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Abstract—In recent years, there has been a growing interest
in and focus on the automatic detection of deceptive behavior.
This attention is justified by the wide range of applications
that deception detection can have, especially in fields such as
criminology. This study specifically aims to contribute to the field
of deception detection by capturing transcribed data, analyzing
textual data using Natural Language Processing (NLP) tech-
niques, and comparing the performance of conventional models
using linguistic features with the performance of Large Language
Models (LLMs). In addition, the significance of applied linguistic
features has been examined using different feature selection
techniques. Through extensive experiments, we evaluated the
effectiveness of both conventional and deep NLP models in
detecting deception from speech. Applying different models to the
Real-Life Trial dataset, a single layer of Bidirectional Long Short-
Term Memory (BiLSTM) tuned by early stopping outperformed
the other models. This model achieved an accuracy of 93.57%
and an F1 score of 94.48%.

Index Terms—Deception Detection; Natural Language Process-
ing (NLP); Linguistic Features; Large Language Models (LLM)

I. INTRODUCTION

Deception is manipulative human behavior that exploits

other people’s trust to gain personal advantages. This type

of behavior can have significant and severe consequences in

various aspects, ranging from damaging personal relationships

and fraudulent business transactions to falsified testimonies in

criminal investigations and court proceedings. Dishonesty can

result in harmful outcomes, such as wrongful convictions or

financial losses. As a result, detecting deception can potentially

prevent harm in personal and professional relationships. More

importantly, identifying deception can also aid in uncovering

the truth and promoting justice in legal proceedings. Therefore,

the ability to accurately detect deception in speech is of great

interest to society.

The recent advancement in machine learning and deep learn-

ing algorithms enables the creation of classification schemes

trained on textual features to accurately classify people’s

truthfulness in a given case or scenario. The use of machine

learning in lie detection has gained significant attention in re-

cent years, with many researchers achieving promising results

in accurately detecting deception from speech by combining

these features and using machine learning algorithms [1], [2].

In this paper, we aim to use NLP for text analysis to detect

deceptive contexts, contributing to the development of accu-

rate lie detection methods. These methods, requiring minimal

linguistic features, have potential applications across various

fields, so we can protect individuals from deception’s harmful

consequences and maintain legal proceedings’ integrity. The

key contributions of this paper are as follows:

1) Development of a Minimalistic Textual Feature Set.

We identify and utilize relevant linguistic features for

deception detection. This avoids irrelevant data, leading

to more efficient and accurate detection.

2) Comparative Analysis of Conventional and LLM-Based

Models. Our study provides a comparative performance

analysis between traditional NLP models and LLMs.

3) Experimentation on the ”Real-Life” dataset. We apply

our models to the Real-Life Trial dataset to ensure our

findings are based on practical, real-world scenarios.

The structure of this paper is as follows: Section II reviews

existing research in the deception detection field. Section III

outlines our methodology, including feature extraction and

selection processes. Section IV lays out the experimental

setup, giving specifics on the dataset, preprocessing, and fea-

ture selection. Section V details the detection models created.

Section VI presents the findings, emphasizing the comparative

performance of these models in deception detection. Section

VII discusses these results, providing insights into the ef-

fectiveness of various approaches and their alignment with

existing literature. Lastly, Section VIII concludes the paper

and suggests future work.

II. RELATED WORK

This section reviews deception and lie detection approaches

with respect to the verbal and non-verbal features leveraged

in developing the detection models.

A. Textual and Audio Features Only

Researchers have taken different approaches to lie detection.

One possible approach is to focus only on speech features,

which can include textual and audio data because they both

contain information about an individual’s spoken content.

Mendels et al. [3] used different types of features in their

deception detection models using the Columbia X-Cultural
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Deception (CXD) Corpus. The study used spectral, acoustic-

prosodic, such as pitch, duration, etc., and n-gram sets and

concluded that the hybrid deep learning model that combines

DNN and LSTM using both acoustic and lexical features gave

the best F-1 scores, at 63.9%.

Kopev et al. [4] used a real-world political debate dataset

instead of staged setups, which could provide more realistic

scenarios for lie detection. Unlike other datasets, the political

debate dataset studied had three labels: true, half-true, or

false. The authors implemented a deep-learning model that

incorporated audio and text using Linguistic Inquiry and Word

Count (LIWC) [5] and Term Frequency - Inverse Document

Frequency (TF-IDF), and metadata (i.e., speakers) features for

deception detection. LIWC is a software tool that examines

text to uncover linguistic features. TF-IDF is a method to

determine how important a word is in a specific document

compared to a larger group of documents while accounting for

the fact that some words are common in most texts [6]. Their

multi-input feed-forward neural network model using audio

features consistently improved performance compared to only

using textual and metadata features. Their model achieved an

accuracy of 67%, a macro-average F1 (MA F1) of 45.07%,

and a macro-average recall (MAR).

B. Textual, Audio, and Video Features

Analyzing text and audio has been effective for lie detection,

but adding video cues like expressions, body language, and

tone can enhance accuracy. This combination allows a more

comprehensive and accurate analysis of speech.

Hsiao and Sun [7] proposed an attention-aware neural net-

work that could identify which parts of audio, video, and tran-

scription are most critical for deception detection. The authors

extracted visual features represented as a 136-dimensional

vector, audio features in MFCC format, and text features

represented by 64-dimensional vectors per transcription. Once

the features were extracted, the authors created separate visual,

audio, and transcription models using BiLSTM. They then

combined the three models as an ensemble model, which

achieved 96% accuracy.

Sen et al. [8] collected videos from the actual trial and built

models that used verbal, acoustic, and visual modalities to

detect deception. Initially, they performed experiments with

each set of features separately using Support Vector Machine

(SVM), Random Forest (RF), and Neural Network (NN) clas-

sifiers. Then, they tried various combinations of features using

early fusion and late fusion. The best accuracy (84.18%) was

achieved through late fusion, combining visual and acoustic

features using the NN classifier.

Hu et al. [9] collected a unique corpus of professionals

practicing for oral exams while concealing information and

identified signs of concealed information in speech and text.

They conducted experiments to detect concealed information

using different machine learning models automatically and

developed a multi-task learning framework. The experiments

show that a hybrid multi-task learning model (MLP, BiLSTM,

and multi-task) gives the highest F1 score, 71.51%.

Zhang et al. [10] created a Graph-based Cross-modal Fu-

sion Model (GCFM) along with a Cross-modal Attention

Mechanism to detect deception in two datasets, the Real-Life

Trial dataset [8]. They extracted visual, textual, and audio

features by using a pre-trained ResNet and LSTM neural

network with attention mechanisms. The proposed GCFM

method achieved an accuracy of 88.14% and an F1-score of

78.50%. Additionally, using association learning increased the

accuracy by 1.87% while the cross-modal attention mechanism

improved the accuracy by 2.44%.

Sehrawa et al. [11] extracted text, audio, and video features

from the Real Life Court Trial dataset, the Miami Univer-

sity Deception Detection dataset [12], and the Bag of Lies

dataset [13]. The study achieves an accuracy of around 80%
and up to 96% when using video transcriptions. When tested

on the Bag-of-Lies dataset, the model achieves 85% accuracy.

In the Real-Life Trial dataset, the model reaches an accuracy

of 98.1%. The research uses a combination of deep learning

techniques such as LSTM, BiLSTM, CNN, and RestNet50.

III. METHODOLOGY

Initially, we extracted 16 features from the texts. The 16

features are shown in Table I. Subsequently, we conducted a

feature significance analysis using the Overlapping Coefficient

(OVL) to assess the significance of specific features in distin-

guishing between different categories [14]. Furthermore, we

employed the stepwise method for feature selection, a widely

used technique in machine learning, to identify the most rele-

vant subset of features. By combining stepwise with an SVM,

we iteratively added/removed features while evaluating their

impact on the model’s performance [15]. This iterative process

allowed for a comprehensive assessment of the significance

of each feature, ensuring that only the most informative ones

were retained. The procedure commenced with either an empty

set or an initial feature selection, subsequently evaluating the

importance of each feature using statistical criteria. This eval-

uation involved training the model with the selected features

and measuring its performance using accuracy and F1 score

metrics. Based on these performance metrics, a decision was

made to include or exclude a feature, and the process continued

until a predefined stopping condition was met.

Considering the performance of deep learning and large

language models in similar research [16]–[18], we also utilized

BiLSTM models to classify textual data from the dataset used

in this research paper. The BiLSTM model leverages complete

sequential information by considering past and future data

points for each position in the sequence, thereby enhancing

the original LSTM designed for sequence learning [19].

IV. EXPERIMENTAL SETUP

A. Dataset Description

The Real Life Trial dataset [8] is a set of videos from public

court trials collected by Dr. Mihalcea’s group at the University

of Michigan. It contains a total of 121 brief videos. These

videos are divided into 61 videos that depict real instances

of deception and 60 videos that depict real instances of
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truthfulness. In addition to the videos, the dataset also includes

transcriptions of each video and annotations of the gestures,

such as smile, laugh, scowl, etc., made by the individuals in

the videos.

B. Preprocessing and Cleaning

Our text processing pipeline involves several steps. First, we

removed non-alphabetic characters from the text to ensure only

alphabetic letters remained. This step is crucial to avoid any

noise in the data that could affect the subsequent processing

steps. For conventional models, we used these texts to extract

new features. For deep models, we further implemented stem-

ming for each word in the text Stemming is the process of

reducing each word to its root form by removing any suffixes.

This step helps to reduce the number of unique words in the

text, which is useful for subsequent analysis. After the text

had been preprocessed, we performed one-hot encoding. This

process involves representing each word in the text as a unique

integer index, where the vocabulary size is 5000. Machine

learning algorithms allow us to represent the text in an easily

digestible format. Finally, we padded the encoded sequences

with zeros to ensure they were all the same length (i.e., 221).

This step is important because machine learning algorithms

require input data to have a fixed shape. Padding ensured that

the sequences contained the same number of features.

C. Linguistic Features Selection

After preprocessing, we extracted 16 textual features, or

lexicons, that might be considered for lie detection from

textual data. For instance, the sentiment score in the text

was also extracted as a compound score, a measurement that

sums up the scores assigned to words in a lexicon, ranging

from -1 to 1. A score close to 1 indicates positive emotions,

while a score close to -1 indicates negative emotions. A score

of 0 represents neutral sentiment. Part-of-speech tagging was

used to determine the frequency of adjectives and adverbs,

providing insights into the descriptive language used. Addi-

tionally, the number of pronouns, conjunctions, and verb tenses

(i.e., past, present, and future) is computed to understand

the speaker’s perspective, discourse structure, and temporal

references. The count of filler words such as ’um’, ’uh’, ’hmm’

or ’like’, repetition of words, negations, and self-references

provide further insights into the speaker’s fluency, rhetorical

style, emphasis, and attempts to persuade the audience. The

rest of the features are described in Table I. Together, these

features enable a comprehensive text analysis, contributing to

lie detection based on linguistic patterns.

V. DETECTION MODELS

A. Conventional Models

To train our deception detection models, we explored vari-

ous conventional algorithms such as:

1) Support Vector Machines (SVM) (called Model 1)

2) k-Nearest Neighbors (KNN) (called Model 2)

3) Logistic Regression (LG) (called Model 3)

Feature Name Description
Word Count The total number of words in the text.
Sentence Count The total number of sentences in the text.
Sentiment Score A numerical score indicating the overall

sentiment of the text.
Average Word Length The average length of words in the text.
Vocabulary Diversity The ratio of unique words to the total num-

ber of words in the text.
Adjective Frequency The proportion of adjectives in the text.
Adverb Frequency The proportion of adverbs in the text.
Pronoun Frequency The proportion of pronouns in the text.
Conjunction Frequency The proportion of conjunctions in the text.
Past Tense Frequency The proportion of verbs in the past tense in

the text.
Present Tense Frequency The proportion of verbs in the present tense

in the text.
Future Tense Frequency The proportion of verbs in the future tense

in the text.
Filler Word Count The number of common filler words in the

text.
Repetition Count The proportion of words that appear more

than once in the text.
Negation Count The number of negations in the text.
Self-Reference Count The number of self-referential words in the

text (e.g., ”I,” ”me,” ”myself”).

TABLE I: Description for Extracted Linguistic Features

To optimize their performance, we conducted a grid search

to fine-tune each model’s hyperparameters. This thorough

parameter tuning significantly improved our models’ predictive

power.

B. Deep Models and Pre-trained Models

1) Model 4: 1 BiLSTM: We created a sequential Bidirec-

tional neural network model. The model had three layers: an

embedding layer, a BiLSTM layer, and a dense layer with

a sigmoid activation function. The embedding layer mapped

the integer-encoded words to dense vectors of fixed size.

The BiLSTM layer takes the embedded sequence as input

and produces a sequence of output vectors. The dense layer

outputs a single sigmoid value that represents the probability

of the input text being deceptive or truthful. The model was

compiled with the binary cross-entropy loss function, the

Adam optimizer, and the accuracy metric.

2) Model 5: 1 BiLSTM + Dropout Layer: We modified

model 5. A dropout layer was added to prevent overfitting,

followed by a BiLSTM layer. The output of the LSTM layer

was then passed through a GlobalMaxPool1D layer, which

selected the maximum value from each feature map, producing

a 1D vector. This vector was then passed through two fully

connected layers with 64 and 1 neuron(s), respectively, using

ReLU and sigmoid activation functions. Finally, the binary

cross-entropy loss function optimized the model parameters

with the Adam optimizer.

3) Model 6: 1 BiLSTM + Early Stopping: Early stopping

was used to prevent overfitting. The training process stopped

if there was no improvement in validation loss for five con-

secutive epochs.

4) Model 7: Bert + Early Stopping + Dropout: BERT

(Bidirectional Encoder Representations from Transformers)

is a language model developed by Google that understands
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the context of words in a sentence by considering both the

words before and after [20]. It uses a bidirectional approach

and a transformer architecture to create context-aware word

representations, enabling it to perform well in a variety of

natural language processing tasks [20]. TFBertForSequence-

Classification, a TensorFlow 2.0 compatible implementation

of the BERT model for sequence classification, was used. It

takes a sequence of tokens as input and outputs a probability

distribution over a set of labels for that sequence. It also loaded

the pre-trained weights for the specified model, ’bert-base-

uncased’, which was a pre-trained BERT model with uncased

English text. The loss function used was Sparse Categorical

Cross-entropy, which was suitable for multi-class classification

tasks. The optimizer used was Adam, with a learning rate of

2e-5 and an epsilon value of 1e-08. The model was compiled

with the specified loss function, optimizer, and metrics.

5) Model 8: Pretrained GPT-2 model: . The pretrained

GPT-2 model is an advanced language model created by

OpenAI that has already learned from a large amount of

text data, enabling it to generate coherent and contextually

relevant text based on a given prompt [21]. We built a GPT2

model that was initialized with pre-trained weights using the

GPT2Model.frompretrained() method. A linear layer (i.e.,

self.fc1) was added to the model that took the hidden states

and performed a linear transformation to perform sequence

classification. In the forward() method, the input ID and

mask were passed to the GPT-2 model, and the output was flat-

tened using gptout.view(batchsize,−1) and passed through

the linear layer to generate the final output. This architecture

uses the GPT-2 model as a feature extractor and transforms

the extracted features into class predictions.

6) Model 9: Pretrained Roberta model: The pretrained

RoBERTa (Robustly optimized BERT approach) model, de-

veloped by Facebook AI Research, is an improved version of

BERT. It enhances performance by optimizing the pretrain-

ing process through hyperparameter adjustment, training data

modification, and the removal of the next sentence prediction

task [22]. We built a RoBERTa model for sequence classifi-

cation using the PyTorch framework and the Hugging Face

Transformers library. The ’roberta-base’ pre-trained model

and tokenizer were used. The input corpus was tokenized,

and the resulting tokenized sequences were then padded to

a fixed length to ensure consistent input dimensions. Both the

tokenized sequences and corresponding labels were converted

into tensors for efficient processing. An Adam optimizer with

a learning rate of 2e-5 was used to train the model, while the

loss function employed was the cross-entropy loss.

C. Model Evaluation

We evaluated the models using 5-fold cross-validation. This

ensures robustness, reduce the variance in models caused by

randomness and parameter tuning. The model’s performance

was evaluated using accuracy and the F1 score.

Features OVL Score
filler word count 0.5471
future tense frequency 0.5517
negation count 0.6097
adverb frequency 0.7367
present tense frequency 0.7512
sentence count 0.7811
self reference count 0.8106
sentiment score 0.8159
adjective frequency 0.8182
word count 0.8214
pronoun frequency 0.8299
past tense frequency 0.8345
avg word length 0.8479
repetition count 0.8497
conjunction frequency 0.9001
vocabulary diversity 0.9119

TABLE II: Feature Significance Analysis using OVL

VI. RESULTS

A. Overlapping Probability Density Functions

Feature significance analysis using the Overlapping Coef-

ficient (OVL) is a method that assesses the importance of

specific features in distinguishing between different categories,

such as lies and truths. This method involves comparing the

probability density functions (PDFs) of these features for

each category, enabling the measurement of their overlap

by calculating the OVL value [14]. By quantifying the de-

gree of overlap, the OVL value provides valuable insights

into the effectiveness of a feature in differentiating between

categories. When the OVL value is low, it indicates that a

particular feature is highly effective at distinguishing between

the categories, as their PDFs demonstrate minimal similarity.

Conversely, when the OVL value is high, it suggests that the

feature might not be as effective in differentiation, as the

overlap between the PDFs is more substantial.

Table II presents the quantitative results of the Overlap-

ping Probability Density Functions analysis. This analysis

provides a more precise measure of the discriminatory power

of individual features in distinguishing between the ”Lie”

and ”Truth” categories. By calculating the OVL scores, we

can determine how much the probability density functions of

different features overlap between the two categories.

Features such as ”vocabulary diversity” and ”conjunction

frequency” exhibit high OVL scores. This indicates a sub-

stantial overlap in their probability density functions between

the ”Lie” and ”Truth” categories. This suggests that these

features may not be strong indicators on their own when it

comes to distinguishing between lies and truth. On the other

hand, features like ”filler word count” and ”negation count”

display lower OVL scores, implying less overlap in their

probability density functions. This indicates a higher potential

for effectively distinguishing between instances of ”Lie” and

”Truth” using these features. However, it is important to

note that feature interactions and the analysis context can

significantly influence their discriminatory power.

B. Detection Models

1) Conventional Models: From the initial set of 16 features

shown in Table I, the stepwise approach carefully chose five

379

Authorized licensed use limited to: San Jose State University. Downloaded on September 09,2024 at 04:21:11 UTC from IEEE Xplore.  Restrictions apply. 



Model Train Acc Test Acc F1
1: SVM 64.46 63.77 69.8
2: KNN 71.69 62.83 63.07
3: LR (Linear Regression) 66.11 68.53 71.69
4: 1 BiLSTM 100 67.73 69.83
5: 1 BiLSTM + Dropout 100 66.9 66.18
6: 1 BiLSTM + Early Stopping 100 93.57 94.48
7: Bert + Early Stopping + Dropout 83.54 68.73 64.63
8: Pretrained GPT2 model 99.79 58.73 60.12
9: Pretrained Roberta model 88.18 71.2 73.71

TABLE III: Accuracy and F1 scores obtained by the models.

features that showed the strongest discriminatory potential: 1)

average word length; 2) vocabulary diversity; 3) frequency of

adjectives; 4) frequency of adverbs; and 5) the count of filler

words. These features played a crucial role in our efforts to

detect deception.

Table III reports an evaluation of conventional models in

terms of accuracy and F1 scores. SVM achieves relatively

lower test accuracy and F1 score. KNN shows reasonable

training accuracy but faces challenges in generalization, with

a lower test accuracy and F1 score. LR stands out with its

test accuracy of 68.53% and F1 score of 71.69. These results

highlight the strong potential of this model for distinguishing

deceptive actions.

2) Deep Models: Table III summarizes the performance

of different deep models with various architectures and tech-

niques. Model 4, with only one BiLSTM layer, shows im-

provements in accuracy (67.73%) and F1 score (69.83%),

indicating the importance of simplifying the model structure.

Model 5 incorporates a Dropout layer alongside a single

BiLSTM layer, demonstrating the impact of regularization

techniques. However, its accuracy (66.9%) and F1 score

(66.18%) are slightly lower than Model 8. Model 6 intro-

duces Early Stopping and significantly enhances predictive

performance. Model 6 achieves an impressive accuracy of

93.57% and an F1 score of 94.48%. This finding highlights the

importance of monitoring the validation loss during training

to prevent overfitting. Among the three pre-trained models,

Model 9 applied pretrained Roberta, giving the highest scores.

Table III reveals the performance variations among different

models and emphasizes the importance of carefully selecting

architecture and techniques. The findings further show that

regularization techniques, such as Early Stopping, can help

prevent overfitting and improve generalization capabilities.

VII. DISCUSSION

Average word length, vocabulary diversity, frequency of

adjectives, frequency of adverbs, and count of filler words

are selected by stepwise method. On the other hand, the OVL

method prioritized a different set of features: the count of filler

words, frequency of adverbs, future tense frequency, nega-

tion count, and present tense frequency. The OVL approach

emphasizes features related to grammatical and syntactical

aspects, such as tense and negation. These features can provide

valuable insights into deceptive language patterns. The count

of filler words appears in both sets of selected features. These

words are often used as hesitations or distractions and may

serve as markers of deceptive speech. The frequency of the

adverb feature, which is also included in both selections,

suggests that the intensity or manner of expression in speech

could play a role in deception detection.

LR (model 3) shows signs of underfitting in our analysis.

The relatively low train accuracy of 66.11% implies that

the model is not complex enough and struggles to fit the

training data adequately. However, the test accuracy is higher

at 68.53%. This difference between train and test accuracy

is a classic indicator of underfitting. This underfitting issue

may be attributed to the simplicity of the LR model, which

may not be able to capture complex, nonlinear relationships

within the data. Consequently, the LR model’s limited capacity

to capture these complex patterns ultimately compromises its

overall performance and prevents it from achieving higher

accuracy on both the train and test sets. By exploring more

sophisticated models, such as deep models, we can strive to

improve our models’ accuracy and generalization capabilities,

ultimately enhancing our analysis’s overall performance.

For the deep models, we examined regularization techniques

and abilities to manage overfitting. Model 4, with just 1

BiLSTM layer, shows signs of overfitting. This means it may

not perform well on new data. In the context of deep learning

model optimization, Dropout and Early Stopping are crucial

techniques that play a vital role in addressing the challenges

of overfitting and enhancing the overall performance of a

model. Dropout is a probabilistic method that helps trim the

neural network by randomly dropping out certain units during

training [23]. However, in our case, adding Dropout to Model

5 did not lead to better performance compared to Model 4.

Model 5 had similar training accuracy to Model 4 but

slightly lower test accuracy and F1 score. This implies that

introducing Dropout in Model 5 did not effectively address

overfitting or enhance the model’s ability to generalize to

the test data. Model 6, an extension of Model 4 with the

addition of early stopping, shows a significant improvement

in performance compared to both Models 4 and 5. With

a test accuracy of 93.57% and an impressive F1 score of

94.48%, this model excels in balancing precision and recall.

It is particularly suitable for tasks where minimizing false

positives and false negatives is crucial. While maintaining

the high training accuracy observed in Model 4, Model 6

achieves significantly higher test accuracy and F1 score due

to the inclusion of early stopping. This indicates that early

stopping effectively addresses the overfitting issue present in

Model 4. Early Stopping is a technique that controls the

number of epochs used in both the backpropagation and

forward propagation operations, aiming to prevent overfitting

and find the optimal point of model performance [23]. These

findings emphasize the significance of selecting appropriate

regularization techniques to address overfitting and achieve

optimal model performance in specific tasks.

The success of Model 6 highlights the importance of early

stopping as a powerful tool in deep learning and makes it a

great choice for applications that value simplicity and high

performance. When compared to the BiLSTM-based models,
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the pretrained models have not proven to be the best choice for

the specific task at hand. The effectiveness of a model, whether

it is pretrained or not, depends heavily on the dataset’s nature

and the task’s characteristics.

Sehrawat et al.’s model stands out with an exceptional accu-

racy of 98.1% on the Real-life trial dataset [11]. This achieve-

ment notably outperforms our best model, Model 6. It’s worth

noting that Sehrawat et al.’s approach, which incorporates Mel

Spectrograms features, word dimension vector features, and

video frame dimension features from audio, transcription, and

video sources, demonstrates the effectiveness of a multi-modal

approach. Additionally, when compared to other researchers

such as Hsiao and Sun [7], and Chebbi et al. [24], our

best model, Model 6, falls short in terms of accuracy. These

studies also incorporated multi-modal data sources, combining

transcription, audio, and video features to train their models.

This highlights the value of cross-modal fusion and the richer

information available in multi-modal datasets. While Model

6 demonstrates the potential of a single-modal approach by

achieving a high F1 score and balancing precision and recall,

the comparison emphasizes the advantages of multi-modal

models in deception detection. These models benefit from

a more comprehensive representation of deceptive behavior,

capitalizing on audio, video, and textual cues. Given that our

models were exclusively applied to textual data, achieving an

F1 performance of 94.48% is a noteworthy result.

VIII. CONCLUSION AND FUTURE WORK

In this work, we extracted a total of 16 textual features.

Using both the stepwise method and the OVL method, we

identified 5 highly significant features from each approach. We

conducted experiments using both conventional models and

deep models. Our findings show that among the conventional

models, LR achieved the highest accuracy with an impressive

68.53% and an F1 score of 71.69%. However, the deep model

consisting of a single layer of BiLSTM with Early Stopping

outperformed all other models. This deep model achieved an

outstanding accuracy of 93.57% and an F1 score of 94.48%.

In future work, we aim to extract new audio features and

improve detection models by integrating them with textual fea-

tures. This multi-modal approach can enhance understanding.

Although the Real Life Trial dataset’s results are promising,

its small size limits robustness and generalizability. Testing

larger datasets will validate our model across various contexts

and populations.
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