. The sample sizes for crude MCS
nd re-sampling are 100,000. The PDFs obtained from the PCE and
CE approximations and crude MCS are depicted in Fig. 8. The results

indicate that low-order SCE approximations [Figs. 8(b) or 8(c)] with a
ufficiently refined mesh also yield more accurate estimates of PDF than
high-order PCE approximation [Fig. 8(a)] for nonsmooth functions.

. Discussion

While the paper is aimed at calculating higher-order moments of
11

CE, its application is limited to solving low-dimensional UQ problems
able 1
elative errors in calculating the variance, skewness, and kurtosis of the nonsmooth

unction in Example 4 by various PCE and SCE approximations.
(a) 𝑚th-order PCE

𝑚 No. of basis 𝑒2,𝑚 𝑒3,𝑚 𝑒4,𝑚
2 81 0.15741175 3.166336594 0.60883659
8 6561 0.01751586 0.35450758 0.03748577

(b) Linear SCE (𝑚 = 1)

ℎ No. of basis 𝑒2,1,ℎ 𝑒3,1,ℎ 𝑒4,1,ℎ
1/2 81 0.02478277 1.3184678 0.14332562
1/8 6561 0.00140325 0.04716611 0.01266868

(c) Quadratic SCE (𝑚 = 2)

ℎ No. of basis 𝑒2,2,ℎ 𝑒3,2,ℎ 𝑒4,2,ℎ
1/2 81 0.00375152 0.15045514 0.04509998
1/6 6561 0.00055234 0.01699404 0.00612819
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Fig. 6. Graphs of functions in Example 3: (a) exact; (b) 20th-order PCE (c) linear SCE with ℎ = 1∕10; (d) quadratic SCE with ℎ = 1∕10;.
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(𝑁 ≤ 10). This is essentially because of the tensor-product structure in
forming the multivariate basis of SCE. For high-dimensional problems
(𝑁 ≥ 10), SCE becomes computationally prohibitive, raising the need
for SDD, as briefly mentioned in the Introduction section. However,
as SDD is built on dimensionwise decomposition and involves only
low-dimensional tensor products of univariate basis functions, the con-
vergence properties of SCE should extend to SDD as well. Therefore, the
theoretical and numerical results of SCE presented here are relevant for
a general UQ analysis.

The refinements of SCE in the Example section are predicated on
knot sequences with uniform spacing in all coordinate directions. As a
result, the resulting basis is not necessarily maximally empowered to
capture locally abrupt changes in stochastic responses, if they exist, in
an efficient manner. Therefore, future endeavors employing optimally
selected non-uniform knot sequences, as studied by the author’s group
in the context of SDD [23], should be undertaken for calculating
igher-order moments of SCE more effectively.

For the quadratic SCE approximations in some examples, repeated
entral knots have been used to recognize the lack of differentiability
n the output function. In doing so, the resulting basis functions of
CE become equipped to capture accurately the nonsmooth behavior
f the original function. In practice, such manipulations of the knot
equences are not possible in general if the presence or locations of
onsmoothness are not known a priori. Therefore, an adaptive scheme
or automatically detecting possible nonsmoothness and their locations
hould be developed in conjunction with the SCE approximation.

It is well established over the last few decades that PCE works well
or a wide range of UQ problems in engineering and applied sciences.
12
his is chiefly because the underlying performance functions are glob-
lly smooth, explaining why PCE’s globally supported polynomials are
ell-suited to approximate such functions, resulting in accurate and ef-

icient estimates of second-moment statistics. However, for multi-scale
r multi-component complex systems involving multiple failure modes,
ne may face nonsmooth or even discontinuous functions in which the
ehavior of PCE has not been studied extensively. Therefore, future
orks on higher-order moment analysis by SCE and PCE for large-

cale, practical problems featuring smooth and nonsmooth functions
re warranted.

. Conclusion

A UQ analysis entailing high-order moments calculated from SCE
pproximations of a real-valued, 𝑝-integrable (2 ≤ 𝑝 < ∞) output
unction of input random variable was conducted. The approximation
uality of SCE was assessed in terms of the modulus of smoothness
f the function. When the largest element of the mesh from SCE
pproaches zero, the modulus of smoothness vanishes, resulting in the
𝑝 convergence of SCE to the correct limit. Therefore, the moment of
CE of an order up to and including 𝑝 converges to the exact moment
or any degree of splines as the element size decreases. Moreover, the
eaker modes of convergence, such as those in probability and in
istribution, transpire naturally.

Numerical computations of moments by SCE and PCE, conducted
or a collection of simple yet relevant examples, indicate the following:



Probabilistic Engineering Mechanics 77 (2024) 103666

13

S. Rahman

Fig. 7. Relative errors from various SCE and PCE approximations of the nonmooth function in Example 3: (a) variance (𝑒2,𝑚,ℎ, 𝑒2,𝑚); (b) skewness (𝑒3,𝑚,ℎ, 𝑒3,𝑚); (c) kurtosis (𝑒4,𝑚,ℎ,
𝑒4,𝑚).

Fig. 8. Probability density functions of 𝑦(𝐗) estimated by three methods: (a) PCE; (b) linear SCE; (c) quadratic SCE.
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(1) When the output function is smooth or nonsmooth and the
random domain is bounded or unbounded, SCE and PCE both
provide convergent estimates of the variance. However, their rel-
ative convergent rates may differ, depending on the smoothness
of the function.

(2) When the function is globally smooth, PCE is likely to provide
more efficient estimates of variance than SCE for the same com-
putational effort. However, for a nonsmooth function, the trend
reverses, and the convergence properties of PCE in estimating
variance may degrade appreciably.

(3) Higher-order moments, such as skewness and kurtosis, calcu-
lated using SCE converge for all examples considered in this
study. In contrast, moments of PCE of orders larger than two may
or may not converge, depending on the regularity of the output
function or the probability measure of input random variables.
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ppendix. Univariate B-splines

Let 𝐱 = (𝑥1,… , 𝑥𝑁 ) be an arbitrary point in A𝑁 . For the coordinate
direction 𝑘, 𝑘 = 1,… , 𝑁 , define a positive integer 𝑛𝑘 ∈ N and a
non-negative integer 𝑚𝑘 ∈ N0, representing the total number of basis
functions and polynomial degree, respectively. The rest of this appendix
briefly describes paraphernalia of univariate B-splines.

A.1. Knot vector

In order to define B-splines, the concept of knot vector, also referred
to as knot sequence, for each coordinate direction 𝑘 is needed.

Definition 7. A knot vector 𝝃𝑘 for the interval [𝑎𝑘, 𝑏𝑘] ⊂ R, given
𝑛𝑘 > 𝑚𝑘 ≥ 0, is a vector comprising a non-decreasing sequence of real
numbers

𝝃𝑘 ∶= {𝜉𝑘,𝑖𝑘}
𝑛𝑘+𝑚𝑘+1
𝑖𝑘=1

= {𝑎𝑘 = 𝜉𝑘,1, 𝜉𝑘,2,… , 𝜉𝑘,𝑛𝑘+𝑚𝑘+1 = 𝑏𝑘},

𝜉𝑘,1 ≤ 𝜉𝑘,2 ≤ ⋯ ≤ 𝜉𝑘,𝑛𝑘+𝑚𝑘+1,
(A.1)

where 𝜉𝑘,𝑖𝑘 is the 𝑖𝑘th knot with 𝑖𝑘 = 1, 2,… , 𝑛𝑘 + 𝑚𝑘 + 1 representing
the knot index for the coordinate direction 𝑘. The elements of 𝝃𝑘 are
called knots.

According to (A.1), there are a total of 𝑛𝑘+𝑚𝑘+1 knots, which may
be equally or unequally spaced. To monitor knots without repetitions,
denote by 𝜁𝑘,1,… , 𝜁𝑘,𝑟𝑘 the 𝑟𝑘 distinct knots in 𝝃𝑘 with respective multi-
plicities 𝑀𝑘,1,… ,𝑀𝑘,𝑟𝑘 . Then the knot vector in (A.1) can be expressed
more compactly by

𝝃𝑘 = {𝑎𝑘 =

𝑀𝑘,1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,1,… , 𝜁𝑘,1,

𝑀𝑘,2 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,2,… , 𝜁𝑘,2,… ,

𝑀𝑘,𝑟𝑘−1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,𝑟𝑘−1,… , 𝜁𝑘,𝑟𝑘−1,

𝑀𝑘,𝑟𝑘 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,𝑟𝑘 ,… , 𝜁𝑘,𝑟𝑘 = 𝑏𝑘},

(A.2)
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𝑎𝑘 = 𝜁𝑘,1 < 𝜁𝑘,2 <⋯ < 𝜁𝑘,𝑟𝑘−1 < 𝜁𝑘,𝑟𝑘 = 𝑏𝑘,
which consists of a total number of
𝑟𝑘
∑

𝑗𝑘=1
𝑀𝑘,𝑗𝑘 = 𝑛𝑘 + 𝑚𝑘 + 1 (A.3)

knots. As shown in (A.2), each knot, whether interior or exterior,
may appear 1 ≤ 𝑀𝑘,𝑗𝑘 ≤ 𝑚𝑘 + 1 times, where 𝑀𝑘,𝑗𝑘 is referred to
s its multiplicity. The multiplicity has important implications on the
egularity properties of B-spline functions. A knot vector is called open
f the end knots have multiplicities 𝑚𝑘 + 1. In this case, definitions of
ore specific knot vectors are in order.

efinition 8. A knot vector is said to be (𝑚𝑘 + 1)-open if the first and
ast knots appear 𝑚𝑘 + 1 times, that is, if

𝝃𝑘 = {𝑎𝑘 =

𝑚𝑘+1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,1,… , 𝜁𝑘,1,

𝑀𝑘,2 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,2,… , 𝜁𝑘,2,… ,

𝑀𝑘,𝑟𝑘−1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,𝑟𝑘−1,… , 𝜁𝑘,𝑟𝑘−1,

𝑚𝑘+1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,𝑟𝑘 ,… , 𝜁𝑘,𝑟𝑘 = 𝑏𝑘},

𝑎𝑘 = 𝜁𝑘,1 < 𝜁𝑘,2 < ⋯ < 𝜁𝑘,𝑟𝑘−1 < 𝜁𝑘,𝑟𝑘 = 𝑏𝑘.

(A.4)

Definition 9. A knot vector is said to be (𝑚𝑘 + 1)-open with simple
knots if it is (𝑚𝑘 + 1)-open and all interior knots appear only once, that
is, if

𝝃𝑘 = {𝑎𝑘 =

𝑚𝑘+1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,1,… , 𝜁𝑘,1, 𝜁𝑘,2,… , 𝜁𝑘,𝑟𝑘−1,

𝑚𝑘+1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,𝑟𝑘 ,… , 𝜁𝑘,𝑟𝑘 = 𝑏𝑘},

𝑎𝑘 = 𝜁𝑘,1 < 𝜁𝑘,2 < ⋯ < 𝜁𝑘,𝑟𝑘−1 < 𝜁𝑘,𝑟𝑘 = 𝑏𝑘.

(A.5)

A (𝑚𝑘 + 1)-open knot vector with or without simple knots is com-
monly found in applications [15].

A.2. B-splines

The B-spline functions for a given degree are defined in a recursive
manner using the knot vector as follows.

Definition 10. Let 𝝃𝑘 be a general knot vector of length at least 𝑚𝑘+2
for the interval [𝑎𝑘, 𝑏𝑘], as defined by (A.1). Denote by 𝐵𝑘𝑖𝑘 ,𝑚𝑘 ,𝝃𝑘 (𝑥𝑘) the
𝑖𝑘th univariate B-spline function with degree 𝑚𝑘 ∈ N0 for the coordinate
direction 𝑘. Given the zero-degree basis functions,

𝐵𝑘𝑖𝑘 ,0,𝝃𝑘 (𝑥𝑘) ∶=

{

1, 𝜉𝑘,𝑖𝑘 ≤ 𝑥𝑘 < 𝜉𝑘,𝑖𝑘+1,
0, otherwise,

(A.6)

or 𝑘 = 1,… , 𝑁 , all higher-order B-spline functions on R are defined
ecursively by

𝑘
𝑖𝑘 ,𝑚𝑘 ,𝝃𝑘

(𝑥𝑘) =
𝑥𝑘 − 𝜉𝑘,𝑖𝑘

𝜉𝑘,𝑖𝑘+𝑚𝑘 − 𝜉𝑘,𝑖𝑘
𝐵𝑘𝑖𝑘 ,𝑚𝑘−1,𝝃𝑘 (𝑥𝑘)

+
𝜉𝑘,𝑖𝑘+𝑚𝑘+1 − 𝑥𝑘

𝜉𝑘,𝑖𝑘+𝑚𝑘+1 − 𝜉𝑘,𝑖𝑘+1
𝐵𝑘𝑖𝑘+1,𝑚𝑘−1,𝝃𝑘 (𝑥𝑘), (A.7)

where 1 ≤ 𝑘 ≤ 𝑁 , 1 ≤ 𝑖𝑘 ≤ 𝑛𝑘, 1 ≤ 𝑚𝑘 < ∞, and 0∕0 is considered as
zero.

The recursive formula in Definition 10 was derived by Cox [24] and
de Boor [16].
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