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Abstract—This paper studies issues that arise with respect to
the joint optimization for convergence time in federated learning
over wireless networks (FLOWN). We consider the criterion and
protocol for selection of participating devices in FLOWN under
the energy constraint and derive its impact on device selection.
In order to improve the training efficiency, age-of-information
(Aol) enables FLOWN to assess the freshness of gradient updates
among participants. Aiming to speed up convergence, we jointly
investigate global loss minimization and latency minimization in
a Stackelberg game based framework. Specifically, we formulate
global loss minimization as a leader-level problem for reducing
the number of required rounds, and latency minimization as a
follower-level problem to reduce time consumption of each round.
By decoupling the follower-level problem into two sub-problems,
including resource allocation and sub-channel assignment, we
achieve an optimal strategy of the follower through monotonic
optimization and matching theory. At the leader-level, we derive
an upper bound of convergence rate and subsequently refor-
mulate the global loss minimization problem and propose a new
age-of-update (AoU) based device selection algorithm. Simulation
results indicate the superior performance of the proposed AoU
based device selection scheme in terms of the convergence rate,
as well as efficient utilization of available sub-channels.

Index Terms—Wireless federated learning, Stackelberg game,
age-of-information, device selection, resource allocation, sub-
channel assignment.

I. INTRODUCTION

The rapid development of mobile devices and applications
has ushered us into the fifth-generation (5G) era. Much of
the network services in 5G and beyond is expected to address
explosive growth and need of machine learning (ML) and data
science [1]. In conventional centralized ML, a central server
is equipped at the access point (AP) to collect all raw data for
model training. However, due to the limited wireless resources
and potential privacy issues, centralized ML is impractical for
some scenarios [2]. In this context, federated learning (FL) is
a framework for distributed ML algorithms to collaboratively
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train a central learning model while keeping the data locally
[3]. Specifically, in FL, a global model is shared among
multiple devices, and each device trains the received global
model based on the local data and produces a local model
[4]. Thereafter all local models are transmitted to the server
via wireless communication networks to generate the updated
global model [5]. Since raw data do not leave the device, and
the model size is much smaller to share, such that there is
less concern about data privacy and lower consumption of data
network resources [6].

A. Related Works

Owing to its growing popularity, FL-related design and
optimization in existing wireless communication architectures
have attracted widespread attention, in which convergence time
is regarded as an important performance metric. As indicated
in [7], the convergence time is jointly determined by the
number of communication rounds and the time consumption
per round. The former is closely related to convergence rate,
while the latter is normally defined as latency.

In view of the relationship between global loss and con-
vergence rate, some works focused on the global loss mini-
mization problem in order to reduce the number of required
communication rounds [8]-[11]. In [8], a FL algorithm with
multiple local training was designed. It considered the impact
of local and global update rounds on the convergence bound,
and developed an approximate solution of the global loss
minimization problem. In [9], packet error rate was introduced
to indicate whether the FL parameter transmission was suc-
cessful or not. Specifically, the joint problem of user selection,
resource block allocation, and power allocation was studied
under delay and energy constraints [9]. Incorporating FL in a
massive multiple-input-multiple-output (MIMO) scenario with
energy harvesting, the authors of [10] included the consid-
eration of user scheduling and power allocation in a global
loss minimization problem. Adopting a model pruning scheme,
in [11], the authors jointly optimized device selection, time
slot allocation and pruning ratio in order to maximize the
convergence rate with a latency constraint.

As another factor in determining the convergence time of
FL, latency, including computation time and communication
time, was extensively researched in previous works [12]-[15].
The authors of [12] designed a realistic wireless network
for FL, where a limited number of users can be selected
at each round for aggregation. By obtaining user selection
and resource block allocation schemes, the convergence time



of FL was minimized. Setting a local accuracy level at
each device, the FL algorithm with multiple local update
rounds was proposed in a cell-free massive MIMO scenario
[13], in which time consumption for downlink transmission,
uplink transmission, and computation was considered in the
formulated training time minimization problem. A multi-task
FL framework was studied in a multi-access edge computing
(MEC) scenario, where edge nodes were included to accom-
plish different learning tasks [14]. In order to minimize the
latency of each communication round, the optimal matching
between edge nodes and end devices was obtained. In [15],
the authors proposed a hybrid learning scheme, where part
of data can be offloaded from devices to the server, while
the remaining data was utilized for local training. It was
demonstrated that the proposed scheme has the ability to
reduce the total time consumption.

B. Motivation and Contribution

Although global loss minimization and latency minimization
have been separately studied in existing works [8]-[15], the
interaction between these two objectives remains unclear.
Specifically, devices that have a significant constructive impact
on training convergence may have poor channel conditions,
thereby increasing the latency of the corresponding aggrega-
tion round. On the other hand, focusing on minimizing latency
may cause devices with high channel gains to be repeatedly
selected, leading to an increase in the global loss [16], [17].
Therefore, it is necessary to investigate this interaction and
construct a dynamic trade-off. To this end, this work adopts
Stackelberg game and presents a novel framework to jointly
consider learning and communication in wireless FL systems,
where the server and devices tend to minimize the global loss
and latency, respectively. Unlike the conventional papers on
global loss minimization that treat latency as a definite thresh-
old [8]-[11], latency in this work can be flexibly adjusted to
ensure the convergence rate. Compared to [18], an energy bud-
get is included and its impact on device selection is analyzed,
constructing a more practical and challenging scenario. On
the other hand, inspired by the concept of age-of-information
(Aol) [19], age-of-update (AoU) [20] is defined in this work
as a metric to evaluate the staleness of model updates. In
this context, a novel device selection method is designed to
estimate the contribution of devices in each communication
round without analyzing the model/gradient or transmitting
additional information to the server. Different from [20] and
[21] which target overall AoU/Aol minimization, AoU in this
work is regarded as a weight to prioritize selecting devices
with larger AoU. The main contributions of this paper are
summarized as follows:

« A latency-sensitive FL scenario is considered, where multi-
ple devices transmit parameters to the server over a limited
number of sub-channels. In order to jointly minimize global
loss and latency, a Stackelberg game based problem is
formulated, where global loss minimization and latency min-
imization are considered as leader-level and follower-level
problems, respectively. It is proved that the with the given
sub-channels, some devices cannot transmit local models

to the server due to the energy consumption constraint.
Based on the analysis, the Stackelberg equilibrium of the
formulated problems is established.

o The follower-level problem is divided into two sub-
problems, including resource allocation and sub-channel
assignment. Due to non-convexity and monotonicity, a
monotonic optimization based solution is proposed for the
resource allocation problem. Moreover, a matching based
algorithm is developed to address the sub-channel assign-
ment problem with the incomplete preference list, where
the properties of the proposed algorithm are analyzed.

« In order to solve the leader-level problem, the upper bound
of the convergence rate is derived, which indicates that
the convergence rate can be improved by selecting devices
with large data size. Therefore, the global loss minimization
problem is reformulated as a weighted device selection
problem. By ordering devices based on AoU and data size, a
priority list is created, and an algorithm is designed to select
devices by predicting sub-channel assignment and resource
allocation.

o The simulation results on Modified National Institute of
Standards and Technology (MNIST), Canadian Institute for
Advanced Research (CIFAR-10) and Stanford Sentiment
Treebank Version 2 (SST-2) databases are presented. It is
indicated that the designed AoU based device selection
scheme can improve the convergence rate and achieve the
lowest global loss. Moreover, the proposed solutions for re-
source allocation and sub-channel assignment can efficiently
utilize available sub-channel and dynamically adjust energy
utilization in order to reduce latency.

C. Organization

The remainder of this paper is organized as follows. In
Section II and Section III, the system model and problem
formulation are described, respectively. The solution of latency
minimization problem is presented in Section IV, and the
solution of global loss minimization problem is obtained in
Section V. Section VI demonstrates the simulation results. The
conclusions are summarized in Section VII.

II. SYSTEM MODEL

Consider an FL scenario where [N wireless mobile devices
collaboratively train a joint learning model. Each device is
equipped with a single antenna and the FL process is orches-
trated by a wireless server. In each communication round,
the devices intend to train neural networks based on local
data and then transmit parameters to the server for aggre-
gation. Moreover, the limited communication resources are
considered. Specifically, there are K available sub-channels,
K < N, and each sub-channel is occupied by at most one
device. Therefore, only a subset of devices can be selected for
the global model aggregation in each communication round.
The collections of all devices and sub-channels are denoted
by N ={1,2,...,N} and K = {1,2,..., K}, respectively.

A. Computation Model

In each communication round, after receiving the global
model, the selected devices need to train their respective local



learning models with the equipped central processing units
(CPUs). Based on the dynamic voltage and frequency scaling
(DVES) technique, the CPU core can be operated at different
frequency levels, and hence, the consumed time and energy
change accordingly [22]. For any device n assigned to sub-
channel k, the computational time consumption is given by

1B
Tk,ncn ’

T (Thn) = M
where p is a coefficient to denote the required CPU cycles
for training one sample, [3,, is the number of dataset samples
at device n, T, is a designed proportion of computational
capacity, and C), is the CPU frequency of device n. Note that
since the size of local data utilized in training does not change
over the computing time, the test accuracy or loss reduction
is not affected. The energy consumption for computation can
be expressed as follows:

E}i?n (Tk,n) = KO/LBn(Tk,nCn)Q, (2)

where kg is the power consumption coefficient per CPU cycle.

B. Communication Model

After training, local models are transmitted from selected
devices to the server. For any device n, the achievable data
rate at sub-channel £ is given by

Rk,n(pk,n) =B 10g2(1 + pk,n|hk,n|2)v (3)

where B is the bandwidth, p; , is the power allocation
coefficient of device n, and |hg,|? is the normalized chan-
nel gain. Particularly, |hyn,|?> = Pilgk.n|*nd,%c~2, where
P, is the maximum transmit power in each sub-channel,
gkn ~ CN(0,1) the small-scale fading coefficient, 7 is the
frequency dependent factor, d,, is the distance between device
n and the server, a is the path loss exponent, and o2 is the
variance of additive white Gaussian noise (AWGN). In the
considered scenario, the small-scale fading coefficients vary
with the communication rounds'. For simplicity, the index
related to communication rounds is omitted from the notations.
Based on the achievable data rate, the time consumption for
communication can be presented by

D(w!)
TE (pon) = oo L 4
wPro) = g ) @
where D(w ¢ )) is the size of the local model w" at device n

in round ¢. It is assumed that the data size of local models is the
same for all devices and rounds, i.e., D(w) = D(wnt)),Vn, t.
The energy consumption for communication is given by

B (Pkn) = Prn P (Preyn ) - ©)
C. AoU based Device Selection

In any communication round ¢, a subset of devices, denoted
by M, is selected, i.e., Ny € N and |V;| < K. The status of
any device in round ¢ can be represented by a binary variable

!Despite the location of devices is considered stationary in this paper, the
proposed scheme can be extended to mobile scenarios, such as [23]-[25].
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Fig. 1: An illustration of device’s information age.

Sr(f) € {0,1}, where S,(lt) = 1 indicates device n is selected to
participate in the aggregation in round {; Sff) = 0 otherwise.
The set of all device selection indicators is denoted by S().
Therefore, in any round, the set of selected devices A; and the
set of device selection indicators S(*) can be mutually inferred.
In order to improve the performance of FL, device selection
should be determined by data quality. It is revealed in [19],
[26] that staleness of gradient update may negatively impact
learning outcomes. Therefore, the server tends to select the
devices with fresher gradient update for aggregation. In par-
ticular, if a device has been skipped for several rounds, its
gradient update is relatively informative, and the probability
of the server selecting the device should increase. Conversely,
if a device was selected in the previous round, the probability
for its reselection should decrease. To this end, the concept
of Aol is adopted to define AoU [20], [27]. In round ¢, any
device n’s AoU, denoted by ASf ), is presented as follows:

t—1 (t—1 (t—1
Am—{A2)+L it ST v, =0
n 1,

(6)
if St 1)2 k=1 ktnl) _1
where ¢,th1 € {0,1} is the sub-channel assignment indicator.

Particularly, w,(le = 1 indicates that device n is assigned to

sub-channel £ in round ¢; 1/),(:21 = 0 otherwise. According to
the above definition, AoU represents the number of commu-
nication rounds since the last transmission, which is jointly
decided by device selection and sub-channel assignment. As
shown in Fig. 1, if device n was not selected in round ¢ — 1,
ie., S’(t D= 0, or it is not assigned to any sub-channel, i.e.,

Z k1 1/) (1) = = 0, its AoU is incremented by 1; otherwise, its
AoU is reset to 1. With this consideration, a large AoU implies
more informative update, and therefore device selection should
partially depend on AoU. In any round ¢, a%) defined below
is used as a weight? to prioritize selecting devices with larger
AoU for aggregation:

ALY

(t) —
A’ = SN 0
Z’i:l A’E )

n (7
D. Sub-Channel Assignment

The time consumption of each communication round, i.e.,
latency, also plays an important role in FL [7], [12], [28]. By

2In this work, the term “weight” refers to the weighting coefficient, and
the neural network weights are represented by the term “model”.



including computation and communication phases, the time
consumption of any device n assigned to sub-channel k can
be expressed as follows:

Tio,n (Thns Pioyn) = Tyt (Thoun) + T (Ph,n ), (8)

where the time consumption for global model transmission
from the server to devices is ignored as in [29], [30]. With the
given set of selected devices N, the latency in round ¢ can
be presented as follows:

T = Thoon(Thons Do) ¢ - 9
max Zwkn o, (Th,m s Pheyn) )
It indicates that the latency is affected by sub-channel assign-
ment. Specifically, if any device is assigned to a sub-channel
with an enhanced channel gain, the time consumption of this
device decreases, and hence, the latency of this round may
be reduced. Accordingly, the energy consumption of device n
assigned to sub-channel k is given by

(10)

By (Tkins Pen) = E5 (Ten) + B (Prn)-

III. PROBLEM FORMULATION

This work focuses on minimizing the convergence time
of FL, which is defined as the sum of latency across all
communication rounds [7]. Therefore, the convergence time
is determined by i) the number of communication rounds,
and ii) the time consumption of each round. That is, the
server can select devices with more data and larger AoU
to reduce the number of required rounds, or devices with
better channel conditions to reduce the latency in each round.
However, devices with more data and larger AoU are often
not preferred due to larger time and energy consumption,
while devices with good channel conditions can be frequently
selected, which usually causes smaller AoU. Therefore, there
exists a trade-off between these two options. In order to
comprehensively minimize convergence time, the number of
required communication rounds and latency should be jointly
minimized. This situation can be described by the Stack-
elberg game, where global loss minimization and latency
minimization are considered as leader-level and follower-level
problems, respectively.

1) Leader-Level Problem (Computation): In the considered
FL algorithm, the local loss at device n is given by

1
fn('w(t)) = Zé(’w(t); wn,iayn,i)v

™ oi=1

Y

where w(*) is the global model in round ¢, £(w™; ,, ;, Yn.:)
is a loss function, &, ; is the i-th input data of device n, and
Yn.i 18 the corresponding label. In round ¢, the global loss can
be presented below

Zﬁ[:l Zzﬂil é(w(t)7 Ln,iy yn,z) )
> n1 Bn

Fw®) = (12)

By including device selection and sub-channel assignment, an
AoU based global loss minimization problem is formulated as
follows:

min Zg:lag)s(t)ZkK 1¢ Zﬁn é( mnhynl)
S0) 271:7 Lo t)S t)zk 17/}“) ’
(13)
st. S e{0,1},Vne N, (13a)
N
> SV<K (13b)

Constraint (13b) indicates that the number of selected devices
in each round is not greater than the number of available sub-
channels. Note that only device selection is considered in the
computation phase, and the sub-channel assignment indicator
is decided in the communication phase, even though it has an
impact on the global loss.

2) Follower-Level Problem (Communication): Based on the
S(t) given by the leader-level problem, the set of selected
devices N; can be obtained. Then, sub-channel assignment
and resource allocation can be implemented according to the
set AV;. In any round ¢, the latency minimization problem can
be presented as follows:

w(rggl)p max {de Lo (T > Dk n)}, (14)
S.t. Ek,n(Tk,napk,n) S Egldxa (143)
Tk,n S [07 1]7pk,n S [07 1]7 (14‘b)
Y € {0,1}, (14c)
(t) _
ZneN G =1,Yk €K, (14d)
Zk Ui = 1LVn e NG, (14e)
where w(t), T, and p are the sets of all sub-channel assignment

indicators, computational resource allocation coefficients, and
power allocation coefficients, respectively. In constraint (14a),
the maximum energy consumption E]'** is included. In con-
straints (14b) and (14c), the value ranges of all optimization
variables are defined. Constraints (14d) and (14¢) indicate that
each sub-channel can be occupied by one device, and each
device can be assigned to one sub-channel, respectively.

3) Stackelberg Equilibrium: With any given solution of the
leader-level problem, the formulated follower-level problem
can be infeasible, as shown in follows:

Proposition 1. With any device selection S,(lt) = 1, problem
(14) is infeasible if the following condition holds:

In(2)P.D(w®) > E™**Blhy |2, Vk e K. (15)
Proof: Refer to Appendix A. [ |

Proposition 1 indicates that the energy consumption con-
straint can affect device participation, thereby reducing learn-
ing performance [31]. The following remark can be obtained.

Remark 1. In wireless FL scenarios, energy consumption
constraints can restrict the transmission of local models in-
dividually, resulting in a decrease in the global loss.



The above proposition and remark show that there exists an
interaction between these two problems. That is, the selected
devices may not be able to transmit local models to the
server due to the poor channel conditions®. This interaction is
consistent with the Stackelberg competition model, in which
the leader and the follower tend to maximize their own
utilities [32]. For solving the formulated Stackelberg game
based problem, Stackelberg equilibrium [33] is introduced as
follows:

Definition 1. In the formulated Stackelberg game based
problem, by respectively defining Gy, and Gy as the objective
functions of leader-level and follower-level problems, solution
(S®* % 7 p*) is the Stackelberg equilibrium if the
following conditions hold:

GL(SW* " 7% p*) < GL(SM, 4 O* 7+ p*),

(16)
Gr(S®*, ™" 7% p*) < Gr(S®*, ™ 7 p).

In order to achieve the Stackelberg equilibrium, the leader
should predict the possible solution of the follower-level
problem, i.e., the feasibility of the selected devices, and then
propose a strategy which can minimize the global loss after
transmission. As a result, the solution of the follower-level
problem should be obtained before the leader-level problem.
Note that both problems are solved at the server, and the
solutions of each communication round can be transmitted to
all devices together with the global model. Since the server has
powerful computing capabilities, the impact of this process on
latency can be ignored.

IV. SOLUTION OF FOLLOWER-LEVEL PROBLEM

The formulated follower-level problem in (14) is a non-
convex problem with binary constraints. In this section, the
follower-level problem is decoupled into two sub-problems
and solved iteratively. With the fixed sub-channel assignment,
the sub-problem related to resource allocation is given by

I'=min {Tkn(Tkn,prn)|¥n € Ni,Vk e K}, (17)
T.p

st (14a), (14b),

where T' is a K X |N;| matrix containing the minimum time
consumptions for all possible device and sub-channel combi-
nations. With the given matrix I', the sub-problem related to
sub-channel assignment can be presented as follows:

K
: (t)
min 11;%2}\)5 {Z k,nrkm} ,

¥ k=1
s.t.  (l4c), (14d), (14e),

(18)

where I'y, is one element of matrix I'. Note that there
exists an infeasible combination if the condition in Proposition
1 holds. In this case, this combination will be marked as
infeasible and avoided in problem (18).

3Note that transmit power P; does not affect the feasibility as the normal-
ized channel condition |hk,n|2 also contains the transmit power.

A. Joint Optimization of Computational Resource Allocation
and Power Allocation

In problem (17), the time consumption of any combina-
tion only depends on its corresponding resource allocation.
Therefore, this problem can be divided into multiple sub-
problems to obtain all elements of matrix I'. The feasibility
of combinations is verified by utilizing Proposition 1. For any
feasible combination I'y ,,, the sub-problem is given by

min T (i) + T (Pin) (19)

Tk:,'n.) k,n ’ ’
st. B (Ten) + Ef5 (ko) < ER™, (19a)
Tk € [0, 1], pr.n € [0, 1]. (19b)

Since problem (19) is non-convex, traditional optimization
methods, such as convex optimization, cannot be directly
employed. In this case, monotonic optimization is introduced.
In order to utilize monotonic optimization, the monotonicity
of problem (19) should be analyzed. According to [34], the
following proposition can be obtained.

Proposition 2. For any device n assigned to sub-channel
k, with computational resource allocation coefficient Ty
and power allocation coefficient py, n, the time consumption
Thn(Thons Pn) is a decreasing function, while the energy
consumption Ej, n(Tk.n, pk,n) is an increasing function.
Proof: Refer to Appendix B. [ ]

Proposition 2 indicates the following remark.

Remark 2. In the considered FL framework, minimizing the
latency leads to the maximized energy consumption.

According to Proposition 2, it is indicated that the objective
function and all constraints in problem (19) are monotonic.
Next, this problem is transformed to the canonical formulation,
as shown in follows:

max  f(zkn) (20)
st. zZpn €0, (20a)

where 2z, = {Tkn,Pknts G = {20 € [0,1],9(zk,n) < 0},

(t)
s D(wn’)
Ry B @1
f(zk’ ) Tk.,ncn B10g2(1+pk7n|hk,n|2) ( )
and
n)— n nCn 2"' pk —EmaX.
9(21,n) = Kot (7,0 Cn) Blogy (1+pk,n|hknl?) n(22)

In problem (20), the objective function f(z ,) is monoton-
ically increasing with zj ,,, and then the optimal solution is
located on the boundary of the feasible set G. However, due to
the non-convexity, the expression of the boundary cannot be
directly derived. In this case, a polyblock outer approximation
algorithm is proposed to approach the feasible set G by
constructing polyblock P [35], as shown in Algorithm 1.
As shown in Fig. 2(a), by setting the first vertex v(1) € V(1)
the initial polyblock P(!) can be constructed as the box [0, 1],



Algorithm 1 Polyblock Outer Approximation Algorithm

1: Initialize vertex set V(1) = {v(V}, where v(1) = {1,1}.
2: Initialize polyblock P") with vertex set V(1.
3: Set € and 6 = 1.

& B [f($(v?)) — F(@(VOD))| > ¢ then
5. Obtain ¢(v(?) from Eq. (29).

6

(0)

Calculate vertices €r§9> and v, as follows:

0 =@ — (/) — 4, (v))e,, Vi € {1,2}.
7. Update vertex set V(1 as follows:
VO = OOy u ", 9.
Construct polyblock P(*+1) with vertex set V(#+1).
Find vertex v+ from V+1)  where
v — argmax{ f(¢(v))|v € VOV,

10 Setf=60+1.
11: end if
12: Set zj , = d(v(?).

Picn " Pin o) )
1
¢(‘-,(l))_
$) Oy
)
T T
0 k.n 0 1 k.
(@ (b)
pk,n v(z) Pk {’(]2) v(z)
1 1
1) S/ TGS
ICeR) & 1':),- V5
/D
0 Tk,n 0 Tk,n

(c) (d)

Fig. 2: An illustration of Algorithm 1. The blue area is the
feasible set G, and the red star is the optimal point.

which contains the feasible set*. The projection of v(1) on the
upper boundary of feasible set G is calculated, denoted by
#(v(D). Based on point p(v(1)), two new vertices ¥{" and
\7&1) can be obtained to replace v(1), as shown in Fig. 2(b).
The new vertices are calculated as follows:

v = v — (M — g, (vV))ey, Vi € {1,2},

K2

(23)
where v\") is the i-th element of v(1), ¢;(v(1)) is the i-th
element of ¢(v(1)), and e; is the i-th unit vector. As shown
in Fig. 2(c), a new polyblock P(? is obtained, where G C
PR < PO, The vertex set of P is updated as follows:

V) = (v (e, 9. (24)

4Note that the initial vertex, i.e., Tk,n = 1 and pg , = 1, may be infeasible
for problem (20). However, the optimal solution obtained from Algorithm 1
is the projection of the vertex, which is always included in the feasible set G.

After that, the optimal vertex is selected from vertex set Y@
and denoted by v(?), which satisfies the following condition:

v® = argmax{f(¢(v))|v e VP}. (25)

The projection of the optimal vertex can achieve the maximum
value of (21). For example, Fig. 2(c) shows the case that frgl)
is selected as the optimal vertex v(?). This process is repeated,
and a smaller polyblock P®) C P(?) is constructed based on
vertex v(2), as shown in Fig. 2(d). This algorithm is completed

if the following condition is satisfied:

1f(@(v\) — f(@(vD))| <,

where € is the error tolerance. The output zj , = o(v®) is
the optimal solution of problem (20). Moreover, the projection
of any vertex v(?) satisfies the following condition:

p(v\?) = v,
where ¢ € (0, 1) is a ratio coefficient obtained as follows:

¢ =max{( € (0,1)|¢v!” € G}
= max{( € (0,1)|g(¢v?) < 0,(v? € [0,1]}.

(26)

27)

(28)

Since g(év(e)) is a monotonic increasing function, { satisfies
g(¢v®) = 0, which can be written as follows:

¥ P,D(w)
Blogy (1408 |y 2)

The above nonlinear equation can be solved by multiple
numerical solvers, such as fsolve in MATLAB or Python.
It is worth pointing out that during Algorithm 1, with any
given vertex v(?) = {v§9),vée)}, where § > 2, condition
¢ € (0,1) is always satisfied. When 6§ = 1, { = 1 may be
obtained with initial vertex v(l), which means that the feasible
set G includes the first vertex. In other words, the energy
consumption constraint g(zy ) < 0 can be satisfied with any
Tk,n and pg, in [0, 1]. In this case, the optimal solution is
obtained by z} , = v(1).

According to [36], the complexity of Algorithm 1 is
dominated by step 9 and the number of iterations. Specifically,
step 9 selects an optimal vertex from the vertex candidate set,
which contains 6 + 1 vertices at the #-th iteration. Since the
complexity in solving (20) to obtain each vertex is O(2), the
complexity of step 9 is O(2(6 + 1)). With the given number
of iterations 7, the total complexity of Algorithm 1 can be
expressed as O(27T.(T. + 1)).

Ho#ﬂn (Cvge) Cn)2 +

= E™_ (29)

B. Matching based Sub-Channel Assignment

Based on Algorithm 1, the minimum time consumption
of all selected devices in all sub-channels is obtained in
matrix I'. In this subsection, a matching based algorithm is
proposed to solve the binary integer programming problem in
(18), where matrix I' is utilized to construct the preference
list. In problem (18), the set of selected devices, i.e., N, is
provided by the leader-level problem. As revealed in Section
V, to minimize global loss, the number of selected devices is
maximized in each round, i.e., [Ny| = K. Therefore, N; and
KC are two disjoint sets with the same size, and this scenario



can be considered as a one-to-one matching ¥ from A; to
IC. Furthermore, since some combinations in matrix I' are
marked as infeasible, the player in this matching may have an
incomplete preference list [37], [38]. In this case, the elements
in I' cannot be directly employed, and the utility of device n
assigned to sub-channel & in matching ¥ is defined below

Unax, if I'k, is infeasible,
Un(\y) = 7

(30)

T'xn, otherwise,

where Uy ax 1s a large constant indicating that the assignment
of device n and sub-channel & is infeasible. In the one-to-one
matching, the utility of any sub-channel is equal to the utility
of the occupied device, ie., Uy(V) = Uy (¥),Vk € K.
By calculating the utility, the preference list of any player
can be established. Since that problem (18) is a minimization
problem, the preference of device n can be defined below

(k,0) <, (K, 0') = Up(¥) > Up (). 31)

The above function indicates that device n is willing to be
assigned to sub-channel &’ in matching W', rather than k
in matching W, since its utility can be strictly decreased by
switching from % to %’.

Since all players are matched, the considered case follows
the concept of two-sided exchange matchings [39]. In this
case, if any device intends to be assigned to a sub-channel, it
needs to exchange with the device occupying this sub-channel,
instead of directly joining this sub-channel. A notation W7, is
introduced to represent the case where two devices n and n’
are swapped in matching W, which is defined as follows:

U(n')=F,
U(n)=k, m=n,

m=n,

(32)

where U7, only replaces two pairs defined by ¥(n) = k and
U(n') =k’ into U(n) = k' and ¥(n') = k, respectively. It is
indicated that any swap operation involves four players, and
hence, it should be approved by the involved players. However,
in a matching with the incomplete preference list, there may
be sub-channels that are unacceptable for some devices. In
order to prioritize feasible combinations, the approval of sub-
channels is removed, and the swap operation is approved by
the swap-blocking pair (n,n’), which is defined below [40]:

Definition 2. A swap-blocking pair (n,n’) is confirmed if and
only if the following conditions hold
1) U, (97) < U,(T) and Uy (97,) < Ups (T);

2) At least one inequality above is strict.

By searching swap-blocking pairs, a matching based sub-
channel assignment algorithm is presented in Algorithm 2.
The proposed algorithm can be started from any initial match-
ing. During the execution of the algorithm, an active device
n is selected and sequential swap is attempted with all other
devices. If a swap-blocking pair (n,n’) is formed, the new
matching ¥, is recorded, and the algorithm continues. The
main loop of Algorithm 2 executes repeatedly. When the
last device has searched for all other devices, the first device
becomes the active device again. The algorithm ends if no
swap blocking pair can be found in a full round of the main

Algorithm 2 Sub-Channel Assignment Algorithm

1: Initialization:

2: Initialize initial matching ¥ by randomly pairing all
devices and sub-channels.

3: Main Loop:

4: for n € N; do

5:  Device n makes a proposal to exchange with device
n' € Ny, where n #n’.

6: if (n,n’) is a swap-blocking pair then

7: Matching V7, is approved.

8 Devices n and n’ exchange sub-channels.

9: Set ¥ = W7,

10:  end if

11: end for

12: The main loop is repeated until no swap-blocking pair can
be found in a complete round.

loop. At this stage, a stable matching is established, which
satisfies the following definition [39], [40]:

Definition 3. A matching V is two-sided exchange-stable
(2ES) if and only if there is no further swap-blocking pair.

Note that some devices may not be assigned to feasible sub-
channels in the stable matching, i.e., their utilities are equal to
Umax. In this case, these devices cannot transmit local models
to the server, and the corresponding sub-channel assignment
indicators should be set to zero in the leader-level problem. In
the following, the complexity, convergence and stability of the
proposed matching based sub-channel assignment algorithm
are analyzed.

1) Complexity: By considering the worst case, the compu-
tational complexity of the proposed matching based algorithm
can be expressed as O(CK?), where C is the number of main
loops. In the worst case, K devices can play the role of active
devices to search K — 1 devices, and thus K (K — 1) times of
calculations should be performed in one loop. With the given
number of main loops C, the computational complexity of the
proposed algorithm is obtained.

2) Convergence: Assuming U@ and U® are two adjacent
matching in Algorithm 2, ie., ¥@ — W® where a # b,
one swap-blocking pair is found among this transformation.
According to Definition 2, at least one device can achieve less
utility, and the utilities of other devices cannot be increased.
Hence, the matching transformation cannot be reversed. With
the finite number of devices and sub-channels, the number of
possible matchings is finite and equal to the Bell number [41].
Therefore, from any initial matching, the proposed algorithm
is guaranteed to converge to a stable matching.

3) Stability: Based on Definition 3, any final matching
obtained from the matching based sub-channel assignment
algorithm is 2ES. Specifically, if the final matching obtained
from Algorithm 2 is not 2ES, there exists at least one swap-
blocking pair, which can further reduce the sum utility of all
devices. However, it contradicts the conditions for completing
the proposed algorithm.



V. SOLUTION OF LEADER-LEVEL PROBLEM

To solve the formulated global loss minimization problem
in (13), the loss function and local data must be available at
the server, which is impractical and contradicts the motivation
to utilize FL. In this section, by analyzing the impact of device
selection on the expected convergence rate, such information
can be detached from the leader-level problem. By employing
the gradient descent method, with global model w®), device
n can update the local model as follows:

©: @i yni),  (33)

where A is the learning rate. After that, the selected devices
transmit the updated local models to the server for aggregation.
By including device selection and sub-channel assignment, the
aggregated global model in round ¢ is given by’

N t K t
1) _ Zn= 1S<>zk )
POAEIR) DTS

) )‘anl ff)zk:lwk,zlziﬁilw(w(”; Ty Yn,i)

OMBICSD DT G
=0 = AVF(w®) — @), (34)
where
@ (35)
g () Zn=t SIS U SV @ )

Zn 1S(t)2k lwk nﬁ"
In order to derive the expected convergence rate, the following
assumptions are considered [8], [9], [23], [46]:

1) With respect to the global model w("), VF(w®) is
uniformly Lipschitz continuous, i.e.,

IVF(w* ) = VF(@®)] < Lijw* Y — w'

9, 36)

where L is a positive parameter.

2) F(w) is strongly convex with a positive constant /, i.e.,
F(w(t“)) > F('w(t)) + (w(t+1) — 'w(t))TVF(w(t))
+ %Hw“*l) —w®. (37)

3) F(w®) is twice-continuously differentiable, as below:

pI < V2F(w®) < LI (38)

4) The following inequality is satisfied with any device n and
sample i:

IVE(w™); i, yni) 1> < P VE ()%,

(39)

where p is a non-negative constant.

It is worth pointing out that the above assumptions are
commonly considered in the FL related optimization, and can
be satisfied by widely adopted loss functions. Based on these

5 Although we consider federated averaging (FedAvg) for aggregation in this
paper, an extension of the results to other federated optimization algorithms
[42]-[45] is straightforward.

Algorithm 3 Device Selection Algorithm

1: Initialization:
2: Generate list Q(*) based on (43).
3: Initialize set \V; by selecting the first K devices from Q")
4: Main Loop:
5: Obtain sub- channel a551gnment from Algorithm 2.
6: leneNtZk 1¢kn < K and (N) ¢ N; then
7. for n € N; do
se \OK 0 (t)
8 if >, ¢, =0 then
9 Remove device n from set N;.

10: Add the next unselected device from list Q(t).
11: end if

12:  end for

13: end if

assumptions, the following proposition yields the effect of
device selection on convergence rate.

Proposition 3. In the case that device selection and sub-
channel assignment satisfy S,(f) = Zszl 1/1,(;21, Vn € N, with
the learning rate \ = 1/L and the optimal élobal model w*,
the upper bound of convergence rate in round t is

E[F(w()— F(w")] < (1- %)tE[F(w”) —F(w")] (40)
i F 2 NV
Z( by Hv . TR <1 5 ’de“)-
—1 n p=1
Proof: Refer to Appendix C. [ |

It is indicated that the convergence rate is bounded by two
terms. The first term, i.e., (1——) E[F(w®) — F(w*)], is
the expected gap between the first global loss and the optimal
global loss in round . The second term is related to dev1ce
selection, where the status of devices in round ¢, i.e., Sn s
is included. Proposition 3 indicates the expected gap between
the global loss in round ¢ and the optimal loss. In this case,
the global loss minimization problem in (13) can be achieved
by minimizing the expected gap. Since that the first term does
not include device selection, it can be2 treated as a constant.
Meanwhile, terms QL—’) and w are positive and not
effected by device selection, and Tllen%e, they can be removed.
By incorporating the AoU based weight asf ) into the device
selection indicator Sr(f), the objective function of the leader-
level problem (13) can be reformulated as follows:

N K
> (103l
n=1 k=1

By removing the constant term ij:l Bn, the leader-level
problem (13) can be equivalently transformed as follows:

N K
3 alP8,50 3wl
n=1 k=1

st (13a), (13b).

min

41
S(t) ( )

max

na (42)

Problem (42) can be treated as a weighted device selection
problem, where AoU and data size play the role of weight



factors. That is, the server tends to select the devices with
large AoU and/or data size. In this case, the server can order
and select devices based on this weight. In any round ¢, all
devices are sorted in a list Q(t), which satisfies the following
condition:

(t) (t) (t)
0‘(1)[3(1) > 04(2)5(2) Z 2 OZ(N)B(N), 43)

where (1) and (V) denote the devices with the highest
and lowest priority, respectively. Moreover, it is indicated by
problem (42) that the server tends to select more devices, and
hence, constraint (13b) can be rewritten as 25:1 S,(f) = K.
According to the list Q) problem (42) can be solved by
Algorithm 3. In the proposed device selection algorithm, K
devices with the highest priority are selected in the initializa-
tion phase. During Algorithm 3, any device not assigned to
a sub-channel will be replaced, until all selected devices have
been assigned to sub-channels, or all devices in list Q(t) have
been adopted. In the worst case, all devices in list O®) are
traversed, and therefore the complexity of Algorithm 3 can
be expressed as O(N).

VI. SIMULATION RESULTS

In this section, the performance of the proposed solution
is simulated and demonstrated. In this simulation, multiple
devices are randomly distributed in a disc with radius R,
and the server is located in the center of the disc. The
experiments includes three datasets (MNIST, CIFAR-10, and
SST-2) with different models®. The imbalanced independent
identically distributed (IID) data distribution is adopted, where
a factor ¢, € [1,10] is randomly generated for all devices, and
training samples (500 for MNIST, 50000 for CIFAR-10, and
67349 for SST-2) are shuffled and partitioned across devices
based on fraction ¢,/ > ..\ ¢i. Unlike [8]-[15] which focus
on minimizing either global loss or latency, this paper studies
the interaction between global loss minimization and latency
minimization. Thereby, a direct comparison with the existing
schemes in these works is unfair. Alternatively, the proposed
scheme is benchmarked against the following conventional
device selection schemes:

e AoU based DS: The server selects the top K devices in (43).

e Random DS: The server selects K devices randomly.

o Cluster based DS: All devices are randomly allocated to
N/K clusters such that the clusters are selected in rotation.

e Fixed DS: The same K devices are selected in all rounds.

In the above schemes, the proposed solutions are adopted,
including monotonic optimization based resource allocation
(MO-RA) and matching based sub-channel assignment (M-
SA). Moreover, fixed resource allocation (FIX-RA) and ran-
dom sub-channel assignment (R-SA) are incorporated as

SFor MNIST digit recognition tasks, a multi-layer perceptron neural net-
work is built, where two ReLu hidden layers with 128 and 256 neurons
follows by a softmax output layer. For CIFAR-10 image classification tasks, a
convolutional neural network (CNN) is constructed with two 3x3 convolution
layers (one with 32 filters and one with 64 filters, each followed by a 2x2
max pooling layer), a 128-neuron ReLu hidden layer, and a softmax output
layer. For SST-2 text classification tasks, a tokenizer with a vocabulary size
of 4, 000 is included, and the neural network is built with a 128-neuron ReLu
hidden layer and a sigmoid output layer.

TABLE I: Table of Parameters

Carrier frequency f 1 GHz
AWGN noise power o2 —174 dBm

Path loss exponent a 3.76
Bandwidth for each sub-channel B 1 MHz
Power consumption coefficient o 10—28

CPU cycles for each bit of tasks p 107

Computational capacity Cy, 1 GHz
Error tolerance € 0.01
Model size D(w) (MNIST/CIFAR-10/SST-2) 1/5/5 Mbit

Maximum energy E'™ (MNIST/CIFAR-10/SST-2)
Learning rate A (MNIST/CIFAR-10/SST-2)

Batch size (MNIST/CIFAR-10/SST-2)

Optimizer (MNIST/CIFAR-10/SST-2)

0.02/0.1/0.1 joule
0.01/0.001/0.01
32/512/128
SGD/Adam/SGD

benchmarks, where 74, = pr,, = 0.5,VEk,n is set in FIX-
RA. The parameters of the simulation are shown in Table 1.

In Fig. 3, the global loss achieved by different schemes is
presented. Given the same number of communication rounds,
the proposed scheme can achieve the lowest global loss on all
datasets, reflecting the derived convergence rate in Proposition
3. This improvement benefits from two approaches, including
AoU based weights and efficient utilization of sub-channels.
The former is able to select devices that can provide more
contributions in each communication round, while the latter
ensures the maximization of the number of selected devices.
Moreover, it can be observed that without Algorithm 3, AoU
based DS can still outperform other schemes, which confirms
that AoU based weights have the capability to improve learn-
ing efficiency. In terms of the random DS and cluster based
DS, the devices have the same probability to be selected,
and hence, the similar global loss is achieved by these two
schemes. For the fixed DS, due to the fact that the size of
training data in this case is less than that in other schemes, its
performance is the worst. Compared to the MNIST dataset,
the CIFAR-10 image classification task is more complex,
and hence, the differences between the schemes are not that
obvious, as shown in Fig. 3(b). However, the performance of
these schemes is still consistent with Fig. 3(a). It is worth
noting that by employing the CIFAR-10 dataset, the data
size and model size is increased, and therefore, the number
of devices that can satisfy the energy constraint is reduced.
This issue is severe when utilizing AoU based DS, as the
server tends to select devices that are generally more difficult
to meet this condition, resulting in poor performance. This
effect is mitigated when a simpler task is adopted, as shown
in Fig. 3(c). Since there are only two labels on the SST-2
dataset, the differences between schemes become significant,
and the advantages of the proposed scheme in global loss are
clearly demonstrated.

Fig. 4 shows the performance of the proposed optimization
solutions, where different resource allocation and sub-channel
assignment approaches are incorporated into the proposed
device selection scheme. It is clear that the proposed scheme
can achieve the best performance with the proposed solutions,
i.e., MO-RA and M-SA. This is because in this case, the
server can select devices who can provide more contributions
in the aggregation without replacing them with lower priority
devices in (43). When other solutions are utilized, some
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Fig. 4: The performance of the proposed scheme using different solutions. N = 20, K =4, P, = 10 dBm, and R = 500 m.

devices may no longer meet the maximum energy consumption
constraint and thus be replaced by devices with lower priority
in (43), resulting in poor learning performance. This result also
corroborates our conclusion that the contribution of a device
in aggregation is proportional to its AoU and data size. In
Fig. 4(a), an obvious feature is that the proposed scheme using
FIX-RA and R-SA performs well in the early stage of training
(from round 1 to round 100), but poorly in the later stage. This
is due to the fact that in this case, the number of devices that
can satisfy the maximum energy consumption requirement is
very small, and thus device selection is performed on a smaller
subset. For simple tasks, such as MNIST with IID data distri-
bution, repeatedly using smaller training datasets can achieve
faster convergence in the early stages, however, this can lead
to overfitting problems and poor final results. Moreover, it is
worth pointing out that compared to sub-channel assignment,
resource allocation plays a more important role in minimizing
the global loss, and this trend is more significant when the
model size is larger, as shown in Fig. 4(b) and Fig. 4(c).

In Fig. 5 and Fig. 6, the impact of the number of devices and
radius on global loss is presented, respectively. In Fig. 5, since
the size of the total training data is fixed, an increase in the
number of devices means less training data per device. That is,
when the number of selected devices, i.e., K, is fixed, as the
number of devices rises, the amount of training data utilized
in each communication round reduces, resulting in an increase
in the global loss. With the proposed optimization solutions,
devices that can provide more contributions can be selected,
and therefore the learning performance is improved. In Fig. 6,
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Fig. 5: The impact of the number of devices with the MNIST
dataset. K =4, P, = 10 dBm, and R = 500 m.

the increase in radius can be understood as a deterioration in
channel conditions. According to Proposition 1, in this case,
more devices become unavailable and cannot participate in the
aggregation. As a result, the achievable global loss increases
with the radius. By employing the proposed optimization
solutions, the negative impact caused by channel degradation
can be alleviated to a certain extent, thereby narrowing the
gap in global loss.

In the considered Stackelberg game based framework, the
number of selected devices varies between schemes, and
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therefore, the latency cannot be compared independently. It can
be seen from Fig. 7 that the proposed scheme can efficiently
utilize all available sub-channels, while the latency of each
communication round is also increased accordingly. That is be-
cause the proposed scheme needs to guarantee the performance
of training through the leader level problem. This explains why
the achievable global loss of the proposed scheme is lower
than others. It is also indicated that the proposed RA and SA
algorithms can increase the number of selected devices with
random DS.

The effect of energy limitation is demonstrated in Fig. 8, and
the results confirm Proposition 1. According to Proposition 1,
as the maximum energy consumption increases, the device
participation increases. As a result, by employing random DS,
the number of selected devices in each communication round
is increased, and meanwhile the latency of each round also
increases. On the other hand, it can be observed that the
proposed algorithm, MO-RA, has the ability to dynamically
adjust the computational resource allocation coefficients and
power allocation coefficients. Therefore, the latency can be
reduced with this solution.

As shown in Fig. 9, the latency decreases with the increasing
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transmit power, since the achievable data rate can be increased.
With FIX-RA, the number of selected devices is reduced when
the transmit power is greater than 6 dBm, because the fixed
power allocation coefficient can no longer satisfy the energy
consumption constraint. For MO-RA, the power allocation
coefficient is optimized, and thus the number of selected
devices is not affected. However, the decrease in latency has
been slowed down accordingly.

VII. CONCLUSIONS

This paper investigates FL in a practical wireless com-
munication scenario, where limited sub-channels and energy
consumption are considered. With the goal of minimizing
convergence time, we jointly formulate global loss minimiza-
tion and latency minimization based on the Stackelberg game.
We present a monotonic optimization based algorithm to find
the optimal solution of computational resource allocation and
power allocation. Based on the obtained solution of resource
allocation, we further develop a matching based algorithm with
incomplete preference list to solve the sub-channel assign-
ment problem. For the global loss minimization problem, we
incorporate AoU based weights and derive an upper bound



on convergence rate, which presents a priority for selecting
devices. Simulation results demonstrate significant reduction
of the global loss, establishing that our developed solutions can
efficiently utilize available sub-channels and reduce latency.
It is worth highlighting that the AoU based device selection
can be extended to mobile environments as a practical and
promising research direction.

APPENDIX A: PROOF OF PROPOSITION 1

Suppose that device n is selected and assigned to sub-
channel k in round ¢, i.e., S,(lt) = 1 and 1/1,(;21 = 1, based
on constraint (14a), the following condition will be satisfied
by the optimal solutions 7 . and pj

EP (i) + B (D7) < EP. (44)

Due to the fact that the energy consumption for computation
is strictly greater than zero, i.e., E,ipn (15 ) > 0, the following
inequality can be obtained:

Ek n(pk n) < Errznaxa (45)
which can be rewritten as follows:
PD (t)
PhnFtD(wn’) < Emax, (46)

Blogy (145 [Pk ?)

Since py [hknl® > 0, pi lhenl® > (1 + o [hknl?)
holds, the following inequality can be obtained:

In(2) P, D(w) pi PiD(w) “
Blhjn|? Blogz(l + Py nlinl?)
Therefore, the following condition must be satisfied:
In(2) P,D(w})
— " < e (48)
Blhgn|?
and this proposition is proved. ]

APPENDIX B: PROOF OF PROPOSITION 2

It is obvious that the time consumption of any device
n in sub-channel k£ is monotonically decreasing with 7y,
and py,, and hence, the proof of this part is omitted. In
terms of the energy consumption, as shown in constraint
(19a), the monotonicity can be proved by two parts. The first
term, E;?ﬂ(ﬂc_’n), is the energy consumption for computation,
which is monotonically increasing with the computational
resource allocation coefficient. The second term is the energy
consumption for communication, which can be presented by

Pem P D(wl)

BenPen) = o, (e penli?
The derivative of the above function is
OE;™ (pr,n) In(2)P,D(w)
Opr,n B B+ prn|hg D)0 (14-pren|hren|?) 0)

X [(1 +pk,n|hk,n|2)1n(1+pk,n|hk,n|2) _pk,n|hk,n|2] .

Since the first term of the above function is always greater
than zero, the monotonicity of function Ej’ ™ (pk,n) depends
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on the term in the square bracket. Particularly, Ef (pk,n) is
an increasing function if the following inequality holds:

(1+pk,n|hk,n|2)ln(1+pk,n|hk,n|2)_pk,n|hk,n|2 Z O (51)

Ay 1 . . . . _
Suppose 0y, = 7” miTmEESE the above inequality is equiva

lent to the followmg inequality:

— (Ogm — 1 —1Inby,) > 0. (52)

9k n
Since Oy, > 0, In 0k, < O, — 1 holds, and then the above
inequality is always satisfied, which indicates that (49) is an
increasing function. As a result, the total energy consumption
is an increasing function, and this proposition is proved. N

APPENDIX C: PROOF OF PROPOSITION 3

In order to prove this proposition, an auxiliary function is
defined as follows:

L
Gw)==w'w— F(w). (53)
With respect to w, the second-order partial derivative of the

above function is given by

0?G(w)
ow?
Since F(w) satisfies the uniformly Lipschitz condition, the
above function is always greater than or equal to zero, and
hence, G(w) is a convex function. By utilizing the second-
order Taylor series expansion, the following inequality can be
obtained:

Gwt ) > Gw®) +

0?F(w)
e

(54)

(wt) — w®)TYG(w®). (55)

From (53), the above inequality can be equivalently trans-
formed as follows:

F(w(t“)) < F(w(t)) + (w(t+1) —w(t))TVF(w(‘))

L
+ = lw D —aw®)2. (56)

Based on (34), the following inequality can be obtained:
F(w®)=A[VF(w®) - TVF(w®)

A2L )
+—HVF( D) —w .

F(,w(tJrl)) <
(57)

When A = 1/L, the above inequality can be transformed as
follows:

B[ ()]
<E{F(w)-AVF ()=o) VF )
S F)-a)?)
—& | Flw)- FIVF®)*+ £ (@) TV F(w)
)VE@®)

1 . 1.
o | V@) - (@ )

1 1 .
=E[F ()]~ o [VF@)|*+ 2 E(|@ ). (58)



By defining

Z Vé(w(t) Ln,is Yn, z)
(59

K
> Zw,ifnznvawﬂ i i)l

neNk=1 i=

based on condition Sn = Zszl wktn
following equation can be derived:

& ®)
f(/\/tﬂ/f , W t)) Z Z‘/’k,

neNk=1

9N, ™ w®) 2

= 1,Vn € N, the

) N p®, ®) |2
E(|&®)2)=E HW(w“’)—ZNf (1 fﬂzk 11/,(3 ]
U’f/\ft, w®)  fN Y w®)
LB NS e B

ZnGN\Nt Zi:lvg(w(t); Ln,iy yn,z) 2

. (60)
>y Bn ‘ ]

+

where A\, is the collection of unselected devices in round
t. According to the triangle-inequality, the above equation can
be transformed as follows:

[Z 1611(1 S(t)zk 11/1(”)} ( ’l,b(t),w(t))

E(|&™|*)<E

(1 Ba) (o S S i) Br)

2

S en s o IV E(w®: 2 i, )|

+ N . (61
Y onetBn

According to (39), inequalities

N
(Mu 7 Z Zw Bn\/ pHVF(’UJ(t))lP,
nmhoeE (62)
and
Bn
> Y IV @iy (63)

RENN; i=1
N K
<[Safiso3on)
n=1 k=1

can be obtained. Therefore, (61) can be rewritten as follows:

PIVE(w®)]?,

o 815 VATV @O B[ (40 -

(o)) < S
+[zn Ba(1=8V i )V ATV F @) 2
S
4| VE@O) [Zﬁ’(l S3 )1
(EN,6.)° =

(64)

Due to the fact that the number of all devices’ samples is not
less than the number of unselected devices’ samples, i.e.,

N N K
S zﬁn(l—swzw,az) >0,
n=1 n=1 k=1

(65)
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the following inequality can be obtained from (64):

. 4p||VE( (”|P (t)
E([lo®?) < S —f—— Bal1-5 1/1
Zn 1671 ;
(66)
As a result, (58) can be rewritten as follows:
1
E[F (w™)] < E[F(w")] - —IIVF(M“))II2 (67)
QPHVF (w®)]2 ¢ (t)
| {1~ S“ ¢

By subtracting E[F (w*)] in both sides of the above function,
the following inequality can be obtained

E[F (w0 ) — F(w")] E[F(w) ~ F(w")] ~ 5 - | VF(aw

Zﬁn<1 S Zw ).(68)

n=1

)

20V F (w®)]?
LZn 1611

According to [47], the following inequality can be obtained
from (37) and (38):

IVE(®)|? > 2u[F(w) - Fw")].  (69)

Hence, (68) can be rewritten as follows:

E[P(w )~ Fw")] < (1- %) E[F(w“>>—F<w*>]
+2p||VF ()P,

1- S . (70)

Similarly, the convergence of successive rounds is given by

n=1

B +) — Fw')] < (1-2) BlF () Fw)]

|22ﬂn<1 S~ 121/” ”)
n=1 k=1

20|V F (w1
%)
+( L

LZ
F t) 2

As aresult, we derive the upper bound of the convergence rate
as

F(w")] < (1—%)tE[F<w<l>>—F<w*>] (72)

t—1 VF
231 T (-3 ).
n 1Bn n=1
hich completes the proof. |
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