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A second-order numerical method is developed for solving the quasi-incompressible Cahn-Hilliard-
Darcy system with the Flory-Huggins potential for two immiscible fluids of variable densities 
and viscosities in a porous medium or a Hele-Shaw cell. We show that the scheme is uniquely 
solvable, mass-conservative, bound-preserving and unconditionally energy stable. The key for 
bound-preserving is the utilization of second order convex-concave splitting of the logarithmic
potential, and the discrete 𝜑1 estimate of the singular potential. Ample numerical tests are reported 
to validate the accuracy and robustness of the proposed numerical scheme.

1. Introduction

Two immiscible fluids of different characteristics (density, viscosity, mobility etc) in a porous medium or a Hele-Shaw cell are of 
practical importance in oil recovery [17,53], alloy solidification [69], tumour growth [64] and various other fields [8,26,42,48]. The 
interface separating different fluids tends to be unstable, which is associated with phenomena such as wave-breaking or tip-splitting 
[40]. The instability arises if the heavier fluid is above the lighter one (Rayleigh-Taylor instability) or when the less viscous fluid is 
displacing the more viscous one. The latter, known as Saffman-Taylor instability [53], is unique for two-phase flow in porous media or 
Hele-Shaw cells. As a consequence the sharp interface formulation-the Muskat problem [51]- could be mathematically ill-posed and 
singularity could develop in finite time, cf. [22,30] for recent survey in this regard. One possible relaxation without surface tension 
effect is proposed in [52] utilizing the idea of gradient flows. A different modeling approach is the phase field models where the 
sharp interface is replaced by a diffusive layer of finite width. Systematic derivation of diffuse interface models for two-phase flows 
in a porous medium could be based on variational principles [26,36], or from upscaling the Cahn-Hilliard-(Navier)-Stokes equations 
[23,54,55,11,4]. Derivation of the Cahn-Hilliard-Hele-Shaw system in a Hele-Shaw cell is reported in [44,10,12].
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In this contribution we focus on solving a quasi-incompressible Cahn-Hilliard-Darcy system with the Flory-Huggins potential 
(qCHD) for two immiscible fluids of different density and viscosity in a porous medium or a Hele-Shaw cell. The model, Eqs. 
(2.1)–(2.5), can be readily derived by Onsager’s extremum principle following [36], employing mass-averaged mixture velocity 
[47] and using volume fraction difference as the order parameter. We refer to [29,32,61] for numerical methods for solving the 
quasi-incompressible Cahn-Hilliard-Navier-Stokes system.

A particular challenge in solving phase field fluid models is the stiffness from the diffusive interface (sharp transition in thin 
layers). Unconditionally stable time marching schemes are preferred so that stiffness can be resolved adaptively without a severe 
time-step constraint. Several successful strategies emerge in recent years, including the convex-concave splitting [15,16,56,25], the 
stabilized linear approach [59], the Invariant Energy Quadratization (Lagrange multiplier) method [31,65,66,27], and the Scalar 
Auxiliary Variable approach [57,58]. Applications of these methods to phase field fluid models can be found in [43,39,18,37,60,35,
13,70,33,28,20].

In phase field fluid models the order parameter represents phase concentration and is necessary to stay bounded between 0 and 1 
so that density and viscosity of the mixture can be meaningfully defined. This bound is enforced through nonlinear mechanisms such 
as degenerate mobility or logarithmic potential in the fourth order Cahn-Hilliard equation. Numerically preserving these nonlinear 
estimates prove delicate and difficult in practice. To date there are only a few low-order accurate bound-preserving numerical methods 
for phase field fluid models which are inadequate in capturing rich interfacial dynamics. Early attempts focus on first-order methods, 
including methods preserving the entropy estimate from the degenerate mobility [71] or schemes maintaining the 𝜑2 estimate of 
the derivative of the logarithmic potential [9]. Brute-force cut-off of the order parameter often leads to loss of conservation, and 
as a result it is difficult to obtain high-order accuracy. Instead of direct cut-off one may impose point-wise bounds through either 
variational inequality [1] or Lagrange multipliers [7]. Another viable approach of cut-off is to perform post-processing by high-order 
limiters [68,19,45]. A notable high-order limiter is recently constructed in [46] for solving the Cahn-Hilliard-Navier-Stokes equations. 
However, schemes with post-processing in general do not satisfy the energy law. In [41] a different strategy is proposed in which 
the bounds are preserved through a change of variable at the expense of possible loss of consistency. Recent development in the 
design of bound-preserving schemes include the JKO method for optimal transport [21], the exponential differencing method [14], 
and methods based on convex-concave splitting [5].

In this article we design a second-order finite element method for the qCHD system with variable densities and viscosities. The 
nonlinear scheme is shown to maintain all favorable properties: unique solvability, unconditional stability, discrete mass-conservation 
and bound-preserving. The key in the design is second-order convex-splitting (Crank-Nicolson approximation with Admas-Bashforth 
extrapolation) for the logarithmic potential, see also [37]. This discretization alone seemingly leads to a loss of the 𝜑2 estimate of the 
singular potential. To make up for the loss and gain bound-preservation, the convex part of the singular potential is brought back as a 
temporal perturbation to the equation [6]. This strategy allows for a discrete 𝜑1 estimate of the singular potential, thereby preserving 
the desired bounds for the order parameter. To the best of our knowledge, this is the first second order bound-preserving scheme for a 
quasi-incompressible phase field model. The method can be readily applied for solving the Cahn-Hilliard-Navier-Stokes equations of 
matched densities (Model H), and could be potentially generalized for higher order accuracy. However the scheme is not applicable 
to the quasi-incompressible Cahn-Hilliard-Navier-Stokes system, since the well-posedness of the model with the logarithmic potential 
remains open.

The outline of this paper is as follows. In Section 2, we present the quasi-incompressible Cahn-Hilliard-Darcy equations and its weak 
formulation. In Section 3, we present the numerical scheme and establish its unique solvability, energy stability, mass-conservation 
and bound-preserving. In Section 4, numerical results are reported to verify the accuracy and efficiency of the numerical method.

2. The quasi-incompressible Cahn-Hilliard-Darcy system

We consider the following quasi-incompressible Cahn-Hilliard-Darcy equations (qCHD) for two-phase flows in a porous region 
Ω ℎℝ3:

Π−1𝑖(𝑁)! = −∇𝐼− 1
𝑤𝐽𝑛∗

𝑁∇𝛿 − ̃𝑣
𝐽𝑛∗

,", (2.1)

∇ ⋅ ! = 𝑥
.𝑔

Δ𝛿𝐼, (2.2)

𝑚𝑢(𝐺𝑁) +∇ ⋅ (𝑁!) = 1
.𝑔

Δ𝛿𝐼, (2.3)
𝛿 = 𝐴 (𝑁)− 𝑤2Δ𝑁, (2.4)
𝛿𝐼 = 𝛿 + 𝑥𝑤𝐽𝑛∗𝐼, (2.5)

equipped with the boundary conditions

! ⋅ # =∇𝑁 ⋅ # =∇𝛿𝐼 ⋅ # = 0, on Γ (= 𝑚Ω.

Here Π is the permeability, the non-dimensionalized density and viscosity of the binary fluid are

, = 1− 𝑁
2 + 1 + 𝑁

2
,2
,1

, 𝑖(𝑁) = 1−𝑁
2 + 1 + 𝑁

2
𝑖2
𝑖1

,
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where ,1, ,2; 𝑖1, 𝑖2 are the densities and viscosities of the two fluids, respectively. 𝑤 is the Cahn number (a measure of relative thickness 
of the diffusive interface), 𝐽𝑛∗ is the modified capillary number, " is the unit vector in the vertical direction, ̃ 𝑣 is the Bond number, 
𝐺 is the porosity, .𝑔 is the Peclet number, 𝑥 = ,1−,2

,1+,2
is a constant. Here 𝐴 = 𝜈 ), and 𝜈 (𝑁) is the logarithmic Flory-Huggins free 

energy density function

𝜈 (𝑁) = 𝑦
2 [(1 + 𝑁) ln (1 + 𝑁) + (1− 𝑁) ln (1− 𝑁)]−

𝑦𝜋
2 𝑁2, (2.6)

with 𝑦 the absolute temperature of the mixture, and 𝑦𝜋 the critical temperature, 0 < 𝑦 < 𝑦𝜋 . In the case 𝑦 is close to 𝑦𝜋 , 𝜈 is often 
approximated by a polynomial of double-well type. On the other hand, when 𝑦 approaches zero, one obtains the double obstacle 
potential. The qCHD system can be derived via Onsager’s extremum principle, cf. [36].

The definition of , and the Eq. (2.3) imply the continuity equation

𝑚𝑢(𝐺,) +∇ ⋅ (,!) = 0. (2.7)
Introducing the total energy of the system

𝑟(𝑁) (= 1
𝐽𝑛∗ ∫

Ω

1
𝑤
𝜈 (𝑁) + 𝑤

2 }∇𝑁}
2 +̃𝑣,𝜉𝑗(𝐺$), (2.8)

one deduces that the qCHD system (2.1)-(2.4) satisfies an energy dissipation law
𝑗
𝑗𝑢

𝑟 = − 1
.𝑔𝑤𝐽𝑛∗ ∫

Ω

}∇𝛿𝐼}2 𝑗$− ∫
Ω

Π−1𝑖}!}2 𝑗$. (2.9)

Let :;,𝑢 denote Ω × (;, 𝑢) and : =:0,< for fixed < > 0. The 𝜑2 inner product and norm are denoted by (⋅, ⋅) and }} ⋅ }}, respectively. 
We introduce = (=>1(Ω) +𝜑2

0(Ω) with 𝜑2
0(Ω) the subspace of 𝜑2(Ω) of mean zero; ! (= [𝜑2(Ω)]3, ? (=>1(Ω), ? ) the dual of ? , 

and ‖⋅, ⋅⟩ the duality between ? ) and ? . The weak formulation of the qCHD system is defined as follows.

Definition 2.1. Assume 𝑁0 ∈𝜑∞(Ω) +? with −1 < 𝑁0 < 1 a.e.. Then (,,𝑁,!,𝛿𝐼,𝐼
) is called a weak solution of the system (2.1)-(2.4)

on time interval [0, < ] if

𝑁 ∈𝜑∞(0,< ;? ) +>1(0,< ;? )) +𝜑4(0,< ;>2(Ω)),

𝐴 (𝑁) ∈𝜑2(:), 𝑁 ∈𝜑∞(:), }𝑁} < 1 𝑛.𝑔.,

! ∈𝜑2(0,< ;!), 𝐼 ∈𝜑2(0,< ;=),

𝛿𝐼 ∈𝜑2(0,< ;? ),

and, for 𝑢 ∈ (0, < ) a.e.

‖𝑚𝑢(𝐺𝑁),@⟩− (𝑁!,∇@) = − 1
.𝑔

(∇𝛿𝐼,∇@),∀@ ∈ ? , (2.10)
(𝛿,@) = (𝐴 (𝑁),@) + 𝑤2(∇𝑁,∇@),∀@ ∈ ? , (2.11)
(Π−1𝑖(𝑁)!,%) = −(∇𝐼,%)− 1

𝑤𝐽𝑛∗
(𝑁∇𝛿,%)− ̃𝑣

𝐽𝑛∗
(,",%),∀% ∈!, (2.12)

(!,∇@) = 𝑥
.𝑔

(∇𝛿𝐼,∇@),∀@ ∈ ? , (2.13)
where for ($, 𝑢) ∈: a.e.

𝛿𝐼 = 𝛿 + 𝑥𝑤𝐽𝑛∗𝐼, , = 1− 𝑁
2 + 1 + 𝑁

2
,2
,1

. (2.14)

3. The second order numerical scheme

Since the parameters do not affect the properties of the scheme, we set them to be unity except 𝑥 in the following presentation.
Let ℎ be a quasi-uniform triangulation of Ω. Let ?ℎ ℎ ? be the finite element space of continuous piecewise linear functions on 

Ω. The collection of nodes on ℎ is {$B}Cℎ
B=1, while the set of nodal basis functions is denoted by {𝐺B}

Cℎ
B=1. The interpolation operator 

Dℎ ( 𝐽(Ω) → ?ℎ is defined such that Dℎ(𝑁)($B) = 𝑁($B), B = 1, … Cℎ. One introduces the discrete inner product

(𝑁,@)ℎ (= ∫
Ω

Dℎ(𝑁@)𝑗$ =
Cℎ∑
B=1

EB𝑁($B)@($B)

with EB = ∫Ω 𝐺B 𝑗$. The associated semi-norm is denoted by }} ⋅ }}ℎ, which is equivalent to the 𝜑2 norm on ?ℎ. Let =ℎ (= ?ℎ +𝜑2
0(Ω). 

One also introduces the discrete 𝜑1 norm
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}}𝑁ℎ}}1,ℎ (= (}𝑁ℎ},1)ℎ =
Cℎ∑
B=1

EB}𝑁ℎ($B)}.

Let 0 = 𝑢0 < 𝑢1 <⋯ < 𝑢= = < be a uniform partition of [0, < ] into sub-intervals FG = (𝑢G, 𝑢G+1), G = 0, 1, … , = − 1, with time step 
size Δ𝑢 = 𝑢G+1 − 𝑢G =

<
= . Throughout, we adopt the following notations

H𝑢𝑁G+1 (= 𝑁G+1 − 𝑁G

Δ𝑢 , 𝑁G+ 1
2 = 1

2 (𝑁
G+1 +𝑁G), 𝑁̃G+ 1

2 = 3𝑁G − 𝑁G−1

2 .

The fully discrete finite element scheme for the qCHD equations reads: given 𝑁G−1
ℎ , 𝑁G

ℎ ∈ ?ℎ with }𝑁G−1
ℎ ($B)} < 1 and }𝑁G

ℎ($B)} < 1

for B = 1 ⋯ Cℎ, find (𝑁G+1
ℎ , 𝛿

G+ 1
2

ℎ , !
G+ 1

2
ℎ , 𝐼

G+ 1
2

ℎ ) ∈ ?ℎ × ?ℎ ×!" ×=ℎ such that
(
H𝑢(𝑁G+1

ℎ ),@
)
ℎ − ([𝑁̃

G+ 1
2

ℎ ]!
G+ 1

2
ℎ ,∇@) = −(∇𝛿

G+ 1
2

𝐼,ℎ ,∇@), ∀@ ∈ ?ℎ, (3.1)

(𝛿
G+ 1

2
ℎ ,@)ℎ =

(
𝜈J(𝑁G+1

ℎ )− 𝜈J(𝑁G
ℎ)

𝑁G+1
ℎ − 𝑁G

ℎ

,@

)

ℎ

+
(
𝐴G(𝑁̃

G+ 1
2

ℎ ),@
)
+ (∇𝑁

G+ 1
2

ℎ ,∇@)

+Δ𝑢
(
𝐴J(𝑁G+1

ℎ )− 𝐴J(𝑁G
ℎ),@

)
ℎ, ∀@ ∈ ?ℎ, (3.2)

(𝑖([𝑁̃
G+ 1

2
ℎ ])!

G+ 1
2

ℎ ,%) = −(∇𝐼
G+ 1

2
ℎ ,%)− ([𝑁̃

G+ 1
2

ℎ ]∇𝛿
G+ 1

2
ℎ ,%)−

(
,([𝑁̃

G+ 1
2

ℎ ])",%
)
, ∀% ∈!ℎ, (3.3)

(!
G+ 1

2
ℎ ,@) = 𝑥(∇𝛿

G+ 1
2

𝐼,ℎ ,∇@), ∀@ ∈ ?ℎ, (3.4)
where 𝐴J = 𝜈 )

J , 𝐴G = 𝜈 )
G correspond to convex-concave splitting of 𝜈 , i.e.

𝐴J(𝑁) =
𝑦
2
[
ln (1 + 𝑁)− ln (1− 𝑁)

]
, 𝐴G(𝑁) = −𝑦𝜋𝑁. (3.5)

Here [K] represents a truncation of K such that

[K] =
⎧
⎪
⎨
⎪⎩

1, K ≥ 1,
K, K ∈ (−1,1),
−1, K ≤ −1.

In the scheme (3.1)–(3.4) the Darcy equations are solved in a mixed form. We notice that the velocity can be found explicitly 
from Eq. (3.3). One can also construct a scheme by eliminating the velocity variable: given 𝑁G−1

ℎ ($B), 𝑁G
ℎ($B) ∈ ?ℎ with }𝑁G−1

ℎ } < 1 and 
}𝑁G

ℎ} < 1 for B = 1 ⋯ Cℎ, find (𝑁G+1
ℎ , 𝛿G+ 1

2
ℎ , 𝐼G+

1
2

ℎ ) ∈ ?ℎ × ?ℎ ×=ℎ such that
(
H𝑢𝑁G+1

ℎ ,@
)
ℎ − ([𝑁̃

G+ 1
2

ℎ ]!
G+ 1

2
ℎ ,∇@) = −(∇𝛿

G+ 1
2

𝐼,ℎ ,∇@), ∀@ ∈ ?ℎ, (3.6)

(𝛿
G+ 1

2
ℎ ,@)ℎ =

(
𝜈J(𝑁G+1

ℎ )− 𝜈J(𝑁G
ℎ)

𝑁G+1
ℎ − 𝑁G

ℎ

,@

)

ℎ

+
(
𝐴G(𝑁̃

G+ 1
2

ℎ ),@
)
+ (∇𝑁

G+ 1
2

ℎ ,∇@)

+Δ𝑢
(
𝐴J(𝑁G+1

ℎ )− 𝐴J(𝑁G
ℎ),@

)
ℎ, ∀@ ∈ ?ℎ, (3.7)

(!
G+ 1

2
ℎ ,@) = 𝑥(∇𝛿

G+ 1
2

𝐼,ℎ ,∇@), ∀@ ∈ ?ℎ, (3.8)
where

𝑖([𝑁̃
G+ 1

2
ℎ ])!

G+ 1
2

ℎ (= −∇𝐼
G+ 1

2
ℎ − [𝑁̃

G+ 1
2

ℎ ]∇𝛿
G+ 1

2
ℎ − ,([𝑁̃

G+ 1
2

ℎ ])", (3.9)

𝛿
G+ 1

2
𝐼,ℎ = 𝛿

G+ 1
2

ℎ + 𝑥𝐼
G+ 1

2
ℎ , (3.10)

,([𝑁̃
G+ 1

2
ℎ ]) = 1

2 (1− [𝑁̃
G+ 1

2
ℎ ]) + 1

2 (1 + [𝑁̃
G+ 1

2
ℎ ])

,2
,1

. (3.11)

Note that 𝑁̃G+ 1
2

ℎ may be outside of (−1, 1) although both 𝑁G
ℎ and 𝑁G−1

ℎ provably satisfy the bounds at the nodes of ℎ. The truncation 
of 𝑁̃G+ 1

2
ℎ appears necessary in the estimate of pressure in terms of the generalized chemical potential 𝛿𝐼 . Indeed, recalling 𝑥 = ,1−,2

,1+,2and noting Eq. (3.11), one can rewrite the Darcy equations (3.9) as

𝑖([𝑁̃
G+ 1

2
ℎ ])!

G+ 1
2

ℎ = −
2,1

,1 + ,2
,([𝑁̃

G+ 1
2

ℎ ])∇𝐼
G+ 1

2
ℎ − [𝑁̃

G+ 1
2

ℎ ]∇𝛿
G+ 1

2
𝐼,ℎ − ,([𝑁̃

G+ 1
2

ℎ ])". (3.12)
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It is clear that the truncation is needed so that ,([𝑁̃G+ 1
2

ℎ ]) has a positive lower bound, cf. Step 3 in the proof of the main theorem 
below.

Combining Eq. (3.6) and Eq. (3.8) one obtains

𝑥
(
H𝑢𝑁G+1

ℎ ,@
)
ℎ +

(
(1− 𝑥[𝑁̃

G+ 1
2

ℎ ])!
G+ 1

2
ℎ ,∇@

)
= 0.

In light of definition of , in (2.14) one verifies that the scheme satisfies the continuity equation
(
H𝑢,(𝑁G+1

ℎ ),@
)
ℎ −

(
,([𝑁̃

G+ 1
2

ℎ ])!
G+ 1

2
ℎ ,∇@

)
= 0. (3.13)

The schemes are three-level methods. To initiate, one could carry out one iterate of a first-order version of the current scheme:
(
H𝑢𝑁1

ℎ,@
)
ℎ − (𝑁0

ℎ!
1
ℎ,∇@) = −(∇𝛿1

𝐼,ℎ,∇@), ∀@ ∈ ?ℎ, (3.14)
(𝛿1

ℎ,@)ℎ =
(
𝐴J(𝑁1

ℎ),@
)
ℎ +

(
𝐴G(𝑁0

ℎ),@
)
+ (∇𝑁1

ℎ,∇@), ∀@ ∈ ?ℎ, (3.15)
(!1ℎ,∇@) = 𝑥(∇𝛿1

𝐼,ℎ,∇@), ∀@ ∈ ?ℎ, (3.16)
with

𝑖(𝑁0
ℎ)!

1
ℎ (= −∇𝐼1ℎ − 𝑁0

ℎ∇𝛿
1
ℎ − ,(𝑁0

ℎ)",

𝛿1
𝐼,ℎ = 𝛿1

ℎ + 𝑥𝐼1ℎ,

,(𝑁0
ℎ) =

1
2 (1− 𝑁0

ℎ) +
1
2 (1 + 𝑁0

ℎ)
,2
,1

.

It will be clear from the monotone argument below that (3.14)–(3.16) is uniquely solvable. In particular, under the assumption 
𝑁0
ℎ ∈ ?ℎ such that }𝑁0

ℎ} ≤ 1 and 𝑁0
ℎ (=

1
}Ω} ∫Ω 𝑁0

ℎ 𝑗$ ∈ (−1, 1), there exists H1 > 0 such that

}𝑁1
ℎ($B)} ≤ 1− H1, B = 1…Cℎ. (3.17)

Indeed this follows from the 𝜑1 estimate by taking @ = 𝑁1
ℎ − 𝑁0

ℎ in Eq. (3.15), cf. the estimates (3.21)–(3.25).The following elementary inequality is useful, see also [49, Proposition 4.3].

Lemma 3.1. Suppose }𝑁G
ℎ($B)} ≤ 1 − H, B = 1 … Cℎ for sufficiently small H > 0. Then there exist constants 𝐽1, 𝐽2 > 0 independent of H such 

that

𝐴J(;)(;− 𝑁G
ℎ($B)) ≥ 𝐽1H}𝐴J(;)}−𝐽2, ∀; ∈ (−1,1), B = 1…Cℎ. (3.18)

Proof. Define

L(;) = 𝐴J(;)(;− 𝑁G
ℎ($B))−

H
2𝐴J(;); = 𝐴J(;)

[
(1− H

2 );−𝑁G
ℎ($B)

]
.

Thanks to }𝑁G
ℎ($B)} ≤ 1 − H, one verifies that

L→ +∞, ;→ ±1.

Since L is smooth in (−1, 1), there exists 𝐽 ≥ 0 such that L ≥ −𝐽 . The inequality (3.18) then follows from the fact [49, (4.6)]

𝐴J(;); ≥ 𝐽3}𝐴J(;)}−𝐽4.

This completes the proof. □

Remark 3.1. If 𝑁G
ℎ($B) in (3.18) is replaced by a constant between −1 and 1, then there would be no H in the inequality (3.18).

The unique solvability, energy stability and bound-preserving properties of the scheme are summarized in the following theorem.

Theorem 3.1. Assume 𝑁0
ℎ ∈ ?ℎ such that 𝑟(𝑁0

ℎ) <∞, }𝑁0
ℎ} ≤ 1 and 1

}Ω} ∫Ω 𝑁0
ℎ 𝑗$ ∈ (−1, 1), and the scheme is initialized by (3.14)–(3.16). 

Then for any ℎ, Δ𝑢 > 0 the scheme (3.6)–(3.11) admits a unique solution such that

}𝑁G
ℎ($B)} < 1, G = 1,2…= , B = 1…Cℎ.

Furthermore the scheme is mass-conservative in the sense of satisfying the continuity equation (3.13). Finally the following discrete energy law 
holds: for any 1 ≤M ≤= − 1
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∫
Ω

Dℎ𝜈J(𝑁M+1
ℎ ) + 𝜈G(𝑁M+1

ℎ ) + 1
2 }}∇𝑁

M+1
ℎ }}2 + ,(𝑁M+1

ℎ )𝜉𝑗$+ 1
4 }}𝑁

M+1
ℎ − 𝑁M

ℎ }}2

+Δ𝑢
M∑
G=1

∫
Ω

𝑖([𝑁̃
G+ 1

2
ℎ ])}!G+

1
2

ℎ }2 + }∇𝛿G+ 1
2 }2 𝑗$

≤ ∫
Ω

Dℎ𝜈J(𝑁1
ℎ) + 𝜈G(𝑁1

ℎ) +
1
2 }}∇𝑁

1
ℎ}}2 + ,(𝑁1

ℎ)𝜉𝑗$+ 1
4 }}𝑁

1
ℎ − 𝑁0

ℎ}}2. (3.19)

Proof. We follow the monotone argument from [37] to show the unique existence of solution to Eqs. (3.6)–(3.11). We divide the 
proof into several steps. We temporarily drop the dependence on ℎ and G for the solutions.
Step 1. Claim: for a given 𝛿 ∈ ?ℎ, Eqs. (3.8)–(3.11) admit a unique solution 𝐼 ∈=ℎ, and the solution 𝐼 depends continuously on 𝛿
in the >1 norm.

The Eq. (3.8) and (3.9) is a linear system of finite dimension. The solvability is a consequence of uniqueness which is in turn a 
byproduct of continuous dependence. The continuous dependency is easily seen since the equations amount to a Poisson problem for 
pressure

−
(
𝑖−1([𝑁̃

G+ 1
2

ℎ ])
(
∇𝐼− 𝑁̃

G+ 1
2

ℎ ∇𝛿 − ,([𝑁̃
G+ 1

2
ℎ ])#

)
,∇@

)
= 𝑥(∇𝛿 + 𝑥∇𝐼,∇@).

It then follows from Eq. (3.9) that ! in the 𝜑2 norm continuously depends on 𝛿 in the >1 norm.
Step 2. Claim: for a given 𝛿 ∈ ?ℎ, there is a unique solution 𝑁 ∈ ?ℎ to the Eq. (3.7) such that }𝑁($B)} < 1 − H𝛿 , B = 1 ⋯ Cℎ for a small 
positive constant HN that depends on 𝛿.

There are two methods of proving the claim: one classical way is to truncate the singular potential 𝐴J and proceed with compactness 
argument [9,49]; the other method is to argue by contradiction in the same spirit of strong maximum principle [6,67]. Here we outline 
the first approach but omit some details since they can be found in the references.

For a large C > 0, one introduces a truncation of 𝐴J as follows [49, pp 63]:

𝐴C
J (;) =

⎧
⎪
⎨
⎪⎩

𝐴J(−1 +C−1) + 𝐴 )
J(−1 +C−1)(;+ 1−C−1), ; < −1 +C−1,

𝐴J(;), };} ≤ 1−C−1,
𝐴J(1−C−1) + 𝐴 )

J(1−C−1)(;− 1 +C−1), ; > 1−C−1,

and the associated convex potential is defined as 𝜈C
J (= ∫ ;

0 𝐴C
J (K) 𝑗K. One notes that for sufficiently large C 𝐴C

J satisfies the in-
equality (3.18) as well, cf. [49, (4.12)].

One then considers the approximate system

(𝛿,@)ℎ =
(
OC (𝑁C ),@

)
ℎ +

(
𝐴G(𝑁̃

G+ 1
2

ℎ ),@
)
+ 1

2 (∇𝑁
C ,∇@) + 1

2 (∇𝑁
G
ℎ,∇@)

+Δ𝑢
(
𝐴C
J (𝑁C )− 𝐴J(𝑁G

ℎ),@
)
ℎ, ∀@ ∈ ?ℎ, (3.20)

where OC (𝑁C ) (= 𝜈C
J (𝑁C )−𝜈C

J (𝑁Gℎ)
𝑁C−𝑁Gℎ

is monotonically increasing for fixed 𝑁G
ℎ thanks to the convexity of 𝜈C

J . For a given 𝛿 ∈ ?ℎ, Eq. 
(3.20) is uniquely solvable since it is the Euler-Lagrange equation of the following strictly convex functional

F (𝑁) (=
⎛
⎜
⎜⎝

𝑁

∫
0

OC (;)𝑗;,1
⎞
⎟
⎟⎠ℎ

+Δ𝑢
(
𝜈C
J (𝑁),1

)
ℎ + ∫

Ω

1
4 }∇𝑁}

2 𝑗$

−
(
𝛿 +Δ𝑢𝐴J(𝑁G

ℎ),𝑁
)
ℎ +

(
𝐴G(𝑁̃

G+ 1
2

ℎ )− 1
2Δℎ‖𝑁G

ℎ⟩,@
)
,

on the admissible set of finite dimension

Pℎ (=
{
𝑁 ∈ ?ℎ,∫

Ω

𝑁𝑗$ = ∫
Ω

𝑁G
ℎ 𝑗$

}
.

Here the discrete Laplacian operator −Δℎ (=ℎ →=ℎ is such that

(−Δℎ𝑁,@) = (∇𝑁,∇@), ∀@ ∈ ?ℎ,

and ‖𝑁⟩ (= 𝑁 − 1
}Ω} ∫Ω 𝑁 𝑗$.

We derive some a priori estimates on 𝑁C that allows passing to the limit. Taking @ = 𝑁C − 𝑁G
ℎ in Eq. (3.20), and noting by the 

inequality (3.18)
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(
𝐴C
J (𝑁C ),𝑁C −𝑁G

ℎ
)
ℎ =

Cℎ∑
B=1

MB𝐴C
J
(
𝑁C ($B)

)(
𝑁C ($B)− 𝑁G

ℎ($B)
)

≥ Cℎ∑
B=1

MB[𝐽1HG}𝐴C
J
(
𝑁C ($B)

)}−𝐽2]

= 𝐽1HG}}Dℎ
(
𝐴C
J (𝑁C )

)}}1,ℎ −𝐽 , (3.21)
one obtains by Poincaré’s inequality

(
𝜈C
J (𝑁C ),1

)
ℎ + }}∇𝑁C }}2 + HGΔ𝑢}}Dℎ

(
𝐴C
J (𝑁C )

)}}1,ℎ ≤ 𝐽}}∇𝛿}}2 + (
𝜈C
J (𝑁G

ℎ),1
)
ℎ

+𝐽(}}𝑁̃G+ 1
2

ℎ }}2 + }}∇𝑁G
ℎ}}2 + }}Dℎ

(
𝐴J(𝑁G

ℎ)
)}}2). (3.22)

This implies, by Poincaré’s inequality, uniform boundedness of }}𝑁C }}ℎ and }}∇𝑁C }}, independent of C , and hence up to a subsequence

𝑁C → 𝑁 weakly in >1 and strongly in 𝜑2,

𝑁C ($B)→ 𝑁($B), B = 1…Cℎ.

In light of the fact that all norms are equivalent in finite dimension for fixed ℎ, Eq. (3.22) also implies

}}Dℎ
(
𝐴C
J (𝑁C )

)}}𝜑∞ ≤ 𝐽(Δ𝑢,ℎ,𝛿,HG). (3.23)
Note that 𝐴J(;) → +∞, ; → 1. By choosing H𝛿 small enough such that 𝐴J(1 − H𝛿) > 𝐽(Δ𝑢, ℎ, 𝛿, HG), one obtains for C > H−1𝛿

}𝐴C
J
(
𝑁C ($B)

)} ≤ 𝐽(Δ𝑢,ℎ,𝛿,HG) < 𝐴J(1− H𝛿) = 𝐴C
J (1− H𝛿). (3.24)

In light of the oddity of 𝐴J, there holds −𝐴C
J (1 − H𝛿) = 𝐴C

J (H𝛿 − 1) for C > H−1𝛿 . The monotonicity of 𝐴C
J then gives }𝑁C ($B)} ≤ 1 − H𝛿 , 

and thereby

}𝑁($B)} ≤ 1− H𝛿 . (3.25)
By the mean value theorem and the uniform boundedness of 𝑁C and 𝑁G

ℎ, one has

}}OC (𝑁C )}}2ℎ =
Cℎ∑
B=1

MB

[
𝐴C
J
(
𝑦𝑁C ($B) + (1− 𝑦)𝑁G

ℎ($B)
)]2 ≤ 𝐽𝛿 .

Since OC →O, 𝜈C
J → 𝜈J, 𝐴C

J → 𝐴J as C →∞, one can pass to the limit in Eq. (3.20) and conclude that 𝑁 is the solution to Eq. (3.7).
The continuous dependence of 𝑁 on 𝛿 in >1 is straightforward in view of the monotonicity of O and 𝐴J. This completes proof of 

the claim. Note that H𝛿 depends on 𝛿 at this stage. This dependence will be removed after establishing the energy law in Step 4.
Step 3. Now one introduces an operator < ( ?ℎ → ?ℎ such that for a given 𝛿 ∈ ?ℎ

(
< (𝛿),@

)
= (𝑁− 𝑁G

ℎ,@)ℎ −Δ𝑢([𝑁̃
G+ 1

2
ℎ ]!,∇@) +Δ𝑢(∇𝛿𝐼,∇@),∀@ ∈ ?ℎ, (3.26)

where 𝑁 is the solution to Eq. (3.7), ! and 𝐼 are solutions to Eqs. (3.8) and (3.9). It is clear from Step 1 and Step 2 that the operator 
< is continuous and bounded.
Claim: the operator < is strictly monotone in the sense that

(< (𝛿)− < (Q),𝛿 − Q) ≥ 0, ∀𝛿, Q ∈ ?ℎ, (3.27)
with equality iff 𝛿 = Q.

One has
(
< (𝛿)− < (Q),𝛿 − Q

)
= (𝑁𝛿 − 𝑁Q ,𝛿 − Q)ℎ −Δ𝑢

(
[𝑁̃

G+ 1
2

ℎ ](!𝛿 − !Q),∇(𝛿 − Q)
)

+Δ𝑢
(
∇(𝛿𝐼 − Q𝐼),∇(𝛿 − Q)

)
. (3.28)

Thanks to the monotonicity of O and 𝐴J, Eq. (3.7) implies

(𝑁𝛿 − 𝑁Q ,𝛿 − Q)ℎ =
(
O(𝑁𝛿)−O(𝑁Q),𝑁𝛿 − 𝑁Q

)
ℎ +

1
2 }}∇(𝑁𝛿 −𝑁Q)}}2

+Δ𝑢
(
𝐴J(𝑁𝛿)− 𝐴J(𝑁Q),𝑁𝛿 − 𝑁Q

)
ℎ ≥ 0, (3.29)

with equality iff 𝛿 = Q. Likewise, one derives from Eqs. (3.8) and (3.9)

−
(
[𝑁̃

G+ 1
2

ℎ ](!𝛿 − !Q),∇(𝛿 − Q)
)
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= ∫
Ω

𝑖([𝑁̃
G+ 1

2
ℎ ])}!𝛿 − !Q}2 𝑗$+

(
∇(𝐼𝛿 − 𝐼Q), (!𝛿 − !Q)

)

= ∫
Ω

𝑖([𝑁̃
G+ 1

2
ℎ ])}!𝛿 − !Q}2 𝑗$+ 𝑥

(
∇(𝛿𝐼 − Q𝐼),∇(𝐼𝛿 − 𝐼Q)

)
. (3.30)

Finally
(
∇(𝛿𝐼 − Q𝐼),∇(𝛿 − Q)

)
= }}∇(𝛿𝐼 − Q𝐼)}}2 − 𝑥

(
∇(𝛿𝐼 − Q𝐼),∇(𝐼𝛿 − 𝐼Q)

)
. (3.31)

Collecting Eqs. (3.29)–(3.31), one concludes
(
< (𝛿)− < (Q),𝛿 − Q

) ≥ 0, ∀𝛿, Q ∈ ?

with equality iff 𝛿 = Q. Hence the operator < is strictly monotone.
Claim: the operator < is coercive in the sense that

(
< (𝛿),𝛿

)

}}𝛿}}>1
→∞, as }}𝛿}}>1 →∞. (3.32)

One calculates
(
< (𝛿),𝛿

)
= (𝑁− 𝑁G

ℎ,𝛿)ℎ −Δ𝑢([𝑁̃
G+ 1

2
ℎ ]!,∇𝛿) +Δ𝑢(∇𝛿𝐼,∇𝛿). (3.33)

Taking @ = 𝑁 − 𝑁G
ℎ in Eq. (3.7) and noting the monotonicity of 𝐴J, one deduces by Poincarè’s inequality

(𝑁− 𝑁G,𝛿)ℎ ≥ 1
4 }}∇𝑁}}

2 + ∫
Ω

Dℎ𝜈J(𝑁)𝑗$

−
(
𝐽}}∇𝑁G

ℎ}}2 + ∫
Ω

Dℎ𝜈J(𝑁G
ℎ)𝑗$+𝐽}}𝑁̃G+ 1

2
ℎ }}2

)
. (3.34)

Likewise by testing Eqs. (3.9) with ! and taking @ = 𝐼 in Eq. (3.8), one obtains

− ([𝑁̃
G+ 1

2
ℎ ]!,∇𝛿) + (∇𝛿𝐼,∇𝛿) ≥ }}∇𝛿𝐼}}2 + 1

2 ∫
Ω

𝑖([𝑁̃
G+ 1

2
ℎ ])}!}2 𝑗$−𝐽 . (3.35)

The pressure gradient is estimated by using the Darcy’s equations (3.12)

}}∇𝐼}} ≤ 𝐽}}√𝑖!}}+𝐽}}∇𝛿𝐼}}+𝐽 ,

hence

}}∇𝛿}} ≤ }}∇𝛿𝐼}}+ }𝑥}}}∇𝐼}} ≤ 𝐽}}√𝑖!}}+𝐽}}∇𝛿𝐼}}+𝐽 . (3.36)
It follows from the estimates (3.34)–(3.36)

(
< (𝛿),𝛿

) ≥Δ𝑢}}∇𝛿𝐼}}2 + Δ𝑢
2 ∫

Ω

𝑖([𝑁̃
G+ 1

2
ℎ ])}!}2 𝑗$+ 1

4 }}∇𝑁}}
2 + ∫

Ω

Dℎ𝜈 (𝑁)𝑗$−𝐽

≥ 𝐽}}∇𝛿}}2 + 1
4 }}∇𝑁}}

2 + ∫
Ω

Dℎ𝜈 (𝑁)𝑗$−𝐽 . (3.37)

Next we estimate ∫Ω 𝛿 𝑗$. By the mean value theorem,

O
(
𝑁($B)

)
=

𝜈J
(
𝑁($B)

)
− 𝜈J

(
𝑁G
ℎ($B)

)

𝑁($B)−𝑁G
ℎ($B)

= 𝐴J
(
𝑦B𝑁($B) + (1− 𝑦B)𝑁G

ℎ($B)
)
,

with 𝑦B ∈ (0, 1), B = 1, 2 … Cℎ. Denote 𝑦M =maxB=1,…Cℎ
𝑦B. One has

𝑦M
(
O(𝑁),𝑁− 𝑁G

ℎ
)
ℎ

=
Cℎ∑
B=1

MB𝐴J
(
𝑦B𝑁($B) + (1− 𝑦B)𝑁G

ℎ($B)
)𝑦M
𝑦B

(
𝑦B𝑁($B) + (1− 𝑦B)𝑁G

ℎ($B)− 𝑁G
ℎ($B)

)

≥ 𝐽HG
Cℎ∑
B=1

MB
|||𝐴J

(
𝑦B𝑁($B) + (1− 𝑦B)𝑁G

ℎ($B)
)|||−𝐽
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= 𝐽HG
Cℎ∑
B=1

MB
|||O

(
𝑁($B)

)|||−𝐽 , (3.38)

where the second last inequality follows from (3.18). Therefore by taking @ = 𝑦M(𝑁 −𝑁G
ℎ) in Eq. (3.7) and utilizing Poincaré’s inequality one concludes

HG}}Dℎ(O(𝑁))}}1,ℎ + 𝑦MHG}}Dℎ(𝐴J(𝑁))}}1,ℎ + }}∇𝑁}}2 ≤ 𝐽}}∇𝛿}} ⋅ }}𝑁− 𝑁G
ℎ}}ℎ +𝐽 . (3.39)

In light of the uniform boundedness of 𝑁 and 𝑁G
ℎ, Eq. (3.7) then implies

|||||||
∫
Ω

𝛿 𝑗$
|||||||
≤ 𝐽(}}∇𝛿}}+ 1),

hence

}}𝛿}}>1 ≤ 𝐽(}}∇𝛿}}+ 1). (3.40)
Therefore the inequality (3.37) becomes

(
< (𝛿),𝛿

) ≥ 𝐽}}𝛿}}2>1 −𝐽 ,

whence the coercivity of < is established.
It follows from the Browder-Minty lemma [37] that there exists a unique solution 𝛿 ∈ ?ℎ such that

0 =
(
< (𝛿),@

)
= (𝑁−𝑁G

ℎ,@)−Δ𝑢([𝑁̃
G+ 1

2
ℎ ]!,∇@) +Δ𝑢(∇𝛿𝐼,∇@), ∀@ ∈ ?ℎ.

Step 4: We establish the energy law, thereby removing the 𝛿 dependency of H in Step 2. We also highlight the solutions on ℎ and G.
We recall from [37] the following classical identity

(
𝑁̃
G+ 1

2
ℎ , (𝑁G+1

ℎ − 𝑁G
ℎ)
)
= 1

2 (}}𝑁
G+1
ℎ }}2 − }}𝑁G

ℎ}}2)

− 1
4
{}}𝑁G+1

ℎ − 𝑁G
ℎ}}2 − }}𝑁G

ℎ −𝑁G−1
ℎ }}2 + }}𝑁G+1

ℎ − 2𝑁G
ℎ + 𝑁G−1

ℎ }}2} . (3.41)

Therefore by taking @ =Δ𝑢𝛿
G+ 1

2
ℎ in Eq. (3.6), @ = 𝑁G+1

ℎ −𝑁G
ℎ in Eq. (3.7), @ =Δ𝑢𝐼

G+ 1
2

ℎ in Eq. (3.8), respectively, and testing Eqs. (3.9)
with Δ𝑢!G+

1
2

ℎ , one obtains

∫
Ω

Dℎ𝜈J(𝑁G+1
ℎ ) + 𝜈G(𝑁G+1

ℎ ) + 1
2 }}∇𝑁

G+1
ℎ }}2 𝑗$+ 1

4 }}𝑁
G+1
ℎ − 𝑁G

ℎ}}2

+Δ𝑢∫
Ω

𝑖([𝑁̃
G+ 1

2
ℎ ])}!G+

1
2

ℎ }2 + }∇𝛿G+ 1
2 }2 𝑗$+Δ𝑢∫

Ω

,([𝑁̃
G+ 1

2
ℎ ])# ⋅ !

G+ 1
2

ℎ 𝑗$

≤ ∫
Ω

Dℎ𝜈J(𝑁G
ℎ) + 𝜈G(𝑁G

ℎ) +
1
2 }}∇𝑁

G
ℎ}}2 𝑗$+ 1

4 }}𝑁
G
ℎ − 𝑁G−1

ℎ }}2. (3.42)

Taking @ = 𝜉 (3D) in the continuity equation (3.13) yields

Δ𝑢∫
Ω

,([𝑁̃
G+ 1

2
ℎ ])# ⋅ !

G+ 1
2

ℎ 𝑗$ = ∫
Ω

,(𝑁G+1
ℎ )𝜉− ,(𝑁G

ℎ)𝜉𝑗$.

The inequality (3.42) now becomes

𝑟G+1
𝑗 +Δ𝑢∫

Ω

𝑖([𝑁̃
G+ 1

2
ℎ ])}!G+

1
2

ℎ }2 + }∇𝛿G+ 1
2

𝐼,ℎ }2 𝑗$ ≤𝑟G
𝑗 , (3.43)

with

𝑟G+1
𝑗 = ∫

Ω

Dℎ𝜈J(𝑁G+1
ℎ ) + 𝜈G(𝑁G+1

ℎ ) + 1
2 }}∇𝑁

G+1
ℎ }}2 + ,(𝑁G+1

ℎ )𝜉𝑗$+ 1
4 }}𝑁

G+1
ℎ − 𝑁G

ℎ}}2.

The energy law (3.19) follows by taking summation of (3.43) from G = 1 to G =M for any 1 ≤M ≤= − 1.
To remove the 𝛿 dependence in H𝛿 (cf. (3.25)), one takes @ = 𝑁G+1

ℎ −𝑁G
ℎ in Eq. (3.7) and utilizes (3.18)

(
𝜈J(𝑁G+1

ℎ ),1
)
ℎ + }}∇𝑁G+1

ℎ }}2 +Δ𝑢HG}}Dℎ
(
𝐴J(𝑁G+1

ℎ )
)}}1,ℎ
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Table 1
The order of convergence for 𝑁 and 𝐼 in 𝜑2 with ℎ = 8Δ𝑢.
1∕ℎ ‖𝑔𝐼‖ order ‖𝑔𝑁‖ order
16 7.2261E-2 6.8854E-3
32 2.3475E-2 1.62 1.7559E-3 1.97
64 6.9144E-3 1.76 4.412E-4 1.99
128 1.9131E-3 1.85 1.1044E-4 2.00
256 5.0869E-4 1.91 2.7617E-5 2.00

+Δ𝑢H𝛿}}Dℎ
(
𝐴J(𝑁G

ℎ)
)}}1,ℎ ≤ 𝐽}}∇𝛿G+ 1

2
ℎ }}2 +𝐽;, (3.44)

where 𝐽; is the constant on the right-hand side of the energy inequality (3.19). In light of the estimate (3.36), one has

}}∇𝛿G+ 1
2

ℎ }} ≤ 𝐽}}√𝑖!G+
1
2 }}+𝐽}}∇𝛿G+ 1

2
𝐼,ℎ }}+𝐽 .

The energy inequality (3.19) then implies

Δ𝑢}}∇𝛿G+ 1
2

ℎ }} ≤ 𝐽𝐽;,

hence

Δ𝑢HG}}Dℎ
(
𝐴J(𝑁G+1

ℎ )
)}}1,ℎ ≤ 𝐽𝐽;

Δ𝑢 . (3.45)
Following the same lines of argument as (3.24)–(3.25), one concludes that there exists a small HG+1 > 0 depending on 𝑁0, 𝑖1, 𝑖2, ,1, ,2, 
the domain Ω, and in particular ℎ, Δ𝑢, HG such that

}𝑁G+1
ℎ ($B)} ≤ 1− HG+1, B = 1…Cℎ.

This completes the proof. □

Remark 3.1. It is clear from the proof that for fixed ℎ and Δ𝑢 there exists a H ∈ (0, 1) dependent on H0, 𝑁0, 𝑖1, 𝑖2, ,1, ,2, Ω, ℎ, and Δ𝑢
such that

}𝑁G
ℎ($B)} < 1− H, G = 1,2…= , B = 1…Cℎ.

We comment on that the proposed numerical scheme is unconditional stable as shown in Theorem 3.1, which allows the use of 
fairly larger time steps while still maintaining the monotonic decay of discrete energy. However, the larger time step size may lead 
to the loss of numerical accuracy in regions of rapid evolution. Therefore, we choose appropriately small time step size in numerical 
simulations to guarantee the accuracy of the simulation.

4. Numerical experiments

In this section, we report numerical results to validate the accuracy and efficient of proposed second order finite element numerical 
scheme for qCHD system with singular logarithmic potential. Newton’s iteration method is utilized to solve the nonlinear system. 
We first provide numerical tests to verify the convergence order and the predicted energy dissipation law. Then, we investigate the 
scenario of interface pinch off with different densities by buoyancy force to validate the good performance of numerical method. 
The Saffman-Taylor instability, the rising bubble and the three-dimensional bubble coalescence are numerically simulated to further 
illustrate that the developed numerical method is resilient in capturing interface. Throughout, we set 𝑦 = 1, 𝑦𝜋 = 2.

Example 1 (Accuracy and convergence). Set the computational domain is Ω = [0, 1]2. Choosing parameters Π, 𝑤, 𝐽𝑛∗, ̃0, .𝑔 and 𝐺
are one except ,1 = 1, ,2 = 3, 𝑖1 = 1 and 𝑖2 = 3. The source terms are assumed to be satisfied so that the exact solutions of the qCHD 
system are as follows

𝐼(K,R, 𝑢) = sin(S𝑢) sin(2SK),

𝑁(K,R, 𝑢) = 1
S
cos(S𝑢) sin(2SK) cos(2SR).

We use P1 finite element for pressure 𝐼, phase function 𝑁 and chemical potential 𝛿. In order to validate the optimal convergence 
rate of proposed method, we assume that time step size and spatial mesh size satisfied linear relation. By refining mesh size from 
ℎ = 1

16 to ℎ = 1
256 , the numerical errors of variables 𝐼 and 𝑁 are displayed in Table 1 with ℎ = 8Δ𝑢 at terminate time < = 1. From 

Table 1, it is observed that the numerical errors have the anticipated second order accuracy in 𝜑2 norm for both 𝐼 and 𝑁.
In order to improve the numerical accuracy of diffuse interface problem, adaptive mesh refinement are preferable to resolve the 

transition layer [43,62], namely, the locally fine mesh is utilized on interface layer, since small sizes of spatial mesh only required 
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across the thin interface region. In the following numerical experiments, we perform adaptive mesh strategy according to the Hessian 
of the order parameter. We take the root-level with uniform mesh ℎ = 1

64 , and then explore adaptive mesh refinement.

Example 2 (Energy dissipation). In this numerical test, we simulate the coalescence of two drops with different densities and viscosities 
to validate the preserving of mass and energy dissipation law of the proposed second order numerical method. Two heavier drops is 
set in a lighter medium. The gravity force is ignored in this experience. The initial position of phase variable is given by

𝑁 =

⎧
⎪
⎪
⎨
⎪
⎪⎩

tanh
(
T−

√
(K− 0.4)2 + (R− 0.4)2√

2𝑤

)
, if K+ R < 1

tanh
(
T−

√
(K− 0.6)2 + (R− 0.6)2√

2𝑤

)
, otherwise

(4.1)

where the radius of dropt is T = 0.1
√
2. Choose parameters ,1 = 1, 𝑖1 = 1, Π = 5, 𝑤 = 0.01, 𝐽𝑛∗ = 100, ̃ 0 = 0, .𝑔 = 10, and Δ𝑢 = 0.005. 

In order to improve the efficiency in capturing the interface, we adopt adaptive mesh strategy with the finer mesh size 1
128 to perform 

the simulation on domain Ω = [0, 1]2. We investigate the effect of merging dynamics for cases (a) ,2 = 10, 𝑖2 = 1; (b) ,2 = 1, 𝑖2 = 5; 
(c) ,2 = 10, 𝑖2 = 5; (d) ,2 = 1, 𝑖2 = 1.

Fig. 1 shows the merging dynamics of the kissing drop contour for ,2 = 10, 𝑖2 = 1, ,2 = 1, 𝑖2 = 5 and ,2 = 10, 𝑖2 = 5. We can 
clearly see that two drops gradually merge into one larger drop. Comparing Figs. 1(a) and 1(c), it is clear that the rate of interface 
deformation is lower for variable viscosity drops than for matched viscosity, i.e. 𝑖1 = 1, 𝑖2 = 1. Since the dynamics of the morphology 
for variable phase is similar for ,2 = 1, 𝑖2 = 1, we omit the corresponding evolution of the drops for brevity.

Fig. 2 plots the evolution of the discrete energy 𝑟G −𝑟0 and the total volume ∫Ω 𝑁G
ℎ 𝑗$, respectively, showing that the numerical method indeed satisfies the non-increasing energy and the conservation of mass (i.e. the preservation of the drop volume) for both 

the matched and the variable density and viscosity cases, as predicted in Theorem 3.1. As can be seen from 2(a), the energy decay for 
the matched case is slower than that for the variable density case, especially when comparing the cases of ,2 = 10, 𝑖2 = 5 and ,2 = 1, 
𝑖2 = 5, due to the lower surface tension in the matched case. This is consistent with the asymptotic analysis in [47] and numerical 
simulations in [34]. Moreover, for variable viscosities at fixed densities (e.g., ,2 = 10, 𝑖1 = 5 and ,2 = 10, 𝑖1 = 1), the energy decrease 
is increased for larger ratio of viscosity, which is consistent with the faster deformation of coalescing drops as shown in Fig. 1. The 
observed numerical phenomena are in good agreement with the numerical results reported in [34].

Example 3 (Pinch-off of interface). We validate the capability in capturing topology transition of interface of the proposed numerical 
method. We set that a light fluid sandwiched between layers of heavy fluid at initial time. The parameters are ,1 = 1, ,2 = 5, Π = 1.2, 
𝑤 = 0.01, 𝐽𝑛∗ = 100, ̃0 = 29.46, .𝑔 = 10, the time step size Δ𝑢 = 0.001 and the computational domain is a unit square. The initial 
condition of phase variable is chosen as

𝑁0(K,R) = 1− 1
2 U+(K,R)U−(K,R), (4.2)

with U±(K, R) = 1 ± tanh
(

4
3𝑤

(
R− 1

3 ±
1
4S

(
1 + cos(2SK)

2

)))
, which yields that a blue color is associated to ,1 corresponding to a light 

fluid, a red color is associated to ,2 corresponding to a hevy fluid.
Fig. 3 exhibits the contours of phase variable, where the red color and the blue color indicate different phases in heavy and light 

media, respectively, for both two cases: 𝑖1 = 5, 𝑖2 = 1 and 𝑖1 = 1, 𝑖2 = 5. It clearly shows the formation and the rising of lighter bubble, 
include the break up of bridge for no satellite in Figs. 3(a) and one satellite in 3(b). Moreover, in order to further verify the robustness 
of proposed numerical scheme in capturing interface instability, we take 𝑖1 = 1 and 𝑖2 = 5 as well as 1

.𝑔 = 0.1
√
(1− 𝑁2)2 + 𝑤2. 

The characterized morphology is plotted in Fig. 4. We clearly observe that two satellite drops produce after rupture. The similar 
numerical finding under Buoyancy-driven flow are obtained in [38,24]. The reasonable phenomenon verify the compatibility of 
designed numerical schemes.

Example 4 (Viscous fingering). We simulate the viscous fingering phenomenon known as Saffmann-Taylor instability to validate the 
capability of proposed second order numerical method in dealing binary fluids with different viscous.

Choose ,1 = 1, ,2 = 5, Π = 1.2, 𝑤 = 0.01, 𝐽𝑛∗ = 120, 1
.𝑔 =

√
(1−𝑁2)2 + 𝑤2, Δ𝑢 = 0.0001, we adopt the double well potential under 

the absence of gravity on Ω = [0, 0.5] × [0, 1.0]. The initial condition is chosen as

𝑁0(K,R) = tanh
(

4
3𝑤

(
R− 1

10 + cos(16SK)
100

))
, (4.3)

which yields the set up in Fig. 5(a). A less viscous fluid associated to 𝑖1 is injected into a more viscous fluid associated to 𝑖2 by 
a velocity JBGV = 50 at the bottom boundary, the heavy fluid is exacted at the same rate at the top boundary. Fig. 5 displays the 
insurgency of finger phenomenon with 𝑖1 = 1 and 𝑖2 = 10. Fig. 6 compare the deformation and development of finger patter with 
different viscosity ratios 𝑖2 = 5, 10, 20, respectively, at characterized time. The expected numerical phenomenon highlight that a large 
viscous ratio enhances the length of finger morphology that are in coincide with the numerical results reported in [12,38].



Journal of Computational Physics 518 (2024) 113340

12

Y. Gao, D. Han and X. Wang

Fig. 1. The merging evolution of phase variable for two droplets.

Fig. 2. Evolution of the discrete energy and mass for merging droplets.

Example 5 (Rising bubble). In this test, we simulate a light rising bubble in a heavier medium to validate the efficiency of proposed 
numerical method with respect to different density variations. The computational domain is taken as Ω = [0, 1] × [1, 1.5]. The initial 
position of phase function is set as

𝑁0(K,R) = tanh
(
0.2−

√
(K− 0.5)2 + (R− 0.5)2√

2𝑤

)
. (4.4)

Taking parameters 𝑖1 ( 𝑖2 = 1 ( 2, ,1 = 1, Π = 1.2, 𝑤 = 0.01, 𝐽𝑛∗ = 120, ̃0 = 12, 1
.𝑔 =

√
(1−𝑁2)2 + 𝑤2, and uniform time step 

size Δ𝑢 = 0.0001, the evolution of bubble is presented in Fig. 7 under the influence of buoyancy with ,2 = 10 and ,2 = 500. Compared 
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Fig. 3. The evolution of phase variable for interface pinchoff. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 4. The evolution of phase variable for interface pinchoff at 𝑢 = 0.1,0.23,0.29,0.35,0.45.

Fig. 5. The evolution of phase variable for viscous fingering under 𝑖2 = 10

Fig. 7(a) and Fig. 7(b), one can easily observe that the bubble rises with slight deformation in the case ,1 ( ,2 = 1 ( 10, while the 
deformation of bubble is more apparent and rises more quickly for a larger density ratio ,1 ( ,2 = 1 ( 500.

Example 6 (Three-dimensional merging bubbles). The interaction and merging for multiple bubbles are inevitable in various engineering 
applications [2,50,63]. In this experiment, we consider the dynamics of two merging bubbles in three dimensions to validate the 
capability of proposed numerical method. The initial two spherical bubbles have the same size with a radius of 0.15. The initial 
position of phase function is placed as shown in the first figure of Figs. 8(a) and 8(b) for the laterally aligned bubbles and the 
vertically coaxial two bubbles, respectively. Taking ,1 ( ,2 = 1 ( 5, 𝑖1 ( 𝑖2 = 1 ( 2, Π = 1.2, 𝑤 = 0.03, 𝐽𝑛∗ = 30, ̃0 = 2.946, .𝑔 = 10, 
Δ𝑢 = 0.005, the computational domain is set as a vertical channel [0, 0.6] × [0, 0.9] × [0, 1.2].

Fig. 8 displays the morphotype evolution of zero isosurface. As Fig. 8 indicates, two spherical bubbles contact each other and 
coalesce under surface tension and moving upwards under buoyancy force. From Fig. 8(a), one can clearly see that the merged 
bubble slightly expand in the vertical, leading to bubble merging in the lateral configuration. There is the apparent distortion of 
interface for trailing bubble as shown in Fig. 8(b). As the bubbles rise, the trailing bubble can catch up with the leading bubble 
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Fig. 6. The evolution of phase variable with different viscosity ratios, and snapshots are taken at 𝑢 = 0.02,0.05,0.08.

Fig. 7. The evolution of phase variable for rising bubble.
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Fig. 8. The evolution of bubble coalescence in lateral side-by-side (top) and the vertical coaxial (bottom).

and then the two bubbles mix together to form a big bubble. The reasonable coalescence phenomenon is similar with numerical 
observations recorded in [3,32].

5. Conclusion

In this paper, we propose a second order finite element method satisfying bound-preserving, mass conservation and energy dis-
sipation for numerically solving the quasi-incompressible Cahn-Hilliard-Darcy system. The key idea is second-order convex-splitting 
(Crank-Nicolson approximation with Admas-Bashforth extrapolation) for the logarithmic potential. To maintain bound-preservation, 
the convex part of the singular potential is added back to the equation as a temporal perturbation. This yields a discrete 𝜑1 estimate 
of the singular potential, thereby preserving the desired bounds for the order parameter. The method is applicable for solving the 
Cahn-Hilliard-Navier-Stokes equations of matched densities (Model H), and could be generalized for higher order spatial accuracy.
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