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Abstract

Previously we demonstrated that the magnetorotational instability (MRI) grows vigorously in eccentric disks,
much as it does in circular disks, and we investigated the nonlinear development of the eccentric MRI without
vertical gravity. Here we explore how vertical gravity influences the magnetohydrodynamic (MHD) turbulence
stirred by the eccentric MRI. Similar to eccentric disks without vertical gravity, the ratio of Maxwell stress to
pressure, or the Shakura—Sunyaev o parameter, remains ~10~2, and the local sign flip in the Maxwell stress
persists. Vertical gravity also introduces two new effects. Strong vertical compression near pericenter amplifies
reconnection and dissipation, weakening the magnetic field. Angular momentum transport by MHD stresses
broadens the mass distribution over eccentricity at much faster rates than without vertical gravity; as a result,
spatial distributions of mass and eccentricity can be substantially modified in just ~5 to 10 orbits. MHD stresses in
the eccentric debris of tidal disruption events may power emission 2 1 yr after disruption.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamical simulations (1966); Accretion (14); Black hole

physics (159); Gravitation (661)

1. Introduction

Much has been learned about the dynamics of disks whose
material travels on circular orbits. In disks with enough
ionization to support electrical conductivity, the internal stress
transporting angular momentum outward and allowing material
to drift inward is primarily magnetic: the fast-growing
magnetorotational instability (MRI) stirs up magnetohydro-
dynamic (MHD) turbulence, and orbital shear correlates the
radial and azimuthal components of the turbulent magnetic
field to produce this stress (Balbus & Hawley 1991, 1998;
Hawley & Balbus 1991). The nonlinear development of the
MRI has been extensively explored, both in shearing-box and
global-disk settings (e.g., most recently, Wissing et al. 2022;
Zier & Springel 2022; Jacquemin-Ide et al. 2024; Sandoval
et al. 2024).

However, disks might also be eccentric. One common cause
is external gravitational perturbation: disks acquire forced and
free eccentricities as a result of secular gravitational interaction
with eccentric binaries (e.g., Murray & Dermott 1999), and
nonaxisymmetric components of gravity resonantly amplify
small initial eccentricities (Whitehurst 1988; Lubow 1991).
Internal processes such as viscous overstability (Kato 1978;
Lyubarskij et al. 1994; Ogilvie 2001) can also give rise to
eccentricity. Alternatively, disks can be created eccentric in
multiple ways: outgassing from planetesimals (Trevascus et al.
2021), or tidal disruption of stars (Piran et al. 2015; Shiokawa
et al. 2015; Svirski et al. 2017) and molecular clouds (e.g.,
Bonnell & Rice 2008) by supermassive black holes. There is
observational evidence for eccentric disks as well, such as
asymmetric lines in white dwarfs (e.g., Ginsicke et al. 2000),
and asymmetric broad emission lines in active galactic nuclei
(e.g., Eracleous et al. 1995; Tucker et al. 2021) and tidal
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disruption events (TDEs; e.g., Guillochon et al. 2014; Liu
et al. 2017).

In magnetized eccentric disks, MHD stresses may out-
compete hydrodynamic forces in directing disk evolution.
Analytic treatment of stresses in eccentric disks (Ogilvie 2001;
Lynch & Ogilvie 2021a, 2021b) is limited in applicability
because the prescriptions it relies on, even when applied to
circular disks, may not adequately represent the nature of
turbulent MHD stresses pumped by the MRI. Recent years
have seen exploration of the MRI in eccentric disks. The
studies published so far all assume unstratified disks, that is,
disks unaffected by vertical gravity. Chan et al. (2018) showed
analytically that the MRI is a robust instability that continues to
be active up to extremely high eccentricities. Chan et al. (2022)
conducted MHD simulations to examine how the variation of
orbital properties around the disk affects the nonlinear
evolution of the MRI in moderately eccentric disks. These
simulations revealed that the MRI develops much like in
circular disks, but with noticeable local departures. Interest-
ingly, the simulations of Dewberry et al. (2020) suggested that
sharp changes in eccentricity or orientation over radius may
suppress the MRI.

However, the absence of vertical gravity in unstratified disks is
unphysical. Vertical gravity changes how the gas is distributed,
modifying the pressure distribution even in hydrodynamic disks
and altering how MHD operates in magnetized disks. For these
reasons, this article investigates the behavior of the eccentric MRI
in disks subject to vertical gravity, also known as stratified disks.
Vertical gravity affects eccentric disks in ways not possible in
circular disks. As material in an eccentric disk moves closer and
farther away from the central object, vertical gravity strengthens
and weakens, and the disk collapses and puffs up accordingly.
Vertical gravity varies on the orbital timescale, which is comparable
to the vertical sound-crossing timescale, so the disk is never in
vertical force balance. The amplitude of this vertical disk breathing
can be quite large even at moderate eccentricities (Ogilvie & Barker
2014; Ryu et al. 2021; but see Lynch & Ogilvie 2021b).
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Three-dimensional effects can manifest themselves hydrodynami-
cally (Ogilvie 2008; Teyssandier & Ogilvie 2016; Ryu et al. 2021);
as we shall show here, MHD effects can be considerably stronger.

Our previous unstratified simulations (Chan et al. 2022) were
novel in that, although their dynamics were purely Newtonian,
they took advantage of the coordinate flexibility afforded by a
general relativistic (GR) formulation to implement a coordinate
system tailored to the eccentric disk shape. Here we build on
that framework: the strong height modulation makes a stratified
disk challenging to resolve with traditional grids, so we
generalize the method to devise a customized grid with variable
cell height.

We explain our calculational approach in Section 2; a high-
level synopsis is given in Section 2.1. Our results are collected
in Section 3, prefaced by a summary of key findings in
Section 3.1. We discuss these results in Section 4 and conclude
in Section 5.

2. Methods
2.1. Overview

We study the nonlinear development of the MRI in a
stratified disk with a moderate eccentricity that is uniform
across the disk. This work extends the unstratified simulations
in Chan et al. (2022) by adding vertical gravity. The disk height
responds to the varying vertical gravity along the orbit; our
goal is to see how this disk breathing influences MHD
turbulence. For a uniformly eccentric disk, midplane orbits are
divergence-free and surface density is constant along any orbit;
the lack of horizontal compression makes this kind of disk
useful for isolating the effects of vertical gravity.

It is instructive to situate our disk in the context of previous
studies of eccentric disks. Two fundamental characteristics of
an eccentric disk are its eccentricity and aspect ratio, the latter
being the ratio of vertical scale height to orbital length scale.
Our disk is moderately eccentric and geometrically thin,
resembling those studied analytically by, e.g., Ogilvie &
Barker (2014). Ryu et al. (2021) found that vertical gravity
promotes shocks in the case of high eccentricity and large
geometrical thickness, but neither criterion for shocks is
satisfied in our disk.

We assume the gas is adiabatic with an adiabatic index of
v = 5, in contrast to the almost isothermal equation of state
used in Chan et al. (2022). A stiffer equation of state reduces
the degree of disk breathing, making the problem more
numerically tractable, but has little effect on the character of
MHD turbulence. We also assume that ideal MHD applies.

Despite the Newtonian nature of the problem, we follow
Chan et al. (2022) and adopt a general relativistic MHD
(GRMHD) formulation so we can use the coordinate freedom
that comes with it to make our grid better match the geometry
of a stratified eccentric disk. One reason we employ the finite-
volume GRMHD code Athena++ (White et al. 2016; Stone
et al. 2020) is that it readily supports arbitrary coordinate
systems. In keeping with GR tradition, we adopt gravitational
units, that is, the central mass M is unity, velocities are in terms
of the speed of light ¢, and lengths are in gravitational radii
GM/c*.

As Chan et al. (2022) argued, the balance between the
competing desires to have Newtonian dynamics and to limit
truncation errors leads us to consider a disk with a
characteristic semimajor axis of a, =200. To allow the MRI
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ample time to grow, the disk should not evolve too rapidly
under hydrodynamics; therefore, we consider a moderate
eccentricity of e =0.4, a bit smaller than the e =0.5 used in
Chan et al. (2022). These choices imply a characteristic
semilatus rectum A, = a,(1 — e?) = 168. In the same vein, we
assign to our initial disk a small sound speed, equivalent to a
Mach number of /30 at pericenter.

2.2. Equations

We follow the conventions of Gammie et al. (2003). The
metric signature is (—, +, +, +), Greek indices range over {0,
1, 2, 3}, Latin indices range over {1, 2, 3}, and FEinstein
summation is implied. The equations of GRMHD are

(=)' pu'l + 8;[(—g)"*pu’] = 0, (1)
(=)' T)] + Oil(—9)\/*T]] = (=)' /*T/TY,, (2
O[(—g)"/?+F"] + 9,[(—g)" /> F] = 0. ©)

Here ¢ is the coordinate time, p is the comoving mass density,
u' is the velocity, g is the determinant of the metric g, and
'}, is the Christoffel symbol of the second kind. From the
Hodge dual xF*" of the electromagnetic tensor F*"” we obtain
the magnetic field B’ = «F™ and the projected magnetic field

b" =u,xF"". Lastly, the stress—energy tensor is

po= 5+ Lo

+ (p + bt b(,b”)u“u” — bR, ()
where p is the gas pressure. Our analysis makes use of the

current, which is not tracked explicitly by the code but can be
obtained in postprocessing from the expression

J =N F = N (e"uqby), o)

with €#"°7 the contravariant Levi—Civita tensor.

2.3. Eccentric Coordinate System

We employ a three-dimensional coordinate system based on
conventional cylindrical coordinates, modified to conform to
the gas motion in an eccentric disk. The coordinate curves in
the midplane are particle orbits with the initial disk eccentricity,
and the expansion and contraction of the vertical coordinate
match that of the initial disk. Using such a coordinate system
has multiple benefits. It is more efficient than the standard
cylindrical coordinate system because the simulation domain
fits more tightly around the disk, and because there is no need
to allocate cells to regions far away from the disk. Cells are
shorter near pericenter where the disk is thinner and taller near
apocenter where the disk is thicker, so the level to which disk
mass is resolved is more azimuthally uniform. Streamlines are
exactly parallel to grid lines in the initial disk and remain
roughly so over most of the orbit even after the disk has
evolved differentially in eccentricity and orientation; the lower
obliqueness of the streamlines relative to the grid reduces
numerical dissipation and numerical artifacts, particularly
during the early-time linear stage of the MRI. The initial
velocity and magnetic field can also be set in a much cleaner
fashion, as we shall see in Section 2.4.
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Figure 1. Coordinate surfaces of constant ¢ for one instance of the eccentric
coordinate system.

The eccentric coordinate system is derived from the
cylindrical coordinate system in two orthogonal steps: first,
by substituting cylindrical coordinate surfaces with elliptical
ones that match the initial disk eccentricity; second, by
deforming horizontal coordinate surfaces into oblique conical
ones that approximately track disk breathing. The intersection
of the elliptical coordinate surfaces with the midplane are orbits
followed by material in the initial disk.

The eccentric coordinate system is parameterized by (e, A\y),
where e is the initial disk eccentricity and A, is the
characteristic semilatus rectum of the orbit along which we
compute the expected amplitude of disk breathing for use in
constructing the grid. One instantiation of the eccentric
coordinate system is illustrated in Figure 1.

More explicitly, let (¢, R, ¢, z) be cylindrical coordinates. We
assume the weak-gravity limit, so the only nonzero components
of the metric are

& = —(1 +29), (6)
Srr = 1L, @)

8 = R, ®)

8. = 1. )

Chan et al. (2022) proved that closed elliptical orbits exist at all
semilatera recta for the quasi-Newtonian potential

DR, z) = —1/[(R? + /2 + 2). (10)

Eccentric coordinates (¢, In A\, ¢, ¢) are derived from cylind-
rical coordinates through the coordinate transformation

R = \/(1 + ecos ), (11
o =0, (12)
7= ( Hile; P)N/ As (13)

We can reuse ¢ for the new coordinates without ambiguity
because it does not enter into the coordinate transformation.
Logarithmic scaling in the semilateral rectus direction is built
into the eccentric coordinate system. The rest of this article will
not mention the (In \)-coordinate itself; measurements along
that direction will be converted to A first for ease of
comprehension. A caveat is that whenever a component is
labeled with J, it is understood that the (In A)-coordinate is
referred to. Grid breathing is controlled by the arbitrary grid
height function H,, which should reduce to a constant function
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when e=0. The metric and connection are listed in
Appendix A.

One way of fixing H, utilizes a reference gas column that
mimics the initial disk. The column obeys the same adiabatic
equation of state p o< p” as the disk, is isentropic for simplicity,
and has surface density >, and entropy typical of the initial
disk at the characteristic orbit A= \,. As we shall see in
Appendix C, the surface density of our initial disk depends
only on )\, so the choice of X, is straightforward. However,
because our initial disk is not in general isentropic, the
proportionality constant K, in the equation of state can be only
loosely related to the initial disk entropy, and Appendix C will
explain how it is picked. The column so constructed is placed
at different ¢ along the characteristic orbit, and the scale height
of the column under vertical force balance is our H,(¢). The
details are relegated to Appendix B. Because the location of the
column is determined by (e, A, ¢) and the gas in the column is
parameterized by (v, X, K,), the full dependence of H, is
H*(e’ )‘*7 Y Z*’ K*; ¢)

We emphasize that the choice of H, is arbitrary and has no
physical implications. The breathing of our grid captures only
part of the breathing of the actual disk: our H, is based on an
adiabatic hydrostatic column, whereas vertical motion in an
actual disk exhibits inertia, and the accumulation of dissipated
energy can also puff up the disk. We could use more elaborate
methods to determine H, (e.g., Ogilvie & Barker 2014), but
our approximate prescription has the advantage that H, and its
derivatives have simple expressions.

2.4. Initial Condition

We would like to start our simulation with an eccentric disk
as close to force balance as possible, both horizontally and
vertically. To do so, we deform a circular disk that is strictly in
hydrostatic equilibrium into an eccentric disk that is
approximately so. The result is exhibited in the left column
of Figure 2. What follows is a sketch of the deformation
procedure; technicalities are left to Appendix C.

Our starting point is a circular disk. The density maximum of
the disk is along R = A, where )\, = 168 is the characteristic
semilatus rectum of the eccentric disk we would like to arrive
at. We match the circular and eccentric disks in semilatus
rectum in order that the two disks have the same characteristic
specific angular momentum. The circular disk is both
horizontally and vertically thin: starting from the density
maximum, the density falls by one e-folding if we move to
R=~0.86 \, or R~ 1.18 \, along the midplane, or to |z| ~9
vertically. The Mach number of the disk is ~30.

The circular disk is converted into an initial condition. The
initial condition uses a realization of the eccentric coordinate
system adapted to the disk, with e=0 and a constant
H,(e =0; ¢) matched to disk conditions. We do not use the
initial condition directly; instead, with the circular disk already
set up in coordinate space, we turn it eccentric simply by
changing e of the coordinate system to some finite value. This
reinterpretation of the initial condition simultaneously makes
H . (e; ¢) a function of ¢. Because the density distribution of the
disk follows coordinate surfaces, the poloidal cross section of
the disk expands and contracts over azimuth the same way the
grid does. Furthermore, the varying cross section implies the
velocity should have a nonzero vertical component, which our
procedure guarantees because the velocity stays parallel to
coordinate curves.
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Figure 2. Density in the top three rows and surface density in the bottom row.
The top row shows midplane slices of density, the middle two rows show
vertical slices of density along In(\/\y) = F0.2, respectively, on either side
of the characteristic orbit, and the bottom row shows surface density. The
boundaries of the simulation domain are traced by thin gray curves. For the top
and bottom rows, the ellipses along which vertical slices are taken are indicated
by faint white ellipses. For the middle two rows, the abscissa is the physical arc
length along the orbit measured from ¢ = 0, the ordinate is the physical height
z above the midplane, and the ordinate is more stretched than the abscissa. The
two arrows in the top two rows indicate how ¢ is defined: the tick is where
¢ = 0 and the arrow points in the direction of increasing ¢.

We paint on the eccentric disk a dipolar magnetic field
derived from a magnetic potential whose only nonzero
component is

I

A¢()‘, ¢, C) X (_g)]/zmax{os P — P I;[\}agfp(A,v ¢7 CI)};
(14)

for intuition, é? = é¥ is a one-form that can be visualized as a
family of poloidal planes. Including the metric determinant in
the magnetic potential makes the magnetic field strength more
uniform over azimuth, and using the maximum density in the
same poloidal slice instead of the global maximum ensures all
poloidal planes are magnetized. The proportionality constant is
picked such that the volume-integrated plasma beta, or the
ratio of volume-integrated gas pressure to volume-integrated
magnetic pressure, is 100. After the magnetic field is added, we
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reduce the gas pressure so as to keep the total pressure the same
as before, and we perturb the gas pressure at the 0.01 level to
seed the MRI.

2.5. Simulation Domain, Boundary Conditions, and Other
Numerical Concerns

The simulation domain occupies the volume [exp(—1) Ay,
exp() Ay] X [—m, ] x [—6, 6]in (), ¢, (). The vertical extent
at the characteristic orbit needs to be six times the scale height of
the reference column to capture the gas and magnetic field at high
altitudes. The grid is linear in coordinate space in all three
directions, the cell count is 640 x 960 x 270, and the cell aspect
ratio is ~1:2:1. The simulation formally terminates at t=121,,
where ty = Zﬁai/ 2(ax +2) is the orbital period at the
characteristic orbit, but we allow the simulation to run for 0.5z,
more so we can perform time averages centered around the end.
This simulation duration is sufficient for the MRI to reach
nonlinear saturation, but it is much too short for the parametric
instability of Papaloizou (2005a, 2005b) to appear.

The boundary conditions are outflow in the A- and (-
directions and periodic in the ¢-direction. The A-boundaries
copy all quantities to the ghost zone, zero the A-component of
the velocity if it points into the simulation domain, and zero the
¢- and (-components of the projected magnetic field always.
The (-boundaries are implemented analogously. Although the
magnetic field is not strictly divergence-free in the ghost zone,
the finite divergence does not propagate into the simulation
domain.

Lastly, when the recovery of primitive variables fails, we
carry over primitive variables from the previous time step.

3. Results
3.1. Summary

In terms of global gas properties, the stratified disk behaves
much like the unstratified eccentric disk in Chan et al. (2022)
with a dipolar magnetic topology: gas spreads both inward and
outward over the course of the simulation, as we can see in
Figure 2.

During this time, the stratified disk as a whole remains
eccentric, but eccentricity rises at small radii and falls at large
radii as MHD stresses transport angular momentum outward.
The inner parts of the disk undergo prograde apsidal precession
during ¢ < 2 1, but this precession then ceases.

An important difference between the stratified disk and our
earlier unstratified one is that the stratified disk puffs up over
time. In the stratified case, vertical expansion is due to the
adiabatic equation of state retaining the internal energy created
by dissipation of orbital energy. Figure 3 shows an increase in
internal energy by a factor of ~4 to 5 by the end of the
simulation. In the unstratified case, the isothermal equation of
state prevents any such internal energy retention, and the
absence of vertical gravity means vertical hydrostatic balance is
irrelevant in any event.

In terms of magnetic properties, we consider the ratio a,, of
Maxwell stress to pressure, which is the Shakura & Sunyaev
(1973) « parameter but ignoring for simplicity the contribution
from the Reynolds stress. The stratified disk resembles its
unstratified counterpart in that o, portrayed in the bottom row
of Figure 4, is consistently positive in one half of the disk and
negative in the other half.
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Figure 4. Mass-weighted vertical averages of plasma beta in the top row and
Maxwell-only alpha parameter in the bottom row. The boundaries of the
simulation domain are traced by thin gray curves and the characteristic orbit
A = )\, is indicated by a faint black ellipse.

Figure 3 charts how the magnetic energy per mass surges to
a peak value ~200 to 300 times the initial value during the first
half of the simulation, then drops by a factor of ~3 to 4 during
the second half. Weaker magnetization at late times is
accompanied by a smaller «,,. This magnetic field decay may
be partly due to reconnection driven by compression resulting
from the strong vertical gravity near pericenter.

3.2. Gas Behavior

3.2.1. Radial and Vertical Expansion

As Figure 2 makes clear, the disk expands dramatically both
radially and vertically over the 12 orbits of the simulation. One
way to quantify this spreading is to note that, at t = 0, ~86% of
the mass is contained within |In(A/Ay)] < 0.2, or 138 <
A <205, whereas the same fraction of the mass at =121,
is found within | In(A/A4)| < 0.53, or 99 < A < 285. In other
words, the disk is roughly two to three times wider both inward

and outward.
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Figure 5. Mass-weighted vertical averages of instantaneous eccentricity. The

boundaries of the simulation domain are traced by thin gray curves and the
characteristic orbit A = ), is indicated by a faint black ellipse.

The vertical expansion seen in the middle rows of Figure 2
is the product of internal energy accumulation: Figure 3
demonstrates that the ratio of volume-integrated gas pressure to
volume-integrated density of the stratified disk rises steadily
at t231,, albeit at slower rates toward the end. For the
unstratified disk with a dipolar magnetic topology, the same
diagnostic scarcely changes at all, as expected from the use of
an isothermal equation of state.

3.2.2. Eccentricity and Orientation

To quantify eccentricity evolution, we compute the
instantaneous eccentricity €, which is the eccentricity of the
orbit a gas packet would follow given its velocity if there were
no forces other than gravitational. The accent distinguishes this
quantity from e of the coordinate system. We use a definition
similar to Chan et al. (2022), but to account for the effect of
vertical gravity, we first project the velocity to the midplane
before calculating &; Appendix D describes how this is done.
Figure 5 depicts the mass-weighted vertical average of the
instantaneous eccentricity:

@) = [dc(=g) 0 | [dc=g)7p.

Henceforth when mentioning averages like this, we drop for
brevity the subscript summarizing how the average is
performed. At the start of the simulation, (€) ~ 0.4 over the
entire disk. Small deviations indicate non-Keplerian rotation,
present because the circular disk on which the initial eccentric
disk is based features non-Keplerian rotation due to pressure
gradients. At the end of the simulation, 0.3 < (¢) < 0.4 near
the characteristic orbit, 0.3 < (€) < 0.5 inside it, and
0.2 < (&) < 0.4 outside. The most extreme (€) is found in
regions farthest away from the characteristic orbit, both inside
and outside, but the great majority of these regions have very
low density according to Figure 2.

Figure 6 depicts the mass distribution over specific binding
energy Ey, =1 — E and specific angular momentum L, where E
is the specific energy inclusive of rest energy. At all times, In L
is linearly correlated with In E}, to a good approximation. MHD
stresses transfer L from the inner parts of the disk with lower
initial L to the outer parts with higher initial L. Compared to the
large fractional change in L?, the fractional change in Ej
is much smaller. The net result is that the slope of the
correlation steepens from an initial value of —1 t0 ~—0.6 at
t=121,, with a slightly steeper slope for low-L material.

5)
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Figure 6. Mass-weighted two-dimensional histograms of specific binding
energy Ey, and specific angular momentum L. The histograms are normalized
by the initial mass and the axes are logarithmic. The small faint circle marks
the E, and L of the characteristic orbit A = \,. The faint lines trace, in
order from top to bottom, the combinations of E, and L for which
e € {0, 0.3, 0.4, 0.5, 0.6, 0.7}; the histograms are practically zero above the
thick ¢ = 0 line.

Because E L2 ~ %(1 — &%) if E, < 1, eccentricity rises in the
inner parts and falls in the outer parts.

Another view of the eccentricity evolution is provided by
Figure 7, which compares the mass distribution over é of the
stratified disk with two unstratified disks from Chan et al.
(2022). All three disks have narrow initial distributions that
spread over time; the spread is very slow for the unstratified
unmagnetized disk and fastest for the stratified disk. The
unstratified distributions shown acquire a bimodal shape
centered on the initial €. By contrast, the stratified distribution
remains unimodal and shifts toward smaller . We will discuss
these contrasting evolutions in Sections 4.3 and 4.4. The
apparent asymmetry of the stratified distribution is partly
because material with 0.60 < & < 0.75 has such small
pericentric distances that it is lost through the inner boundary;
~9% of the initial mass is lost in this way.

The extent to which the stratified disk undergoes apsidal
precession can be determined by tracking the azimuth of the
pericenter, which is also the thinnest part of the disk. Figure 2
shows the inner parts of the disk undergo reorientation: they
precess by Néw in the prograde direction within r <2¢, and
stay at roughly that orientation for the rest of the simulation. In
comparison, the outer parts do not alter their orientation
appreciably. Similar to the unstratified disks in Chan et al.
(2022), apsidal precession in the stratified disk is limited both
in duration and extent; hence, its long-term effect is likely
small.

The transient apsidal precession in our stratified and
unstratified simulations reflects the relaxation of the disk from
its initial condition. It should be distinguished from the secular
pressure-induced apsidal precession discussed in other contexts
of eccentric disks (e.g., Statler 2001). The rate of such apsidal
precession is of order the orbital frequency divided by the
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Figure 7. Mass-weighted histograms of instantaneous eccentricity for several
eccentric disks. The top and middle panels are for two unstratified disks from Chan
et al. (2022), the top panel for the unmagnetized disk and the middle panel for the
disk with a dipolar magnetic topology. The bottom panel is for the stratified disk
from this article, which also has a dipolar magnetic topology; the gray band
approximately indicates the & of the material crossing the inner boundary.

square of the Mach number (e.g., Murray & Dermott 1999),
which is much slower than the apsidal precession we witness.

3.2.3. Disk Height

The initial disk breathing matches grid breathing perfectly by
construction, but the disk gradually drifts away from that
perfect match over time. Apart from apsidal precession, we see
other signs of mismatch by the end of the simulation in the
middle rows of Figure 2: the disk height near apocenter rises by
a factor of ~2.5 over the course of the simulation but hardly
changes near pericenter, and the density distribution and disk
height are no longer symmetric about the line of apsides. The
larger apocenter-to-pericenter disk height ratio than grid height
ratio was anticipated in Section 2.3.

For a more quantitative examination of the disk height
modulation, we calculate the mass-weighted distance from the
midplane:

(2 = fdz din) d¢(—g)'/%p Izl/fdt dIn) d¢(—g)'/2p.
(16)
The temporal integration limits are 11.57, <7< 12.51,;time

averaging is done in consistency with the magnetic quantities
discussed in Section 3.3, which require time averaging to
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chosen azimuths ¢ = —m, ¢ = 7%71', and ¢ = 7%’“ respectively.

smooth out strong spatial fluctuations. The spatial integration
limits are —0.2 < In(A/Ax) < 0.2 and all ¢; although the disk
evolves in eccentricity and orientation, we stick to an elliptical
annulus around the characteristic orbit for simplicity. The top

Chan, Piran, & Krolik

3.2.4. Azimuthal Modulation

Next we inspect the azimuthal modulation of various
hydrodynamic quantities, beginning with density p and surface
density

v=R2 a9 (17

as shown in Figure 2. The initial surface density is uniform
over azimuth; hence, the initial density peaks at the pericenter
¢ = 0. Apsidal precession moves the pericenter and the density
peak to ¢ ~ éﬂ'; at the same time, the surface density develops

a maximum at ¢ ~ —%ﬂ' near apocenter.
To put this on a more quantitative footing, we construct the
azimuthal profiles of midplane density

(Phre; = fdt dln A dC(fg)l/zp/fdt dln \ d¢(—g)\/2
(18)

and surface density
(S = fdt din A d¢(—g)/2p /fdt dinAR%.  (19)

The integration limits for (X) are the same as for {|z|) in
Equation (16), and those for (p) differ only in that
—0.2<(<0.2, to pick out the midplane. The results are
displayed in the middle panel of Figure 8, along with the
reciprocal (|z]) " of the disk height. The secondary peak of {p)
at ¢~ —%71' is barely noticeable in Figure 2. Over

1 2 .
—37 < ¢ < 57 around pericenter, we have (p)(lz) oc (%)

and constant (32), consistent with pure vertical compression;
4 1 .
over —-m 5 ¢ S —5m around apocenter, we still have

(p)(|z]) oc (X), but the non-constancy of (¥) implies that,
unlike in the initial disk, horizontal motion is not
divergence-free.

Following up on the increase in internal energy due to
dissipation shown in Figure 3, we graph in the same panel of
Figure 8 a proxy for the mass-weighted midplane entropy,

(Shacp = fdf din \ d¢(—g)"/?p ln(p/p”)/fdt din X d¢(—g)'/?p, (20)

panel of Figure 8 traces (|z|), or rather its reciprocal, in
anticipation of how other quantities in the same figure behave.
We also show the reciprocal Hy ' of the grid height for context.
The modulation of (|z|) around the orbit is stronger than H,.
The extrema of (|z|) are displaced in azimuth by ~%7r from
those of H,, reflecting apsidal precession.

Ogilvie & Barker (2014) wrote down the equation governing
the height of a laminar eccentric disk that expands and
contracts homologously in the vertical direction. We reproduce
in the same panel the reciprocal of the solution to their equation
for a uniformly eccentric disk with the same eccentricity and
adiabatic index as our initial disk. The analytic disk height
varies with an amplitude close to our {|z|), but the rise and fall
of our (|z|) near pericenter is more rapid.

reusing here the integration limits for (p) in Equation (18). The
flatness of (s) indicates that, in this simulation with heating but
no cooling, entropy growth is slow compared to orbital motion
by the end of the simulation.

3.3. Magnetic Behavior
3.3.1. Magnetic Field Strength and Maxwell Stress

The magnetic field grows in a way similar to circular disks.
The initial magnetic field is symmetric about the midplane. As
the simulation progresses, differential rotation draws out the
magnetic field, the MRI grows in amplitude from small to
nonlinear, parasitic instabilities break up the smooth azimuthal
variation of the magnetic field (e.g., Goodman & Xu 1994), and
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full three-dimensional turbulence begins to grow. The
symmetry about the midplane lasts until # ~ 6 7,., shortly after
the ordered stage of magnetic field growth ends, but shortly
before the volume-integrated magnetic energy reaches a
maximum at ¢~ 7t,, according to Figure 3. Thereafter, the
magnetic field becomes increasingly turbulent even while the
volume-integrated magnetic energy decays.

The bottom panel of Figure 8 traces the azimuthal profile of
the midplane magnetic field strength

1/2
(b = [fa’t dn\ d((fg)l/zbub“/fdt dIn) dC(fg)l/z] .
21

The integration limits are the same as (p) in Equation (18).
Over —%77 S¢S %77 around pericenter, vertical compression
and flux freezing explain why (b) o (|z|)~". The symmetric rise
and fall of (b) during pericenter passage suggest that the
magnetic field is not noticeably amplified by effects other than
compression. This nonlinear-stage behavior is different from
the pericentric amplification seen in linear-stage MRI (Chan
et al. 2018).

Another way to examine the magnetic field strength is
through the mass-weighted vertical average of the plasma beta:

By = [dc-0) 2L | [ac-90. @2
bub,u,

The top row of Figure 4 shows that 10* < (3) < 10*. The value

of (3) increases over time, in agreement with the magnetic field

decay noted above. It is not a strong function of azimuth

because vertical compression enhances gas and magnetic

pressures by similar amounts.

To compute the Maxwell stress in cylindrical coordinates,
we need the physical, cylindrical components b’ of the
projected magnetic field, that is, the components measured in
a local orthonormal basis whose basis vectors are parallel to
those of cylindrical coordinates. They are related to the
contravariant components b’ by

bR — Rl & po__esing i (23)
1 4+ ecos¢
b? = Rb?, (24)
. ‘ ¢
b =z| b + bG’iInHﬁ< + L , (25)
do ¢

and they satisfy the normalization
g;b'bl = bRbR + bPb? + b, (26)

Following Chan et al. (2022), we ignore the contribution of the
Reynolds stress to the total internal stress on the assumption
that the Maxwell stress dominates, an extrapolation from
circular disks (e.g., Hawley et al. 1995). The Maxwell-only
alpha parameter is

am = —b%bR/p. 27

The bottom row of Figure 4 depicts the vertical averages of
am att=8t, and t=121,:

(anlep = — [dc(-g) 2% | [ac-9) . @8)

Chan, Piran, & Krolik

The magnitude of (o) at both times is 107> < [ (o) <1071,
roughly comparable to the values seen in global simulations of
circular disks (e.g., Hawley 2000; Hawley & Krolik 2002).
However, the negative sign of (ay,) in the half of the disk
where material flows outward from pericenter to apocenter is
never seen in circular disks, but is found in unstratified
eccentric disks (Chan et al. 2022). We therefore identify this
sign flip with the same mechanism responsible for it in the
unstratified case, that is, the change in sign of Our /0¢, which

alters the correlation of b% and b? created by orbital shear.
Consistent with this interpretation, at r=381, the (o) <0
region stretches across the entire radial extent of the disk,
whereas at t= 1217, when the outer parts of the disk are
substantially less eccentric, the (a,,) < 0 region is more limited
in size.

The same figure shows that the magnitude of {(a,,) declines
over time: 3 x 1077 <[(am)| <3 x 107" at r=81z, but
1077 < [(am)| < 107" at r=121,. We associate the late-time
decline with a general weakening of the magnetic field after
t27ty, as illustrated in Figure 3. This effect may be
attributable to the strong reconnection in stratified eccentric
disks, an idea we explore further in Section 3.3.2.

Another way to average o, iS over constant-R cylinders,
taking into account the 10% to 20% contribution of ay, <0
regions to the average. On cylinders running through denser
parts of the disk, this average rises rapidly to ~0.1 at t ~21¢,,
falls to ~0.05 at t~5¢, as the MRI turns nonlinear, and
dwindles to ~0.01 at # ~ 12 ¢, with the gradual diminution of
the magnetic field. At t 2 8 7, o, is inversely correlated with
é: oy, averaged on cylinders at R ~ 300, where orbits are less
eccentric, is a few times that on cylinders at R ~ 200.

3.3.2. Reconnection

Reconnection is the principal mechanism for magnetic field
decay. Because MHD simulations do not resolve the
microscopic scales on which physical reconnection occurs,
reconnection in a simulation like ours is necessarily numerical:
oppositely directed magnetic fields advected into the same cell
cancel each other. Reconnection in our simulation happens in
regions of strong magnetic shear, a measure of which is
V,F"" = j",its magnitude (j,j*)'/? is the magnitude of the
usual three-current in the comoving frame. Studies of magnetic
dissipation in grid-based simulations found that the dissipation
rate scales with the current magnitude slightly faster than
linearly (Hirose et al. 2006).

It is therefore instructive to plot (j,j*)'/?, as in Figure 9. The
current is strongly enhanced near pericenter because pericentric
compression both strengthens the magnetic field and sharpens
its gradient. To examine its azimuthal variation more
quantitatively, we consider the midplane current magnitude

(Mg = [fdl dln\ dC(*g)l/Zjuj"/fdt dln\ d((fg)l/z]l/2 ,
(29)

the integration limits being the same as (p) in Equation (18). The
bottom panel of Figure 8 shows that (j) o (|z|) . This scaling
results from the magnetic field strength growing as oc(|z|) "
when toroidal magnetic field is compressed vertically and the
length scale of the vertical gradient varying as o<(|z|); the current
is proportional to the ratio of these two quantities.
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Figure 9. Magnitude of the current. The top row shows midplane slices, and
the middle and bottom rows show vertical slices along In(\/Ay) = F0.2,
respectively, on either side of the characteristic orbit. The boundaries of the
simulation domain are traced by thin gray curves. For the top row, the ellipses
along which vertical slices are taken are indicated by faint black ellipses. For
the middle and bottom rows, the abscissa is the physical arc length along the
orbit measured from ¢ = 0, the ordinate is the physical height z above the
midplane, and the ordinate is more stretched than the abscissa.

3.3.3. Quality Factors

The degree to which the MRI is resolved is assessed by
quality factors. The forms adopted here are simple general-
izations from Hawley et al. (2011) and are almost identical to
Chan et al. (2022):

|b] 1,
0. = ——7F75—, (30)
Pl/zgglg/zAC
_ b7 1,
Q= iRAg 31)

where t, = 2ma'/2(a + 2), witha = \/(1 — €?), is the orbital
period at A. Figure 10 visualizes the quality factors at r=61,,
when the magnetic field is strongest, and at r = 12 ¢, at the end
of the simulation. Mass-weighted vertical averages appear in
the top row:

(e = [dc(=9)2p0. [ [dc=)2p.  (32)
Qo = [dC-0)2p0, | [dc=e)  (33)

raw Q. and Q. on vertical slices appear in the middle and
bottom rows. The color scales are centered on Q,~ 15 and
0, ~ 20, reflecting the criteria for adequate resolution in
circular disks (Hawley et al. 2013).

There is clear azimuthal dependence of Q. and Q,, with both
being much higher near pericenter. There is also clear vertical
dependence of Q. and Q., with both being lower near the
midplane where the gas is denser and the magnetic field
weaker. The former dependence can be understood by

Chan, Piran, & Krolik

examining the azimuthal variations of v,, Hy, and R along
an orbit. The bottom panel of Figure 8 tells us that the mass-
weighted midplane Alfvén speed

(g = [dr dink dC(~9) p (b, b/ p)' 2 [[ar dinn dC(—9)' %,
(34)

where the integration limits are the same as (p) in
Equation (18), is a factor of ~3 higher near pericenter than
near apocenter; the fact that (v) reaches a maximum at
pericenter is consistent with our earlier observations that
(p) o< {|z])~" and (b) o (|z])~". We see from the top panel of
the same figure that H, is a factor of ~2.6 lower near
pericenter, and we can also convince ourselves using
elementary geometry that R is a factor of (1+e)/
(1 —e)~2.3 lower. It follows that both Q.o vs/H, and
Q,xVva/R are maximum near pericenter, meaning that the
MRI is best resolved there. This is in marked contrast to
hydrodynamics, which is harder to resolve near pericenter
where the disk is thinnest.

The quality factors are much better at t =61¢, than t =121,
Our extremely high resolution is able to provide at t=061,
tolerable quality factors according to standards based on the
circular MRI (Hawley et al. 2013). The situation changes by
t=12t,, when the quality factors have dropped by factors of
~2 to 3. Unfortunately, an order-unity change in resolution
quality can have strong effects on simulation quality (Hawley
et al. 2013).

The question arises whether the factor of ~3 decline in
magnetic energy per mass in Figure 3 is physical or numerical;
that is, how much of it is due to strong magnetic dissipation
near pericenter and how much is due to poor resolution
suppressing the MRI. A weaker magnetic field, no matter the
cause, demands smaller cells to resolve both the linear and
nonlinear stages of the MRI, and such deterioration in
resolution may precipitate further magnetic field decay.
Because our resolution more than suffices to follow MRI-
driven turbulence at t=671,, we believe at least the initial
decline is physical. However, the subsequent factor of ~3
decrease in magnetic energy per mass means the quality factors
oc(B%/p)'/? at late times are, by definition, worse by factors of
unity. The poorer resolution slows down perturbation growth
and speeds up grid-scale dissipation, leading to magnetic field
decay. The reduction in magnetic field strength in this stage
thus has both physical and numerical aspects.

It is equally possible that the eccentric MRI may put
somewhat higher demands on resolution because eccentric
disks support linear MRI growth in modes with shorter
wavelengths than would be possible in circular disks
characterized by the same product of Alfvén speed and orbital
period (Chan et al. 2018).

4. Discussion
4.1. MRI and MHD Stresses in Eccentric Disks

This is the third in a series of articles investigating whether
the MRI, which has been studied extensively in circular disks,
remains an instability when orbits are eccentric, and if it does,
to what degree its nonlinear, saturated state resembles that
found when orbits are circular. In our first article (Chan et al.
2018), we verified that the MRI remains linearly unstable in
unstratified eccentric disks; its growth rate differs only by
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Figure 10. Vertical and azimuthal quality factors. The top row shows mass-weighted vertical averages, and the middle and bottom rows show vertical slices along
In(\/Ag) = F0.2, respectively, on either side of the characteristic orbit. The boundaries of the simulation domain are traced by thin gray curves. For the top row, the
ellipses along which vertical slices are taken are indicated by faint black ellipses. For the middle and bottom rows, the abscissa is the physical arc length along the orbit
measured from ¢ = 0, the ordinate is the physical height z above the midplane, and the ordinate is more stretched than the abscissa.

factors of unity from the circular case, but with increasing of that, stratified eccentric disks undergo vertical compression
eccentricity, the range of unstable vertical wavenumbers because of the strong vertical gravity near pericenter. Vertical
extends well beyond the maximum in circular disks. In our gravity strengthens rapidly with decreasing distance from the
second article (Chan et al. 2022), we showed that unstratified central object, becoming [(1 + &)/(1 — &)’ times stronger at
circular and eccentric disks have comparable ratios of Maxwell pericenter than at apocenter; therefore, vertical compression
stress to pressure: oy, ~ 10”2 when averaged on cylinders. can be stronger than horizontal even at moderate eccentricities.

In this third article, we present the first calculation of the When the relative compression speed between neighboring gas

non!inear e\./olution. of the MRI in an ecc.en.tric. disk with packets is supersonic, shocks form that dissipate kinetic energy
vertical gravity. Section 3.3.1 showcases the similarity between (Ryu et al. 2021).

unstratified and stratified eccentric disks: vertically averaged
o has positive and negative regions, and cylindrically
averaged ay, reaches ~107! within a few orbits. However, in
the presence of vertical gravity, cylindrically averaged o,
eventually decays to ~102 by the end of the simulation;
Section 3.3.3 discusses to what degree this diminution is

physical or numerical. Nonetheless, our fully three-dimensional . . . d .
simulation, incorporating vertical gravity, confirms that the condition particularly conducive to reconnection driven by

MRI is an inescapable feature of eccentric disks, just as it is for vertical compression. The initial magnetic field, which is
circular disks. approximately radial, points in opposite directions on either

side of the midplane. From this radial magnetic field, orbital
shear creates an azimuthal magnetic field with the same
4.2. Enhanced Reconnection Due to Vertical Compression direction contrast. Converging vertical flows then produce
regions of consistently powerful currents near the midplane in
the pericenter region, visible in Figures 8 and 9; these regions
are sites of intense magnetic dissipation in our simulation.

In magnetized eccentric disks, horizontal and vertical
compression may lead to additional dissipation as a result of
reconnection. This dissipation can occur whether the compres-
sion speed is subsonic or supersonic; all it requires is that
compression brings oppositely directed magnetic fields closer.

Our disk, with a dipolar magnetic topology, illustrates a

MHD turbulence in circular disks leads to dissipation, much
of which is likely due to reconnection facilitated by the
mechanism suggested by Lazarian & Vishniac (1999). Our

simulation uncovers a new channel specific to eccentric disks We speculate that the additional dissipation due to this
that supplements and perhaps expedites turbulent dissipation compression-driven reconnection causes the magnetic energy
(see also the discussion by Lynch & Ogilvie 2021b). in our simulation to decline after reaching a maximum at

Circular disks feature no regions of coherent compression 1~ ty. We further speculate that at ¢ 2 87, the reduction in
around the orbit. By contrast, both unstratified and stratified eccentricity and compression-driven dissipation at large radii
eccentric disks experience horizontal compression near leads to the increase in cylindrically averaged o, with R noted
pericenter thanks to the eccentric nature of the orbits. On top in Section 3.3.1.

10
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Our argument for a boost in reconnection due to vertical
compression rests on the horizontal magnetic field reversing
direction across the midplane. In addition to our dipolar
magnetic topology, this could also occur with a toroidal
magnetic field if adjacent field loops point in opposite
directions. Other magnetic topologies may not share this
property. A toroidal magnetic field may avoid accelerated
reconnection if all of its field loops point in a single direction.
Likewise, a quadrupolar magnetic field with two poloidal field
loops above and below the midplane may not suffer elevated
levels of dissipation because the region of greatest compression
around the midplane has magnetic field running in the same
direction.

4.3. Rapidity of MHD-driven Evolution in Eccentric Disks

Global MHD simulations of circular disks generally exhibit
an initial transient stage of structural change on the orbital
timescale, followed by an extended period of gradual evolution
on the inflow timescale. Two-dimensional, purely hydrodyna-
mical investigations of uniformly eccentric disks show that
pressure forces can reshape the disk on the secular timescale
(e.g., Murray & Dermott 1999), but the disk can retain its
eccentricity and orientation distributions, precessing rigidly, if
it starts in an eccentric mode (e.g., Statler 2001).

In sharp contrast to these outcomes, Section 3.2.2 demon-
strates that MHD effects in an eccentric disk, whether stratified
or unstratified, can transform the radial profile of eccentricity &
and alter disk structure over just ~5 to 10 orbits, as the contrast
between the top and middle panels of Figure 7 makes clear.
This may be surprising at first glance given that o, indicates
MHD stresses comparable to the ones driving much slower
evolution in circular disks.

Two facts partially explain why. The first fact is that disk
material largely maintains its specific binding energy Ei
throughout the simulation, as Figure 6 suggests. For fixed E,
the change in & due to the transfer of specific angular momentum L
is given by dIn(l — &2)/0L = 2/L o< (1 — &*)'2EL/? if
E, < 1. Consequently, in moderately eccentric disks, a modest
amount of angular momentum loss can cause a large fractional
increase in 1 — &2 in parts where € is already large, as can be seen
in Figures 6 and 7.

A second fact contributing to this result is that MHD effects
can catalyze stronger hydrodynamic torques. Examination of
the local hydrodynamic and magnetic torques, defined as the
divergence of the respective stress tensors, reveals that
hydrodynamic torques in the dipolar-field disks shown in
Figure 7 are generically two orders of magnitude stronger than
magnetic torques and a factor of a few stronger than
hydrodynamic torques in the unmagnetized disk. This may be
the reason why the magnetized disks in Figure 7 evolve much
faster than the unmagnetized disk.

4.4. Transience of Magnetized Eccentric Disks

The character of the rapid evolution discussed in Section 4.3
is to broaden the mass distribution over specific angular
momentum and steepen the negative correlation between
specific angular momentum L and specific binding energy Ei,
making the disk in Figure 5 more eccentric on its inside and
more circular on its outside. During our relatively brief
simulation duration of 12 orbits, there is no indication of
either trend slowing down, as Figure 6 and the bottom panel of
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Figure 7 make apparent, or the disk approaching anything
resembling a steady state.

The evolution toward a structure more circular on the outside
and more eccentric on the inside is a result of the torque
distribution around the orbit. This result is most easily derived
in the Newtonian limit of Ey, < 1, in which the eccentricity ¢ of
an orbit changes according to

1 — @2 L E QL \dL
Mzzd_+d°:21__d_, (35)
1-& o 2E,) L
where E, = E — 1 = — E, is the specific orbital energy, and we

used the fact that the work done dE, is the local orbital
frequency (2 times dL. The first and second terms describe,
respectively, the eccentricity change due to angular momentum
and energy changes, and they have opposite signs.

Because L = [a(1 — &2)]'/2, E, = 1/(2a), and (Q) = a3/2,
with (§2) and @ the mean motion and semimajor axis of the orbit,
respectively, this expression can be fruitfully simplified to

Mzz 1-q _52)1/2£ aL
1 -e

|z (36)

From this form, it can be immediately seen that whether the
first or the second term is greater depends on the ratio of local
to mean orbital frequency, and the term related to energy
change is downweighted when ¢ is large.

Assuming orbital evolution is slow enough that ¢, L, and E,
are almost constant over an orbit, the change in 1 — 22 in a
single orbit is

2 dL Q)
Mzzll —(1 - 52)1/21‘7
1 —e? AL(Q)

AL

L

=201 -0 - éz)mlg, (37
L

where the last step is true in the simplest case of constant dL/dt
(see also Svirski et al. 2017). In this case, the change in
eccentricity due to torque is always at least as great as that due
to work. Whether the same conclusion holds if the torque is not
constant depends on whether more of AL is accomplished near
apocenter, where () is relatively small, or near pericenter,
where it is relatively large; the criterion for torque-dominance
becomes easier to meet for larger e.

Moreover, if the torque term dominates the work term, Ae
has the opposite sign to AL. Figure 6 shows that this situation
prevails in our simulation: AL <0 and Aé > 0 generally for
inner orbits, whereas AL >0 and Aé < 0O generally for outer
orbits.

In fact, the rapid evolution of eccentricity distribution in
Figure 7, exhibited by magnetized but not unmagnetized
eccentric disks, raises the question of whether any steady-state
structure exists for magnetized eccentric disks. Given the
qualitative similarity between stratified and unstratified disks,
as well as those with adiabatic and isothermal equations of
state, it seems unlikely that disks with properties different from
ours would behave in qualitatively different ways over the
timescale we studied. In all the magnetized eccentric disks we
examined, the end result is a structure in which eccentricity
declines outward, but contains progressively less and less
highly eccentric material as the most eccentric material accretes
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rapidly onto the central object; such an effect is manifest in
Figure 7. Gradual circularization spells the end of a magnetized
eccentric disk.

Strictly speaking, this argument applies to our simulated case
of an isolated disk and may be altered in the presence of
external influences. Mass resupply bringing in material with
different energy and angular momentum could interfere with
eccentricity sorting. Gravitational perturbations from another
object could modify the energy and angular momentum budget
of the disk. However, because MHD-driven evolution takes
place on comparatively short timescales, strong external
influences would be needed to sustain a magnetized eccentric
disk in a steady state.

4.5. Implications for TDEs

In TDEs, the tidal gravity of supermassive black holes
destroys stars swooping by too close; for main-sequence stars,
the critical distance is ~27(GM/c?) x [M/(10° M.)]"%/3,
where M is the black hole mass (Ryu et al. 2020). The bound
stellar debris is initially placed on very eccentric orbits with
characteristic orbital period #, ~ 40 days x [M/(10° M)]'/2.
Global hydrodynamic simulations (Shiokawa et al. 2015; Ryu
et al. 2023; Steinberg & Stone 2024) revealed that over the first
few #;, shocks within the debris transform the shape of the
accretion flow into an irregular elliptical disk with a mean
eccentricity of ~0.5, close to the eccentricity of our simulated
disk. The mean semimajor axis of this moderately eccentric
disk is only somewhat smaller than that of the debris shortly
after disruption, meaning that its orbital period is still ~#,.
During the few months when the disk is forming, the shocks
can power optical/ultraviolet (UV) flares with luminosities and
timescales roughly matching observed TDE candidates (Piran
et al. 2015).

The initial condition of our simulation can be taken as
representing, in simplified form, the state of the irregular debris
disk a few ¢, after disruption. Our new simulation reveals two
mechanisms due to vertical gravity that can affect the TDE
light curve on timescales of several to ten f, after disk
formation. Rapid dissipation of magnetic field near pericenter
due to vertical compression could power additional emission
that may flatten the decline of the optical/UV flare of the
TDE, if the emission is in that band. In addition, radial
expansion of the disk, accelerated in the presence of vertical
gravity, could drive a small but potentially interesting fraction
of the debris to considerably smaller pericenters and higher
eccentricities.

The physics of the MRI may also have observational
implications beyond ~10¢,. The MRI grows to nonlinear
saturation in the debris disk in ~5 to 10 orbits with or without
vertical gravity. Consequently, MHD stresses grow too slowly
to drive much accretion onto the black hole until after the main
optical/UV flare has faded. Instead, they could power
yearslong low-level emission, releasing at least as much energy
over time as the initial flare because accretion onto the black
hole should be at least as radiatively efficient as internal debris
shocks. This long-term accretion may explain the late-time
emission (e.g., van Velzen et al. 2019; Jonker et al. 2020) or
rebrightening (e.g., Chen et al. 2022; Liu et al. 2023; Malyali
et al. 2023; Wevers et al. 2023) in a number of TDE candidates.
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5. Conclusions

Our earlier work established that the MRI operates in
unstratified eccentric disks as vigorously as in circular disks;
here we demonstrate that it does in the presence of vertical
gravity as well. Its nonlinear development in a global
simulation is qualitatively similar to circular disks, differing
only in particulars.

The mean Maxwell stress—pressure ratio o, is similar to that
in circular disks at the order-of-magnitude level: the mean
radial flux of azimuthal momentum is outward and has
magnitude ~1072 times the pressure. Oscillation of the radial
velocity between positive and negative causes the Maxwell
stress in a small region of the disk to transport angular
momentum inward rather than outward.

The strong orbital modulation of vertical gravity creates a
brand new channel for reconnection and dissipation, a direct
consequence of the strong compression near pericenter. Partly
because of this, the magnetic energy is weakened by a factor of
~3 over the course of our simulation.

MHD turbulence in eccentric disks drives rapid evolution of
the radial eccentricity profile, faster than purely hydrodynamic,
secular processes. Over only ~5 to 10 orbits, stresses
associated with MHD turbulence transport enough angular
momentum to substantially widen the mass distribution over
eccentricity and create a strong radial eccentricity gradient with
highly eccentric material on the inside.

These MHD effects can strongly influence eccentric disk
structure on timescales from a few to many orbits. During the
several orbits required to reach nonlinear saturation, they can
reshuffle the eccentricity distribution; once the nonlinear stage
has been reached, the Maxwell stress created by MRI-driven
turbulence can support accretion over longer periods. In
particular, in the eccentric disks formed by tidally disrupted
stellar debris, the MRI may reach nonlinear saturation in
merely ~5 to 10 orbits, but this can be long compared to the
fallback time; therefore, MRI-driven effects may govern the
accretion rate and luminosity on timescales tens of times as
long as the initial flare, accounting for the emission years later.
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Appendix A
Metric Components and Christoffel Symbols

The nonzero metric components in orbital coordinates are

8 = —P, (A1)

& = r2, (A2)

8 = & = R?Q + 22X, (A3)

& =80 =22/G, (A4)

gos = R*(1 + @) + 22X, (A5)

8oc = 8y = TX/C, (A6)

g = 2%/ (A7)

g =-1/P, (A8)

gV =1+ Q»)/R?, (A9)

g\’ =g = -Q/R?, (A10)

¢ = g% = —([1 + Q@ — X)1/R, (Al1)

g% =1/R2, (A12)

g% =g = ((Q - X)/R?, (A13)

g% = It + 22(Q — X1/ (R*2%), (Al14)
the metric determinant is

g = —R'%??P/C, (A15)

and the nonzero Christoffel symbols of the second kind are

T =T = [(Or®)R + (9.9)z]/P, (A16)
I, =T, = [(0rP)RQ + (9.9)zX]/P, (A17)
Iy =Tf = (0:9)z/(CP), (A18)
Iy = 0z®/R, (A19)
iy =1, (A20)
T3, = —R/, (A21)
DSy =To =1, (A22)
ro, =2Q, (A23)
5 = ((0.9/z — 9r®/R), (A24)
I =T¢ = 1, (A25)
IS5, = CIR/A — (2Q — X)X + Y], (A26)
I =T, =X, (A27)
where
DR, 2)=—1/(r+2), (A28)
r= (R + )2, (A29)
P=1+2®R,2), (A30)
Q =esing/(1 + ecos @), (A31)
X = dInHy/do, (A32)
Y = d?InHy/do>. (A33)
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Appendix B
Grid Height

The grid height H,(¢) controls how the grid stretches in the
vertical direction. As mentioned in Section 2.3, we set Hy(¢) to
the scale height of a hydrostatic reference column positioned at
some point (A, ¢) along the characteristic orbit. The goal of
this section is to obtain an approximate closed-form expression
for H,; an exact measurement of the scale height is not needed
because H, does not affect disk physics.

We expand vertical gravity along A = A to first order in z as

[—0: =, = —2/[Rx(Rs + 2)°] = (B1)

here v, is the vertical frequency and Ry = A\y/(1 + e cos ¢).
The vertical density profile of the column is then (e.g., Ryu
et al. 2021)

2.
_I/*Zs

Pid, Q) ~ puld, O[1 — (v — DZ2/HZVO-D, (B2)
with the scale height of the column given by
Hy = 29Kp) (6, 0)/ 3. (B3)

Equations (B2) and (B3) reduce to their expected forms in the
isothermal limit of v — 1.

Once we have picked a value for the surface density X, of
the column, we can solve for p.(¢, 0) and, through
Equation (B3), H,. In defining the surface density of the
column, we break from the common practice of integrating
from the midplane to infinity, opting instead for

(—=1)"1/2H,
o= dz pu(d. O, (B4)
which has the advantage of smoothly connecting to the
isothermal surface density when v — 1. Performing the integral
and using Equation (B3) to eliminate p, (¢, 0), we get
Si=(y = )7 V2@K) O R (L, —(r = )7 35 1)
% Hﬂ(ﬁ'ﬂ)/(%ﬂyi/(v*l)’
(B5)

where ,F is the hypergeometric function.
The metric and connection depend on the derivatives of H,
as well. Differentiating Equation (B5) furnishes us with
g2 4
do"

where 7 is a positive integer, and differentiating Equation (B1)
yields

(B6)

= Inv = fM (B7)
do 2R« + 2)
2
P oo Her2dD e o
do 2Ry +2)dp  (Ry +2)

with Q from Appendix A.

Appendix C
Initial Eccentric Disk

The construction of an eccentric disk in approximate force
balance begins with an exactly hydrostatic circular torus. This
reference torus is described in cylindrical goordinates R, , 2)
and is governed by five parameters (R, K, T, 7, §). Its density
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P(R, z) and pressure p(R, z) are related by the polytropic
equation of state p = K pr, and its density maximum is
P, = PR, 0). Its orbital velocity follows the shear profile
#(R) = vy (R/R)' 1 é,, where the azimuthal velocity at the
density maximum is given by 17,121 = (RORrP)(R, 0). With these

stipulations, p is the solution to the equation (see also
Papaloizou & Pringle 1984; Hawley 2000)

-2

Ve
constant =P — ————
21 = q)
R-Lpi-1— 1, T=1,
S » = 1)
Kinp, I'=1.

We demand R = )\ so that the torus matches the desired initial
eccentric disk in characteristic semilatus rectum, and
(K, I d) = (9 x 1079, 1, 1.55) so that the torus is geome-
trically thin. We also arbitrarily set p,, = 1. The surface density
of such a torus at R = R is

S = [ dz p(R. 2) ~ 8.30, (2)
0

the upper limit being the height at which the integrand

vanishes.

The circular Newtonian torus tells us how to set up in our
simulation a circular GR disk in the weak-gravity limit. We
employ eccentric coordinates with e=0 for the initial
condition in anticipation of the subsequent conversion of the
circular disk to an eccentric one. The vertical scaling of the
eccentric coordinate system is governed by a reference column
with (Zy, Ky) = (2, K), which implies Hy(¢) ~ 11.9 for all ¢.
Equations (11)—(13) are used to transform the torus from the
cylindrical coordinates in which it is described to eccentric
coordinates.

Torus properties must be converted to primitive variables for
consumption by the simulation. Density and pressure are
directly usable as primitive variables. The Newtonian angular
velocity ¥,/R is identified with the GR coordinate velocity
u‘*°/ u'; together with the constraint u=u‘=0 and the
normalization condition, the velocity is fully determined.

Once the circular disk is configured on the eccentric
coordinate system, it is morphed into an eccentric disk by
increasing the eccentricity e of the coordinate system itself.
Each cell stays at its coordinate-space location (A, ¢, ) but
shifts to a new physical-space location (R, ¢, z). We use the
same reference column as above to define the breathing of the
new grid, but now H,(¢) is a function of ¢ because different
points along the characteristic orbit are at different R, and
experience different levels of vertical gravity. Since we do not
touch the grid in coordinate space, we need not interpolate
simulation data. We also get vertical motion for free: grid
geometry forces the velocity field to diverge and converge in
synchronization with disk expansion and contraction even
though ur=u¢=0.

Two additional tweaks keep the eccentric disk as hydrostatic
as possible. Disk reshaping moves material to a different R,
breaking the balance between gravitational and centrifugal
forces. Restoring that balance involves multiplying u ¢ of each
cell by R2/ M? so that material has the same specific angular
momentum as before. Reshaping also changes the disk height,
so the vertically integrated mass current around an orbit of
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constant )\ is no longer constant over ¢. To approximately
reinstate mass continuity, we scale p in any given column of
cells by the same factor so that the surface density of the
column equals its value before reshaping. We multiply p by
that factor as well.

An eccentric disk assembled with the aforementioned
process is not strictly hydrostatic, but close enough for the
study of the MRI. Instead of jumping immediately to the
desired eccentricity, one could raise eccentricity stepwise, each
step of reshaping followed by a period of relaxation, but we
found that this does not yield a quieter disk.

Appendix D
Instantaneous Eccentricity

In Chan et al. (2022), the instantaneous eccentricity ¢ of a
gas packet in an unstratified disk is defined as the eccentricity
of a particle orbit having the same specific energy E and
specific angular momentum L as the gas packet. That definition
does not work for a stratified disk because the trajectory of a
gas packet does not in general lie in some orbital plane that
includes the central object, not even if we smooth out turbulent
motion by considering a time-averaged trajectory. This
necessitates an alternative approach.

We consider a gas packet at some (7, A, ¢, ¢). The velocity of
the gas packet has physical, cylindrical components u’,
obtained from its contravariant components u' using equations
analogous to Equations (23)—(25). We construct the restriction
of this velocity to the midplane, by which we mean a properly
normalized velocity in the tangent space of (¢, A\, ¢, 0) that has
the same coordinate velocity as u* except in the (-direction.
Let us denote quantities at (¢, A, ¢, 0) by a breve. The
construction guarantees a unique solution for the contravariant
temporal component i’ and the physical, cylindrical compo-
nents ' of the restricted velocity:

R/ = uR (D1)

/it = u?/u, (D2)

i =0, (D3)

gttt + iRk 4+ P + i = —1. (D4)

The specific energy and angular momentum of the restricted
velocity are E = g,ii' and L = Rii?, respectively; these are the
quantities plotted in Figure 6. The instantaneous eccentricity &
is then obtained in the same way as in Chan et al. (2022):

2 =1+ (E*- 1)I*/E* (D5)
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