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Anomaly detection via Gumbel
Noise Score Matching

Ahsan Mahmood, Junier Oliva and Martin Andreas Styner*

Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC,

United States

We propose Gumbel Noise Score Matching (GNSM), a novel unsupervised

method to detect anomalies in categorical data. GNSM accomplishes this by

estimating the scores, i.e., the gradients of log likelihoods w.r.t. inputs, of

continuously relaxed categorical distributions. We test our method on a suite

of anomaly detection tabular datasets. GNSM achieves a consistently high

performance across all experiments. We further demonstrate the flexibility of

GNSM by applying it to image data where the model is tasked to detect

poor segmentation predictions. Images ranked anomalous by GNSM show

clear segmentation failures, with the anomaly scores strongly correlating

with segmentation metrics computed on ground-truth. We outline the score

matching training objective utilized by GNSM and provide an open-source

implementation of our work.
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1 Introduction

Anomaly detection on tabular data remains an unsolved problem (Pang et al., 2021b;

Ruff et al., 2021; Aggarwal, 2017). Notably, there are few methods in this space that

explicitly model categorical data types (Pang et al., 2021a). For instance, none of the

methods tested in the recent comprehensive benchmark performed by Han et al. (2022)

make explicit use of categorical information. After transforming the categorical variables

into one-hot and binary encodings, existing methods proceed to treat them as distinct

continuous variables. Furthermore, there is a dearth of unsupervised deep learning

anomaly detection methods that excel on tabular datasets. For example, the otherwise

exhaustive benchmark of Han et al. (2022) reports only two unsupervised deep learning

models, DSVDD (Ruff et al., 2018) and DAGMM (Zong et al., 2018), in their analysis; with

both models being outperformed by shallow unsupervised methods. Some reconstruction-

based autoencoder approaches have been proposed (Hawkins et al., 2002) but they require

optimization tricks such as adaptive sampling, pretraining, and ensembling to work

effectively (Chen J. et al., 2017).

To fill this gap, we propose a novel unsupervised method to detect anomalies:

Gumbel Noise Score Matching (GNSM). Our method estimates the scores of

continuous relaxations of categorical variables. Our proposed method will naturally

respect dependencies between feature indices of one-hot encoded covariates

(instead of treating them as separate features), and yields a straightforward

approach to model mixed continuous/discrete features through estimated scores.
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Our main contributions are :

• Deriving an unsupervised training objective for learning the

scores of categorical distributions.

• Demonstrating the capability of score matching for anomaly

detection on categorical types in both tabular and image

datasets.

• Providing a unified framework for modeling mixed data types

via score matching.

To illustrate the significance of our last contribution, consider

the Census dataset in our experiments (Section 5). We were

able to compute the scores for both the continuous features

[using standard denoising score matching (Vincent, 2011)] and the

categorical features (using GNSM). Further still, our model is not

limited to tabular data. As demonstrated in Section 6.2, GNSM

can effectively detect anomalies in images (segmentation masks).

This flexibility, paired with our simple loss objective, illustrates the

practical viability of our method.

2 Background

Our work combines continuous relaxations for categorical data

(Jang et al., 2017; Maddison et al., 2017) into the denoising score

matching objective (Vincent, 2011).Wewill briefly expand on some

background material to provide context.

2.1 Score matching

Let x ∈ R
D be a sample observed from the probability

distribution p(x), and x̃ ∈ R
D represent the corrupted version

of x under some noise distribution qσ (x̃|x), with a noise scale σ .

Hyvärinen (2005) introduced score matching as a methodology to

estimate the gradient of the log density with respect to the data (i.e.,

the score): ∇x log p(x). If we assume a noise distribution qσ (x̃|x) is

available, it is possible to learn the scores for the perturbed data

distribution qσ (x̃) ,
∫

qσ (x̃|x)p(x)dx. Vincent (2011) proved that

that minimizing the Denoising Score Matching (DSM) objective

in Equation 1 will train the score estimator sθ to satisfy sθ (x) =

∇x log qσ (x).

JDSM(θ) = Eqσ

[

||sθ (x)−∇x̃ log qσ (x̃|x)||
2
]

(1)

Song and Ermon (2019) introduced Noise Conditioned Score

Networks (NCSN) and expanded the DSM objective in Equation 1

to include multiple noise distributions of increasing noise levels.

JNCSN(θ) =

L
∑

i=1

Eqσi

[

||sθ (x, σi)−∇x̃ log qσi (x̃|x)||
2
]

(2)

The authors’ main insight was to use the same model for all

noise levels. They parameterized the network to accept noise scales

as conditioning information. NCSNs were successful in generating

images and have been shown to have close ties to generative

diffusion models (Song and Ermon, 2019).

2.2 Connecting score matching to
anomaly detection

While (Song and Ermon, 2019) demonstrated the generative

capabilities of NCSNs, Mahmood et al. (2021) outlined how

these networks can be repurposed for outlier detection. Their

methodology, Multiscale Score Matching Analysis (MSMA),

incorporates noisy score estimators to separate in- and out-of-

distribution (OOD) points. Recall that a score is the gradient of the

likelihood. A typical point, residing in a space of high probability

density will need to take a small gradient step in order to improve its

likelihood. Conversely, a point further away from the typical region

(an outlier) will need to take a comparatively larger gradient step

toward the high density region. When we have multiple noisy score

estimates, it is difficult to know apriori which noise scale accurately

represents the gradient of the outliers. However, Mahmood et al.

(2021), showed that learning the typical space of score-norms for

all noise levels is sufficient to identify anomalies.

Concretely, assume we have a score estimator that is trained

on L noise levels and a set of inlier samples XIN. Computing the

inlier score estimates for all noise levels and taking the L2-norms

across the input dimensions results in an L-dimensional feature

vector for each input sample: [
∣

∣

∣

∣s(XIN, σ1)
∣

∣

∣

∣

2

2
, ...,

∣

∣

∣

∣s(XIN, σL)
∣

∣

∣

∣

2

2
].

Mahmood et al. (2021) argue that inliers tend to concentrate in this

multiscale score-norm embedding space. It follows that one could

train an auxiliary model (such as a clustering model or a density

estimator) to learn this score-norm space of inliers. At test time, the

output of the auxiliary model (e.g., likelihoods in the case of density

estimators) is used as an anomaly score. Results in Mahmood et al.

(2021) show MSMA to be effective at identifying OOD samples in

image datasets (e.g., CIFAR-10 as inliers and SVHN as OOD).

2.3 Continuous relaxation to categorical
data

Gradients of log likelihoods are ill-defined for categorical

inputs. In order to compute the score of categorical data, we

propose to adopt a continuous relaxation for discrete random

variables co-discovered by Jang et al. (2017) and Maddison et al.

(2017). These relaxations build on the Gumbel-Max trick to sample

from a categorical distribution (Maddison et al., 2014). The

procedure (often referred to as the Gumbel-Softmax) works by

adding Gumbel noise (Gumbel, 1954) to the (log) probabilities and

then passing the resulting vector through a softmax to retrieve a

sharpened probability distribution over the categorical outcomes.

Of particular interest to us, Gumbel-Softmax incorporates a

temperature parameter (λ in Equation 3) to control the sharpening

of the resulting probabilities. we argue that this temperature can

also be interpreted as a noise parameter, by virtue of it increasing

the entropy of the post-softmax probabilities. we will make use of

this intuition to combine continuous relaxations with denoising

score matching.

Note that for our analysis in Section 3, we will be utilizing

the formulation of Maddison et al. (2017) i.e. concrete random

variables. In particular, we will be using a variant of the Concrete

Distribution called ExpConcrete introduced by the same authors,
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shown in Equation 3. Given unnormalized probabilities (logits) of a

K-dimensional variable α ∈ (0,∞)K , Gumbel i.i.d samples Gk, and

a smoothing factor λ ∈ (0,∞), we can construct an ExpConcrete

random variable X ∈ R
K such that exp(X) ∼ Concrete(α, λ):

Xk =
logαk + Gk

λ
− log

K
∑

i=1

exp

{

logαi + Gi

λ

}

(3)

As λ → 0, the computation approaches an argmax, while

large values of λ will push the random variable toward a uniform

distribution. The main purpose of preferring the ExpConcrete

Distribution over the Concrete Distribution is numerical stability,

as the former is defined in the log domain.

Conveniently, Maddison et al. (2017) derived the log-density

of an ExpConcrete random variable, which we will be using going

forward. Let x ∈ R
K such that the log

∑K
i=1 exp {xi} = 0. The

log-density of an ExpConcrete(α, λ) distribution can be computed

as:

log pα,λ(x) = log((K − 1)!)+ (K − 1) log λ

+

(

∑K
k=1 logαk − λxk

)

− K log
∑K

k=1 e
(logαk−λxk) (4)

3 Score matching with categorical
variables

In this section we will develop the ideas behind our loss

objective. Firstly, note that the proof of the denoising score

matching objective in Equation 1, introduced by Vincent (2011),

holds true for any qσ , provided that log qσ (x̃|x) is differentiable.

Recall that qσ plays the role of a noise distribution. While

most denoising score matching models incorporate Gaussian

perturbation (Song and Ermon, 2019; Song et al., 2021; Vincent,

2011), we emphasize that any noise distributionmay be used during

training.

3.1 ExpConcrete(α,λ) as a noise
distribution

Following the reasoning above and the temperature parameter

(λ) available in Equation 3, we propose to repurpose the Concrete

distribution to add “noise” to our continuous relaxations of the

categorical variables. Increasing λ will allow us to corrupt the

input x by scaling the logits and smoothing out the categorical

probabilities. Therefore, in GNSM, the (Exp)Concrete Distribution

acts both as the relaxation mechanism and the noise distribution.

Let x ∈ {0, 1}K be a one-hot encoding representing K outcomes

and x ∼ ExpConcrete(α = x, λ) ∈ R
K be the continuously relaxed

approximation of the one-hot vector x. We set α to be the logits of

x. As x will be a one-hot encoding, it does not strictly satisfy the

requirement α ∈ (0,∞)K . This can be circumvented by adding

a small delta to the vectors to avoid zero values i.e. α = x + δ.

While it is possible to apply any transformation to convert x to

unnormalized probabilities, we opted to use the clamped one-hot

encodings for simplicity.

Let x̃ ∼ ExpConcrete(α = x, λ >> 0) ∈ R
K represents

the noisy version of x with a smoothing factor λ >> 0 being

used to excessively smooth the probabilities of x. We compute the

log-density of the noise distribution as:

log qσ (x̃|x) = log pα,λ(x̃|x) (5)

= log pλ(x̃;α = x) (6)

Here, the location parameter is that of the unperturbed input

(similar to how one would use a Gaussian kernel), and λ is a known

hyperparameter.

3.2 Score of ExpConcrete distribution

To plug ExpConcrete into the DSM objective (Equation 1),

we first need to derive the score for the ExpConcrete distribution

i.e. take the gradient of the log-density with respect to

the data.

Recall the log-density of the ExpConcrete(α, λ) in Equation 4.

Since the first two terms for log pα,λ(x) in Equation 4 are

independent of x, we can ignore them and focus on the latter:

log pα,λ(x)

= log((K − 1)!)+ (K − 1) log λ +

(

∑K
k=1 logαk − λxk

)

−K log
∑K

k=1 e
(logαk−λxk) (7)

∇xj log pα,λ(x) = ∇xj

(

∑K
k=1 logαk − λxk

)

−∇xj

(

K log
∑K

k=1 exp
{

logαk − λxk
}

)

(8)

= ∇xj

(

−
∑K

k=1 λxk

)

−K
(

∇xj log
∑K

k=1 exp
{

logαk − λxk
}

)

(9)

= −λ − K
∇xj

(

∑K
k=1 exp{logαk−λxk}

)

∑K
k=1 exp{logαk−λxk}

(10)

= −λ − K
exp{logαj−λxj}∇xj (logαj−λxj)

∑K
k=1 exp{logαk−λxk}

(11)

= −λ − K
exp{logαj−λxj}(−λ)

∑K
k=1 exp{logαk−λxk}

(12)

= −λ + λK
exp{logαj−λxj}

∑K
k=1 exp{logαk−λxk}

(13)

Note how the last equation can be rewritten as:

∇xj log pα,λ(x) = −λ + λK σ (logα − λx)j (14)

where σ (z)i =
ezi

∑K
k=1 e

zk
is the softmax function.

3.3 Gumbel-Noise Score Matching
Objective

Equation 14 represents the score function of the

ExpConcrete distribution i.e. the gradient of the log-

density with respect to the data. We can now combine
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the ideas from Denoising Score Matching and Concrete

random variables. Combining Equations 1, 5, 14,

one obtains

J(θ) = Eqσ

[

||sθ (x)−∇x̃ log qσ (x̃|x)||
2
]

= Epλ

[

||sθ (x̃)−∇x̃ log pα,λ(x̃|x)||
2
]

= Epλ

[

||sθ (x̃)−∇x̃ log pλ(x̃;α = x)||2
]

= Epλ

[

||sθ (x̃)− (−λ + λK σ (log x− λx̃))||2
]

= Epλ

[

||sθ (x̃)− λK σ (log x− λx̃))+ λ||2
]

= Epλ

[

||sθ (x̃)− λK σ (ǫ)+ λ||2
]

Here ǫ = log x − λx̃ and can be loosely interpreted as

the “logit noise” as it is the difference between the original

logit probabilities and the perturbed vector. This formulation is

analogous to the simplification utilized by Song et al. (2021) and

Ho et al. (2020). It allows us to train the model to estimate the

noise directly as the other variables are known constants. Assume

a network ǫθ , that takes the input x̃. Following Equation 14, we

parameterize a score network as sθ (x̃)j = −λ + λK σ (ǫθ (x̃))j.

We train the network ǫθ to estimate the noise values ǫ by the

objective below.

J(θ) = Epλ

[

λ2K2||(σ (ǫθ (x̃))− σ (ǫ))||2
]

(15)

Following Song and Ermon (2019), we can modify our loss to

train a NCSN with L noise levels i.e. λ ∈ {λi}
L
i=1:

J(θ) =
∑L

i=0
λ2i K

2
Ex∼pdataEx̃∼pλi

[

||σ (ǫθ (x̃, λi))− σ (ǫ)||2
]

(16)

Note that our network is now additionally conditioned on

the noise level λ. Finally, our loss objective can be extended

to incorporate data with multiple categorical features. For D

categories we have:

JGNSM(θ)

=
∑D

d=0

∑L
i=0 λ2i K

2
d
Exd∼pdataEx̃d∼pλi

[

||σ (ǫθ (x̃d, λi))− σ (ǫ)||2
]

(17)

Here, Kd represents the number of outcomes per category, xd
represents the one-hot vector of lengthKd, and x̃d is the continuous,

noisy representation of xd obtained after a Concrete (Gumbel-

Softmax) transform.

3.4 A note on optimizing the GNSM
objective in practice

Observing the loss in Equation 17, we see that we are

minimizing the difference between two distributions as both inner

terms pass through a softmax function. This insight led us to

postulate that that one could substitute the mean squared error

loss (MSE) for a metric more apt for matching distributions. We

therefore ran experiments using the KL divergence objective as

shown in Equation 18. This objective showed faster convergence

than MSE. Admittedly, this result is only empirical. It may be

possible to gain similar improvements in convergence for the MSE

by properly tuning the optimization hyperparameters such as the

learning rate.

JGNSM(θ)

=
∑D

d=0

∑L
i=0 λ2i K

2
d
Ex∼pdataEx̃∼pλi

[

DKL(σ (ǫ) ‖ σ (ǫθ (x̃d))
]

(18)

3.5 Anomaly detection via GNSM-based
MSMA

Once a network is trained with the denoising objective in

Equation 17, we can plug the scores into MSMA to identify

anomalies. For a given point x, we compute the score estimates

for all noise perturbation levels. The resulting vector represents the

L-dimensional multiscale embedding space:

η(x) =
(

∣

∣

∣

∣sθ (x, λ1)
∣

∣

∣

∣

2

2
, ...,

∣

∣

∣

∣sθ (x, λL)
∣

∣

∣

∣

2

2

)

(19)

where sθ (x, λi) is the noise conditioned score network estimating

∇x log pλi (x). Following the mechanism laid out by Mahmood et al.

(2021), our goal is to learn “areas of concentration” of the inlier

data in the L-dimensional embedding space (η(x), for x ∼ p).

Concretely, we train a Gaussian Mixture Model (GMM) on η(XIN),

where XIN represents the set of inliers. At inference time, we

first use the score network to compute the score-embedding space

η(x) for the test samples and then compute the likelihoods of the

scores via the trained GMM. The negative of this likelihood is then

assumed as the anomaly score for the test samples.

4 Related works

Unsupervised anomaly detection has been tackled by a

myriad of methods (Pang et al., 2021b; Ruff et al., 2021), with

varying success (Han et al., 2022). For the purposes of this

work, we primarily focus on unsupervised anomaly detection

algorithms that have been successfully applied to tabular data.

Every algorithm employs its own assumptions and principles about

normality (Aggarwal, 2017). These principles can be elucidated

into three broad detection methodologies based on classification,

distance and density.

Classification-based methods employ a one-class objective,

which does not need labeled samples. For example, One-Class

Support Vector Machines (OC-SVMs) (Chen et al., 2001) try to

find the tightest hyperplane around the dataset, while Deep Support

Vector Data Descriptors (DSVDD) (Ruff et al., 2018) will compute

the minimal hypersphere that encloses the data. Both methods

assume that inliers will fall under the margins, and consequently

use the distance to the margin boundaries as a score of outlierness.

Distance-based methods assume that outliers will be far

away from neighborhoods of inliers. For example, k-Nearest

Neighbors (Peterson, 2009) will use the distance to the k-th nearest

inlier point as a score of anomaly. Isolation Forests (Liu et al.,

2008) implicitly use this assumption by computing the number of
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partitions required to isolate a point. Samples that are far away from

their neighbors will thus be isolated with fewer partitions and be

labeled as anomalies.

Lastly, density-based models assume that anomalies are located

in low-density regions in the input space. The principle objective

is then to learn the density function representative of the typical

(training) data. A trained model will be used to assign probabilities

to test samples, with low probabilities signifying anomalies.

Examples include Gaussian Mixture Models (GMMs) (Reynolds

et al., 2009) and their deep learning counter part, Deep

Autoencoding Gaussian Mixture Models (DAGMM) (Zong et al.,

2018). Both models estimate the parameters for a mixture of

Gaussians, which are then used to assign likelihoods at inference

time. ECOD (Li et al., 2022) uses a different notion of density

and estimates the cumulative distribution function (CDF) for each

feature in the data. It then uses the tail probabilities from each

learned CDF to designate samples as anomalous.

There are also many methods built specifically for anomaly

detection in images such as Schlegl et al. (2019), Bergmann et al.

(2020), and Defard et al. (2021). However, they have yet to be

successfully applied to tabular data and it is uncertain how to

extend them to categorical data types. Conversely, some methods

have been built to address only categorical data types such as

Akoglu et al. (2012) (compression-based) and Pang et al. (2016,

2021a) (frequency-based). Unfortunately, it is difficult to find open-

source implementations of these models. It is also non-obvious

how to extend them to mixed continuous/discrete features. Our

method on the other hand, can handle mixed data types by

using the appropriate score matching objective for continuous and

categorical features.

Finally, we emphasize that our research introduces a

streamlined approach to estimate scores for categorical data using

denoising score matching. Recently, Sun et al. (2023) proposed

a ratio matching objective, which may be viewed as a discrete

analog to score matching with continuous variables. However, this

method mandates the parameterization of conditional densities,

necessitating a crafted architecture to mask specific input segments.

In contrast, our method sidesteps such complexities, and can fit

into any established score matching framework. For example,

our method is compatible with alternative (non-denoising) score

matching objectives such as sliced-score matching (Song et al.,

2020), or the implicit score matching objective originally proposed

by Hyvärinen (2005).

There is also a link between score matching and diffusion

models as established by Song et al. (2021). Indeed, recent works

such as Austin et al. (2021) and Hoogeboom et al. (2021) model

categorical distributions through a diffusion process. However,

it is important to note that these generative models eschew the

estimation of the score function s(x) = ∇x log p(x). Instead, they

incorporate the Markov chain interpretation of diffusion models,

and directly predict the parameters for transition kernels. As a

consequence, these models are not directly suitable for a spectrum

of score-based applications, such as out-of-distribution (OOD)

detection as explored by Mahmood et al. (2021), or hypothesis

testing as introduced by Wu et al. (2022). It is plausible that

forthcoming research will unveil further applications of score

functions, wherein our methodology stands ready to extend these

findings to categorical data.

TABLE 1 Statistics of public benchmark datasets.

Dataset #
Samples

#
Anomalies

#
Features

Bank 36,548 4,640 53

Census 280,717 18,568 396 (+5 cont.)

Chess 28,029 27 40

CMC 1,444 29 25

Probe 60,593 4,166 67

Solar 1,023 43 41

U2R 60,593 228 40

Nursery 4,648 328 26

All datasets other than Census are categorical only.

5 Experiments

We designed two experiments to evaluate our methodology:

a benchmark on tabular data and a vision-based case study. The

tabular benchmark will quantitatively assess the performance

of GNSM compared to baselines. The case study will

demonstrate a real world use case of detecting anomalous

segmentation masks.

5.1 Tabular benchmark

We created an experimental testbed with categorical anomaly

detection datasets sourced from a publicly available curated

repository.1 Table 1 describes the public datasets used in our

experiments. Note that for our method, we need to know the

number of outcomes for each category, to appropriately compute

the softmax over the dimensions. This prevents us from using

preprocessed datasets such as those made available by Han et al.

(2022). It is also why we could not use all the datasets in the curated

repository, as some had been pre-binarized.

We first split the datasets into inliers and outliers. Next, we

divided the inliers into an 80/10/10 split for train, validation,

and test respectively. The validation set is used for early stopping

and the checkpoint with the best validation loss is used for

inference. The test set is combined with the outliers and used for

assessing performance. The categorical features were first converted

to one-hot vectors and then passed through a log transform to

retrieve logits. We used Standard normalization to normalize any

continuous features (only relevant for Census).We compute results

over five runs with different seeds.

We chose four methods to represent baseline performance in

lieu of a comprehensive analysis with multiple methods. We were

inspired to go this route due to the thorough results reported

by ADBench (Han et al., 2022). As the authors describe, no one

method outperforms the rest. We picked two representatives for

shallow unsupervised methods: Isolation Forests and ECOD. We

picked these as they consistently give good performance across

different datasets and require little to no hyperparameter tuning.

1 https://sites.google.com/site/gspangsite/sourcecode/categoricaldata
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There are much fewer options for unsupervised deep learning

methods that have been shown to work on tabular datasets. We

chose two models that are popular in this field: DAGMM and

DSVDD. Note that these were the only unsupervised deep learning

models reported by Han et al. (2022).

For our score network, we used a ResNet-like architecture

inspired by Gorishniy et al. (2021). We replaced BatchNorm
layers with LayerNorm and set Dropout to zero. The

dimensions of the Linear layers in each block were set to 1,024.

All activations were set to GELU (Hendrycks and Gimpel, 2016)

except for the final layer, which was set to LeakyReLU. The
number of residual blocks was set to 20. To condition the model

on the noise scales, we added a noise embedding layer similar to

those used in diffusionmodels (Song et al., 2021).We used the same

architecture across all datasets.

Our noise parameter λ is a geometric sequence from λ = 2

to λ = 20. Early testing showed that the models gave numerical

issues for values lower than 2. For the upper-limit (i.e. the largest

noise scale) we chose 20 as it works well to smooth out the

probabilities to uniform across all datasets. We set the number

of noise scales (L) to 20. We compute the score norms on the

inliers (train+val) according to Equation 19 and train a GMM on

the resulting features. The negative likelihoods computed from the

GMM are the final outputs of our method.

Extensive architectural details are available in the Appendix.

We also provide our code at the categorical-dsm code repository.2

5.2 Case study: detecting segmentation
failures

Consider the scenario where a user has deployed a (trained)

segmentation model and wishes to detect when the model fails to

produce adequate segmentations during inference. This case-study

will explore howwe can use a GNSM to rank (image, segmentation)

pairs, where the segmentations are predictions from a deep learning

model. Effectively, we aim to show that a GNSM network can

act as an uncertainty estimator for the outputs of a pre-trained

segmentation model.

Concretely, the GNSM model is first trained to learn the

distribution of ground truth (image, segmentation) pairs. At

test time, our model will score the predicitons of a pretrained

segmentation model. Our hypothesis is that our method will

correctly detect failure cases i.e. poor segmentations should be

ranked higher on the anomaly scale.

While there are many ways to qualitatively define a failure, we

will be using popular segmentation metrics (with respect to ground

truth masks) as a proxy for performance. We posit that a useful

anomaly score should correlate meaningfully with the ground truth

segmentation accuracies.

We compare the anomaly scores against three common

segmentation metrics: the Dice similarity coefficient (Dice), the

mean surface distance (MSD), and the 95-th percentile Hausdorff

distance (95-HD). We chose Dice as it is a popular segmentation

metric that measures the overlap between the predicted masks

2 https://github.com/ahsanMah/categorical-dsm/tree/frontiers

and the ground truth. However, as Dice scores may overestimate

performance, it is recommended to additionally report distance

based metrics (Valentini et al., 2014; Taha and Hanbury, 2015).

These metrics compute the distance between the surfaces of the

predictions and ground truth masks.

We train a convolutional score network on the train-set of the

Pascal-VOC segmentation dataset (Everingham et al., 2010). The

input to ourmodel is a pair of images and the one-hot segmentation

masks. The model predicts the scores for the segmentation masks

only. We chose to use paired data rather than segmentations

alone as we want the model to learn whether a segmentation is

appropriate for the given image.

As our test subject, we retrieved a pretrained DeepLabV3
MobileNet (V3 Large) segmentation model (Chen L.-C.

et al., 2017) from the publicly available PyTorch implementation.3

This model was trained on a subset of the COCO dataset (Lin et al.,

2014), using only the 20 categories that are present in the Pascal

VOC dataset. We used the validation set of Pascal VOC as our

test set.

We compare the performance of our method to a convolutional

DSVDD. While there may exist specialized segmentation

uncertainty estimators, we argue that an unsupervised model

provides a more apt comparison. It is reasonable to postulate that

both our model and DSVDD could be improved by additionally

incorporating segmentation-specific objectives into the training,

but that remains outside the scope of this study.

For our score matching network, we adopted the NCSN++

model used by Song et al. (2021). The only significant change was

in the input/output layers as we are predicting scores over one-hot

segmentation masks. For DSVDD, we used the implementation of

the original authors (Ruff et al., 2018). To keep a fair comparison,

we modified the code to use a modern architecture as the backbone

[specifically EfficentNetV2 (Tan and Le, 2021)] and kept the

number of parameters similar to our model. Both models were

trained to convergence and the best checkpoints (tested over a

validation split of the train-set) were used for the analysis.

6 Results

6.1 Performance on tabular benchmark

We report the Average Precision error (AP) which can also be

interpreted as the Area Under the Precision Recall curve (AUPR).

Average precision computes the mean precision over all possible

detection thresholds. We chose to highlight AP over AUROC as it

is a more apt measure for detecting anomalies, where we often have

unbalanced classes. Additionally, precision measures the positive

predictive value of a classification i.e. the true positive rate. This is a

particularly informative measure for anomaly detection algorithms

where we are preferentially interested in the performance over one

class (outliers) than the other (inliers). We would also like to note

that our anomaly ratios in the test set do not correspond with the

true anomaly ratio in the original dataset. This is due to our data

splitting scheme where our test set is effectively only 10% the size of

inliers.

3 https://pytorch.org/vision/stable//models/deeplabv3.html
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TABLE 2 Average precision across multiple datasets.

Dataset Ano ratio IForests ECOD DAGMM DSVDD GNSM (ours)

Bank 0.56 63.24± 1.74 66.52± 0.57 57.62± 3.36 58.50± 5.30 65.58± 3.45

Census 0.40 40.64± 2.07 40.96± 0.15 32.90± 5.00 41.18± 3.44 47.79± 2.29

Chess 0.01 2.31± 1.36 1.43± 0.05 1.08± 0.44 1.47± 0.54 1.60± 0.68

CMC 0.17 22.72± 1.57 23.79± 1.75 24.99± 5.75 21.99± 6.15 25.87± 9.93

Probe 0.41 92.95± 2.28 95.39± 0.38 66.40± 9.43 89.16± 8.40 97.48± 0.62

Solar 0.30 67.99± 3.48 72.23± 0.91 50.84± 5.19 51.21± 3.94 69.28± 1.96

U2R 0.04 52.74± 12.88 67.84± 1.39 10.06± 6.47 71.17± 24.65 82.35± 5.45

Nursery 0.43 46.51± 6.52 100.00± 0.00 48.33± 8.64 100.00± 0.00 100.00± 0.01

Average - 48.64± 3.99 58.52± 0.74 36.52± 5.53 54.33± 7.49 61.24± 3.05

Higher is better. Each experiment was repeated with five different seeds and we report the mean and standard deviations across seeds. IForest and ECOD represent shallow models, while

DAGMM and DSVDD represent deep learning models. Ano ratio refers to the ratio of anomalies in the test set. Bold values indicate the highest average precision across all methods per dataset.

FIGURE 1

Correlations with segmentation metrics for Top-K = 50 anomaly scores retrieved from GNSM and Deep SVDD. The arrows next to the metric denote

the expected correlation direction. The magnitude of the correlations reflects how well the anomaly scores capture segmentation errors.

Table 2 shows that our approach performs better or on par with

baselines. GNSM achieves significant performance improvements

over baselines for Census, Probe and U2R, respectively achieving a

6.61%, 2.09%, and 11.18% improvement over the next best method.

Results for CMC and Bank are less straightforward to interpret

as the differences in the models are not statistically significant,

made apparent by the large overlap in the standard deviations.

This is especially true for deep learning models which have to

be optimized via gradient descent. On Solar, ECOD outperforms

the rest by a significant margin. However, between deep learning

models, GNSM performs notably better. Note that Solar is the

smallest dataset in our testing, with less than 800 training samples.

Lastly, every model struggled with Chess, quite possibly due to the

exceptionally small anomaly ratio. While Isolation Forests achieves

the highest mean, it is uncertain whether the win is statistically

significant. One could easily opt in favor of the other methods for

this dataset as they achieve more consistent results. Again, between

deep learning models, GNSM performs better.

Overall, we observed that the shallow models give more

stable and consistent results, with ECOD having the smallest

standard deviations on average. Additionally, we note that the

reported tabular datasets prove difficult for all algorithms. This

behavior is prevalent in the field of unsupervised anomaly detection

methods, where models exhibit a large variance in accuracy across

datasets (Han et al., 2022). As such, no one method definitively

outperforms the rest; an outcome that coincides with previous

findings of Han et al. (2022); Pang et al. (2021b), and Ruff et al.

(2021). In this context, we emphasize that GNSM consistently

ranks high across all datasets we tested. In contrast, each of the

competing methods were the top performer in only one of the

datasets in Table 2, and significantly underperformed in others.

Averaged over all datasets, GNSM performed best. This is empirical

confirmation that GNSM is a consistent contender in the suite of

available algorithms for practitioners looking to detect anomalies

in unlabeled data domains.

6.2 Detecting segmentation failures

We computed the anomaly scores from both GNSM and

DSVDD and ranked the images from most to least anomalous.

Next, we took the top K = 50 images (out of 1449) and computed

the Pearson correlation coefficients between the ground truth

segmentation metrics and the anomaly scores. We chose the worst
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FIGURE 2

Random samples from Top-K = 50 GNSM rankings. Note how the predicted segmentations are either partial/missing or include incorrect classes.

The columns (repeated twice) show input image, ground truth segmentations, and model predictions respectively. Different classes are denoted by

color. The VOC data includes images obtained from Flickr: https://www.flickr.com/.

ranked images for our analysis as we are interested in the efficacy

of these scores for identifying segmentation failures as opposed to

assessing the quality of successful segmentations.

Figure 1 shows the correlations between the ground truth

segmentation metrics and the anomaly scores from GNSM and

DSVDD. Recall that Dice is a similarity metric while MSD and

95-HD are both distance-based metrics. Therefore, we initially

hypothesized that a good anomaly score should correlate negatively

with Dice and positively with the distances. Our results show that

GNSM correlates strongly in the direction expected. DSVDD on

the other hand achieved a poor correlation with Dice and inverse

correlations with the distance based metrics.

To qualitatively assess the results of each model a subset of the

worst ranked predictions are plotted in Figures 2, 3. We display

examples of (image, ground-truth, DeepLab segmentation) triplets

ranked as anomalous by GNSM and DSVDD, respectively. We

expect the models to detect cases where the DeepLab model fails

to produce adequate segmentations.

We observe that predictions ranked by GNSM in Figure 2

are either complete failures (most of the image is designated

the background class) or severe under-segmentations. Predictions

ranked by DSVDD in Figure 3 do not exhibit any obvious pattern

of segmentation failures, with most being reasonable predictions.

Our results show that, compared to DSVDD, GNSM is substantially

more capable of detecting failure cases. Please look at the Appendix

for all sorted K = 50 rankings.

We believe these results exemplify GNSM’s generalization

capabilities to non-tabular data, but also highlight a practical

application. Quantifying segmentation uncertainties is useful when

deploying off-the-shelf models. Our method may be employed as

a filtering mechanism to automatically detect poor segmentations,

which could then be reviewed further downstream.
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FIGURE 3

Random samples from Top-K = 50 DSVDD rankings. Note how only a few predictions may be considered anomalous. The VOC data includes images

obtained from Flickr: https://www.flickr.com/.

7 Limitations

Our experiments revealed that GNSM’s performance is closely

tied to model architecture. While our proposed network size is

performant, we observed a trend of increased performance as the

models got deeper and wider. Due to time and resource constraints,

we did not thoroughly explore the architecture space. This suggests

that GNSM might benefit from larger models, which could be a

limitation in resource-constrained environments.

Computationally, our models require a significant number of

iterations to converge. For our experiments, we trained for 1million

iterations, which can take up to a day of training on an A6000 GPU.

This is in contrast to the baselines, whichmay take a few seconds for

shallow models and up to a few hours for the deep learning models.

Furthermore, GNSM explicitly needs to know the number of

outcomes (classes) per category to appropriately add noise and

compute the scores. While we believe this to be a strength of our

approach, it does create an overhead for the user. The baselines

do not require this additional modeling complexity and are more

straightforward to apply.

Lastly, our method has hyperparameters pertaining to noise,

such as the number of scales used and the range of noise

levels. While our hyperparameters have proven to be stable across

different datasets, we acknowledge that additional experiments

for sensitivity would better illuminate the robustness of GNSM’s

hyperparameters. We posit that additional improvements may be

obtained if these were also tuned per dataset.

8 Conclusion

In this work we introduced Gumbel Noise Score Matching

(GNSM): a novel method for detecting anomalies in categorical

data types. We outline how to compute scores of continuously

relaxed categorical data and derive the appropriate training

objective based on denoising score matching. Our method can

easily be used in conjunction with standard score matching to

model both continuous and categorical data. GNSM achieves

competitive performance with respect to baselines on a suite

of tabular anomaly detection datasets, attaining significant
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improvements on certain datasets. Furthermore, GNSM can easily

be extended to images and excels on the real-world task of detecting

anomalous segmentations. Lastly, we believe our novel categorical

score matching formulation could be incorporated into generative

models. We hope to explore this direction in future work.
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