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Abstract

In this article, we investigate the Rayleigh-Taylor instability in a system of two-dimensional nonhomoge-
neous incompressible fluid equations with Coriolis force and partial viscosity. First, we employ variational
methods to construct linear unstable solutions to the corresponding linearized equations of the system. Sec-
ond, we utilize the classical Osgood lemma to derive nonlinear energy estimates for the perturbed equations.
The local existence of solutions to the perturbed equations is established by using the semi-Galerkin method
and the expanding domain method. Finally, we prove the nonlinear instability by combining the properties
of the linear unstable solutions and the nonlinear energy estimates.
© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, Al training, and
similar technologies.
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1. Introduction

Fluid stability is a significant area of nonlinear sciences. The aim of studying fluid stabil-
ity is to gain a deeper understanding of the behavior of fluid flows and to develop tools and
techniques to control and manipulate these flows for practical applications. There is a vast
amount of literature dedicated to the mathematical analysis of fluid stability and instability, cf.
[3,4,13-16,21,30,35,43,44] among many others. A prime example is Rayleigh-Taylor instability
when heavier fluid lies above lighter one [11,27,34], see the latest review article [49] for its many
applications.

The purpose of this article is to study the Rayleigh-Taylor instability of nonhomogeneous
rotating incompressible viscous fluids in the presence of a uniform gravitational field from the
perspective of nonlinear instability. The motion of the fluid in R? is governed by the following
equations

ap

— -V3p =0,

ar TU V3P

Ju

p§+pu~V3u~|—fexu=N(u)—V3p—g,0e, (L.1)
V3~ll=0,

where the unknown functions p, u = (1, u», u3) and p denote the density, the velocity and the
pressure, respectively. N (u) is the viscosity term, V3 is the 3D gradient operator. Throughout w
and g denote dynamical viscosity and the gravitational constant, respectively. f represents the
speed of rotation around the vertical unit vector e = (0, 0, 1).

In the case of full viscosity N(u) = uAu and f = 0, the equations (1.1) reduce to the
standard nonhomogeneous Navier-Stokes equations. The Rayleigh-Taylor instability and well-
posedness have been thoroughly investigated, see [10,11,27,29]. Because of its importance in
geophysics, fluid models of anisotropic viscosity with or without rotation have been intensively
studied in recent years. Examples of partial viscosity include the formulation N(u) = uApu:=
I (gi—‘; + ‘;27‘2‘) [8] and the two-dimensional case N (u) = (,ung’;, 0) [41]. Existing research pri-
marily focuses on the well-posedness [1,5,6,8,31,48], stability and the rate of asymptotic decay
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[40,41] of these fluid models with partial viscosity. The study of the Rayleigh-Taylor instability
in fluid models with partial viscosity is still limited and requires further investigation.

In this article, we study the Rayleigh-Taylor instability in the fluid model (1.1) with partial
viscosity. Specifically, we consider the case where the fluid is uniform in the x direction and the
partial viscosity term takes the form N (u) = (0, uAu). This type of partial viscosity satisfies
orthogonal invariance. The system (1.1) is reduced to the following equations:

p

—4+ua-Vp=0,

o1 P

duy -

p¥+pu-vu1—fuz=0, (1.2)
aﬁ ~ ~ ~ 2
p§+pu'Vu+fu1e1=MAu—Vp—gpez, (x,1) € R* x (0, +00),

V.u=0,

where u = (uy, u3) is the components of the velocity on the x = (y, z) plane, V is the 2D gradient

operator V = (a%, Ef—z), A is the 2D Laplacian operator A = 3% +%, e;=(1,0)ande; = (0, 1).

Let i1 be a fixed constant. The steady state solutions under investigation are characterized by

u; = (yig,0,0), o5 = ps(2), ps=ps(y,2), (1.3)

where the pressure p; and the density p, satisfy the following geostrophic balance

op; _ op
——— =yfiip, ——— = gps. (1.4)
ay 0z

Furthermore we assume that the steady-state density satisfies the conditions
pi € C°(R), pi(z0) > 0, for some zo € R, inﬂg ps > 0. (1.5)
zZ€

Here (1.5) indicates the presence of at least one region where the density is monotonically in-
creasing, leading to the occurrence of Rayleigh-Taylor instability. We introduce the following
perturbations

V=Uu—Us;, 0=p— 5, § =P — Ps. (1.6)

Substituting (1.6) into (1.2), one finds the perturbations satisfy the following equations

0 -
49 Vie+p) =0,

0] - _
(o + ps)w + (0 + ps)V- Vv +uglo + ps)va — fvy =0,

v R -
(Q+Ps)§+(Q+ps)V'VV+fvlel=MAV—V‘1—8Q92, (L7

V.-v=0,
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with the initial and far-field conditions

(0, V)lt=0 = (00, Vo), (1.3)
lim v(t,x)=0, Vt > 0. (1.9)
|x|—+oc0

Throughout the paper, we denote v = (vy, v3) for convenience.
The linear part of the nonlinear system is as follows

do /
—_— = 0,
Py + v30;

vy _
Ps? + [psito — flv2 =0,

v
ot

V.v=0.

ps—— + fvier = pAV — Vg — goes, (1.10)

Initially introduced by Rayleigh [38] and further explored by Taylor [17], the Rayleigh-Taylor
(RT instability) instability is well known as hydrodynamic instability that occurs in fluid systems
where a denser fluid is positioned above a lighter fluid. The fundamental characteristic of RT
instability lies in its nonlinear nature, whereby small perturbations are amplified through non-
linear interactions, leading to a change in the system’s behavior. Consequently, predicting and
controlling the system becomes challenging, as even minor errors or alterations can result in a
completely different evolutionary trajectory. Given its broad applicability in science and engi-
neering, the RT instability has been extensively studied in theory and in numerical simulations
[9,33,39,45,49]. Guo and Tice [19] investigated linear RT instability of a two-layer compressible
viscous fluid model, see also [20] for extensions of the study to an inviscid fluid model. Sub-
sequently, Jiang et al. [27] studied the nonlinear RT instability of a three dimensional viscous
fluid model. Recently, Jiang et al. [28] showed the existence of unstable strong solutions to an
abstract RT problem. We refer to [22-26,32,37,42,46,47] for more studies on various aspects of
RT instability.

The influence of Coriolis force and partial viscosity is key for studying large-scale atmo-
spheric and oceanic flows. It is widely acknowledged that rotational effects play a dominant
role in such phenomena. Consequently, nearly all oceanographic and meteorological models
that address large-scale phenomena incorporate the inclusion of Coriolis forces [36]. For in-
stance, the circulation patterns in the ocean, particularly those associated with hurricanes, are
primarily driven by substantial rotations. Other physical factors, including salinity and natural
boundary conditions, also hold significant importance. In addition, the effect of partial viscosity
(or partial dissipation) is of great significance in geophysics and fluid mechanics, especially in
the simulation of large-scale atmospheric and oceanic flows. In order to gain a comprehensive
understanding of the behavior of rotating fluids with partial viscosity, it is imperative to investi-
gate the RT instability of the Navier-Stokes equations, taking into account both partial viscous
effects and Coriolis forces.

Before stating the main results of this paper, we introduce a definition of nonlinear instability,
more introduction on nonlinear instability of fluid equations can be see in [18].
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Definition 1.1. We say that the steady state solution uy is a nonlinear unstable solution of (1.2) if
there exists o and constant Cy such that for every k arbitrarily large and every § arbitrarily small
there exists a solution u of (1.2) satisfying

[Tw(0, x) —ug || <6,
and

(T, %) — w2 = 0,
for some times T° where

T% < Crlog(1+ 67" + Cx.
The main results of the article are summarized in the following three theorems.

Theorem 1.1 (Linear instability). Suppose that the parameter f satisfies f > ugsup, g ps, and
that the steady density profile ps satisfies (1.5). Then the steady state (ps, Us, ps) is linearly un-

stable. Namely, there exists a unique unstable solution (o, v, q) to (1.8)-(1.10) with the constant
growth rate A defined by

— pgil 4
A= sup k(lél)f{H |1~ pstto) +*/§H‘/& } (1.11)
|E1€[R1, R2] Ps L®(R) Ps [ Lo (R)
where Ry, Ry satisfy /B < R < Ry < 0o and B is given by (2.23).
Theorem 1.1 holds true from Theorem 2.3 and Theorem 2.4.
Theorem 1.2 (Existence). Assume that ||oo||%,, ®) T llviol13,, ®) T [Vl 1%, ®) = o2. Then

there exists a strong solution (g, vi, V) to (1.7)-(1.9) such that

0€L™®0,T; H' (R?)),v; € L®(0, T; H'(R?)), vi; € L*(R? x (0, T)),
Ve L0, T; H*(R?), ¥, € L®(0, T; L*(R?)), V¥, € L*(R* x (0, T)),

where 0 < T < T* and T* is the maximal time of existence of the solution.

Theorem 1.3 (Nonlinear instability). Under the same conditions as Theorem 1.1, the steady state
(0,0,0,0) of (1.7)-(1.9) is unstable under the Lipschitz structure. That is, for any k > 2, 0 > 0,
there exists a constant iy .= ig(k) > 0 and smooth initial data

(0. vo) € (HPR*)*, with [l0ol 71 ge, + 10l e g2y < 07, (1.12)

such that for some 0 < K < %Oe 2 as well as F satisfying

F(y) <Ky, foranyy €0, 00), (1.13)
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there exists a strong solution (0, v) of (1.7)-(1.9), emanating from the initial data (9o, vo), satis-

fying
||U3([K)||L2(]R2) > F(H(QOst)HHk(RZ))

2 2K N
for some t; € (0, x In—)C (0, T7), (1.14)
0]

where the constant A is given by (1.11), H®(R?) = Nz HK(R?).

Our approach to the proof of Theorem 1.3 can be outlined as follows, cf. [2]. In Step 1,
presented in Section 2, we construct linearly unstable solutions to the perturbed linear equations
(1.10). We look for solutions with an exponential growth factor e*®)* where £ € R represents
the horizontal spatial frequency. By the Fourier transform, the linear equations are reduced to
an ordinary differential equation, and is solved via the classical variational method, leading to
the establishment of the continuous function A(|€|) > 0 defined on (/B, +00) with B given by
(2.23). In Step 2, discussed in Section 3, we obtain nonlinear energy estimates for the perturbed
equations (1.7)-(1.9) with small initial data. These estimates are crucial for the subsequent proof
of nonlinear instability. Furthermore, with the aid of the nonlinear energy estimates and the semi-
Galerkin method, we are able to show the local existence of strong solutions to (1.7)-(1.9), as
presented in Appendix A. Lastly, in Step 3, detailed in Section 4, we utilize the results obtained
in Sections 2 and section 3, combined with the Lipschitz structure of F, to establish the instability
of the nonlinear problem (1.14).

Now let us comment on the difficulty and methods in this study. Because of the Coriolis
force, the regularity of v; and Vv in the given context are mutually dependent. Furthermore,
the absence of the dissipative term in equation (1.7), renders the regularity theory of ellip-
tic equations inapplicable. Consequently, the method proposed in [27] cannot be employed to
establish the regularity of v; and v using the regularity theory of Stokes equations and the
Gronwall’s lemma. To overcome this obstacle, we first provide estimates for [|v|[;2R2). Sub-
sequently, these results enable us to obtain estimates for ||VV||;2g2), utilizing the regularity
theory of Stokes equations. By utilizing these estimates, a differential inequality encompassing
IVoll3, ®2 TVl 2, ®2) T IIV/PYi] 2, (2 T 1 can be derived. Finally, with the application
of the classical Osgood lemma (Lemma 2.3 in [7]), we are able to establish the estimates for
[IVol @(RZ) +||Vvi] |%2(R2) +1/0V:| |i2(]R2)' Hence, using the regularity theory of Stokes equa-
tion, the higher regularity of v; and Vv is obtained.

The rest of this paper is organized as follows. In section 2, we discuss the linear instability
problem and obtain an exponential growing solution. In section 3, we deduce some nonlinear
energy estimates of (1.7)-(1.9). In section 4, we give the proof of Theorem 1.3. In Appendix A,
we investigate the local existence of strong solutions of (1.7)-(1.9).

2. Construction of unstable solutions to the linearized problem
Introducing the following growing mode ansatz of solutions
o(x, 1) =0(X)eM, v(x, 1) =V(®)e, g(x,1) = g(x)e" 2.1
and substituting (2.1) into (1.10) as well as omitting the tilde, one can obtain
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ro+ pgv3 =0,
Apsv1 + [psup — flua =0,
ApsV+ fuier = nAv —Vq — goey,

divv = 0.

Eliminating o by using (2.2);, we have

Apsv1 + [psig — flvp =0,
dq

Aosv2 + fur = nAvy — —,
dy

)LZ = aq l
Psv3 = AuAvy — )»& + gu3py,

ov dv
2o

ay 9z

2.2)

2.3)

Fixing a spatial frequency £ € R and taking the horizontal Fourier transform of v in (2.3),
which we denote ~ or F. Namely,

we derive that

R 1 .
= —iy§y
[, 2) mR/f(y,z)e v,

ApsV1 + [psito — f102 =0,

ApsD2 + D1 = pu(—IE Dy + D5) — i£q,

W2 ps3 = A (1€ 1203 + 05) — 1§’ + gd3p].
07+ 05 =0.

Denote ¢ = ivy, ¥ =i0p, w = 03, n = g, then (2.4) can be expressed as

and

rosp + (psito — [ =0,

Mg+ fo=n(—EPY +¥") +&n.

W psw = Apu(— € Po + o) — ' + gpjo,
EYy+ o =0,

¢(=00) = ¢(+00) =0,
¥ (—00) = Y (+00) = ¥'(—00) = ¢ (+00) =0,

w(—00) = w(+00) = w'(—00) = &' (4+00) = 0.
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Eliminating 7 in (2.5), we obtain

Apsp = é(pxﬁo - N, 2.7
= 12117 (psw) = (ps0) 1= dpull§ ' = 216 P0” + "] + 2Ef 9" — |17 8P},
with
¢(=00) = ¢(+00) =0,
0 (—00) = w(4+00) = o' (—0) = &' (+00) =0. (2.8)
Inspired by [27], we apply the variational method to construct the solutions of (2.7)-(2.8).

Fixing the non-zero £ € R and s > 0. From (2.7)-(2.8), we obtain a family of the modified
problems

—321ER (psw) — (ps0)1 = spllE [0 — 20 0" + o]

- [7f Y ;"S”O)w’] — 1 Pgole, 2.9)

with (2.8). We define the energy functional of (2.9) as follows

E(CU,S):/SM[|$|4602+2|$|260/2+w//2]dz+[I:f(f_pSL_tO)jI|(l)/|2dZ

Ps
R R
— f &1 gp,wdz, (2.10)
R
with a associated admissible set
A={we H*R)|J(»):= / ps (€ Pl + | [P)dz = 1). (2.11)
R
Thus, one can find —A? by minimizing
—22(]) = a(|€], 5) := inf E(w,s). (2.12)
weA

In the following, we need to show that a minimizer of (2.11) exists for inf,,c 4 E(w, s) > —00
and that the corresponding Euler-Lagrange equations are equivalent to (2.7) and (2.8).

Lemma 2.1. For any fixed & with |£| # 0, inf,c 4 E(w, s) > —00. Assume that the parameter
f = ugsup, g ps and there exists a @ € A, such that E(@,s) < 0, then E(w,s) achieves its
minimum on A. Additionally, let w be a minimizer and 2= E(w), then (w, Az) satisfies (2.7)
and (2.8). Furthermore, o € H*(R) for any positive integer k.
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Proof. The proof is divided into two steps. Step1: Existence of minimizer. It is clear that

/[f(f_psﬁo):h 2d >_ Hf(f PsUo) /pslw’lzdz
LOO(R)R

S

Z_Hf(f—psuo) | .
L>(R)
Clearly, we find
/
/|s| gpltdz > g' . (2.14)
Os [l Loo(R)
Consequently, from (2.13)-(2.14), one gets
_ - /
E(w’s)z_[HM +g’ ps } (2.15)
L=(R) Ps I1Lo®)

Assume that w,, € A is a minimizing sequence, then E(w;, s) is bounded. From (2.10) and
(2.11), we obtain w, is bounded in H2(R). As a result, there exists a w € H2(R) and subse-
quence of {w,} which is also denoted by {w,}, such that w, converges weakly to w in H 2(R)
and converges strongly to w in H Ll oc (R). Therefore, with the help of the lower semi-continuity,
locally strongly convergence and E(®, s) < 0 for some & € A, we obtain

E(w,s) < lim inf E(w,,s) = inf E(w,s) <0, and0 < J(w) < 1.
n— 00 weA

Next, we show that J(w) = 1 by using the method of contradiction. Suppose that J(w) < 1. By
the homogeneity of J we derive that there exists o > 1 such that J(¢w) = 1. Namely, we obtain
aw € A. Thus, we have

E(aw,s) :aZE(w,s) < aziﬁfE < iﬁfE <0,

which is a contradiction since ew € A. Consequently, J (w) = 1. Namely, E(w, s) achieves min-
imum on A.
Step 2: The minimizer w € H*. Clearly, (2.12) is equivalent to

: E(w,s)
-2 = f )
(D a)eglz(]R) J(w)

(2.16)
Taking
w(t) = o+ Two, Yoo € H*(R) and ¥t € R.

Therefore, from (2.16), we have I (1) := E(w (1), s) + A2(|&])J (w (7)) > 0, which implies that
I(t) >0, YT € R and I (0) = 0. Thus, I'(0) = 0. With the help of (2.10), we have
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I'(t)y=2 / sull€]* (@ + Twn)wo + 216 (o + Topw) + (@ + Top)wgldz
R

+ 2/ [f(fp MO)}(w’ + twy)wydz — 2/ €% gpl (@ + Two)wodz
R * s

+ 222 / ps[1E1* (@ + Twp)wo + (@' + Twh)whldz.
R

Hence, it gets from 0 = I'(0) that

" / (& [*wwo + 21 Lol + o wf)dz .17

(f — psuo)
= / [21€* pyewmo — %wwo — 32 (s € Pwwo + pyo' wp)ldz.
A
R

Suppose that wg is compactly supported in R, thus, we find that w satisfies (2.9) in the weak
sense. Additionally, from (2.17), we obtain

/w”wgdz——/{g|§| psw+[f(f prito) } —2(pylefe — (psY)
R

Ps
+spu(—lE[*o + 26 P ”)}wodz (2.18)
=/hwodz.
R

For any n > 1, choosing w; , € Cj°(R) satisfying w,,(z) = 1 for |z| < n and taking wp =
win [, w2dt with @y € C{°(R). Then we obtain

V4
/(a)”wlyn)a)'zdz = /[hwl,n(/ wy)dT —a)”a)’l’n(/ w>dT) —Za)”a)’l,na)z]dz
R R -

—00

:/[/ (howi n —w//a)/l/n)dr Zw//a)/l’n]a)gdz, (2.19)
which leads to 0" € HI}OC(R), and
+o00
0" = (w1 ,0") = / (hoin — 0" wf )dt = 20" W) . (2.20)

Z
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Furthermore, through integration by parts, (2.18) can be rewritten as

F(f = psiio) 7'
f " wpdz = — f {g|§| [ d — 12 (pslElP0 — (ps@'))
R A
+S/L(—ISI4w+2|E|2w”)}wodz, (2.21)
which implies that @”” € L?>(R). Thus, w € LOC(R) N CLOC(IR) and (2.8), is valid as well as

" (00) = "' (00) = 0 holds true. Utilizing these facts and Holder’s inequality and integrations

by parts, we obtain

/|a)”'|2dz — —/w”a)"”dz < ”w”HLZ(]R)||wm/||L2(R)’ (2.22)

which implies that ”” € L*>(R). As aresult, o € H*(R) and solves (2.7)-(2.8). Furthermore, we
obtainw € H*(R), ke Z*. O

In the following, we need to show that there exists a fixed point such that s = u by using the
intermediate value theorem. To this end, we first define

- 1nf/f(f “0Ps) 124 (2.23)

weB

where B = {w € H>(R)| /R 8p; |w|>dz = 1}. It is worth noting that (1.5) ensures that B # .
Then, we first give some properties of a(s) as a function of s.

Lemma 2.2. For each fixed |&| € (/B, +00), the function a(|€|, s), s € (0, +00) has the follow-
ing properties:

(1) Assume that the parameter f satisfies [ > ilosup,cR ps. then, for any a,b € (\/B, +00)
with a < b, there exist constants c1, ¢ > 0 depending on py, f, U, g, a, b, such that

a(l§l,s) < —c1+sc2, VI§| €a, b]. (2.24)
@) a(gl,s) € C):L (0, +o0) is strictly increasing.
Proof. If |£]? > S, then, there exists & € B, such that

U=ii0p0) | 372,
0< Jr -, < g% (2.25)
[r gp}1d%dz
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Indeed, suppose that

f]R Wlﬁ)/lzdz

_ > |12, V& € B. (2.26)
f]R gp§|0)|2dz

Then, from (2.26), we deduce that

S =tops) | 12
|'|?dz = inf /i p T

- > |61,
weB  [p gp}ld|*dz

= inf
weB

/ f(f UopPs)

which is a contradiction since |£|?> > . Therefore, from (2.25), we have

/M|~’2dz+/|g| gpll@2dz > 0, for [£]* > B. 2.27)
R
With the help of (1.5), we obtain
— Jpl P Pz JlEPepi@®dz | _ 228
262 + 10 P Zal+laodz | T (2.28)
Jr os(EP1®1? + 1&'12)dz — [g ps(E17|@1% + |@'|?)dz

and

fR[|%~|4d}2+2|%-|2d')/2+&')//2]dz .
Jr s (EI21@17 +10'1P)dz

=cy > 0. (2.29)

Using (2.12) and (2.16), we deduce that

( )= inf E(w,s)
(gl s _weglz(R) J(w)

_ JrspllEl'a? + 2060 + 5"1dz + [l TN Pdz — g 16 Pg0jaPdz
- Jr o5 (EI2|I* + 1@ [P)dz

j’R[|%-|45)2+2|%-|25)/2+£)//2]dz { fR[f(ﬂxZ;)*f)“J)/lzdz
<su = = - = =

Jr s (€O + 10 1})dz Jr s (EPIO1 + 1@ 1))dz
Jr 16 Pg05%dz }

Jr o5 (E17|&1* + 1@ 1)dz

= —C1+sC2,

(2.30)

where the positive constant cy, ¢; depending on py, f, 1, g, a, b.
Next, we shall show that the assertion (2) is valid. Let I := [a, b] C (4/B, +00) be a bounded
interval and
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E\(@) =p / [ *0? + 215 Po? + o"?1dz. (2.31)
R
For any s € I, there exists a minimizing sequence {w}} C A of inf,,c 4 E (w, s) such that
le(l€],5) — E(wy, $)| < 1. (2.32)
With the help of (2.10), (2.15), (2.24), (2.32), we obtain
1 uo —
Ei(w) = ;|:E(a), s) +/ Wlwﬂzdz +g/ Iflnga)dz} <L, (2.33)
R ’ R
where
1 i — ;
L=—|:max{HM +g‘& ,1+|—c1+bcz|}
a Ps L=(R) Ps llL=®)
I (psito = f) Ps
+H7 +ell =) |-
Ps L®(R) Ps

For any s; € 1(i =1,2), let {wg;} C A be minimizing sequences of inf,c4 E(w, s;). From

(2.10) and (2.31), we drive
E@!, s) = / stpllg 1}l P+ 20EPloll | + ol Pldz + / [
R R

- / R ACARE
R

= E(},,52) + (51 — 52) E1 (&},
which implies that

a(|&], s1) < limsup E(a)?z,

n—oo n—oo

<a(|&],s2) + Lis; — s2].

Reversing the role of the subscript 1 and 2 of (2.35), we find that
lee(1& ], 51) — a(|&], s2)| < LIsp — 2],

which yields a/(|£], s) € C%! (0, 00).

Loc
In addition, from (2.34), due to s1 < s7 and E (a);’z) > 0, we obtain

E(@lh.s51) < E(@ly. 52).

Hence, one can get that
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S (f — psuo)
0

s1) < limsup E (wy,, s2) + |51 — s2|limsup E (w§,)

2
]|a)?2| dz

(2.34)

(2.35)
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? s <limsup E(af,, 52) = (], 52), (2.36)

n—oo n—oo

a(l€],s1) = inf E(w,s;) <limsup E (!
we A ;

which implies that «(|€], s) is non-decreasing on (0, +00). Suppose by way of contradiction that
o (€], s1) = a(|&], s2). From (2.36), we obtain

s1E1(ws,) = $2E1(wy,),
which leads to wy, = 0. Consequently, the conclusion (2) holds true. O

Given |£| € (J/B, +00), from (2.24), there exists a so > 0 depending on the parameters
pss [, L, &, |&], such that for any s < s¢, ¢ (€], s) <O. Let

Gie| :==sup{s|a(|&],7) <0, VT € (0,5)} > 0, (2.37)

which allows us to define A(|€],s) = /—a(|€], 5), Vs € (0, Gg|). According to Lemma 2.1 and
Lemma 2.2, we obtain the following existence of (2.9).

Lemma 2.3. Assume that the parameter f satisfies f > ugsup,cg ps, then, for each |&| €
(V/B,+00) and s € (0,G)), there exists a solution w(|§|,z) # 0 with A(|&],s) > O for the
(2.8)-(2.9). In addition, L(|&],s) € Cg’olC(O, Gig)) is strictly decreasing. Moreover, w(|€],s) €

H*(R) for any positive integer.
By the intermediate value theorem, we have the following result.

Lemma 2.4. Suppose that the parameter f satisfies f > iiosup.cg ps and |£| € (\/B, +00), then
there is a unique s € (0, Gjg|), such that L(|§],s) = /—a(|§],s) > 0and s = A(|§], 5).

Proof. The function ¢(s) := m is continuous and strictly increasing on (0, Gjg|) since
A€l s) € c¥! (0, Gjg)) and «(|&], 5) is strictly increasing. Additionally, with the help of (2.24)

Loc

and (2.37), one can see that A(|&], s) is bounded as s € (0, sp) and lim,_, o+ ¢ (s) = 0. In addi-
tion, by the definition of G|, we obtain th%gg‘ A(|€],5) =0T and lims»g‘gl @ (s) = +o0. As

a result, the intermediate value theorem implies that there exists a unique s € (0, Gs) such that

¢(s)=1. O

From Lemma 2.3 and Lemma 2.4, we conclude the existence of the problem (2.7)-(2.8).
Theorem 2.1. Suppose that the parameter f satisfies f > iigsup g ps and |§| € (/B, +00),
there exist o = w (€1, 2) # 0, ¢ = p(|€|, 2) # 0 satisfies linearized equations (2.7)-(2.8). Further
(w, ) € H*(R) x H*=1(R) for any positive integer k > 1.

2.1. Behavior of the solutions with respect to &

In this subsection, we investigate the behavior of the solutions from Theorem 2.1 in terms
of &.
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Lemma 2.5. The function X : (/B, 00) — (0, 00) is continuous and satisfies

sup  A(ED < < ‘ Sf(f = psito) psuo) H /ps .
\/E<|,E|<+OO LOO(R) Ps LOO(R)
Proof. From (2.15), we obtain
— I ’
a(l&],s) = inf E(w,s)Z_H Lzmu()) +g‘ P :|
weA Ios LOO(R) Ps LOO(]R)
Thus, we deduce
( OsUQ)
gl s) =/ —a(§],s) < \/Hffiéo }
L“(R) L>(R)

which implies that (2.38) is valid.
In the following, we show the continuity of A with respect to &. It suffices to show the con-

tinuity of a(|€[, s) since A(|€|, s) = /—a(J€], 5). For any fixed &) € (y/B, +00), there exists an
interval [a, b] C (1/B, +00) such that |&| € (a, b). Thus, we assume |&| — |&y| with || € (a, b).
Denote |£|2 = 8§ + |&|?, this leads to § — 0 as |&] — |&].

According to Lemma 2.1, for any |£| € (a, b), there exists wj¢| € A such that

a(|§|,s)=/su[|é;‘|4w|2§‘ +2|E|2a)f§2|+wﬁ]dz+f[@}w%|2dz
R R

- / | *gpj iy dz. (2.39)

From (2.24), we get
Spsuo — f)
su / ity Pdz < a(gl,s) + / [pi lofeil*de+ [ 16 go{efdz,
R R X ®
which leads to

/Iwu Pdz < —citas |1 J(f — psito) Py
glrdz=—> —+ 3,
R

Ps

+g‘

(2.40)

Su Lo(R) LOO(R)j|'

Additionally, from (2.11), we find that

|a) B des /|a) 12dz < (2.41)

Consequently, we have
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gl g2 ®) < €3,

where c3 depends on py, f, i, s, g,a,b.
Substituting |& |2 = |&|% + § into (2.39), we derive that

a(lg],s) = / sulléol*od, + 206002 + o 1z + / A AN R
2 Ps

R
- / |80l*gpj iz dz + 5K (8, wyg)) (2.42)
R

> a(l&l, s) + K (8, wig)),

where

K (3, a)m) =

B

sul2l€ol + 8)lwie 1 + 2wl I*1dz _fgp‘;“)lzéldz'
R

Similarly, according to Lemma 2.1, for any |£y| € (a, b), there exists wjg,| € A such that

(f = pyito)

a(l€ol, s) = / sulléol* o, + 260l wg, + 0|, ldz + / [”pis}m’gouzdz

S
R R

- f (g0l g0l dz. (2.43)
R

Substituting |§‘()|2 =& |2 — 4 1in (2.43), we also obtain

a(lbol,s) = a(l§], 5) — 8K (=3, wg)). (2.44)

Combining (2.42) and (2.44), we have

SK (8, wig)) = a(lg],s) —a(léol,s) < 5K (=8, wig)),

which implies that

A(1&1,5) = A(l%ol, 5), Vs € (0, Gje)) as § — &o. (2.45)

With the help of (2.45) and Lemma 2.4, we find that for any € > 0, there exists § > 0 such that

[ACE L s180) — A€ol 15| < € and s = A(I8ol, s1501) = /—([Sol, 51501 as [IE] — [Sol| < 8.
Additionally, for each fixed & # 0, A(|£],s) is strictly decreasing and continuous on (0, G¢)),

and there exists a unique sig| € (0, Gj¢|) such that A(|£], sjg)) = sj¢|. As a result, we obtain
IA(E]. 5151) = A€ol 5181 < [A(IE], 515) — A0l 5150)| < € (See Fig. 1). Namely, A(|€]) is con-
tinuous. 0O
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A A
A€l 8) A=s A(l€ol, 5) A=s
(€L sigo)) === ‘
A€l s1¢)) ”/{(*‘5*0*'}*5*)**”: A(l€ol, s101) ”):(7\57(;) ””” !
A(léol sieo ) |- N Mgl sjep) F----= <
N\ Mgl sieo) |72~ _—
o Sl s ’ 0 Siel Slel ’

Fig. 1. Sketch of proof in Lemma 2.5: |A(I§], 51£) — A(I50l. 5155 )1 < A&, 5180)) — A (€01, 5150 -

2.2. Construction of a solution to the system (2.5)-(2.6)

From (2.7);, we infer that the component ¢ of the solution to the system (2.7)-(2.8) is given
by

9(&,2) = (ps&) ™ (psito — . (2.46)

In this subsection, we shall apply the solution of (2.7)-(2.8) to construct a solution of the system
(2.5)-(2.6). Namely, we have the following result.

Theorem 2.2. Suppose that the parameter f satisfies f > ugsup,cg ps- Then for each |&| €
(B, +00), there exists a solution (¢, ¥, w,n) = (9, 2), ¥, 2),w(E],2), n(€],2)) with

A =A(E]) > 0 to (2.5)-(2.6). Furthermore, the solution (¢, ¥, w,n) € H*"1(R) x H*1(R) x
H*R) x H*3(R) for any positive integer k > 3.
Proof. Using Theorem 2.1 and (2.46), we can construct a solution (¢,w,A) = (¢(§,2),

w(&, 2), M(|€])) satisfying (2.7)-(2.8). For A > 0, w € AN H*(R) and ¢ € H*~1(R), multiplying
(2.5), x & and utilizing (2.5)4, we find 7 is given by

n=n(&l,2) = [ — (WIE]* + 1o + fEQIEI2. (2.47)

Thus,

1
((p, ‘w? w, T’) = (gﬂ, _gw/’ w, 77)

is a solution of (2.5)-(2.6). O

Remark 2.1. For each fixed z, the solution (¢(§, z), ¥ (&, 2), ®(|€], 2), n(|€], z)) constructed in
Theorem 2.2 possesses the following properties:

(1) A(&D), w(|&],z) and n(|&], z) are even on §.
(2) ¢(&,z) and Y (&,z) areold on &.
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Next, we shall provide an estimate of the solution (¢, ¥, @, n) with & varying. To illustrate the

dependence on &, we denote (&) = ¢(§,2), ¥(§) =¥ (§,2), @) =w(§,2), n) =n(, 2).

Lemma 2.6. Suppose that the parameter f satisfies f > iigsup,cg ps. Let /B < Ri < |&| < Ra,
0(&), v (&), w(&), n&) be a solution constructed as in Theorem 2.2. Then, for any positive
integer k > 3, there exist positive constants Ay, By, Cx and Dy such that

o @l gty = Aks IME)] g3 Ry < Bk, (2.48)
He @ gr—1Ry < Cr, 1Y) -1 Ry < Dk (2.49)

In addition
llollr2®ry >0, (2.50)

where the constants Ay, By, Cr and Dy depend on Ry, Ra, ps, 14, g and f.
Proof. Throughout the proof, we denote by C by a positive constant which may vary from line
to line, and depend on Ry, Ry, ps, 4, g and f.
(2.50) is clear since w € A. With the help of Lemma 2.5, we get
m < r(1§]) =M, VI§| € [R1, Ra], (2.51)

where the constants m, M depend on Ry, R, ps, i, g and f. Therefore, combining (2.40) and
(2.41), we deduce that

lloll g2y = C. (2.52)
By virtue of (2.46) and ¥ (&) = —éa)/, we find
Hellgiry =C, I¥llgw) =C. (2.53)
Moreover, the equation (2.7), can be rewritten as
0" = —|&[ o + 270" - i {xznsﬁ(psw) — (s 1 = AEf ¢ + |s|2gp;w},
which leads to

/ 0" ?dz < C. (2.54)
R

Then using integration by parts and Holder inequality, we obtain

/|w///|2dZ — —/a)”a)””dz < (/ |a)”|2dz)%(/ |w””|2dz)% <C. (2.55)
R R R R
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Consequently, from (2.52), (2.54) and (2.55), we derive
0]l 4Ry = C (2.56)

Similarly, from (2.46) and ¥ (§) = —%a)’ as well as (2.47), we obtain

lellms@) = €5 ¥ llps@y = Cs lInllpw) < C- (2.57)

As a result, differentiating (2.7), and using (2.56)-(2.57), repeating the above process, we obtain
the inequality (2.48) and (2.49). O

2.3. Exponential growth rate

In this subsection, we shall apply the Fourier synthesis to construct growing solutions to (1.10)
for any fixed spatial frequency & € R with [§| > /B.

Theorem 2.3. Assume that the parameter f satisfies f > iigsup,cg ps- Let /B < Ri < Ry <
+o00 and h € Cg°((R1, Ry)) be a real-valued function. For & € R with |&| € (B, +00), define

(018, 2), 026, 2), 03(5,2). 4§, 2)) = (i@, 2), =iy (§, 2), 0(€],2), n(I§], 2)), (2.58)

where (p(&,2), ¥ (,2),w(&,2),n(&, z)) with L(|§]) > O is the solution constructed by Theo-
rem 2.2. Set

1 .
0(t,y,2) = —— / =P h(IE B3 (&, )t DT e 1
N2 2
1 .
v({t,y,2) = —— / (L(EDA(EDV(E, z)e™ 18D 8 14, (2.59)
N2 &
1 .
gty 7) = —— / AIEDRENGE, 26D e 1
27 &

Then (o(t, y, z),v(t,v,2),q(t, v, 2)) is a real-valued solution of the linearized equations (1.10).
Moreover, for any fixed & with |&| > /B, the following estimate is valid

o O w2y + VO (grR2))s + g O] g (r2) (2.60)
1
< Dk[/a +15DIn(EDPdE]2,
R
where Dy is a constant depending on Ry, R2, ps, 1, g and f. Furthermore, for any fixed
t >0, we have (o(t, y, 2), vi(t, y, 2), va(t, ¥, 2), v3(1, ¥, 2), ¢ (1, y, 2)) € H*(R?) x H*"!(R?) x
H1(R2) x HK(R?) x H*3(R?), and
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EtAO(‘ED“Q(O)HHk(RZ) <ol gr w2y < e[A||Q(0)||Hk(]R2)’
et)‘O(m)||V(0)||(Hk(R2))3 <Vl akR2)ys < g’A||V(O)||(Hk(R2>)3, (2.61)

eMO(‘SDIIC](O)||Hk(R2) < IlgOll gr w2y < efA||q(O)||Hk(Rz),

where

Ao = inf A >0, 2.62
0= iciml o (7)) (2.62)

as well as A is given by (1.11). Particularly, if h(|§]) # 0, then |[v3(0)|| yxr2) > 0. In addition,

we can choose proper constants Ry, Ry such that Ao = %

Proof. According to Theorem 2.2, (¢(&,2), ¥ (§,2), w(&, 2),n(&, z)) is the solution of (2.5)-
(2.6). Thus, (V(,z2), 4 (&, 7)) is the solution of the equations (2.4). As a result, for any fixed

&1 > /B,

o(t,y,2) = —pih(|E])D3 (&, )™ EV 8
V(t, y,2) = MEDR(ENV(E, )8V e
G, y,2) = MEDRUENG (E, 2)er 15V el

is the solution of the equations (1.10). Moreover, since h € C(‘)’O((Rl, R»)), by (2.48)-(2.49), we
deduce that

sup  19%6(&, MIpomey <00, sup  13*V(E, )l g2) < 00,
Eesupp(h) &esupp(h)

sup  [19°G (€., )| Loor2) < 00, Yk €N,
§esupp(h)

which implies that the solution given by (2.59) is also a solution of the linearized equations
(1.10). Additionally, with the help of Remark 2.1 and (2.58), we obtain o(z, y, z) and v(z, y, 2)
as well as g (¢, y, z) are real-valued functions.

Next, we shall show the estimate (2.60). In fact, combining the estimate (2.48) and the fact
is compactly supported, we deduce that

k
o)1 g2y =Y / L+ EP R (ED 10! (0y93(8. 2))*dEdz
J=0R2

k
=> / (1 +1EP* 7 1RAED 118! oy (1, )12 ) 46

./ZOR

< Dy f [(1+ €2 h(E D) 1dE.
R

Similarly, using the same way, we have
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VO 13 g2y < Dr / [(1+ € 2R (&P 1dE,
R

g )13 g2y < Dx / [(1+ € 2 (15D *1dE.
R

Thus, the estimate (2.60) is valid. From (2.50), we derive [[w(0)||gkr2) > 0. (2.61) is clearly

valid since that fact ¢*(D? is strict increasing on . Finally, the assertion Ag = % follows from
Lemma 2.5. O

2.4. Uniqueness of solutions to the linearized equations

In order to show the main result in this paper, we need to discuss the uniqueness of solutions
to the linearized equations (1.10). To this end, we introduce the relevant function space

07 ={(0,v,q)lo € C°(10, T1, L*(R?)), Vq € L*(0, T; H} ,.(R%)),
v € C[0, T1, L*(R?)), vy, € L*((0,T) x R?),
ve ([0, T1, (L*R*)H N L0, T; (H*(R?))?),
¥, € (L%((0, T) x R?))%and divv = 0}.
Thus, we have the following result.

Theorem 2.4. The strong solution of the linearized equations (1.10) is unique.

Proof. Let (o',v',q') € Q7(i = 1,2) be two strong solutions of (1.10) with (¢(0), v/ (0)) =
(Qé, Vf)). Denote (0,V,q) = (o' — 02, v! —v%, ¢! —¢?) € Qr. Thus, (o, v, q) is also a strong
solution of (1.10) with (0(0), v(0)) = (0, 0).

Multiplying (1.10),, (1.10)5 by vy, and V, respectively, and integrating by parts over (0, ¢) X
R2, we obtain

t t
ov _
/‘/‘Psa—tlvldydzds—f—//[psuo — flvavidydzds =0, (2.63)
0 R2 0 R2

and

t 1

t
5
/ psa—:-f'dydzds—}— / f fvovidydzds = —p / / |VV|*dydzds
0 R

2 0 R2 0 R2

t
—gffgwdydzds. (2.64)
0 R

2

Then, with the help of Cauchy’s inequality, (2.63) leads to
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t
/ps|vl|2dydzf Pstio — f //pslvllzdydzds
R? Ps Lo (R) e
B !
+‘ pstto = J //Pslvzlzdydzds. (2.65)
Os Lo (R) e

Using the same process as [27], from (1.10), we derive

t

o(t,y,2) = / vipLds, ¥t > 0. (2.66)
0

Then, utilizing the Fubini’s theorem, we deduce that

t
T
—g//Qv3dxdr 585‘
0 R2

Substituting (2.67) into (2.64), we derive that

04

t
/ pslvs3|?dydzdr. (2.67)
Ps

0

L(R)

t

.
/ 0 Y Gdydz +2u / / |V 2 dydzds

ot
R2 0 R?
_ t
5‘ psito = f / ps|v2Pdydzds (2.68)
Ps L>(R)
0
, t
T
+—g‘ Ps /,oslv3|2dydzds.
2 11ps o)

0
Therefore, combining (2.65) and (2.68), we conclude that

t

f polvP2dydz + 2 / / V¥2dydzds

R2 0 R2
io— f f \
Psity —
sH petio = 1 +' —||Loo<R>]ffps[|v1|2+|vz|2]dydzds
Ps Lo(R) Ps e
, t
Py 2
+Tg||—= Pslvs|“dydzds,
Ps Lo (R) 0
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which leads to

'
/ps|V|2ddeSM/‘fps|V|2ddedS,

R2 0 R2

where

ps
Ps

Psﬁo - f
Ps

+
L>*(R)

,Tg‘
Ps

M:maxH

Lo°(R) L®(R) } .

Consequently, with the help of Grownwall’s inequality, we find
/pSIVIzdydz =0, Vr€[0,T],
R2

which infers v = 0 since pg > 0. Namely, vi=v2 Finally, from (1.10), (1.10)3 and (2.3), we
obtain

©"'.v', Vg =" v’,Vg®), Vi €[0,T]. O
3. Nonlinear energy estimates for the perturbed problems
In this section, we shall provide some estimates of the perturbed problems (1.7), which is
necessary to show our main results. Let (o, v, ¢) be a classical solution of (1.7) in [0, T] x R?
forany0 <7 < T*.
3.1. Estimates for ||V||12R2))3 and |[VV|] 222

Lemma 3.1. Let ||Q0||L2(R2) +||V0||L2(R2) < o2 Then, forany 0 < T < o0, the solution (0, V, )

to (1.7), emanating from the initial data (0o, Vo), satisfies

sup [||Q||L2 ®2) VI 2oy ] + / IV 2 g2y 2dT < C(T)o.
te(0,T

Moreover, lf||Q()|| L2(R?) + ||U10|| L2R?) + ||V0||Hl R?) <02, then, forany 0 < T < oo, the solu-

tion (o, v, q) to (1.7) satisfies

T
sup ||V o oy + f 9112 ey + V2V 2 gy 2}t < C(To.
te(0,T)

0
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Proof. From (1.7); we find that for any ¢ € (0, T],

k1 :=1nf pg < p(t) < sup pg := k3.
R2 R2

Multiplying (1.7); (i = 1,2) by o, v and integrating by parts over R?, we obtain

d opy
E”QH%}URZ) = —2/ opgvadydz <2 \/QT—Y,Os LZ(RZ)HV 0 + psv3ll2(r2)
R2

. _1
<2k +}1§1;f,05) 2 ||/0;||L00(R2)||Q||L2(R2)||\/Q + psv3||L2(R2),

and
31)1 ~ —
(0 + ps)ﬁvldydz + [ (@ + p)(V- V)vy +ugva]uidydz
R2 R2
—/fvlvgdydz:O,
]R2
as well as
v - -
/(Q+ps)5 -dedz+/(9+ps)(V-V)V-vdydz+/fv1vzdydz
R2 R2 R2

=—,u/|V€7|2dydz—g/Qv3dydz.
R2 R2

With the help of (1.7); and (1.7)5, we deduce that

= 1 200
(0 + ps)(V-VIvividydz = 3 [v1] Edydz.

R2 R2
Similarly, we have
- - 1 .50
/(Q +00) (V- V)¥dydz = 3 / |v|28—fdydz.
R2 R2

Then substituting (3.5), (3.6), into (3.3) and (3.4), respectively, we obtain

d

\% 1 d -

/(Q+,0s)—~vdydz+—/—QIV|2dydz+/L/|VV|2dydz
dt 2 ot

RZ

R?2 R?

=—ﬁo/(9+ps)v1vzdydz—g/szdde~
R?2 R2
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Namely, we have

1d -
5 77 Ve + avil ey + IV 2 gey

= —ilg /(Q + ps)vivadydz — g/stdydz
R2 R2

<uolly/o + psvillzwa)llve + psv2ll2r2)

. _1
+ gl + lgﬂgps) 2lell 2 w2yllv e + psvsll2r2)-
Z

As a result, combining (3.2) and (3.7) and using Cauchy’s inequality, we find

d 2 / 2 5112
E[”QHLZ(RZ) + || o + ’O‘YV“(L2(R2))3] + /'LHVVH(LZ(RZ))Z
< Clllel}a g2 + 11V/e + psVIIF 2 gy

which leads to

llol132 g2y + Ve + psVlIF 2 gays < o2e .

Particularly, with the help of (3.8) and (3.9), we obtain

t
llol17sgay + 11VI1E 22y + 1 / V911?22 2dT < Co
0

Multiplying (1.7); by ¥, and integrating by parts over R, we obtain

) d .
Ve + sl 2y + 1 IV oy

=—/(Q+,Os)[‘7~V€']~f’tdx—f/v1v2,dx—g/Qv3tdx.

R2 R2 R?2

Using Cauchy’s inequality, we deduce that

e 1 _ .
— /(g + p)I¥ - V91 Vidx < 211V + oVl L gey + CIIV - VI3 ge)s

RZ

and

1
y / o = 312 T proulBage, + Cllviliagay
RZ

as well as
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1
_g/QU3tdx < ZH\/ o+ ,Osv3t||iz(R2) + C”QHiz(Rz)-
R2

Then, substituting (3.12)-(3.14) into (3.11), we have

1 ~12 d ~112
E | |\/ e + pSV| |(L2(R2))2 + ME”VV| |(L2(R2))2
< CI[¥- V¥l[722) + Cllvill72 g2, + Cllel7 2 ga)-
In addition, the classical regularity on the Stokes equations implies
24112 2
| |V Vl I(LZ(]RZ))Z + | |V‘] | |L2(]R2)

< ClIVe + ps¥ill 2 g2y + 11V + 05V - V172 oy

+ Vil 2ge + el 2 g2 -

Then, combining (3.15) and (3.16), we obtain

%II\/Q + 059l 2 gy + €NV 2 gy + u%nvw 2@y
< CII¥- V¥l[2g2) + Cllvill72 g2, + Cllel7 2 ga)-
Using Holder’s inequality and interpolation inequality, we have
ClIV - Vil 2 m2) < ClIVIG oy I V¥ 2 g2y
< ClIV*¥l 2@ |91 2@ V91172 2
< %nvzvniz(w) + CONVII 22 1172 go)-

Then, substituting (3.18) into (3.17), we get

L € 1v2e2 d . oe2
Z || e + pSvl‘||(L2(R2))2 + E | |V V||(L2(R2))2 + H’E | |VV| |(L2(R2))2
< ClIVVII 2@ 1911722y + Cllvil17 a2 gay + Cllell7a ga)-

As a result, with the help of Gronwall inequality, we obtain

t

\ / S ~ 4,CT
“VV”%LZ(RZ))2 + /Hl o+ psV’H%LZ(R%)Z + ||V2V||%L2(Rz))z]dt <Cefr ¢ o2

0

From (3.10) and (3.20), we have
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~2 4 CT 2
[ 151 e = €702

3.2. Estimates for ||o|| g1 g2y and ||vil| g1 R2)

(3.21)

Lemma 3.2. Let ||QO||H1(R2) + ”leHHl(RZ) + ”V0||H2(R2) <02 Then, forany 0 < T < T*, the

solution (o, v, q) to (1.7), emanating from the initial data (g, Vo), satisfies

sup [||VQ||L2(R2) + ||VU1||L2(R2) + ||\/_V’||L2(]R2) + ||V”H2(R2) + ||VQ||i2(R2)]

1e(0,T)
T

+ / V122 g, + 1010122 g Jds = C(T)o,
0

where T* denotes the maximal time of existence of the solution.

Proof. By taking the partial derivative of (1.7); with respect to y and z respectively, we obtain

3—1‘y +[V- Voly + v3yps =0,

and

3 3
% + [V Vol; + v3.0; + v3py =0.

Then, multiplying (3.22) by o, and integrating over R2, we have
1d 2 - /
37 loyl“dydz+ | oy(Vy - Vo)dydz+ | psv3yoydydz=0.
R2 R2 R2

Similarly, from (3.23), we derive

2dt
R2 R2 R2

Thus, combining (3.24) and (3.25), we find

d - -
& [ 196 < IV Vel + @ Vell2m
R2

/IQZI dde+/Qz(vz V@)dyder/(psvzz + v30))0:dydz =0.

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

To estimate ||o]| 41 (Rr2), We need estimate |[VV|| oo (g2). It follows from the classical regularity

theory for Stokes equations that
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1AV 4 g2y + 11V 1174 2,
< CIll@ + p) ¥l Ja e, + 1@ + £V - V¥I[74 g, 3.27)
+lvill7age + s g2, -

In addition, with the help of Holder inequality and Gagliardo-Nirenberg inequality, we find

[V - V€’||i4(R2)

< ClI¥ s IV¥I 5 g2, (3.28)
5 3 5 3 2~ 7
=< C||V||22(R2)||VV||£2(R2)||V V||22(R2)-
Thus, combining (3.27) and (3.28), we derive

d 2

EHVQHLZ(RZ)

< ellV¥ 1122 m2y + COIT P2 may + ClTIZ 1 2 (3.29)

L2(R2) L2(R2) H!'(R?)

3 3 7
+CI a1V 2 ) IV o oy + 0122

+Cllel7a g2 + ClIVell7a g, (1Vell72 g2y + D + ClIVULZ ga)-

Next, we estimate the first term on the right-hand side of inequality (3.29). From (1.6), the equa-
tion (1.7); are rewritten as

ov

” +0oV-VV+ fvie; = uAV — Vg — gpes. (3.30)

0

By taking the partial derivative of (3.30) with respect to ¢, we derive

PVt + PV + 0V - VV+ pV, - VYV + pV - VV, + foyse
= uAV, — Vg, — gpies. (3.3D)

Then, (3.31) dotting ¥, and integrating over R2, we obtain

ld |“|2dd+/|V~|2dd

—-— V. V.

2 dr PV adydz + tl-ayaz

R2 R2

:/div(pv)[|v,|2+(v.W) -V, + ges -V, 1dydz (3.32)
RZ
—_ / fvltel '{’t — /(p{’t . Vi}) . {/tdydz,

R2 R2
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which yields to

d N -
s / pl¥, Pdydz + / V% Pdyd:

R2 R2
< / R2p[¥][¥: V¥, | + p V||V [¥; ] + pl 92| V2] |¥] (3.33)
RZ

7
+ PP IV + flol 9]+ gol¥IIV¥:| + pl¥: 2| V¥lldydz == ) 1.
i=1

By Holder’s inequality, Gagliardo-Nirenberg inequality as well as Young’s inequality, we obtain

1
I < Cllpll oo 1V a2y VP Vel 2 @2y Ve L2 R2)

< C“p”LOO||v||L2(R2)||Vv||L2(R2)||\/—VZ||L2(R2) |Vvl||L2(]R2)
S 6||Vi}t||22(R2) + C(6)| |€I| |L2(R2) | |Vi}||L2(]R2)||\/ﬁvt||L2(R2)v

where € is a small constant to be specified later, and C (¢) is a constant dependent on €. Likewise,
we derive

L < C||V€’||L2(]R2)||V€’||L6(R2)||‘~’||L6(R2)||\/ﬁ‘~’t||L6(R2)

<CIIVII IIVVII IIV2V|I ||VVt||

L2(R2) LZ(RQ) LZ(RZ) | |Vt | |L2(R2) LZ(RZ)

< el V112 ga, + OV + COIIF]| 2 V] 2(R2)||v2v||L2 R
Iy < Cllpll o2 IV anz(Rz>||vt||Ls(Rz)||%||L6(Rz)

2
< CIV21 20 |1V gy 11 g V50 gy [ 1 g

< €lIVVill 722, + COIVO 2 g2 + C||v||L2<R2)||Vv||L2(R2)||v26||iz(w),

Iy < C||/0||LOO(R2)||V‘7t||L2(R2)||V€’||L6(R2)||‘7||L6(R2)
5

1911

||VV|| LZ(RZ)

< ClIV¥ | 2oy IV v||L2(R2) v
< €| |VVI||L2(R2) + C(E)”V' |L2(R2) | |VV| |L2(R2) | |V2V| |L2(R2)

For I5 and I, we use Holder’s inequality and Young’s inequality to obtain
Is < Cllvill 2@y VPVl 2 ®e) < CHIVAV 12 g2y + ClIvil 72 g2
and
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Is < €| V91175 gy + C@OIIVI ga)-
I7 can be estimated in a similar way
I < 1pll oo @2y [19e 117 411V 2Ry

< Cllv] |L2(R2) | |V‘7t||L2(R2)||V€’| |L2(R2)
< €l1V¥l[72 g, + COINVAV 2 o I VI 2 g2y

Thus, submitting the above inequality into (3.33), we have
d o 12 M/ <2
— dydz+ = | |V¥|°dyd
dt/plvtl ydz+ = | [VVi|"dydz
R2 R2
< ClHIVPVi 12 gy [T+ V1172 gy + 1191172 g2y IV 722y ] (3.34)

+ CIK®) + 1vul 72 g2 ]
where
K@) =192 Rz>||Vv||L2(R2)||v2v||Lz(R2) + ||v||L2(R2)||VV||L2(RZ)||vzv||iz(R2)
+ ||V||L2(R2)||VV||L2(R2)||V2V||LZ(]R2) + ||€||22(R2) (335)
From (3.10) and (3.20), we find K(¢) € L' (0, T) for any 0 < T < oco. By (1.7)4, we deduce that

IVPviel 72 g
< LAl e, + 11¥ - VorlZa e, + Clivall?
_2 /0 1t LZ(RZ) 1 LZ(RZ) 2 LZ(RZ)
1 -
< SIVPVIIE2 g2y + 1¥1 e o) I V1172 2y + ClIV21 12 oy
1 -
= SIVPUII g2 ey + ¥ o) I V1172 2y + ClIv21 12 -
Namely,
1tll72mR2y = v 2 1722 2(R2 .
01172 gy < CHVIG 2y IV V172 g2y + CIVIIG 2 g2y (3.36)

Submitting (3.36) into (3.34), we obtain

d <2 Hiioe (12
EH\/EVZHLZ(RZ)+E||Vvl||L2(R2)
< ClHVOVH 172 oy [1+ [1VF117 2 o) + 1191172 o) VI 72 g2y | (3.37)

+ CIE@) + 1191152 gy V01117 2 g2y + 1191172 ) )
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By taking the partial derivative of (1.7), with respect to y and z, respectively, we have

vy . [ (f —uolo+ ps))v2

T‘F[V-Vvl]y—[ o+ ps :|y
and

v, FF Vol = [(f—uo(Q+,0s))v2] _

8[ Q+IOS Z

Then, multiplying (3.38) by v, and integrating over RZ, we drive

1d o] -
EE |$|2dydz+/v1y(vy~Vv1)dydz

R2 R2
_ / [(f — 0@+ )V
o+ps

i| v1ydydz.
y

Analogously, we have

1d 8111 ~
Sdr |8—Z|2dyd1+/vlz(vz'Vvl)dydl

R2 R2
:f [(f —uo(e + ps))v2
0+ ps

i| vy dydz.
Z

RZ

As aresult, by (3.40) and (3.41), we have

d
o / |Vv1|2dydz
]RZ

~ 2 ~
= ClIVVl e )1V VL7 2 g2y + CHVVI 22y [V V1] L2(R2)

+ ClVll 22y IVell 22y IV Uil 2 w2y + ClIVI2 2 IV VI 2 R2) -

Then, combining (3.28) and (3.42), we obtain

EHWIHEZ(RZ)

< €llV¥l132 g2y + COIT2 g2y + ClIVIG g2y + 11011172 g

3 3 7

+CI 2 IV o ) IV gy + Cllel 2 g

+ ClIVULl e, (IVVI 2 g2y + D + ClIVellage, + 111 5ge) Vel 2 g2y -

According to (3.29), (3.37), (3.43), and choosing € = %, we derive
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d 2 2 =12 Hoos 2
E[HVQHLZ(RZ) + ||VU] ||L2(R2) + ”N/ﬁvl"'[}(RZ)] + ZHVV[||L2(R2)
< ClIVelljage) (1Vell2gey + D + ClIVUILlIF 2 g, (V0172 g2y + D)
=112 2 2
+ ||V||H2(R2)(||VQ||L2(R2) + ||VU1||L2(R2)) (344)

+ ClIPVlI 2 ey (1 + V172 g2y + 191172 1 V9] 2 g2
4+ CK(@t)+ CL®),

where
-2 o3 o3 2~ 7
L(r) = ”Vf“LZ(Rz) + ||V||22(R2)||VV||i2(R2)||V V||22(R2)
+llel g2 + W15 gey + 1011172 g2y (3.45)

and K(t) € L'(0, T) is given by (3.35). From (3.10) and (3.20), we also find L(¢) € L', 7).
Denote

£ =IVoll 2 gy + 1V 2 2, + VAV 2oy + 1,
F@) = CU+ 19152 me) + V1172 g2 IV 2 g2y
M(t) =CK@) + CL®Q).

Thus, from (3.10) and (3.20), we derive F(¢), M(r) € L'(0, T). Additionally, we find (3.44) can
be rewritten as

%5@) < FOEX(t) + M(1). (3.46)

Then, integrating (3.46) over (t, t), we obtain

T !
E) < [S(t)+//\/l(s)ds]+/]:(s)52(s)ds. (3.47)

Utilizing the classical Osgood lemma (See Lemma 2.3 in [7]), we derive

T
“NED) +N() < / F(s)ds, (3.48)
where
1 J T
N(x):/r—;, c(t)=5(r)+/M(s)ds. (3.49)

In addition, multiplying (1.7) by v, and utilizing V - v; = 0, we find that
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VPV 2 g2y = Ve + psVil 72 g2

- / [~ fervr — (@ + p)¥ - V¥ — goer + wAT — Vg - ,dx
RZ

and then

Ve + o5¥ill} 22

< c/[|f|2|v1|2 10+ po)¥ - V2 4 |2
o+
RZ
+ (0 + ps) " H(RATV — V) [*1dx.

ge|?
Ps

As a result, from the regularity result on the Stokes equations, we deduce that

lim sup ||\/_Vt||L2(R2) = CU

=0

From (3.20)-(3.21), (3.35), (3.45), (3.48) and (3.51), we derive

&) = (W - /}'(S)dS)

1 4,CT -1
S|:C02+Cec"4"CT62+1_Cecae 02] »0<T <T,

where

~(Co’+D+/(Co?+1)*+4
1 ]n[ 2Cc2

— a

Ti=—1In .

C Co*

According to (3.52), we set

—1
1 4,CT 4,CT
[ 5 CoiCT —Cef7 ¢ o2 =C1e¢7 o2,
Co>+Ceto¢ o241

Namely,

1 Co*eCT 2 Co*eCT _29-1
Co2+ CeCoteT52 4] e =[Ce oI

Setting A := A(T) = eC”4eCT02, we derive
C2C1A% + CCIA%(Co*+ 1)+ (C—CDA+C(Co? +1)=0.
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In order for (3.55) to have a solution in (0, +00), we need the following condition

2137 66 4 €12 64 (Co? + 1) + (C — €1 62 + (Co? +1) <0,

Accordingly we choose the constant C; to satisfy

CeCo' 52 +Co?+1

Cl > i T cracet 6 2Co? d( 2 :
et9 02— C%e’t9 g% — Ce*t7g*(Co~+ 1)

Choosing 7* = min{Ty, T»}, where T is a solution of (3.55), then we have
) <Ci(T)o?, 0<t<T*,

where the constant C(7) depends on T'.
As aresult, from (3.57), we derive

sup [11Vol 22 e, + 11V011E2 e, + 1WA 22 )] < C(T)o2,
te(0,T)

and
/ V91172 g2y ds < C(T)o?.

Combining (3.36) and (3.58), we obtain

/||U1t||L2(R2) <C(T)o?.

From (3.16) and (3.58), we have

sup ||V||H2(R2) + ||Vq||L2(R2)] =< C(T)O' O
te(0,T

Combining Lemma 3.1 and Lemma 3.2, we have the following result.

Theorem 3.1. Let ||00l17;1 g2, + 10101171 g2, + 101132 g2

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

< o2, Then, forany 0 <T < T¥,
any classical solution (o, v, q) to (1.7), emanating from the initial data (9o, Vo), satisfies

SU.p [||Q(t)||H1(R2) + ||vl(t)||Hl(]R2) + ||V||H2(]R2) + ||Vl||LZ(R2) + ||Vq(t)||L2(R2)]

0<t<T
f (101172 gy + 1IVV)I[ 2 ga)ds < C(T)a?,

where the constant C(T) depends on T and T* is a solution of (3.55).
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4. Proof of Theorem 1.3

In this section, we aim to demonstrate the nonlinear instability utilizing the method outlined in
Jiang’s work [27]. Specifically, by contradiction argument, we can show that the nonlinear equa-
tions (1.7)-(1.9) possess a strong solution that satisfies the outcome specified in Theorem 1.3.

In view of Theorem 2.3, we obtain that there exists a classical solution (Ql, v, ql ) to linearized
system (1.10) satisfying (2.61) and ||vé (Ol g+ r2) > 0 as well as

" O 2, + IV (O34 g2y = 0 (@.1)
H*(R?) (R#)

Next, we set

ig:=ig(k) =

I
v7(0
o3 (O[22 (R2) <1 42)
o

. i AT* .
Then ig > 0. As a result, defining rx = %ln 2i_0K’ we have 0 < K < %’e 2. Thus, we obtain

0 < tx < T*. Moreover, from (2.61), we have

tg A
1)l 2@2) = € 7 oo > 2Ko. 4.3)
Denote (o, vg) := €(0'(0), v/ (0)), € € (0, 1). Then, we obtain
0§13k 2y + 1613 gey = €707 < . (4.4)

Hence, by virtue of Theorem 3.1 and Theorem A.2, the perturbed problem (1.7)-(1.9) admits a
family of strong solutions (o€, v¢, ¢€) such that

“ll

sup [1lo 1131 ge, + 110 D111 gey + IV meyy + 195 12 Ry

0<t<T
t
+11Vg Ol 72 g2 + f (15 D22y + 1YV 912 g2 2 )ds 4.5)
0
< C(T)Uzez,

where the constant C(7") does not depend on €. Additionally, from (3.25), we have

sup 110l o(r2) < C(T)a’e, (4.6)
0<t<T
which means
sup |[lo® + Psllpo®2y < C(o), 4.7
0<t<T

where C (o) depends on o. From (4.5), we have
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sup [lg°I131 g2, < C(T)o €.
T

O<t<

(4.8)

Lemma 4.1. There exists an € € (0, 1) such that the strong solution (o€, V¢, q€) emanating from

the initial data (o, v(), satisfies

€ € € 2 2K k
o3 (T L2 R2y > F(lleg, Vo)l mkw2)), for tk € (0, Xln E) c (0, T7).
Proof. Assume that for any € € (0, 1), the strong solution (o€, v¢, g€) satisfies

195 2@y < F(U10°0), v O)|I gt me)) < Koe, Vi € (0, T%).

We denote (o€, v¢, g€) = %(Qe, v€, ¢€), thus they satisfy

00 = _
aQt + V¢ V(eg® + p5) =0,

~€ 31_)7 ~€ Ze —€ -~ —€ —€
(€0 +pS)W+(6Q + ps)[evy - Vi +upv;] — fv; =0,

—€ 866 ~€ Se Se ~€ Se ~€ —€
(eo +,os)§ + (€0° + ps)eve - VV© + fufe; = uAV5 — Vg€ —goen,
V.-v¢ =0,

with initial data
(2°(0), ¥ (0)) = (2'(0), V' (0)).

Then, with the help of (4.5)-(4.8) and (3.53), we obtain the following estimates

- 2 = 2 €2 €2
Sup [||Q€(t)||H1(R2) + ”UT([)HHI(RZ) + ”ve“(HZ(RZ))Z + ||V[E||(L2(R2))2
O0<t<T

t
IV Ol g + f (155 172 gy + 1YV D172 2 2)ds
0
<C(T)o?,
and
sup [1(€2° + po)ll o) < C@), sup G151 g2y < C(T)o?.
0<t<T 0<t<T

From (4.10); and (4.10),, we infer that

O<t<

572

sup 18§ 11722y < C(Do* (1 +02), o 1551172 g2, < C(M0o*(1 +07).
<t<

(4.9)

(4.10)

@.11)

4.12)

(4.13)

(4.14)
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Thus, we deduce that there exists a subsequence of {(0¢, v¢, g€)} such that

(05, ¥5,G°) = (81, V1, @) weakly-star in L=(0, T; (L*(R*)* x H'(R?)),
(6, V) — (8, V) weakly-star in L0, T; (H'(R?))? x (H*(R?))?),
(¢, %) — (2, V) strongly in C°(0, T; (L7, (R*)™H).

Taking the limit as € — 0 in (4.10), we find
00°¢
ot

ov§

ps .- F poliol3 — f05 =0, (4.15)

{,6

Py~ + filer = LAVS — V€ — gotes,

V. =0.

+V¢- Vo, =0,

Then we deduce that (o, V) is a strong solution of the linearized problem (1.10). We recall that
(Ql, vl ) is also a strong solution of the linearized problem (1.10) and the initial data satisfies
(0€(0), v¢(0)) = (Ql (0), v/ (0)). Consequently, according to Theorem 2.4, we obtain

@,%) = (o', v), on [0, T] x R%. (4.16)

Consequently, with the help of (4.3), we obtain

2Ko <1153t 2y < 10400 2 2) < Ko, @.17)

which is a contraction. 0O

From Lemma 4.1, we deduce that the conclusion of Theorem 1.3 is valid.
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Appendix A
In this section, we shall investigate the existence of strong solution of (1.7)-(1.9). We first
consider the strong solution of (1.7)-(1.9) in a bounded region Bo(R) = {(v, 2)||y|> +|z|* < R?}.
Namely, (1.7) subject to the boundary condition
v(t,x) =0, fort >0, x€ dBy(R), (A1)
and the initial conditions are expressed by

v(0,x) = vo(x), 0(0,x) = o(X), (A.2)

where v;o(i = 1, 2, 3) and po(X) are given functions.
We introduce the following function space

W ={$ € (C3°(Bo(R)))” : divgp =0}

Then V is defined to be the completion of W with respect to the norm of (H! (Bo(R)))%. From
(1.6), (1.7) is equivalent to

0

—p—i-v Vp=0,

dt

vy

P—at +pv-Vur =[f — puolvz, (A.3)

v - - .
v (pV-V)V+ fvier = uAv—Vqg —g(p — psler,
V-v=0,
where e; = (1,0),e, = (0, 1).
The system (A.3) subject to the same boundary condition (A.1), but the initial condition (A.2)
becomes

p(0,x) = 00(X) — ps(X) := po. (A4)
Now we give the definition of weak solution to (A.1)-(A.4).

Definition A.1. A weak solution of (A.1)-(A.4) is a pair of functions v(¢,Xx), o(f,x) such
that v(z, X) = (v1(t, X), va(t, X), v3(t,X)) € L>(0, T; Bo(R)) x L*(0, T; V), o(t,x) € L>°(0, T;

By(R)) and
T
—/ / ,o—dxdt //,ov Virdx / poy (0, X)dx, (A.S5)
0 B

0 By(R) Bo(R)
and
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T T

—/ / ,ovlaa%dxdt —/ f pu1V - Vordxdt
0 Bo(R) 0 Bo(R)
T
[ [ taop = proagpianar = [ pooi g x. 00, (A6)
0 Bo(R) Bo(R)
as well as
T 5 T
—/ / pfha—(pdxdt—Z/ / ov;iV - Vo;dxdt
at 4
0 By(R) =20 By(R)
T T
+/ / fv1(p2dxdt+M/ / Vv - Vodxdt (A7)
0 Bo(R) 0 Bo(R)

T
+/ / g(p — ps)pzdxdt = / Po(X)Vo(X) 2 (x, 0)dx,

0 Bo(R) By(R)

hold for all ¥ € C10, T; H'(Bgr)), ¢1 € C10, T; H'(Bg)) and ¢ = (¢2, ¢3) € C1(0,T; V)
satisfying (¢2(7T,x), ¢3(T,x)) = (0, 0), a.e. in By(R).

We first consider the following initial value problem

W oy,
{3t+v Vp =0, As)

0(0,x) = po.
Then, from Lemma 2.2 and Lemma 2.3 in [29], the following two conclusions hold true.

Lemma A.1. Assume v € C1 ([0, T]; C'(By(R)))?, V- ¥ =0 forall (x,1) € Bo(R) x [0, T], and
v=0 for all (x,t) € dBy(R) x [0,T], and oo € Cl(Bo(R)), k1 < 00 < k3 for all x € By(R),
where ki, ky > 0. Then (A.8) has a unique solution p(t,x) € C'([0, T] x Bo(R)), and k1 +
inf py < p(t,X) < k3 + sup ps holds for all x € By(R).

Lemma A.2. For each n = 1,2, ..., assume V,(x,t) € C([0, T]; C (By(R))), V - ¥, = 0 for all
(x,t) € Bo(R) x [0, T] and v,, =0 for all (x,t) € dBy(R) x [0, T]. Suppose that v, — V in
C([0, T1; C1(By(R))), and denote by pp(X, 1), p(X,t) the unique solution of

aaitn“‘vn'vpn:ov

(A.9)
Pn(0,X) = po(x),

and the unique solution of (A.8), respectively. Then p,(X,t) — p(x,t) in C([0, T] x (Bo(R))).
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Next, we consider the following initial value problem

d

o +Vv-Vu; =h,

at

v1(0, %) = v19(x), (A.10)
where

h= m. (A.11)

P

Similar to the proof process of Lemma 2.2 and Lemma 2.3 in [29], we obtain the following
conclusion.

Lemma A.3. Suppose v € C([0, T1; C'(Bo(R)))?, V -¥=0 forall (t,x) € [0, T] x By(R), and
V=0 for all (t,x) €[0,T] x dBy(R). Let p(t,x) € C}([0, T1; Bo(R)) and k| + infps < p <
k2 + sup ps. Then (A.10)-(A.11) possesses a solution vy € C! ([0, T]; Bo(R)).

Proof. We use the classical method of characteristics to construct a solution. Let E be an open
ball in R? such that By(R) C E. We extend ¥ to w € C([0, T]; CL(E)?) so that ¥ = w for all
(x,1) € Bo(R) x [0, T]. Consider the system

X — w(X(t,a),1), A12)
X(0) =a. '
Then, from the proof of Lemma 2.2 in [29], the solution of (A.10) is given by
t
(1.0 = vio A 0) + [ (e A0 (A13)

0
where A=X"!. O
Using the proof method of Lemma 2.2, we can get the following conclusion.

Lemma A.4. For each n = 1,2, ..., assume V,(x,t) € C([0, T]; C (By(R))), V - ¥,, = 0 for all
(x,t) € Bo(R) x [0, T] and v,, =0 for all (x,t) € 0By(R) x [0, T]. Suppose that v, — V in
C(0,T1; C! (Bo(R))), and denote by vi,(X,t), v1(X, t) the unique solution of

v1,(0,X) = vi0(X),
and the unique solution of (A.10), respectively. In addition, assume that p,, p are the solution

of (A.9) and (A.8) with p, — p in C([0, T]; Bo(R)). Then vi,(x,t) — vi(x,t) in C([0,T] x
(Bo(R))).
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Proof. By the proof of Lemma 2.3 in [29], we obtain that A,(f,x) — A(f,X) uniformly in
[0, T] x Bo(R). In addition, we find p, — p uniformly in [0, T'] x Bo(R) and V,, — Vv uniformly
in [0, T] x By(R), since p, — p in C([0, T], C(Bo(R))) and ¥, — v in C([0, T], CY(By(R))).
Thus, we deduce that i, — h .= w uniformly in [0, T'] x Bo(R). Consequently, we find

vy, (¢, X) = v1 (¢, X) uniformly in [0, T] x Bo(R). O

Next, we choose sequences of functions {0ox(x)};,_; such that oo, (x) € C Y(By(R)), k1 +

& < pom(®) < K2+ - for all x € Bo(R), pom(x) — po(x) in L*(Bo(R)). We set

m —

Vi (1,%) =D Akp (), (A.15)

k=1

and consider the following equations

0om .
a—;n-‘er “Vom =0,
V1m - _
Pm a + om Vi - VUim = [f — uopmlvom, (A.16)

m dA’n m
DB A Y ChyOAm D) At (1) + £ (1)
k=1

k,l=1
= phjAn () —dT@), j=1.2.....m,

where

b (1) = / Pt - $jdxdx, Cliy () = f (Pmbi - V)1 - bjdx,

Bo(R) Bo(R)
() = f Fimer - ¢jdx, d' (1) = / g(om — ps)ez - djdx.
Bo(R) Bo(R)

(A.16) subjects to the following initial conditions

Iom (05 X) = pOma
Vlm (07 X) = V10m (X)s (A]7)

A (0) = f o) - ()X, k=1,2,...m.
By(R)

Following the proof of Lemma 2.5 in [29], we arrive at the result.

Lemma A.5. Assume p;,(t,X) € Cl([O, T] x Byp(R)) and «1 + inf,epyr) s < pm < k2 +

SUP,¢ By (R) Ps, for any (t,x) € [0, T] x Bo(R). Then the matrix {b;”k(t)} is nonsingular and each

component of its inverse belongs to C'[0, T].

571



C. Xing, Y. Fan, D. Han et al. Journal of Differential Equations 408 (2024) 537-583

By Theorem 3.1, we obtain

Lemma A.6. Let ||Q()||H1(R2) + ||u10||§11(R2) + ||vo||§12(R2) <02, Then, for any T > 0 indepen-

dent of m, there exist solutions p,, € C'([0, T] x Bo(R)), Anx(t) € C'[0,T], k=1,2,....m of
(A.16)-(A.17) such that

oV, 2 i~ 5
=CMo~, IVmllr2,1;52By(R)) = C(T)o7,
L2(0,T;H'(Bo(R)))

|

V1
Jat

<C(T)o?,
L°(0,T;L2(Bo(R)))

2
Vimll Lo 0. 7: 11 (By(R))) = C(T)O,

om
at

< C(T)O’z, ||pm | |L°°(0,T;HI(BQ(R))) < C(T)O'z, (A18)
L>®(0,T;L2(By(R)))

ki1+ inf pg < pp <k2+ sup ps.
2€Bo(R) z€By(R)

Proof. Let B, be a closed ball in C([0, T])™ with large enough radius r > o /%. Sup-

pose (Am1(2), Ap2(t), cooey A (1)) € B,, where A is the first eigenvalue of —PA and
C is a fixed constant. In addition, we set V,,(t,X) = Y ;_; Akm(t)Pr(X). According to
Lemma A.1, we find a solution p,, of (A.16); in C'(0, T; Bo(R)). Furthermore, by Lemma A3,
(A.16), has a solution Vim € c! (0 T; Bo(R)). Thus, with the help of p, and vy,, we
obtain a solution (Aim, Azm, ..., Agm) Of (A. 16); in C'(0,T)" N B,. From Lemma A.2
and Lemma A.4 as well as Lemma A.5, we deduce that the mapping (Ap1(7), Am2(2), .

Apm (@) — (Am 1(), mz(t) Apm(t)) is completely continuous from B, to itself. Conse—
quently, the mapping has a ﬁxed pomt, which together with p,, and vy, are solutions of (A.16),
and (A.16),, respectively. Finally, (A.18) is valid from the proof of Theorem 3.1. O

Theorem A.1. Assume that 0g, v1p € HY(By(R)) and %9 € H*(By(R)). Then, there exists a local
strong solution p(t,x), vi(t,X), V(t,X) of (A.3) such that

o(t) € L®(0, T; H' (Bo(R))), vi(r) € L0, T; H' (By(R))), vi; € L*((0,T) x Bo(R)),
V€ L0, T; H*(Bo(R))), ¥; € L*(0, T; H'(Bo(R))) N L™®(0, T; L*(Bo(R))),

where 0 < T < T* and T* is the maximal time of existence of the solution.

Proof. From (A.18), we can extract a subsequence {V,,} and {p,,} as well as {vy,,} such that

Vm — v weak in L%(0, T, H%(By(R))), f”m — 9% in 12(0, T3 H'(Bo(R))), pm — p weak

star in L°°(0, T; H! (Bp(R))), and 3'0’" — W weak star in L*°(0, T; LQ(BO(R))) Vim — V1

weak star in L°°(0, T; H'(By(R))), a”‘"’ — % weakly star in L>(0, T'; L>(By(R))). With
the help of Aubin Theorem [12], we deduce that p,, — p strongly in L?(0, T; L*(Bo(R))).
Similarly, we also find vy, — v; strongly in LZ(O,T; L4(BO(R))). Thus, pmvm — PV
weakly in L2(0, T; L (By(R))) as well as p,, ¥,y — p¥ in D'(0, T; Bo(R))? and then, p,¥,, —
pv weak star in L°°(0, T; L>(By(R))). Furthermore, we deduce that {¥,, B.p'”} is bounded

in L2(0, T; L>(By(R))). Additionally, from (A.18), we find that {p, avm} is bounded in
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L*(0,T; L*(Bo(R))). As a result, {22n¥%n)} s bounded in L>(0, T; L*(Bo(R))). Namely,
{2nin)y i bounded in L2(0,T; H~'(Bo(R))). Then, pu¥m — p¥ strongly in L*(0,T;

H~7(By(R))). Since ¥, — ¥ weakly in L2(0, T; H>(Bo(R))), pmVmUmk — pVug in D'((0, T)
x Bo(R)), where k = 1,2,3 and Vv = (v3, v3). Then, p,V,uvmk — pvux weakly in L2(0, T;
L%(By(R)))? for k = 1,2,3. Thus, we derive that V,, - Vp,, — V- Vp weakly in L2(0, T;
H~'(By(R))). Choosing arbitrary &;(t) € C'([0, T]) satisfied &;(T) =0, j = 1,2, ...m, with
the help of (A.16), it holds that (p, vy, V) is a weak solution of (A.1)-(A.4).

Moreover, using the method in the proof of Theorem 3.1, we obtain the following estimates

2 2 5112 < 112 2
Oi?ET[HQ(t)HHI(BO(R)) + ||v1(t)||Hl(Bo(R)) + ||V||H2(30(R)) + ||Vt||L2(B()(R)) + ||Vq(t)||L2(BO(R))]

T
2 < 2
+ /(”UU(S)HLZ(B()(R)) + ”VVI(S)HLZ(BO(R)))dS S C’ (A19)
0

where the constant C independents on R. From (A.19), the assertions stated in Theorem A.1 hold
true. 0O

Finally, we use the expanding domain method to explore existence of the strong solution of

(1.7)-(1.9).

Theorem A.2. Assume that ||| |§11(R2) =+ ||vio| |%11(]R2) =+ ||Vol |§12(R2) < o2, Then there exists a

strong solution (p, vy, V) to (A.3) such that

p e L0, T; H'(R?),v; € L0, T; H'(R?)), vi, € L*R? x (0, T)), (A.20)
Ve L™, T; HX(R?), ¥, € L®(0, T; L*(R?)), V¥, € L>*(R?> x (0, T)), where 0 < T < T*.

Proof. Since pp € H'(R?), vip € H'(R?), we can choose pff, vR € C5°(Bo(R)) such that
R R . 12
Lo —> Po, Vip— vipin H (R“), as R — oo. (A.21)
In addition, since Vo € H*(R?), we select uf € C5°(By(R))(i = 1,2) such that
lim [|3;a} — AVoll 2g2) =0. (A.22)
R—o0
We consider the following Stokes problem

— AVR 498 4 Vp& =hnR — gak,

1
divvf =0, (A.23)
V& =0, on 9By(R),
where h® = ¥ * j /R with je being the standard mollifying kernel of width €. Obviously, (A.23)

posses a unique solution {7(1)?. Then we extend \7(1)? to R? by defining 0 outside Bo(R), we shall
show

579



C. Xing, Y. Fan, D. Han et al. Journal of Differential Equations 408 (2024) 537-583

V& - Vo, in H2(R?), as R — o0. (A.24)

Multiplying (A.23) by {,é? and integrating the result over R? lead to

/|W§|2dx+/|v§|2dx
R2 R2

<IB®| 2@y IV§ 1 2 wey + 19§12 @2y 108812 ®2) (A25)
1 = 2 R 2 ~R 2
S EHVO ||L2(R2) + C[Hh ||L2(R2) + ||8iui ||L2(R2)]’
which yields to
V91172 ®e, + 1196 1172 g2y < C. (A.26)

for some C independent of R. Moreover, according to the regular theory of Stokes equations, we
find

1AV 1722y < CUG 112 g2y + 10712 @2) + 138117 @0 1 (A.27)
Combining (A.26) and (A.27), we deduce that
199 1l 2e) < C.
which yields that there exists a subsequence R; such that
{,(l)?j — v weakly in L*(R?),
Vi, — Vi weakly in L2(R?), (A.28)
Affgj — Aéo weakly in L*(R?).

Now, we will show éo = Vp. Indeed, multiplying (A.23) by 7 € Cgo (R?) with V - 7 = 0, we
obtain

f(—m(’ff' + o) - dx + /(v(’ff —hRi) . rdx=0.
R2 R2
Let R; — oo and it follows from (A.22) as well as (A.28) that
f(—A%O + AVy) - wdx + /(60 — %) - wdx =0. (A.29)
R2 R2
Thus, with the help of (A.29), we obtain Yo =Vo.
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Furthermore, multiplying (A.23) by {;(I; / and —Affg 7 respectively, and integrating the results,

we derive that

hm [/|v 2dx+/| I2dx] = /|Vv0|2dx+/|V0|2dX (A.30)
]R2
and
lim [ [ |AV, 2dx+/|V 12dx] = /|Av0|2dx+f|Vvo|2dx. (A.31)
]aoo
RZ

Thus, utilizing (A.22) and (A.28) we have

hm /|V 2dx_f|vo| dx, hm /|VV 2dx—/|Vv0|2dX

R2

11m /|AV 2a’x—/|AVO|2a’x (A.32)

This leads to (A 24).

Let (,oR v1 ,¥8) be a strong solution of (A.3) with the initial data (,00 , le()’ V(If ). Extend-
ing (o v1 ,¥F) to R? by defining 0 outside Bo(R), thus, from Theorem 3.1, we find that
(pR le, ¥R) satisfies the estimate (3.62) with T* and C being independent of R. As a result,
there exists a subsequence R j» Rj — 00, such that (,oRJ', le i JvRi ) converges to a limit (p, vy, V)
in weak sense. Namely, as R; — 00, we have

pRi = p, vl = vy, weakly *in L(0, T; H'(R?)),
R — ¥ weakly *in L>(0, T; H*(R?)),
71— ¥, weakly * in L®(0, T; L2(R?)),

vl S vy, VY = Vi, weakly in L2(0, T; L2(R?)).

We take ¢ € C3°(R? x T) as a text function in (A.3) with initial data (o®, vR, vF). Then, letting
R; — 00, we obtain (p, vy, V) is a strong solution. O
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