2024 IEEE 15th International Green and Sustainable Computing Conference (IGSC) | 979-8-3315-0786-2/24/$31.00 ©2024 IEEE | DOL: 10.1109/IGSC64514.2024.00015

2024 TEEE 15th International Green and Sustainable Computing Conference (IGSC)

A Framework for SLO, Carbon, and Wastewater-Aware
Sustainable FaaS Cloud Platform Management

Sirui Qi, Hayden Moore
Colorado State University
Fort Collins, USA
{alex.qi, hayden.moore}@colostate.edu

Abstract— Function-as-a-Service (FaaS) is a growing cloud
computing paradigm that is expected to reduce the user cost of
service over traditional serverful approaches. However, the
environmental impact of FaaS has not received much attention. We
investigate FaaS scheduling and scaling from a sustainability
perspective in this work. We find that the service-level objectives
(SLOs) of FaaS and carbon emissions conflict with each other. We
also find that SLO-focused FaaS scheduling can exacerbate water
use in a datacenter. We propose a novel sustainability-focused
FaaS scheduling and scaling framework to co-optimize SLO
performance, carbon emissions, and wastewater generation.

Keywords—serverless computing, container autoscaling and
scheduling, service level objectives, carbon emissions, wastewater

1. INTRODUCTION

Function-as-a-Service (FaaS) is a fast growing model of cloud
computing with many benefits over traditional serverful approaches. In
FaaS, developers create applications as a set of functions that are
packaged in containers for deployment in cloud platforms. FaaS relieves
developers from the burden of managing servers, scaling, logging and
fault handling, which are now handled by the cloud provider. Several
commercial FaaS services have emerged, including AWS Lambda and
Google Cloud Functions. The fine granularity of function execution
enables lower costs for developers who only pay when a function is
executed. But unlike virtual machines (VMs) in serverful approaches,
cloud providers now need to more carefully schedule many more finer
granularity containers to execute functions while meeting their service
level objectives (SLOs) and scale up containers to meet request spikes.
However, current estimates indicate that in cloud datacenters, about 50%
of energy is used by idle resources, highlighting the inadequate
management of these platforms [1].

Beyond improving SLO performance guarantees, there is also
concern about the environmental impact of cloud datacenters. Currently
datacenters consume approximately 1-2% of global electricity demand
[2]. By 2030, this is projected to increase to between 3—13% [3]. Such a
massive increase in electricity usage will proportionally increase the
carbon footprint of these datacenters, as fossil fuels are still widely used
for energy production. Moreover, cloud datacenters also consume
significant water for cooling and as part of their energy generation
footprint. Currently datacenters consume 626 billion liters of water a
year in the United States [4] and water scarcity is becoming an
increasing concern globally (about 30% of cities globally with a
population above a million experience yearly water scarcity [5]). As
FaaS grows in popularity, there is an urgent need to focus on making
FaaS cloud datacenter platforms more carbon and water efficient.

Several efforts in recent years have focused on improving the energy
efficiency of FaaS. Much of the focus has been on reducing the energy
usage of FaaS cloud platforms [6]. But energy usage does not directly
correlate to carbon or water emissions [2]. A recent approach proposed
a carbon-aware FaaS scheduler [1], which exploits geo-spatial
differences in carbon intensity to migrate FaaS requests to greener
locations. However, significant SLO violations can occur due to the high
latency associated with moving functions between datacenters.

In this paper, we present the first framework that simultaneously co-
optimizes function SLOs, operational carbon, and wastewater
generation in Faa$S cloud datacenter environments. We propose a novel
multi-objective optimization framework and demonstrate improvements
over the state-of-the-art FaaS scheduling frameworks.

979-8-3315-0786-2/24/$31.00 ©2024 IEEE
DOI 10.1109/1GSC64514.2024.00015

Ninad Hogade, Dejan Milojicic, Cullen Bash
Hewlett Packard Labs
Milpitas, USA
{ninad.hogade, dejan.milojicic, cullen.bash}@hpe.com

35

Sudeep Pasricha
Colorado State University
Fort Collins, USA
sudeep@colostate.edu

II. SUSTAINABLE FAAS MANAGEMENT FRAMEWORK OVERVIEW

We focus on the problem of making scheduling (mapping containers
to compute nodes) and autoscaling (provisioning compute cores and
memory to each container) decisions for containers that execute
incoming functions at a FaaS cloud datacenter facility. The decisions are
made at the start of a developer defined epoch, based on the currently
pending functions and predictions of functions projected to arrive during
the epoch. The functions can have different execution times and diverse
(SLO-based) deadlines. The goal of our framework is to co-optimize
function execution in this FaaS cloud, minimizing SLO violations,
carbon emissions, and wastewater generation at the same time.

Vs
R
searchs ?update unsearched
PuP3
¥

1 history {PaPs

-

add a container or
remove a container or
shuffle container locations

P

e‘xchange‘garﬁal
container distribution
between two points

~

A shared population between two models

3

) > d P
I PY Ps
Py .
o

Obijective 2

\
Fig. 1 Sustainable Faa$S cloud management framework overview

Fig. 1 shows an overview of the algorithmic approach used in our
proposed sustainable FaaS cloud management (SFCM). SFCM uses a
randomized population for starting points. Each starting point p
represents a unique container scheduling and autoscaling plan in the
population. The scheduling plan determines the number of containers
per function ID (type) and the number of requests allocated to each
container, while the autoscaling plan determines the size of each
container (number of cores, memory). It is possible to map multiple
containers to the same server node to improve resource utilization.

The framework consists of three main components: search history,
local search heuristic model, and a global evolutionary algorithm (EA)
model. Fig. 1 illustrates a simplified example with 5 points in the
population (i.e. 5 valid solutions) and 2 objectives to optimize. The local
search model uses a heuristic that attempts to 1) add containers, 2)
remove containers, or 3) shuffle current container locations of a random
function ID to find neighboring points in the search (solution) space. If
the neighboring point is better (in terms of a weighted sum of the
metrics) than the starting point, it will replace the starting point and
continue with local searching. After local search, the searched points
(p1,p5 in the figure) are passed to the EA model to combine with
unsearched point p;, ps to generate offsprings p3, py, which can replace
any dominated points p,,p, in the population. The EA model uses
evolutionary search techniques to evolve the population of solutions,
with help from the local search model. The search history component
(see Fig. 1) records the update frequency of each point (solution in the
search space) considered by the local search model. It helps the local
search model pick search starting points with the highest update
frequency. Meanwhile, the EA model resets the search history back to
the default value of corresponding starting points if replaced by
offsprings. In this manner, the search history boosts local search
performance during design space exploration and works with EA to
jump out of local optima. The co-operation between local search and EA
helps explore the complex design space of FaaS scheduling and scaling
to meet the dynamic needs of function execution in FaaS cloud contexts.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on August 19,2025 at 13:57:16 UTC from IEEE Xplore. Restrictions apply.

III. FAAS WORKLOAD AND MODELING ASSUMPTIONS

To evaluate our framework, we consider a two-week serverless
function production trace from Microsoft’s Azure service [7]. Based on
their sanitized original traces, we derived our serverless function traces
with 424 unique serverless function IDs, each of which represents a
unique execution functionality and runtime. A container can process
multiple requests from the same function ID in parallel but may require
larger CPU resource allocations. Meanwhile, when a container starts up,
shuts down, or stays idle, it always introduces resource usage and delays
in the cluster, which are modeled as configurable variables in the
experiment, derived from a real FaaS cluster system. The number of
function IDs in each epoch varies from 13 to 62, with a runtime
distribution where nearly 90% of functions execute for less than 30
seconds. Each function has an SLO-based deadline, which if missed,
results in an SLO violation.

We carefully model the carbon emissions and wastewater generation
based on the models in [8], for our FaaS cloud datacenter cluster. The
carbon emissions of a cluster are based on the total energy consumption
and water usage. This is because during the processes of 1) electricity
generation, 2) potable water production, and 3) wastewater treatment,
“dirty” energy sources are utilized and carbon dioxide is released into
the atmosphere. The carbon emissions of a cluster are also impacted by
real-time factors such as cooling efficiency, carbon intensity of
electricity, etc. Meanwhile, a large amount of water is consumed in the
cooling units of datacenters to transfer the heat from a compute room to
open space through water cycling and evaporation. Cycling water needs
to be replaced regularly and evaporated water is directly released into
the air. If there are thermal hotspots in the datacenter, more cooling
energy is expended. We consider all of these effects when modeling
carbon emissions and wastewater generation in our FaaS cloud cluster.

IV. EXPERIMENTAL RESULTS

We consider a 50 node FaaS cluster, with each node consisting of
128 cores (2 EPYC 7713 CPUs with 64-cores each) and 256 GB RAM.
We select two state-of-the-art FaaS management frameworks to
compare with our proposed (SFCM) framework. The first work
(SCORE) utilizes a scoring system to schedule and scale containers and
improves on the default Kubernetes scheduling algorithm [9]. The
second work (HYBRID) proposes a hybrid method which utilizes both
non-stopping virtual machines for long-running functions and short-
lived containers for short-running functions [10]. All three frameworks
are adapted to make decisions every 15 minutes (epoch length) for
different request intensity and functions IDs from the Azure function
trace, discussed in the previous section. Both the container locations
and sizing (scaling) decisions are determined by frameworks for each
function ID in each epoch.

SFCM

L] ® Score

1.4

® Hybrid

1.4

1.2 4 L4

s
N}
.

o

Iy
o
L

1.0 1

Normalized Carbon
Normalized Water

o
®
L

0.8

0.6 1 Ns,
0.5 1.0 1.5 2.0
Normalized SLO Violation Rate

B
061 e,
0.5 1.0 1.5 2.0
Normalized SLO Violation Rate

Fig. 2. Pareto front of our multi-objective framework vs. [9], [10]

First, we illustrate the generated solutions from the two state-of-
the-art FaaS scheduling frameworks SCORE [9] and HYBRID [10]
along with solutions generated by our multi-objective framework
SFCM in one epoch, in Fig. 2 (with the HYBRID approach’s objective
values as normalization baseline). Instead of showing the 3-objective
Pareto front (carbon, water, SLO) which is difficult to visualize in 3D,
we show two simpler plots: a 2D Pareto front of carbon emission and
SLO violations on the left, and a 2D Pareto front of water usage and
SLO violation rate on the right. From Fig. 2, we can clearly see that
SFCM provides a diverse solution set unlike SCORE and HYBRID.

36

Furthermore, most solutions from SFCM dominate solutions from the
two state-of-the-art frameworks.

Lastly, Fig. 3 shows results aggregated over an 8-hour interval. We
show results for four variants of our SFCM framework, where we pick
solutions that optimize SLO (SFCM-SLO), carbon (SFCM-Carbon),
water (SCFM-Water), and a weighted sum of the 3 metrics (SFCM-
Balance). 1t can be observed that SFCM-SLO, SFCM-Carbon, and
SFCM-Water provide up to 22%, 35%, and 37% reduction in
corresponding objectives compared to the best state-of-the-art
framework (SCORE). SFCM-Balance attempts to co-optimize across
all three objectives. It dominates the HYBRID framework, with 45%,
25%, and 26% lower SLO violation rate, carbon emissions, and water
usage. Compared with SCORE, SFCM-Balance is able to reduce
carbon and water use by 14% and 20% respectively, while only
compromising <1% SLO violation rate.

mmE SFCM-SLO
s SFCM-Carbon

=N SFCM-Water
mmm SFCM-Balance

. Score
s Hybrid (Baseline)

Normalized Carbon

02

Normalized Water

Fig. 3. SLO violation rate (%), carbon usage, and wastewater
generation results for the proposed SFCM framework vs [9], [10]

V. CONCLUSION

In this paper, we studied the problem of sustainable FaaS container
scheduling and autoscaling in a single cloud datacenter to
simultaneously minimize SLO violation rate, carbon emissions, and
wastewater generation. We developed a novel multi-objective
optimization framework (SFCM) for this problem. Our experimental
results show that SFCM provides a diverse set of solutions, many of
which dominate the solutions produced by state-of-the-art FaaS
scheduling frameworks. In an 8-hour cumulative test on a FaaS cloud
cluster, our framework reduces SLO violation rate, carbon emissions,
and water usage by up to 45%, 25%, and 26% correspondingly
compared to state-of-the-art FaaS scheduling frameworks.

REFERENCES
M. Chadha, et al., "GreenCourier: Carbon-Aware Scheduling for Serverless
Functions," ACM WoSC, Bologna, 2023.
M.A. B. Siddik, et al., "The environmental footprint of data centers in the
United States," Environmental Research Letters, vol. 16, no. 6, 2021.
A. Katal, et al., "Energy efficiency in cloud computing data centers: a
survey on software technologies," Cluster Computing, 2022.
D. Mytton, "Data centre water consumption," npj Clean Water, 2021.
C. He, et al., "Future global urban water scarcity and potential solutions,"
Nature communications, vol. 12, p. 4667, 2021.
S. Rastegar, et al., "EneX: An Energy-Aware Execution Scheduler for
Serverless Computing," IEEE TII, vol. 20, no. 2, pp. 2342-2353, 2024.
M. Shahrad, et al., "Serverless in the wild: characterizing and optimizing
the serverless workload at a large cloud provider," USENIX ATC, 2020.
S Qi, D. Milojicic, C. Bash, and S. Pasricha, "SHIELD: Sustainable hybrid
evolutionary learning framework for carbon, wastewater, and energy-aware
data center management," ACM IGSC, 2023.
Kubernetes, [Online]. Available: https://kubernetes.io/ [Accessed 2024].
K. Sindhya, et al., "A hybrid framework for evolutionary multi-objective
optimization," IEEE TEVC, vol. 17, no. 4, 2012.
J. Gao, et al, "Smartly Handling Renewable Energy Instability in
Supporting A Cloud Datacenter," IEEE IPDPS, New Orleans, 2020.
M. Khalil, et al., "Energy cost minimization for sustainable cloud
computing using option pricing," Sustainable Cities and Society, 2020.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on August 19,2025 at 13:57:16 UTC from IEEE Xplore. Restrictions apply.

