
The Annals of Statistics
2024, Vol. 52, No. 4, 1592–1615
https://doi.org/10.1214/24-AOS2405
© Institute of Mathematical Statistics, 2024

A NONPARAMETRIC DOUBLY ROBUST TEST FOR A CONTINUOUS
TREATMENT EFFECT

BY CHARLES R. DOSS1,a, GUANGWEI WENG1,b, LAN WANG2,c, IRA MOSCOVICE3,d

AND TONGTAN CHANTARAT3,e

1School of Statistics, University of Minnesota, acdoss@stat.umn.edu, bwengx076@umn.edu
2Miami Herbert Business School, University of Miami, clxw611@miami.edu

3School of Public Health, University of Minnesota, dmosco001@umn.edu, echant083@umn.edu

The vast majority of literature on evaluating the significance of a treat-
ment effect based on observational data has been confined to discrete treat-
ments. These methods are not applicable to drawing inference for a continu-
ous treatment, which arises in many important applications. To adjust for con-
founders when evaluating a continuous treatment, existing inference methods
often rely on discretizing the treatment or using (possibly misspecified) para-
metric models for the effect curve. Recently, Kennedy et al. (J. R. Stat. Soc.
Ser. B. Stat. Methodol. 79 (2017) 1229–1245) proposed nonparametric doubly
robust estimation for a continuous treatment effect in observational studies.
However, inference for the continuous treatment effect is a harder problem.
To the best of our knowledge, a completely nonparametric doubly robust ap-
proach for inference in this setting is not yet available. We develop such a
nonparametric doubly robust procedure in this paper for making inference on
the continuous treatment effect curve. Using empirical process techniques for
local U- and V-processes, we establish the test statistic’s asymptotic distribu-
tion. Furthermore, we propose a wild bootstrap procedure for implementing
the test in practice. In addition, we define a version of the test procedure
based on sample splitting. We illustrate the new method(s) via simulations
and a study of a constructed dataset relating the effect of nurse staffing hours
on hospital performance. We implement our doubly robust dose response test
in the R package DRDRtest on CRAN.

1. Introduction. We are interested in hypothesis testing for a continuous (causal) treat-
ment effect based on observational data. The fundamental challenge of causal inference with
observational data is to account for confounding variables, which are variables related to both
the outcome and the treatment. In the presence of confounding variables, it is well known that
naive regression modeling does not lead to an unbiased estimate for the causal effect curve.
While continuous treatments are common in many important applications, much of the ex-
isting literature on inference for a treatment effect from observational data has been focused
on discrete treatments. Relatively few methods are available for testing hypotheses about a
continuous treatment effect curve.

Under the popular “no unmeasured confounders” assumption, there are two broad direc-
tions to adjust for the confounding variables. A procedure can start by estimating the outcome
regression function, a function that relates the outcome to the treatment and the confounders,
and then this can be weighted appropriately to yield an estimate of the causal estimand.
Alternatively, a procedure can start by estimating the propensity score function, a function
that relates the treatment to confounders, and then allows a variety of methods to be imple-
mented to estimate the causal estimand. For instance, Imbens (2004) and Hill (2011) model
only the outcome regression function; while Galvao and Wang (2015), Hirano and Imbens
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(2004), Imai and van Dyk (2004) model only the propensity score function. Following the
terminology of semiparametric statistics, the outcome regression function and the propensity
score function are often referred to as nuisance parameters (possibly infinite-dimensional). In
the aforementioned approaches, an incorrectly specified model for either nuisance parameter
would lead to inconsistent estimates of the treatment effect curve; and, regardless, the conclu-
sions are susceptible to the curse of dimensionality: the rate of convergence of the estimator
of the treatment effect curve is the same as that of the estimator of the nuisance parameter,
which may be high dimensional.

In the so-called doubly robust approach, widely used for estimating the average treatment
effect in the discrete treatment setting, one estimates both nuisance parameters and then com-
bines them. The term “doubly robust” means that only one of the two nuisance parameters
needs to be estimated consistently to achieve consistent estimation of the causal treatment
effect. Thus even if the model for one of the two nuisance parameters is misspecified, the
causal estimand can still be estimated consistently if the other nuisance parameter model
is correctly specified; alternatively/similarly, the rate of the leading error term in estimating
the causal estimand is determined by the product of the error terms for estimating the two
nuisance parameters, allowing for efficient estimation.

If one wishes to apply a doubly robust test in the continuous treatment setting, the simplest
and likely the standard approach would be to discretize the treatment and use the method-
ology for discrete treatments (Robins et al. (2007), Van Der Laan and Dudoit (2003)). Un-
fortunately, this could result in misleading estimates, and can lead to possibly massive loss
of power. Also, in many applications maintaining the treatment as a continuous variable is
important for post-analysis interpretation. (As mentioned above, Galvao and Wang (2015)
develop inference procedures for the dose response curve but require good, possibly para-
metric, estimators for the propensity score; see their assumptions N.1, G.IV.) If one wishes to
use doubly robust methods without discretization, then Robins (2000) and Neugebauer and
van der Laan (2007) allow this, but requires specifying a parametric model for the unknown
causal treatment effect curve. If the parametric model is not plausible, then the results can
be unreliable. Recently, a nonparametric doubly robust estimation method has been proposed
(Kennedy et al. (2017)), allowing for greater flexibility in modeling the nuisance parameters.
Although the rates of nonparametrically estimating each nuisance function may be slower
than

√
n, the rate of estimating the causal estimand may be much faster than that for esti-

mating either of the individual nuisance parameters (by virtue of the product rate discussed
earlier), while alleviating the difficulty of model specification for nuisance parameters.

To the best of our knowledge, a completely nonparametric doubly robust approach for
inference for a continuous treatment effect is not yet available. It is worth noting that “double
robustness” for estimation does not automatically warrant “double robustness” for inference.
See, for instance, related discussions in van der Laan (2014) and Benkeser et al. (2017).

In this paper, we develop a doubly robust procedure for testing the null hypothesis that the
treatment effect curve is constant. To do so, we introduce a test statistic based on comparing
the integrated squared distance from an estimate under the alternative to the null estimate. We
derive the limit distribution of the proposed test statistic. In order to implement the hypothesis
test, the unknown parameters in the limit distribution must be estimated. A natural approach
is the bootstrap (Efron and Tibshirani (1993)). Unfortunately, the naive bootstrap turns out to
be inconsistent. We propose a wild bootstrap procedure, which provides provable guarantees
for estimating the limit distribution, and thus allows the test to be implemented. Code that
implements our doubly robust dose response test is available in the R package “DRDRtest”
on CRAN.

Our main contribution is thus a new doubly robust test procedure which is consistent (in
level and against fixed alternatives) as long as at least one of the two nuisance parameters is
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specified correctly. It requires only nonparametric assumptions on the nuisance parameters
unlike Robins (2000) and Neugebauer and van der Laan (2007). The proposed test is doubly
robust in the sense that the p-values we generate are reliable (uniformly distributed under the
null hypothesis) even if one of the nuisance parameter models is misspecified. Some may ar-
gue that one may use machine learning to estimate the nuisance parameters to alleviate model
misspecification. Although this is true to some degree, popular machine learning methods
such as random forests and neural networks are not immune from model misspecification;
without structural assumptions (e.g., sparsity, additive structure) on the underlying model,
they may have poor estimation accuracy (very slow rates of convergence). Their practical
implementations also often require multiple tuning parameters.

Our statistic is inspired by the test of Härdle and Mammen (1993) (also Dette and
Neumeyer (2001)) which were developed in the noncausal setting. Comparing with the
noncausal setting, our theory is significantly more complicated due to the two infinite-
dimensional nuisance parameters that are present in the causal inference setting. We develop
technical results that may be of independent interest and of use in future work involving con-
tinuous treatment effect estimation/inference. In Section K of the Supplementary Material
Doss et al. (2024), we present (nonasymptotic) moment inequalities for U-processes. We ex-
tend the work of Arcones and Giné (1993) to yield moment inequalities (with upper bounds
given as a product of entropy-type integrals and envelope function moments) in the flavor of
known bounds for empirical processes (like, e.g., Theorem 2.14.1 of van der Vaart and Well-
ner (1996)) but which are new for U-processes. Then in Lemmas C.1, C.2 and C.3, we apply
the moment inequalities to certain local U-processes; these, or similar, local U-processes will
arise naturally (see the proof outline after Theorem 3.1) in contexts related to performing
estimation or inference for (nonparametrically estimated) continuous treatment effects, espe-
cially when one is using estimators related to local smoothing. These lemmas (or their proofs)
that bound the size of these remainder terms are likely to be necessary or very useful tools in
such contexts.

The rest of the paper is organized as follows. In Sections 1.1 and 1.2, immediately follow-
ing this one, we provide further discussions on related literature on nonparametric hypothesis
testing and on the continuous treatment effect setting, respectively. Section 2 introduces the
setup, notation, the new testing procedure, and underlying assumptions. In Section 3, we
present the main results. Section 4 presents simulation studies and in Section 5 we present
analysis of a dataset relating nurse staffing to hospital effectiveness. Proofs and arguments
that do not fit in the main paper are provided in the Supplementary Material (Doss et al.
(2024)). References that begin with a capital letter (“A”, “B”, etc.) refer to the Supplementary
Material.

1.1. Literature on nonparametric hypothesis testing. The simpler, noncausal, problem of
hypothesis testing about a (noncausal) regression function when the alternative is a large non-
parametric class has a very large literature already. There are many different approaches to
this general problem; to start, one must decide on the definition of the nonparametric alterna-
tive class. The full, unrestricted, nonparametric alternative class is generally tested against by
using a test based on a primitive of the function of interest: if m(·) is the regression function
then M(a) := ∫ a

−∞ m(x)dx is the primitive. This approach is possibly more familiar to read-
ers in the density/distribution testing setting where m and M would be replaced by a density
and cumulative distribution function, respectively. Such tests based on M are “omnibus” in
the sense that in theory they have power approaching one against any fixed alternative. How-
ever, for that theory to be relevant with certain fixed alternatives, extremely large sample sizes
may be needed; or put another way, there are many alternatives that such tests for practical
sample sizes are not well powered.
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Another set of procedures is based on taking the alternative class to be some sort of
smoothness class (e.g., a Hölder, Sobolev, or Besov class; Giné and Nickl (2016)). Confusion
may arise because some tests, for example, those based on primitive functions, may have
power against local alternatives converging at rate n−1/2 whereas tests based on smoothness
assumptions often require local alternatives to converge at a slower rate. However, this is a
case where the (local) rates of convergence can be misleading. Rather than local rates, one
can use global minimax rates of convergence over a given class or classes to compare pro-
cedures. Ingster (1993a, 1993b, 1993c) studies minimax rates in nonparametric hypothesis
testing problems (in a white noise model and in density estimation, both with simple null
models). We do not recount all the results here, but note that in general tests based on prim-
itives will not attain minimax optimal rates against smoothness-based alternatives (Ingster
(1993a), Section 2.5, Pouet (2001)). The minimax results are not just theoretical: Eubank and
LaRiccia (1992) provide both theory and simulation results demonstrating that (in the con-
text of density estimation) for any fixed sample size there are alternative sequences such that
smoothness-based methods are more powerful than primitive-based methods (the Cramér-
von Mises statistic in this case) even though the latter has a local n−1/2 rate. The statistic we
develop here is built to have uniform power over a large nonparametric smoothness class, as
well as to be doubly robust.

One of the difficulties in smoothness-based testing is the issue of bias. Nonparametric
smoothness-based estimates generally have nontrivial bias which must be accounted for and
the estimation of which entails complications. In our particular testing setting, actually there
is no bias under the null (since our null hypothesis is the class of constant functions), so bias
is not a major issue in the usual way. The bias will affect the estimator under the alternative
and so will affect the power. A related issue is that in nonparametric testing, the asymptotic
distributions of many test statistics have the property that their bias (mean) is of a larger
order of magnitude than their variance. One consequence of this for us is that it makes the
asymptotically negligible error terms in the analysis of our test statistic (in the causal setting
of the current paper) much more complicated than they would otherwise be; it turns out that
the large bias of the main term gets multiplied by other error terms (after expanding a square)
and this requires extra mathematical analysis.

1.2. Literature on continuous treatment effects. In the last few years there has been sig-
nificant and increasing interest in causal inference with continuous treatment effects; this
includes interest in the setting of optimal treatment regimes (Chen, Li and Yu (2022), Chen,
Zeng and Kosorok (2016), Kallus and Zhou (2018), Schulz and Moodie (2021)), and in spe-
cific scientific areas (e.g., Coulombe, Moodie and Platt (2021), Kreif et al. (2015) in the
health sciences). These settings are not the same as ours, but do provide motivation for our
interest in continuous treatments.

We briefly discuss here several papers that have built theory and/or methods related to
causal effect estimation and/or inference in the presence of a continuous treatment (based on
observational data). The recent literature on estimation starts with Kennedy et al. (2017), on
which other works, including the present paper, build. Kennedy et al. (2017) have developed
a method for efficient doubly robust estimation of the treatment effect curve. Denote the
outcome regression function by μ or μ0, and denote the propensity score function by π

or π0. Their method is based on a pseudo-outcome ξ ≡ ξ(Z;π,μ), which depends on the
sample point Z, and on the nuisance functions π , μ. The pseudo-outcome ξ has the key
double robustness property that if either π = π0 or μ = μ0, then E(ξ(Z;π,μ)|A = a) is
equal to the treatment effect curve (at the treatment value a). The estimation procedure of
Kennedy et al. (2017) is then a natural two-step procedure: (1) estimate the nuisance functions
(π0,μ0) by some estimators (π̂, μ̂) which the user can choose as they wish and construct
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(observable) pseudo-outcomes ξ̂i (which approximate ξi and depend on π̂ , μ̂), and (2) regress
the pseudo-outcomes on A using some nonparametric method (e.g., local linear regression).
As we described above, the error term from the nuisance parameter estimation is given by the
product of the error term for estimating π0 and for estimating μ0, so is smaller than either,
partially alleviating the curse of dimensionality.

Several works have now made use of the pseudo-outcome approach of Kennedy et al.
(2017), or similar approaches. Semenova and Chernozhukov (2021), Westling, Gilbert and
Carone (2020) use the pseudo-outcomes of Kennedy et al. (2017) with alternative estimation
techniques, and Colangelo and Lee (2020), Su, Ura and Zhang (2019) use similar pseudo-
outcomes (and study particular nuisance estimators). Like Kennedy et al. (2017), Westling,
Gilbert and Carone (2020) also develop a doubly robust estimator of a continuous treatment
effect curve; they develop a different procedure, based on the assumption that the true effect
curve satisfies the shape constraint of monotonicity. Colangelo and Lee (2020) provide an
alternative motivation for a related pseudo-outcome Kennedy et al. (2017), study a sample-
splitting variation of the estimation methodology of Kennedy et al. (2017), and also consider
estimating the gradient of the treatment curve.

Many works since Kennedy et al. (2017) have considered doubly robust estimation of
structural/causal functions based on nonparametric models. Some include or focus on con-
tinuous treatment effects, while others focus more on the problem of conditional average
treatment effect (CATE) (or “partially conditional average treatment effect” (PCATE) (Wang
et al. (2022)) based on a binary treatment variable, or other related quantities. The (P)CATE
setting is of course different than the continuous treatment setting we consider, but may share
some features with our setting when the covariates on which the treatment is conditioned are
continuous, so we discuss some of the recent literature briefly. Chernozhukov et al. (2018),
Chernozhukov, Newey and Singh (2022), Semenova and Chernozhukov (2021) develop gen-
eral “double/debiased” machine learning approaches to estimating causal estimands that are
continuous functions. Chernozhukov, Newey and Singh (2022) develop a Dantzig-type esti-
mator based on estimating equations for the nuisance parameters. They consider four running
example estimands, as well as “local” and “perfectly localized” functionals, the latter includ-
ing the continuous treatment effect at a fixed point. Semenova and Chernozhukov (2021)
develop a general theory for debiased machine learning for different causal or missing data
estimands, such as conditional average treatment effects, regression functions with partially
missing outcomes, and conditional average partial derivatives. They also consider the causal
effect curve with continuous treatments. However, in the latter setting, their assumptions are
slightly too strong to allow double robustness for (pointwise) consistency.1

In summary, the theory and methodology of Chernozhukov, Newey and Singh (2022),
Semenova and Chernozhukov (2021) is built for a variety of settings and does not focus
exclusively on the setting of continuous treatments, which we do focus on, and derive a
powerful procedure for, here.

Lee, Okui and Whang (2017), Luedtke and van der Laan (2016), Wang et al. (2022),
Zimmert and Lechner (2019) and Foster and Syrgkanis (2023), consider various doubly ro-
bust types of estimation procedures for (P)CATE estimation, generally based on pseudo-
outcomes. Here “PCATE” means the effect of a binary/discrete treatment conditional on
some covariates which may be a strict subset of the set of all confounding variables. Nie
and Wager (2021) and Kennedy (2023) consider a different type of estimator (dubbed the

1“The only requirement we impose on the estimation of [the nuisance parameters] is that [they converge] to the

true nuisance parameter η0 at a fast enough rate [op(n−1/4−δ)] for some δ ≥ 0” (Semenova and Chernozhukov
(2021), page 271); see their Assumption 4.9.
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“R-learner” and “lp-R-Learner”, respectively, after Robinson (1988)); they provide double-
robust-type conditions under which these two-step estimators can attain the oracle rate of
convergence, with Kennedy (2023) able to weaken the conditions on the nuisances given in
Nie and Wager (2021) by a new cross-validation technique (inspired by Newey and Robins
(2018)) and undersmoothing. Very recently Kennedy, Balakrishnan and Wasserman (2022)
find minimax lower and upper bounds for CATE estimation (showing that the estimator/rates
of Kennedy (2023) were optimal in some smoothness regimes but not others). We do not
know of an analog of the (lp-)R-Learner that has been directly studied for the case of esti-
mation of continuous treatments. An open question is whether the approach we develop here
can be applied also in the setting of inference for a (P)CATE.

In terms of inference, none of the above works on (P)CATE estimation consider hypoth-
esis tests or questions of inference except for Lee, Okui and Whang (2017). Inference re-
sults for the continuous treatment effect curve are limited. Kennedy et al. (2017) find the
pointwise limit distribution for their estimator, but do not operationalize it. Semenova and
Chernozhukov (2021), in their general approach for debiased machine learning, develop con-
fidence bands, but when those bands are applied to the case of the continuous treatment effect
curve, the band is centered at an approximation of the true function, rather than at the true
function itself (i.e., there is an error term that is ignored; see their Theorem 4.7). In a different
setup Luedtke, Carone and van der Laan (2019) develop a hypothesis test in a causal infer-
ence setting which could allow for continuous treatments. However, their null hypothesis is
different than ours and their conditions (Condition 3) rule out our setting. They also con-
sider the causal effect curve with continuous treatments. However, in the latter setting, their
assumptions are slightly too strong to allow double robustness for (pointwise) consistency.2

and their confidence band is centered at an approximation of the true function, rather than
at the true function itself (i.e., there is an error term that is ignored; see their Theorem 4.7).
Chernozhukov, Newey and Singh (2022) develop Gaussian approximations for the distribu-
tions of their estimators at a fixed point, but they do not further develop inference methods, so
their focus is distinct from our focus on a (global) testing problem.3 Thus, none of the above
works solve the global inference problem that we address here.

Very recently, Westling (2022) considered a similar problem to the one we consider, but us-
ing a different test statistic, based on a “primitive” (or “antiderivative”) of the treatment effect
curve. The present paper and Westling (2022) were developed entirely separately. A strength
of the primitive-based method of Westling (2022) is that it naturally handles mixed discrete–
continuous exposures, whereas our method would require further modifications (e.g., locally
chosen bandwidths) to do so. Westling (2022)’s method is not quite doubly robust (requiring
an op(n−1/2) rather than Op(n−1/2) product-nuisance-estimation-rate), whereas our method
(which allows an op((n

√
h)−1/2) rate) is. (See Westling (2022)’s Assumption A4 and The-

orems 3 and 4, as well as Figure 1.) Also, the two methods have noticeably different power
in different scenarios. Westling (2022)’s test has a local n−1/2 convergence rate, whereas our
test statistic has a local convergence rate of (n

√
h)−1/2. The implications are as discussed

above: Westling (2022)’s test will have power focused in “one direction” and decaying in di-
rections away from that one direction, and our power will be more uniformly spread over the
alternatives. For instance, we will have noticeably higher power when the true (alternative)
effect curve has significant peaks or valleys.

2“The only requirement we impose on the estimation of [the nuisance parameters] is that [they converge] to the

true nuisance parameter η0 at a fast enough rate [op(n−1/4−δ)] for some δ ≥ 0” (Semenova and Chernozhukov
(2021), page 271); see their Assumption 4.9.

3In discussing works that focus on continuous treatment effect estimation, they say “These works develop
inference on perfectly localized average potential outcomes with continuous treatment effects, using a different
approach than what we develop here. Our development is complementary as it covers a much broader collection
of functionals.”
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2. Setup and method.

2.1. Notation, data and setup. We will use the following notations throughout this paper.
Let (Z1, . . . ,Zn) be the observed sample where each observation is an independent copy of
the tuple Z = (L,A,Y ) with support Z = L × A × Y . Here L ⊆ R

d and L is the vector
containing the d potential confounder variables (covariates); A ⊆ R and A is the continuous
treatment dosage received; Y ⊆ R and Y is the observable outcome of interest. We let P de-
note the distribution of Z and p0(z) = p0(y|l, a)p0(a|l)p0(l) denote the corresponding den-
sity function with respect to some dominating measure ν. Let μ0(l, a) := E(Y |L = l,A = a)

denote the outcome regression function. Similarly, let π0(a|l) := ∂
∂a

P (A ≤ a|L = l) denote
the conditional density or propensity score function of A given L and �0(a) := ∂

∂a
P (A ≤ a)

denote the marginal density function of A (both of which densities are assumed to ex-
ist). For a function f on R, we let P{f (Z)} := ∫

Z f (z)dP(z). And for p ≥ 1, we use
‖f ‖p := {∫ f (z)p dP (z)}1/p to denote the Lp(P ) norm and use ‖f ‖X := supx∈X |f (x)|
to denote the uniform norm over the range X . We use Pn to denote the empirical distribution
defined on the observed data so that Pn{f (Z)} := ∫

f (z) dPn(z) = n−1 ∑n
i=1 f (Zi).

To characterize the problem, let Ya be the potential outcome (Rubin (1975)) when treat-
ment level a is applied. Then the causal estimand that we are interested in learning about
(developing a hypothesis test for) is θ0(a) := E(Y a), and we wish to test if this function is
constant. Specifically, we want to test

(2.1) H0 : θ0 ≡ c ∈ R versus H1 : θ0 is nonconstant,

where we will assume that θ0(·) satisfies some smoothness assumptions if it is nonconstant.

2.2. Proposed method. In Kennedy et al. (2017), the authors derived a doubly robust
mapping for estimating the continuous treatment effect curve. Like doubly robust estimators
in binary treatment cases, the doubly robust mapping depends on both the outcome regression
function and the propensity score function, and can be written as

ξ(Z;π,μ) = Y − μ(L,A)

π(A|L)

∫
L

π(A|l)dP(l) +
∫
L

μ(l,A)dP(l),(2.2)

where π(a|l) and μ(l, a) are some propensity score and outcome regression functions, re-
spectively. The above mapping has the desired property of double robustness in that

E
{
ξ(Z;π,μ)|A = a

} = θ0(a),(2.3)

provided either μ = μ0 or π = π0, under Assumptions I below (Kennedy et al. (2017)). Thus
θ0(·) could be estimated using standard nonparametric smoothing techniques if either μ0 or
π0 were known. Since we do not actually know μ0, π0, we plug in estimators μ̂, π̂ for μ0, π0.
To compute ξ , we also need to know dP(l) in two places; since we do not, we plug in Pn(l)
for P(l), and we denote this by ξ̂ . Thus, our estimate of the pseudo-outcome ξ(Z;π0,μ0) is

ξ̂ (Z; π̂ , μ̂) = Y − μ̂(L,A)

π̂(A|L)

∫
L

π̂(A|l) dPn(l) +
∫
L

μ̂(l,A)dPn(l).(2.4)

We can subsequently apply a nonparametric estimation procedure to the (observed) tuples
{(̂ξ (Zi; π̂ , μ̂),Ai)}ni=1. Kennedy et al. (2017) show that when at least one of the estimators is
consistent then, under some assumptions about complexity and boundedness conditions of μ̂

and π̂ and the product of their convergence rates, the convergence rate of the nonparametric
estimator is the same as if we know the true μ0 or π0. Kennedy et al. (2017) apply a local
linear estimator to the pseudo-outcome to estimate θ0(·) and show the above-stated property
on the pointwise convergence rate of the nonparametric estimator.
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In this paper, we are interested in a different problem: testing if θ0(·) is constant or not.
As in the estimation problem, in the setting where we (unrealistically) know one of μ0 or
π0, testing whether θ0(·) is constant becomes a standard regression problem, and we can
consider many possible nonparametric tests to the tuples {(̂ξ (Zi; π̂ , μ̂),Ai)}ni=1. As described
in Section 1, not all tests will be doubly robust for testing, though.

In Härdle and Mammen (1993), the authors consider the problem of testing parametric
null linear models (not in a causal setting) and construct test statistics based on the integrated
difference between the nonparametric model estimated using the Nadaraya–Watson estima-
tor and the parametric null model. Alcalá, Cristóbal and González-Manteiga (1999) extended
the test to allow using a local polynomial estimator (Fan and Gijbels (1996)) for the nonpara-
metric model. We propose to test our hypothesis (2.1) of a constant treatment effect curve
(i.e., no treatment effect) using the following statistic

Tn = n
√

h

∫
A

(
θ̂h(a) − Pnξ̂ (Z)

)2
w(a)da,(2.5)

where w(·) is a user-specified weight function, θ̂h(a) is the local linear estimator ap-
plied to {(̂ξ (Zi; π̂ , μ̂),Ai)}ni=1. To define the local linear estimator, we let β̂h(a) =
argminβ∈R2 Pn[Kha(A){̂ξ(Z; π̂ , μ̂) − gha(A)T β}2], where gha(t) = (1, t−a

h
)T , Kha(t) =

h−1K{(t − a)/h}, and K(·) is a kernel function, and then we let θ̂h(a) = gh,0(0)T β̂h(a).
Note: we could define the test statistic Tn by a summation over Ai rather than as an inte-
gral against (Lebesgue measure) da; as mentioned in Dette and Neumeyer (2001), Horowitz
and Spokoiny (2001), similar results as ours would hold although some constants would
change. Note that under the null hypothesis of no treatment effect, Pn{ξ(Z;π0,μ0)} is an√

n-consistent estimator of the null model and so is Pnξ̂ provided μ̂, π̂ are not converging
too slowly (see the later discussion). We will see under some mild conditions on the con-
vergence rates of π̂ and μ̂, that Tn converges to a normal distribution similar to the one in
Alcalá, Cristóbal and González-Manteiga (1999) under the null model (given in (2.1)). How-
ever, similar to Härdle and Mammen (1993) and Alcalá, Cristóbal and González-Manteiga
(1999), due to the slow order of convergence of the asymptotically negligible terms that arise
in the proof, we do not suggest using the target distribution given in Theorem 3.1 to directly
calculate the critical values under the null hypothesis. Instead we advocate using the boot-
strap (Efron and Tibshirani (1993)) to estimate the distribution of Tn to improve the finite
sample performance and, more specifically, we use the so-called wild bootstrap (Davidson
and Flachaire (2008)) as used in Alcalá, Cristóbal and González-Manteiga (1999), Härdle
and Mammen (1993) and Dette and Neumeyer (2001). In Härdle and Mammen (1993), the
authors show the theoretical properties of three different bootstrap methods: (1) the naive
resampling method; (2) the adjusted residual bootstrap; (3) the wild bootstrap and showed
only the wild bootstrap gives consistent estimation of the null distribution. These results are
again true in our setting: the wild bootstrap is valid whereas the other two are not. Here we
provide a brief outline of our proposed test procedure.

1. Estimate (π0,μ0) by (black-box estimators) (π̂, μ̂).
2. Calculate the pseudo-outcomes ξ̂ (Z; π̂ , μ̂) by (2.4) and construct the local linear estimator

θ̂h(a) using {(̂ξ (Zi; π̂ , μ̂),Ai)}ni=1.
3. To generate wild bootstrap samples to estimate the distribution of Tn under the null hy-

pothesis,

(a) Calculate the estimated residuals as ε̂i = ξ̂ (Zi; π̂ , μ̂) − θ̂h(Ai) (we can also use
ε̂i = ξ̂ (Zi; π̂ , μ̂) − ∑n

i=1 ξ̂ (Zi; π̂ , μ̂)/n),
(b) Do the following B times, where B is the desired number of bootstrap resam-

plings: for each i ∈ {1, . . . , n}, generate ε∗
i ∼ F̂i (defined just below, based on {ε̂i}) and

use (ξ∗
i = Pnξ̂ + ε∗

i ,Ai) as bootstrap observations,
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4. Use the wild bootstrap samples to compute T ∗
n,j , j = 1, . . . ,B (according to (2.5) but

using the bootstrap samples) and use {T ∗
n,j }Bj=1 to estimate the distribution of Tn under

the null hypothesis. Let t̂∗n,1−α denote the 1 − α quantile of the estimated distribution,
where 0 < α < 1 is the predetermined significance level. Reject the null hypothesis if
Tn > t̂∗n,1−α .

When generating bootstrap samples, we use F̂i to estimate the conditional distribution of
ξ(Zi; π̄ , μ̄) based on the single residual ε̂i . Härdle and Mammen (1993) use a “two point
distribution” which matches the first three moments of ε̂i and is defined as

ε∗
i =

{−ε̂i (
√

5 − 1)/2 with probability (
√

5 + 1)/(2
√

5),

ε̂i(
√

5 + 1)/2 with probability (
√

5 − 1)/(2
√

5).
(2.6)

We also consider another common choice, a Rademacher type distribution, where ε∗
i equals

ε̂i or −ε̂i with probability 1/2 each. (Davidson and Flachaire (2008)). Unlike the two point
distribution, the Rademacher distribution matches the first two and the fourth (and all even)
moments of ε̂i , but imposes symmetry on F̂i .

REMARK 2.1. In Section H of the Supplementary Material Doss et al. (2024), we also
present an extension of the doubly robust pseudo-outcome to allow for possible (discrete or
continuous) effect modifiers, and present the natural extension of the test to the case where
the effect modifier is discrete.

2.3. Assumptions. Here we introduce the assumptions needed for our theoretical results.
Our parameter of interest, θ0(a), is defined on the potential outcome Ya which is not observ-
able. Thus, we need the following identifiability conditions on the observed data.

ASSUMPTION I.

1. Consistency: A = a implies Y = Ya .
2. Positivity: π0(a|l) ≥ πmin > 0 for all l ∈ L and all a ∈ A.
3. Ignorability: E(Y a|L,A) = E(Y a|L).

We need some further assumptions to regulate the distribution of the observed data and the
treatment effect curve θ0(a).

ASSUMPTION D.

1. The support of A (i.e., A), is a compact subset of R.
2. The treatment effect curve θ0(a) and the marginal density function �0(a) are twice

continuously differentiable.
3. The conditional density π0(a|l) and the outcome regression function μ0(l, a) are

uniformly bounded.
4. Let τ(l, a) := Var(Y |L = l,A = a) be the conditional variance of Y given covariates

and treatment level. Assume there exist τmax > 0 such that 0 < τ(l, a) ≤ τmax for all l ∈ L
and a ∈A. Moreover, define

Sτ := {
l ∈ L : τ(l, a) is a continuous function of a

}
,

Sπ0 := {
l ∈ L : π0(a|l) is a continuous function of a

}
,

Sμ0 := {
l ∈ L : μ0(l, a) is a continuous function of a

};
assume we have P(Sτ ∪ Sπ ∪ Sμ) = 1.
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Statement 4 about the sets Sτ , Sπ0 , Sμ is just a slight relaxation of the requirement that
the given functions all be simultaneously almost surely continuous everywhere. For the as-
sumption on our kernel, we also need to define a Vapnik–Chervonenkis (VC) (Dudley (1999))
class. If a class of functions F is a VC class, we have that

sup
Q

N
(
τ‖F‖2,Q,F,L2(Q)

) ≤
(

C

τ

)v

(2.7)

for some positive C, v and all τ > 0 (and again the sup is over all probability measures Q).
The assumptions we make on our estimators are as follows.

ASSUMPTION E(A).

1. The bandwidth h ≡ hn fulfills ch
1n−1/5 ≤ lim infhn ≤ lim suphn ≤ ch

2n−1/5 for some
constants 0 < ch

1 ≤ ch
2 < ∞.

2. Let π̄ and μ̄ denote the limits of the estimators π̂ and μ̂ such that ‖π̂ − π̄‖Z =
op(

√
h) and ‖μ̂ − μ̄‖Z = op(

√
h), where h is the bandwidth used in local linear estimator.

And we have either π̄ = π0 or μ̄ = μ0.
3. The kernel function K for the local linear estimator is a continuous symmetric prob-

ability density function with support on [−1,1]. Moreover, we assume the class of functions
{K((· − a)/h) : a ∈ R, h > 0} satisfies condition (2.7).

4. Let r∞
n and s∞

n be such that

sup
a∈A

∥∥π̂(a|L) − π0(a|L)
∥∥

2 = Op

(
r∞
n

)
,

sup
a∈A

∥∥μ̂(L, a) − μ0(L, a)
∥∥

2 = Op

(
s∞
n

)
.

We assume s∞
n r∞

n = o{(n√
h)−1/2}.

Assumption E(A)1 requires that h is of the order of magnitude for optimal estimation;
such h can be achieved a variety of ways (for instance, one can minimize a risk estimate,
or perform cross validation (Fan and Gijbels (1996)). Assumption E(A)2 is not a stringent
assumption; by definition π , μ are the limits of the estimators π̂ , μ̂; here we require the rate
of convergence (in ‖ · ‖Z ) to these limits (which are not necessarily the truth) to be order√

h = o(n−1/10) which is quite slow.
Assumption E(A)3 is a standard assumption on the user-chosen kernel. Assumption E(A)4

is a somewhat nonstandard assumption, since it combines L∞ and L2 norms. The L2 aspect
arises in the local asymptotics of Kennedy et al. (2017), and the L∞ aspect arises because
we consider a global test. Note that in parametric settings, r∞

n or s∞
n may attain

√
n rates.

For instance, in a linear regression, if the regression model is μ(l, a) = (lT , a)β , and β̂ is
an estimator converging to the true parameter β0 at

√
n rate, then P((lT , a)(β̂ − β0))

2 ≤
2Op(n−1)(a2 + P‖l‖2

2), which follows from using the inequality (a + b)2 ≤ 2a2 + 2b2 and
the fact that if (β̂ − β0) = Op(n−1/2) then (β̂ − β0)(β̂ − β0)

T has eigenvalues of order
Op(n−1). Taking a square root and a supremum over the bounded set a ∈ A shows that in
this case r∞

n is order
√

n. Similar results hold in other parametric models for μ or for π .
Thus indeed, the test is “doubly robust”: if one parametric model is well-specified and attains
root-n rates, the other may be misspecified.

Many nonparametric or semiparametric examples will also satisfy Assumption E(A)4; if
r∞
n and s∞

n are both, say, order n−2/5 up to polylogarithmic factors, which is the rate one
expects from for instance, a generalized additive model under twice differentiability then the
assumption is satisfied.
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In addition to the above E(A) (“Estimator assumption part A”) assumption, we make one
more assumption (“Estimator assumption part B”) on the estimators of the nuisance param-
eters and the local linear estimator of the treatment effect curve. We assume the estimators
for nuisance parameters fall in classes with finite uniform entropy integrals. For a generic
class of functions F , let F denote an envelope function for F , that is, supf ∈F |f | ≤ F . Let
N(ε,F,‖ · ‖) denote the covering number, that is, the minimal number of ε-balls (with dis-
tance defined on ‖ · ‖) needed to cover F . Let

Jm(δ,F,L2) :=
∫ δ

0
sup
Q

(
1 + logN

(
ε‖F‖Q,2,F,L2(Q)

))m/2
dε,(2.8)

where the sup is over all probability measures Q and L2(Q) ≡ ‖ · ‖2,Q is the L2 semimet-
ric under the distribution Q, that is, ‖f ‖2,Q = (

∫
f 2 dQ)1/2. If J1(1,F,L2) < ∞ we say F

has a finite uniform entropy integral, and following standard convention, we sometimes let
J (·, ·, ·) refer to J1(·, ·, ·). Differing results require Jm(1,F,L2) < ∞ for differing values of
m ∈ {1,2,3,4}. Thus, we subscript this next assumption by m, which corresponds to the re-
quirement that Jm(1,F,L2) < ∞. We label the below assumption as “E(B)m” and when we
want to assume that, for example, J3(1,F,L2) < ∞, we refer to the assumption as “E(B)3”.

ASSUMPTION E(B)m . The estimators π̂ , μ̂ and their limits π̄ , μ̄ are contained in uni-
formly bounded function classes Fπ , Fμ, which satisfy that Jm(1,F,L2) < ∞ for F = Fπ

or F = Fμ, with 1/π̂ also uniformly bounded. Moreover, we assume P(Sπ̄ ∪Sμ̄) = 1, where
we let

Sπ̄ := {
l ∈ L : π̄(a|l) is a continuous function of a

}
,

Sμ̄ := {
l ∈ L : μ̄(l, a) is a continuous function of a

}
.

REMARK 2.2. To control rates of convergence, we make assumptions on the complexity
of the classes being considered in E(B). For our first main theorem (limit distribution of the
test statistic), we require E(B)3 and for our bootstrap theorems, we require either E(B)3 or
E(B)4. For instance, if Fμ is a class of Hölder continuous functions with Hölder exponent
β > 0 on D = d + 1 dimensional Euclidean space, and we require E(B)m to hold, then the
ε-entropy is of order ε−D/β so we require mD/2β < 1 or β > mD/2. When m = 1, the
condition is the standard one and when m = 3 or 4 it is more restrictive.

REMARK 2.3. It may be possible to weaken these assumptions. The assumption E(B)m
with m > 1 arises from certain (degenerate) U- or V-process terms in the analysis. Analyzing
such terms requires these more stringent entropy conditions. On the other hand, an mth order
(degenerate) U-process comes with a faster decay to 0, of order n−m/2. When the class F (i.e.,
Fμ, Fπ ) does not depend on n this does not help us. But if we allow a sieve-type approach
where the class F ≡ Fn depends on n, then we need J1(1,Fn) to be O(1) but Jm(1,Fn)

for m > 1 can be allowed to grow with n; if we allow such sieve classes Fn, then the only
entropy required to stay finite/bounded in n is J1, and so in this sense we can recover/require
the more classical condition. At present, we have phrased the conditions only in terms of
independent-of-n classes.

3. Main results. Now we present the asymptotic distribution of our test statistic Tn under
the null hypothesis. To metrize weak convergence, we use the Dudley metric (Shorack (2000),
Chapter 14, Section 2) (although any topologically equivalent metric would work), which is
defined as

(3.1) d(μ, ν) := sup
{∫

g dμ −
∫

g dν :∥∥g∥∥
BL≤ 1

}
,
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where X and Y are random variables with probability distributions/laws μ and ν, respec-
tively, and where ‖g‖BL := supx∈R |g(x)| + supx 
=y |g(x) − g(y)|/|x − y|. For a kernel func-
tion K , we use K(s) to denote the s-times convolution product of K , that is K(s)(x) =∫

K(s−1)(y)K(x − y)dy, with K(1) = K . And we let K
(s)
h (x) := K(s)(x/h). Let

σ 2(a) = E

[
τ(L, a) + {μ0(L, a) − μ̄(L, a)}2

{π̄(a|L)/�̄ (a)}2/{π0(a|L)/�0(a)}
]

− {
θ0(a) − m̄(a))

}2
,(3.2)

where �̄ (a) := ∫
π̄(a|l)dP(l) and m̄(a) := ∫

μ̄(l, a)dP(l). We can now state our main theo-
rem, which gives the limit distribution of our test statistic under the null hypothesis. Let L(X)

denote the probability law of the random variable X.

THEOREM 3.1. Let Assumptions I1–I3, D1–D4, E(A)1–E(A)4, and E(B)3 hold and let
w(·) be a continuously differentiable weight function on A. Let σ 2(·) and Tn be as given in
(3.2) and (2.5). Then under H0 (from (2.1)), we have

d
{
L(Tn),L

(
N(b0h,V )

)} → 0(3.3)

as n → ∞, where

b0h = h−1/2K(2)(0)

∫
A

σ 2(a)w(a)

�0(a)
da, V = 2K(4)(0)

∫
A

[
σ 2(a)w(a)

�0(a)

]2
da.

(3.4)

The full proof is given in the Supplementary Material (Doss et al. (2024)). We provide an
outline of the proof here.

Proof outline for Theorem 3.1. We can decompose the statistic Tn as

(3.5) Tn = n
√

h

∫
A

(
D1(a) + D2(a) + D3

)2
w(a)da,

where

D1(a) := θ̂h(a) − θ̃h(a), D2(a) := θ̃h(a) − Pnξ̄ (Z), D3 := Pnξ̄ (Z) − Pnξ̂ (Z),

and where θ̃h(a) is the local linear estimator regressing the oracle doubly robust map-
pings ξ̄i := ξ(Zi; π̄ , μ̄) on Ai . Expanding the square leads to 6 terms to be analyzed,
so we break the proof up into 6 main steps corresponding to each of those terms. In
Step 1, we verify that n

√
h

∫
A D2(a)2w(a)da is distributed approximately as the given

N(b0h,V ) limit distribution in the theorem. This follows essentially from Alcalá, Cristóbal
and González-Manteiga (1999), which extends the results of Härdle and Mammen (1993) to
allow local polynomial estimators. In Steps 2–6, we show that the remainder terms (which
are just the terms n

√
h

∫
A D2

3w(a)da, n
√

h
∫
A D1(a)2w(a)da, n

√
hD3

∫
A D2(a)w(a)da,

n
√

h
∫
A D1(a)D3w(a)da, and n

√
h

∫
A D1(a)D2(a)w(a)da) are all op(1) as n → ∞. We

now will discuss those remainder terms in slightly more detail, basically in parallel with
Steps 2–6.

Let η := (π,μ) (and η̂ := (π̂ , μ̂), η̄ := (π̄, μ̄)). Both D1(a) and D3 involve summations
over ξ̂ (Zi; η̂) − ξ(Zi; η̄), and in analyzing the remainder terms, we break these summations
into sums over ξ̂ (Zi; η̂) − ξ(Zi; η̂) and ξ(Zi; η̂) − ξ(Zi; η̄). (Recall the definition of ξ̂ given
in (2.4), in which dP is replaced by dPn.) The sums over ξ̂ (Zi; η̂)− ξ(Zi; η̂) yield terms that
can be written as degenerate V-statistics (or, rather, because of the presence of the random
η̂, terms whose size is governed by degenerate V-processes). We are are able to conclude
that these are of very small order of magnitude, but unfortunately the empirical process tools
(that we are aware of) for analyzing them requires the imposition of stronger entropy con-
ditions than the normal Donsker-type condition. (Because of the presence of up to order 3
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V-processes, we require J3(1,F,L2) < ∞ rather than the weaker, more standard Donsker
condition, J1(1,F,L2) < ∞ (for F equal to both Fμ, Fπ ).)

For instance, in Step 2 we write the term D3 as

Pn

{
ξ(Z; π̄ , μ̄) − ξ̂ (Z; π̂ , μ̂)

} = Pn

{
ξ(Z; π̄ , μ̄) − ξ(Z; π̂ , μ̂)

}
+ Pn

{
ξ(Z; π̂ , μ̂) − ξ̂ (Z; π̂ , μ̂)

}
.

The first summand (of the right-hand side above) is further decomposed into two terms of
types that commonly arise in causal inference or semiparametric problems one an empirical
process one and one a “second order remainder”; the former is shown to be negligible by an
empirical process asymptotic equicontinuity argument and the latter is small by assumptions
on r∞

n s∞
n . The second summand in the display above can be written as a degenerate order 2

V-process. We provide an introduction to and discussion of U- and V-processes in Section K
of our Supplementary Material (Doss et al. (2024)). Under Assumption E(B)2 (implied by
Assumption E(B)3) we show that the V-process is negligible. Note that a degenerate order m

U- or V-statistic is usually of order n−m/2 (van der Vaart (1998), Chapter 12).
In Step 3, we write D1(a) as D1(a) = d1,1(a) + d1,2(a), where

d1,1(a) := Pn

[
Wha(A)

(̂
ξ(Z; π̂ , μ̂) − ξ(Z; π̂ , μ̂)

)]
,

d1,2(a) := Pn

[
Wha(A)

(
ξ(Z; π̂ , μ̂) − ξ(Z; π̄ , μ̄)

)]
,

and Wha(·) are “equivalent” kernels for the local polynomial estimator (see the proof for
definitions and references or see Fan and Gijbels ((1996), page 63)). The added difficulty now
in Step 3 over Step 2 is that these terms are local that is, they depend on h, but thematically
the decomposition works the same as in Step 2. The term d1,2(a) is handled by an asymptotic
equicontinuity argument and assumptions on nuisance estimators, and the term d1,1(a) by
a (nonasymptotic) V-process maximal inequality (see Proposition K.2) for an order 2 V-
process.

In Step 4, we consider
∫
A D2(a)D3w(a)da; here D3 can be factored out and handled

by the result of Step 2, and the remaining integral of D2(a) can be handled in an ele-
mentary way by Taylor expansion and the Central Limit Theorem. In Step 5, we consider∫
A D1(a)D3w(a)da, whose negligibility follows immediately from the analysis in Steps 2

and 3 and the Cauchy–Schwarz inequality.
Finally, in Step 6 an order 3 V-processes arises (and so Assumption E(B)3 is needed) in

the analysis of
∫
A D1(a)D2(a)w(a)da. This can be essentially simplified into (a sum of) two

main terms,∫ 1

� 2
0 (a)

Pn

[
Kha(A)

{
ξ(Z; π̂ , μ̂) − ξ(Z; π̄ , μ̄)

}]1

n

n∑
i=1

Kh(Ai − a)ε̄iw(a)da,

∫ 1

� 2
0 (a)

Pn

[
Kha(A)

{
ξ̂ (Z; π̂ , μ̂) − ξ(Z; π̂ , μ̂)

}]1

n

n∑
i=1

Kh(Ai − a)ε̄iw(a)da,

(3.6)

where εi := ξ(Zi;π,μ)−Pξ(Z;π,μ). The first term in (3.6) is further decomposed, with Pn

written as (Pn −P)+P; usually, the (Pn −P) term yields an empirical process and the P term
yields a second order remainder. Here the empirical process piece can be handled by previous
arguments; the “P” term can not be treated as a second order remainder because taking abso-
lute values (as would be commonly done) breaks the mean zero structure of the term and does
not yield the correct size (because of the integral over A, the n−1 ∑n

i=1 Kh(Ai − a)ε̄iw(a)

term and P term cannot be analyzed separately). Rather, the term is handled by an empirical
process (maximal inequality) argument (in Lemma E.4). Finally, the second term in (3.6) is
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the order three V-process, requiring J3(1, ·,L2) < ∞ in order to apply a maximal inequal-
ity.4 That completes our proof outline; full details of the proof are given in Section B of the
Supplementary Material, Doss et al. (2024).

Next, we state the consistency of our test under alternatives as follows. (The δn sequence
can in particular be (n

√
h)1/2.)

THEOREM 3.2. Let Assumptions I1–I3, D1–D4, E(A)1–E(A)4 hold and let w(·) be a
continuously differentiable weight function on A. Let σ 2(·) and Tn be as given in (3.2) and
(2.5). Then under the alternative θ0(a) = c0 + δn(n

√
h)−1/2g(a), where c0 = Pξ(Z;π0,μ0),

where g(·) is not the constant 0, and where
∫

g(a)�(a)w(a)da = 0. Moreover, δn is a se-
quence converging to ∞ such that limn→∞ n1/40/δn = 0. Then we have

P(Tn > zn,1−α) → 1

as n → ∞, where we use zn,1−α to denote the upper α quantile of the N(b0h,V ) distribution
in (3.3).

The proof is given in the Supplementary Material (Doss et al. (2024)). The condition that∫
g(a)�(a)w(a)da = 0 is not a substantive restriction, it is just so that c0 is “identifiable” in

a sense.
Finally, we show that the bootstrap distribution of the statistic can be used to approximate

Tn’s unknown distribution (under the null). For our proof to hold, we require an extra entropy
condition to accommodate a fourth order V-process that appears in the analysis of the wild
bootstrap. Recall the definition of J4 from (2.8) and the definition of the Dudley metric for
weak convergence in (3.1). Let L∗(X) := L(X|Z1, . . .Zn) denote the conditional law of a
random variable X.

A variety of bootstrap definitions are possible (and are included in the simulations)
and discussed in Section 2.2. For the following theorem, we let ε̂i := ξ̂ (Zi; π̂ , μ̂) −∑n

i=1 ξ̂ (Zi; π̂ , μ̂)/n be centered at the null estimate, and we take ε∗
i to be the Rademacher

choice so equal to ±ε̂i with probability 1/2 each. Then we proceed as discussed in Sec-
tion 2.2, with (ξ∗

i = Pnξ̂ + ε∗
i ,Ai) as bootstrap observations and defining T ∗

n by (2.5) but
using the bootstrap observations.

THEOREM 3.3. Let the assumptions of Theorem 3.1 hold. Let T ∗
n be the bootstrap test

statistic defined in the paragraph preceding this theorem. Then

d
(
L∗(

T ∗
n

)
,L

(
N(bh,V )

)) →p 0

as n → ∞.

Next, we consider the bootstrap where ε̂i := ξ̂ (Zi; π̂ , μ̂) − θ̂h(Ai) (and the rest of the
procedure is as described in the paragraph preceding the previous theorem). We study this
case in the next theorem, which requires an extra entropy condition (J4 < ∞).

THEOREM 3.4. Let the assumptions of Theorem 3.1 hold. Further, we assume that
J4(1,F,L2) < ∞ for F = Fμ and for F = Fπ . Let T ∗

n be the bootstrap test statistic de-
fined in the paragraph preceding this theorem. Then

d
(
L∗(

T ∗
n

)
,L

(
N(bh,V )

)) →p 0

4Again, in the analysis of this [and other] term[s] we cannot analyze the multiplicands’ orders of magnitudes
separately, because taking absolute values breaks the mean zero structure; that is, to explain, let Ci , Di be generic
random variables and then although we can bound |∑i CiDi | ≤ (maxi |Ci |)∑

i |Di |, unfortunately then
∑

i |Di |
(with absolute values) is not a sum of mean zero variables, even if the {Di} are mean zero; getting the right order
of magnitude requires treating the multiplicands simultaneously as a V-process.
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as n → ∞.

The structure of the proofs is analogous to that of Theorem 3.1, although the calculations
are somewhat more intricate, and lead to a fourth order V-process which requires the finite-
ness of J4 as stated in the theorem. The proof details are given in the Supplementary Material
(Doss et al. (2024)).

For more direct understanding of the two bootstraps, we studied both bootstraps in
our simulations, and they seem to perform quite similarly (especially in low dimensional-
ity/complexity problems (when we do not use cross-fitting)). The bootstrap studied in Theo-
rem 3.4 is perhaps more common in practice, which is the reason for our presenting that the-
orem, despite its seemingly requiring stronger conditions for its theoretical justification than
the Theorem 3.3 bootstrap. On the one hand, finiteness of J4 is what arises fundamentally in
the study of 4th order V-processes, and on the other perhaps the corresponding error terms
are actually quite small (see also Remark 2.3) so that the two bootstraps perform similarly in
practice. There is not a major difference in computation time; so either can be recommended
for use in low complexity settings. When dimensionality (or complexity) grows, however,
we recommend using the Theorem 3.3 bootstrap (together with cross-fitting). We discuss the
complexity assumptions more in the next remark.

REMARK 3.1. As mentioned in Remark 2.2, β-Hölder classes with β > mD/2, D =
d + 1, satisfy the needed entropy(-type) condition. To allow for more flexibility, (general-
ized) additive models (Hastie and Tibshirani (1987, 1990), Hastie (2017), Wood (2017)),
may be used. Consider fitting the outcome regression, μ(a, l). One option is a model
μ(a, l) = fA(a) + ∑d

i=1 fi(li) where fA, fi are Hölder functions, and here having β > m/2
suffices; if m = 3, then β = 2 works. In this setup one can recommend using any of a vari-
ety of smooth fits on the individual components (with the backfitting algorithm, Hastie and
Tibshirani (1990)); common choices might be cubic splines or local linear regression. The
shape constraint of convexity may also be used on a component while still satisfying the en-
tropy condition (Chen and Samworth (2016)). If m = 4, then those choices just barely do not
work in that we require β > 2. Higher order local polynomial regression such as local cubic
regression can be recommended, though (see Chapter 7 of Fan and Gijbels (1996)). A user
may wish to have a slightly more flexible model that allows interactions between covariates
and the treatment, such as μ(a, l) = ∑d

i=1 fi(li, ai) (ignoring the “main effect” functions
for simplicity). In this setup, One can again use local cubic regression which is appropri-
ate for requiring the assumption β > 3 = m × 2/2 (m = 3) or local 5th-order regression for
β > 4 = m × 2/2 (m = 4). One sees that when m = 4 the condition is somewhat restrictive.

In our implementations, we have included some machine learning methods (e.g., gradi-
ent boosting, random forests) for which we do not formally have verification of the entropy
conditions (and our procedure worked well). Understanding entropy conditions for those es-
timators (rather, for function classes they live within) is an interesting direction for future
work.

4. Simulation studies.

4.1. Simulation for testing constant average treatment effect. We use simulation to assess
the performance of our proposed test in terms of both type I error probability and power.
We consider two data generating models, one with a binary response and which is defined
similarly as in Kennedy et al. (2017), and another one with a continuous response. In more
detail, they are specified as follows.
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Model 1: we simulate the covariates from independent standard normal distributions, L =
(L1, . . . ,L4)

T ∼ N(0, I 4), and simulate the treatment level from a Beta distribution,

(A/20)|L ∼ Beta
(
λ(L),1 − λ(L)

)
,

logit λ(L) = −0.8 + 0.1L1 + 0.1L2 − 0.1L3 + 0.2L4,

and finally the binary outcome is simulated as Y |L,A ∼ Bernoulli(μ(L,A)), where
logit μ(L,A) = 1 + (0.2,0.2,0.3,−0.1)L + δA(0.1 − 0.1L1 + 0.1L3 − 0.132A2).

Model 2: the covariates are simulated the same as in Model 1. We simulate the treatment
level from a Beta distribution,

(A/5)|L ∼ Beta
(
λ(L),1 − λ(L)

)
,

logit λ(L) = 0.1L1 + 0.1L2 − 0.1L3 + 0.2L4,

and we simulate the continuous response from conditional normal distributions as Y |L,A ∼
N(μ(L,A),0.52), where

μ(L,A) = (0.2,0.2,0.3,−0.1)L + A(−0.1L1 + 0.1L3) + δ exp
{
−(A − 2.5)2

(1/2)2

}
.

In both models, we have a parameter δ that controls the distance between the true treatment
effect and the null hypothesis, that is, treatment effect is constant, with δ = 0 indicating no
treatment effect in both models. In Model 1, δ = 0 yields a constant average treatment effect
and is a “strong null” meaning all individuals have the same treated and untreated outcomes;
in Model 2 when δ = 0 the “weak null” holds meaning conditional average treatment effects
are nonconstant but the average treatment effect is constant. Specifically, for Model 1, we let
δ ∈ {0,0.002,0.004,0.006,0.008,0.01}, and we let δ ∈ {0,0.1,0.2,0.3,0,4,0.5} for Model
2. We plot the treatment effect curve with δ = 0.01 for Model 1 and the treatment effect curve
with δ = 0.5 for Model 2 in Figure 1.

For each data generating model, we test the performance of our method under 4 scenarios:
(1) π is correctly specified with a parametric model, μ is incorrectly specified with a paramet-
ric model; (2) π is incorrectly specified with a parametric model, μ is correctly specified with
a parametric model; (3) both π and μ are correctly specified with a parametric model; (4)
both π and μ are estimated with Super Learners (van der Laan, Polley and Hubbard (2007)).
In the first two scenarios, the incorrect parametric models are constructed in the same fashion
as in Kang and Schafer (2007). The first three scenarios are used to test the double robustness
of our method and the last one to show the empirical performance of our method when we use
flexible machine learning models to estimate the nuisance functions. After we calculate the

FIG. 1. Treatment effect curves in Model 1 and Model 2. Left: Model 1 with δ = 0.01. Right: Model 2 with
δ = 0.5.
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pseudo-outcomes, we use the rule of thumb for bandwidth selection (Fan and Gijbels (1996))
for the local linear estimator. We compare the performance of our method with Westling
(2022) in the first three scenarios; with Westling (2022) and a discretized version of TMLE
(Gruber and van der Laan (2012)) with treatment dichotomized at the middle point in the last
scenario. In our method, we choose the weight function w(a) ≡ 1. We implemented all three
versions (L1, L2 and L∞) of the methods in Westling (2022) for comparison. Rejection prob-
abilities are estimated with 1000 independent replications of simulation. Finally, we consider
sample sizes in {500,1000,2000}.

Figures 2 and 3 show the results for Model 1. We can see when at least one of the nuisance
functions is correctly estimated, our method and Westling’s methods performed similarly in
terms of both type I error probability and power. When both nuisance functions are estimated
with Super Learners, Westling’s methods have slightly larger power than our method but also
have slightly larger type I error probabilities. Note that in this case, the discretized version
of TMLE outperformed both our method and Westling’s method in terms of type I error
probability and power. The reason may be the shape of the treatment effect curve in Model 1
is somewhat simple and monotone, and there isn’t much information loss if we dichotomize
the continuous treatment to form a simpler testing problem. We also note that apparently
Westling (2022)’s method is doubly robust on the specific data generating model we use
here.

FIG. 2. Simulation result for Model 1 with π and μ estimated from parametric models. The variations of
our method are labeled as follows: Two point/Rademacher indicates whether the “Two point” distribution or
Rademacher distribution is used to generate the bootstrap residuals; parametric/nonparametric indicates whether
the residuals are estimated from a parametric treatment effect model (ε̂i = ξ̂ (Zi; π̂ , μ̂) − ∑n

i=1 ξ̂ (Zi; π̂ , μ̂)/n)
or a nonparametric treatment effect model (ε̂i = ξ̂ (Zi ; π̂ , μ̂) − θ̂h(Ai)); int means the test uses the origi-
nal integral form of the test statistic and avg means the test uses the sample average approximation, that is,√

h
∑n

i=1{θ̂h(Ai) − Pnξ̂ (Z)}2.
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FIG. 3. Simulation result for Model 1 with π and μ estimated from nonparametric models. See Figure 2 for
label descriptions.

Figures 4 and 5 show the results for Model 2 where we have a slightly more jagged and
nonmonotone treatment effect curve (from the right-hand side of Figure 1). We observe that
in the first three scenarios our methods outperform Westling’s methods in terms of power in
all cases. Our method does better even with a small sample size and a weak deviation from
the null model, compared with Westling’s method. Similar observations hold when we use
Super Learner to estimate both nuisance functions. Another observation worth noting is that
in Model 2 the discretized TMLE fails to detect any deviation from the null model since the
treatment effect curve is symmetric, which provides an example in which discretizing a con-
tinuous treatment and applying a binary test may lead to a completely incorrect conclusion.

4.2. Cross-fitted test procedure. We also consider simulations to analyze how the dimen-
sionality of the confounders L can affect the performance of our test and how cross-fitting
could be applied to improve finite sample performance as dimension increases. Due to space
constraints, we defer this material to Section J of Doss et al. (2024). The detailed description
of the test procedure with cross-fitting can be found in Section J.1. We conduct simulation
studies to compare our main proposed test (without cross-fitting) and the cross-fitted test un-
der low dimensional data regimes and under increasing dimensionality regimes, respectively,
in Section J.2. The following is a summary of the results from the simulations. When the di-
mensionality of the covariates is small, both noncross-fitted and cross-fitted tests can achieve
the desired type I error probability but the cross-fitted version tends to have lower power;
as the dimensionality of the covariates increases, only the cross-fitted version maintains the
desired type I error probability. The non cross-fitted version fails even in the moderate (or
“proportional”) regime, when d = 100 and n ∈ {500,1000}.

5. Analysis of data on nursing hours and hospital performance. In this section we
apply our test to a real data problem. In Kennedy et al. (2017) and McHugh, Berez and
Small (2013), the authors were interested in whether nurse staffing (measured in nurse hours
per patient day) affected a hospital’s risk of excess readmission penalty after adjusting for
hospital characteristics (for more detail of the data and related background of the problem, see
McHugh, Berez and Small (2013)). Kennedy et al. (2017) proposed a doubly robust procedure
to estimate the probability of readmission penalty against average adjusted nursing hours per
patient day, and provided pointwise confidence intervals for the estimated treatment curve.
However, their method and analysis did not answer the question of whether nurse staffing
significantly affects the probability of excess readmission penalty after adjusting for hospital
characteristics. We apply our method to test the null hypothesis: nurse staffing does not affect
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FIG. 4. Simulation result for Model 2 with π and μ estimated from parametric models. See Figure 2 for label
descriptions.

hospital’s risk of excess readmission penalty after adjusting for hospital characteristics, with
updated data from the year 2018. As a brief summary of the data, the outcome Y indicates
whether the hospital was penalized due to excess readmissions and are calculated by the
Center for Medicare & Medicaid Services (https://www.cms.gov). The treatment A measures
nurse staffing hours and we calculate it as the ratio of registered nurse hours to inpatient
days, which is slightly different from Kennedy et al. (2017) and McHugh, Berez and Small
(2013), because we don’t have access to the hospitals’ financial data and thus are not able to
calculate adjusted inpatient days. The covariates L include the following nine variables: the
number of beds, the teaching intensity, an indicator for not-for-profit status, an indicator for

FIG. 5. Simulation result for Model 2 with π and μ estimated from nonparametric models. See Figure 2 for
label descriptions.

https://www.cms.gov
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whether the location is urban or rural, the proportion of patients on Medicaid, the average
patient socioeconomic status, a measure of market competition, an indicator for whether the
hospital has a skilled nursing facility (because our measure of nurse staffing hours A will
unfortunately include hours worked in such a skilled nursing facility), and whether open
heart or organ transplant surgery is performed (which serves as a measurement of whether
the hospital is high technology). We omitted patient race proportions and operating margin
from the analysis (present in Kennedy et al. (2017) and McHugh, Berez and Small (2013))
because we don’t have access to those features. Figure I.3 shows an unadjusted loess fit
of the readmission penalty as a function of the average nursing hours and the loess fits of
the covariates against the average nursing hours. The curves are not identical to those in
Kennedy et al. (2017) since we’ve used updated data from 2018, but we observe generally
similar patterns and nurse staffing hours is correlated with many hospital characteristics. In
the analysis, we use Super Learner (van der Laan, Polley and Hubbard (2007)) with the same
implementation as in Kennedy et al. (2017) to estimate π0 and μ0. We truncate π̂ to be 0.01
if it fell below that value. The rule of thumb Fan and Gijbels (1996) is applied for bandwidth
selection as in Section 4. Since our test statistic is based on the integrated distance between
the nonparametric fit of the treatment effect curve and the parametric fit of the treatment effect
curve under the null hypothesis, a byproduct of the test is the estimated treatment effect curve.
We plot the estimated treatment effect curve of average nurse staffing in Figure 6 (the solid
red curve).

We apply our test, Westling’s test, and the discretized version of TMLE to this data set.
All versions of our methods and Westling’s methods have p-values of 0. (Exact zeros are due
to the fact that we use simulated reference distributions.) The discretized TMLE reports a p-
value of 0.0017. So all the tests suggest strong statistical evidence against the null hypothesis
of constant treatment effect, meaning average nursing hours does have a significant causal
impact on a hospital’s chance of being penalized for excess readmissions. This interpretation
requires that we have included all important confounders in our analysis. If we have not, our
test result is interpreted as being based on a partially adjusted estimate of association (rather
than the treatment effect curve).

Finally, we test whether an indicator for whether a hospital is in a rural or in an urban
setting is a treatment effect modifier. We present the estimated conditional treatment effect
curves for rural hospitals and for the urban hospitals in Figure 6 (dashed green for the rural
hospitals and dotted blue for the urban hospitals). We observe that for the hospitals in urban
areas, the pattern of the effect curve has a shape that is close to concave and is similar to the
pattern in the overall average treatment effect curve: after average nursing hours exceeds 10,
increasing the average nursing hour results in a decrease in the probability of the readmission

FIG. 6. Estimated treatment effect of average nursing hours on probability of readmission penalty.
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penalty. The increasing trend of the curve up to 8 average nursing hours seems to be counter-
intuitive, but it turns out that there are not many hospitals in that range of the data and thus
the left tail behavior is likely an artifact due to low sample size in that region. On the other
hand, the effect curve for rural hospitals is wavy and does not suggest a clear pattern.

We first apply our main test separately to each of the two groups of hospitals to see whether
the two individual treatment effect curves are constant or not. We obtain a p-value of 0.28
for the group of rural hospitals and a p-value of approximately 0 for the urban hospitals.
This analysis suggests that the conditional treatment curve for the rural hospitals is not sig-
nificantly different from constant, so the wavy pattern we see in the estimated curve is likely
due to randomness. Next we apply the extended test procedure and obtain a p-value of 0.007,
which indicates a significant difference between the two conditional treatment curves. Again,
these interpretations require that we have included all important confounders in our analysis.
It is somewhat surprising that in this dataset the rural hospitals show no significant effect
of nurse staffing on readmission penalty. It is possible that hospital occupancy rates, case
mix, financial stability and differing abilities to recruit and retain nurses are important for
understanding the effect of nurse staffing on hospital performance, either as confounders or
as treatment effect modifiers.
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SUPPLEMENTARY MATERIAL

Supplement: Proofs and technical details (DOI: 10.1214/24-AOS2405SUPP; .pdf). In
the supplement, we provide proofs and technical details that were omitted from the main
paper.
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