
An Automated Occultation Network for Gravitational Mapping of the Trans-Neptunian
Solar System

Daniel C. H. Gomes and Gary M. Bernstein
Department of Physics & Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA 19104, USA; dchgomes@sas.upenn.edu

Received 2024 October 21; revised 2024 November 25; accepted 2024 December 14; published 2025 January 22

Abstract

We explore the potential of an array of ( ) 100 small fixed telescopes, aligned along a meridian and automated to
measure millions of occultations of Gaia stars by minor planets, to constrain gravitational signatures from a “Planet
X” mass in the outer solar system. The accuracy of center-of-mass tracking of occulters is limited by photon noise,
uncertainties in asteroid shapes, and Gaia’s astrometry of the occulted stars. Using both parametric calculations and
survey simulations, we assess the total information obtainable from occultation measurements of main-belt
asteroids (MBAs), Jovian Trojans, and trans-Neptunian objects (TNOs). We find that MBAs are the optimal target
population due to their higher occultation rates and abundance of objects above Legacy Survey of Space and Time
detection thresholds. A 10 yr survey of occultations by MBAs and Trojans using an array of 200 40 cm telescopes
at 5 km separation would achieve 5σ sensitivity to the gravitational tidal field of a 5M⊕ Planet X at 800 au for
>90% of potential sky locations. This configuration corresponds to an initial cost of ≈$15 million. While the
survey's sensitivity to tidal forces improves rapidly with increasing number of telescopes, sensitivity to a Planet X
becomes limited by degeneracy with the uncertain masses of large moonless TNOs. The 200-telescope survey
would additionally detect ≈1800 TNO occultations, providing detailed shape, size, and albedo information. It
would also measure the Yarkovsky effect on many individual MBAs, measure masses of many asteroids involved
in mutual gravitational deflections, and enable better searches for primordial black holes and departures from
general relativity.

Unified Astronomy Thesaurus concepts: Planetary dynamics (2173); Stellar occultation (2135); Astrometry (80);
Asteroids (72); Trans-Neptunian objects (1705); Gravitation (661)

1. Introduction

Stellar occultations, i.e., transits of an occulter object that
temporarily blocks the light from a background star, provide
a convenient method for studying physical properties and
orbital dynamics of solar system objects. Historically,
potential uses of the method have long been discussed, as
seen in Leonhard Euler's application for determining long-
itude with stellar occultations by the Moon (L. Euler 1749)
and Rev. John Michell's mention of measuring stellar angular
diameters using occultations by Venus (J. Michell 1767). The
20th century witnessed an increased interest in the study of
planetary atmospheres via occultations, building upon
theoretical development by A. Pannekoek (1903) and
C. Fabry (1929). Toward the end of the century, successful
observations allowed the discovery of Uranus’ rings
(J. L. Elliot et al. 1977) and the detection of Pluto's
atmosphere (W. B. Hubbard et al. 1988).

The advent of high-precision stellar catalogs has expanded
possibilities in the field, especially in the study of small solar
system bodies. These measurements allow determination of
asteroid shapes, which can potentially constrain solar system
formation models and provide better orbital tracking than
attainable through direct observation of the target. Recent effort
in understanding the outer regions of the solar system has
motivated the prediction and observation of trans-Neptunian

object (TNO) occultations through projects such as the RECON
network (M. W. Buie & J. M. Keller 2016).
Targeted occultation surveys rely on previous knowledge of

each target's orbit with precision comparable, at least, to the
size of the telescope array. J. L. Ortiz et al. (2019) note that,
though Gaia astrometry is at microarcsecond level, many TNO
orbits are still uncertain to 300 mas. At a distance of 40 au, this
corresponds to ∼9000 km shadow path uncertainties, which
implies a low probability of successful event prediction. Some
objects, however, have been better constrained: the New
Horizons extended mission target Arrokoth was successfully
observed in three occultation campaigns (M. W. Buie et al.
2020) following orbital determination from Hubble Space
Telescope astrometry, and other TNOs closely observed by the
New Horizons spacecraft also had their orbital accuracy
improved (S. B. Porter et al. 2022). As the Legacy Survey of
Space and Time (LSST) commences and proceeds over its
∼2025–2035 period, nearly all of the minor bodies it detects
will accrue sufficiently accurate orbital data to predict
occultation tracks to O(100) km, hugely increasing the
efficiency of targeted occultation measurements.
Main-belt asteroids (MBAs) and Jovian Trojans are more

accessible targets, since they are closer to us and have larger
apparent paths in the sky. These populations are also of interest in
outer solar system studies, particularly due to their potential use as
test particles in the search for distant gravitational signals, which
could provide constraints on different “unseen planet” hypotheses
(generally referred to as Planet X), such as the Planet Nine
hypothesis evoked to explain a perceived orbital clustering of
TNOs (C. A. Trujillo & S. S. Sheppard 2014; K. Batygin
& M. E. Brown 2016; M. E. Brown & K. Batygin 2016;
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S. S. Sheppard & C. Trujillo 2016). M. Rice & G. Laughlin
(2019) suggested a network of ∼2000 telescopes spread over the
continental United States measuring occultations of Jovian
Trojans, with the goal of detecting perturbations by a putative
Planet X. Inspired by this idea, in a previous study
(D. C. H. Gomes et al. 2023) we explored the ability of current
and planned LSST astrometric data to constrain the presence of a
distant tidal field, finding that LSST astrometry of Jovian Trojans
does not significantly improve Planet X mass uncertainties. The
possible contribution of an occultation array, however, remained
unexplored beyond Rice and Laughlin's initial foray.

In the current paper, we propose a fixed array of telescopes
aligned roughly along a meridian, automated to detect targeted
occultations of Gaia stars by asteroids from any of the three main
populations—MBAs, Jovian Trojans and TNOs. Starting with
LSST-level astrometry for initial orbit determination, the array
would narrow down center-of-mass (CM) positions through
multiple occultation events per asteroid over a period of ≈10 yr.
We explore which array design and target choices would yield
better constraints on the tidal fields of a distant point mass.

This paper will focus on optimizing a telescope array for
minor-body astrometry and tidal-field detection, but an array of
100 agile telescopes could also advance many other science
goals. The astrometric data would also improve the solar
system ephemeris generally, constrain the flux of asteroid-mass
primordial black holes (T. X. Tran et al. 2024), and vastly
improve knowledge of the sizes of asteroids and their
nongravitational forces that drive much migration. A review
of knowledge gained on TNOs through occultations is given by
B. Sicardy et al. (2024), and in Section 5 we show that such an
array would measure the shapes and albedos of ≈100× more
TNOs than have been characterized to date. Individual stations
would be available for other observations when they are not
active for an occultation, enabling high-duty-cycle monitoring
for asteroid impacts, supernova shock breakouts, and many
other transient or variable phenomena occurring on timescales
or cadences inaccessible to LSST.

2. Hardware Characteristics and Costs

We will assume that observations are made by an array of
N  100 telescopes, each with diameter d ∼ 0.5 m, separated
by distance D ∼ 1 km, spanning a length of L = ND  100 km
(symbols and relevant default values are listed in Table 1). The
array should be oriented roughly north–south, perpendicular to
the typical (ecliptic) apparent motion of the occulters, but it is
not necessary to have precisely spaced or oriented stations in
the array. We will assume throughout that occultations are
measured through a filter centered at λ0 = 600 nm, spanning
400 nm < λ < 800 nm, which is a common choice for
maximizing signal-to-noise ratios (S/Ns) in the presence of
atmospheric and zodiacal backgrounds. We will further assume
a nominal survey duration of T= 10 yr.

Other important characteristics of the telescopes include the
overall quantum efficiency (QE) η of the atmosphere/telescope/
aperture/detector combination, for which we assume 50%. The
latitude, maximum observable air mass X ,max and duty cycle fduty
are important to determining the yield of the occultations, where
the latter is the fraction of occultations that pass over (or under)
the array that can actually be observed. We will default these to
±30°, 2.3, and 0.21, respectively. For an observatory at latitude
±30°, fduty is limited to <0.32 by the fraction of near-ecliptic sky
that is visible at air mass< =X 2.3max We reduce this by a factor

0.65 to allow for losses due to clouds, downtime, and bright
twilight or moonlight that might be present—our simulations
described in Section 4 will explicitly check each potential event
against solar, lunar, and weather conditions rather than assuming
an fduty value.
The detectors on each telescope will need to read out the

flux of the occulted star at 200 Hz in order to resolve the
≈10 ms transition from full to zero shadow in egress/ingress.
Read noise below 1e− will be needed. A potential solution is
a single-channel photon-counting device, such as an
avalanche photodiode. This detector would be paired with a
CCD or CMOS detector with a field of view of several
arcminutes, sufficient to find several stars in the Gaia catalogs
for any pointing in the sky. This “finder” detector would be
read out, the image analyzed to determine the current
telescope pointing, and then the pointing adjusted to place
the target star onto the photon counter's aperture. Thus, the
pointing system needs to be capable of subarcsecond
accuracy only for differential movements of a few arcmi-
nutes. The telescope mount requires only several-arcminute
accuracy for longer slews.
The occultation events will last only 1 s for MBAs and

Trojans, and up to ≈1 minute for TNOs. We thus envision a
very rapid automated cadence, in which each station can
independently slew to a target, expose and analyze a
registration image, shift the target onto the photon counter,
and record several seconds of data, then move on to the next
target in a total of 2 minutes. It is possible that subarray
readout of a CMOS “finder” detector could have low enough
noise to obviate the need for a photon counter.
To minimize costs, each station should be as autonomous,

reliable, and inexpensive as possible. We envision each station
being powered by a solar array and battery, and transmitting at
least station-keeping information by cellular links, so no utility
hookups are needed. If cellular transmission of the observing
data is too expensive, these data could be stored on local
physical media that are collected periodically by maintenance
crews. A modular telescope/mount/enclosure unit should be
small enough that several can be placed on a truck, so that a
crew traveling along the array can swap out units and bring
them back to a central lab for repairs and maintenance; and
similarly for computing and power systems.

2.1. Cost Equation

We will make very crude estimates of array capital costs as

( )= +N C C
d

cost
0.5 m

, 1s t

2⎡⎣⎢ ⎛⎝ ⎞⎠ ⎤⎦⎥
where Cs is a fixed cost per station for site preparation,
enclosure, detectors, power, computing, and communications,
and Ct is a telescope cost, which we assume will scale with the
collecting area. Some rough guesses are as follows:

1. Telescope. Ritchey–Chretien telescopes from Planewave
Instruments have costs that scale roughly linearly with
collecting area for d  0.7 m, with a telescope+mount
cost of ≈$60,000 for d= 0.5 m.1 We thus adopt a default
of Ct = $60,000. Ordering at >100-unit scale might
make this and other components substantially cheaper.

1 https://planewave.com/collections/all-telescopes/
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Catadioptric telescopes are less expensive and available
for d  0.4 m.

2. Detectors. A CMOS or CCD “finder” with » ¢10 FOV
would not require particularly large format or high
performance, so commercial off-the-shelf hardware
would suffice. Commercial single-channel photon-count-
ing devices should work well too; we want to push for
high QE, but the timing requirements (millisecond levels)
and count rates (100–1000 Hz) that we require are more
relaxed than typical specifications. The two detectors
might cost ≈ $15,000 per station total.

3. Enclosure. This would need to be designed and
replicated; a simple hinged-top box would be sufficient,
and would not need to be large enough to contain a
human—the sides could open for maintenance. Perhaps
this could be done for $10,000 per station.

4. Computing, solar power, and cellular data link. These
would would cost a few thousand dollars per station.

5. Site preparation. This would comprise a concrete pad and
a security fence and cameras, and cost perhaps $10,000.

6. Least predictable would be the costs of negotiating and
acquiring the leases for the sites. We ignore this
important element for now, because any believable
estimate would depend heavily on the choice of site
and require research well outside of our astronomical
expertize.

In sum, a crude guess is hence Cs = $40,000 and
Ct = $60,000, leading to a $10,000,000 cost for a 100-
station array. We have neglected design costs (including
software), which probably are independent of the array
specifications. The above costs are all for capital outlays.
There would of course be ongoing operating costs for
maintenance/personnel. At most observatories these are 5%–
10% of capital cost annually, accumulating to be similar to
capital costs over the project lifetime. However, this unusual
observatory might be more expensive because of its
geographically distributed nature, or less expensive because
its replication of components makes maintainance more
efficient. An engineering and cost study is needed.

3. Parametric Analyses

In this section, we describe a simplified parametric
estimation of the cost and performance of an occultation array,
which we then use to study the constraints and optimization on
array parameters to produce useful information on gravitational
perturbations subject to cost bounds. In Section 5, we will
reevaluate the optimization and performance using more
thorough simulations of survey scenarios, guided by the results
of these simpler parametric analyses.

The forecast of constraints on a given gravitational signature
requires answers to the following questions:

1. What is the uncertainty in position σx of the target minor
body attained from a single occultation event?

2. How many events (at what uncertainties) would the array
be able to attain on a typical object?

3. How many test particles (occulters) can be tracked from
the selected small-body population?

4. What constraints does the suite of observations place
upon the gravitational anomaly?

For a given observing scenario and target population, a useful
figure of merit is the total positional information σtot, defined
by

( )å ås
s

=-

Î Î

1
, 2

i j i x ij
tot

2

targets occulations of ,
2

with s x ij,
2 being the measurement uncertainty on the position of

a test particle i during its jth occultation event. The resulting
σtot can be compared to the few-meter scale of information
from ranging to spacecraft orbiting Jupiter and Saturn, or few-
centimeter scale of information on the range to Mars, keeping
in mind that the displacements caused by an anomalous tidal
force on a test body will scale roughly asD µx a ,T

4 where aT is
the target's semimajor axis.

3.1. Test Particle Populations

We examine as target populations each of the three most
populous reservoirs in the solar system: the MBAs, the Jovian
Trojan asteroids, and the TNOs. In this section, we consider
members of each population to share a common semimajor axis
aT = 2.6, 5.2, and 42 au for the MBAs, Trojans, and TNOs,
respectively. Aside from aT, the other critical characteristic of the
target population is NT( > dT), the number of members larger than
diameter dT. Figure 1 plots the values we have assumed for each
population. Simple power laws are good fits to the regime where
the MBAs and Trojans cataloged by the MPC are largely
complete.2 For fainter MBAs, we adopt the formula used in the
initial LSST predictions (LSST Science Collaboration et al.
2009), and for Trojans we extrapolate the power-law fit. For
TNOs, we adopt the rolling power law for dN/dH found by
P. H. Bernardinelli et al. (2025) to fit the 6 < Hr < 8.2 range.
We forecast that the known populations in future years will be
dominated by objects detected by LSST. The expected 5σ
detection levels for single-epoch LSST exposures in nominal
conditions (dark, zenith, median seeing) are equivalent to
mV = 24.4 mag, which we hence consider a bound on the
usable occulter population.3 There are >10 times more usable
MBAs than Trojans, and potentially 102 more MBAs than
usable TNOs—but the physical displacements induced on a
target by a tidal force scale as aT

4 (for fixed number of orbits),
so it is not a priori obvious which population will be most
informative.

3.2. Measurement Errors

There are three important sources of uncertainty in the
transverse position of the CM of a given target during an
occultation, which we will call shape noise (sSN), photon noise
(σγ), and Gaia uncertainties σG.
The ultimate limit to the determination of orbits through

occultations is the shape noise, our ignorance of the target's
projected CM location relative to the measured chords. Even
perfect knowledge of the silhouette of the target would yield an
uncertain CM estimate because of ignorance of the depth
dimension, and variations in internal density cause additional
CM shifts relative to the geometric centroid. In Section 4.2.1,
we justify an estimate that s a= d ,S TSN with a nominal

2 https://www.minorplanetcenter.net/data
3 https://pstn-054.lsst.io/
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αS = 0.05 giving the rms ratio of the along-track CM distance
from the center of a single chord to the mean radius of the
target. The cross-track uncertainty from a single-chord CM is
larger, with /( )s » d Dmin , 12 ,T since a simple estimator is
that the CM has a uniform probability of being somewhere in a
region of width ( )d Dmin ,T centered on the observed chord. In
this section, we will examine only the along-track information;
the full simulation will use cross-track and multichord
information, as well.

For σG, we use the estimated accuracy of Gaia Data Release
5 (DR5) astrometric solutions provided by the ESA.4

Appendix B derives the uncertainty σγ in the center of a
chord due to Poisson noise in the arrival of photons from both
the occulted star (having unocculted photodetection rate nå)
and some foreground/background count rate nb due to
atmospheric and zodiacal foreground signals, as well as
sunlight reflected from the occulting asteroid. The background
ratio is defined as B = nb/nå. For B → 0, bright stars, and large
occulters, this uncertainty becomes /s =g F n t2 ,F where

/l=F a 2T 0 is the Fresnel scale, which characterizes the
distance over which the occulter's shadow transitions from fully
bright to fully dark. This transition region takes a time
tF = F/v⊥ to sweep over the telescope, where v⊥ is the relative
speed of the occulter and the observer transverse to the line of
sight. The Fresnel scales F and tF are ≈ 340 m and 11 ms,
respectively, for typical MBAs, growing as aT for more
distant occulter samples.

This best-case result is degraded if:

1. The occulter has dT below the Fresnel scale, which leads
to shallow occultations that are harder to measure,
tending toward /s µg

-d .T
5 2 This essentially limits the

available gravitational information to objects with
dT > F = 340(a/2.6 au)1/2 m.

2. The star is too faint to deliver at least several photons
during tF, or the background is B  0.1 and similarly
degrades the S/N during the ingress/egress transitions.

3. The occulter becomes large and bright enough that its
reflected light fills in the occultation light curve
significantly.

Equation (B4) gives an approximation to σγ that spans the
different regimes of source brightness, background level, and
occulter size. An important consideration is that the occultation
must be long and deep enough to be detected in the first place.
We will require that dT > 4σγ to approximate this condition.
Figure 2 plots the resultant expected uncertainties σγ, σG,

and sSN versus source Gaia magnitude mG for MBAs of a few
different sizes, to illustrate the domains in which each is
important. One conclusion is that telescopes should have
dT  0.5 m; larger telescopes would lower σγ, but then σG
would dominate the total σx quadrature sum, negating the gain
of the larger, more expensive telescopes.

3.3. Event Rates

An estimate of the number of observed occultations of stars
with mG < mG,max per target asteroid during the survey is
obtained by finding the sky area subtended by the outline of the
asteroid's track across the sky, multiplying by the sky density
of potential stellar backlights and by the duty cycle of
occultation observations:

Figure 1. The dashed and dotted lines show the assumed cumulative and differential counts, respectively, for the MBA, Trojan, and TNO populations. The histograms
show the differential counts dN/dm of objects currently listed by the Minor Planet Center. Each cumulative curve terminates at a star marking an apparent magnitude
mV = 24.4, which is roughly the limit at which objects can be detected in single visits by LSST. The vertical lines mark the Fresnel scale for each population. Note that
our models are not intended to match the excesses of larger bodies.

4 https://www.cosmos.esa.int/web/gaia/science-performance
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The final expression makes use of the following estimates.
First, we estimate the mean sky density of useful Gaia
stars within ±10° of the ecliptic as ( )< »n mG G

( )´ - -3500 10 deg .m0.3 18 2G This estimate does not count as
“useful” those Gaia stars in crowded low-Galactic-latitude
regions.

Second, we approximate the average annual length of a
target's apparent sky track, constrained to those portions with
solar elongation b b> = 50 ,min as /( )a2 sin 1 au ,T which is
accurate to <10% for circular orbits.

Not all positional information on a target can be used to
constrain unexpected gravitational accelerations. There are 6
degrees of freedom in each target's initial state vector, which
must also be solved using the occultation data. Previous data
(nominally from LSST) would be available too, but will
probably be 10× less accurate than the occultation data and
hence not useful at occultation-survey accuracy—otherwise we
would not be doing an occultation survey! We therefore
assume that, for a given asteroid, the three most precise
occultation measurements will be used to constrain the initial
state, and information on perturbations will begin to accrue
only from the fourth most accurate occultation observation.
Thus, a target which does not produce �4 measurable
occultations does not contribute at all to the σtot figure of
merit. When forecasting the actual number of occultations, we
assume each target draws from a Poisson distribution with

mean given by Equation (3), rather than assigning every
asteroid the mean number of observed occultations.
Equation (3) shows that á ñ µ -N a ,e T

2 thus the Trojans and
particularly the TNOs will be starved for occultations, with
〈Ne〉 < 4 unless we increase the array length well beyond
200 km. It is also clear that the number of observed events Ne
scales with the number of telescopes N at a fixed choice of
spacing, so our goal quantity will scale as σtot ∝ N−1/2, and in
fact will scale more strongly than this because of the threshold
Ne� 4 required to make a test particle useful.

3.4. Results: MBAs

Figure 3 shows, for one scenario of an MBA survey, the
results of the above assumptions on a grid of MBA diameter
versus Gaia source magnitude. The left panel shows the
expected σx per occultation for the (dT, mG) combination. The
right panel weights the s-

x
2 information per occultation in each

region in dT–mG space by the number of asteroids and the
number of usable occultations per asteroid, to give the total
information density in dT–mG space, following Equation (2).
An occultation is assumed to be useful only if �3 observations
with lower σx have been accrued for that object.
The projected value of σtot in this scenario is just 4.4 cm,

similar to the accuracy available from Mars ranging, with a
nominal $15,000,000 capital cost. This is quite encouraging,
since the tidal field of a 5M⊕ Planet X at 800 au will cause a

( )á ñ = ´ < ´ á ñN f n m T
a

apparent motion
effective array length

e G G
T

duty ,max ⎜ ⎟⎛⎝ ⎞⎠
/ /

/ /( )( ) ( )( )( ) ( )
( )

( )» ´- ´-

-10 10 .T f m a a N d D
10 yr 0.21

0.3 18 sin 1 au
sin 1 2.6 2.6

min ,
200 km

G T T Tduty ,max
1

1

Figure 2. Sources of uncertainty in the along-track asteroid position from a single occultation chord plotted vs. magnitude of the occulted star. At left is for an occulter
diameter dT = 3 km, at right dT = 0.5 km, both sources at a distance of 2.6 au. Each set of lines shows values of the photon noise σγ for new, quarter, and full Moons,
and three different telescope diameters d are plotted in each case. The magenta curve plots the expected final Gaia positional uncertainties σG, and the horizontal line
marked “shape noise” marks the floor sSN set by the unknown shape and density distribution of the occulter. The “detection threshold” marks the uncertainty σγ = dT/
4 that we consider an upper limit for detectable occultations, and the σγ curves terminate at this level. The Fresnel scale is also plotted, and the small triangles mark the
G magnitudes at which background counts equal star counts for different moon phases. For the 0.5 km occulter, near the diffraction scale, almost all occultations are
limited by photon noise, and the sky brightness is unimportant. For the larger occulter, fainter Gaia stars yield detectable occultations, and the shape noise limits the
measurement accuracy for much of the detectable regime.
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shift of ≈ 5eT meters from apsidal precession over 10 yr
(where eT is the occulter's eccentricity) and a quadrupolar
position oscillation with amplitude ≈±10 cm on each orbit.

These plots show how the region of useful information is
bounded at the faint-mG end by having sufficient statistics to
detect the occultation, (σγ < dT/4). This bound moves to
fainter mG with larger telescope diameters d, and is independent
of the number of stations N. The high-information region is
bounded at the bright-mG end by the need to accrue enough
occultations over 10 yr to determine the state vector and begin
to extract information on perturbations (Ne > 4). This bound
improves linearly with N and with the survey duration T, and is
largely independent of d. As the target diameter dT decreases,
the number of available occulters and available information
increase rapidly, until these two constraints converge, which by
coincidence is near the Fresnel scale in this scenario. The
majority of information is arriving from asteroids near the
〈Ne〉 = 4 line, with some targets below the line still providing
their contribution if they end up with Ne� 4 occultations
because of Poisson fluctuations in the number of occultations
over the survey. The bulk of the information on gravitational
perturbations comes from MBAs slightly above the Fresnel
scale, since the number of such bodies increases rapidly with
smaller diameter, and likewise is concentrated in the faintest
source-star magnitudes whose occultations are detectable.

The parametric treatment of this section allows rapid
exploration of the space of survey characteristics. We observe
that configurations optimized under a cost constraint have the
following characteristics:

1. The trade-off between telescope diameter dT and number
of telescopes N at fixed cost minimizes σtot when the cost
of the telescope /( )C d 0.5 mt T

2 is 10%–20% higher than
the fixed station costs Cs. In other words, one should
spread the funds over as many (smaller) telescopes as
possible until the per-station costs are about to dominate.

When Cs = $40,000, this leads to an optimal telescope
size dT ≈ 0.45 m.

2. The constraining power of the array grows rapidly with
the total cost cap, σtot ∝ cost−1.3. Higher capital funds
allow larger N, which benefits the performance in two
ways: first, the total number of observable occultations
increases linearly with N; second, the fourth-brightest
occultation moves to brighter stars, which means that
lower-σx measurements can now be applied to gravita-
tional constraints.

3. Increasing the survey duration T increases the constrain-
ing power at an even higher exponent, since increasing T
and increasing N reduce the σtot at the same rate—but
increasing T gives gravitational anomalies more time to
act, raising their resultant displacements.

4. Reducing the fixed costs per station is highly beneficial,
roughly as s µ -C ,stot

0.5 at fixed total costs since this
moves the optimization toward more, smaller telescopes,
improving 〈Ne〉.

5. The right panel of Figure 3 shows that LSST is capable of
discovering nearly all of the MBAs that would make
useful test particles.

6. The figure also shows most of the information is coming
from occultations that are not strongly affected by
background light. This is good news in that it makes
the survey less sensitive to the degraded seeing and night-
sky brightness that a geographically dispersed array
might encounter.

7. It is also true that much of the MBA information is from
objects close to the Fresnel size and “lucky” to obtain
four measured transits. Both of these place stress on our
simplified assumptions about the amount of information
extractable from each occulter, and the latter might
reduce our robustness against other nuisance effects such
as nongravitational forces. The simulations in Section 4

Figure 3. These figures illustrate the performance predicted by the parametric model for an occultation array targeting MBAs using a configuration of N = 200
telescopes of diameter d = 0.4 m at D = 2 km spacing, near the optimum for a $15,000,000 nominal capital cost. The uncertainty on the rms size of an anomalous
gravitational displacement after a 10 yr survey is just σtot = 4.4 cm. At left is the total measurement uncertainty in the occulter position for single-chord observations
vs. the occulter diameter and magnitude of the occulted star. Overlaid are several important dividing lines; asteroids below the dt = 2F line have radius below the
Fresnel scale, only partially blocking stellar light. Those below the “Unknown” line are too faint to be found in the nominal LSST single-epoch data. Those to the right
of the B = 0.5 contour are substantially degraded by “background” light from the night sky and the asteroid's reflected light. Those to the left of the s s=g SN contour
are limited by shape noise in determining the CM of the asteroid. Those to the right of the σγ = dT/4 curve have too much photon noise for the occultation to be
securely detected. The right-hand plot shows the density of information on gravitational perturbations in the dT–mG plane, which is heavily concentrated in the region
with the most numerous occultations—the asteroids near the Fresnel scale, with the faintest stars that produce detectable occultations. The 〈Ne〉 = 4 contour marks the
magnitude of the star that will on average be the fourth-brightest occulted by an asteroid of a given size. Occulters with Ne < 4 produce negligible information on
gravitational perturbations.
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will test the robustness of the extracting of gravitational
inferences from the positional data.

3.5. Results: Trojans

Using the Jovian Trojans as test bodies instead of MBAs
changes the optimization of an occultation array in important
ways, even though the 2× increase in Earth–occulter distance
changes the Fresnel scale by only 2 . One issue is that, per
Figure 1, there are ≈5× fewer Trojans of a given size than
MBAs. Furthermore, a Trojan of a given size is 3 mag fainter
than its MBA counterpart, which means that LSST's nominal
survey is not capable of finding all Trojans above the Fresnel
scale, as can be seen in Figures 4. Most importantly, the sky
area subtended by the annual track of a Trojan is 4× lower than
for a similar-sized MBA, which means we must reoptimize the
array to obtain 〈Ne〉� 4 for a substantial fraction of the
observable Trojans.

We therefore investigate changing the telescope spacing
from D= 2 km for the MBAs to 5 km for the Trojans, which
will increase the number of observable occultations for Trojans
with dT > 2 km—which is, in fact, all of the LSST-
discoverable sources. Figure 4 illustrates the result of a
configuration near the new optimum for a $15,000,000 nominal
cost. The number and size of telescopes resemble the MBA
optimum, but spread out over 1000 km. This wider-spaced
array might be harder to maintain; it would, however, also be
able to conduct the MBA survey, with the caveat that many
forecasted MBA occultations would be “duds” that pass
between stations, leading to a higher workload for the array.

The scaling relations of the optimal dT and of σtot versus the
cost, duration, and per-station costs remain essentially the same
as the MBA case. Most of the occultations still occur in low-
background situations. There are some practical differences,
however:

1. Most of the information is now arising from occultations
that are photon-noise limited rather than shape-noise
limited.

2. The usable occulters are above the Fresnel size, so
occultations will be deeper and will last longer.

3. The total number of Trojan occultations would be many
times lower than the number of MBA occultations.

The reduced number of Trojan targets and the need to use
larger occulters both act to reduce the statistical power of the
Trojan survey relative to the MBA. Our $15,000,000 scenario
forecasts σtot = 23 cm, which is ≈5× less sensitive to
displacements than the MBA survey. It is also true, however,
that the apsidal precession from a Planet X tidal force over a
fixed time T scales as /aT

5 2 and the quadrupolar oscillation
amplitude scales as a ,T

4 factors of 5.6 and 16 larger for Trojans
than MBAs, respectively. Hence, our parametric investigations
suggest similar constraining powers for studies of the two
populations—and considerable gain if we can do most of both
surveys with one array.

3.6. Results: TNOs

An occultation survey of TNOs for the purposes of
constraining tidal forces would face more extreme versions of
the challenges of a Trojan survey. First, the number of targets
discovered and with good orbit determinations from LSST is
very low, with a recent estimate of 30,000 (J. Kurlander 2024,
private communication), with the smallest of them near
dT = 100 km. Thus, the shape-noise limit alone will degrade
per-event accuracy to well above the Fresnel scale. The good
news is that the longer, deeper occultations will allow detection
of occultations of fainter Gaia stars. This increase in event rate
will, however, be overwhelmed by the huge decrease in the
area subtended by the apparent motion of the occulters.
Anticipating that we will need maximal array cross section to
obtain Ne� 4 occultations on the scarce targets, we consider a
global-scale array with 100 telescopes at D= 100 km.
Another important distinction between the TNOs and the

Trojans/MBAs is that the survey duration T is a small fraction
of the orbital period. The TNOs are essentially in inertial
motion and the deflection due to any tidal force will grow
quadratically in time, whereas in the rest frames of the MBAs
and Trojans, the applied tidal force has been rotating. A Planet
X at 800 au will cause a deflection of ≈180 km over 10 yr, far
larger than the signals applied to the MBAs.
Figures 5 diagnoses a scenario where dT = 0.4 m telescopes

(again, nearly optimal) are arrayed at 100 km intervals,

Figure 4. Summaries of the per-occultation measurement errors (left) and total information (right) for an occultation survey targeting Jovian Trojans. All curves have
the same meaning as for the MBA case in Figure 3, except that the color scales are changed. The main configuration change is to move the telescopes further apart
from each other to increase the occultation rates for the larger-diameter, sparser Trojan population. Analysis is in Section 3.5.
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spanning 10,000 km—a global-scale effort. At this point we
can see that the TNOs attain 〈Ne〉 = 4 events for mG ≈ 19.
Most of the information is coming from fainter Gaia stars, and
background counts produce most of the noise. The array does,
however, attain σtot = 1.3 km, which is physically much larger
than the MBA and Trojan precision levels. The much larger
tidal effects on the TNOs, however, potentially allow for much
stronger constraints on unknown masses.

In some sense, a TNO array would be technically easier, in
that the events are much slower and rarer. Our cost formula
would describe this as an $8,000,000 array, but certainly
operational costs would become much larger for a globe-
spanning array than for an array that can be reached by truck on
day trips from one or two maintainence facilities. The RECON
network (M. W. Buie & J. M. Keller 2016) has deployed 64
dT = 28 cm telescopes spanning a ≈2000 km north–south path
from Kelowna, British Columbia in Canada to Yuma, Arizona
in the USA. The RECON stations are operated by local
volunteers on an occasional basis, with the primary goal of
measuring shapes and sizes of TNOs and Trojans. While these
are not full-time, autonomous stations such as we propose,
RECON is a useful demonstration that useful sites at 50–100
km separation can be secured for telescopes.

4. Simulations

Given that the previous section's rough calculations of the
sizes of gravitational perturbations measurable from a feasible
occultation array suggest that secure detections of the tidal
forces of an MX = 5M⊕, 800 au planet should be possible, we
conduct more detailed simulations of such an experiment.
Rather than use σtot as a measure of effectiveness, the
simulations use a Fisher-matrix method to estimate the
uncertainties in the tidal field itself, after marginalization over
all other unknown parameters of solar system dynamics,
including the initial state vectors of all test bodies and
gravitating bodies. Using full distributions of MBA and Trojan
orbits and sizes, and the real distribution of Gaia stars on the
sky, the simulation realizes a full population of occultation
events and calculates the positional uncertainties—both along-
track and cross-track—expected to be obtained for each event
given an observing scenario.

This methodology enables more accurate treatment than the
parametric models for many effects, starting with fully realistic
distributions of test-body orbits and sizes, the true dynamical
perturbations a tidal force would create, and degeneracies of
tidal forces with other parameters of the solar system model
and nongravitational forces. Other effects treated more
accurately here include degradation of measurement errors
with air mass and moonlight; observability of events given
twilight times, weather fractions, and air mass limits; gains in
accuracy from multichord occultations; and the uneven
distribution of Gaia stars on the sky.
We do not include TNOs in this analysis due to the global

scale required for a TNO survey to be used for measuring tidal
forces. We do, however, predict how many TNO occultation
events would be measurable from a MBA/Trojan-focused
array. These observations, though insufficient to provide
constraints on Planet X, would increase the number of detailed
TNO shapes, sizes, and albedos known to us by >100×.

4.1. Event Simulation

Our survey simulation generates a random sample of
occultation events based on the stellar density throughout the
path of the target asteroids. We compute a pixelized sky map of
the local stellar density, in bins of stellar color and magnitude,
from the Gaia Data Release 3 catalog. This allows us to
quantify the expected events and their uncertainties without the
precise knowledge of minor-body orbits and telescope loca-
tions that would be needed to predict each and every event.
A random subset of ( ) 103 orbits is selected from those

available in the Minor Planet Center database for each
population—MBAs and Jovian Trojans. The full population
of occulters is generated by drawing an absolute magnitude
from the expected magnitude distribution of the population
within the LSST discoverability limit, following estimates by
LSST Science Collaboration et al. (2009). A diameter is then
computed from the absolute magnitude and albedo through the
known expression (A. W. Harris & A. W. Harris 1997)

( )= - -d q Hlog 3.1236 0.5 log 0.2 . 3T T

To capture the known bimodality in the albedo distribution of
MBAs, we randomly select albedo values from the distribution

Figure 5. Summaries of the per-occultation measurement errors (left) and total information (right) for an occultation survey targeting TNOs. All curves have the same
meaning as for the MBA case in Figure 3, except that the color scales and axis limits are changed. These plots assume N = 100 telescopes spaced D = 100 km apart, a
much larger array than considered for MBAs and TNOs in order to obtain sufficient occultations per TNO. Further commentary is in Section 3.6.
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presented by Z. Murray (2023). For the Trojans, we assign
qT = 0.12 to the entire population, as this is the average for
small Jovian Trojans reported by Y. R. Fernández et al. (2009).

Each simulated target asteroid is then assigned one of the
random MPC orbits. For each 24 hr period of the simulated
survey, the asteroid's position in the pixelized Gaia star map is
found, and an occultation rate nocc is assigned according to the
length of the asteroid arc Δα and local stellar density nG as

( )Da=n n
ND
D

, 4G
T

occ

where DT is the Earth–asteroid distance, and angles are
expressed in radians. Occultations are drawn from Poisson
distributions around the computed rate nocc.

Generated occultations are then assigned a random time
stamp within the given 24 hr period, and unobservable events
are filtered out. For this purpose, the latitude is assumed to be
35°N, a rough estimate if the array were to be built in the
southwest United States. Events are limited to night time by
selection of those which occur when the Sun is lower than
−18° altitude. Furthermore, events that happen at air mass
> =X 2.3max are discarded, as well as those closer than 30°
from a more-than-half illuminated Moon. Finally, we discard a
random ≈30% of the nights as having high cloud coverage.

4.2. Sources of Error

The expected astrometric error for a single occultation event
is a combination of several uncertainties that require careful
consideration. Already mentioned in Section 3.2 are the shape
noise (sSN), photon noise (σγ), and Gaia astrometric uncertain-
ties σG. While the latter is fixed for any given star, the two
former ones require further modeling when performing the
simulation. Additional sources of error include telescope
location and timing of events, as well as angular sizes of stars,
since they are assumed as point sources when computing
photon-noise estimates.

4.2.1. Shape Noise

In order to estimate the magnitude of shape-noise errors, we
simulate occultation data for a population of randomly oriented
objects created from shapes found in the 3D Asteroid Catalog.5

We then attempt to predict the CM of each object, in the
direction perpendicular to the array, as the average of
occultation chord centers weighted by the length of the chords.
For single-chord events, the rms error is σSN = 0.1(dT/2); for
two or more chords, it approaches σSN = 0.04(dT/2).

In the direction of the array, assumed to be north–south, the
CM location is estimated from the fixed locations of the
telescopes involved in the event, being limited by the distance
between telescopes or object diameter (whichever is smaller).
The rms is therefore expected to be /( )s » d Dmin , 12 .T

Additional noise will be generated if a binary system is
mistakenly assumed to be a single object, because only one
member of the system is detected in occultation. In this case,
our best CM prediction will be offset by a factor dependent on
the binary mass ratio and separation. Near-Earth orbit
observations indicate a binary fraction of 15% (P. Pravec
et al. 2006). Assuming a similar figure for the MBAs, we look
at the distribution of mass ratios and separations of known

kilometer-sized MBA binaries, and we find that most have CM
offsets smaller or comparable to our nominal shape-noise error.
We therefore do not model this additional error, and introduce
the following caveat to our results: ideally, the survey should
extend until enough detections of each target are made that
additional scatter caused by a binary companion can be
statistically inferred.

4.2.2. Flux and Photon Noise

Photon-noise error depends on the star's apparent magnitude,
as well as background sky brightness. For each occultation
event, star magnitude and color are randomly drawn from the
color and magnitude distributions previously assigned to the
event's sky location. Sky brightness as a function of Moon
phase is estimated as specified in Appendix B. When the Moon
is below the horizon, the dark-sky value is assumed. We further
include a linear scaling of background flux with air mass X, as
well as seeing proportional to X3/5. Both relations are in
agreement with seeing and sky brightness measurements by the
Dark Energy Survey (E. J. Neilsen et al. 2019).
Equipped with stellar magnitudes and sky background

values, the fluxes before and during the occultation events
are computed, and thus the photon-noise error for each chord is
estimated. The number of chords is drawn based on its
probability for each given asteroid size and assigned distance
between telescopes. With this draw, occultations that slip
between telescopes are also discarded (when zero chords are
assigned to them). Having multiple chords reduces the
expected photon noise, and the shape noise as described
above, but uncertainty propagated from the Gaia star's
positional error is independent of the number of chords.

4.2.3. Telescope Location and Timing

Regarding the required accuracy in the timing of events, a
clock error of 1 ms induces a ≈ 30 m error in Earth's position,
and hence that of the asteroid, which is below the estimated
shape noise for our target populations. Similarly, it is very easy
to conduct geodesy to map each telescope's location on Earth to
a level far below our estimated single-event uncertainty σx.
The more difficult challenge, however, may be to limit
systematic errors (i.e., correlated among all asteroids) in timing
and geodesy so that they are below the combined uncertainty
for all our survey data of σtot ∼ 4 cm found in Section 3.4. This
requires that systematic timing errors be kept below 1 μs, and
that systematic positioning errors on the stations’ mean position
be at most at the centimeter level. Both should be achievable
with GPS devices.

4.2.4. Stellar Angular Diameter

The finite stellar angular diameter is not taken into account in
our modeling of diffraction. If the stellar diameter approaches
or exceeds the Fresnel angular scale of the occulter, it will
broaden the ingress/egress light curves, and can also decrease
the shadow depth, so we must consider it as an additional
source of measurement error. We estimate the magnitude of
this effect by generating temperature estimates for occulted
stars, as follows. For every generated event, a star magnitude
and color is assigned from Gaia catalog distributions at the
given sky location. A temperature value is assigned for each
color bin, corresponding to the median temperature of Gaia
stars within that bin which have a temperature estimate in the5 https://3d-asteroids.space/asteroids/
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catalog. We then use the magnitude and luminosity relations,

/( ) ( )= - -M m d A5 log 10 pc , 5

  ( )( ( ) )= - + -L L 10 , 6M B T M0.4 cor

where A is the extinction coefficient and Bcor(T) is the
bolometric correction, and the Stefan–Boltzmann law,

( )s p=L T R , 74 2

to get the angular diameter:

/ ( )a = R d2 . 8

Notice that the result does not depend on the distance (the
dependence on d from Equation (5) is canceled in
Equation (8)). Extinction values are estimated based on an
average for stars on the given pixelized cell. We use the
bolometric correction model for the Gaia G filter from
R. Andrae et al. (2018) for T < 8000 K, and the LTE+NLTE
(non–local thermodynamic equilibrium) statistical model from
M. G. Pedersen et al. (2020) for T > 10,000 K. The
8000 K < T < 10,000 K gap was filled with a linear model
that would keep B(T) continuous at T = 8000 K and
T = 10,000 K. For most occulted stars, the resultant angular
diameter is smaller than astrometric errors from other sources,
so stellar angular diameter is not believed to have a significant
effect in our results. To be conservative, however, we add the
stellar angular diameter in quadrature to our other measurement
uncertainties when the star is large enough for this to be
relevant.

4.3. Dynamical Model

We now shift our attention to the propagation of astrometric
measurement errors into uncertainties on external tidal forces
by creating the following dynamical model of the solar system.
As gravitationally active bodies, we include the Sun, the eight
known major planets, plus Pluto and the 343 largest MBAs
considered as active bodies by W. M. Folkner et al. (2014). The
major planets have state vectors and masses as free parameters.
The Sun has a free parameter for its mass and its oblateness J2,
but a fixed state vector, in order to remove the coordinate
reference frame degeneracy from the system. Pluto and the
active asteroids also have fixed state vectors and free masses,
since their low masses make it unimportant to know exact state
vectors. We also model the gravitational potential of the
remaining MBAs as arising from two circular rings of mass at
r= 2.06 au and r= 3.27 au, respectively, and the azimuthally
symmetric portion of the Kuiper Belt with two more rings at
r= 39.5 au and r= 43 au, respectively.

There are two relevant nongravitational forces that act
significantly on test particles (the observed MBAs and
Trojans): solar radiation pressure (SRP) and the Yarkovsky
effect. The accelerations attributable to these are parallel and
perpendicular, respectively, to the Sun–asteroid vector, lying in
the orbital plane, and each is inversely proportional to the body
diameter, such that6

 ( )=a k
a
d

, 9
T

Y,SRP Y,SRP

where ae is the solar gravitational acceleration on the body.

In our previous paper (D. C. H. Gomes et al. 2023), we
modeled each of the k parameters as global scaling factors. We
improve this model by allowing each asteroid to have a free
Yarkovsky tangential acceleration parameter. This change is
required because our predicted per-object CM uncertainties are
smaller than the expected displacements from the Yarkovsky
force, the latter being of the order of a few kilometers for most
MBA targets during a 10 yr arc. Therefore, the variance in
Yarkovsky displacements due to different asteroid shapes and
albedos will exceed the other measurement errors. Adding
individual Yarkovsky accelerations for each asteroid as
constrainable parameters solves this issue, with the only
downside that each orbit solution needs an extra data point
before it starts being useful for tidal-field information: Four
initial occultations are needed instead of three. On the positive
side, our occultation survey would successfully detect this
Yarkovsky acceleration parameter on most of our targets, an
achievement that otherwise would require many decades of
observations (D. Hung et al. 2023). For SRP, which has a
smaller contribution to orbital displacement, we keep a single
global parameter, kSRP.
The final element of the dynamical model is a set of five

point masses at 400 au and different fixed positions.
D. C. H. Gomes et al. (2023) show that a Planet X tidal field
at any location in the sky can be expressed as a linear
combination of the tidal fields from these five putative masses.
Hence, forecasting the covariance matrix of these five mass
parameters is sufficient to place bounds on the mass of a Planet
X in any chosen sky direction. The quadrupole moment of the
Kuiper Belt mass distribution generates a gravitational field on
the Trojans and MBAs that is indistinguishable from a Planet X
tidal field. We therefore add to the 5 × 5 covariance matrix an
additional covariance arising from the positions and mass
uncertainties of the largest individual TNOs, as well as
quadrupole fields from the remaining TNO population, as
modeled by the CFEPS project (J. J. Kavelaars et al. 2009;
J.-M. Petit et al. 2011; B. Gladman et al. 2012). This
calculation is described in more detail on our previous work
(D. C. H. Gomes et al. 2023). The resultant “Kuiper Belt object
(KBO) floor” is dominated by the mass uncertainties of the
largest moonless TNOs.
We implement the dynamical model by running the

REBOUND N-body integrator package (H. Rein &
D. Tamayo 2016) to get variational derivatives of the planets’
and test bodies’ positions with respect to our model parameters.
We start from a base simulation with the Sun and eight planets,
to which the massive MBAs are also added. Test particles are
included at the initial position of the surveyed MBAs and/or
Trojans. We compute variational derivatives, with respect to
the active-body parameters and the state vectors of the passive
bodies, for the whole time range encompassed by existing
historical data on the planets (1965 forward) up to the end of
our proposed occultation survey. This is done performing two
simulations that start at MJD 60000.0, which integrate forward
and backward in time, respectively. These simulations are
integrated with the ias15 adaptive integrator, parallelized for
10 subsets of passive bodies and 30 subsets of MBAs. The
small inconsistency between orbits predicted by each simula-
tion, due to the presence of a different subset of massive
MBAs, does not significantly affect our forecasts, since they
depend exclusively on the variational derivatives, not on the
state vectors.6 There is a less important component perpendicular to the orbital plane.
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The remaining model elements—ring potentials, solar J2, the
mass of Pluto, and tangential acceleration due to the Yarkovsky
effect—are added one by one to the simulations with two
slightly different parameter values, so that their derivatives can
be obtained through finite differences. To implement the ring
potentials and nongravitational forces, we make use of the
REBOUNDx package (D. Tamayo et al. 2019), as described in
D. C. H. Gomes et al. (2023). Derivatives with respect to the
SRP parameter are obtained by rescaling the derivatives with
respect to the solar mass.

4.4. Fisher Uncertainties

Once equipped with our list of simulated observations and
their uncertainties, as well as derivatives of model parameters
with respect to the observables, we compute the Fisher matrix
to estimate lower bounds on the uncertainties σM in the mass of
a hypothetical Planet X at 4000 au. We follow the method
delineated in D. C. H. Gomes et al. (2023). First, a Fisher
matrix is generated for the set of existing observations of the
major planets with respect to our global model parameters,
namely the masses and state vectors of the planets, masses of
≈300 asteroids, collective mass rings for smaller MBAs and
TNOs, and the tidal forces of interest. The observations we use
for this step are the same ones enumerated in the aforemen-
tioned paper, and they consist of astrometry and radio ranging
measurements. Next, for each small-body test particle, the
Fisher matrix is augmented with rows and columns for its
initial state vector parameters (and, in our current case, a
Yarkovsky effect strength), and then the Fisher information
from its simulated observational data is added in. We can then
marginalize the Fisher matrix over this body's parameters.
The Fisher matrix thus remains fixed in size even as we
accumulate constraints from millions of test bodies. Finally, we
invert the total Fisher matrix to form a covariance matrix, and
extract the 5 × 5 submatrix corresponding to the five putative
distant point masses. To the resultant covariance matrix we
add the previously mentioned Kuiper Belt floor covariance.
Then, for any given position in the sky, a transformation
of the covariance matrix, as detailed in Appendix A of
D. C. H. Gomes et al. (2023), yields us the lower-bound
uncertainty σM on the mass of a Planet X in any chosen
direction from the Sun.

We produce three distinct forecasts: first using only MBAs
as test particles, then using only Trojans, and then for the
scenario of a joint survey of both populations.

5. Simulated Constraints

We consider a grid of possible telescope arrays that vary
between N= 50 and N= 400 telescopes, as well as telescope
diameters between d= 20 cm and d= 70 cm. For each array
configuration, we measure the constraining ability of the array
by predicting the σM of Planet X on a full sky grid of possible
point-mass positions, and selecting the 90th percentile value,
i.e., the σM that can be achieved or surpassed over 90% of the
sky in that particular survey configuration.

Three scenarios are presented in Figure 6. The first one (top
left) assumes the array would be exclusively devoted to MBA
occultations. In this case, the distance between telescopes is set
at D= 2 km. There is no change in σM at larger D, since the
majority of occulters are smaller than 2 km and the number of
observed occultations becomes independent of D. The second

scenario (top right) assumes an exclusive Jovian Trojan survey,
and sets the distance between telescopes to D= 5 km. Larger D
is favored for the Trojan survey, since they are twice as far as
MBAs, such that the smallest ones detectable by LSST are
larger than for MBAs. The third scenario (bottom) assumes a
joint MBA/Trojan survey, with D= 5 km again since the
Trojans benefit and the MBA observations are not harmed by
increased D.
The cost of each array configuration is computed according

to Equation (1), so that the optimal configuration for any given
cost can be easily determined. In all scenarios the optimal array
diameter varies within the 30–40 cm range, and the optimal
number of telescopes increases with the allowed budget. A 5σ
detection of a 5M⊕ body at 800 au, which is the smallest and
most distant hypothesized Planet X invoked to explain
alignment anomalies of distant TNOs, is achieved if
σM = 0.125M⊕ (the tidal field of such a planet would be 8
times weaker than an equal mass at 400 au). Figure 6 shows us
that a cost-optimized array capable of such detection would be
slightly above $15,000,000 for an MBA-exclusive survey.
Trojans would not independently allow such a Planet X
constraint, but they do slightly help the MBA result in a joint
survey, making the same precision cross below $15,000,000.
Optimal configurations in both these scenarios are around
N ∼ 200 telescopes and d ∼ 40 cm. Figure 7 shows the
forecasted uncertainty σM of Planet X as a function of its
location in the sky for a joint N = 200, d = 40 cm scenario.
To assess the feasibility of performing observations at or

close to the predicted event frequency, we assume that a single
measurement uses ∼2 minutes of telescope time. The optimal
configuration is therefore limited at ∼6000 events × telescopes
per hour. Our simulations recorded hourly rates of successful
observations (on nights with clear sky) varying in the
2000–3000 range. This means that, if exactly one telescope
and time slot is required for each of 3000 successful events, the
“subscription factor” would be f ≈ 0.5 on the busiest nights,
and if the events are randomly distributed over stations and
time, a fraction e− f − (1 − f ) ≈ 0.1 would overlap another
event and be lost. If, however, two or more time slots are
needed for each success, either because the orbit uncertainty
spans multiple telescopes or the targets are small enough to slip
between stations, then f ≈ 1 or more, meaning ≈40% or more
of events would be lost to resource conflicts. This is most
concerning at the initial stage of the survey, when target
ephemerides are limited by LSST astrometry, and we expect a
few failures before attaining the first successful observation of
each target. Therefore, we would definitely benefit from array
design options that push toward higher event frequency
capabilities, and/or faster event cycles than 2 minutes. If the
survey, before most objects get their first detection, is
ultimately limited by the event load, we might need to extend
survey duration to recover our predicted constraints.
In Figure 8, we see the decrease of σM for the joint survey as

a function of the number of telescopes for both the d= 30 cm
and d= 40 cm scenarios. Additional dotted lines show the
constraints that would be attainable were there no degeneracy
with Kuiper Belt tidal fields, i.e., computed out of the original
covariance matrix, without a KBO floor addition. We find a
strong gain in sensitivity for additional investment in N, with
σM ∝ 1/N approximately—much better than the typical square-
root relation. With the assumed Kuiper Belt floor, however,
there is little gain in σM for N  200 and the associated cost
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increase—although one would be measuring the KBO mass
distribution, and other science benefits of the project beyond
measuring σM would improve. Finally, Figure 9 shows the
cumulative fraction of the sky where the uncertainty σM falls
below a certain level, in two different scenarios: using
exclusively historical data, and adding occultations assuming
the optimal array to historical data.

We now consider the optimal ∼$15,000,000 array
(N ∼ 200, d ∼ 40 cm) and ask how effective such a
configuration would be toward detecting TNO occultations.
We use sample orbits from the CFEPS L7 population
(J. J. Kavelaars et al. 2009; J.-M. Petit et al. 2011; B. Gladman
et al. 2012) and find that, for a 10 yr survey, the array measures
one occultation by 6% of the simulated objects (multiple

Figure 7. Lower bound on the uncertainty σM for a point source at 400 au as a function of its location in the sky. We use the Mollweide projection and ecliptic
coordinates with the vernal equinox at center.

Figure 6. Value of σM under which a point source at 400 au would be constrained in 90% of the sky. Black contours are lines of equal cost. The white contour at
σM = 0.125M⊕ corresponds to a 5σ detection at 800 au. Top left: results for MBA survey with 2 km distance between telescopes. Top right: Jovian Trojan survey with
5 km distance between telescopes. Bottom: combined MBA and Trojan survey with 5 km distance between telescopes.
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occultations for a TNO are rare). For the assumed number of
30,000 LSST-detectable TNOs, a 6% rate would mean 1800
distinct TNO shapes. Though such data will not provide
constraints on orbital perturbations, a single occultation is still
useful. A single occultation of these dT  100 km objects with
chords recorded at 5 km intervals will return a detailed projected
size and shape measurement of the TNO, leading to a better
understanding of the size, albedo, and contact-binary rate for a
substantial number of TNOs in all dynamical classes. It will
also yield more accurate predictions of subsequent occultation
events, which could potentially be observed by other occultation
campaigns.

6. Conclusions

We present the expected outcome of a proposed dedicated
occultation array with ( ) 100 telescopes, cost-optimized to
constrain minor planets’ orbits for detection of yet undiscov-
ered tidal fields. An initial parametric analysis shows compar-
able results for arrays targeting MBAs and Jovian Trojans, with
the 5× weaker spatial precision for Trojans compensated by
the presence of larger tidal perturbations on their orbits.
Combination of data from all targets would provide centimeter-
level sensitivity to tidal perturbations. A TNO-focused array
would require different logistics, due to the slower apparent
path of these objects on the sky and smaller known population.

Figure 8. Value of σM for a point source at 400 au that would be achieved or surpassed for 90% of possible directions, for a joint MBA/Trojan survey. Blue line
assumes 30 cm telescopes; red line assumes 40 cm. Solid lines include fundamental degeneracy of the tidal signal with the uncertainties of large TNO masses and
asymmetries in the Kuiper Belt (KBO floor). Dotted lines show the predicted uncertainty disregarding this limitation.

Figure 9. Fraction of the sky where the lower bound on σM lies below a given value. Dashed lines disregard the degeneracy of a Planet X tidal field with Kuiper Belt
tidal-field uncertainties.
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To achieve the three required observations that initially
constrain the orbit, such an array would need to be spread
out across a ∼10,000 km baseline between telescopes, turning
the project into a global effort.

Survey simulations provide further insight into the MBA and
Trojan array outcomes, by considering stochastic factors that
affect the observability of each independent event. The
simulations yield Fisher-matrix estimates of the σM of the
mass of any undiscovered Planet X lurking in the solar system,
including the effects of degeneracies with other sources of
orbital perturbation. We find that MBA surveys achieve 2–3×
lower uncertainties than the Trojan ones, which is not as
optimistic for the Trojans as our parametric analysis. We
suspect that this results from the lower typical number of
occultations observed for an individual Trojan than for an
MBA, which makes it more difficult to disambiguate a tidal
force from other dynamical perturbations. We consider which
scenarios could yield a 5σ detection of a 5M⊕ Planet X at
800 au on at least 90% of the sky. The lowest-cost option is a
joint MBA/Trojan survey with N ≈ 200 telescopes spaced at
D= 5 km (i.e., a 1000 km array), each with diameter d ∼ 40
cm, and a very crude construction cost estimate of
C ≈ $15,000,000.

When compared with the previous suggestion of constrain-
ing a Planet X signal with LSST astrometry of Jovian Trojans
(D. C. H. Gomes et al. 2023), an occultation survey is much
more promising, mainly because it gathers information from
the faintest end of the asteroid size distribution. LSST
astrometry is assumed, however, as a prerequisite for accurate
occultation predictions.

The constraint on missing mass in the solar system would
not be the only science benefit of the small-telescope linear
array. Our survey would allow the study of other perturbations
to asteroid orbits, constraining Yarkovsky acceleration para-
meters and detecting mutual deflections by close asteroid
encounters. These data, therefore, would contribute to a better
understanding of asteroid densities, albedos, and thermal
properties. Such an array would also provide detailed shapes
for ∼1800 TNOs, characterizing the distribution of sizes,
shapes, albedos, and contact-binary rates of TNOs in many
different dynamical states. No other envisioned observation
could yield such information for a large sample of pristine
products of planetesimal formation.

Characterizing orbital perturbations with the proposed level
of accuracy can lead to further discoveries in physics. The

hypothesis that primordial black holes might be the constituents
of dark matter predicts rates of close encounters between such
objects and solar system bodies. T. X. Tran et al. (2024) point
out that resultant perturbations would carry the particular
signals of high perturber velocity (v ≈ 200 km s−1) and
nonecliptic trajectory, and would be distinguishable from other
interstellar perturbers in that baryonic objects of comparable
mass would be easily identifiable. Their proposed method of
detection requires high-precision astrometry of multiple solar
system objects, so that perturber information can be inferred
from correlation between perturbations on different orbits—this
aligns exactly with the goals of our array.
Sensitivity to centimeter-scale perturbations out to 5 au in a

joint MBA/Trojan survey would yield constraints on mod-
ifications to general relativity as well. Looking beyond
occultation observations, an array of hundreds of agile robotic
telescopes, with a total collecting area equivalent to a ≈6 m
telescope, could conduct other investigations between sched-
uled occultation events, such as targeted or blank-sky
monitoring for transients. This would include monitoring of
sources that are too bright or fast for LSST or that require
cadences that do not fit in the LSST survey plan.
As for the location of the array, we are limited by latitude,

since a high-latitude survey would be blind to significant
portions of the ecliptic plane below the horizon. We also
require a north–south stretch of ( ) 1000 km with good
observing weather, low light pollution, accessible terrain, and,
preferentially, some preexisting infrastructure, namely a road,
allowing for easy deployment of telescope stations and
subsequent access for repairs and maintenance, and—if no
cellular network is in place—collection of physical data storage
media. Five candidate locations, selected with these conditions
in mind, are the southwest United States, northern Chile, north-
central Australia, Namibia/South Africa, and Saudi Arabia.
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Appendix A
Symbol Glossary

Table 1 displays the main symbols used throughout this
paper, their meaning and default value, where applicable.
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Appendix B
Measurement Errors on Chord Midpoints

A photon-counting aperture photometer will be drawing a
Poisson sample of events from an occultation light curve with a
time-dependent rate given by

( ) ( )
t

= +
-

n t n n f
t t

, B1b
0⎛⎝ ⎞⎠

where nb and nå are the count rates generated by background
sources and the unocculted star, respectively. In this context,
“background” refers to any source other than the star being
occulted, including diffuse zodiacal and atmospheric emission,
light reflected from the occulting asteroid, or neighboring stars, all
of which can be expected to remain constant over the fraction of a
second when the telescope is in ingress or egress of the shadow.

The function f gives the fraction of stellar intensity making it past
the occulter, i.e., the light curve relative to the time of passage t0
of the geometric shadow edge over the telescope, with time
specified in units of some timescale τ. What is σt, the expected
rms uncertainty in t0 given the data D, where D in this case is a list
of arrival times of detected photons? There is not, to our
knowledge, any general analytic form for this “change detection”
problem. We construct an approximate formula for σt based on
analytic results for some limiting cases, and results of maximum-
likelihood estimators applied to simulated photon streams.
The Cramer–Rao theorem bounds σt using the Fisher

information on t0, which in this case can be written as

( ∣ )
s

¶
¶

-  p D t
t

log
t

2 0

0

2

⎜ ⎟⎛⎝ ⎞⎠

Table 1
Symbol Glossary

Symbol Meaning Default Value

Observation specifications
d Telescope diameter L
D Telescope array spacing 2 km
N Number of telescopes in array L
Cs Fixed cost per observing station $40k
Ct Cost per d = 0.5 m telescope, scaling with area $60k
T Survey duration 10 yr
λ0 Central wavelength of passband 600 nm
η Quantum efficiency of atmosphere/telescope/detector 0.5
fduty Duty cycle (fraction of occultations observed) 0.21
X Air mass of observation L
Xmax Maximum observable air mass 2.3
bmin Minimum observable solar elongation 50°
θap Angular radius of photometry aperture 1″
Occulter specifications
aT Semimajor axis of occulter (target) L
dT Diameter of occulter L
qT Geometric albedo of occulter 0.10
DT Distance to occulter aT
v⊥ Relative transverse velocity of observer and occulter v⊕ = 3 × 104 m s−1

mlim Faint limit of known (LSST) occulters mr = 24.4
NT(>dT), dNT/ddT Cumulative, differential counts of occulters L
Source-star properties
nG(<m), dnG/dm Cumulative, differential sky densities of usable Gaia stars L
Derived quantities
F Fresnel length /l D 2T0 L
tF Fresnel crossing time F/v⊥ L
t0 Time of chord center L
τ Characteristic timescale of occultation tF
f (u) Occultation light curve as a function of scaled time u = (t − t0)/τ L
nb Rate of background photocarriers L
nå Unocculted rate of star photocarriers L
B Background ratio nb/nå L
mG

F G magnitude of star producing four counts per tF L
mG

B G magnitude of star for which nå = nb L
ρ Scaled occulter radius dt/2F L
σt Total uncertainty on t0 L
σx Total along-track uncertainty on chord center v⊥σt
σγ Contribution to σx from photon noise L
sSN Contribution to σx from occulter shape 0.05dT
σG Contribution to σx from Gaia position DR5 spec
Ne Number of observed occultations per asteroid L
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where we have defined B = nb/nå as the background ratio. In
the first equality, we have exploited the fact that the Fisher
information in a Poisson distribution with a mean of λ(q) for
some parameter q is equal to (dλ/dq)2/λ, and we can divide
the light curve into statistically independent time segments of
duration Δt with expected mean count rates of λ = n(t)Δt.

For the ingress or egress of occultation, the relevant
timescale is / /= » l

^ Åt F v v ,F
a
2

the time for the Fresnel
scale to cross a telescope moving at v⊥ across the line of sight
to the target. Equation (B2) shows that the uncertainty on the
start or end time of a chord is the Fresnel time divided by the
square root of the number of source photons collected during
the Fresnel time. The I(B) factor encodes dependence on the
size/shape of the target and the effect of background.

For a simple model in which f (u) transitions linearly from 0
to 1 over a range Δu = 1, i.e., a transition time τ to complete
shadow, the Cramer–Rao inequality yields

/ /[ ( )] ( )s
t
t

+ -
n

Blog 1 1 . B2t
1 2

The Cramer–Rao theorem does not prescribe an estimator for
the time of ingress/egress, it just bounds any unbiased
estimator's performance. We might expect the Fisher value to
be attained when σt = τ, when the differentials used in the
Fisher matrix are applicable. We tested a straightforward
estimator for the time of egress, namely the expectation value

/ˆ ( ∣ ) ( ∣ )ò ò=  t dt t D t dt D t0 0 0 0 0 0 . We find that equality in
Equation (B2) is indeed attained, within ≈ 10%, by this
estimator when σt  0.5 and B  0.02. This gives us
confidence to use the Fisher estimator for σt with the more
complex f (u) light curves obtained from diffraction, for cases
when the uncertainty will be well below the Fresnel time.
To estimate typical I(B) factors for diffractive occultations,

we follow T. C. Nihei et al. (2007) by using the results of scalar
diffraction theory for spherical bodies (G. E. Sommargren &
H. J. Weaver 1990). Figure 10 plots the transmitted intensity
function f for the egress portion of a central chord across a body
of radius ρF. Each light curve is integrated over an octave of
wavelength 2λ0/3 < λ < 4λ0/3, and the horizontal axis is the
variable u = (t − t0)/τ, with t0 at the geometric shadow edge.
Occulters of all size tend to follow a common curve in the
neighborhood of the geometric shadow edge, with smaller
bodies essentially having a maximum depth of shadow that
truncates the curve. For each combination of ρ and background
factor B we evaluate the integral in Equation (B2), using only

Figure 10. Light curves for the egress portion occultations of a point source by a spherical occulter of radius ρF, where /l=F a 2 is the Fresnel scale. The
horizontal axis can be considered either the distance from the geometric shadow edge (in units of F) or the time since the crossing of the geometric shadow edge (in
units of tF = F/v⊥).
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the time period between the minimum and maximum of the
light curves in Figure 10. This period of time shows a largely
monotonic rise, avoiding the central “Arago spot” and any
oscillatory regions, which are likely to be strongly dependent
on the detailed shape of the occulter.

The following functional form reproduces the resulting
values of σt to within <5% over the relevant range of target
radius ρ and all values of background ratio B:

/ /[ ( ) ] ( )s r r= ´ + ´ +t
t

m B0.77 1 0.35 1 ,t n B
Fisher 5 2

( ) ( )r r= +m min 1 , 1.8 .B
2

This result assumes central chords of the sphere. Numerical
integration of the Fisher information for light curves for chords
off-center by a fraction b of the occulter radius show weak
degradation of σγ, by factors /( )» - -b1 ,2 1 8 to within 10%
accuracy, which means that the mean information from random
sampling of b ä [−1, 1] is only ≈10% lower than the
calculation assuming central chords.

We need next to consider cases in which the Cramer–Rao
lower bound is τ/2. In such cases, occultations of duration
2τ will be essentially undetectable, which means that this
case is applicable only to sources with ρ > 1. For such objects,
the shadow is dark, with f (u) decreasing to 0.1. Furthermore,
if the transition from f = 1 to f ≈ 0 is not resolved by the data,
then the shape of this transition is unimportant, and we can
assume an instanteous drop. This leaves us in the simple
geometric-optics limit, whereby the photon rate drops instanta-
neously from nå + nb to nb. Scaling arguments then tell us that
we must have σt = S(B)/nå for some function S of the
background-to-source flux ratio B. The case of B = 0 can be
treated analytically: The estimator will clearly involve just the
time of the first (last) arriving photon for egress (ingress), and
one can show that S(B = 0) = 1. We can also expect S(B) ∝ B
for B? 1, from the relation that the S/N of the dip in flux over
a time period t is / /= n t n tS N b . We find an empirical
approximation to S(B) for geometric shadows that matches both
expected limits, and is accurate to ≈10% in between for
simulations using our likelihood-based estimator for t0:

/

/( ) ( )( )s = +
+

n
1

1 . B3t
e

B
geom

log 1 1

2 1 2⎡⎣ ⎤⎦
Our final estimator for the photon-noise uncertainty in the

position of the center of the chord is to join st
Fisher with st

geom

at the point where they cross, which is typically when
σt ≈ τ/2. We increase the Cramer–Rao bound by a factor
1.1, and divide each result by 2 to account for the chord
midpoint being the average of the ingress and egress times.
Then, the time uncertainty is converted to a distance
uncertainty with a factor of v⊥:
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It is also the case that occultations for which σγ  dT/2 will
not be reliably detected as decrements in stellar photon fluxes,
and hence offer essentially zero information on the asteroid's
orbit.

Examining the above equations as a function of nå, or
equivalently the source star's magnitude mG, we find that there
are two important inflections in the behavior of σγ at fixed
values of nb. One is the value n F such that =n t 4,F

F four
photons being detected during the ingress/egress ramps. This is
roughly the point at which the Fisher approximation begins to
fail, and the Fresnel time is no longer resolved by the data.
Assuming a one-octave filter centered at 600 nm, the
magnitude in the Gaia G band at which this occurs is

( )
h

= -m
a

d
17.6 2.5 log

2.6 au
0.5 m 0.5

, B5G
F

10

2

⎜ ⎟⎡⎣⎢⎛⎝ ⎞⎠⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠⎤⎦⎥
with η being the QE of the atmosphere/telescope/detector
combination. The other important inflection point is when the
background rate equals the source rate, B = 1. This magnitude
mG

B is dependent only on the filter bandpass, sky characteristics
at the site, and the radius θap of the photometric aperture. We
estimate this quantity using on-sky data for similar filters on the
Dark Energy Camera on the Blanco telescope at Cerro Tololo7

and from the Megacam on the Canada–France–Hawaii
Telescope.8 These estimates are in rough agreement with each
other; we take the higher-background result as a conservative
choice, keeping in mind that a real occultation array would
need to be at lower altitude with higher background than these
mountaintop observatories. For dark skies at zenith, a typical
value for star–sky equality is

( )q
= -


m 19.6 5 log

1
. B6G

B
10

ap⎛⎝ ⎞⎠
This is faintward of mG

F for MBA occulters and a 0.5 m
telescope. Figure 2 plots the measurement error σγ of a chord
midpoint position versus mG for a nominal MBA with diameter
well above F ≈ 300 m, and a particular choice of telescope
diameter d. For stars brighter than the inflection points,

/s µg
-
f

1 2, but faintward of the inflections, stars lose power
more rapidly, with /s µg

-
f .3 2 There is thus little to be gained

by observing occultations of stars fainter than these inflection
points.
We have not addressed the effect of scintillation on the chord

detection. The timescale tF = 11 ms × (a/2.6 au)1/2 for the
light curve is only slightly shorter than the scintillation
timescale implied by a 10 m s−1 wind crossing a telescope of
size d= 0.4 m, so there will be some scintillation effects on the
relevant portion of the light curve. Figure 10, however,
suggests that occultations for ρ > 0.5 have a depth greater
than 50%, which is substantially larger than the amplitude of
scintillation fluctuations. So this effect deserves further study,
but is unlikely to change results dramatically.
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