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ABSTRACT

Spline chaos expansion, referred to as SCE, is a finite series representation of an output random variable
in terms of measure-consistent orthonormal splines in input random variables and deterministic coefficients.
This paper reports new results from an assessment of SCE’s approximation quality in calculating higher-order
moments, if they exist, of the output random variable. A novel mathematical proof is provided to demonstrate
that the moment of SCE of an arbitrary order converges to the exact moment for any degree of splines as
the largest element size decreases. Complementary numerical analyses have been conducted, producing results
consistent with theoretical findings. A collection of simple yet relevant examples is presented to grade the
approximation quality of SCE with that of the well-known polynomial chaos expansion (PCE). The results from
these examples indicate that higher-order moments calculated using SCE converge for all cases considered in
this study. In contrast, the moments of PCE of an order larger than two may or may not converge, depending
on the regularity of the output function or the probability measure of input random variables. Moreover, when
both SCE- and PCE-generated moments converge, the convergence rate of the former is markedly faster than

the latter in the presence of nonsmooth functions or unbounded domains of input random variables.

1. Introduction

Uncertainty quantification (UQ) is the science of quantitative char-
acterization and management of uncertainties in computational mod-
eling, simulation, and design of complex engineering systems [1,2].
There exists a myriad of UQ methods or expansions, namely, polyno-
mial chaos expansion (PCE) [3-5], polynomial dimensional decomposi-
tion, [6,7], stochastic collocation [8,9], and sparse-grid quadrature [10,
11], to name just four. These methods and a few others not explicitly
cited for brevity offer significant computational advantages over crude
Monte Carlo simulation (MCS), especially when the output variable
is globally smooth over the entire domain of input random variables.
More recently, the author’s group has delved into spline chaos ex-
pansion (SCE) [12], followed by spline dimensional decomposition
(SDD) [13], for deftly handling UQ problems featuring locally promi-
nent responses, including discontinuous or nonsmooth solutions. The
latter two methods prominently feature orthogonalized basis splines
(B-splines), albeit standard B-splines have been used as well [14].

Once an expansion of an output random variable of interest has
been generated, the natural progression is to develop explicit formu-
lae, if they exist, for calculating its second-moment properties. If the
expansion is founded on measure-consistent orthogonal bases, such
as those rooted in PCE and SCE, then closed-form expressions of the
mean and variance of the output variable can be obtained easily. While

these second-moment properties are important, additional statistical
measures, such as skewness and kurtosis, are also valuable and may
be necessary in evaluating complex system performance. Therefore, in
general, the approximation quality and convergence properties of these
expansions in calculating not only the first- and second-order moments
but also higher-order moments should be examined thoroughly. Such
a need stems from the fact that the accuracy of an estimated proba-
bilistic characteristic of the output variable, often required in reliability
analysis and design, strongly depends on whether or not the higher-
order moment approximations converge or diverge with respect to the
expansion order or truncation parameters of a UQ method.

The focus of this study is the approximation quality of SCE in
calculating high-order moments of a random variable of interest. A
novel mathematical proof and complementary numerical analysis have
been reported. Therefore, compared with the past works on SCE, which
entail mostly second-moment analysis, the results of this paper are
new. The paper is organized as follows. Section 2 begins with math-
ematical preliminaries and requisite assumptions on input and output
random variables. Section 3 summarizes the construction of measure-
consistent orthonormalized B-splines, leading to the SCE approxima-
tion, and output moments. Section 4 describes new theoretical results
of error analysis, proving convergence of SCE-generated moments for
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an arbitrary order. Four illustrative numerical examples comprising
elementary mathematical functions of single or multiple input random
variable(s) with bounded or unbounded random domains are presented
in Section 5. Section 6 discusses limitations of the current study and
future work. Finally, conclusions are drawn in Section 7.

2. Random variables

Let N := {1,2,...}, Ny := NuU {0}, and R := (-0, +00) represent
the sets of positive integer (natural), non-negative integer, and real
numbers, respectively. Denote by [a,, b;] a finite closed interval, where
ay. by € R, by > a;. Then, given N € N, AN = xN [q, b;] represents a
closed bounded domain of RV.

2.1. Input

Let (£2,F,P) be a probability space, where 2 is a sample space
representing an abstract set of elementary events, 7 is a c-algebra
on £, and P F — [0,1] is a probability measure. Defined on
this probability space, consider an N-dimensional input random vector
X = (X|,..., Xp)T, describing the statistical uncertainties in all sys-
tem parameters of a stochastic or UQ problem. Denote by Fx(x) :=
]P’(n[_]i {X, < x;}) the joint distribution function of X. The kth compo-
nent of X is a random variable X, which has the marginal probability
distribution function Fy, (xp) = P(X; < x;). In the UQ community,
the input random variables are also known as basic random variables.
The non-zero, finite integer N represents the number of input random
variables and is often referred to as the dimension of the stochastic or
UQ problem.

A set of assumptions on input random variables used or required by
SCE is as follows.

Assumption 1. The input random vector X := (X,,..., Xy)T satisfies
all of the following conditions:

(1) All component random variables X,, k = 1,..., N, are statisti-
cally independent, but not necessarily identical.

(2) Each input random variable X is defined on a bounded interval
[a, bl C R. Therefore, all moments of X, exist, that is, for all
I e Ny,

E[X!] = /Q X} (@)dP(w) < co, €8]

where E is the expectation operator with respect to the proba-
bility measure P.

(3) Each input random variable X, has absolutely continuous
marginal probability distribution function Fy (x;) and continu-
ous marginal probability density function fy, (x;) := dFy, (x,)/
ox, with a bounded support [a;,b,] C R. Consequently, with
Items (1) and (2) in mind, the joint probability distribution
function Fyx(x) and joint probability density function (PDF)
fx(x) 1= 0N Fx(x)/dx, - dx)y of X are obtained from

N N
Fx() = [ Fx, 0 and fx0 =[] £x, 0,
k=1 k=1

respectively, with a bounded support AN c RN of the density
function.

Assumption 1 establishes the existence of a relevant sequence of
orthogonal polynomials or splines consistent with the input probability
measure. The discrete distributions and dependent variables are not
dealt with in this paper.

Given the abstract probability space (£2,F,P) of X, there exists an
image probability space (AN, BN, fxdx), where AV is the image of Q
from the mapping X : 2 — AY and BN := B(AY) is the Borel o-
algebra on AN c RV. Relevant statements and objects in the abstract
probability space have obvious counterparts in the associated image
probability space. Both probability spaces will be exploited in this

paper.
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2.2. Output

Given an input random vector X := (X,...,Xy)T (2,F) —
(AN, BN) with known PDF fyx(x) on AN c RV, denote by y(X) :=
(X, ..., Xy) a real-valued, measurable transformation on (£, F), de-
scribing a general output response of a stochastic system. A major
objective of UQ analysis is to estimate the statistical and probabilistic
characteristics of an output random variable Y = y(X), including its
statistical moments and PDF, when the probability law of the input
random vector X is prescribed. More often than not, Y is assumed to
belong to a class of random variables, such as the weighted L? space

LP(Q,F,P) :={ Y:QoR: / [Y(X())]? dP(e)
Q

=/ [yX)IP fx(x)dx < oo } )
A\.N

where 2 < p < o is an integer and y(x) is a member of the associated
LP(AN, BN, fxdx) space of real-valued p-integrable functions. In other
words, L? is a class of all random variables on the probability space
(2, F,P) that have at most finite p-order moments. This is a normed
linear space with the L? norm, defined by

1/p
O ooy = ( /Q y(X(@)? dP(co))

1/p
- < /A OO 750 dx> . ®)

When p = 2, the resultant L? space becomes a Hilbert space endowed
with the inner product

X, zX) 20 p) = /Q ¥ X(@)z(X(w)) dP(w) = /A . y(x)z(x) fx (%) dx
4

and the associated norm

X208 1= /00 YK 2007 = /2 P (X(@)) dP(@)
<
= V/ YHx) fx(x) dx. (5)
AN

It is elementary to show that y(X(w)) € LP(2,F,P) if and only if
y(x) € LP(AN, BN, fxdx). Therefore, convergence of random variables
Y and functions y(x) from these two related L? spaces can be studied
interchangeably.

3. Spline chaos expansion

In this section, the SCE method exploiting measure-consistent B-
splines is described for solving a generic UQ problem subject to the as-
sumptions listed in Section 2. The method is founded on Fourier-spline
expansion of any p-integrable output function of interest.

3.1. Standard univariate B-splines

Let x = (x|, ..., xy) be an arbitrary point in AV. For the coordinate
direction k, k = 1,..., N, define a non-negative integer m, € N, and a
positive integer n, > m;, + 1, representing the degree or order? and total
number of basis functions, respectively. The rest of this section briefly
describes necessary details of univariate B-splines.

For the coordinate direction k = 1, ..., N, define a knot vector

1
& 1= (8 )P = e = GG Skmpemt = i) ©)

2 Degree and order are used interchangeably in this paper.
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on the interval [a;, b;] by a non-decreasing sequence of real numbers,
where & ; is the i;th knot with iy = 1,2,...,n + my + 1. Any knot may
appear up to m; + 1 times in the sequence. Hence, the knot vector can
be rewritten as

M| times M, times
P
Ee=Aar =Crs Skt Chzovvr s Cinrvees
My, -1 times My, times @
Ck,r,(—la~~-,§k,rk—1,§k,rk»--- ’gk.rk = b},

a, = Z:k,l < Ck,z << gk,rk—l < gk,rk = bk’

where ka,/ka Jjx = 1,2,...,r, are r, unique knots, each of which has
multiplicity 1 < M, ;, < m + 1. For more details, readers are referred
to Appendix A of this paper and Chapter 2 of the book by Cottrell
et al. [15]. A knot vector is called (m; + 1)-open if the end knots have
multiplicities m; + 1. In this work, only (m; + 1)-open knot vectors are
considered.

Denote by Blf‘k e, 1) the i, th univariate B-spline with degree m,.
Given the knot vector &, and zero-degree basis functions, all higher-
order B-spline functions on [g,, b,] are defined recursively, where 1 <
k<N,1<i,<n,and 1 < m, < . See Appendix A for an explicit
definition of Bl.kk g, 0

The B-splines encompass a number of mathematically desirable
properties, endowing superb approximating power to numerical meth-
ods. More precisely, they are [15,16]: (1) non-negative; (2) locally
supported on the interval [&;, &k, +m,+1) for all i;; (3) linearly in-
dependent; (4) committed to partition of unity; and (5) pointwise
C>-continuous everywhere except at the knots ¢, ; of multiplicity
M, ; for all j,, where they are P M _continuous, provided that
1< M, <m+1

3.2. Orthonormalized univariate B-splines

The aforementioned B-splines, although they form a basis of the
spline space of degree m;, and knot vector &, are not necessarily
orthogonal with respect to the probability measure fy, (x;)dx, of X,.
A three-step procedure, originally proposed in a past work [12], is
summarized here to generate their orthonormal version.

(1) Given a set of B-splines of degree m,, create an auxiliary set by
replacing any element, arbitrarily chosen to be the first, with
one. Arrange the elements of the set into an n,-dimensional
vector

P = (LB, o (v B, o ()| (8)

i€
comprising the auxiliary B-splines. The linear independence of
the auxiliary B-splines is preserved [12].

(2) Construct an n; X n;. spline moment matrix

—

Gy 1= E[P, (X )PL(X))]. ©)

The matrix G, exists because X, has finite moments up to order
2my, as stated in Assumption 1. Furthermore, it is symmetric and
positive-definite [12], ensuring the existence of a non-singular
n, X n, whitening matrix W, such that

WIW, =Gl (10)

(3) Apply a whitening transformation to create a vector of orthonor-
malized B-splines

Wi (xg) = Wi P (xp), 1
consisting of uncorrelated components

k PR —
W"ksmk’gk(xk)’ iy=1,...,n, k=1,...,N.
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Note that the invertibility of G, does not uniquely determine W,.
Indeed, there are several ways to choose W, such that the condition
described in Step (2) is satisfied [12]. One prominent, relatively stable
option is to invoke the Cholesky factorization G, = Q,(QL, leading to

W, =Q.', (12

where Q, is an n; X n; lower-triangular matrix. As a result, the trans-
formation in Step (3) becomes

y(x) = Q;lPk(xk), 13

where the orthonormal splines are obtained by linear combinations
of auxiliary B-splines. The rest of the paper will use the Cholesky
factorization.

Fig. 1(a) presents a set of six second-order (m = 2) B-spline
functions on [—1,1] with the uniformly spaced knot sequence & =
{-1,-1,-1,-0.5,0,0.5,1, 1, 1}, obtained using the Cox-de Boor formula
from Appendix A. They are non-negative and locally supported but not
orthonormal with respect to the probability measure of the random
variable X defined on [-1,1]. When orthonormalized with respect
to the uniform, truncated Gaussian, and Beta probability measures
supported on [—1, 1], as reported in a prior work [13], the respective
basis functions are illustrated in Figs. 1(b), 1(c), and 1(d). The orthonor-
malized versions depend not only on the spacing of knots but also on
the probability measure of X. Note that after orthonormalization, the
non-constant B-splines are neither non-negative nor locally supported.
However, since the orthormalized B-splines are linear combinations of
standard B-splines, the former inherits all desirable properties of the
latter.

3.3. Multivariate orthonormalized basis

The input random vector X, as it comprises independent compo-
nents, is endowed with a product-type probability measure. There-
fore, multivariate orthonormalized B-splines in N variables are read-
ily constructed from an N-dimensional tensor product of univariate
orthonormalized B-splines, resulting in SCE.

Define three multi-indices i := (i,...,iy) € NV, n := (n,...,ny) €
NN, and m := (m,...,my) € Né", representing the knot indices,
numbers of basis functions, and degrees of splines, respectively, in all
N coordinate directions. Denote by = := {£,..., £y} a family of all N
knot vectors. Associated with i, define an index set

I, :={i=(,....iy) s 1 <iy <m, k=1,...,N} c NV a4
with cardinality
N
|T,| = an. (15)
k=1

For the coordinate direction k, define by
Ioi=r =1 (16)

the number of subintervals corresponding to the knot vector &, with
r, distinct knots. Then the partition defined by the knot sequences &,
k = 1,...,N, splits AN := x,’(\’:][ak,bk] into smaller N-dimensional
rectangles

{X:(xl,...,xN) S <X < Cjans k= 1,...,N}, Je=Ll I,

where ¢ ; is the jith distinct knot in the coordinate direction k. A
mesh is defined by a partition of AV into such rectangular elements.
Define the largest element size in each coordinate direction k by

= max (g,w.k+l -g,w.k), k=1,...,N. 17
Jk=1.. Iy

Then, given the family of knot sequences = = {&,...,&n ),

h:= = 1
(hy,....hy) and h k=T,?.’fN hy (18)
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Fig. 1. A set of B-splines associated with the knot sequence & = {—1,—1,-1,-0.5,0,0.5,1,1,1} and degree m =2 [13]; (a) non-orthonormal basis; (b) orthonormal basis for uniform

measure; (c¢) orthonormal basis for truncated Gaussian measure; (d) orthonormal basis for Beta measure.

define a vector of the largest element sizes in all N coordinates and
the global element size, respectively, for the domain AY. As a result,
the multivariate orthonormalized B-splines in x consistent with the
probability measure fx(x)dx are obtained from the product

N
Vimz® = [[v),, o 0. i=Giy) €1, 19)
k=1
Associated with m = {m,...,my} and & = {§,,...,Ex}, define a
tensor-product spline space
N
o k
Smz 1= gspan {wik’mk'ék(Xk)}ikzl,...,ﬂk ’ 20

where the symbol ) stands for tensor product. It is elementary to show
that {#;,, z(x) : i € 1,,} is a basis of S, =.

When the input random variables X, ..., X, instead of real vari-
ables x|, ..., xy, are inserted in the argument, the multivariate splines
¥im=X), i € I, become functions of input random variables. Their
second-moment properties are [12]

1, i=1:=(,...,1),

E [#m=X)] = {0 i1 21

and
1, i=j,
0, i#j.

E [, (X%}, 2 (X)] = { (22)

3.4. SCE approximation

Given a degree m and a family of knot sequences =, recall that
{(Fim=X) : i € I,} represents the set comprising multivariate or-
thonormalized B-splines that is consistent with the probability measure

fx(x)dx. Then, for any random variable y(X) € L?(2,F,P), 2 < p <
oo, there exists an orthogonal expansion in multivariate orthonormal
splines in X, referred to as an SCE approximation [12]

YmzX) 1= Y Cimz¥imzX) (23)
i€,

of y(X), where the SCE expansion coefficients C;,,, = € R, i € I,, are

defined as

Cimz :=E [YX)W¥m=zX)] := / . VX)W imz®fx®dx, i€, (24)
A

Strictly speaking, the SCE approximation in (23) was originally defined
for y(X) € L*(L2, F,P). Since the probability measure is a finite measure
and 2 < p < oo, LP(Q,F,P) C L%Q,F,P). Therefore, the SCE
approximation is also applicable for y(X) € L?(2,F,P).

According to (23), the SCE of any random variable y(X) € L?(,F,
P) is an orthogonal projection onto the spline space S, - spanning the
set of measure-consistent multivariate orthonormalized B-splines.

3.5. Output statistics and other properties

The SCE approximation y,, z(X) can be viewed as a surrogate of
¥(X). Therefore, relevant probabilistic characteristics of y(X), including
its moments and PDF, if they exist, can be estimated from the statistical
properties and probability law of this approximation.

Applying the expectation operator on y,, =(X) in (23) and recogniz-
ing (21), the mean of the SCE approximation

Hmz =B [y =Crpmz = EpX)]=: p, 1=(1,....,1), (25)

is independent of m and = and the same as the exact mean yu of
the original function, provided that the expansion coefficient Cy ,, = is
determined exactly.
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Applying the expectation operator on [y, =(X) — Cy, =1* and em-
ploying (21) and (22) results in the variance

omz = E Dz~ z]’ = Y s = s SEDX) - =2 07

ie1,
(26)

of the SCE approximation, which is bounded by the exact variance o>

of the original function. Therefore, the second-moment properties of
the SCE approximation are solely determined by the relevant expan-
sion coefficients. The formulae of the second-moment properties for
the SCE approximation are the same as those reported for the PCE
approximation, although the respective expansion coefficients involved
are not. The primary reason for this similarity is rooted in the use of
the orthonormal basis in both expansions.

For high-order moments of y(X) and its SCE approximation yy, =(X),
define their respective skewnesses

_ 3 _(X) — N3
=E[{y(X) ”}],ym,s :=E[{ym() um,z}]’ @
o Om,E

and respective kurtoses

_ 4 _(X) — N4
x::E[{@T”}],KmE =E[{y‘““(a)—_”‘““}] 28)

Unfortunately, no simple formulae from the SCE approximation, as ob-
tained for the second-moment properties, can be derived for skewness
and kurtosis. However, once the SCE approximation is constructed,
any p-order moments can be calculated by analytical or numerical
integration or resampling y,, =(X) in conjunction with Monte Carlo or
quasi Monte Carlo simulation or others.

In the following section, the convergence of SCE-generated p-order
moments, including convergences in probability and in distribution,
will be demonstrated. In this case, the PDF of y(X), if it exists, can also
be estimated economically by resampling y,, =(X), to be illustrated in
numerical examples.

3.6. Computational cost

The computational cost and complexity of SCE approximation with
respect to stochastic dimension N can be judged by examining the cor-
responding numbers of basis functions involved. To do so, consider the
SCE approximation in (23), where the total number of basis functions
is

Ly,

I

N
7 (29)
k=1

Here, the number of basis functions n, in the kth coordinate direction
can be ascertained from the length of selected knot sequence &, and
degree of splines m. If n, =nforall k =1,...,N, then L, £ = On™).
Hence, given a fixed value of n, the computational effort with respect to
N grows exponentially for the SCE approximation. Therefore, SCE like
PCE also suffers from the curse of dimensionality. Having said this, SCE
is still useful for fundamental studies on low-dimensional UQ problems,
to be presented in Section 5.

4. LP convergence of SCE

When using SCE or any other approximations it is important to
provide estimates of the error measure. A convenient approach for such
error analysis entails the modulus of smoothness of the function being
approximated [17-19].
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4.1. Modulus of smoothness

Loosely speaking, the modulus of smoothness describes the struc-
tural properties of the function and, prominently, its smoothness. In
general, the smoother a function is, the faster it is approximated.
Formal definitions of the modulus of smoothness in each coordinate
direction k, followed by a tensorized version, are presented as follows.

Definition 2 (Schumaker [18]). For the interval [a,, ;] in the coordi-
nate direction k, let a;, € N be a positive integer, L?(ay, b;), 2 < p < o,
an unweighted normed space, and 0 < h, < (b, — a;)/a;. Then the a;th
modulus of smoothness of a function y(x,) € LP[a, b;] in the LP-norm
is a function defined by

IHSTEN]

@g, (V3 R Loay b1 = SUP ‘ , h >0, (30)

0<uy <hy, LPlay.b—ayu]

where
A
a _Ma .
Ak y(xy) = g(—l)"k ’< i")y(xk +iuy)

is the o, th forward difference of y at x; for any 0 <u; < hy.
Moreover, for a multi-index a = (ay,...,ay) € NV and any vector
u>0, let

N
a _ A
a¢ =[] 4
k=1

Then, given the unweighted normed space L” (AN ), the a-modulus of
smoothness of a function y(x) € L?(A") in the L?-norm is the function
defined by

@q(y; W) ppany 1= sup ||Aﬁy(x)||Lp(AN y» h>0, 31)
0<u<h *u

where

AIIZU = {XEAN : x+a®u€AN}, a@u = (agUp,...,aNUN)-

4.2. Error analysis

A proposition and two lemmas are presented here to aid in devel-
opment of a mathematical proof for the convergence of SCE.

Proposition 3. For y(x) € LP(AN, BN, fxdx), 2 < p < o, and the spline
space S, = associated with degree m and family of knot sequences =, the
orthogonal projection operator Ps__ : LP(AN, BN, fydx) — Sy, =, defined
by
Ps _y:= Z Cim,z¥im z(X), (32)
' iel,
is linear and bounded.
The proof is omitted here as it is similar to the one presented for an

L? projection operator [12]. Interested readers should consult the prior
work.

Lemma 4 (Holder’s Inequality). Let s,t € [1,00] such that 1/s+ 1/t = 1.
Then for all measurable real-valued functions g, h on AN

||gh||Ll(AN) < ”g”LS(AN) ”h”L!(AN)s 33)

where ||-|| s~ is an L9-norm of the unweighted normed space L9 (AN),
q €[1,].

Lemma 5. Let

LP (AN) = {y:M—»R:/ |y(x)|‘"dx<oo}, 2<p< o, (34)
AN
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be an unweighted normed space of functions y(x) with the standard norm

1/p
“y(x)”LP(AN) = <4/AN yz(X)dX) . (35)

Then, for any function y(x) € LP(AN, BN, fxdx) and fx € L®(AVN), it
holds that

1/p
1Ol e ¥ s < 1900 Loy (150l o, ) (36)

where || - || peo(any is the infinity norm.

Proof. From definition,

N gy 1= Sy OIS0
= |||,V(X)|p fX(X)”Ll(AN)
37)
< |||Y(X)|p|IL1(AN) . ”fX(X)“Loo(AN)

= IO, x5 Lo

where the third line stems from Hoélder’s inequality in Lemma 4 with
the selection of s = 1 and 1 = c0. As || fx(®)|| L= (sn) IS Positive, applying
the pth-root on the last line of (37) yields the desired result. []

Theorem 6. For any y(X) € L?(Q2,F,P), 2 < p < oo, and a chosen
degree m and family of knot sequences =, let {yy, =(X)}ys9, With h =
(hy, ..., hy) representing the vector of largest element sizes, be a sequence
of SCE approximations such that y,, =(X) € L?(2, F,P). Then the sequence
{¥m.zX)}hso converges to y(X) in the pth mean or L” sense, that is,

lim E [|(X) =y s (X)|"] = 0.

Proof. According to Proposition 3, Pg__ is a linear, bounded oper-
ator. Therefore, with the tensor modulus of smoothness in mind, use
Theorem 12.8 of Schumaker’s book [18] to claim that the unweighted
LP-error from the SCE approximation is bounded by

||y(X) - ym,s(x)”Lp(AN) < C,wm+1(J’§ h)LP(ANy 2<p<oo, (38)

where m+1 = (m+1,...,my+1), @1 (y;h) 1 pan) is the (m+1)-modulus
of smoothness of y(x), and C’ is a constant that depends only on m, p,
and N but not on the function y. Combining (37) from Lemma 5 and
(38) produces

||J’(X) - ym,E(X)”Lp(ANvBNYfde) < Comu(i W pany, (39)

as the weighted L?-error from the SCE approximation, where

, 1/p
€ = (1@ =am) )

is another constant that depends on m, p, N, and now also fx. However,
it is still independent of the function y.

Eq. (39) describes an L? distance of a function y to the spline space
Sp.z in terms of the modulus of smoothness of y. From Definition 2, as
the element size i, approaches zero, so does 0 < u;, < h;. Taking the
limit u, — 0 inside the integral of the L? norm, which is permissible
for a finite interval and uniformly convergent integrand, the forward
difference

73
. a _ i %k _
Jim 44y = ¥ P ( l, ) =0,

i=0
as the sum vanishes for any ¢, € N. Consequently, the coordinate
modulus of smoothness

@, V) 101 b = O @S B > 0 Vo €N

Following similar considerations, the tensor modulus of smoothness
@i puvy >0 ash >0 Va e NV,

Therefore, the weighted L?-error

lllll};l] ||y(X) - m,E(X)” LP(AN BN fxdx) =0, (40)
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thus proving the L? convergence of y,, =(X) to y(X) for any degree
m € N(’)V and 2 < p < oo. Moreover, the smoother the function y is,
the faster its modulus or the error vanishes and vice versa. []

4.3. A few remarks

From Theorem 6, the L? convergence implies convergence in L9,
where 0 < ¢ < p. Therefore, the SCE approximation converges in at
most the pth mean. In other words, all moments of y,, =(X) of order up
to and including p converge to the respective moments of y(X), if they
exist.

In addition, as the SCE approximation converges in the pth mean
(2 < p < ), it does so in probability. Moreover, as the expansion con-
verges in probability, it also converges in distribution. This is because
an L? convergence, where p > 2, is stronger than the convergence in
probability or in distribution.

5. Numerical examples

Four sets of numerical examples describing one-, two-, and four-
dimensional output functions of input random variables are presented.
While these functions are elementary, they are relevant, if not ade-
quate, for conducting higher-order moment analysis. In all examples,
the random input X fulfills Assumption 1, and the output function
y(X) is in LP(Q,F,P), p > 2. Therefore, all second- and higher-order
moments studied exist and are finite. The chief objective is to evaluate
the power of the SCE approximation in computing various statistical
moments and/or PDF of y(X) and contrast the SCE results with those
obtained from the existing PCE approximation.

The coordinate degrees for the SCE approximation in the third and
fourth examples are identical, that is, m; = my, = m3; = my; = m (say).
So are the knot sequences for SCE, that is, &, = & = & = & = &
(say) with a uniform mesh of element sizes h; = h, = hy = hy = h.
In all three examples, the spline degree m and/or the element size h
were varied as appropriate. The basis functions for an mth-order PCE
approximation are orthonormal Legendre (Examples 1, 3, and 4) or
Hermite (Example 2) polynomials in input variables, whereas the basis
functions for an SCE approximation, given a degree m and an element
size h, are orthonormalized B-splines generated using the Cholesky fac-
torization of the spline moment matrix. From the uniform or Gaussian
distribution, the spline moment matrix was constructed analytically. All
knot sequences are (m+1)-open and consist of uniformly spaced distinct
knots with even and/or odd numbers of elements, depending on the
example.

For a given function y(X), denote by y, ,(X) := y, =(X) an SCE
approximation with degree m, family of knot vectors =, and largest
element size h, and by y,(X) an mth-order PCE approximation with
the tensor-product truncation. The tensor-product truncation of PCE
is consistent with the tensor-product truncation of SCE, ensuring a
fair comparison between the two approximations. Let afn’h
Ymh *= Ym.z> and K, , := kp, = be the variance, skewness, and kurtosis,
respectively, of the SCE approximation and ”rzn’ Ym»> and k,, the vari-
ance, skewness, and kurtosis, respectively, of the PCE approximation.
Correspondingly, the respective relative errors committed by SCE in
variance, skewness, and kurtosis are

= Op=E»

) ‘gz_ai,h) & = Ky
€2.mh = -2

Y =7
= | m’hl’ €4 m.h = K (41)

s €3mh =

and the respective relative errors perpetrated by PCE in the variance,

skewness, and kurtosis are
2_ 2

[o* =i _r=ml

N elm = N e4vm .

_ | — K,
o2 ¥ ok

(42)

€ m =

Here, 62, 7, and « are the variance, skewness, and kurtosis of the output
function y(X), as defined in (26) through (28).
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In all four examples, the variance, skewness, and kurtosis of the
original function were determined by analytical integration and hence
exactly. The SCE and PCE coefficients, which by definition are one-
to four-dimensional integrals, were calculated analytically whenever
possible or using adaptive numerical integration. While the second-
moment properties of SCE/PCE were calculated using the formula in
(25) and (26), the skewness and kurtosis of SCE/PCE approximations
were calculated by either analytical or adaptive numerical integra-
tion. Therefore, all approximation errors reported in this paper were
determined exactly or very accurately.

Although SCE provides a greater flexibility than PCE in exploiting
low expansion orders, a comparison between the two approximations
pertaining to their accuracy against computational effort is justified.
The computational effort for such a comparison can be made by ex-
amining the total numbers of requisite basis functions from these
approximations. As the numbers of univariate basis functions in all
coordinate directions are identical - say, » for SCE and m + 1 for PCE —
the total number of basis functions from SCE and PCE approximations
of an N-dimensional function are n"V and (m + 1)V, respectively.

5.1. Example 1: two univariate functions and bounded interval

Consider two univariate functions of a real-valued, uniformly dis-
tributed random variable X over the bounded interval [—1,1]:

1
s smooth),
1+5Xx2 ¢ )

yX) = (43)
exp(=3|X]),

(nonsmooth).

They comprise both smooth and non-differentiable (nonsmooth) func-
tions, where the latter is more difficult to approximate by polynomials.
The analysis involved assessing (1) PCE approximations with nine
increasingly large expansion orders m = 1, 2, 4, 8, 12, 16, 20, 24, 30
and (2) linear or first-order (m = 1) and quadratic or second-order (m =
2) SCE approximations, each endowed with six progressively refined
mesh sizes of h = 1, 1/2, 1/4, 1/8, 1/12, 1/16. The knot sequences
include uniformly spaced distinct knots and consist of even numbers of
elements. For SCE, all internal knots are simple knots for the smooth
function. However, for the nonsmooth function, all internal knots are
either simple knots when m = 1 or include a repeated central knot
when m = 2. The repeated central knot engenders aptly enriched basis
functions, acquiring the nonsmooth behavior of the original function.

Figs. 2 and 3 display the comparisons of PCE and SCE approxima-
tions for the smooth and nonsmooth functions, respectively, of Example
1. For the smooth function [Fig. 2(a)], the maps of PCE approximations
improve with m as expected. However, for the nonsmooth function
[Fig. 3(a)], 20th- or higher-order PCE approximations are warranted
for an acceptable map. In contrast, the maps of SCE approximations
for the smooth function, exhibited in Fig. 2(b), look satisfactory, if
not great, even for a linear spline (m = 1), as long as the mesh is
adequately fine (h < 1/4). For the quadratic (m = 2) spline with
h < 1/4, any distinction between the maps of an SCE approximation
and actual function in Fig. 2(c) is indistinguishable to the naked eye.
For the nonsmooth function, the maps of the original function and
its quadratic SCE approximations in Fig. 3(c) for any mesh size are
practically coincident.

All moments of orders of at least four obtained by SCE and PCE exist
and are finite. Figs. 2(d) through 2(f) and Figs. 3(d) through 3(f) present
the errors in variance (erznh, e2), skewness (efnh, e3), and Kurtosis
(eiﬁ w efn ), obtained using SCE/PCE approximatioﬁs of the smooth and
nonsmooth functions, respectively. These errors are plotted against the
requisite numbers of basis functions of SCE/PCE. When the function is
globally smooth, as in Figs. 2(d) through 2(f), the errors caused by PCE
are lower and decay faster than those committed by linear or quadratic
SCE approximations for all three moments, especially when the number
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of basis functions is large. Therefore, existing PCE is adequate and there
is no significant advantage of SCE over PCE approximations for smooth
functions.

However, when calculating the three aforementioned moments of
the nonsmooth function, as depicted in Figs. 3(d) through 3(f), there
are notable differences in results from the SCE and PCE approxima-
tions. Clearly, the SCE approximation, regardless of its degree, commits
much lower errors in variance, skewness, and kurtosis than does the
PCE approximation for the same number of basis functions. Addition-
ally, by placing a repeated central knot (multiplicity of two) in the
knot sequence, the resulting quadratic SCE approximation has become
substantially better than the linear SCE approximation. For all three
moment calculations, the decay rate of error by either version of SCE
is faster than that by PCE. Therefore, the SCE approximation proposed
is desirable when there exist locally prominent and highly nonlinear
stochastic responses, including discontinuity and nonsmoothness.

5.2. Example 2: two univariate functions and unbounded interval

Previously studied by Field and Grigoriu [20], the second example
involves two univariate functions of a real-valued, standard Gaussian
random variable X over the unbounded interval (—co, 00):

@(X), (smooth),
(X)) = (44)

| X1, (nonsmooth).

Here, &) = (1/1/27) JX exp(—=£2/2)dé is the cumulative probability
distribution function of a Gaussian random variable with zero mean
and unit variance. Again, both smooth and nonsmooth functions were
selected. As opposed to Example 1, the unboundedness of random
domain in Example 2 poses a challenge on the integrability of functions
for higher-order moment analysis.

Here, the basis functions of PCE are orthonormal Hermite poly-
nomials that are consistent with the standard Gaussian probability
distribution of the input random variable. In contrast, the basis func-
tions of SCE are orthonormal splines that are consistent with the
truncated Gaussian probability distribution on the bounded interval
[—4, +4] of the input random variable. In addition, for SCE, the output
function was transformed to a function of truncated Gaussian variable
by matching the probability distribution functions of standard and
truncated Gaussian variables. It is necessary to do so because splines
require bounded support by definition. It is best practice to select a
transformation yielding as little difference between the original and
mapped distributions as is possible. Hence, the truncated Gaussian
distribution is an appropriate choice for the transformation.

The analysis involves (1) PCE approximations for eight or nine
distinct expansion orders of m =1, 3, 5, 9, 13, 21, 29, 37 for the smooth
functionorm =2, 4, 6, 8, 12, 16, 20, 24, 30 for the nonsmooth function
and (2) linear (m = 1) and quadratic (m = 2) SCE approximations, each
associated with eight distinct mesh sizes of h = 8/3, 8/5, 8/7, 8/9,
8/13, 8/17, 8/25, 8/33 for both functions. All internal knots are simple
knots for both functions. By selecting odd numbers of elements, there
are no central repeated knots for the nonsmooth function. If the number
of elements were even, then SCE would reproduce the function exactly,
creating an unfair comparison with PCE.

As before, Figs. 4 and 5 display the results of PCE and SCE ap-
proximations for the smooth and nonsmooth functions, respectively,
from this example. The maps of both approximations improve with the
order of PCE or the mesh refinement of the SCE, especially around
the origin. However, as the distance from the origin increases, PCE
yields greater oscillations than SCE. Still, the variance of the smooth
function calculated by PCE, as presented in Fig. 4(d), is more accurate
than that calculated by SCE for a fixed number of basis functions. The
same behavior was observed for the smooth function in Example 1.This
means that for a smooth function with bounded or unbounded random
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Fig. 2. Smooth function of Example 1: y(X) = 1/(1 + 5X?); (a) PCE approximations for m = 1, 2, 4, 8, 20; (b) linear (m = 1) SCE approximations for » = 1, 1/2, 1/4, 1/8, 1/12;
(c) quadratic (m = 1) SCE approximations for h = 1, 1/2, 1/4, 1/8, 1/12; (d) relative errors in variance from SCE (e mn) and PCE (ez,); () relative errors in skewness from SCE

(e3,,,) and PCE (e;,,); (f) relative errors in kurtosis from SCE (e, ,) and PCE (ey,,).

domains, there is no need for SCE, as long as at most second-moment
analysis is concerned. Conversely, when calculating higher-order mo-
ments, such as kurtosis in this example, PCE produces upward trending
divergent solutions, as evidenced by Fig. 4(e). Here, as x — +oo0, the
oscillation from the fourth power of the PCE approximation escalates
faster than the speed at which the Gaussian density function attenuates,
consequently losing integrability when computing the fourth moment.
This numerical result is consistent with the mathematical proof of
divergence for the fourth moment of this function [21]. In contrast,
the kurtosis estimated by SCE - be it linear or quadratic — in the same
figure is convergent, as also proved theoretically in Section 4.
According to Figs. 5(a) and 5(b), the maps of SCE approximations
for the nonsmooth function are stable even when extrapolated beyond
[—4,+4], whereas the maps of PCE approximations again exhibit consid-
erable oscillations for large expansion orders. While these oscillations
do not have yet deleterious effect on PCE’s eventual convergence of
variance [Fig. 5(d)], the decay rate slows down substantially. More

importantly, the oscillations eventually become detrimental for higher-
order moments of PCE, as alluded to earlier, leading to divergence
when estimating skewness and kurtosis in Figs. 5(e) and 5(f). In fact,
all PCE-generated moments of orders greater than four are divergent,
as proved mathematically [21]. In contrast, the skewness and kurtosis
evaluated by SCE approximations converge, albeit slowly owing to the
nonsmoothness of the function. It would be interesting to study any
improvement in the convergence properties of SCE for intervals larger
than [-4, +4] and non-uniform knot sequences.

5.3. Example 3: a nonsmooth bivariate function

Defined on the square A? = [—1,1]?, consider a nonsmooth func-
tion of two uniformly distributed random variables X, and X,, each
distributed over [-1, 1] [13]:

HX, X) = 8(X)) + 8(X) + 28X g(X) 5)
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Fig. 3. Nonsmooth function of Example 1: y(X) = exp(—3|X|); (a) PCE approximations for m = 1, 2, 4, 8, 20; (b) linear (m = 1) SCE approximations for » = 1/2, 1/4, 1/8, 1/12,
1/16; (c) quadratic (m = 2) SCE approximations for h = 1/2, 1/4, 1/8, 1/12, 1/16; (d) relative errors in variance from SCE (e,,,,) and PCE (e, ,); (e) relative errors in skewness
from SCE (e;,,,) and PCE (e, ,,); (f) relative errors in kurtosis from SCE (e,,,,) and PCE (e, ).

where, fori=1,2,

L,
st = {exp(—lox,),

A graph of the function in Fig. 6(a) indicates that y has a flat region
on [-1,0]%, and then it falls off exponentially on both sides. Clearly,
the function is continuous, but it has discontinuous partial derivatives
across the lines x; = 0 and x, = 0. Figs. 6(b), 6(c), and 6(d) present
graphs of a 20th-order PCE, a linear SCE with the mesh size of 4 = 1/10,
and a quadratic SCE with the mesh size of 2~ = 1/10, respectively.
Given such a high order of expansion, the PCE approximation captures
the overall trend well, but it is smoother than the original function. In
contrast, the SCE approximations match the function very accurately,
including replicating discontinuity of partial derivatives across the lines
x; =0and x, =0.

The analysis entails (1) PCE approximations for ten distinct val-

-1<x;<0,
0<x; <1

(46)

ues of m = 1,2,4,6,8,10,12,14,16,20 and (2) linear (m = 1) and
quadratic (m = 2) SCE approximations and ten distinct mesh sizes
of h = 2,1,1/2,1/3,1/4,1/5,1/6,1/7,1/8,1/10. The knot sequences

include uniformly spaced distinct knots and consist of even numbers
of elements. All internal knots are either simple knots when m = 1 or
include a repeated central knot when m = 2.

Figs. 7(a) through 7(c) depict how the relative errors in variance,
skewness, and kurtosis, calculated by various methods, decline against
the number of basis functions. From these figures, the PCE approxima-
tion struggles to provide results as accurate as those obtained by the
quadratic SCE approximation. This is largely due to the nonsmoothness
in the original function y, as also observed in previous examples.
Moreover, the convergence is steeper for quadratic SCE than linear
SCE. However, the linear SCE becomes worse than PCE in calculating
kurtosis when the number of basis functions is large. This is largely
because of the uniform knots employed in such an SCE, mandating ad-
ditional mesh refinements to reveal its true convergence properties. For
instance, with the ad-hoc selection of a non-uniform knot sequence &, =
{-1,-1,-0.5,0,0.01,0.02,0.03, 0.04,0.05,0.06,0.08,0.1,0.15,0.2,0.25,0.3,
0.35,0.4,0.45,0.5,0.75,1,1}, k = 1,2, and requiring 441 basis functions,
the linear SCE achieves the following errors: 1.94 x 10~ for variance;
2.68 x 107> for skewness; and 1.25 x 10~¢ for kurtosis. These errors are
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Fig. 4. Smooth function of Example 2: y(X) = @(X); (a) PCE approximations for m = 1, 3, 5, 9, 21; (b) linear (m = 1) SCE approximations for » = 8/3, 8/5, 8/7, 8/9, 8/13; (c)
quadratic (m = 1) SCE approximations for 4 = 8/3, 8/5, 8/7, 8/9, 8/13; (d) relative errors in variance from SCE (e,,,,) and PCE (e,,); (e) relative errors in kurtosis from SCE

(eqmn) and PCE (eq )

substantially lower than those committed by the 20th-order PCE or
linear SCE with uniform knots (A = 1/10) in Figs. 7(a) through 7(c)
(last points), each comprising 441 basis functions as well. In other
words, an SCE with non-uniform knots is capable of producing more
accurate statistics of the output variable than an SCE with uniform
knots, depending on the function. The topic merits further study.

5.4. Example 4: a nonsmooth function of four variables

In the final example, a nonsmooth function

4 b;
[4X, —2|% + q,
X) = —— a,b;eR, i=1,4, 47
y(X) ]} e a;.b; i (47)
of four independent random variables X;, i = 1,2,3,4, each of which

is uniformly distributed over [0,1], was studied [12]. The function
parameters are as follows: a; =0, a, =1, a3 =2, a4, =4, b = b, =
by = by = 3/5. Clearly, y is a non-differentiable function where the
exponent b; controls its nonlinearity. Compared with 5; = 1, the smaller
the value of the exponent, the more nonlinear the function becomes in

10

the ith coordinate direction. This type of function, especially with unit
exponents, has been used for global sensitivity analysis [22].

Three approximation methods were used for UQ analysis in this
example: (1) linear (m = 1) SCE approximations with two mesh sizes of
h =1/2 and h = 1/8; (2) quadratic (m = 2) SCE approximations with
two mesh sizes of » = 1/2 and h = 1/6; and (3) 2nd- and 8th-order
PCE approximations. Here, the two different mesh sizes of SCE and
the two expansion orders of PCE represent their low-fidelity and high-
fidelity approximations. In SCE calculations, there are even numbers of
elements for the chosen meshes with repeated central knots (x; = 0.5)
in each coordinate direction. All distinct internal knots are uniformly
spaced.

Table 1 lists the relative errors in calculating the variance, skewness,
and kurtosis of y(X) by the aforementioned three methods. The numbers
of basis functions required for the low- and high-fidelity computations,
defined by two respective variants of SCE and PCE approximations, are
3* = 81 and 9* = 6561, respectively. Therefore, the approximation
quality of PCE and SCE can be assessed for the same computational
effort. From Table 1, regardless of the fidelity of computations, the
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Fig. 5. Nonmooth function of Example 2: y(X) = |X|; (a) PCE approximations for m = 2, 4, 8, 16, 24; (b) linear (m = 1) SCE approximations for » = 8/3, 8/5, 8/7, 8/9, 8/13;
(c) quadratic (m = 1) SCE approximations for 4 = 8/3, 8/5, 8/7, 8/9, 8/13; (d) relative errors in variance from SCE (e,,,,) and PCE (e,,); (e) relative errors in skewness from
SCE (es,, 1) and PCE (e3,0); (f) relative errors in kurtosis from SCE (eq i) and PCE (eqn)-

errors in all three moments committed by SCE (linear or quadratic)
are orders of magnitudes lower than those perpetrated by PCE. This
is mainly due to the non-differentiability of y(X).

Since there does not exist analytical means to determine the prob-
abilistic characteristics of y(X) and its surrogates, the PCE and SCE
approximations once built were re-sampled to generate their associ-
ated PDFs. In addition, crude MCS of the original function was also
performed to obtain a reference PDF. The sample sizes for crude MCS
and re-sampling are 100,000. The PDFs obtained from the PCE and
SCE approximations and crude MCS are depicted in Fig. 8. The results
indicate that low-order SCE approximations [Figs. 8(b) or 8(c)] with a
sufficiently refined mesh also yield more accurate estimates of PDF than
a high-order PCE approximation [Fig. 8(a)] for nonsmooth functions.

6. Discussion

While the paper is aimed at calculating higher-order moments of
SCE, its application is limited to solving low-dimensional UQ problems

11

Table 1
Relative errors in calculating the variance, skewness, and kurtosis of the nonsmooth
function in Example 4 by various PCE and SCE approximations.

(a) mth-order PCE

m No. of basis Cm em em

2 81 0.15741175 3.166336594 0.60883659
8 6561 0.01751586 0.35450758 0.03748577
(b) Linear SCE (m=1)

h No. of basis en €51 ey

172 81 0.02478277 1.3184678 0.14332562
1/8 6561 0.00140325 0.04716611 0.01266868
(¢) Quadratic SCE (m =2)

h No. of basis e €30 €0

172 81 0.00375152 0.15045514 0.04509998
1/6 6561 0.00055234 0.01699404 0.00612819
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SCE (m=1,h=1/10)

Fig. 6. Graphs of functions in Example 3: (a) exact; (b) 20th-order PCE (c) linear SCE with h = 1/10; (d) quadratic SCE with h = 1/10;.

(N < 10). This is essentially because of the tensor-product structure in
forming the multivariate basis of SCE. For high-dimensional problems
(N > 10), SCE becomes computationally prohibitive, raising the need
for SDD, as briefly mentioned in the Introduction section. However,
as SDD is built on dimensionwise decomposition and involves only
low-dimensional tensor products of univariate basis functions, the con-
vergence properties of SCE should extend to SDD as well. Therefore, the
theoretical and numerical results of SCE presented here are relevant for
a general UQ analysis.

The refinements of SCE in the Example section are predicated on
knot sequences with uniform spacing in all coordinate directions. As a
result, the resulting basis is not necessarily maximally empowered to
capture locally abrupt changes in stochastic responses, if they exist, in
an efficient manner. Therefore, future endeavors employing optimally
selected non-uniform knot sequences, as studied by the author’s group
in the context of SDD [23], should be undertaken for calculating
higher-order moments of SCE more effectively.

For the quadratic SCE approximations in some examples, repeated
central knots have been used to recognize the lack of differentiability
in the output function. In doing so, the resulting basis functions of
SCE become equipped to capture accurately the nonsmooth behavior
of the original function. In practice, such manipulations of the knot
sequences are not possible in general if the presence or locations of
nonsmoothness are not known a priori. Therefore, an adaptive scheme
for automatically detecting possible nonsmoothness and their locations
should be developed in conjunction with the SCE approximation.

It is well established over the last few decades that PCE works well
for a wide range of UQ problems in engineering and applied sciences.

12

This is chiefly because the underlying performance functions are glob-
ally smooth, explaining why PCE’s globally supported polynomials are
well-suited to approximate such functions, resulting in accurate and ef-
ficient estimates of second-moment statistics. However, for multi-scale
or multi-component complex systems involving multiple failure modes,
one may face nonsmooth or even discontinuous functions in which the
behavior of PCE has not been studied extensively. Therefore, future
works on higher-order moment analysis by SCE and PCE for large-
scale, practical problems featuring smooth and nonsmooth functions
are warranted.

7. Conclusion

A UQ analysis entailing high-order moments calculated from SCE
approximations of a real-valued, p-integrable (2 < p < o0) output
function of input random variable was conducted. The approximation
quality of SCE was assessed in terms of the modulus of smoothness
of the function. When the largest element of the mesh from SCE
approaches zero, the modulus of smoothness vanishes, resulting in the
L? convergence of SCE to the correct limit. Therefore, the moment of
SCE of an order up to and including p converges to the exact moment
for any degree of splines as the element size decreases. Moreover, the
weaker modes of convergence, such as those in probability and in
distribution, transpire naturally.

Numerical computations of moments by SCE and PCE, conducted
for a collection of simple yet relevant examples, indicate the following:
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(1) When the output function is smooth or nonsmooth and the
random domain is bounded or unbounded, SCE and PCE both
provide convergent estimates of the variance. However, their rel-
ative convergent rates may differ, depending on the smoothness
of the function.

When the function is globally smooth, PCE is likely to provide
more efficient estimates of variance than SCE for the same com-
putational effort. However, for a nonsmooth function, the trend
reverses, and the convergence properties of PCE in estimating
variance may degrade appreciably.

Higher-order moments, such as skewness and kurtosis, calcu-
lated using SCE converge for all examples considered in this
study. In contrast, moments of PCE of orders larger than two may
or may not converge, depending on the regularity of the output
function or the probability measure of input random variables.

(2)
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Appendix. Univariate B-splines

Let x = (x;, ..., xy) be an arbitrary point in AN, For the coordinate
direction k, k = 1,..., N, define a positive integer n, € N and a
non-negative integer m; € N, representing the total number of basis
functions and polynomial degree, respectively. The rest of this appendix
briefly describes paraphernalia of univariate B-splines.

A.1. Knot vector

In order to define B-splines, the concept of knot vector, also referred
to as knot sequence, for each coordinate direction k is needed.

Definition 7. A knot vector £, for the interval [a;,b,] C R, given
n, > my > 0, is a vector comprising a non-decreasing sequence of real
numbers

. ny+mp+1
S = {8k i o1

={ar =& 182 - Skmprmer1 = bi)s

(A1)
Sht Sk S S & rmtts

where ¢, ; is the i th knot with i, = 1,2,...,n; + m; + | representing

the knot index for the coordinate direction k. The elements of &, are

called knots.

According to (A.1), there are a total of n; +m, + 1 knots, which may
be equally or unequally spaced. To monitor knots without repetitions,
denote by ¢ ..., ¢, the r, distinct knots in &, with respective multi-

plicities M, koo M ke Then the knot vector in (A.1) can be expressed
more compactly by
M| times M, times
Ee=Aar =Crs Skt Chzsve s Cis vee s
My, - times My, times (A.2)
s
Chorg=ts o+ > Skome—15 Sl 5 S, = by},

=Gy <G < <Gyt <&pp = by

14

Probabilistic Engineering Mechanics 77 (2024) 103666
which consists of a total number of
> My =ncm ] (A.3)
Jie=1
knots. As shown in (A.2), each knot, whether interior or exterior,
may appear 1 < M, ; < m + 1 times, where M, ; is referred to
as its multiplicity. The multiplicity has important implications on the
regularity properties of B-spline functions. A knot vector is called open
if the end knots have multiplicities m; + 1. In this case, definitions of
more specific knot vectors are in order.

Definition 8. A knot vector is said to be (m; + 1)-open if the first and
last knots appear m, + 1 times, that is, if

my+1 times M, times
——
5k = {ak = CkJ, ,Ck,lagkyzy aé,sz, cees
My -1 times my+1 times (A.4)
r Y
Cire=1 -2 Skt Chorr -+ Sk, = bicks

@ =Gy <Go < <Gpm1 <&y = by

Definition 9. A knot vector is said to be (m; + 1)-open with simple
knots if it is (m, + 1)-open and all interior knots appear only once, that
is, if

my+1 times my+1 times
—— ——
Er={a =Gt Gt Gz Chrpmts Sk -+ > S, = bichs (A.5)

@ =81 <Ga < <Gt <liyy = bie

A (m; + 1)-open knot vector with or without simple knots is com-
monly found in applications [15].

A.2. B-splines

The B-spline functions for a given degree are defined in a recursive
manner using the knot vector as follows.

Definition 10. Let £, be a general knot vector of length at least m; +2
for the interval [ay, b;], as defined by (A.1). Denote by B¥ (xk) the
i th univariate B-spline function with degree m; € N, for tfle Coordinate
direction k. Given the zero-degree basis functions,

Lo S S %k <&piptrs
ng( o = {0, k= k (A.6)

otherwise,

for k = 1,..., N, all higher-order B-spline functions on R are defined
recursively by
&~ Skiy
’k My -fk( K= §k1k+mk _gk[k ’k mg— l-fk(xk)

'fk,ik+mk+1 — Xk P

ik+],mk—1,§k(xk)’ (A7)

‘):k,ik+mk+l - fk,i,ﬁl

where 1 <k < N, 1<i, <n, 1< m <o, and 0/0 is considered as
zero.

The recursive formula in Definition 10 was derived by Cox [24] and
de Boor [16].
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