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Anomaly detection via Gumbel
Noise Score Matching

Ahsan Mahmood, Junier Oliva and Martin Andreas Styner*

Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC,
United States

We propose Gumbel Noise Score Matching (GNSM), a novel unsupervised
method to detect anomalies in categorical data. GNSM accomplishes this by
estimating the scores, ie., the gradients of log likelihoods w.r.t. inputs, of
continuously relaxed categorical distributions. We test our method on a suite
of anomaly detection tabular datasets. GNSM achieves a consistently high
performance across all experiments. We further demonstrate the flexibility of
GNSM by applying it to image data where the model is tasked to detect
poor segmentation predictions. Images ranked anomalous by GNSM show
clear segmentation failures, with the anomaly scores strongly correlating
with segmentation metrics computed on ground-truth. We outline the score
matching training objective utilized by GNSM and provide an open-source
implementation of our work.
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1 Introduction

Anomaly detection on tabular data remains an unsolved problem (Pang et al., 2021b;
Ruff et al., 2021; Aggarwal, 2017). Notably, there are few methods in this space that
explicitly model categorical data types (Pang et al., 2021a). For instance, none of the
methods tested in the recent comprehensive benchmark performed by Han et al. (2022)
make explicit use of categorical information. After transforming the categorical variables
into one-hot and binary encodings, existing methods proceed to treat them as distinct
continuous variables. Furthermore, there is a dearth of unsupervised deep learning
anomaly detection methods that excel on tabular datasets. For example, the otherwise
exhaustive benchmark of Han et al. (2022) reports only two unsupervised deep learning
models, DSVDD (Ruff et al., 2018) and DAGMM (Zong et al., 2018), in their analysis; with
both models being outperformed by shallow unsupervised methods. Some reconstruction-
based autoencoder approaches have been proposed (Hawkins et al., 2002) but they require
optimization tricks such as adaptive sampling, pretraining, and ensembling to work
effectively (Chen J. et al., 2017).

To fill this gap, we propose a novel unsupervised method to detect anomalies:
Gumbel Noise Score Matching (GNSM). Our method estimates the scores of
continuous relaxations of categorical variables. Our proposed method will naturally
respect dependencies between feature indices of one-hot encoded covariates
(instead of treating them as separate features), and vyields a straightforward
approach to model mixed continuous/discrete features through estimated scores.
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Our main contributions are :

e Deriving an unsupervised training objective for learning the
scores of categorical distributions.

e Demonstrating the capability of score matching for anomaly
detection on categorical types in both tabular and image
datasets.

e Providing a unified framework for modeling mixed data types
via score matching.

To illustrate the significance of our last contribution, consider
the Census dataset in our experiments (Section 5). We were
able to compute the scores for both the continuous features
[using standard denoising score matching (Vincent, 2011)] and the
categorical features (using GNSM). Further still, our model is not
limited to tabular data. As demonstrated in Section 6.2, GNSM
can effectively detect anomalies in images (segmentation masks).
This flexibility, paired with our simple loss objective, illustrates the
practical viability of our method.

2 Background

Our work combines continuous relaxations for categorical data
(Jang et al., 2017; Maddison et al., 2017) into the denoising score
matching objective (Vincent, 2011). We will briefly expand on some
background material to provide context.

2.1 Score matching

Let x € RP be a sample observed from the probability
distribution p(x), and ¥ € RP represent the corrupted version
of x under some noise distribution g, (¥|x), with a noise scale o.
Hyvirinen (2005) introduced score matching as a methodology to
estimate the gradient of the log density with respect to the data (i.e.,
the score): V, log p(x). If we assume a noise distribution g, (¥|x) is
available, it is possible to learn the scores for the perturbed data
distribution g, (¥) £ [ qo (xx)p(x)dx. Vincent (2011) proved that
that minimizing the Denoising Score Matching (DSM) objective
in Equation 1 will train the score estimator sy to satisfy sg(x) =
V,log g, (x).

Tosm(0) = By, [llss(x) — Vzlog o (31%)[1°] (1)

Song and Ermon (2019) introduced Noise Conditioned Score
Networks (NCSN) and expanded the DSM objective in Equation 1
to include multiple noise distributions of increasing noise levels.

L
Inesn(®) = > By, [llso(601) — Viloggo, GI0IP]  (2)
i=1

The authors’ main insight was to use the same model for all
noise levels. They parameterized the network to accept noise scales
as conditioning information. NCSNs were successful in generating
images and have been shown to have close ties to generative
diffusion models (Song and Ermon, 2019).
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2.2 Connecting score matching to
anomaly detection

While (Song and Ermon, 2019) demonstrated the generative
capabilities of NCSNs, Mahmood et al. (2021) outlined how
these networks can be repurposed for outlier detection. Their
methodology, Multiscale Score Matching Analysis (MSMA),
incorporates noisy score estimators to separate in- and out-of-
distribution (OOD) points. Recall that a score is the gradient of the
likelihood. A typical point, residing in a space of high probability
density will need to take a small gradient step in order to improve its
likelihood. Conversely, a point further away from the typical region
(an outlier) will need to take a comparatively larger gradient step
toward the high density region. When we have multiple noisy score
estimates, it is difficult to know apriori which noise scale accurately
represents the gradient of the outliers. However, Mahmood et al.
(2021), showed that learning the typical space of score-norms for
all noise levels is sufficient to identify anomalies.

Concretely, assume we have a score estimator that is trained
on L noise levels and a set of inlier samples XjN. Computing the
inlier score estimates for all noise levels and taking the L2-norms
across the input dimensions results in an L-dimensional feature
; 5 eeey S(XIN,OL)’ ’;]

Mahmood et al. (2021) argue that inliers tend to concentrate in this

vector for each input sample: [HS(XIN,O‘l)‘

multiscale score-norm embedding space. It follows that one could
train an auxiliary model (such as a clustering model or a density
estimator) to learn this score-norm space of inliers. At test time, the
output of the auxiliary model (e.g., likelihoods in the case of density
estimators) is used as an anomaly score. Results in Mahmood et al.
(2021) show MSMA to be effective at identifying OOD samples in
image datasets (e.g., CIFAR-10 as inliers and SVHN as OOD).

2.3 Continuous relaxation to categorical
data

Gradients of log likelihoods are ill-defined for categorical
inputs. In order to compute the score of categorical data, we
propose to adopt a continuous relaxation for discrete random
variables co-discovered by Jang et al. (2017) and Maddison et al.
(2017). These relaxations build on the Gumbel-Max trick to sample
(Maddison et al., 2014). The
procedure (often referred to as the Gumbel-Softmax) works by
adding Gumbel noise (Gumbel, 1954) to the (log) probabilities and
then passing the resulting vector through a softmax to retrieve a

from a categorical distribution

sharpened probability distribution over the categorical outcomes.
Of particular interest to us, Gumbel-Softmax incorporates a
temperature parameter (A in Equation 3) to control the sharpening
of the resulting probabilities. we argue that this temperature can
also be interpreted as a noise parameter, by virtue of it increasing
the entropy of the post-softmax probabilities. we will make use of
this intuition to combine continuous relaxations with denoising
score matching.

Note that for our analysis in Section 3, we will be utilizing
the formulation of Maddison et al. (2017) i.e. concrete random
variables. In particular, we will be using a variant of the Concrete
Distribution called ExpConcrete introduced by the same authors,
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shown in Equation 3. Given unnormalized probabilities (logits) of a
K-dimensional variable « € (0, oo)K , Gumbel i.i.d samples G, and
a smoothing factor 1 € (0,00), we can construct an ExpConcrete
random variable X € RX such that exp(X) ~ Concrete(a, 1):

K
log oy + Gy loga; + Gj
X = - log i:EI expy———— (3)

As A — 0, the computation approaches an argmax, while
large values of A will push the random variable toward a uniform
distribution. The main purpose of preferring the ExpConcrete
Distribution over the Concrete Distribution is numerical stability,
as the former is defined in the log domain.

Conveniently, Maddison et al. (2017) derived the log-density
of an ExpConcrete random variable, which we will be using going
forward. Let x € RK such that the log Zfil exp {x;} = 0. The
log-density of an ExpConcrete(x, 1) distribution can be computed
as:

log .. (x) = log((K — 1)!) + (K — 1) log A
+ (Zi(:l log o — )»xk) — Klog ZkK=1 ellogak—2x;) (4)

3 Score matching with categorical
variables

In this section we will develop the ideas behind our loss
objective. Firstly, note that the proof of the denoising score
matching objective in Equation 1, introduced by Vincent (2011),
holds true for any ¢,, provided that log g, (X|x) is differentiable.
Recall that g, plays the role of a noise distribution. While
most denoising score matching models incorporate Gaussian
perturbation (Song and Ermon, 2019; Song et al., 2021; Vincent,
2011), we emphasize that any noise distribution may be used during
training.

3.1 ExpConcrete(a,)) as a noise
distribution

Following the reasoning above and the temperature parameter
(1) available in Equation 3, we propose to repurpose the Concrete
distribution to add “noise” to our continuous relaxations of the
categorical variables. Increasing A will allow us to corrupt the
input x by scaling the logits and smoothing out the categorical
probabilities. Therefore, in GNSM, the (Exp)Concrete Distribution
acts both as the relaxation mechanism and the noise distribution.

Letx € {0, 1} be a one-hot encoding representing K outcomes
and x ~ ExpConcrete(a = x, ) € RX be the continuously relaxed
approximation of the one-hot vector x. We set & to be the logits of
x. As x will be a one-hot encoding, it does not strictly satisfy the
requirement & € (0,00)X. This can be circumvented by adding
a small delta to the vectors to avoid zero values i.e. « = x + 6.
While it is possible to apply any transformation to convert x to
unnormalized probabilities, we opted to use the clamped one-hot
encodings for simplicity.
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Let X ~ ExpConcrete(@ = x,A >> 0) € RK represents
the noisy version of x with a smoothing factor A >> 0 being
used to excessively smooth the probabilities of x. We compute the
log-density of the noise distribution as:

log g (X]x) = log pa,(X|x) (5)
= logps(X; @ = x) (6)

Here, the location parameter is that of the unperturbed input
(similar to how one would use a Gaussian kernel), and X is a known
hyperparameter.

3.2 Score of ExpConcrete distribution

To plug ExpConcrete into the DSM objective (Equation 1),
we first need to derive the score for the ExpConcrete distribution
i.e. take the gradient of the log-density with respect to
the data.

Recall the log-density of the ExpConcrete(w, A) in Equation 4.
Since the first two terms for logpg(x) in Equation4 are
independent of x, we can ignore them and focus on the latter:

log pu . (x)
=log((K — 1)!) + (K — 1)log A + (Zszl log oy — Axk>
—Klog Y, ellosen—?) )
ij log pa(x) = Vy, (Zl,le log oy — Axk)
—Vy, (K log Zle exp {log a — Axk}) (8)
=V, (— P kxk)
K (vx]. log YK, exp {log o — Axk}) 9)

Vs (Zle exp{log ak—kxk})

=K Yk exp{logoy—rxi} (10)

log & —3.x;} V. (log &t — A.x;
onFTE @
— A+ AK % (13)

Note how the last equation can be rewritten as:
Vy log pos(x) = —A + AK o (logar — Ax); (14)

&

Zszl e’k

where o (z); = is the softmax function.

3.3 Gumbel-Noise Score Matching
Objective

Equation 14 represents the score function of the

ExpConcrete distribution ie. the gradient of the log-

density with respect to the data. We can now combine
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the ideas from Denoising Score Matching and Concrete

random  variables. Combining  Equations 1, 5, 14,

one obtains

=By, [llso(x) — Vi loggo (x|x)I1*]

=By, [Ils6 (%) — Vi logpa, (x1x)|I]

=E,, [||59(x Vilogpyr(X; 0 = x)||2]
=[E,, [||59(x) — (=A + AK o(logx — 1X))]| ]
=E,, [Ilso(%) — AK o (logx — AX)) + Al| ]
=By, [llso(®) — AK o/(€) + A]1%]

Here ¢ = logx — AX and can be loosely interpreted as
the “logit noise” as it is the difference between the original
logit probabilities and the perturbed vector. This formulation is
analogous to the simplification utilized by Song et al. (2021) and
Ho et al. (2020). It allows us to train the model to estimate the
noise directly as the other variables are known constants. Assume
a network ey, that takes the input x. Following Equation 14, we
parameterize a score network as sg(x); = —A + AK o(ep(X));.
We train the network €y to estimate the noise values € by the
objective below.

J(6) = E,, [M*K?||(0(e(%)) — o (€))]*] (15)

Following Song and Ermon (2019), we can modify our loss to
train a NCSN with L noise levels i.e. 1 € {A;}-:

L -
JO) =) FK? Expy Bivp,, [llo(eo(E20) — 0 (e)IIP] (16)
Note that our network is now additionally conditioned on
the noise level A. Finally, our loss objective can be extended
to incorporate data with multiple categorical features. For D
categories we have:

Jonsm(9)
= Y0 Yo M K2 Bxympgu Bxymp, [llo(€0(Eas 10)) — o (€)]12]
(17)

Here, K; represents the number of outcomes per category, x4
represents the one-hot vector of length K, and %, is the continuous,
noisy representation of x; obtained after a Concrete (Gumbel-
Softmax) transform.

3.4 A note on optimizing the GNSM
objective in practice

Observing the loss in Equation 17, we see that we are
minimizing the difference between two distributions as both inner
terms pass through a softmax function. This insight led us to
postulate that that one could substitute the mean squared error
loss (MSE) for a metric more apt for matching distributions. We
therefore ran experiments using the KL divergence objective as
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shown in Equation 18. This objective showed faster convergence
than MSE. Admittedly, this result is only empirical. It may be
possible to gain similar improvements in convergence for the MSE
by properly tuning the optimization hyperparameters such as the
learning rate.

Jonsm(6)
0 MK B paaEmpy, [DxL(o(e) || o(ea(®a))] (18)

= Zfi):o Z:L:

3.5 Anomaly detection via GNSM-based
MSMA

Once a network is trained with the denoising objective in
Equation 17, we can plug the scores into MSMA to identify
anomalies. For a given point x, we compute the score estimates
for all noise perturbation levels. The resulting vector represents the
L-dimensional multiscale embedding space:

1) = (||so( wlf3) (19
where sq(x, A;) is the noise conditioned score network estimating
V, log p;,(x). Following the mechanism laid out by Mahmood et al.
(2021), our goal is to learn “areas of concentration” of the inlier
data in the L-dimensional embedding space (1(x), for x ~ p).
Concretely, we train a Gaussian Mixture Model (GMM) on n(Xn),
where Xy represents the set of inliers. At inference time, we
first use the score network to compute the score-embedding space
n(x) for the test samples and then compute the likelihoods of the
scores via the trained GMM. The negative of this likelihood is then
assumed as the anomaly score for the test samples.

4 Related works

Unsupervised anomaly detection has been tackled by a
myriad of methods (Pang et al.,, 2021b; Ruft et al., 2021), with
2022). For the purposes of this
work, we primarily focus on unsupervised anomaly detection

varying success (Han et al,

algorithms that have been successfully applied to tabular data.
Every algorithm employs its own assumptions and principles about
normality (Aggarwal, 2017). These principles can be elucidated
into three broad detection methodologies based on classification,
distance and density.

Classification-based methods employ a one-class objective,
which does not need labeled samples. For example, One-Class
Support Vector Machines (OC-SVMs) (Chen et al., 2001) try to
find the tightest hyperplane around the dataset, while Deep Support
Vector Data Descriptors (DSVDD) (Ruff et al., 2018) will compute
the minimal hypersphere that encloses the data. Both methods
assume that inliers will fall under the margins, and consequently
use the distance to the margin boundaries as a score of outlierness.

Distance-based methods assume that outliers will be far
away from neighborhoods of inliers. For example, k-Nearest
Neighbors (Peterson, 2009) will use the distance to the k-th nearest
inlier point as a score of anomaly. Isolation Forests (Liu et al.,
2008) implicitly use this assumption by computing the number of

frontiersin.org
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partitions required to isolate a point. Samples that are far away from
their neighbors will thus be isolated with fewer partitions and be
labeled as anomalies.

Lastly, density-based models assume that anomalies are located
in low-density regions in the input space. The principle objective
is then to learn the density function representative of the typical
(training) data. A trained model will be used to assign probabilities
to test samples, with low probabilities signifying anomalies.
Examples include Gaussian Mixture Models (GMMs) (Reynolds
et al, 2009) and their deep learning counter part, Deep
Autoencoding Gaussian Mixture Models (DAGMM) (Zong et al.,
2018). Both models estimate the parameters for a mixture of
Gaussians, which are then used to assign likelihoods at inference
time. ECOD (Li et al., 2022) uses a different notion of density
and estimates the cumulative distribution function (CDF) for each
feature in the data. It then uses the tail probabilities from each
learned CDF to designate samples as anomalous.

There are also many methods built specifically for anomaly
detection in images such as Schlegl et al. (2019), Bergmann et al.
(2020), and Defard et al. (2021). However, they have yet to be
successfully applied to tabular data and it is uncertain how to
extend them to categorical data types. Conversely, some methods
have been built to address only categorical data types such as
Akoglu et al. (2012) (compression-based) and Pang et al. (2016,
2021a) (frequency-based). Unfortunately, it is difficult to find open-
source implementations of these models. It is also non-obvious
how to extend them to mixed continuous/discrete features. Our
method on the other hand, can handle mixed data types by
using the appropriate score matching objective for continuous and
categorical features.

Finally, we emphasize that our research introduces a
streamlined approach to estimate scores for categorical data using
denoising score matching. Recently, Sun et al. (2023) proposed
a ratio matching objective, which may be viewed as a discrete
analog to score matching with continuous variables. However, this
method mandates the parameterization of conditional densities,
necessitating a crafted architecture to mask specific input segments.
In contrast, our method sidesteps such complexities, and can fit
into any established score matching framework. For example,
our method is compatible with alternative (non-denoising) score
matching objectives such as sliced-score matching (Song et al,
2020), or the implicit score matching objective originally proposed
by Hyvirinen (2005).

There is also a link between score matching and diffusion
models as established by Song et al. (2021). Indeed, recent works
such as Austin et al. (2021) and Hoogeboom et al. (2021) model
categorical distributions through a diffusion process. However,
it is important to note that these generative models eschew the
estimation of the score function s(x) = V,logp(x). Instead, they
incorporate the Markov chain interpretation of diffusion models,
and directly predict the parameters for transition kernels. As a
consequence, these models are not directly suitable for a spectrum
of score-based applications, such as out-of-distribution (OOD)
detection as explored by Mahmood et al. (2021), or hypothesis
testing as introduced by Wu et al. (2022). It is plausible that
forthcoming research will unveil further applications of score
functions, wherein our methodology stands ready to extend these
findings to categorical data.
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TABLE 1 Statistics of public benchmark datasets.

Dataset # # #
Samples  Anomalies  Features
Bank 36,548 4,640 53
Census 280,717 18,568 396 (+5 cont.)
Chess 28,029 27 40
CcMC 1,444 29 25
Probe 60,593 4,166 67
Solar 1,023 43 41
U2R 60,593 228 40
Nursery 4,648 328 26

All datasets other than Census are categorical only.

5 Experiments

We designed two experiments to evaluate our methodology:
a benchmark on tabular data and a vision-based case study. The
tabular benchmark will quantitatively assess the performance
of GNSM compared to baselines.
demonstrate a real world use case of detecting anomalous

The case study will

segmentation masks.

5.1 Tabular benchmark

We created an experimental testbed with categorical anomaly
detection datasets sourced from a publicly available curated
repository.! Table | describes the public datasets used in our
experiments. Note that for our method, we need to know the
number of outcomes for each category, to appropriately compute
the softmax over the dimensions. This prevents us from using
preprocessed datasets such as those made available by Han et al.
(2022). It is also why we could not use all the datasets in the curated
repository, as some had been pre-binarized.

We first split the datasets into inliers and outliers. Next, we
divided the inliers into an 80/10/10 split for train, validation,
and test respectively. The validation set is used for early stopping
and the checkpoint with the best validation loss is used for
inference. The test set is combined with the outliers and used for
assessing performance. The categorical features were first converted
to one-hot vectors and then passed through a log transform to
retrieve logits. We used Standard normalization to normalize any
continuous features (only relevant for Census). We compute results
over five runs with different seeds.

We chose four methods to represent baseline performance in
lieu of a comprehensive analysis with multiple methods. We were
inspired to go this route due to the thorough results reported
by ADBench (Han et al., 2022). As the authors describe, no one
method outperforms the rest. We picked two representatives for
shallow unsupervised methods: Isolation Forests and ECOD. We
picked these as they consistently give good performance across
different datasets and require little to no hyperparameter tuning.

1 https://sites.google.com/site/gspangsite/sourcecode/categoricaldata
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There are much fewer options for unsupervised deep learning
methods that have been shown to work on tabular datasets. We
chose two models that are popular in this field: DAGMM and
DSVDD. Note that these were the only unsupervised deep learning
models reported by Han et al. (2022).

For our score network, we used a ResNet-like architecture
inspired by Gorishniy et al. (2021). We replaced BatchNorm
layers with LayerNorm and set Dropout to zero. The
dimensions of the Linear layers in each block were set to 1,024.
All activations were set to GELU (Hendrycks and Gimpel, 2016)
except for the final layer, which was set to LeakyReLU. The
number of residual blocks was set to 20. To condition the model
on the noise scales, we added a noise embedding layer similar to
those used in diffusion models (Song et al., 2021). We used the same
architecture across all datasets.

Our noise parameter A is a geometric sequence from A = 2
to A = 20. Early testing showed that the models gave numerical
issues for values lower than 2. For the upper-limit (i.e. the largest
noise scale) we chose 20 as it works well to smooth out the
probabilities to uniform across all datasets. We set the number
of noise scales (L) to 20. We compute the score norms on the
inliers (train+val) according to Equation 19 and train a GMM on
the resulting features. The negative likelihoods computed from the
GMM are the final outputs of our method.

Extensive architectural details are available in the Appendix.
We also provide our code at the categorical-dsm code repository.?

5.2 Case study: detecting segmentation
failures

Consider the scenario where a user has deployed a (trained)
segmentation model and wishes to detect when the model fails to
produce adequate segmentations during inference. This case-study
will explore how we can use a GNSM to rank (image, segmentation)
pairs, where the segmentations are predictions from a deep learning
model. Effectively, we aim to show that a GNSM network can
act as an uncertainty estimator for the outputs of a pre-trained
segmentation model.

Concretely, the GNSM model is first trained to learn the
distribution of ground truth (image, segmentation) pairs. At
test time, our model will score the predicitons of a pretrained
segmentation model. Our hypothesis is that our method will
correctly detect failure cases i.e. poor segmentations should be
ranked higher on the anomaly scale.

While there are many ways to qualitatively define a failure, we
will be using popular segmentation metrics (with respect to ground
truth masks) as a proxy for performance. We posit that a useful
anomaly score should correlate meaningfully with the ground truth
segmentation accuracies.

We compare the anomaly scores against three common
segmentation metrics: the Dice similarity coeficient (Dice), the
mean surface distance (MSD), and the 95-th percentile Hausdorff
distance (95-HD). We chose Dice as it is a popular segmentation
metric that measures the overlap between the predicted masks

2 https://github.com/ahsanMah/categorical-dsm/tree/frontiers
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and the ground truth. However, as Dice scores may overestimate
performance, it is recommended to additionally report distance
based metrics (Valentini et al., 2014; Taha and Hanbury, 2015).
These metrics compute the distance between the surfaces of the
predictions and ground truth masks.

We train a convolutional score network on the train-set of the
Pascal-VOC segmentation dataset (Everingham et al., 2010). The
input to our model is a pair of images and the one-hot segmentation
masks. The model predicts the scores for the segmentation masks
only. We chose to use paired data rather than segmentations
alone as we want the model to learn whether a segmentation is
appropriate for the given image.

As our test subject, we retrieved a pretrained DeepLabV3
MobileNet (V3 Large) segmentation model (Chen L.-C.
et al., 2017) from the publicly available PyTorch implementation.®
This model was trained on a subset of the COCO dataset (Lin et al.,
2014), using only the 20 categories that are present in the Pascal
VOC dataset. We used the validation set of Pascal VOC as our
test set.

We compare the performance of our method to a convolutional
DSVDD. While there may exist specialized segmentation
uncertainty estimators, we argue that an unsupervised model
provides a more apt comparison. It is reasonable to postulate that
both our model and DSVDD could be improved by additionally
incorporating segmentation-specific objectives into the training,
but that remains outside the scope of this study.

For our score matching network, we adopted the NCSN++
model used by Song et al. (2021). The only significant change was
in the input/output layers as we are predicting scores over one-hot
segmentation masks. For DSVDD, we used the implementation of
the original authors (Ruff et al., 2018). To keep a fair comparison,
we modified the code to use a modern architecture as the backbone
[specifically EfficentNetV2 (Tan and Le, 2021)] and kept the
number of parameters similar to our model. Both models were
trained to convergence and the best checkpoints (tested over a
validation split of the train-set) were used for the analysis.

6 Results

6.1 Performance on tabular benchmark

We report the Average Precision error (AP) which can also be
interpreted as the Area Under the Precision Recall curve (AUPR).
Average precision computes the mean precision over all possible
detection thresholds. We chose to highlight AP over AUROC as it
is a more apt measure for detecting anomalies, where we often have
unbalanced classes. Additionally, precision measures the positive
predictive value of a classification i.e. the true positive rate. This is a
particularly informative measure for anomaly detection algorithms
where we are preferentially interested in the performance over one
class (outliers) than the other (inliers). We would also like to note
that our anomaly ratios in the test set do not correspond with the
true anomaly ratio in the original dataset. This is due to our data
splitting scheme where our test set is effectively only 10% the size of
inliers.

3 https://pytorch.org/vision/stable//models/deeplabv3.html
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TABLE 2 Average precision across multiple datasets.

10.3389/frai.2024.1441205

Dataset Ano ratio IForests ECOD DAGMM DSVDD GNSM (ours)
Bank 0.56 63.24 4 1.74 66.52 % 0.57 57.62+3.36 58.50 & 5.30 65.58 & 3.45
Census 0.40 40.64 £ 2.07 40.96 £ 0.15 32.90 + 5.00 41.18 £ 3.44 47.79 £2.29
Chess 0.01 2.31+1.36 1.43 +0.05 1.08 + 0.44 1.47 +0.54 1.60 = 0.68
CcMC 0.17 22724 1.57 2379+ 1.75 24.99 +5.75 21.99 +6.15 25.87 +9.93
Probe 041 92.95 4228 9539 +0.38 66.40 & 9.43 89.16 + 8.40 97.48 + 0.62
Solar 0.30 67.99 & 3.48 72.23 £ 0.91 50.84 % 5.19 51.21 4 3.94 69.28 + 1.96
U2R 0.04 52.74 4 12.88 67.84 4 1.39 10.06 + 6.47 71.17 & 24.65 82.35 & 5.45
Nursery 0.43 46514 6.52 100.00 + 0.00 4833 + 8.64 100.00 + 0.00 100.00 = 0.01
Average - 48.64 + 3.99 58.52 4 0.74 36.5245.53 5433 +7.49 61.24 + 3.05

Higher is better. Each experiment was repeated with five different seeds and we report the mean and standard deviations across seeds. IForest and ECOD represent shallow models, while
DAGMM and DSVDD represent deep learning models. Ano ratio refers to the ratio of anomalies in the test set. Bold values indicate the highest average precision across all methods per dataset.
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FIGURE 1
Correlations with segmentation metrics for Top-K = 50 anomaly scores retrieved from GNSM and Deep SVDD. The arrows next to the metric denote
the expected correlation direction. The magnitude of the correlations reflects how well the anomaly scores capture segmentation errors.

Table 2 shows that our approach performs better or on par with
baselines. GNSM achieves significant performance improvements
over baselines for Census, Probe and U2R, respectively achieving a
6.61%, 2.09%, and 11.18% improvement over the next best method.

Results for CMC and Bank are less straightforward to interpret
as the differences in the models are not statistically significant,
made apparent by the large overlap in the standard deviations.
This is especially true for deep learning models which have to
be optimized via gradient descent. On Solar, ECOD outperforms
the rest by a significant margin. However, between deep learning
models, GNSM performs notably better. Note that Solar is the
smallest dataset in our testing, with less than 800 training samples.
Lastly, every model struggled with Chess, quite possibly due to the
exceptionally small anomaly ratio. While Isolation Forests achieves
the highest mean, it is uncertain whether the win is statistically
significant. One could easily opt in favor of the other methods for
this dataset as they achieve more consistent results. Again, between
deep learning models, GNSM performs better.

Overall, we observed that the shallow models give more
stable and consistent results, with ECOD having the smallest
standard deviations on average. Additionally, we note that the
reported tabular datasets prove difficult for all algorithms. This
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behavior is prevalent in the field of unsupervised anomaly detection
methods, where models exhibit a large variance in accuracy across
datasets (Han et al., 2022). As such, no one method definitively
outperforms the rest; an outcome that coincides with previous
findings of Han et al. (2022); Pang et al. (2021b), and Ruff et al.
(2021). In this context, we emphasize that GNSM consistently
ranks high across all datasets we tested. In contrast, each of the
competing methods were the top performer in only one of the
datasets in Table 2, and significantly underperformed in others.
Averaged over all datasets, GNSM performed best. This is empirical
confirmation that GNSM is a consistent contender in the suite of
available algorithms for practitioners looking to detect anomalies
in unlabeled data domains.

6.2 Detecting segmentation failures

We computed the anomaly scores from both GNSM and
DSVDD and ranked the images from most to least anomalous.
Next, we took the top K = 50 images (out of 1449) and computed
the Pearson correlation coeflicients between the ground truth
segmentation metrics and the anomaly scores. We chose the worst
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FIGURE 2
Random samples from Top-K = 50 GNSM rankings. Note how the predicted segmentations are either partial/missing or include incorrect classes
The columns (repeated twice) show input image, ground truth segmentations, and model predictions respectively. Different classes are denoted by
color. The VOC data includes images obtained from Flickr: https://www.flickr.com/.

ranked images for our analysis as we are interested in the efficacy
of these scores for identifying segmentation failures as opposed to
assessing the quality of successful segmentations.

Figure 1 shows the correlations between the ground truth
segmentation metrics and the anomaly scores from GNSM and
DSVDD. Recall that Dice is a similarity metric while MSD and
95-HD are both distance-based metrics. Therefore, we initially
hypothesized that a good anomaly score should correlate negatively
with Dice and positively with the distances. Our results show that
GNSM correlates strongly in the direction expected. DSVDD on
the other hand achieved a poor correlation with Dice and inverse
correlations with the distance based metrics.

To qualitatively assess the results of each model a subset of the
worst ranked predictions are plotted in Figures 2, 3. We display
examples of (image, ground-truth, DeepLab segmentation) triplets
ranked as anomalous by GNSM and DSVDD, respectively. We
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expect the models to detect cases where the DeepLab model fails
to produce adequate segmentations.

We observe that predictions ranked by GNSM in Figure 2
are either complete failures (most of the image is designated
the background class) or severe under-segmentations. Predictions
ranked by DSVDD in Figure 3 do not exhibit any obvious pattern
of segmentation failures, with most being reasonable predictions.
Our results show that, compared to DSVDD, GNSM is substantially
more capable of detecting failure cases. Please look at the Appendix
for all sorted K = 50 rankings.

We believe these results exemplify GNSM’s generalization
capabilities to non-tabular data, but also highlight a practical
application. Quantifying segmentation uncertainties is useful when
deploying off-the-shelf models. Our method may be employed as
a filtering mechanism to automatically detect poor segmentations,
which could then be reviewed further downstream.
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FIGURE 3
Random samples from Top-K = 50 DSVDD rankings. Note how only a few predictions may be considered anomalous. The VOC data includes images
obtained from Flickr: https://www:.flickr.com/

7 Limitations

Our experiments revealed that GNSM’s performance is closely
tied to model architecture. While our proposed network size is
performant, we observed a trend of increased performance as the
models got deeper and wider. Due to time and resource constraints,
we did not thoroughly explore the architecture space. This suggests
that GNSM might benefit from larger models, which could be a
limitation in resource-constrained environments.

Computationally, our models require a significant number of
iterations to converge. For our experiments, we trained for 1 million
iterations, which can take up to a day of training on an A6000 GPU.
This is in contrast to the baselines, which may take a few seconds for
shallow models and up to a few hours for the deep learning models.

Furthermore, GNSM explicitly needs to know the number of
outcomes (classes) per category to appropriately add noise and
compute the scores. While we believe this to be a strength of our
approach, it does create an overhead for the user. The baselines
do not require this additional modeling complexity and are more
straightforward to apply.
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Lastly, our method has hyperparameters pertaining to noise,
such as the number of scales used and the range of noise
levels. While our hyperparameters have proven to be stable across
different datasets, we acknowledge that additional experiments
for sensitivity would better illuminate the robustness of GNSM’s
hyperparameters. We posit that additional improvements may be
obtained if these were also tuned per dataset.

8 Conclusion

In this work we introduced Gumbel Noise Score Matching
(GNSM): a novel method for detecting anomalies in categorical
data types. We outline how to compute scores of continuously
relaxed categorical data and derive the appropriate training
objective based on denoising score matching. Our method can
easily be used in conjunction with standard score matching to
model both continuous and categorical data. GNSM achieves
competitive performance with respect to baselines on a suite
of tabular anomaly detection datasets, attaining significant
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improvements on certain datasets. Furthermore, GNSM can easily
be extended to images and excels on the real-world task of detecting
anomalous segmentations. Lastly, we believe our novel categorical
score matching formulation could be incorporated into generative
models. We hope to explore this direction in future work.
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