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Abstract—This paper studies issues that arise with respect to
the joint optimization for convergence time in federated learning
over wireless networks (FLOWN). We consider the criterion and
protocol for selection of participating devices in FLOWN under
the energy constraint and derive its impact on device selection.
In order to improve the training efficiency, age-of-information
(AoI) enables FLOWN to assess the freshness of gradient updates
among participants. Aiming to speed up convergence, we jointly
investigate global loss minimization and latency minimization in
a Stackelberg game based framework. Specifically, we formulate
global loss minimization as a leader-level problem for reducing
the number of required rounds, and latency minimization as a
follower-level problem to reduce time consumption of each round.
By decoupling the follower-level problem into two sub-problems,
including resource allocation and sub-channel assignment, we
achieve an optimal strategy of the follower through monotonic
optimization and matching theory. At the leader-level, we derive
an upper bound of convergence rate and subsequently refor-
mulate the global loss minimization problem and propose a new
age-of-update (AoU) based device selection algorithm. Simulation
results indicate the superior performance of the proposed AoU
based device selection scheme in terms of the convergence rate,
as well as efficient utilization of available sub-channels.

Index Terms—Wireless federated learning, Stackelberg game,
age-of-information, device selection, resource allocation, sub-
channel assignment.

I. INTRODUCTION

The rapid development of mobile devices and applications

has ushered us into the fifth-generation (5G) era. Much of

the network services in 5G and beyond is expected to address

explosive growth and need of machine learning (ML) and data

science [1]. In conventional centralized ML, a central server

is equipped at the access point (AP) to collect all raw data for

model training. However, due to the limited wireless resources

and potential privacy issues, centralized ML is impractical for

some scenarios [2]. In this context, federated learning (FL) is

a framework for distributed ML algorithms to collaboratively
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train a central learning model while keeping the data locally

[3]. Specifically, in FL, a global model is shared among

multiple devices, and each device trains the received global

model based on the local data and produces a local model

[4]. Thereafter all local models are transmitted to the server

via wireless communication networks to generate the updated

global model [5]. Since raw data do not leave the device, and

the model size is much smaller to share, such that there is

less concern about data privacy and lower consumption of data

network resources [6].

A. Related Works

Owing to its growing popularity, FL-related design and

optimization in existing wireless communication architectures

have attracted widespread attention, in which convergence time

is regarded as an important performance metric. As indicated

in [7], the convergence time is jointly determined by the

number of communication rounds and the time consumption

per round. The former is closely related to convergence rate,

while the latter is normally defined as latency.

In view of the relationship between global loss and con-

vergence rate, some works focused on the global loss mini-

mization problem in order to reduce the number of required

communication rounds [8]–[11]. In [8], a FL algorithm with

multiple local training was designed. It considered the impact

of local and global update rounds on the convergence bound,

and developed an approximate solution of the global loss

minimization problem. In [9], packet error rate was introduced

to indicate whether the FL parameter transmission was suc-

cessful or not. Specifically, the joint problem of user selection,

resource block allocation, and power allocation was studied

under delay and energy constraints [9]. Incorporating FL in a

massive multiple-input-multiple-output (MIMO) scenario with

energy harvesting, the authors of [10] included the consid-

eration of user scheduling and power allocation in a global

loss minimization problem. Adopting a model pruning scheme,

in [11], the authors jointly optimized device selection, time

slot allocation and pruning ratio in order to maximize the

convergence rate with a latency constraint.

As another factor in determining the convergence time of

FL, latency, including computation time and communication

time, was extensively researched in previous works [12]–[15].

The authors of [12] designed a realistic wireless network

for FL, where a limited number of users can be selected

at each round for aggregation. By obtaining user selection

and resource block allocation schemes, the convergence time
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of FL was minimized. Setting a local accuracy level at

each device, the FL algorithm with multiple local update

rounds was proposed in a cell-free massive MIMO scenario

[13], in which time consumption for downlink transmission,

uplink transmission, and computation was considered in the

formulated training time minimization problem. A multi-task

FL framework was studied in a multi-access edge computing

(MEC) scenario, where edge nodes were included to accom-

plish different learning tasks [14]. In order to minimize the

latency of each communication round, the optimal matching

between edge nodes and end devices was obtained. In [15],

the authors proposed a hybrid learning scheme, where part

of data can be offloaded from devices to the server, while

the remaining data was utilized for local training. It was

demonstrated that the proposed scheme has the ability to

reduce the total time consumption.

B. Motivation and Contribution

Although global loss minimization and latency minimization

have been separately studied in existing works [8]–[15], the

interaction between these two objectives remains unclear.

Specifically, devices that have a significant constructive impact

on training convergence may have poor channel conditions,

thereby increasing the latency of the corresponding aggrega-

tion round. On the other hand, focusing on minimizing latency

may cause devices with high channel gains to be repeatedly

selected, leading to an increase in the global loss [16], [17].

Therefore, it is necessary to investigate this interaction and

construct a dynamic trade-off. To this end, this work adopts

Stackelberg game and presents a novel framework to jointly

consider learning and communication in wireless FL systems,

where the server and devices tend to minimize the global loss

and latency, respectively. Unlike the conventional papers on

global loss minimization that treat latency as a definite thresh-

old [8]–[11], latency in this work can be flexibly adjusted to

ensure the convergence rate. Compared to [18], an energy bud-

get is included and its impact on device selection is analyzed,

constructing a more practical and challenging scenario. On

the other hand, inspired by the concept of age-of-information

(AoI) [19], age-of-update (AoU) [20] is defined in this work

as a metric to evaluate the staleness of model updates. In

this context, a novel device selection method is designed to

estimate the contribution of devices in each communication

round without analyzing the model/gradient or transmitting

additional information to the server. Different from [20] and

[21] which target overall AoU/AoI minimization, AoU in this

work is regarded as a weight to prioritize selecting devices

with larger AoU. The main contributions of this paper are

summarized as follows:

• A latency-sensitive FL scenario is considered, where multi-

ple devices transmit parameters to the server over a limited

number of sub-channels. In order to jointly minimize global

loss and latency, a Stackelberg game based problem is

formulated, where global loss minimization and latency min-

imization are considered as leader-level and follower-level

problems, respectively. It is proved that the with the given

sub-channels, some devices cannot transmit local models

to the server due to the energy consumption constraint.

Based on the analysis, the Stackelberg equilibrium of the

formulated problems is established.

• The follower-level problem is divided into two sub-

problems, including resource allocation and sub-channel

assignment. Due to non-convexity and monotonicity, a

monotonic optimization based solution is proposed for the

resource allocation problem. Moreover, a matching based

algorithm is developed to address the sub-channel assign-

ment problem with the incomplete preference list, where

the properties of the proposed algorithm are analyzed.

• In order to solve the leader-level problem, the upper bound

of the convergence rate is derived, which indicates that

the convergence rate can be improved by selecting devices

with large data size. Therefore, the global loss minimization

problem is reformulated as a weighted device selection

problem. By ordering devices based on AoU and data size, a

priority list is created, and an algorithm is designed to select

devices by predicting sub-channel assignment and resource

allocation.

• The simulation results on Modified National Institute of

Standards and Technology (MNIST), Canadian Institute for

Advanced Research (CIFAR-10) and Stanford Sentiment

Treebank Version 2 (SST-2) databases are presented. It is

indicated that the designed AoU based device selection

scheme can improve the convergence rate and achieve the

lowest global loss. Moreover, the proposed solutions for re-

source allocation and sub-channel assignment can efficiently

utilize available sub-channel and dynamically adjust energy

utilization in order to reduce latency.

C. Organization

The remainder of this paper is organized as follows. In

Section II and Section III, the system model and problem

formulation are described, respectively. The solution of latency

minimization problem is presented in Section IV, and the

solution of global loss minimization problem is obtained in

Section V. Section VI demonstrates the simulation results. The

conclusions are summarized in Section VII.

II. SYSTEM MODEL

Consider an FL scenario where N wireless mobile devices

collaboratively train a joint learning model. Each device is

equipped with a single antenna and the FL process is orches-

trated by a wireless server. In each communication round,

the devices intend to train neural networks based on local

data and then transmit parameters to the server for aggre-

gation. Moreover, the limited communication resources are

considered. Specifically, there are K available sub-channels,

K ≤ N , and each sub-channel is occupied by at most one

device. Therefore, only a subset of devices can be selected for

the global model aggregation in each communication round.

The collections of all devices and sub-channels are denoted

by N = {1, 2, . . . , N} and K = {1, 2, . . . ,K}, respectively.

A. Computation Model

In each communication round, after receiving the global

model, the selected devices need to train their respective local
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learning models with the equipped central processing units

(CPUs). Based on the dynamic voltage and frequency scaling

(DVFS) technique, the CPU core can be operated at different

frequency levels, and hence, the consumed time and energy

change accordingly [22]. For any device n assigned to sub-

channel k, the computational time consumption is given by

T cp
k,n(τk,n) =

µβn

τk,nCn

, (1)

where µ is a coefficient to denote the required CPU cycles

for training one sample, βn is the number of dataset samples

at device n, τk,n is a designed proportion of computational

capacity, and Cn is the CPU frequency of device n. Note that

since the size of local data utilized in training does not change

over the computing time, the test accuracy or loss reduction

is not affected. The energy consumption for computation can

be expressed as follows:

Ecp
k,n(τk,n) = κ0µβn(τk,nCn)

2, (2)

where κ0 is the power consumption coefficient per CPU cycle.

B. Communication Model

After training, local models are transmitted from selected

devices to the server. For any device n, the achievable data

rate at sub-channel k is given by

Rk,n(pk,n) = B log2(1 + pk,n|hk,n|
2), (3)

where B is the bandwidth, pk,n is the power allocation

coefficient of device n, and |hk,n|2 is the normalized chan-

nel gain. Particularly, |hk,n|2 = Pt|gk,n|2ηd−a
n σ−2, where

Pt is the maximum transmit power in each sub-channel,

gk,n ∼ CN(0, 1) the small-scale fading coefficient, η is the

frequency dependent factor, dn is the distance between device

n and the server, a is the path loss exponent, and σ2 is the

variance of additive white Gaussian noise (AWGN). In the

considered scenario, the small-scale fading coefficients vary

with the communication rounds1. For simplicity, the index

related to communication rounds is omitted from the notations.

Based on the achievable data rate, the time consumption for

communication can be presented by

T cm
k,n(pk,n) =

D(w
(t)
n )

Rk,n(pk,n)
, (4)

where D(w
(t)
n ) is the size of the local model w

(t)
n at device n

in round t. It is assumed that the data size of local models is the

same for all devices and rounds, i.e., D(w) = D(w
(t)
n ), ∀n, t.

The energy consumption for communication is given by

Ecm
k,n(pk,n) = pk,nPtT

cm
k,n(pk,n). (5)

C. AoU based Device Selection

In any communication round t, a subset of devices, denoted

by Nt, is selected, i.e., Nt ⊆ N and |Nt| ≤ K . The status of

any device in round t can be represented by a binary variable

1Despite the location of devices is considered stationary in this paper, the
proposed scheme can be extended to mobile scenarios, such as [23]–[25].

Fig. 1: An illustration of device’s information age.

S
(t)
n ∈ {0, 1}, where S

(t)
n = 1 indicates device n is selected to

participate in the aggregation in round t; S
(t)
n = 0 otherwise.

The set of all device selection indicators is denoted by S
(t).

Therefore, in any round, the set of selected devices Nt and the

set of device selection indicators S(t) can be mutually inferred.

In order to improve the performance of FL, device selection

should be determined by data quality. It is revealed in [19],

[26] that staleness of gradient update may negatively impact

learning outcomes. Therefore, the server tends to select the

devices with fresher gradient update for aggregation. In par-

ticular, if a device has been skipped for several rounds, its

gradient update is relatively informative, and the probability

of the server selecting the device should increase. Conversely,

if a device was selected in the previous round, the probability

for its reselection should decrease. To this end, the concept

of AoI is adopted to define AoU [20], [27]. In round t, any

device n’s AoU, denoted by A
(t)
n , is presented as follows:

A(t)
n =

{

A
(t−1)
n + 1, if S

(t−1)
n

∑K

k=1 ψ
(t−1)
k,n = 0,

1, if S
(t−1)
n

∑K
k=1 ψ

(t−1)
k,n = 1,

(6)

where ψ
(t)
k,n ∈ {0, 1} is the sub-channel assignment indicator.

Particularly, ψ
(t)
k,n = 1 indicates that device n is assigned to

sub-channel k in round t; ψ
(t)
k,n = 0 otherwise. According to

the above definition, AoU represents the number of commu-

nication rounds since the last transmission, which is jointly

decided by device selection and sub-channel assignment. As

shown in Fig. 1, if device n was not selected in round t− 1,

i.e., S
(t−1)
n = 0, or it is not assigned to any sub-channel, i.e.,

∑K

k=1 ψ
(t−1)
k,n = 0, its AoU is incremented by 1; otherwise, its

AoU is reset to 1. With this consideration, a large AoU implies

more informative update, and therefore device selection should

partially depend on AoU. In any round t, α
(t)
n defined below

is used as a weight2 to prioritize selecting devices with larger

AoU for aggregation:

α(t)
n =

A
(t)
n

∑N
i=1 A

(t)
i

. (7)

D. Sub-Channel Assignment

The time consumption of each communication round, i.e.,

latency, also plays an important role in FL [7], [12], [28]. By

2In this work, the term “weight” refers to the weighting coefficient, and
the neural network weights are represented by the term “model”.
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including computation and communication phases, the time

consumption of any device n assigned to sub-channel k can

be expressed as follows:

Tk,n(τk,n, pk,n) = T cp
k,n(τk,n) + T cm

k,n(pk,n), (8)

where the time consumption for global model transmission

from the server to devices is ignored as in [29], [30]. With the

given set of selected devices Nt, the latency in round t can

be presented as follows:

T (t) = max
n∈Nt

{

K
∑

k=1

ψ
(t)
k,nTk,n(τk,n, pk,n)

}

. (9)

It indicates that the latency is affected by sub-channel assign-

ment. Specifically, if any device is assigned to a sub-channel

with an enhanced channel gain, the time consumption of this

device decreases, and hence, the latency of this round may

be reduced. Accordingly, the energy consumption of device n
assigned to sub-channel k is given by

Ek,n(τk,n, pk,n) = Ecp
k,n(τk,n) + Ecm

k,n(pk,n). (10)

III. PROBLEM FORMULATION

This work focuses on minimizing the convergence time

of FL, which is defined as the sum of latency across all

communication rounds [7]. Therefore, the convergence time

is determined by i) the number of communication rounds,

and ii) the time consumption of each round. That is, the

server can select devices with more data and larger AoU

to reduce the number of required rounds, or devices with

better channel conditions to reduce the latency in each round.

However, devices with more data and larger AoU are often

not preferred due to larger time and energy consumption,

while devices with good channel conditions can be frequently

selected, which usually causes smaller AoU. Therefore, there

exists a trade-off between these two options. In order to

comprehensively minimize convergence time, the number of

required communication rounds and latency should be jointly

minimized. This situation can be described by the Stack-

elberg game, where global loss minimization and latency

minimization are considered as leader-level and follower-level

problems, respectively.

1) Leader-Level Problem (Computation): In the considered

FL algorithm, the local loss at device n is given by

fn(w
(t)) =

1

βn

βn
∑

i=1

ℓ(w(t);xn,i, yn,i), (11)

where w(t) is the global model in round t, ℓ(w(t);xn,i, yn,i)
is a loss function, xn,i is the i-th input data of device n, and

yn,i is the corresponding label. In round t, the global loss can

be presented below

F (w(t)) =

∑N

n=1

∑βn

i=1 ℓ(w
(t);xn,i, yn,i)

∑N

n=1 βn

. (12)

By including device selection and sub-channel assignment, an

AoU based global loss minimization problem is formulated as

follows:

min
S(t)

∑N

n=1α
(t)
n S

(t)
n

∑K

k=1ψ
(t)
k,n

∑βn

i=1 ℓ(w
(t);xn,i, yn,i)

∑N

n=1α
(t)
n S

(t)
n

∑K

k=1ψ
(t)
k,nβn

,

(13)

s.t. S(t)
n ∈ {0, 1}, ∀n ∈ N , (13a)
∑N

n=1
S(t)
n ≤ K. (13b)

Constraint (13b) indicates that the number of selected devices

in each round is not greater than the number of available sub-

channels. Note that only device selection is considered in the

computation phase, and the sub-channel assignment indicator

is decided in the communication phase, even though it has an

impact on the global loss.

2) Follower-Level Problem (Communication): Based on the

S
(t) given by the leader-level problem, the set of selected

devices Nt can be obtained. Then, sub-channel assignment

and resource allocation can be implemented according to the

set Nt. In any round t, the latency minimization problem can

be presented as follows:

min
ψ(t),τ ,p

max
n∈Nt

{

K
∑

k=1

ψ
(t)
k,nTk,n(τk,n, pk,n)

}

, (14)

s.t. Ek,n(τk,n, pk,n) ≤ Emax
n , (14a)

τk,n ∈ [0, 1], pk,n ∈ [0, 1], (14b)

ψ
(t)
k,n ∈ {0, 1}, (14c)
∑

n∈Nt

ψ
(t)
k,n = 1, ∀k ∈ K, (14d)

∑K

k=1
ψ
(t)
k,n = 1, ∀n ∈ Nt, (14e)

where ψ(t), τ , and p are the sets of all sub-channel assignment

indicators, computational resource allocation coefficients, and

power allocation coefficients, respectively. In constraint (14a),

the maximum energy consumption Emax
n is included. In con-

straints (14b) and (14c), the value ranges of all optimization

variables are defined. Constraints (14d) and (14e) indicate that

each sub-channel can be occupied by one device, and each

device can be assigned to one sub-channel, respectively.

3) Stackelberg Equilibrium: With any given solution of the

leader-level problem, the formulated follower-level problem

can be infeasible, as shown in follows:

Proposition 1. With any device selection S
(t)
n = 1, problem

(14) is infeasible if the following condition holds:

ln(2)PtD(w(t)
n ) ≥ Emax

n B|hk,n|
2, ∀k ∈ K. (15)

Proof: Refer to Appendix A.

Proposition 1 indicates that the energy consumption con-

straint can affect device participation, thereby reducing learn-

ing performance [31]. The following remark can be obtained.

Remark 1. In wireless FL scenarios, energy consumption

constraints can restrict the transmission of local models in-

dividually, resulting in a decrease in the global loss.
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The above proposition and remark show that there exists an

interaction between these two problems. That is, the selected

devices may not be able to transmit local models to the

server due to the poor channel conditions3. This interaction is

consistent with the Stackelberg competition model, in which

the leader and the follower tend to maximize their own

utilities [32]. For solving the formulated Stackelberg game

based problem, Stackelberg equilibrium [33] is introduced as

follows:

Definition 1. In the formulated Stackelberg game based

problem, by respectively defining GL and GF as the objective

functions of leader-level and follower-level problems, solution

(S(t)∗,ψ(t)∗, τ ∗,p∗) is the Stackelberg equilibrium if the

following conditions hold:

GL(S
(t)∗,ψ(t)∗, τ ∗,p∗) ≤ GL(S

(t),ψ(t)∗, τ ∗,p∗),

GF(S
(t)∗,ψ(t)∗, τ ∗,p∗) ≤ GF(S

(t)∗,ψ(t), τ ,p).
(16)

In order to achieve the Stackelberg equilibrium, the leader

should predict the possible solution of the follower-level

problem, i.e., the feasibility of the selected devices, and then

propose a strategy which can minimize the global loss after

transmission. As a result, the solution of the follower-level

problem should be obtained before the leader-level problem.

Note that both problems are solved at the server, and the

solutions of each communication round can be transmitted to

all devices together with the global model. Since the server has

powerful computing capabilities, the impact of this process on

latency can be ignored.

IV. SOLUTION OF FOLLOWER-LEVEL PROBLEM

The formulated follower-level problem in (14) is a non-

convex problem with binary constraints. In this section, the

follower-level problem is decoupled into two sub-problems

and solved iteratively. With the fixed sub-channel assignment,

the sub-problem related to resource allocation is given by

Γ = min
τ ,p

{Tk,n(τk,n, pk,n)|∀n ∈ Nt, ∀k ∈ K} , (17)

s.t. (14a), (14b),

where Γ is a K × |Nt| matrix containing the minimum time

consumptions for all possible device and sub-channel combi-

nations. With the given matrix Γ, the sub-problem related to

sub-channel assignment can be presented as follows:

min
ψ(t)

max
n∈Nt

{

K
∑

k=1

ψ
(t)
k,nΓk,n

}

, (18)

s.t. (14c), (14d), (14e),

where Γk,n is one element of matrix Γ. Note that there

exists an infeasible combination if the condition in Proposition

1 holds. In this case, this combination will be marked as

infeasible and avoided in problem (18).

3Note that transmit power Pt does not affect the feasibility as the normal-
ized channel condition |hk,n|

2 also contains the transmit power.

A. Joint Optimization of Computational Resource Allocation

and Power Allocation

In problem (17), the time consumption of any combina-

tion only depends on its corresponding resource allocation.

Therefore, this problem can be divided into multiple sub-

problems to obtain all elements of matrix Γ. The feasibility

of combinations is verified by utilizing Proposition 1. For any

feasible combination Γk,n, the sub-problem is given by

min
τk,n,pk,n

T cp
k,n(τk,n) + T cm

k,n(pk,n) (19)

s.t. Ecp
k,n(τk,n) + Ecm

k,n(pk,n) ≤ Emax
n , (19a)

τk,n ∈ [0, 1], pk,n ∈ [0, 1]. (19b)

Since problem (19) is non-convex, traditional optimization

methods, such as convex optimization, cannot be directly

employed. In this case, monotonic optimization is introduced.

In order to utilize monotonic optimization, the monotonicity

of problem (19) should be analyzed. According to [34], the

following proposition can be obtained.

Proposition 2. For any device n assigned to sub-channel

k, with computational resource allocation coefficient τk,n
and power allocation coefficient pk,n, the time consumption

Tk,n(τk,n, pk,n) is a decreasing function, while the energy

consumption Ek,n(τk,n, pk,n) is an increasing function.

Proof: Refer to Appendix B.

Proposition 2 indicates the following remark.

Remark 2. In the considered FL framework, minimizing the

latency leads to the maximized energy consumption.

According to Proposition 2, it is indicated that the objective

function and all constraints in problem (19) are monotonic.

Next, this problem is transformed to the canonical formulation,

as shown in follows:

max
zk,n

f(zk,n) (20)

s.t. zk,n ∈ G, (20a)

where zk,n = {τk,n, pk,n}, G = {zk,n ∈ [0,1], g(zk,n) ≤ 0},

f(zk,n) = −
µβn

τk,nCn

−
D(w

(t)
n )

B log2(1 + pk,n|hk,n|2)
, (21)

and

g(zk,n)=κ0µβn(τk,nCn)
2+

pk,nPtD(w
(t)
n )

B log2(1+pk,n|hk,n|2)
−Emax

n .

(22)

In problem (20), the objective function f(zk,n) is monoton-

ically increasing with zk,n, and then the optimal solution is

located on the boundary of the feasible set G. However, due to

the non-convexity, the expression of the boundary cannot be

directly derived. In this case, a polyblock outer approximation

algorithm is proposed to approach the feasible set G by

constructing polyblock P [35], as shown in Algorithm 1.

As shown in Fig. 2(a), by setting the first vertex v
(1) ∈ V(1),

the initial polyblock P(1) can be constructed as the box [0,1],
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Algorithm 1 Polyblock Outer Approximation Algorithm

1: Initialize vertex set V(1) = {v(1)}, where v
(1) = {1, 1}.

2: Initialize polyblock P(1) with vertex set V(1).

3: Set ǫ and θ = 1.

4: if |f(φ(v(θ))) − f(φ(v(θ−1)))| > ǫ then

5: Obtain φ(v(θ)) from Eq. (29).

6: Calculate vertices ṽ
(θ)
1 and ṽ

(θ)
2 as follows:

ṽ
(θ)
i = v

(θ) − (v
(θ)
i − φi(v

(θ)))ei, ∀i ∈ {1, 2}.

7: Update vertex set V(θ+1) as follows:

V(θ+1) = {V(θ)\v(θ)} ∪ {ṽ
(θ)
1 , ṽ

(θ)
2 }.

8: Construct polyblock P(θ+1) with vertex set V(θ+1).

9: Find vertex v
(θ+1) from V(θ+1), where

v
(θ+1) = argmax{f(φ(v))|v ∈ V(θ+1)}.

10: Set θ = θ + 1.

11: end if

12: Set z∗k,n = φ(v(θ)).

(a) (b)

(c) (d)

Fig. 2: An illustration of Algorithm 1. The blue area is the

feasible set G, and the red star is the optimal point.

which contains the feasible set4. The projection of v(1) on the

upper boundary of feasible set G is calculated, denoted by

φ(v(1)). Based on point φ(v(1)), two new vertices ṽ
(1)
1 and

ṽ
(1)
2 can be obtained to replace v

(1), as shown in Fig. 2(b).

The new vertices are calculated as follows:

ṽ
(1)
i = v

(1) − (v
(1)
i − φi(v

(1)))ei, ∀i ∈ {1, 2}, (23)

where v
(1)
i is the i-th element of v

(1), φi(v
(1)) is the i-th

element of φ(v(1)), and ei is the i-th unit vector. As shown

in Fig. 2(c), a new polyblock P(2) is obtained, where G ⊂
P(2) ⊂ P(1). The vertex set of P(2) is updated as follows:

V(2) = {V(1)\v(1)} ∪ {ṽ
(1)
1 , ṽ

(1)
2 }. (24)

4Note that the initial vertex, i.e., τk,n = 1 and pk,n = 1, may be infeasible
for problem (20). However, the optimal solution obtained from Algorithm 1
is the projection of the vertex, which is always included in the feasible set G.

After that, the optimal vertex is selected from vertex set V(2)

and denoted by v
(2), which satisfies the following condition:

v
(2) = argmax{f(φ(v))|v ∈ V(2)}. (25)

The projection of the optimal vertex can achieve the maximum

value of (21). For example, Fig. 2(c) shows the case that ṽ
(1)
1

is selected as the optimal vertex v
(2). This process is repeated,

and a smaller polyblock P(3) ⊂ P(2) is constructed based on

vertex v
(2), as shown in Fig. 2(d). This algorithm is completed

if the following condition is satisfied:

|f(φ(v(θ)))− f(φ(v(θ−1)))| ≤ ǫ, (26)

where ǫ is the error tolerance. The output z∗k,n = φ(v(θ)) is

the optimal solution of problem (20). Moreover, the projection

of any vertex v
(θ) satisfies the following condition:

φ(v(θ)) = ζv(θ), (27)

where ζ ∈ (0, 1) is a ratio coefficient obtained as follows:

ζ = max{ζ̃ ∈ (0, 1)|ζ̃v(θ) ∈ G}

= max{ζ̃ ∈ (0, 1)|g(ζ̃v(θ)) ≤ 0, ζ̃v(θ) ∈ [0,1]}. (28)

Since g(ζ̃v(θ)) is a monotonic increasing function, ζ satisfies

g(ζv(θ)) = 0, which can be written as follows:

κ0µβn(ζv
(θ)
1 Cn)

2+
ζv

(θ)
2 PtD(w

(t)
n )

B log2(1+ζv
(θ)
2 |hk,n|2)

= Emax
n . (29)

The above nonlinear equation can be solved by multiple

numerical solvers, such as fsolve in MATLAB or Python.

It is worth pointing out that during Algorithm 1, with any

given vertex v
(θ) = {v

(θ)
1 , v

(θ)
2 }, where θ ≥ 2, condition

ζ ∈ (0, 1) is always satisfied. When θ = 1, ζ = 1 may be

obtained with initial vertex v
(1), which means that the feasible

set G includes the first vertex. In other words, the energy

consumption constraint g(zk,n) < 0 can be satisfied with any

τk,n and pk,n in [0, 1]. In this case, the optimal solution is

obtained by z
∗
k,n = v

(1).

According to [36], the complexity of Algorithm 1 is

dominated by step 9 and the number of iterations. Specifically,

step 9 selects an optimal vertex from the vertex candidate set,

which contains θ + 1 vertices at the θ-th iteration. Since the

complexity in solving (20) to obtain each vertex is O(2), the

complexity of step 9 is O(2(θ + 1)). With the given number

of iterations Tc, the total complexity of Algorithm 1 can be

expressed as O(2Tc(Tc + 1)).

B. Matching based Sub-Channel Assignment

Based on Algorithm 1, the minimum time consumption

of all selected devices in all sub-channels is obtained in

matrix Γ. In this subsection, a matching based algorithm is

proposed to solve the binary integer programming problem in

(18), where matrix Γ is utilized to construct the preference

list. In problem (18), the set of selected devices, i.e., Nt, is

provided by the leader-level problem. As revealed in Section

V, to minimize global loss, the number of selected devices is

maximized in each round, i.e., |Nt| = K . Therefore, Nt and

K are two disjoint sets with the same size, and this scenario
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can be considered as a one-to-one matching Ψ from Nt to

K. Furthermore, since some combinations in matrix Γ are

marked as infeasible, the player in this matching may have an

incomplete preference list [37], [38]. In this case, the elements

in Γ cannot be directly employed, and the utility of device n
assigned to sub-channel k in matching Ψ is defined below

Un(Ψ) =

{

Umax, if Γk,n is infeasible,

Γk,n, otherwise,
(30)

where Umax is a large constant indicating that the assignment

of device n and sub-channel k is infeasible. In the one-to-one

matching, the utility of any sub-channel is equal to the utility

of the occupied device, i.e., Uk(Ψ) = UΨ(k)(Ψ), ∀k ∈ K.

By calculating the utility, the preference list of any player

can be established. Since that problem (18) is a minimization

problem, the preference of device n can be defined below

(k,Ψ) ≺n (k′,Ψ′) ⇒ Un(Ψ) > Un(Ψ
′). (31)

The above function indicates that device n is willing to be

assigned to sub-channel k′ in matching Ψ′, rather than k
in matching Ψ, since its utility can be strictly decreased by

switching from k to k′.
Since all players are matched, the considered case follows

the concept of two-sided exchange matchings [39]. In this

case, if any device intends to be assigned to a sub-channel, it

needs to exchange with the device occupying this sub-channel,

instead of directly joining this sub-channel. A notation Ψn
n′ is

introduced to represent the case where two devices n and n′

are swapped in matching Ψ, which is defined as follows:

Ψn
n′(m) =

{

Ψ(n′) = k′, m = n,

Ψ(n) = k, m = n′,
(32)

where Ψn
n′ only replaces two pairs defined by Ψ(n) = k and

Ψ(n′) = k′ into Ψ(n) = k′ and Ψ(n′) = k, respectively. It is

indicated that any swap operation involves four players, and

hence, it should be approved by the involved players. However,

in a matching with the incomplete preference list, there may

be sub-channels that are unacceptable for some devices. In

order to prioritize feasible combinations, the approval of sub-

channels is removed, and the swap operation is approved by

the swap-blocking pair (n, n′), which is defined below [40]:

Definition 2. A swap-blocking pair (n, n′) is confirmed if and

only if the following conditions hold

1) Un(Ψ
n
n′) ≤ Un(Ψ) and Un′(Ψn

n′) ≤ Un′(Ψ);
2) At least one inequality above is strict.

By searching swap-blocking pairs, a matching based sub-

channel assignment algorithm is presented in Algorithm 2.

The proposed algorithm can be started from any initial match-

ing. During the execution of the algorithm, an active device

n is selected and sequential swap is attempted with all other

devices. If a swap-blocking pair (n, n′) is formed, the new

matching Ψn
n′ is recorded, and the algorithm continues. The

main loop of Algorithm 2 executes repeatedly. When the

last device has searched for all other devices, the first device

becomes the active device again. The algorithm ends if no

swap blocking pair can be found in a full round of the main

Algorithm 2 Sub-Channel Assignment Algorithm

1: Initialization:

2: Initialize initial matching Ψ by randomly pairing all

devices and sub-channels.

3: Main Loop:

4: for n ∈ Nt do

5: Device n makes a proposal to exchange with device

n′ ∈ Nt, where n 6= n′.

6: if (n, n′) is a swap-blocking pair then

7: Matching Ψn
n′ is approved.

8: Devices n and n′ exchange sub-channels.

9: Set Ψ = Ψn
n′

10: end if

11: end for

12: The main loop is repeated until no swap-blocking pair can

be found in a complete round.

loop. At this stage, a stable matching is established, which

satisfies the following definition [39], [40]:

Definition 3. A matching Ψ is two-sided exchange-stable

(2ES) if and only if there is no further swap-blocking pair.

Note that some devices may not be assigned to feasible sub-

channels in the stable matching, i.e., their utilities are equal to

Umax. In this case, these devices cannot transmit local models

to the server, and the corresponding sub-channel assignment

indicators should be set to zero in the leader-level problem. In

the following, the complexity, convergence and stability of the

proposed matching based sub-channel assignment algorithm

are analyzed.

1) Complexity: By considering the worst case, the compu-

tational complexity of the proposed matching based algorithm

can be expressed as O(CK2), where C is the number of main

loops. In the worst case, K devices can play the role of active

devices to search K− 1 devices, and thus K(K− 1) times of

calculations should be performed in one loop. With the given

number of main loops C, the computational complexity of the

proposed algorithm is obtained.

2) Convergence: Assuming Ψ(a) and Ψ(b) are two adjacent

matching in Algorithm 2, i.e., Ψ(a) → Ψ(b), where a 6= b,
one swap-blocking pair is found among this transformation.

According to Definition 2, at least one device can achieve less

utility, and the utilities of other devices cannot be increased.

Hence, the matching transformation cannot be reversed. With

the finite number of devices and sub-channels, the number of

possible matchings is finite and equal to the Bell number [41].

Therefore, from any initial matching, the proposed algorithm

is guaranteed to converge to a stable matching.

3) Stability: Based on Definition 3, any final matching

obtained from the matching based sub-channel assignment

algorithm is 2ES. Specifically, if the final matching obtained

from Algorithm 2 is not 2ES, there exists at least one swap-

blocking pair, which can further reduce the sum utility of all

devices. However, it contradicts the conditions for completing

the proposed algorithm.
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V. SOLUTION OF LEADER-LEVEL PROBLEM

To solve the formulated global loss minimization problem

in (13), the loss function and local data must be available at

the server, which is impractical and contradicts the motivation

to utilize FL. In this section, by analyzing the impact of device

selection on the expected convergence rate, such information

can be detached from the leader-level problem. By employing

the gradient descent method, with global model w(t), device

n can update the local model as follows:

w(t)
n = w(t) −

λ

βn

βn
∑

i=1

∇ℓ(w(t);xn,i, yn,i), (33)

where λ is the learning rate. After that, the selected devices

transmit the updated local models to the server for aggregation.

By including device selection and sub-channel assignment, the

aggregated global model in round t is given by5

w(t+1)=

∑N

n=1S
(t)
n

∑K

k=1ψ
(t)
k,nβnw

(t)
n

∑N

n=1S
(t)
n

∑K

k=1ψ
(t)
k,nβn

=w(t)−
λ
∑N

n=1S
(t)
n

∑K

k=1ψ
(t)
k,n

∑βn

i=1∇ℓ(w(t);xn,i, yn,i)
∑N

n=1S
(t)
n

∑K
k=1ψ

(t)
k,nβn

=w(t) − λ[∇F (w(t))− ŵ
(t)], (34)

where

ŵ
(t)

(35)

,∇F (w(t))−

∑N
n=1S

(t)
n

∑K
k=1ψ

(t)
k,n

∑βn

i=1∇ℓ(w(t);xn,i, yn,i)
∑N

n=1S
(t)
n

∑K

k=1ψ
(t)
k,nβn

.

In order to derive the expected convergence rate, the following

assumptions are considered [8], [9], [23], [46]:

1) With respect to the global model w(t), ∇F (w(t)) is

uniformly Lipschitz continuous, i.e.,

‖∇F (w(t+1))−∇F (w(t))‖ ≤ L‖w(t+1) −w(t)‖, (36)

where L is a positive parameter.

2) F (w(t)) is strongly convex with a positive constant µ, i.e.,

F (w(t+1)) ≥ F (w(t)) + (w(t+1) −w(t))⊤∇F (w(t))

+
µ

2
‖w(t+1) −w(t)‖. (37)

3) F (w(t)) is twice-continuously differentiable, as below:

µI � ∇2F (w(t)) � LI. (38)

4) The following inequality is satisfied with any device n and

sample i:

‖∇ℓ(w(t));xn,i, yn,i)‖
2 ≤ ρ‖∇F (w(t))‖2, (39)

where ρ is a non-negative constant.

It is worth pointing out that the above assumptions are

commonly considered in the FL related optimization, and can

be satisfied by widely adopted loss functions. Based on these

5Although we consider federated averaging (FedAvg) for aggregation in this
paper, an extension of the results to other federated optimization algorithms
[42]–[45] is straightforward.

Algorithm 3 Device Selection Algorithm

1: Initialization:

2: Generate list Q(t) based on (43).

3: Initialize set Nt by selecting the first K devices from Q(t).

4: Main Loop:

5: Obtain sub-channel assignment from Algorithm 2.

6: if
∑

n∈Nt

∑K
k=1 ψ

(t)
k,n < K and (N) /∈ Nt then

7: for n ∈ Nt do

8: if
∑K

k=1 ψ
(t)
k,n = 0 then

9: Remove device n from set Nt.

10: Add the next unselected device from list Q(t).

11: end if

12: end for

13: end if

assumptions, the following proposition yields the effect of

device selection on convergence rate.

Proposition 3. In the case that device selection and sub-

channel assignment satisfy S
(t)
n =

∑K
k=1 ψ

(t)
k,n, ∀n ∈ N , with

the learning rate λ = 1/L and the optimal global model w∗,

the upper bound of convergence rate in round t is

E[F (w(t+1))−F (w∗)]≤
(

1−
µ

L

)t

E[F (w(1))−F (w∗)] (40)

+
2ρ

L

t
∑

i=1

(

1−
µ

L

)t−i ‖∇F (w(i))‖2
∑N

n=1βn

N
∑

n=1

βn

(

1−S(i)
n

K
∑

k=1

ψ
(i)
k,n

)

.

Proof: Refer to Appendix C.

It is indicated that the convergence rate is bounded by two

terms. The first term, i.e.,
(

1− µ
L

)t
E[F (w(1)) − F (w∗)], is

the expected gap between the first global loss and the optimal

global loss in round t. The second term is related to device

selection, where the status of devices in round i, i.e., S
(i)
n ,

is included. Proposition 3 indicates the expected gap between

the global loss in round t and the optimal loss. In this case,

the global loss minimization problem in (13) can be achieved

by minimizing the expected gap. Since that the first term does

not include device selection, it can be treated as a constant.

Meanwhile, terms 2ρ
L

and
‖∇F (w(i))‖2

∑
N
n=1 βn

are positive and not

effected by device selection, and hence, they can be removed.

By incorporating the AoU based weight α
(t)
n into the device

selection indicator S
(t)
n , the objective function of the leader-

level problem (13) can be reformulated as follows:

min
S(t)

N
∑

n=1

βn

(

1−α(t)
n S(t)

n

K
∑

k=1

ψ
(t)
k,n

)

(41)

By removing the constant term
∑N

n=1 βn, the leader-level

problem (13) can be equivalently transformed as follows:

max
S(t)

N
∑

n=1

α(t)
n βnS

(t)
n

K
∑

k=1

ψ
(t)
k,n (42)

s.t. (13a), (13b).

Problem (42) can be treated as a weighted device selection

problem, where AoU and data size play the role of weight
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factors. That is, the server tends to select the devices with

large AoU and/or data size. In this case, the server can order

and select devices based on this weight. In any round t, all

devices are sorted in a list Q(t), which satisfies the following

condition:

α
(t)
(1)β(1) ≥ α

(t)
(2)β(2) ≥ · · · ≥ α

(t)
(N)β(N), (43)

where (1) and (N) denote the devices with the highest

and lowest priority, respectively. Moreover, it is indicated by

problem (42) that the server tends to select more devices, and

hence, constraint (13b) can be rewritten as
∑N

n=1 S
(t)
n = K .

According to the list Q(t), problem (42) can be solved by

Algorithm 3. In the proposed device selection algorithm, K
devices with the highest priority are selected in the initializa-

tion phase. During Algorithm 3, any device not assigned to

a sub-channel will be replaced, until all selected devices have

been assigned to sub-channels, or all devices in list Q(t) have

been adopted. In the worst case, all devices in list Q(t) are

traversed, and therefore the complexity of Algorithm 3 can

be expressed as O(N).

VI. SIMULATION RESULTS

In this section, the performance of the proposed solution

is simulated and demonstrated. In this simulation, multiple

devices are randomly distributed in a disc with radius R,

and the server is located in the center of the disc. The

experiments includes three datasets (MNIST, CIFAR-10, and

SST-2) with different models6. The imbalanced independent

identically distributed (IID) data distribution is adopted, where

a factor cn ∈ [1, 10] is randomly generated for all devices, and

training samples (500 for MNIST, 50000 for CIFAR-10, and

67349 for SST-2) are shuffled and partitioned across devices

based on fraction cn/
∑

i∈N ci. Unlike [8]–[15] which focus

on minimizing either global loss or latency, this paper studies

the interaction between global loss minimization and latency

minimization. Thereby, a direct comparison with the existing

schemes in these works is unfair. Alternatively, the proposed

scheme is benchmarked against the following conventional

device selection schemes:

• AoU based DS: The server selects the top K devices in (43).

• Random DS: The server selects K devices randomly.

• Cluster based DS: All devices are randomly allocated to

N/K clusters such that the clusters are selected in rotation.

• Fixed DS: The same K devices are selected in all rounds.

In the above schemes, the proposed solutions are adopted,

including monotonic optimization based resource allocation

(MO-RA) and matching based sub-channel assignment (M-

SA). Moreover, fixed resource allocation (FIX-RA) and ran-

dom sub-channel assignment (R-SA) are incorporated as

6For MNIST digit recognition tasks, a multi-layer perceptron neural net-
work is built, where two ReLu hidden layers with 128 and 256 neurons
follows by a softmax output layer. For CIFAR-10 image classification tasks, a
convolutional neural network (CNN) is constructed with two 3x3 convolution
layers (one with 32 filters and one with 64 filters, each followed by a 2x2
max pooling layer), a 128-neuron ReLu hidden layer, and a softmax output
layer. For SST-2 text classification tasks, a tokenizer with a vocabulary size
of 4, 000 is included, and the neural network is built with a 128-neuron ReLu
hidden layer and a sigmoid output layer.

TABLE I: Table of Parameters

Carrier frequency f 1 GHz

AWGN noise power σ2 −174 dBm

Path loss exponent a 3.76
Bandwidth for each sub-channel B 1 MHz

Power consumption coefficient κ0 10−28

CPU cycles for each bit of tasks µ 107

Computational capacity Cn 1 GHz

Error tolerance ǫ 0.01
Model size D(w) (MNIST/CIFAR-10/SST-2) 1/5/5 Mbit

Maximum energy Emax
n (MNIST/CIFAR-10/SST-2) 0.02/0.1/0.1 joule

Learning rate λ (MNIST/CIFAR-10/SST-2) 0.01/0.001/0.01
Batch size (MNIST/CIFAR-10/SST-2) 32/512/128
Optimizer (MNIST/CIFAR-10/SST-2) SGD/Adam/SGD

benchmarks, where τk,n = pk,n = 0.5, ∀k, n is set in FIX-

RA. The parameters of the simulation are shown in Table I.

In Fig. 3, the global loss achieved by different schemes is

presented. Given the same number of communication rounds,

the proposed scheme can achieve the lowest global loss on all

datasets, reflecting the derived convergence rate in Proposition

3. This improvement benefits from two approaches, including

AoU based weights and efficient utilization of sub-channels.

The former is able to select devices that can provide more

contributions in each communication round, while the latter

ensures the maximization of the number of selected devices.

Moreover, it can be observed that without Algorithm 3, AoU

based DS can still outperform other schemes, which confirms

that AoU based weights have the capability to improve learn-

ing efficiency. In terms of the random DS and cluster based

DS, the devices have the same probability to be selected,

and hence, the similar global loss is achieved by these two

schemes. For the fixed DS, due to the fact that the size of

training data in this case is less than that in other schemes, its

performance is the worst. Compared to the MNIST dataset,

the CIFAR-10 image classification task is more complex,

and hence, the differences between the schemes are not that

obvious, as shown in Fig. 3(b). However, the performance of

these schemes is still consistent with Fig. 3(a). It is worth

noting that by employing the CIFAR-10 dataset, the data

size and model size is increased, and therefore, the number

of devices that can satisfy the energy constraint is reduced.

This issue is severe when utilizing AoU based DS, as the

server tends to select devices that are generally more difficult

to meet this condition, resulting in poor performance. This

effect is mitigated when a simpler task is adopted, as shown

in Fig. 3(c). Since there are only two labels on the SST-2

dataset, the differences between schemes become significant,

and the advantages of the proposed scheme in global loss are

clearly demonstrated.

Fig. 4 shows the performance of the proposed optimization

solutions, where different resource allocation and sub-channel

assignment approaches are incorporated into the proposed

device selection scheme. It is clear that the proposed scheme

can achieve the best performance with the proposed solutions,

i.e., MO-RA and M-SA. This is because in this case, the

server can select devices who can provide more contributions

in the aggregation without replacing them with lower priority

devices in (43). When other solutions are utilized, some
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Fig. 3: The performance of the proposed scheme. N = 20, K = 4, Pt = 10 dBm, and R = 500 m.
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Fig. 4: The performance of the proposed scheme using different solutions. N = 20, K = 4, Pt = 10 dBm, and R = 500 m.

devices may no longer meet the maximum energy consumption

constraint and thus be replaced by devices with lower priority

in (43), resulting in poor learning performance. This result also

corroborates our conclusion that the contribution of a device

in aggregation is proportional to its AoU and data size. In

Fig. 4(a), an obvious feature is that the proposed scheme using

FIX-RA and R-SA performs well in the early stage of training

(from round 1 to round 100), but poorly in the later stage. This

is due to the fact that in this case, the number of devices that

can satisfy the maximum energy consumption requirement is

very small, and thus device selection is performed on a smaller

subset. For simple tasks, such as MNIST with IID data distri-

bution, repeatedly using smaller training datasets can achieve

faster convergence in the early stages, however, this can lead

to overfitting problems and poor final results. Moreover, it is

worth pointing out that compared to sub-channel assignment,

resource allocation plays a more important role in minimizing

the global loss, and this trend is more significant when the

model size is larger, as shown in Fig. 4(b) and Fig. 4(c).

In Fig. 5 and Fig. 6, the impact of the number of devices and

radius on global loss is presented, respectively. In Fig. 5, since

the size of the total training data is fixed, an increase in the

number of devices means less training data per device. That is,

when the number of selected devices, i.e., K , is fixed, as the

number of devices rises, the amount of training data utilized

in each communication round reduces, resulting in an increase

in the global loss. With the proposed optimization solutions,

devices that can provide more contributions can be selected,

and therefore the learning performance is improved. In Fig. 6,
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Fig. 5: The impact of the number of devices with the MNIST

dataset. K = 4, Pt = 10 dBm, and R = 500 m.

the increase in radius can be understood as a deterioration in

channel conditions. According to Proposition 1, in this case,

more devices become unavailable and cannot participate in the

aggregation. As a result, the achievable global loss increases

with the radius. By employing the proposed optimization

solutions, the negative impact caused by channel degradation

can be alleviated to a certain extent, thereby narrowing the

gap in global loss.

In the considered Stackelberg game based framework, the

number of selected devices varies between schemes, and
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N = 20, K = 4, and Pt = 10 dBm.
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Fig. 7: The impact of the number of available sub-channels.

Pt = 10 dBm, and Emax
n = 0.02 joule.

therefore, the latency cannot be compared independently. It can

be seen from Fig. 7 that the proposed scheme can efficiently

utilize all available sub-channels, while the latency of each

communication round is also increased accordingly. That is be-

cause the proposed scheme needs to guarantee the performance

of training through the leader level problem. This explains why

the achievable global loss of the proposed scheme is lower

than others. It is also indicated that the proposed RA and SA

algorithms can increase the number of selected devices with

random DS.

The effect of energy limitation is demonstrated in Fig. 8, and

the results confirm Proposition 1. According to Proposition 1,

as the maximum energy consumption increases, the device

participation increases. As a result, by employing random DS,

the number of selected devices in each communication round

is increased, and meanwhile the latency of each round also

increases. On the other hand, it can be observed that the

proposed algorithm, MO-RA, has the ability to dynamically

adjust the computational resource allocation coefficients and

power allocation coefficients. Therefore, the latency can be

reduced with this solution.

As shown in Fig. 9, the latency decreases with the increasing
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Fig. 8: The impact of the maximum energy consumption. K =
4, and Pt = 10 dBm.
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Fig. 9: The impact of the maximum transmit power. K = 4,

and Emax
n = 0.02 joule.

transmit power, since the achievable data rate can be increased.

With FIX-RA, the number of selected devices is reduced when

the transmit power is greater than 6 dBm, because the fixed

power allocation coefficient can no longer satisfy the energy

consumption constraint. For MO-RA, the power allocation

coefficient is optimized, and thus the number of selected

devices is not affected. However, the decrease in latency has

been slowed down accordingly.

VII. CONCLUSIONS

This paper investigates FL in a practical wireless com-

munication scenario, where limited sub-channels and energy

consumption are considered. With the goal of minimizing

convergence time, we jointly formulate global loss minimiza-

tion and latency minimization based on the Stackelberg game.

We present a monotonic optimization based algorithm to find

the optimal solution of computational resource allocation and

power allocation. Based on the obtained solution of resource

allocation, we further develop a matching based algorithm with

incomplete preference list to solve the sub-channel assign-

ment problem. For the global loss minimization problem, we

incorporate AoU based weights and derive an upper bound
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on convergence rate, which presents a priority for selecting

devices. Simulation results demonstrate significant reduction

of the global loss, establishing that our developed solutions can

efficiently utilize available sub-channels and reduce latency.

It is worth highlighting that the AoU based device selection

can be extended to mobile environments as a practical and

promising research direction.

APPENDIX A: PROOF OF PROPOSITION 1

Suppose that device n is selected and assigned to sub-

channel k in round t, i.e., S
(t)
n = 1 and ψ

(t)
k,n = 1, based

on constraint (14a), the following condition will be satisfied

by the optimal solutions τ∗k,n and p∗k,n:

Ecp
k,n(τ

∗
k,n) + Ecm

k,n(p
∗
k,n) ≤ Emax

n . (44)

Due to the fact that the energy consumption for computation

is strictly greater than zero, i.e., Ecp
k,n(τ

∗
k,n) > 0, the following

inequality can be obtained:

Ecm
k,n(p

∗
k,n) < Emax

n , (45)

which can be rewritten as follows:

p∗k,nPtD(w
(t)
n )

B log2(1+p∗k,n|hk,n|2)
< Emax

n . (46)

Since p∗k,n|hk,n|2 > 0, p∗k,n|hk,n|2 > ln(1 + p∗k,n|hk,n|2)
holds, the following inequality can be obtained:

ln(2)PtD(w
(t)
n )

B|hk,n|2
<

p∗k,nPtD(w
(t)
n )

B log2(1 + p∗k,n|hk,n|2)
. (47)

Therefore, the following condition must be satisfied:

ln(2)PtD(w
(t)
n )

B|hk,n|2
< Emax

n , (48)

and this proposition is proved. �

APPENDIX B: PROOF OF PROPOSITION 2

It is obvious that the time consumption of any device

n in sub-channel k is monotonically decreasing with τk,n
and pk,n, and hence, the proof of this part is omitted. In

terms of the energy consumption, as shown in constraint

(19a), the monotonicity can be proved by two parts. The first

term, Ecp
k,n(τk,n), is the energy consumption for computation,

which is monotonically increasing with the computational

resource allocation coefficient. The second term is the energy

consumption for communication, which can be presented by

Ecm
k,n(pk,n) =

pk,nPtD(w
(t)
n )

B log2(1 + pk,n|hk,n|2)
. (49)

The derivative of the above function is

∂Ecm
k,n(pk,n)

∂pk,n
=

ln(2)PtD(w
(t)
n )

B(1+pk,n|hk,n|2)ln
2(1+pk,n|hk,n|2)

(50)

×[(1+pk,n|hk,n|
2)ln(1+pk,n|hk,n|

2)−pk,n|hk,n|
2].

Since the first term of the above function is always greater

than zero, the monotonicity of function Ecm
k,n(pk,n) depends

on the term in the square bracket. Particularly, Ecm
k,n(pk,n) is

an increasing function if the following inequality holds:

(1+pk,n|hk,n|
2)ln(1+pk,n|hk,n|

2)−pk,n|hk,n|
2 ≥ 0. (51)

Suppose θk,n , 1
pk,n|hk,n|2+1 , the above inequality is equiva-

lent to the following inequality:

1

θk,n
(θk,n − 1− ln θk,n) ≥ 0. (52)

Since θk,n > 0, ln θk,n ≤ θk,n − 1 holds, and then the above

inequality is always satisfied, which indicates that (49) is an

increasing function. As a result, the total energy consumption

is an increasing function, and this proposition is proved. �

APPENDIX C: PROOF OF PROPOSITION 3

In order to prove this proposition, an auxiliary function is

defined as follows:

G(w) =
L

2
w⊤w − F (w). (53)

With respect to w, the second-order partial derivative of the

above function is given by

∂2G(w)

∂w2
= L−

∂2F (w)

w2
. (54)

Since F (w) satisfies the uniformly Lipschitz condition, the

above function is always greater than or equal to zero, and

hence, G(w) is a convex function. By utilizing the second-

order Taylor series expansion, the following inequality can be

obtained:

G(w(t+1)) ≥ G(w(t)) + (w(t+1) −w(t))⊤∇G(w(t)). (55)

From (53), the above inequality can be equivalently trans-

formed as follows:

F (w(t+1)) ≤ F (w(t))+(w(t+1)−w(t))⊤∇F (w(t))

+
L

2
‖w(t+1)−w(t)‖2. (56)

Based on (34), the following inequality can be obtained:

F (w(t+1)) ≤ F (w(t))−λ[∇F (w(t))−ŵ
(t)]⊤∇F (w(t))

+
λ2L

2
‖∇F (w(t))−ŵ

(t)‖2. (57)

When λ = 1/L, the above inequality can be transformed as

follows:

E[F (w(t+1))]

≤E

{

F (w(t))−λ[∇F (w(t))−ŵ
(t)]⊤∇F (w(t))

+
λ2L

2
‖∇F (w(t))−ŵ

(t)‖2
}

=E

[

F (w(t))−
1

L
‖∇F (w(t))‖2+

1

L
(ŵ(t))⊤∇F (w(t))

+
1

2L
‖∇F (w(t))‖2−

1

L
(ŵ(t))⊤∇F (w(t))+

1

2L
‖ŵ(t)‖2

]

=E[F (w(t))]−
1

2L
‖∇F (w(t))‖2+

1

2L
E(‖ŵ(t)‖2). (58)
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By defining


















f(Nt,ψ
(t),w(t)),

∑

n∈Nt

K
∑

k=1

ψ
(t)
k,n

βn
∑

i=1

∇ℓ(w(t);xn,i, yn,i),

g(Nt,ψ
(t),w(t)) ,

∑

n∈Nt

K
∑

k=1

ψ
(t)
k,n

βn
∑

i=1

‖∇ℓ(w(t);xn,i, yn,i)‖,

(59)

based on condition S
(t)
n =

∑K
k=1 ψ

(t)
k,n = 1, ∀n ∈ Nt, the

following equation can be derived:

E(‖ŵ(t)‖2)=E

[

∥

∥

∥

∥

∇F (w(t))−
f(Nt,ψ

(t),w(t))
∑N

n=1S
(t)
n

∑K

k=1ψ
(t)
k,nβn

∥

∥

∥

∥

2
]

=E

[

∥

∥

∥

∥

f(Nt,ψ
(t),w(t))

∑N

n=1βn

−
f(Nt,ψ

(t),w(t))
∑N

n=1S
(t)
n

∑K

k=1ψ
(t)
k,nβn

+

∑

n∈N\Nt

∑βn

i=1∇ℓ(w(t);xn,i, yn,i)
∑N

n=1 βn

∥

∥

∥

∥

2
]

, (60)

where N\Nt is the collection of unselected devices in round

t. According to the triangle-inequality, the above equation can

be transformed as follows:

E(‖ŵ(t)‖2)≤E







[

∑N
n=1βn

(

1−S
(t)
n

∑K
k=1ψ

(t)
k,n

)]

g(Nt,ψ
(t),w(t))

(
∑N

n=1βn)(
∑N

n=1S
(t)
n

∑K
k=1ψ

(t)
k,nβn)

+

∑

n∈N\Nt

∑βn

i=1‖∇ℓ(w(t);xn,i, yn,i)‖
∑N

n=1 βn

}2

. (61)

According to (39), inequalities

g(Nt,ψ
(t),w(t))≤

N
∑

n=1

S(t)
n

K
∑

k=1

ψ
(t)
k,nβn

√

ρ‖∇F (w(t))‖2,

(62)

and

∑

n∈N\Nt

βn
∑

i=1

‖∇ℓ(w(t);xn,i, yn,i)‖ (63)

≤

[

N
∑

n=1

βn

(

1−S(t)
n

K
∑

k=1

ψ
(t)
k,n

)]

√

ρ‖∇F (w(t))‖2,

can be obtained. Therefore, (61) can be rewritten as follows:

E(‖ŵ(t)‖2)≤E







[

∑N

n=1βn

(

1−S
(t)
n

∑K

k=1ψ
(t)
k,n

)]

√

ρ‖∇F (w(t))‖2

∑N

n=1βn

+

[

∑N
n=1βn

(

1−S
(t)
n

∑K
k=1ψ

(t)
k,n

)]

√

ρ‖∇F (w(t))‖2

∑N

n=1βn







2

=
4ρ‖∇F (w(t))‖2
(

∑N
n=1βn

)2 E

[

N
∑

n=1

βn

(

1−S(t)
n

K
∑

k=1

ψ
(t)
k,n

)]2

.

(64)

Due to the fact that the number of all devices’ samples is not

less than the number of unselected devices’ samples, i.e.,

N
∑

n=1

βn ≥
N
∑

n=1

βn

(

1−S(t)
n

K
∑

k=1

ψ
(t)
k,n

)

≥ 0, (65)

the following inequality can be obtained from (64):

E(‖ŵ(t)‖2)≤
4ρ‖∇F (w(t))‖2

∑N
n=1βn

E

[

N
∑

n=1

βn

(

1−S(t)
n

K
∑

k=1

ψ
(t)
k,n

)]

.

(66)

As a result, (58) can be rewritten as follows:

E[F (w(t+1))] ≤ E[F (w(t))]−
1

2L
‖∇F (w(t))‖2 (67)

+
2ρ‖∇F (w(t))‖2

L
∑N

n=1βn

N
∑

n=1

βn

(

1−S(t)
n

K
∑

k=1

ψ
(t)
k,n

)

.

By subtracting E[F (w∗)] in both sides of the above function,

the following inequality can be obtained

E[F (w(t+1))−F (w∗)]≤E[F (w(t))−F (w∗)]−
1

2L
‖∇F (w(t))‖2

+
2ρ‖∇F (w(t))‖2

L
∑N

n=1βn

N
∑

n=1

βn

(

1−S(t)
n

K
∑

k=1

ψ
(t)
k,n

)

. (68)

According to [47], the following inequality can be obtained

from (37) and (38):

‖∇F (w(t))‖2 ≥ 2µ[F (w(t))− F (w∗)]. (69)

Hence, (68) can be rewritten as follows:

E[F (w(t+1))−F (w∗)]≤
(

1−
µ

L

)

E[F (w(t))−F (w∗)]

+
2ρ‖∇F (w(t))‖2

L
∑N

n=1βn

N
∑

n=1

βn

(

1−S(t)
n

K
∑

k=1

ψ
(t)
k,n

)

. (70)

Similarly, the convergence of successive rounds is given by

E[F (w(t+1))−F (w∗)]≤
(

1−
µ

L

)2

E[F (w(t−1))−F (w∗)]

+
(

1−
µ

L

)2ρ‖∇F (w(t−1))‖2

L
∑N

n=1βn

N
∑

n=1

βn

(

1−S(t−1)
n

K
∑

k=1

ψ
(t−1)
k,n

)

+
2ρ‖∇F (w(t))‖2

L
∑N

n=1βn

N
∑

n=1

βn

(

1−S(t)
n

K
∑

k=1

ψ
(t)
k,n

)

. (71)

As a result, we derive the upper bound of the convergence rate

as

E[F (w(t+1))−F (w∗)]≤
(

1−
µ

L

)t

E[F (w(1))−F (w∗)] (72)

+
2ρ

L

t
∑

i=1

(

1−
µ

L

)t−i ‖∇F (w(i))‖2
∑N

n=1βn

N
∑

n=1

βn

(

1−S(i)
n

K
∑

k=1

ψ
(i)
k,n

)

,

which completes the proof. �
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