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Abstract

In this article, we investigate the Rayleigh-Taylor instability in a system of two-dimensional nonhomoge-
neous incompressible fluid equations with Coriolis force and partial viscosity. First, we employ variational 
methods to construct linear unstable solutions to the corresponding linearized equations of the system. Sec-
ond, we utilize the classical Osgood lemma to derive nonlinear energy estimates for the perturbed equations. 
The local existence of solutions to the perturbed equations is established by using the semi-Galerkin method 
and the expanding domain method. Finally, we prove the nonlinear instability by combining the properties 
of the linear unstable solutions and the nonlinear energy estimates.
 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and 
similar technologies.
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1. Introduction

Fluid stability is a significant area of nonlinear sciences. The aim of studying fluid stabil-
ity is to gain a deeper understanding of the behavior of fluid flows and to develop tools and 
techniques to control and manipulate these flows for practical applications. There is a vast 
amount of literature dedicated to the mathematical analysis of fluid stability and instability, cf. 
[3,4,13–16,21,30,35,43,44] among many others. A prime example is Rayleigh-Taylor instability 
when heavier fluid lies above lighter one [11,27,34], see the latest review article [49] for its many 
applications.

The purpose of this article is to study the Rayleigh-Taylor instability of nonhomogeneous 
rotating incompressible viscous fluids in the presence of a uniform gravitational field from the 
perspective of nonlinear instability. The motion of the fluid in R3 is governed by the following 
equations

∂ρ

∂t
+ u · ∇3ρ = 0,

ρ
∂u
∂t

+ ρu · ∇3u + f e × u = N(u) − ∇3p − gρe, (1.1)

∇3 · u = 0,

where the unknown functions ρ, u = (u1, u2, u3) and p denote the density, the velocity and the 
pressure, respectively. N(u) is the viscosity term, ∇3 is the 3D gradient operator. Throughout µ
and g denote dynamical viscosity and the gravitational constant, respectively. f represents the 
speed of rotation around the vertical unit vector e = (0, 0, 1).

In the case of full viscosity N(u) = µ%u and f = 0, the equations (1.1) reduce to the 
standard nonhomogeneous Navier-Stokes equations. The Rayleigh-Taylor instability and well-
posedness have been thoroughly investigated, see [10,11,27,29]. Because of its importance in 
geophysics, fluid models of anisotropic viscosity with or without rotation have been intensively 
studied in recent years. Examples of partial viscosity include the formulation N(u) = µ%hu :=
µ 

(
∂2u
∂x2 + ∂2u

∂y2

)
[8] and the two-dimensional case N(u) = (µ ∂2u

∂x2 , 0) [41]. Existing research pri-
marily focuses on the well-posedness [1,5,6,8,31,48], stability and the rate of asymptotic decay 

538



C. Xing, Y. Fan, D. Han et al. Journal of Differential Equations 408 (2024) 537–583

[40,41] of these fluid models with partial viscosity. The study of the Rayleigh-Taylor instability 
in fluid models with partial viscosity is still limited and requires further investigation.

In this article, we study the Rayleigh-Taylor instability in the fluid model (1.1) with partial 
viscosity. Specifically, we consider the case where the fluid is uniform in the x direction and the 
partial viscosity term takes the form N(u) = (0, µ%ũ). This type of partial viscosity satisfies 
orthogonal invariance. The system (1.1) is reduced to the following equations:

∂ρ

∂t
+ ũ · ∇ρ = 0,

ρ
∂u1

∂t
+ ρũ · ∇u1 − f u2 = 0, (1.2)

ρ
∂ũ
∂t

+ ρũ · ∇ũ + f u1e1 = µ%ũ − ∇p − gρe2, (x, t) ∈R2 × (0,+∞),

∇ · ũ = 0,

where ũ = (u2, u3) is the components of the velocity on the x = (y, z) plane, ∇ is the 2D gradient 
operator ∇ = ( ∂

∂y , ∂
∂z ), % is the 2D Laplacian operator % = ∂2

∂y2 + ∂2

∂z2 , e1 = (1, 0) and e2 = (0, 1).
Let ū0 be a fixed constant. The steady state solutions under investigation are characterized by

us = (yū0,0,0), ρs = ρs(z), ps = ps(y, z), (1.3)

where the pressure ps and the density ρs satisfy the following geostrophic balance

−∂ps

∂y
= yf ū0, −∂ps

∂z
= gρs . (1.4)

Furthermore we assume that the steady-state density satisfies the conditions

ρ′
s ∈ C∞

0 (R), ρ′
s(z0) > 0, for some z0 ∈R, inf

z∈R
ρs > 0. (1.5)

Here (1.5) indicates the presence of at least one region where the density is monotonically in-
creasing, leading to the occurrence of Rayleigh-Taylor instability. We introduce the following 
perturbations

v = u − us , " = ρ − ρs , q = p − ps. (1.6)

Substituting (1.6) into (1.2), one finds the perturbations satisfy the following equations

∂"

∂t
+ ṽ · ∇(" + ρs) = 0,

(" + ρs)
∂v1

∂t
+ (" + ρs)ṽ · ∇v1 + ū0(" + ρs)v2 − f v2 = 0,

(" + ρs)
∂ ṽ
∂t

+ (" + ρs)ṽ · ∇ṽ + f v1e1 = µ%ṽ − ∇q − g"e2, (1.7)

∇ · ṽ = 0,
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with the initial and far-field conditions

(",v)|t=0 = ("0,v0), (1.8)

lim
|x|→+∞

v(t,x) = 0, ∀t > 0. (1.9)

Throughout the paper, we denote ṽ = (v2, v3) for convenience.
The linear part of the nonlinear system is as follows

∂"

∂t
+ v3"

′
s = 0,

ρs
∂v1

∂t
+ [ρs ū0 − f ]v2 = 0,

ρs
∂ ṽ
∂t

+ f v1e1 = µ%ṽ − ∇q − g"e2, (1.10)

∇ · ṽ = 0.

Initially introduced by Rayleigh [38] and further explored by Taylor [17], the Rayleigh-Taylor 
(RT instability) instability is well known as hydrodynamic instability that occurs in fluid systems 
where a denser fluid is positioned above a lighter fluid. The fundamental characteristic of RT 
instability lies in its nonlinear nature, whereby small perturbations are amplified through non-
linear interactions, leading to a change in the system’s behavior. Consequently, predicting and 
controlling the system becomes challenging, as even minor errors or alterations can result in a 
completely different evolutionary trajectory. Given its broad applicability in science and engi-
neering, the RT instability has been extensively studied in theory and in numerical simulations 
[9,33,39,45,49]. Guo and Tice [19] investigated linear RT instability of a two-layer compressible 
viscous fluid model, see also [20] for extensions of the study to an inviscid fluid model. Sub-
sequently, Jiang et al. [27] studied the nonlinear RT instability of a three dimensional viscous 
fluid model. Recently, Jiang et al. [28] showed the existence of unstable strong solutions to an 
abstract RT problem. We refer to [22–26,32,37,42,46,47] for more studies on various aspects of 
RT instability.

The influence of Coriolis force and partial viscosity is key for studying large-scale atmo-
spheric and oceanic flows. It is widely acknowledged that rotational effects play a dominant 
role in such phenomena. Consequently, nearly all oceanographic and meteorological models 
that address large-scale phenomena incorporate the inclusion of Coriolis forces [36]. For in-
stance, the circulation patterns in the ocean, particularly those associated with hurricanes, are 
primarily driven by substantial rotations. Other physical factors, including salinity and natural 
boundary conditions, also hold significant importance. In addition, the effect of partial viscosity 
(or partial dissipation) is of great significance in geophysics and fluid mechanics, especially in 
the simulation of large-scale atmospheric and oceanic flows. In order to gain a comprehensive 
understanding of the behavior of rotating fluids with partial viscosity, it is imperative to investi-
gate the RT instability of the Navier-Stokes equations, taking into account both partial viscous 
effects and Coriolis forces.

Before stating the main results of this paper, we introduce a definition of nonlinear instability, 
more introduction on nonlinear instability of fluid equations can be see in [18].
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Definition 1.1. We say that the steady state solution us is a nonlinear unstable solution of (1.2) if 
there exists σ and constant Ck such that for every k arbitrarily large and every δ arbitrarily small 
there exists a solution u of (1.2) satisfying

||u(0,x) − us ||Hk ≤ δ,

and

||u(T δ,x) − us ||L2 + σ,

for some times T δ where

T δ ≤ Ck log(1 + δ−1) + Ck.

The main results of the article are summarized in the following three theorems.

Theorem 1.1 (Linear instability). Suppose that the parameter f satisfies f + ū0 supz∈R ρs , and 
that the steady density profile ρs satisfies (1.5). Then the steady state (ρs, us , ps) is linearly un-
stable. Namely, there exists a unique unstable solution (", v, q) to (1.8)-(1.10) with the constant 
growth rate ( defined by

( = sup
|ξ |∈[R1,R2]

)(|ξ |) ≤
{∣∣∣∣

∣∣∣∣

√
f (f − ρs ū0)

ρ2
s

∣∣∣∣

∣∣∣∣
L∞(R)

+ √
g

∣∣∣∣

∣∣∣∣

√
ρ′

s

ρs

∣∣∣∣

∣∣∣∣
L∞(R)

}
, (1.11)

where R1, R2 satisfy 
√

β < R1 < R2 < ∞ and β is given by (2.23).

Theorem 1.1 holds true from Theorem 2.3 and Theorem 2.4.

Theorem 1.2 (Existence). Assume that ||"0||2H 1(R2)
+ ||v10||2H 1(R2)

+ ||ṽ0||2H 2(R2)
≤ σ 2. Then 

there exists a strong solution (", v1, ̃v) to (1.7)-(1.9) such that

" ∈ L∞(0, T ;H 1(R2)), v1 ∈ L∞(0, T ;H 1(R2)), v1t ∈ L2(R2 × (0, T )),

ṽ ∈ L∞(0, T ;H 2(R2)), ṽt ∈ L∞(0, T ;L2(R2)), ∇ṽt ∈ L2(R2 × (0, T )),

where 0 < T < T ∗ and T ∗ is the maximal time of existence of the solution.

Theorem 1.3 (Nonlinear instability). Under the same conditions as Theorem 1.1, the steady state 
(0, 0, 0, 0) of (1.7)-(1.9) is unstable under the Lipschitz structure. That is, for any k + 2, σ > 0, 
there exists a constant i0 := i0(k) > 0 and smooth initial data

("0,v0) ∈ (H∞(R2))4, with ||"0||2Hk(R2)
+ ||v0||2Hk(R2)

≤ σ 2, (1.12)

such that for some 0 < K < i0
2 e

(T ∗
2 as well as F satisfying

F(y) ≤ Ky, for any y ∈ [0,∞), (1.13)
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there exists a strong solution (", v) of (1.7)-(1.9), emanating from the initial data ("0, v0), satis-
fying

||v3(tK)||L2(R2) > F(||("0,v0)||Hk(R2))

for some tk ∈ (0,
2
(

ln
2K

i0
) ⊂ (0, T ∗), (1.14)

where the constant ( is given by (1.11), H∞(R2) = ∩∞
k=1H

k(R2).

Our approach to the proof of Theorem 1.3 can be outlined as follows, cf. [2]. In Step 1, 
presented in Section 2, we construct linearly unstable solutions to the perturbed linear equations 
(1.10). We look for solutions with an exponential growth factor e)(ξ)t where ξ ∈ R represents 
the horizontal spatial frequency. By the Fourier transform, the linear equations are reduced to 
an ordinary differential equation, and is solved via the classical variational method, leading to 
the establishment of the continuous function )(|ξ |) > 0 defined on (

√
β, +∞) with β given by 

(2.23). In Step 2, discussed in Section 3, we obtain nonlinear energy estimates for the perturbed 
equations (1.7)-(1.9) with small initial data. These estimates are crucial for the subsequent proof 
of nonlinear instability. Furthermore, with the aid of the nonlinear energy estimates and the semi-
Galerkin method, we are able to show the local existence of strong solutions to (1.7)-(1.9), as 
presented in Appendix A. Lastly, in Step 3, detailed in Section 4, we utilize the results obtained 
in Sections 2 and section 3, combined with the Lipschitz structure of F , to establish the instability 
of the nonlinear problem (1.14).

Now let us comment on the difficulty and methods in this study. Because of the Coriolis 
force, the regularity of v1 and ṽ in the given context are mutually dependent. Furthermore, 
the absence of the dissipative term in equation (1.7)2 renders the regularity theory of ellip-
tic equations inapplicable. Consequently, the method proposed in [27] cannot be employed to 
establish the regularity of v1 and ṽ using the regularity theory of Stokes equations and the 
Gronwall’s lemma. To overcome this obstacle, we first provide estimates for ||v||L2(R2). Sub-
sequently, these results enable us to obtain estimates for ||∇ṽ||L2(R2), utilizing the regularity 
theory of Stokes equations. By utilizing these estimates, a differential inequality encompassing 
||∇"||2

L2(R2)
+ ||∇v1||2L2(R2)

+ ||√ρṽt ||2L2(R2)
+ 1 can be derived. Finally, with the application 

of the classical Osgood lemma (Lemma 2.3 in [7]), we are able to establish the estimates for 
||∇"||2

L2(R2)
+||∇v1||2L2(R2)

+||√ρṽt ||2L2(R2)
. Hence, using the regularity theory of Stokes equa-

tion, the higher regularity of v1 and ṽ is obtained.
The rest of this paper is organized as follows. In section 2, we discuss the linear instability 

problem and obtain an exponential growing solution. In section 3, we deduce some nonlinear 
energy estimates of (1.7)-(1.9). In section 4, we give the proof of Theorem 1.3. In Appendix A, 
we investigate the local existence of strong solutions of (1.7)-(1.9).

2. Construction of unstable solutions to the linearized problem

Introducing the following growing mode ansatz of solutions

"(x, t) = "̃(x)e)t , v(x, t) = ṽ(x)e)t , q(x, t) = q̃(x)e)t (2.1)

and substituting (2.1) into (1.10) as well as omitting the tilde, one can obtain
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)" + ρ′
sv3 = 0,

)ρsv1 + [ρs ū0 − f ]v2 = 0,

)ρs ṽ + f v1e1 = µ%ṽ − ∇q − g"e2, (2.2)

divṽ = 0.

Eliminating " by using (2.2)1, we have

)ρsv1 + [ρs ū0 − f ]v2 = 0,

)ρsv2 + f v1 = µ%v2 − ∂q

∂y
, (2.3)

)2ρsv3 = )µ%v3 − )
∂q

∂z
+ gv3ρ

′
s ,

∂v2

∂y
+ ∂v3

∂z
= 0.

Fixing a spatial frequency ξ ∈ R and taking the horizontal Fourier transform of v in (2.3), 
which we denote ̂. or F . Namely,

f̂ (ξ, z) = 1√
2π

∫

R

f (y, z)e−iyξdy,

we derive that

)ρs v̂1 + [ρs ū0 − f ]v̂2 = 0,

)ρs v̂2 + f v̂1 = µ(−|ξ |2v̂2 + v̂′′
2 ) − iξ q̂, (2.4)

)2ρs v̂3 = )µ(−|ξ |2v̂3 + v̂′′
3 ) − )q̂ ′ + gv̂3ρ

′
s ,

iξ v̂2 + v̂′
3 = 0.

Denote , = iv̂1, ψ = iv̂2, . = v̂3, / = q̂ , then (2.4) can be expressed as

)ρs, + (ρs ū0 − f )ψ = 0,

)ρsψ + f , = µ(−|ξ |2ψ + ψ ′′) + ξ/, (2.5)

)2ρs. = )µ(−|ξ |2. + .′′) − )/′ + gρ′
s.,

ξψ + .′ = 0,

and

,(−∞) = ,(+∞) = 0,

ψ(−∞) = ψ(+∞) = ψ ′(−∞) = ψ ′(+∞) = 0, (2.6)

.(−∞) = .(+∞) = .′(−∞) = .′(+∞) = 0.
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Eliminating / in (2.5), we obtain

)ρs, = 1
ξ
(ρs ū0 − f ).′, (2.7)

− )2[|ξ |2(ρs.) − (ρs.
′)′] = )µ[|ξ |4. − 2|ξ |2.′′ + .′′′′] + )ξf ,′ − |ξ |2gρ′

s.,

with

,(−∞) = ,(+∞) = 0,

.(−∞) = .(+∞) = .′(−∞) = .′(+∞) = 0. (2.8)

Inspired by [27], we apply the variational method to construct the solutions of (2.7)-(2.8). 
Fixing the non-zero ξ ∈ R and s > 0. From (2.7)-(2.8), we obtain a family of the modified 
problems

−)2[|ξ |2(ρs.) − (ρs.
′)′] = sµ[|ξ |4. − 2|ξ |2.′′ + .′′′′]

−
[
f (f − ρs ū0)

ρs
.′

]′
− |ξ |2gρ′

s., (2.9)

with (2.8). We define the energy functional of (2.9) as follows

E(., s) =
∫

R

sµ[|ξ |4.2 + 2|ξ |2.′2 + .′′2]dz +
∫

R

[
f (f − ρs ū0)

ρs

]
|.′|2dz

−
∫

R

|ξ |2gρ′
s.

2dz, (2.10)

with a associated admissible set

A = {. ∈ H 2(R)|J (.) :=
∫

R

ρs(|ξ |2|.|2 + |.′|2)dz = 1}. (2.11)

Thus, one can find −)2 by minimizing

−)2(|ξ |) = α(|ξ |, s) := inf
.∈A

E(., s). (2.12)

In the following, we need to show that a minimizer of (2.11) exists for inf.∈A E(., s) > −∞
and that the corresponding Euler-Lagrange equations are equivalent to (2.7) and (2.8).

Lemma 2.1. For any fixed ξ with |ξ | /= 0, inf.∈A E(., s) > −∞. Assume that the parameter 
f + ū0 supz∈R ρs and there exists a .̄ ∈ A, such that E(.̄, s) < 0, then E(., s) achieves its 
minimum on A. Additionally, let . be a minimizer and −)2 := E(.), then (., )2) satisfies (2.7)
and (2.8). Furthermore, . ∈ Hk(R) for any positive integer k.
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Proof. The proof is divided into two steps. Step1: Existence of minimizer. It is clear that

∫

R

[
f (f − ρs ū0)

ρs

]
|.′|2dz+ −

∣∣∣∣

∣∣∣∣
f (f − ρs ū0)

ρ2
s

∣∣∣∣

∣∣∣∣
L∞(R)

∫

R

ρs |.′|2dz

+ −
∣∣∣∣

∣∣∣∣
f (f − ρs ū0)

ρ2
s

∣∣∣∣

∣∣∣∣
L∞(R)

. (2.13)

Clearly, we find

−
∫

R

|ξ |2gρ′
s.

2dz + −g

∣∣∣∣

∣∣∣∣
ρ′

s

ρs

∣∣∣∣

∣∣∣∣
L∞(R)

. (2.14)

Consequently, from (2.13)-(2.14), one gets

E(., s) + −
[∣∣∣∣

∣∣∣∣
f (f − ρs ū0)

ρ2
s

∣∣∣∣

∣∣∣∣
L∞(R)

+ g

∣∣∣∣

∣∣∣∣
ρ′

s

ρs

∣∣∣∣

∣∣∣∣
L∞(R)

]
. (2.15)

Assume that .n ∈ A is a minimizing sequence, then E(.n, s) is bounded. From (2.10) and 
(2.11), we obtain .n is bounded in H 2(R). As a result, there exists a . ∈ H 2(R) and subse-
quence of {.n} which is also denoted by {.n}, such that .n converges weakly to . in H 2(R)

and converges strongly to . in H 1
Loc(R). Therefore, with the help of the lower semi-continuity, 

locally strongly convergence and E(.̄, s) < 0 for some .̄ ∈ A, we obtain

E(., s) ≤ lim
n→∞ infE(.n, s) = inf

.̄∈A
E(.̄, s) < 0, and 0 < J(.) ≤ 1.

Next, we show that J (.) = 1 by using the method of contradiction. Suppose that J (.) < 1. By 
the homogeneity of J we derive that there exists α + 1 such that J (α.) = 1. Namely, we obtain 
α. ∈ A. Thus, we have

E(α., s) = α2E(., s) ≤ α2 inf
A

E < inf
A

E < 0,

which is a contradiction since α. ∈ A. Consequently, J (.) = 1. Namely, E(., s) achieves min-
imum on A.

Step 2: The minimizer . ∈ Hk . Clearly, (2.12) is equivalent to

−)2(|ξ |) = inf
.∈H 2(R)

E(., s)

J (.)
. (2.16)

Taking

.(τ ) = . + τ.0, ∀.0 ∈ H 2(R) and ∀τ ∈R.

Therefore, from (2.16), we have I (τ ) := E(.(τ ), s) + )2(|ξ |)J (.(τ )) + 0, which implies that 
I (τ ) + 0, ∀τ ∈R and I (0) = 0. Thus, I ′(0) = 0. With the help of (2.10), we have
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I ′(τ ) = 2
∫

R

sµ[|ξ |4(. + τ.0).0 + 2|ξ |2(.′ + τ.′
0).

′
0 + (.′′ + τ.′′

0).′′
0]dz

+ 2
∫

R

[
f (f − ū0)

ρs

]
(.′ + τ.′

0).
′
0dz − 2

∫

R

|ξ |2gρ′
s(. + τ.0).0dz

+ 2)2
∫

R

ρs[|ξ |2(. + τ.0).0 + (.′ + τ.′
0).

′
0]dz.

Hence, it gets from 0 = I ′(0) that

sµ

∫

R

(|ξ |4..0 + 2|ξ |2.′.′
0 + .′′.′′

0)dz (2.17)

=
∫

R

[g|ξ |2ρ′
s..0 − f (f − ρs ū0)

ρs
.′.′

0 − )2(ρs |ξ |2..0 + ρs.
′.′

0)]dz.

Suppose that .0 is compactly supported in R, thus, we find that . satisfies (2.9) in the weak 
sense. Additionally, from (2.17), we obtain

∫

R

.′′.′′
0dz = 1

sµ

∫

R

{
g|ξ |2ρ′

s. +
[
f (f − ρs ū0)

ρs
.′

]′
− )2(ρs |ξ |2. − (ρs.

′)′)

+ sµ(−|ξ |4. + 2|ξ |2.′′)
}
.0dz (2.18)

:=
∫

R

h.0dz.

For any n + 1, choosing .1,n ∈ C∞
0 (R) satisfying .1,n(z) ≡ 1 for |z| ≤ n and taking .0 =

.1,n

∫ z
−∞ .2dτ with .2 ∈ C∞

0 (R). Then we obtain

∫

R

(.′′.1,n).
′
2dz =

∫

R

[h.1,n(

z∫

−∞
.2)dτ − .′′.′′

1,n(

z∫

−∞
.2dτ ) − 2.′′.′

1,n.2]dz

=
∫

R

[
+∞∫

z

(h.1,n − .′′.′′
1,n)dτ − 2.′′.′

1,n].2dz, (2.19)

which leads to .′′ ∈ H 1
Loc(R), and

.′′′ = (.1,n.
′′)′ =

+∞∫

z

(h.1,n − .′′.′′
1,n)dτ − 2.′′.′

1,n. (2.20)
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Furthermore, through integration by parts, (2.18) can be rewritten as

−
∫

R

.′′′.′
0dz = 1

sµ

∫

R

{
g|ξ |2ρ′

s. −
[
f (f − ρs ū0)

ρs
.′

]′
− )2(ρs |ξ |2. − (ρs.

′)′)

+ sµ(−|ξ |4. + 2|ξ |2.′′)
}
.0dz, (2.21)

which implies that .′′′′ ∈ L2(R). Thus, . ∈ H 4
Loc(R) ∩ C

3, 1
2

Loc(R), and (2.8)2 is valid as well as 
.′′(∞) = .′′′(∞) = 0 holds true. Utilizing these facts and Hölder’s inequality and integrations 
by parts, we obtain

∫

R

|.′′′|2dz = −
∫

R

.′′.′′′′dz ≤ ||.′′||L2(R)||.′′′′||L2(R), (2.22)

which implies that .′′′′ ∈ L2(R). As a result, . ∈ H 4(R) and solves (2.7)-(2.8). Furthermore, we 
obtain . ∈ Hk(R), k ∈ Z+. !

In the following, we need to show that there exists a fixed point such that s = µ by using the 
intermediate value theorem. To this end, we first define

β = inf
.∈B

∫

R

f (f − ū0ρs)

ρs
|.′|2dz, (2.23)

where B = {. ∈ H 2(R)| 
∫
R gρ′

s |.|2dz = 1}. It is worth noting that (1.5) ensures that B /= ∅.
Then, we first give some properties of α(s) as a function of s.

Lemma 2.2. For each fixed |ξ | ∈ (
√

β, +∞), the function α(|ξ |, s), s ∈ (0, +∞) has the follow-
ing properties:

(1) Assume that the parameter f satisfies f + ū0 supz∈R ρs , then, for any a, b ∈ (
√

β, +∞)

with a < b, there exist constants c1, c2 > 0 depending on ρs, f, µ, g, a, b, such that

α(|ξ |, s) ≤ −c1 + sc2, ∀|ξ | ∈ [a, b]. (2.24)

(2) α(|ξ |, s) ∈ C0,1
Loc(0, +∞) is strictly increasing.

Proof. If |ξ |2 > β , then, there exists .̃ ∈ B, such that

0 <

∫
R

f (f −ū0ρs )
ρs

|.̃′|2dz
∫
R gρ′

s |.̃|2dz
< |ξ |2. (2.25)
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Indeed, suppose that

∫
R

f (f −ū0ρs )
ρs

|.̃′|2dz
∫
R gρ′

s |.̃|2dz
+ |ξ |2, ∀.̃ ∈ B. (2.26)

Then, from (2.26), we deduce that

β = inf
.∈B

∫

R

f (f − ū0ρs)

ρs
|.′|2dz = inf

.̃∈B

∫
R

f (f −ū0ρs )
ρs

|.̃′|2dz
∫
R gρ′

s |.̃|2dz
+ |ξ |2,

which is a contradiction since |ξ |2 > β . Therefore, from (2.25), we have

−
∫

R

f (f − ū0ρs)

ρs
|.̃′|2dz +

∫

R

|ξ |2gρ′
s |.̃|2dz > 0, for |ξ |2 > β. (2.27)

With the help of (1.5), we obtain

{ −
∫
R[f (f −ρs ū0)

ρs
]|.̃′|2dz

∫
R ρs(|ξ |2|.̃|2 + |.̃′|2)dz

+
∫
R |ξ |2gρ′

s.̃
2dz∫

R ρs(|ξ |2|.̃|2 + |.̃′|2)dz

}
:= c1 > 0 (2.28)

and

µ

∫
R[|ξ |4.̃2 + 2|ξ |2.̃′2 + .̃′′2]dz∫

R ρs(|ξ |2|.̃|2 + |.̃′|2)dz
:= c2 > 0. (2.29)

Using (2.12) and (2.16), we deduce that

α(|ξ |, s) = inf
.∈H 2(R)

E(., s)

J (.)

≤
∫
R sµ[|ξ |4.̃2 + 2|ξ |2.̃′2 + .̃′′2]dz +

∫
R[f (f −ρs ū0)

ρs
]|.̃′|2dz −

∫
R |ξ |2gρ′

s.̃
2dz

∫
R ρs(|ξ |2|.̃|2 + |.̃′|2)dz

≤ sµ

∫
R[|ξ |4.̃2 + 2|ξ |2.̃′2 + .̃′′2]dz∫

R ρs(|ξ |2|.̃|2 + |.̃′|2)dz
−

{ ∫
R[f (ρs ū0−f )

ρs
]|.̃′|2dz

∫
R ρs(|ξ |2|.̃|2 + |.̃′|2)dz

(2.30)

+
∫
R |ξ |2gρ′

s.̃
2dz∫

R ρs(|ξ |2|.̃|2 + |.̃′|2)dz

}

:= −c1 + sc2,

where the positive constant c1, c2 depending on ρs, f, µ, g, a, b.
Next, we shall show that the assertion (2) is valid. Let I := [a, b] ⊂ (

√
β, +∞) be a bounded 

interval and
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E1(.) = µ

∫

R

[|ξ |4.2 + 2|ξ |2.′2 + .′′2]dz. (2.31)

For any s ∈ I , there exists a minimizing sequence {.n
s } ⊂ A of inf.∈A E(., s) such that

|α(|ξ |, s) − E(.n
s , s)| < 1. (2.32)

With the help of (2.10), (2.15), (2.24), (2.32), we obtain

E1(.) = 1
s

[
E(., s) +

∫

R

f (ρs ū0 − f )

ρs
|.′|2dz + g

∫

R

|ξ |2ρ′
s.dz

]
≤ L, (2.33)

where

L = 1
a

[
max

{∣∣∣∣

∣∣∣∣
f (ρs ū0 − f )

ρs

∣∣∣∣

∣∣∣∣
L∞(R)

+ g

∣∣∣∣

∣∣∣∣
ρ′

s

ρs

∣∣∣∣

∣∣∣∣
L∞(R)

,1 + | − c1 + bc2|
}

+
∣∣∣∣

∣∣∣∣
f (ρs ū0 − f )

ρs

∣∣∣∣

∣∣∣∣
L∞(R)

+ g||ρ
′
s

ρs
||L∞(R)

]
.

For any si ∈ I (i = 1, 2), let {.n
si
} ⊂ A be minimizing sequences of inf.∈A E(., si). From 

(2.10) and (2.31), we drive

E(.n
s2

, s1) =
∫

R

s1µ[|ξ |4|.n
s2

|2 + 2|ξ |2|.n′
s2

|2 + |.n′′
s2

|2]dz +
∫

R

[
f (f − ρs ū0)

ρs

]
|.n

s2
|2dz

−
∫

R

|ξ |2gρ′
s |.n

s2
|2dz (2.34)

= E(.n
s2

, s2) + (s1 − s2)E1(.
n
s2

),

which implies that

α(|ξ |, s1) ≤ lim sup
n→∞

E(.n
s2

, s1) ≤ lim sup
n→∞

E(.n
s2

, s2) + |s1 − s2| lim sup
n→∞

E1(.
n
s2

)

≤ α(|ξ |, s2) + L|s1 − s2|. (2.35)

Reversing the role of the subscript 1 and 2 of (2.35), we find that

|α(|ξ |, s1) − α(|ξ |, s2)| ≤ L|s1 − s2|,

which yields α(|ξ |, s) ∈ C0,1
Loc(0, ∞).

In addition, from (2.34), due to s1 ≤ s2 and E1(.
n
s2

) + 0, we obtain

E(.n
s2

, s1) ≤ E(.n
s2

, s2).

Hence, one can get that
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α(|ξ |, s1) = inf
.∈A

E(., s1) ≤ lim sup
n→∞

E(.n
s2

, s1) ≤ lim sup
n→∞

E(.n
s2

, s2) = α(|ξ |, s2), (2.36)

which implies that α(|ξ |, s) is non-decreasing on (0, +∞). Suppose by way of contradiction that 
α(|ξ |, s1) = α(|ξ |, s2). From (2.36), we obtain

s1E1(.s2) = s2E1(.s2),

which leads to .s2 = 0. Consequently, the conclusion (2) holds true. !

Given |ξ | ∈ (
√

β, +∞), from (2.24), there exists a s0 > 0 depending on the parameters 
ρs , f, µ, g, |ξ |, such that for any s ≤ s0, α(|ξ |, s) < 0. Let

G|ξ | := sup{s|α(|ξ |, τ ) < 0, ∀τ ∈ (0, s)} > 0, (2.37)

which allows us to define )(|ξ |, s) = √−α(|ξ |, s), ∀s ∈ (0, G|ξ |). According to Lemma 2.1 and 
Lemma 2.2, we obtain the following existence of (2.9).

Lemma 2.3. Assume that the parameter f satisfies f + ū0 supz∈R ρs , then, for each |ξ | ∈
(
√

β, +∞) and s ∈ (0, G|ξ |), there exists a solution .(|ξ |, z) /= 0 with )(|ξ |, s) > 0 for the 
(2.8)-(2.9). In addition, )(|ξ |, s) ∈ C0,1

Loc(0, G|ξ |) is strictly decreasing. Moreover, .(|ξ |, s) ∈
Hk(R) for any positive integer.

By the intermediate value theorem, we have the following result.

Lemma 2.4. Suppose that the parameter f satisfies f + ū0 supz∈R ρs and |ξ | ∈ (
√

β, +∞), then 
there is a unique s ∈ (0, G|ξ |), such that )(|ξ |, s) = √−α(|ξ |, s) > 0 and s = )(|ξ |, s).

Proof. The function φ(s) := s
)(|ξ |,s) is continuous and strictly increasing on (0, G|ξ |) since 

)(|ξ |, s) ∈ C0,1
Loc(0, G|ξ |) and α(|ξ |, s) is strictly increasing. Additionally, with the help of (2.24)

and (2.37), one can see that )(|ξ |, s) is bounded as s ∈ (0, s0) and lims→0+ φ(s) = 0. In addi-
tion, by the definition of G|ξ |, we obtain lims→G−

|ξ |
)(|ξ |, s) = 0+ and lims→G−

|ξ |
φ(s) = +∞. As 

a result, the intermediate value theorem implies that there exists a unique s ∈ (0, Gs) such that 
φ(s) = 1. !

From Lemma 2.3 and Lemma 2.4, we conclude the existence of the problem (2.7)-(2.8).

Theorem 2.1. Suppose that the parameter f satisfies f + ū0 supz∈R ρs and |ξ | ∈ (
√

β, +∞), 
there exist . = .(|ξ |, z) /= 0, , = ,(|ξ |, z) /= 0 satisfies linearized equations (2.7)-(2.8). Further 
(., ,) ∈ Hk(R) × Hk−1(R) for any positive integer k + 1.

2.1. Behavior of the solutions with respect to ξ

In this subsection, we investigate the behavior of the solutions from Theorem 2.1 in terms 
of ξ .
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Lemma 2.5. The function ) : (√β, ∞) → (0, ∞) is continuous and satisfies

sup√
β<|ξ |<+∞

)(|ξ |) ≤
{∣∣∣∣

∣∣∣∣

√
f (f − ρs ū0)

ρ2
s

∣∣∣∣

∣∣∣∣
L∞(R)

+ √
g

∣∣∣∣

∣∣∣∣

√
ρ′

s

ρs

∣∣∣∣

∣∣∣∣
L∞(R)

}
. (2.38)

Proof. From (2.15), we obtain

α(|ξ |, s) = inf
.∈A

E(., s) + −
[∣∣∣∣

∣∣∣∣
f (f − ρs ū0)

ρ2
s

∣∣∣∣

∣∣∣∣
L∞(R)

+ g

∣∣∣∣

∣∣∣∣
ρ′

s

ρs

∣∣∣∣

∣∣∣∣
L∞(R)

]
.

Thus, we deduce

)(|ξ |, s) =
√

−α(|ξ |, s) ≤
[√∣∣∣∣

∣∣∣∣
f (f − ρs ū0)

ρ2
s

∣∣∣∣

∣∣∣∣
L∞(R)

+
√

g

∣∣∣∣

∣∣∣∣
ρ′

s

ρs

∣∣∣∣

∣∣∣∣
L∞(R)

]
,

which implies that (2.38) is valid.
In the following, we show the continuity of ) with respect to ξ . It suffices to show the con-

tinuity of α(|ξ |, s) since )(|ξ |, s) = √−α(|ξ |, s). For any fixed ξ0 ∈ (
√

β, +∞), there exists an 
interval [a, b] ⊂ (

√
β, +∞) such that |ξ0| ∈ (a, b). Thus, we assume |ξ | → |ξ0| with |ξ | ∈ (a, b). 

Denote |ξ |2 = δ + |ξ0|2, this leads to δ → 0 as |ξ | → |ξ0|.
According to Lemma 2.1, for any |ξ | ∈ (a, b), there exists .|ξ | ∈ A such that

α(|ξ |, s) =
∫

R

sµ[|ξ |4.2
|ξ | + 2|ξ |2.′2

|ξ | + .′′2
|ξ | ]dz +

∫

R

[
f (f − ρs ū0)

ρs

]
|.′

|ξ ||2dz

−
∫

R

|ξ |2gρ′
s.

2
|ξ |dz. (2.39)

From (2.24), we get

sµ

∫

R

|.′′
|ξ ||2dz ≤ α(|ξ |, s) +

∫

R

[
f (ρs ū0 − f )

ρs

]
|.′

|ξ ||2dz +
∫

R

|ξ |2gρ′
s.

2
|ξ |dz,

which leads to
∫

R

|.′′
|ξ ||2dz ≤ −c1 + c2s

sµ
+ 1

sµ

[∣∣∣∣

∣∣∣∣
f (f − ρs ū0)

ρ2
s

∣∣∣∣

∣∣∣∣
L∞(R)

+ g

∣∣∣∣

∣∣∣∣
ρ′

s

ρs

∣∣∣∣

∣∣∣∣
L∞(R)

]
. (2.40)

Additionally, from (2.11), we find that

∫

R

|.′
|ξ ||2dz ≤ 1

infz∈R ρs
,

∫

R

|.|ξ ||2dz ≤ 1
a2 infz∈R ρs

. (2.41)

Consequently, we have
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||.|ξ |||H 2(R) ≤ c3,

where c3 depends on ρs, f, µ, s, g, a, b.
Substituting |ξ |2 = |ξ0|2 + δ into (2.39), we derive that

α(|ξ |, s) =
∫

R

sµ[|ξ0|4.2
|ξ | + 2|ξ0|2.′2

|ξ | + |.′′|2|ξ |]dz +
∫

R

[
f (f − ρs ū0)

ρs

]
|.′

|ξ ||2dz

−
∫

R

|ξ0|2gρ′
s.

2
|ξ |dz + δK(δ,.|ξ |) (2.42)

+ α(|ξ0|, s) + δK(δ,.|ξ |),

where

K(δ,.|ξ |) =
∫

R

sµ[(2|ξ0| + δ)|.|ξ ||2 + 2|.′
|ξ ||2]dz −

∫

R

gρ′
s.

2
|ξ |dz.

Similarly, according to Lemma 2.1, for any |ξ0| ∈ (a, b), there exists .|ξ0| ∈ A such that

α(|ξ0|, s) =
∫

R

sµ[|ξ0|4.2
|ξ0| + 2|ξ0|2.′2

|ξ0| + |.′′|2|ξ0|]dz +
∫

R

[
f (f − ρs ū0)

ρs

]
|.′

|ξ0||
2dz

−
∫

R

|ξ0|2gρ′
s.

2
|ξ0|dz. (2.43)

Substituting |ξ0|2 = |ξ |2 − δ in (2.43), we also obtain

α(|ξ0|, s) + α(|ξ |, s) − δK(−δ,.|ξ0|). (2.44)

Combining (2.42) and (2.44), we have

δK(δ,.|ξ |) ≤ α(|ξ |, s) − α(|ξ0|, s) ≤ δK(−δ,.|ξ0|),

which implies that

)(|ξ |, s) → )(|ξ0|, s), ∀s ∈ (0,G|ξ |) as ξ → ξ0. (2.45)

With the help of (2.45) and Lemma 2.4, we find that for any ε > 0, there exists δ > 0 such that 
|)(|ξ |, s|ξ0|) − )(|ξ0|, s|ξ0|)| < ε and s|ξ0| = )(|ξ0|, s|ξ0|) =

√
−α(|ξ0|, s|ξ0|) as ||ξ | − |ξ0|| < δ. 

Additionally, for each fixed ξ /= 0, )(|ξ |, s) is strictly decreasing and continuous on (0, G|ξ |), 
and there exists a unique s|ξ | ∈ (0, G|ξ |) such that )(|ξ |, s|ξ |) = s|ξ |. As a result, we obtain 
|)(|ξ |, s|ξ |) −)(|ξ0|, s|ξ0|)| ≤ |)(|ξ |, s|ξ0|) −)(|ξ0|, s|ξ0|)| < ε (See Fig. 1). Namely, )(|ξ |) is con-
tinuous. !
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Fig. 1. Sketch of proof in Lemma 2.5: |)(|ξ |, s|ξ |) − )(|ξ0|, s|ξ0|)| ≤ |)(|ξ |, s|ξ0|) − )(|ξ0|, s|ξ0|)|.

2.2. Construction of a solution to the system (2.5)-(2.6)

From (2.7)1, we infer that the component , of the solution to the system (2.7)-(2.8) is given 
by

,(ξ, z) = ()ρsξ)−1(ρs ū0 − f ).′. (2.46)

In this subsection, we shall apply the solution of (2.7)-(2.8) to construct a solution of the system 
(2.5)-(2.6). Namely, we have the following result.

Theorem 2.2. Suppose that the parameter f satisfies f + ū0 supz∈R ρs . Then for each |ξ | ∈
(
√

β, +∞), there exists a solution (,, ψ, ., /) = (,(ξ, z), ψ(ξ, z), .(|ξ |, z), /(|ξ |, z)) with 
) = )(|ξ |) > 0 to (2.5)-(2.6). Furthermore, the solution (,, ψ, ., /) ∈ Hk−1(R) × Hk−1(R) ×
Hk(R) × Hk−3(R) for any positive integer k + 3.

Proof. Using Theorem 2.1 and (2.46), we can construct a solution (,, ., )) = (,(ξ, z),
.(ξ, z), )(|ξ |)) satisfying (2.7)-(2.8). For ) > 0, . ∈ A ∩Hk(R) and , ∈ Hk−1(R), multiplying 
(2.5)2 × ξ and utilizing (2.5)4, we find / is given by

/ = /(|ξ |, z) = [µ.′′′ − (µ|ξ |2 + )ρs).
′ + f ξ,]|ξ |−2. (2.47)

Thus,

(,,ψ,.,/) = (,,−1
ξ
.′,.,/)

is a solution of (2.5)-(2.6). !

Remark 2.1. For each fixed z, the solution (,(ξ, z), ψ(ξ, z), .(|ξ |, z), /(|ξ |, z)) constructed in 
Theorem 2.2 possesses the following properties:

(1) )(|ξ |), .(|ξ |, z) and /(|ξ |, z) are even on ξ .
(2) ,(ξ, z) and ψ(ξ, z) are old on ξ .
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Next, we shall provide an estimate of the solution (,, ψ, ., /) with ξ varying. To illustrate the 
dependence on ξ , we denote ,(ξ) = ,(ξ, z), ψ(ξ) = ψ(ξ, z), .(ξ) = .(ξ, z), /(ξ) = /(ξ, z).

Lemma 2.6. Suppose that the parameter f satisfies f + ū0 supz∈R ρs . Let 
√

β < R1 ≤ |ξ | ≤ R2, 
,(ξ), ψ(ξ), .(ξ), /(ξ) be a solution constructed as in Theorem 2.2. Then, for any positive 
integer k + 3, there exist positive constants Ak, Bk, Ck and Dk such that

||.(ξ)||Hk(R) ≤ Ak, ||/(ξ)||Hk−3(R) ≤ Bk, (2.48)

||,(ξ)||Hk−1(R) ≤ Ck, ||ψ(ξ)||Hk−1(R) ≤ Dk. (2.49)

In addition

||.||L2(R) > 0, (2.50)

where the constants Ak, Bk, Ck and Dk depend on R1, R2, ρs , µ, g and f .

Proof. Throughout the proof, we denote by C by a positive constant which may vary from line 
to line, and depend on R1, R2, ρs , µ, g and f .

(2.50) is clear since . ∈ A. With the help of Lemma 2.5, we get

m ≤ )(|ξ |) ≤ M, ∀|ξ | ∈ [R1,R2], (2.51)

where the constants m, M depend on R1, R2, ρs , µ, g and f . Therefore, combining (2.40) and 
(2.41), we deduce that

||.||H 2(R) ≤ C. (2.52)

By virtue of (2.46) and ψ(ξ) = − 1
ξ .′, we find

||,||H 1(R) ≤ C, ||ψ ||H 1(R) ≤ C. (2.53)

Moreover, the equation (2.7)2 can be rewritten as

.′′′′ = −|ξ |4. + 2|ξ |2.′′ − 1
)µ

{
)2[|ξ |2(ρs.) − (ρs.

′)′] − )ξf ,′ + |ξ |2gρ′
s.

}
,

which leads to
∫

R

|.′′′′|2dz ≤ C. (2.54)

Then using integration by parts and Hölder inequality, we obtain

∫

R

|.′′′|2dz = −
∫

R

.′′.′′′′dz ≤ (

∫

R

|.′′|2dz)
1
2 (

∫

R

|.′′′′|2dz)
1
2 ≤ C. (2.55)
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Consequently, from (2.52), (2.54) and (2.55), we derive

||.||H 4(R) ≤ C. (2.56)

Similarly, from (2.46) and ψ(ξ) = − 1
ξ .′ as well as (2.47), we obtain

||,||H 3(R) ≤ C, ||ψ ||H 3(R) ≤ C, ||/||H 1(R) ≤ C. (2.57)

As a result, differentiating (2.7)2 and using (2.56)-(2.57), repeating the above process, we obtain 
the inequality (2.48) and (2.49). !

2.3. Exponential growth rate

In this subsection, we shall apply the Fourier synthesis to construct growing solutions to (1.10)
for any fixed spatial frequency ξ ∈R with |ξ | > √

β .

Theorem 2.3. Assume that the parameter f satisfies f + ū0 supz∈R ρs . Let 
√

β < R1 < R2 <

+∞ and h ∈ C∞
0 ((R1, R2)) be a real-valued function. For ξ ∈ R with |ξ | ∈ (

√
β, +∞), define

(v̂1(ξ, z), v̂2(ξ, z), v̂3(ξ, z), q̂(ξ, z)) = (−i,(ξ, z),−iψ(ξ, z),.(|ξ |, z),/(|ξ |, z)), (2.58)

where (,(ξ, z), ψ(ξ, z), .(ξ, z), /(ξ, z)) with )(|ξ |) > 0 is the solution constructed by Theo-
rem 2.2. Set

"(t, y, z) = 1√
2π

∫

R

[−ρ′
sh(|ξ |)v̂3(ξ, z)e)(|ξ |)t eiyξ ]dξ,

v(t, y, z) = 1√
2π

∫

R

[)(|ξ |)h(|ξ |)v̂(ξ, z)e)(|ξ |)t eiyξ ]dξ, (2.59)

q(t, y, z) = 1√
2π

∫

R

[)(|ξ |)h(|ξ |)q̂(ξ, z)e)(|ξ |)t eiyξ ]dξ .

Then ("(t, y, z), v(t, v, z), q(t, y, z)) is a real-valued solution of the linearized equations (1.10). 
Moreover, for any fixed ξ with |ξ | > √

β , the following estimate is valid

||"(0)||Hk(R2) + ||v(0)||(Hk(R2))3 + ||q(0)||Hk(R2) (2.60)

≤ Dk[
∫

R

(1 + |ξ |2)|h(|ξ |)|2dξ ] 1
2 ,

where Dk is a constant depending on R1, R2, ρs , µ, g and f . Furthermore, for any fixed 
t > 0, we have ("(t, y, z), v1(t, y, z), v2(t, y, z), v3(t, y, z), q(t, y, z)) ∈ Hk(R2) ×Hk−1(R2) ×
Hk−1(R2) × Hk(R2) × Hk−3(R2), and
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et)0(|ξ |)||"(0)||Hk(R2) ≤ ||"(t)||Hk(R2) ≤ et(||"(0)||Hk(R2),

et)0(|ξ |)||v(0)||(Hk(R2))3 ≤ ||v(t)||(Hk(R2))3 ≤ et(||v(0)||(Hk(R2))3 , (2.61)

et)0(|ξ |)||q(0)||Hk(R2) ≤ ||q(t)||Hk(R2) ≤ et(||q(0)||Hk(R2),

where

)0 = inf
|ξ |∈[R1,R2]

)(|ξ |) > 0, (2.62)

as well as ( is given by (1.11). Particularly, if h(|ξ |) /= 0, then ||v3(0)||Hk(R2) > 0. In addition, 
we can choose proper constants R1, R2 such that )0 = (

2 .

Proof. According to Theorem 2.2, (,(ξ, z), ψ(ξ, z), .(ξ, z), /(ξ, z)) is the solution of (2.5)-
(2.6). Thus, (v̂(ξ, z), q̂(ξ, z)) is the solution of the equations (2.4). As a result, for any fixed 
|ξ | > √

β ,

"̃(t, y, z) = −ρ′
sh(|ξ |)v̂3(ξ, z)e)(|ξ |)t eiyξ ,

ṽ(t, y, z) = )(|ξ |)h(|ξ |)v̂(ξ, z)e)(|ξ |)t eiyξ ,

q̃(t, y, z) = )(|ξ |)h(|ξ |)q̂(ξ, z)e)(|ξ |)t eiyξ ,

is the solution of the equations (1.10). Moreover, since h ∈ C∞
0 ((R1, R2)), by (2.48)-(2.49), we 

deduce that

sup
ξ∈supp(h)

||∂k "̃(ξ, ·)||L∞(R2) < ∞, sup
ξ∈supp(h)

||∂k ṽ(ξ, ·)||L∞(R2) < ∞,

sup
ξ∈supp(h)

||∂kq̃(ξ, ·)||L∞(R2) < ∞, ∀k ∈N,

which implies that the solution given by (2.59) is also a solution of the linearized equations 
(1.10). Additionally, with the help of Remark 2.1 and (2.58), we obtain "(t, y, z) and v(t, y, z)
as well as q(t, y, z) are real-valued functions.

Next, we shall show the estimate (2.60). In fact, combining the estimate (2.48) and the fact h
is compactly supported, we deduce that

||"(0)||2
Hk(R2)

=
k∑

j=0

∫

R2

(1 + |ξ |2)k−j |h(|ξ |)|2|∂j
z (ρ′

s v̂3(ξ, z))|2dξdz

=
k∑

j=0

∫

R

(1 + |ξ |2)k−j |h(|ξ |)|2||∂j
z (ρ′

s.(|ξ |, z))||2
L2(R)

dξ

≤ Dk

∫

R

[(1 + |ξ |2)k+2|h(|ξ |)|2]dξ .

Similarly, using the same way, we have
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||v(0)||2
Hk(R2)

≤ Dk

∫

R

[(1 + |ξ |2)k+2|h(|ξ |)|2]dξ,

||q(0)||2
Hk(R2)

≤ Dk

∫

R

[(1 + |ξ |2)k+2|h(|ξ |)|2]dξ .

Thus, the estimate (2.60) is valid. From (2.50), we derive ||w(0)||Hk(R2) > 0. (2.61) is clearly 
valid since that fact e)(|ξ |)t is strict increasing on t . Finally, the assertion )0 = (

2 follows from 
Lemma 2.5. !

2.4. Uniqueness of solutions to the linearized equations

In order to show the main result in this paper, we need to discuss the uniqueness of solutions 
to the linearized equations (1.10). To this end, we introduce the relevant function space

QT ={(",v, q)|" ∈ C0([0, T ],L2(R2)),∇q ∈ L2(0, T ;H 1
Loc(R

2)),

v1 ∈ C0([0, T ],L2(R2)), v1t ∈ L2((0, T ) ×R2),

ṽ ∈ C0([0, T ], (L2(R2))2) ∩ L2(0, T ; (H 2(R2))2),

ṽt ∈ (L2((0, T ) ×R2))2and divṽ = 0}.

Thus, we have the following result.

Theorem 2.4. The strong solution of the linearized equations (1.10) is unique.

Proof. Let ("i , vi , qi) ∈ QT (i = 1, 2) be two strong solutions of (1.10) with ("i (0), vi (0)) =
("i

0, v
i
0). Denote (", v, q) = ("1 − "2, v1 − v2, q1 − q2) ∈ QT . Thus, (", v, q) is also a strong 

solution of (1.10) with ("(0), v(0)) = (0, 0).
Multiplying (1.10)2, (1.10)3 by v1, and ṽ, respectively, and integrating by parts over (0, t) ×

R2, we obtain

t∫

0

∫

R2

ρs
∂v1

∂t
v1dydzds +

t∫

0

∫

R2

[ρs ū0 − f ]v2v1dydzds = 0, (2.63)

and

t∫

0

∫

R2

ρs
∂ ṽ
∂t

· ṽdydzds +
t∫

0

∫

R2

f v2v1dydzds = −µ

t∫

0

∫

R2

|∇ṽ|2dydzds

− g

t∫

0

∫

R2

"v3dydzds. (2.64)

Then, with the help of Cauchy’s inequality, (2.63) leads to
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∫

R2

ρs |v1|2dydz ≤
∣∣∣∣

∣∣∣∣
ρs ū0 − f

ρs

∣∣∣∣

∣∣∣∣
L∞(R)

t∫

0

∫

R2

ρs |v1|2dydzds

+
∣∣∣∣

∣∣∣∣
ρs ū0 − f

ρs

∣∣∣∣

∣∣∣∣
L∞(R)

t∫

0

∫

R2

ρs |v2|2dydzds. (2.65)

Using the same process as [27], from (1.10)1, we derive

"(t, y, z) =
t∫

0

v3ρ
′
sds, ∀t > 0. (2.66)

Then, utilizing the Fubini’s theorem, we deduce that

−g

t∫

0

∫

R2

"v3dxdτ ≤ g
T

2

∣∣∣∣

∣∣∣∣
ρ′

s

ρs

∣∣∣∣

∣∣∣∣
L∞(R)

t∫

0

ρs |v3|2dydzdτ. (2.67)

Substituting (2.67) into (2.64), we derive that

∫

R2

ρs
∂ ṽ
∂t

· ṽdydz + 2µ

t∫

0

∫

R2

|∇ṽ|2dydzds

≤
∣∣∣∣

∣∣∣∣
ρs ū0 − f

ρs

∣∣∣∣

∣∣∣∣
L∞(R)

t∫

0

ρs |v2|2dydzds (2.68)

+ T g

2

∣∣∣∣

∣∣∣∣
ρ′

s

ρs

∣∣∣∣

∣∣∣∣
L∞(R)

t∫

0

ρs |v3|2dydzds.

Therefore, combining (2.65) and (2.68), we conclude that

∫

R2

ρs |v|2dydz + 2µ

t∫

0

∫

R2

|∇ṽ|2dydzds

≤
[∣∣∣∣

∣∣∣∣
ρs ū0 − f

ρs

∣∣∣∣

∣∣∣∣
L∞(R)

+
∣∣∣∣

∣∣∣∣
f

ρs
||L∞(R)

] t∫

0

∫

R2

ρs[|v1|2 + |v2|2]dydzds

+ T g

∣∣∣∣

∣∣∣∣
ρ′

s

ρs

∣∣∣∣

∣∣∣∣
L∞(R)

t∫

0

ρs |v3|2dydzds,
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which leads to

∫

R2

ρs |v|2dydz ≤ M

t∫

0

∫

R2

ρs |v|2dydzds,

where

M = max
{∣∣∣∣

∣∣∣∣
ρs ū0 − f

ρs

∣∣∣∣

∣∣∣∣
L∞(R)

+
∣∣∣∣

∣∣∣∣
f

ρs

∣∣∣∣

∣∣∣∣
L∞(R)

, T g

∣∣∣∣

∣∣∣∣
ρ′

s

ρs

∣∣∣∣

∣∣∣∣
L∞(R)

}
.

Consequently, with the help of Grownwall’s inequality, we find

∫

R2

ρs |v|2dydz = 0, ∀t ∈ [0, T ],

which infers v = 0 since ρs > 0. Namely, v1 = v2. Finally, from (1.10)1, (1.10)3 and (2.3), we 
obtain

("1,v1,∇q1) = ("2,v2,∇q2), ∀t ∈ [0, T ]. !

3. Nonlinear energy estimates for the perturbed problems

In this section, we shall provide some estimates of the perturbed problems (1.7), which is 
necessary to show our main results. Let (", v, q) be a classical solution of (1.7) in [0, T ] × R2

for any 0 < T < T ∗.

3.1. Estimates for ||v||(L2(R2))3 and ||∇ṽ||(L2(R2))2

Lemma 3.1. Let ||"0||2L2(R2)
+||v0||2L2(R2)

≤ σ 2. Then, for any 0 < T < ∞, the solution (", v, q)

to (1.7), emanating from the initial data ("0, v0), satisfies

sup
t∈(0,T )

[||"||2
L2(R2)

+ ||v||2
(L2(R2))3 ] +

T∫

0

||∇ṽ||2
(L2(R2))2dτ ≤ C(T )σ 2.

Moreover, if ||"0||2L2(R2)
+ ||v10||2L2(R2)

+ ||ṽ0||2H 1(R2)
≤ σ 2, then, for any 0 < T < ∞, the solu-

tion (", v, q) to (1.7) satisfies

sup
t∈(0,T )

||∇ṽ||2
(L2(R2))2 +

T∫

0

[||ṽt ||2(L2(R2))2 + ||∇2ṽ||2
(L2(R2))2]dt ≤ C(T )σ 2.
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Proof. From (1.7)1 we find that for any t ∈ (0, T ],

κ1 := inf
R2

ρ0 ≤ ρ(t) ≤ sup
R2

ρ0 := κ2. (3.1)

Multiplying (1.7)i (i = 1, 2) by ", v and integrating by parts over R2, we obtain

d

dt
||"||2

L2(R2)
= −2

∫

R2

"ρ′
sv3dydz ≤ 2

∣∣∣∣

∣∣∣∣
"ρ′

s√
" + ρs

∣∣∣∣

∣∣∣∣
L2(R2)

||
√

" + ρsv3||L2(R2)

≤ 2(κ1 + inf
R2

ρs)
− 1

2 ||ρ′
s ||L∞(R2)||"||L2(R2)||

√
" + ρsv3||L2(R2), (3.2)

and
∫

R2

(" + ρs)
∂v1

∂t
v1dydz +

∫

R2

(" + ρs)[(ṽ · ∇)v1 + ū0v2]v1dydz

−
∫

R2

f v1v2dydz = 0, (3.3)

as well as
∫

R2

(" + ρs)
∂ ṽ
∂t

· ṽdydz +
∫

R2

(" + ρs)(ṽ · ∇)ṽ · ṽdydz +
∫

R2

f v1v2dydz

= −µ

∫

R2

|∇ṽ|2dydz − g

∫

R2

"v3dydz. (3.4)

With the help of (1.7)1 and (1.7)5, we deduce that
∫

R2

(" + ρs)(ṽ · ∇)v1v1dydz = 1
2

∫

R2

|v1|2
∂"

∂t
dydz. (3.5)

Similarly, we have
∫

R2

(" + ρs)(ṽ · ∇)ṽdydz = 1
2

∫

R2

|ṽ|2 ∂"

∂t
dydz. (3.6)

Then substituting (3.5), (3.6), into (3.3) and (3.4), respectively, we obtain
∫

R2

(" + ρs)
∂v
∂t

· vdydz + 1
2

∫

R2

∂"

∂t
|v|2dydz + µ

∫

R2

|∇ṽ|2dydz

= −ū0

∫

R2

(" + ρs)v1v2dydz − g

∫

R2

"v3dydz.
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Namely, we have

1
2

d

dt
||
√

" + ρsv||2
(L2(R2))3 + µ||∇ṽ||2

(L2(R2))2

= −ū0

∫

R2

(" + ρs)v1v2dydz − g

∫

R2

"v3dydz (3.7)

≤ ū0||
√

" + ρsv1||L2(R2)||
√

" + ρsv2||L2(R2)

+ g(κ1 + inf
z∈R

ρs)
− 1

2 ||"||L2(R2)||
√

" + ρsv3||L2(R2).

As a result, combining (3.2) and (3.7) and using Cauchy’s inequality, we find

d

dt
[||"||2

L2(R2)
+ ||

√
" + ρsv||2

(L2(R2))3] + µ||∇ṽ||2
(L2(R2))2

≤ C[||"||2
L2(R2)

+ ||
√

" + ρsv||2
(L2(R2))3], (3.8)

which leads to

||"||2
L2(R2)

+ ||
√

" + ρsv||2
(L2(R2))3 ≤ σ 2eCt . (3.9)

Particularly, with the help of (3.8) and (3.9), we obtain

||"||2
L2(R2)

+ ||v||2
(L2(R2))3 + µ

t∫

0

||∇ṽ||2
(L2(R2))2dτ ≤ Cσ 2eCt . (3.10)

Multiplying (1.7)3 by ṽt and integrating by parts over R2, we obtain

||
√

" + ρs ṽ||2
(L2(R2))2 + µ

d

dt
||∇ṽ||2

L2(R2)2

= −
∫

R2

(" + ρs)[ṽ · ∇ṽ] · ṽt dx − f

∫

R2

v1v2t dx − g

∫

R2

"v3t dx. (3.11)

Using Cauchy’s inequality, we deduce that

−
∫

R2

(" + ρs)[ṽ · ∇ṽ] · ṽt dx ≤ 1
4
||
√

" + ρs ṽt ||2L2(R2)
+ C||ṽ · ∇ṽ||2

L2(R2)
, (3.12)

and

−f

∫

R2

v1v2t dx ≤ 1
4
||
√

" + ρsv2t ||2L2(R2)
+ C||v1||2L2(R2)

, (3.13)

as well as
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−g

∫

R2

"v3t dx ≤ 1
4
||
√

" + ρsv3t ||2L2(R2)
+ C||"||2

L2(R2)
. (3.14)

Then, substituting (3.12)-(3.14) into (3.11), we have

1
2
||
√

" + ρs ṽ||2
(L2(R2))2 + µ

d

dt
||∇ṽ||2

(L2(R2))2

≤ C||ṽ · ∇ṽ||2
L2(R2)

+ C||v1||2L2(R2)
+ C||"||2

L2(R2)
. (3.15)

In addition, the classical regularity on the Stokes equations implies

||∇2ṽ||2
(L2(R2))2 + ||∇q||2

L2(R2)

≤ C[||
√

" + ρs ṽt ||2(L2(R2))2 + ||
√

" + ρs ṽ · ∇ṽ||2
L2(R2)

(3.16)

+ ||v1||2L2(R2)
+ ||"||2

L2(R2)
].

Then, combining (3.15) and (3.16), we obtain

1
4
||
√

" + ρs ṽt ||2(L2(R2))2 + ε||∇2ṽ||2
(L2(R2))2 + µ

d

dt
||∇ṽ||2

(L2(R2))2

≤ C||ṽ · ∇ṽ||2
L2(R2)

+ C||v1||2L2(R2)
+ C||"||2

L2(R2)
. (3.17)

Using Hölder’s inequality and interpolation inequality, we have

C||ṽ · ∇ṽ||2
L2(R2)

≤ C||ṽ||2
L∞(R2)

||∇ṽ||2
L2(R2)

≤ C||∇2ṽ||L2(R2)||ṽ||L2(R2)||∇ṽ||2
L2(R2)

(3.18)

≤ ε

2
||∇2ṽ||2

L2(R2)
+ C(ε)||∇ṽ||4

L2(R2)
||ṽ||2

L2(R2)
.

Then, substituting (3.18) into (3.17), we get

1
4
||
√

" + ρs ṽt ||2(L2(R2))2 + ε

2
||∇2ṽ||2

(L2(R2))2 + µ
d

dt
||∇ṽ||2

(L2(R2))2

≤ C||∇ṽ||4
L2(R2)

||ṽ||2
L2(R2)

+ C||v1||2L2(R2)
+ C||"||2

L2(R2)
. (3.19)

As a result, with the help of Gronwall inequality, we obtain

||∇ṽ||2
(L2(R2))2 +

t∫

0

[||
√

" + ρs ṽt ||2(L2(R2))2 + ||∇2ṽ||2
(L2(R2))2]dt ≤ CeCσ 4eCT

σ 2. (3.20)

From (3.10) and (3.20), we have
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T∫

0

||ṽ||2
(H 2(R2))2dt ≤ CeCσ 4eCT

σ 2. ! (3.21)

3.2. Estimates for ||"||H 1(R2) and ||v1||H 1(R2)

Lemma 3.2. Let ||"0||2H 1(R2)
+||v10||2H 1(R2)

+||ṽ0||2H 2(R2)
≤ σ 2. Then, for any 0 < T < T ∗, the 

solution (", v, q) to (1.7), emanating from the initial data ("0, v0), satisfies

sup
t∈(0,T )

[||∇"||2
L2(R2)

+ ||∇v1||2L2(R2)
+ ||√ρṽt ||2L2(R2)

+ ||ṽ||2
H 2(R2)

+ ||∇q||2
L2(R2)

]

+
T∫

0

[||∇ṽt ||2L2(R2)
+ ||v1t ||2L2(R2)

]ds ≤ C(T )σ 2,

where T ∗ denotes the maximal time of existence of the solution.

Proof. By taking the partial derivative of (1.7)1 with respect to y and z respectively, we obtain

∂"y

∂t
+ [ṽ · ∇"]y + v3yρ

′
s = 0, (3.22)

and

∂"z

∂t
+ [ṽ · ∇"]z + v3zρ

′
s + v3ρ

′′
s = 0. (3.23)

Then, multiplying (3.22) by "y and integrating over R2, we have

1
2

d

dt

∫

R2

|"y |2dydz +
∫

R2

"y(ṽy · ∇")dydz +
∫

R2

ρ′
sv3y"ydydz = 0. (3.24)

Similarly, from (3.23), we derive

1
2

d

dt

∫

R2

|"z|2dydz +
∫

R2

"z(ṽz · ∇")dydz +
∫

R2

(ρ′
sv3z + v3ρ

′′
s )"zdydz = 0. (3.25)

Thus, combining (3.24) and (3.25), we find

d

dt

∫

R2

|∇"|2 ≤ C||∇ṽ||L∞(R2)||∇"||2
L2(R2)

+ ||ṽ||H 1(R2)||∇"||L2(R2). (3.26)

To estimate ||"||H 1(R2), we need estimate ||∇ṽ||L∞(R2). It follows from the classical regularity 
theory for Stokes equations that
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||%ṽ||2
L4(R2)

+ ||∇q||2
L4(R2)

≤ C[||(" + ρs)ṽt ||2L4(R2)
+ ||(" + ρs)ṽ · ∇ṽ||2

L4(R2)
(3.27)

+ ||v1||2L4(R2)
+ ||"||2

L4(R2)
].

In addition, with the help of Hölder inequality and Gagliardo-Nirenberg inequality, we find

||ρṽ · ∇ṽ||2
L4(R2)

≤ C||ṽ||2
L8(R2)

||∇ṽ||2
L8(R2)

(3.28)

≤ C||ṽ||
3
4
L2(R2)

||∇ṽ||
3
2
L2(R2)

||∇2ṽ||
7
4
L2(R2)

.

Thus, combining (3.27) and (3.28), we derive

d

dt
||∇"||2

L2(R2)

≤ ε||∇ṽt ||2L2(R2)
+ C(ε)||ṽt ||2L2(R2)

+ C||ṽ||2
H 1(R2)

(3.29)

+ C||ṽ||
3
4
L2(R2)

||∇ṽ||
3
2
L2(R2)

||∇2ṽ||
7
4
L2(R2)

+ ||v1||2L2(R2)

+ C||"||2
L2(R2)

+ C||∇"||2
L2(R2)

(||∇"||2
L2(R2)

+ 1) + C||∇v1||2L2(R2)
.

Next, we estimate the first term on the right-hand side of inequality (3.29). From (1.6), the equa-
tion (1.7)3 are rewritten as

ρ
∂ ṽ
∂t

+ "ṽ · ∇ṽ + f v1e1 = µ%ṽ − ∇q − gρe2. (3.30)

By taking the partial derivative of (3.30) with respect to t , we derive

ρt ṽt + ρṽt t + ρt ṽ · ∇ṽ + ρṽt · ∇ṽ + ρṽ · ∇ṽt + f v1te1

= µ%ṽt − ∇qt − gρte2. (3.31)

Then, (3.31) dotting ṽt and integrating over R2, we obtain

1
2

d

dt

∫

R2

ρ|ṽt |2dydz + µ

∫

R2

|∇ṽt |2dydz

=
∫

R2

div(ρṽ)[|ṽt |2 + (ṽ · ∇ṽ) · ṽt + ge2 · ṽt ]dydz (3.32)

−
∫

R2

f v1te1 · ṽt −
∫

R2

(ρṽt · ∇ṽ) · ṽt dydz,
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which yields to

d

dt

∫

R2

ρ|ṽt |2dydz + µ

∫

R2

|∇ṽt |2dydz

≤
∫

R2

[2ρ|ṽ||ṽt ||∇ṽt | + ρ|ṽ||∇ṽ|2|ṽt | + ρ|ṽ|2|∇2ṽ||ṽt | (3.33)

+ ρ|ṽ|2|∇ṽ||∇ṽt | + f |v1t ||ṽt | + gρ|ṽ||∇ṽt | + ρ|ṽt |2|∇ṽ|]dydz :=
7∑

i=1

Ii .

By Hölder’s inequality, Gagliardo-Nirenberg inequality as well as Young’s inequality, we obtain

I1 ≤ C||ρ||
1
2
L∞ ||ṽ||L4(R2)||

√
ρṽt ||L4(R2)||∇ṽt ||L2(R2)

≤ C||ρ||
3
4
L∞ ||ṽ||

1
2
L2(R2)

||∇ṽ||
1
2
L2(R2)

||√ρṽt ||
1
2
L2(R2)

||∇ṽt ||
3
2
L2(R2)

≤ ε||∇ṽt ||2L2(R2)
+ C(ε)||ṽ||2

L2(R2)
||∇ṽ||2

L2(R2)
||√ρṽt ||2L2(R2)

,

where ε is a small constant to be specified later, and C(ε) is a constant dependent on ε. Likewise, 
we derive

I2 ≤ C||∇ṽ||L2(R2)||∇ṽ||L6(R2)||ṽ||L6(R2)||
√

ρṽt ||L6(R2)

≤ C||ṽ||
1
2
L2(R2)

||∇ṽ||
5
3
L2(R2)

||∇2ṽ||
5
6
L2(R2)

||ṽt ||
1
3
L2(R2)

||∇ṽt ||
2
3
L2(R2)

≤ ε||∇ṽt ||2L2(R2)
+ C(ε)||√ρṽt ||2L2 + C(ε)||ṽ||L2(R2)||∇ṽ||

10
3

L2(R2)
||∇2ṽ||

5
3
L2(R2)

,

I3 ≤ C||ρ||L∞(R2)||∇2ṽ||L2(R2)||ṽt ||L6(R2)||ṽ||2
L6(R2)

≤ C||∇2ṽ||L2(R2)||∇ṽ||
4
3
L2(R2)

||ṽ||
2
3
L2(R2)

||∇ṽt ||
2
3
L2(R2)

||ṽt ||
1
3
L2(R2)

≤ ε||∇ṽt ||2L2(R2)
+ C(ε)||√ρṽt ||2L2(R2)

+ C||ṽ||
4
3
L2(R2)

||∇ṽ||
8
3
L2(R2)

||∇2ṽ||2
L2(R2)

,

I4 ≤ C||ρ||L∞(R2)||∇ṽt ||L2(R2)||∇ṽ||L6(R2)||ṽ||2
L6(R2)

≤ C||∇ṽt ||L2(R2)||∇2ṽ||
5
6
L2(R2)

||∇ṽ||
4
3
L2(R2)

||ṽ||
5
6
L2(R2)

≤ ε||∇ṽt ||2L2(R2)
+ C(ε)||ṽ||

5
3
L2(R2)

||∇ṽ||
8
3
L2(R2)

||∇2ṽ||
5
3
L2(R2)

.

For I5 and I6, we use Hölder’s inequality and Young’s inequality to obtain

I5 ≤ C||v1t ||L2(R2)||
√

ρṽt ||L2(R2) ≤ C||√ρṽt ||2L2(R2)
+ C||v1t ||2L2(R2)

,

and
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I6 ≤ ε||∇ṽt ||2L2(R2)
+ C(ε)||ṽ||2

L2(R2)
.

I7 can be estimated in a similar way

I7 ≤ ||ρ||L∞(R2)||ṽt ||2L4 ||∇ṽ||L2(R2)

≤ C||ṽt ||L2(R2)||∇ṽt ||L2(R2)||∇ṽ||L2(R2)

≤ ε||∇ṽt ||2L2(R2)
+ C(ε)||√ρṽt ||2L2(R2)

||∇ṽ||2
L2(R2)

.

Thus, submitting the above inequality into (3.33), we have

d

dt

∫

R2

ρ|ṽt |2dydz + µ

2

∫

R2

|∇ṽt |2dydz

≤ C||√ρṽt ||2L2(R2)
[1 + ||∇ṽ||2

L2(R2)
+ ||ṽ||2

L2(R2)
||∇ṽ||2

L2(R2)
] (3.34)

+ C[K(t) + ||v1t ||2L2(R2)
],

where

K(t) = ||ṽ||L2(R2)||∇ṽ||
10
3

L2(R2)
||∇2ṽ||

5
3
L2(R2)

+ ||ṽ||
4
3
L2(R2)

||∇ṽ||
8
3
L2(R2)

||∇2ṽ||2
L2(R2)

+ ||ṽ||
5
3
L2(R2)

||∇ṽ||
8
3
L2(R2)

||∇2ṽ||
5
3
L2(R2)

+ ||ṽ||2
L2(R2)

. (3.35)

From (3.10) and (3.20), we find K(t) ∈ L1(0, T ) for any 0 < T < ∞. By (1.7)4, we deduce that

||√ρv1t ||2L2(R2)

≤ 1
2
||√ρv1t ||2L2(R2)

+ ||ṽ · ∇v1||2L2(R2)
+ C||v2||2L2(R2)

≤ 1
2
||√ρv1t ||2L2(R2)

+ ||ṽ||2
L∞(R2)

||∇v1||2L2(R2)
+ C||v2||2L2(R2)

≤ 1
2
||√ρv1t ||2L2(R2)

+ ||ṽ||2
H 2(R2)

||∇v1||2L2(R2)
+ C||v2||2L2(R2)

.

Namely,

||v1t ||2L2(R2)
≤ C||ṽ||2

H 2(R2)
||∇v1||2L2(R2)

+ C||ṽ||2
L2(R2)

. (3.36)

Submitting (3.36) into (3.34), we obtain

d

dt
||√ρṽt ||2L2(R2)

+ µ

2
||∇ṽt ||2L2(R2)

≤ C||√ρṽt ||2L2(R2)
[1 + ||∇ṽ||2

L2(R2)
+ ||ṽ||2

L2(R2)
||∇ṽ||2

L2(R2)
] (3.37)

+ C[K(t) + ||ṽ||2
H 2(R2)

||∇v1||2L2(R2)
+ ||ṽ||2

L2(R2)
].
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By taking the partial derivative of (1.7)2 with respect to y and z, respectively, we have

∂v1y

∂t
+ [ṽ · ∇v1]y =

[
(f − u0(" + ρs))v2

" + ρs

]

y

(3.38)

and

∂v1z

∂t
+ [ṽ · ∇v1]z =

[
(f − u0(" + ρs))v2

" + ρs

]

z

. (3.39)

Then, multiplying (3.38) by v1y and integrating over R2, we drive

1
2

d

dt

∫

R2

|∂v1

∂y
|2dydz +

∫

R2

v1y(ṽy · ∇v1)dydz

=
∫

R2

[
(f − u0(" + ρs))v2

" + ρs

]

y

v1ydydz. (3.40)

Analogously, we have

1
2

d

dt

∫

R2

|∂v1

∂z
|2dydz +

∫

R2

v1z(ṽz · ∇v1)dydz

=
∫

R2

[
(f − u0(" + ρs))v2

" + ρs

]

z

v1zdydz. (3.41)

As a result, by (3.40) and (3.41), we have

d

dt

∫

R2

|∇v1|2dydz

≤ C||∇ṽ||L∞(R2)||∇v1||2L2(R2)
+ C||∇ṽ||L2(R2)||∇v1||L2(R2) (3.42)

+ C||ṽ||H 2(R2)||∇"||L2(R2)||∇v1||L2(R2) + C||ṽ||L2(R2)||∇v1||L2(R2).

Then, combining (3.28) and (3.42), we obtain

d

dt
||∇v1||2L2(R2)

≤ ε||∇ṽt ||2L2(R2)
+ C(ε)||ṽt ||2L2(R2)

+ C||ṽ||2
H 1(R2)

+ ||v1||2L2(R2)
(3.43)

+ C||ṽ||
3
4
L2(R2)

||∇ṽ||
3
2
L2(R2)

||∇2ṽ||
7
4
L2(R2)

+ C||"||2
L2(R2)

+ C||∇v1||2L2(R2)
(||∇v1||2L2(R2)

+ 1) + C||∇"||2
L2(R2)

+ ||ṽ||2
H 2(R2)

||∇"||2
L2(R2)

.

According to (3.29), (3.37), (3.43), and choosing ε = µ
8 , we derive
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d

dt
[||∇"||2

L2(R2)
+ ||∇v1||2L2(R2)

+ ||√ρṽt ||2L2(R2)
] + µ

4
||∇ṽt ||2L2(R2)

≤ C||∇"||2
L2(R2)

(||∇"||2
L2(R2)

+ 1) + C||∇v1||2L2(R2)
(||∇v1||2L2(R2)

+ 1)

+ ||ṽ||2
H 2(R2)

(||∇"||2
L2(R2)

+ ||∇v1||2L2(R2)
) (3.44)

+ C||√ρṽt ||2L2(R2)
(1 + ||∇ṽ||2

L2(R2)
+ ||ṽ||2

L2(R2)
||∇ṽ||2

L2(R2)
)

+ CK(t) + CL(t),

where

L(t) = ||ṽt ||2L2(R2)
+ ||ṽ||

3
4
L2(R2)

||∇ṽ||
3
2
L2(R2)

||∇2ṽ||
7
4
L2(R2)

+ ||"||2
L2(R2)

+ ||ṽ||2
H 1(R2)

+ ||v1||2L2(R2)
, (3.45)

and K(t) ∈ L1(0, T ) is given by (3.35). From (3.10) and (3.20), we also find L(t) ∈ L1(0, T ).
Denote

E(t) = ||∇"||2
L2(R2)

+ ||∇v1||2L2(R2)
+ ||√ρṽt ||2L2(R2)

+ 1,

F(t) = C[1 + ||ṽ||2
H 2(R2)

+ ||ṽ||2
L2(R2)

||∇ṽ||2
L2(R2)

],
M(t) = CK(t) + CL(t).

Thus, from (3.10) and (3.20), we derive F(t), M(t) ∈ L1(0, T ). Additionally, we find (3.44) can 
be rewritten as

d

dt
E(t) ≤ F(t)E2(t) + M(t). (3.46)

Then, integrating (3.46) over (τ, t), we obtain

E(t) ≤ [E(τ ) +
T∫

τ

M(s)ds] +
t∫

τ

F(s)E2(s)ds. (3.47)

Utilizing the classical Osgood lemma (See Lemma 2.3 in [7]), we derive

−N (E(t)) + N (c) ≤
T∫

τ

F(s)ds, (3.48)

where

N (x) =
1∫

x

dr

r2 , c(τ ) = E(τ ) +
T∫

τ

M(s)ds. (3.49)

In addition, multiplying (1.7) by ṽt and utilizing ∇ · ṽt = 0, we find that
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||√ρṽt ||2L2(R2)
= ||

√
" + ρs ṽt ||2L2(R2)

=
∫

R2

[−f e2v1 − (" + ρs)ṽ · ∇ṽ − g"e1 + µ%ṽ − ∇q] · ṽt dx (3.50)

and then

||
√

" + ρs ṽt ||2L2(R2)

≤ C

∫

R2

[|f |2|v1|2 + |(" + ρs)ṽ · ∇ṽ|2 + | "

" + ρs
ge1|2

+ (" + ρs)
−1|(µ%ṽ − ∇q)|2]dx.

As a result, from the regularity result on the Stokes equations, we deduce that

lim sup
τ→0

||√ρṽt ||2L2(R2)
≤ Cσ 2. (3.51)

From (3.20)-(3.21), (3.35), (3.45), (3.48) and (3.51), we derive

E(t) ≤ (
1

c(0)
−

T∫

0

F(s)ds)−1 (3.52)

≤
[

1

Cσ 2 + CeCσ 4eCT
σ 2 + 1

− CeCσ 4eCT
σ 2

]−1

, 0 < T < T1,

where

T1 = 1
C

ln
{ ln[−(Cσ 2+1)+

√
(Cσ 2+1)2+4

2Cσ 2 ]
Cσ 4

}
.

According to (3.52), we set

[
1

Cσ 2 + CeCσ 4eCT
σ 2 + 1

− CeCσ 4eCT
σ 2

]−1

= C1e
Cσ 4eCT

σ 2. (3.53)

Namely,

1

Cσ 2 + CeCσ 4eCT
σ 2 + 1

− CeCσ 4eCT
σ 2 = [C1e

Cσ 4eCT
σ 2]−1. (3.54)

Setting A := A(T ) = eCσ 4eCT
σ 2, we derive

C2C1A
3 + CC1A

2(Cσ 2 + 1) + (C − C1)A + C(Cσ 2 + 1) = 0. (3.55)
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In order for (3.55) to have a solution in (0, +∞), we need the following condition

C2C1e
3Cσ 4

σ 6 + CC1e
2Cσ 4

σ 4(Cσ 2 + 1) + (C − C1)e
Cσ 4

σ 2 + (Cσ 2 + 1) < 0. (3.56)

Accordingly we choose the constant C1 to satisfy

C1 >
CeCσ 4

σ 2 + Cσ 2 + 1

eCσ 4
σ 2 − C2e3Cσ 4

σ 6 − Ce2Cσ 4
σ 4(Cσ 2 + 1)

.

Choosing T ∗ = min{T1, T2}, where T2 is a solution of (3.55), then we have

E(t) ≤ C1(T )σ 2, 0 < t < T ∗, (3.57)

where the constant C(T ) depends on T .
As a result, from (3.57), we derive

sup
t∈(0,T )

[||∇"||2
L2(R2)

+ ||∇v1||2L2(R2)
+ ||√ρṽt ||2L2(R2)

] ≤ C(T )σ 2, (3.58)

and

T∫

0

||∇ṽt ||2L2(R2)
ds ≤ C(T )σ 2. (3.59)

Combining (3.36) and (3.58), we obtain

T∫

0

||v1t ||2L2(R2)
≤ C(T )σ 2. (3.60)

From (3.16) and (3.58), we have

sup
t∈(0,T )

[||ṽ||2
H 2(R2)

+ ||∇q||2
L2(R2)

] ≤ C(T )σ 2. ! (3.61)

Combining Lemma 3.1 and Lemma 3.2, we have the following result.

Theorem 3.1. Let ||"0||2H 1(R2)
+ ||v10||2H 1(R2)

+ ||ṽ0||2H 2(R2)
≤ σ 2. Then, for any 0 < T < T ∗, 

any classical solution (", v, q) to (1.7), emanating from the initial data ("0, v0), satisfies

sup
0<t≤T

[||"(t)||2
H 1(R2)

+ ||v1(t)||2H 1(R2)
+ ||ṽ||2

H 2(R2)
+ ||ṽt ||2L2(R2)

+ ||∇q(t)||2
L2(R2)

]

+
T∫

0

(||v1t (s)||2L2(R2)
+ ||∇ṽt (s)||2L2(R2)

)ds ≤ C(T )σ 2, (3.62)

where the constant C(T ) depends on T and T ∗ is a solution of (3.55).
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4. Proof of Theorem 1.3

In this section, we aim to demonstrate the nonlinear instability utilizing the method outlined in 
Jiang’s work [27]. Specifically, by contradiction argument, we can show that the nonlinear equa-
tions (1.7)-(1.9) possess a strong solution that satisfies the outcome specified in Theorem 1.3.

In view of Theorem 2.3, we obtain that there exists a classical solution ("l, vl , ql) to linearized 
system (1.10) satisfying (2.61) and ||vl

3(0)||Hk(R2) > 0 as well as

||"l (0)||2
Hk(R2)

+ ||vl (0)||2
Hk(R2)

= σ 2. (4.1)

Next, we set

i0 := i0(k) = ||vl
3(0)||L2(R2)

σ
≤ 1. (4.2)

Then i0 > 0. As a result, defining tK = 2
( ln 2K

i0
, we have 0 < K < i0

2 e
(T ∗

2 . Thus, we obtain 
0 < tK < T ∗. Moreover, from (2.61), we have

||vl
3(tK)||L2(R2) + e

tK(
2 i0σ + 2Kσ. (4.3)

Denote ("ε
0, v

ε
0) := ε("l (0), vl (0)), ε ∈ (0, 1). Then, we obtain

||"ε
0||2Hk(R2)

+ ||vε
0||2Hk(R2)

= ε2σ 2 < σ 2. (4.4)

Hence, by virtue of Theorem 3.1 and Theorem A.2, the perturbed problem (1.7)-(1.9) admits a 
family of strong solutions ("ε, vε, qε) such that

sup
0<t≤T

[||"ε(t)||2
H 1(R2)

+ ||vε
1(t)||2

H 1(R2)
+ ||ṽε ||2

(H 2(R2))2 + ||ṽε
t ||2(L2(R2))2

+ ||∇qε(t)||2
L2(R2)

] +
t∫

0

(||vε
1t (s)||2L2(R2)

+ ||∇ṽε
t (s)||2(L2(R2))2)ds (4.5)

≤ C(T )σ 2ε2,

where the constant C(T ) does not depend on ε. Additionally, from (3.25), we have

sup
0<t≤T

||"ε ||L∞(R2) ≤ C(T )σ 2ε2, (4.6)

which means

sup
0<t≤T

||"ε + ρs ||L∞(R2) ≤ C(σ ), (4.7)

where C(σ ) depends on σ . From (4.5), we have
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sup
0<t≤T

||qε ||2
H 1(R2)

≤ C(T )σ 2ε2. (4.8)

Lemma 4.1. There exists an ε ∈ (0, 1) such that the strong solution ("ε, vε, qε) emanating from 
the initial data ("ε

0, v
ε
0), satisfies

||vε
3(tK)||L2(R2) > F(||"ε

0,vε
0)||Hk(R2)), for tK ∈ (0,

2
(

ln
2K

i0
) ⊂ (0, T ∗).

Proof. Assume that for any ε ∈ (0, 1), the strong solution ("ε, vε, qε) satisfies

||vε
3(tK)||L2(R2) ≤ F(||"ε(0),vε(0))||Hk(R2)) ≤ Kσε, ∀t ∈ (0, T ∗). (4.9)

We denote ("̄ε, ̄vε, q̄ε) = 1
ε ("ε, vε, qε), thus they satisfy

∂"̄ε

∂t
+ ˜̄vε · ∇(ε"̄ε + ρs) = 0,

(ε"̄ε + ρs)
∂ v̄ε

1

∂t
+ (ε"̄ε + ρs)[ε ˜̄vε

2 · ∇v̄ε
1 + ū0v̄

ε
2] − f v̄ε

2 = 0, (4.10)

(ε"̄ε + ρs)
∂ ˜̄vε

∂t
+ (ε"̄ε + ρs)ε ˜̄vε · ∇ ˜̄vε + f v̄ε

1e1 = µ% ˜̄vε
2 − ∇q̄ε − g"̄εe2,

∇ · ˜̄vε = 0,

with initial data

("̄ε(0), v̄ε(0)) = ("l(0),vl (0)). (4.11)

Then, with the help of (4.5)-(4.8) and (3.53), we obtain the following estimates

sup
0<t≤T

[||"̄ε(t)||2
H 1(R2)

+ ||v̄ε
1(t)||2

H 1(R2)
+ ||˜̄vε ||2

(H 2(R2))2 + ||˜̄vε
t ||2(L2(R2))2

+ ||∇q̄ε(t)||2
L2(R2)

] +
t∫

0

(||v̄ε
1t (s)||2L2(R2)

+ ||∇ ˜̄vε
t (s)||2(L2(R2))2)ds (4.12)

≤ C(T )σ 2,

and

sup
0<t≤T

||(ε"̄ε + ρs)||L∞(R2) ≤ C(σ ), sup
0<t≤T

||q̄ε ||2
H 1(R2)

≤ C(T )σ 2. (4.13)

From (4.10)1 and (4.10)2, we infer that

sup
0<t≤T

||"̄ε
t ||2L2(R2)

≤ C(T )σ 2(1 + σ 2), sup
0<t≤T

||v̄ε
1t ||2L2(R2)

≤ C(T )σ 2(1 + σ 2). (4.14)
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Thus, we deduce that there exists a subsequence of {("̄ε, ̄vε, q̄ε)} such that

("̄ε
t , v̄ε

t , q̄
ε) → ("̄t , v̄t , q̄) weakly-star in L∞(0, T ; (L2(R2))4 × H 1(R2)),

("̄ε, v̄ε) → ("̄, v̄) weakly-star in L∞(0, T ; (H 1(R2))2 × (H 2(R2))2),

("̄ε, v̄ε) → ("̄, v̄) strongly in C0(0, T ; (L2
Loc(R

2))4).

Taking the limit as ε → 0 in (4.10), we find

∂"̄ε

∂t
+ ˜̄vε · ∇ρs = 0,

ρs
∂ v̄ε

1

∂t
+ ρs ū0v̄

ε
2 − f v̄ε

2 = 0, (4.15)

ρs
∂ ˜̄vε

∂t
+ f v̄ε

1e1 = µ% ˜̄vε
2 − ∇q̄ε − g"̄εe2,

∇ · ˜̄vε = 0.

Then we deduce that ("̄, ̄v) is a strong solution of the linearized problem (1.10). We recall that 
("l , vl ) is also a strong solution of the linearized problem (1.10) and the initial data satisfies 
("̄ε(0), ̄vε(0)) = ("l(0), vl (0)). Consequently, according to Theorem 2.4, we obtain

("̄, v̄) = ("l ,vl), on [0, T ] ×R2. (4.16)

Consequently, with the help of (4.3), we obtain

2Kσ ≤ ||v̄3(tK)||L2(R2) ≤ ||vl
3(tK)||L2(R2) ≤ Kσ, (4.17)

which is a contraction. !

From Lemma 4.1, we deduce that the conclusion of Theorem 1.3 is valid.
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Appendix A

In this section, we shall investigate the existence of strong solution of (1.7)-(1.9). We first 
consider the strong solution of (1.7)-(1.9) in a bounded region B0(R) = {(y, z)||y|2 +|z|2 < R2}. 
Namely, (1.7) subject to the boundary condition

v(t,x) = 0, for t > 0, x ∈ ∂B0(R), (A.1)

and the initial conditions are expressed by

v(0,x) = v0(x), "(0,x) = "0(x), (A.2)

where vi0(i = 1, 2, 3) and "0(x) are given functions.
We introduce the following function space

W = {φ ∈ (C∞
0 (B0(R)))2 : divφ = 0}.

Then V is defined to be the completion of W with respect to the norm of (H 1(B0(R)))2. From 
(1.6), (1.7) is equivalent to

∂ρ

∂t
+ ṽ · ∇ρ = 0,

ρ
∂v1

∂t
+ ρṽ · ∇v1 = [f − ρū0]v2, (A.3)

ρ
∂ ṽ
∂t

+ (ρṽ · ∇)ṽ + f v1e1 = µ%ṽ − ∇q − g(ρ − ρs)e2,

∇ · ṽ = 0,

where e1 = (1, 0), e2 = (0, 1).
The system (A.3) subject to the same boundary condition (A.1), but the initial condition (A.2)

becomes

ρ(0,x) = "0(x) − ρs(x) := ρ0. (A.4)

Now we give the definition of weak solution to (A.1)-(A.4).

Definition A.1. A weak solution of (A.1)-(A.4) is a pair of functions v(t, x), "(t, x) such 
that v(t, x) = (v1(t, x), v2(t, x), v3(t, x)) ∈ L2(0, T ; B0(R)) × L2(0, T ; V ), "(t, x) ∈ L∞(0, T ;
B0(R)) and

−
T∫

0

∫

B0(R)

ρ
∂ψ

∂t
dxdt −

T∫

0

∫

B0(R)

ρṽ · ∇ψdx
∫

B0(R)

ρ0ψ(0,x)dx, (A.5)

and
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−
T∫

0

∫

B0(R)

ρv1
∂,1

∂t
dxdt −

T∫

0

∫

B0(R)

ρv1ṽ · ∇,1dxdt

+
T∫

0

∫

B0(R)

[ū0ρ − f ]v2,1dxdt =
∫

B0(R)

ρ0v1(x),1(x,0)dx, (A.6)

as well as

−
T∫

0

∫

B0(R)

ρṽ · ∂,

∂t
dxdt −

3∑

i=2

T∫

0

∫

B0(R)

ρvi ṽ · ∇,idxdt

+
T∫

0

∫

B0(R)

f v1,2dxdt + µ

T∫

0

∫

B0(R)

∇ṽ · ∇,dxdt (A.7)

+
T∫

0

∫

B0(R)

g(ρ − ρs),3dxdt =
∫

B0(R)

ρ0(x)ṽ0(x),2(x,0)dx,

hold for all ψ ∈ C1(0, T ; H 1(BR)), ,1 ∈ C1(0, T ; H 1(BR)) and , = (,2, ,3) ∈ C1(0, T ; V )

satisfying (,2(T , x), ,3(T , x)) = (0, 0), a.e. in B0(R).

We first consider the following initial value problem

{
∂ρ
∂t + ṽ · ∇ρ = 0,

ρ(0,x) = ρ0.
(A.8)

Then, from Lemma 2.2 and Lemma 2.3 in [29], the following two conclusions hold true.

Lemma A.1. Assume ṽ ∈ C1([0, T ]; C1(B0(R)))2, ∇ · ṽ = 0 for all (x, t) ∈ B0(R) × [0, T ], and 
ṽ = 0 for all (x, t) ∈ ∂B0(R) × [0, T ], and "0 ∈ C1(B0(R)), κ1 ≤ "0 ≤ κ2 for all x ∈ B0(R), 
where κ1, κ2 > 0. Then (A.8) has a unique solution ρ(t, x) ∈ C1([0, T ] × B0(R)), and κ1 +
infρs ≤ ρ(t, x) ≤ κ2 + supρs holds for all x ∈ B0(R).

Lemma A.2. For each n = 1, 2, ..., assume ṽn(x, t) ∈ C([0, T ]; C1(B0(R))), ∇ · ṽn = 0 for all 
(x, t) ∈ B0(R) × [0, T ] and ṽn = 0 for all (x, t) ∈ ∂B0(R) × [0, T ]. Suppose that ṽn → ṽ in 
C([0, T ]; C1(B0(R))), and denote by ρn(x, t), ρ(x, t) the unique solution of

{
∂ρn
∂t + ṽn · ∇ρn = 0,

ρn(0,x) = ρ0(x),
(A.9)

and the unique solution of (A.8), respectively. Then ρn(x, t) → ρ(x, t) in C([0, T ] × (B0(R))).
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Next, we consider the following initial value problem

∂v1

∂t
+ ṽ · ∇v1 = h,

v1(0,x) = v10(x), (A.10)

where

h = [f − ū0ρ]v2

ρ
. (A.11)

Similar to the proof process of Lemma 2.2 and Lemma 2.3 in [29], we obtain the following 
conclusion.

Lemma A.3. Suppose ṽ ∈ C([0, T ]; C1(B0(R)))2, ∇ · ṽ = 0 for all (t, x) ∈ [0, T ] × B0(R), and 
ṽ = 0 for all (t, x) ∈ [0, T ] × ∂B0(R). Let ρ(t, x) ∈ C1([0, T ]; B0(R)) and κ1 + infρs ≤ ρ ≤
κ2 + supρs . Then (A.10)-(A.11) possesses a solution v1 ∈ C1([0, T ]; B0(R)).

Proof. We use the classical method of characteristics to construct a solution. Let E be an open 
ball in R2 such that B0(R) ⊂ E. We extend ṽ to w̃ ∈ C([0, T ]; C1(E)2) so that ṽ = w̃ for all 
(x, t) ∈ B0(R) × [0, T ]. Consider the system

{
dX
dt = w̃(X(t, a), t),

X(0) = a.
(A.12)

Then, from the proof of Lemma 2.2 in [29], the solution of (A.10) is given by

v1(t,x) = v10(A(t,x)) +
t∫

0

h(τ,A(t,x))dτ, (A.13)

where A = X−1. !

Using the proof method of Lemma 2.2, we can get the following conclusion.

Lemma A.4. For each n = 1, 2, ..., assume ṽn(x, t) ∈ C([0, T ]; C1(B0(R))), ∇ · ṽn = 0 for all 
(x, t) ∈ B0(R) × [0, T ] and ṽn = 0 for all (x, t) ∈ ∂B0(R) × [0, T ]. Suppose that ṽn → ṽ in 
C([0, T ]; C1(B0(R))), and denote by v1n(x, t), v1(x, t) the unique solution of

{
∂v1n
∂t + ṽn · ∇v1n = [f −ū0ρn]v2n

ρn
:= hn,

v1n(0,x) = v10(x),
(A.14)

and the unique solution of (A.10), respectively. In addition, assume that ρn, ρ are the solution 
of (A.9) and (A.8) with ρn → ρ in C([0, T ]; B0(R)). Then v1n(x, t) → v1(x, t) in C([0, T ] ×
(B0(R))).
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Proof. By the proof of Lemma 2.3 in [29], we obtain that An(t, x) → A(t, x) uniformly in 
[0, T ] ×B0(R). In addition, we find ρn → ρ uniformly in [0, T ] ×B0(R) and ṽn → ṽ uniformly 
in [0, T ] × B0(R), since ρn → ρ in C([0, T ], C(B0(R))) and ṽn → ṽ in C([0, T ], C1(B0(R))). 
Thus, we deduce that hn → h := [f −ū0ρ]v2

ρ uniformly in [0, T ] × B0(R). Consequently, we find 
v1n(t, x) → v1(t, x) uniformly in [0, T ] × B0(R). !

Next, we choose sequences of functions {"0m(x)}∞m=1 such that "0m(x) ∈ C1(B0(R)), κ1 +
1
m ≤ ρ0m(x) ≤ κ2 + 1

m for all x ∈ B0(R), ρ0m(x) → ρ0(x) in L2(B0(R)). We set

ṽm(t,x) =
m∑

k=1

Amkφk(x), (A.15)

and consider the following equations

∂ρm

∂t
+ ṽm · ∇ρm = 0,

ρm
∂v1m

∂t
+ ρmṽm · ∇v1m = [f − ū0ρm]v2m, (A.16)

m∑

k=1

bm
jk(t)

dAmk

dt
+

m∑

k,l=1

Cm
jkl(t)Amk(t)Aml(t) + f cm

j (t)

= µ)jAmj (t) − dm
j (t), j = 1,2, . . . ,m,

where

bm
jk(t) =

∫

B0(R)

ρmφk · φj dxdx, Cm
jkl(t) =

∫

B0(R)

(ρmφk · ∇)φl · φj dx,

cm
j (t) =

∫

B0(R)

f v1me1 · φj dx, dm
j (t) =

∫

B0(R)

g(ρm − ρs)e2 · φj dx.

(A.16) subjects to the following initial conditions

ρm(0,x) = ρ0m,

v1m(0,x) = v10m(x), (A.17)

Amk(0) =
∫

B0(R)

ṽ0(x) · φk(x)dx, k = 1,2, ...,m.

Following the proof of Lemma 2.5 in [29], we arrive at the result.

Lemma A.5. Assume ρm(t, x) ∈ C1([0, T ] × B0(R)) and κ1 + infz∈B0(R) ρs ≤ ρm ≤ κ2 +
supz∈B0(R) ρs , for any (t, x) ∈ [0, T ] × B0(R). Then the matrix {bm

jk(t)} is nonsingular and each 
component of its inverse belongs to C1[0, T ].
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By Theorem 3.1, we obtain

Lemma A.6. Let ||"0||2H 1(R2)
+ ||v10||2H 1(R2)

+ ||ṽ0||2H 2(R2)
≤ σ 2. Then, for any T > 0 indepen-

dent of m, there exist solutions ρm ∈ C1([0, T ] × B0(R)), Amk(t) ∈ C1[0, T ], k = 1, 2, ..., m of 
(A.16)-(A.17) such that

∣∣∣∣

∣∣∣∣
√

ρm
∂ ṽm

∂t

∣∣∣∣

∣∣∣∣
L2(0,T ;H 1(B0(R)))

≤ C(T )σ 2, ||ṽm||L2(0,T ;H 2(B0(R))) ≤ C(T )σ 2,

||v1m||L∞(0,T ;H 1(B0(R))) ≤ C(T )σ 2,

∣∣∣∣

∣∣∣∣
∂v1m

∂t

∣∣∣∣

∣∣∣∣
L∞(0,T ;L2(B0(R)))

≤ C(T )σ 2,

∣∣∣∣

∣∣∣∣
∂ρm

∂t

∣∣∣∣

∣∣∣∣
L∞(0,T ;L2(B0(R)))

≤ C(T )σ 2, ||ρm||L∞(0,T ;H 1(B0(R))) ≤ C(T )σ 2, (A.18)

κ1 + inf
z∈B0(R)

ρs ≤ ρm ≤ κ2 + sup
z∈B0(R)

ρs .

Proof. Let Br be a closed ball in C([0, T ])m with large enough radius r + σ
√

C
)1

. Sup-

pose (Am1(t), Am2(t), ...., Amm(t)) ∈ Br , where )1 is the first eigenvalue of −P% and 
C is a fixed constant. In addition, we set ṽm(t, x) = ∑m

k=1 Akm(t)φk(x). According to 
Lemma A.1, we find a solution ρm of (A.16)1 in C1(0, T ; B0(R)). Furthermore, by Lemma A.3, 
(A.16)2 has a solution v1m ∈ C1(0, T ; B0(R)). Thus, with the help of ρm and v1m, we 
obtain a solution (Ã1m, Ã2m, ...., Ãkm) of (A.16)3 in C1(0, T )m ∩ Br . From Lemma A.2
and Lemma A.4 as well as Lemma A.5, we deduce that the mapping (Am1(t), Am2(t), ...,
Amm(t)) −→ (Ãm1(t), Ãm2(t), ..., Ãmm(t)) is completely continuous from Br to itself. Conse-
quently, the mapping has a fixed point, which together with ρm and v1m are solutions of (A.16)1
and (A.16)2, respectively. Finally, (A.18) is valid from the proof of Theorem 3.1. !

Theorem A.1. Assume that "0, v10 ∈ H 1(B0(R)) and ṽ0 ∈ H 2(B0(R)). Then, there exists a local 
strong solution ρ(t, x), v1(t, x), ṽ(t, x) of (A.3) such that

"(t) ∈ L∞(0, T ;H 1(B0(R))), v1(t) ∈ L∞(0, T ;H 1(B0(R))), v1t ∈ L2((0, T ) × B0(R)),

ṽ ∈ L∞(0, T ;H 2(B0(R))), ṽt ∈ L2(0, T ;H 1(B0(R))) ∩ L∞(0, T ;L2(B0(R))),

where 0 < T < T ∗ and T ∗ is the maximal time of existence of the solution.

Proof. From (A.18), we can extract a subsequence {ṽm} and {ρm} as well as {v1m} such that 
ṽm → ṽ weak in L2(0, T , H 2(B0(R))), ∂ ṽm

∂t → ∂ ṽ
∂t in L2(0, T ; H 1(B0(R))), ρm → ρ weak 

star in L∞(0, T ; H 1(B0(R))), and ∂ρm
∂t → ∂ρ

∂t weak star in L∞(0, T ; L2(B0(R))), v1m → v1

weak star in L∞(0, T ; H 1(B0(R))), ∂v1m
∂t → ∂v1

∂t weakly star in L∞(0, T ; L2(B0(R))). With 
the help of Aubin Theorem [12], we deduce that ρm → ρ strongly in L2(0, T ; L4(B0(R))). 
Similarly, we also find v1m → v1 strongly in L2(0, T ; L4(B0(R))). Thus, ρmv1m → ρv1
weakly in L2(0, T ; L2(B0(R))) as well as ρmṽm → ρṽ in D′(0, T ; B0(R))2 and then, ρmṽm →
ρṽ weak star in L∞(0, T ; L2(B0(R))). Furthermore, we deduce that {ṽm

∂ρm
∂t } is bounded 

in L2(0, T ; L2(B0(R))). Additionally, from (A.18), we find that {ρm
∂ ṽm
∂t } is bounded in 
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L2(0, T ; L2(B0(R))). As a result, { ∂(ρmṽm)
∂t } is bounded in L2(0, T ; L2(B0(R))). Namely, 

{ ∂(ρmṽm)
∂t } is bounded in L2(0, T ; H−1(B0(R))). Then, ρmṽm → ρṽ strongly in L2(0, T ;

H− 1
2 (B0(R))). Since ṽm → ṽ weakly in L2(0, T ;H 2(B0(R))), ρmṽmvmk → ρṽvk in D′((0, T )

× B0(R)), where k = 1, 2, 3 and ṽ = (v2, v3). Then, ρmṽmvmk → ρṽvk weakly in L2(0, T ;
L2(B0(R)))2 for k = 1, 2, 3. Thus, we derive that ṽm · ∇ρm → ṽ · ∇ρ weakly in L2(0, T ;
H−1(B0(R))). Choosing arbitrary ξj (t) ∈ C1([0, T ]) satisfied ξj (T ) = 0, j = 1, 2, ...m, with 
the help of (A.16), it holds that (ρ, v1, ̃v) is a weak solution of (A.1)-(A.4).

Moreover, using the method in the proof of Theorem 3.1, we obtain the following estimates

sup
0<t≤T

[||"(t)||2
H 1(B0(R))

+ ||v1(t)||2H 1(B0(R))
+ ||ṽ||2

H 2(B0(R))
+ ||ṽt ||2L2(B0(R))

+ ||∇q(t)||2
L2(B0(R))

]

+
T∫

0

(||v1t (s)||2L2(B0(R))
+ ||∇ṽt (s)||2L2(B0(R))

)ds ≤ C, (A.19)

where the constant C independents on R. From (A.19), the assertions stated in Theorem A.1 hold 
true. !

Finally, we use the expanding domain method to explore existence of the strong solution of 
(1.7)-(1.9).

Theorem A.2. Assume that ||"0||2H 1(R2)
+ ||v10||2H 1(R2)

+ ||ṽ0||2H 2(R2)
≤ σ 2. Then there exists a 

strong solution (ρ, v1, ̃v) to (A.3) such that

ρ ∈ L∞(0, T ;H 1(R2)), v1 ∈ L∞(0, T ;H 1(R2)), v1t ∈ L2(R2 × (0, T )), (A.20)

ṽ ∈ L∞(0, T ;H 2(R2)), ṽt ∈ L∞(0, T ;L2(R2)), ∇ṽt ∈ L2(R2 × (0, T )),where 0 < T < T ∗.

Proof. Since ρ0 ∈ H 1(R2), v10 ∈ H 1(R2), we can choose ρR
0 , vR

10 ∈ C∞
0 (B0(R)) such that

ρR
0 → ρ0, vR

10 → v10 in H 1(R2), as R → ∞. (A.21)

In addition, since ṽ0 ∈ H 2(R2), we select ũR
i ∈ C∞

0 (B0(R))(i = 1, 2) such that

lim
R→∞

||∂i ũR
i − %ṽ0||L2(R2) = 0. (A.22)

We consider the following Stokes problem

− %ṽR
0 + ṽR

0 + ∇pR
0 = hR − ∂i ũR

i ,

divṽR
0 = 0, (A.23)

ṽR
0 = 0, on ∂B0(R),

where hR = ṽ0 ∗ j1/R with jε being the standard mollifying kernel of width ε. Obviously, (A.23)
posses a unique solution ṽR

0 . Then we extend ṽR
0 to R2 by defining 0 outside B0(R), we shall 

show
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ṽR
0 → ṽ0, in H 2(R2), as R → ∞. (A.24)

Multiplying (A.23) by ṽR
0 and integrating the result over R2 lead to

∫

R2

|∇ṽR
0 |2dx +

∫

R2

|ṽR
0 |2dx

≤ ||hR||L2(R2)||ṽR
0 ||L2(R2) + ||ṽR

0 ||L2(R2)||∂i ũR
i ||L2(R2) (A.25)

≤ 1
2
||ṽR

0 ||2
L2(R2)

+ C[||hR||2
L2(R2)

+ ||∂i ũR
i ||2

L2(R2)
],

which yields to

||∇ṽR
0 ||2

L2(R2)
+ ||ṽR

0 ||2
L2(R2)

≤ C, (A.26)

for some C independent of R. Moreover, according to the regular theory of Stokes equations, we 
find

||%ṽR
0 ||2

L2(R2)
≤ C[||ṽR

0 ||2
L2(R2)

+ ||hR||L2(R2) + ||∂i ũR
i ||2

L2(R2)
]. (A.27)

Combining (A.26) and (A.27), we deduce that

||ṽR
0 ||H 2(R2) ≤ C,

which yields that there exists a subsequence Rj such that

ṽ
Rj

0 → ¯̃v0 weakly in L2(R2),

∇ṽ
Rj

0 → ∇ ¯̃v0 weakly in L2(R2), (A.28)

%ṽ
Rj

0 → % ¯̃v0 weakly in L2(R2).

Now, we will show ¯̃v0 = ṽ0. Indeed, multiplying (A.23) by π ∈ C∞
0 (R2) with ∇ · π = 0, we 

obtain
∫

R2

(−%ṽ
Rj

0 + ∂i ũ
Rj

i ) · πdx +
∫

R2

(ṽ
Rj

0 − hRj ) · πdx = 0.

Let Rj → ∞ and it follows from (A.22) as well as (A.28) that

∫

R2

(−% ¯̃v0 + %ṽ0) · πdx +
∫

R2

( ¯̃v0 − ṽ0) · πdx = 0. (A.29)

Thus, with the help of (A.29), we obtain ¯̃v0 = ṽ0.
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Furthermore, multiplying (A.23) by ṽ
Rj

0 and −%ṽ
Rj

0 respectively, and integrating the results, 
we derive that

lim
Rj →∞

[
∫

R2

|∇ṽ
Rj

0 |2dx +
∫

R2

|ṽRj

0 |2dx] =
∫

R2

|∇ṽ0|2dx +
∫

R2

|ṽ0|2dx, (A.30)

and

lim
Rj →∞

[
∫

R2

|%ṽ
Rj

0 |2dx +
∫

R2

|∇ṽ
Rj

0 |2dx] =
∫

R2

|%ṽ0|2dx +
∫

R2

|∇ṽ0|2dx. (A.31)

Thus, utilizing (A.22) and (A.28) we have

lim
Rj →∞

∫

R2

|ṽRj

0 |2dx =
∫

R2

|ṽ0|2dx, lim
Rj →∞

∫

R2

|∇ṽ
Rj

0 |2dx =
∫

R2

|∇ṽ0|2dx,

lim
Rj →∞

∫

R2

|%ṽ
Rj

0 |2dx =
∫

R2

|%ṽ0|2dx. (A.32)

This leads to (A.24).
Let (ρR, vR

1 , ̃vR) be a strong solution of (A.3) with the initial data (ρR
0 , vR

10, ̃v
R
0 ). Extend-

ing (ρR, vR
1 , ̃vR) to R2 by defining 0 outside B0(R), thus, from Theorem 3.1, we find that 

(ρR, vR
1 , ̃vR) satisfies the estimate (3.62) with T ∗ and C being independent of R. As a result, 

there exists a subsequence Rj , Rj → ∞, such that (ρRj , v
Rj

1 , ̃vRj ) converges to a limit (ρ, v1, ̃v)

in weak sense. Namely, as Rj → ∞, we have

ρRj → ρ, v
Rj

1 → v1,weakly * in L∞(0, T ;H 1(R2)),

ṽRj → ṽ weakly * in L∞(0, T ;H 2(R2)),

ṽ
Rj

t → ṽt weakly * in L∞(0, T ;L2(R2)),

v
Rj

1t → v1t , ∇ṽ
Rj

t → ∇ṽt , weakly in L2(0, T ;L2(R2)).

We take φ ∈ C∞
0 (R2 × T ) as a text function in (A.3) with initial data (ρR, vR

1 , ̃vR). Then, letting 
Rj → ∞, we obtain (ρ, v1, ̃v) is a strong solution. !
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