
A Framework for SLO, Carbon, and Wastewater-Aware 
Sustainable FaaS Cloud Platform Management 

Abstract— Function-as-a-Service (FaaS) is a growing cloud 
computing paradigm that is expected to reduce the user cost of 
service over traditional serverful approaches. However, the 
environmental impact of FaaS has not received much attention. We 
investigate FaaS scheduling and scaling from a sustainability 
perspective in this work. We find that the service-level objectives 
(SLOs) of FaaS and carbon emissions conflict with each other. We 
also find that SLO-focused FaaS scheduling can exacerbate water 
use in a datacenter. We propose a novel sustainability-focused 
FaaS scheduling and scaling framework to co-optimize SLO 
performance, carbon emissions, and wastewater generation. 
Keywords—serverless computing, container autoscaling and 
scheduling, service level objectives, carbon emissions, wastewater 

I. INTRODUCTION

Function-as-a-Service (FaaS) is a fast growing model of cloud 
computing with many benefits over traditional serverful approaches. In 
FaaS, developers create applications as a set of functions that are 
packaged in containers for deployment in cloud platforms. FaaS relieves 
developers from the burden of managing servers, scaling, logging and 
fault handling, which are now handled by the cloud provider. Several 
commercial FaaS services have emerged, including AWS Lambda  and 
Google Cloud Functions. The fine granularity of function execution 
enables lower costs for developers who only pay when a function is 
executed. But unlike virtual machines (VMs) in serverful approaches, 
cloud providers now need to more carefully schedule many more finer 
granularity containers to execute functions while meeting their service 
level objectives (SLOs) and scale up containers to meet request spikes. 
However, current estimates indicate that in cloud datacenters, about 50% 
of energy is used by idle resources, highlighting the inadequate 
management of these platforms [1].  

Beyond improving SLO performance guarantees, there is also 
concern about the environmental impact of cloud datacenters. Currently 
datacenters consume approximately 1–2% of global electricity demand 
[2]. By 2030, this is projected to increase to between 3–13% [3]. Such a 
massive increase in electricity usage will proportionally increase the 
carbon footprint of these datacenters, as fossil fuels are still widely used 
for energy production. Moreover, cloud datacenters also consume 
significant water for cooling and as part of their energy generation 
footprint. Currently datacenters consume 626 billion liters of water a 
year in the United States [4] and water scarcity is becoming an 
increasing concern globally (about 30% of cities globally with a 
population above a million experience yearly water scarcity [5]). As 
FaaS grows in popularity, there is an urgent need to focus on making 
FaaS cloud datacenter platforms more carbon and water efficient. 

Several efforts in recent years have focused on improving the energy 
efficiency of FaaS. Much of the focus has been on reducing the energy 
usage of FaaS cloud platforms [6]. But energy usage does not directly 
correlate to carbon or water emissions [2]. A recent approach proposed 
a carbon-aware FaaS scheduler [1], which exploits geo-spatial 
differences in carbon intensity to migrate FaaS requests to greener 
locations. However, significant SLO violations can occur due to the high 
latency associated with moving functions between datacenters.  

In this paper, we present the first framework that simultaneously co-
optimizes function SLOs, operational carbon, and wastewater 
generation in FaaS cloud datacenter environments. We propose a novel 
multi-objective optimization framework and demonstrate improvements 
over the state-of-the-art FaaS scheduling frameworks. 

II. SUSTAINABLE FAAS MANAGEMENT FRAMEWORK OVERVIEW

We focus on the problem of making scheduling (mapping containers
to compute nodes) and autoscaling (provisioning compute cores and 
memory to each container) decisions for containers that execute 
incoming functions at a FaaS cloud datacenter facility. The decisions are 
made at the start of a developer defined epoch, based on the currently 
pending functions and predictions of functions projected to arrive during 
the epoch. The functions can have different execution times and diverse 
(SLO-based) deadlines. The goal of our framework is to co-optimize 
function execution in this FaaS cloud, minimizing SLO violations, 
carbon emissions, and wastewater generation at the same time.  

 

Fig. 1 Sustainable FaaS cloud management framework overview 
Fig. 1 shows an overview of the algorithmic approach used in our 

proposed sustainable FaaS cloud management (SFCM). SFCM uses a 
randomized population for starting points. Each starting point  
represents a unique container scheduling and autoscaling plan in the 
population. The scheduling plan determines the number of containers 
per function ID (type) and the number of requests allocated to each 
container, while the autoscaling plan determines the size of each 
container (number of cores, memory). It is possible to map multiple 
containers to the same server node to improve resource utilization.  

The framework consists of three main components: search history, 
local search heuristic model, and a global evolutionary algorithm (EA) 
model. Fig. 1 illustrates a simplified example with 5 points in the 
population (i.e. 5 valid solutions) and 2 objectives to optimize. The local 
search model uses a heuristic that attempts to 1) add containers, 2) 
remove containers, or 3) shuffle current container locations of a random 
function ID to find neighboring points in the search (solution) space. If 
the neighboring point is better (in terms of a weighted sum of the 
metrics) than the starting point, it will replace the starting point and 
continue with local searching. After local search, the searched points 
(  in the figure) are passed to the EA model to combine with 
unsearched point  to generate offsprings , which can replace 
any dominated points  in the population. The EA model uses 
evolutionary search techniques to evolve the population of solutions, 
with help from the local search model. The search history component 
(see Fig. 1) records the update frequency of each point (solution in the 
search space) considered by the local search model. It helps the local 
search model pick search starting points with the highest update 
frequency. Meanwhile, the EA model resets the search history back to 
the default value of corresponding starting points if replaced by 
offsprings. In this manner, the search history boosts local search 
performance during design space exploration and works with EA to 
jump out of local optima. The co-operation between local search and EA 
helps explore the complex design space of FaaS scheduling and scaling 
to meet the dynamic needs of function execution in FaaS cloud contexts.  
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III. FAAS WORKLOAD AND MODELING ASSUMPTIONS

To evaluate our framework, we consider a two-week serverless 
function production trace from Microsoft’s Azure service [7]. Based on 
their sanitized original traces, we derived our serverless function traces 
with 424 unique serverless function IDs, each of which represents a 
unique execution functionality and runtime. A container can process 
multiple requests from the same function ID in parallel but may require 
larger CPU resource allocations. Meanwhile, when a container starts up, 
shuts down, or stays idle, it always introduces resource usage and delays 
in the cluster, which are modeled as configurable variables in the 
experiment, derived from a real FaaS cluster system. The number of 
function IDs in each epoch varies from 13 to 62, with a runtime 
distribution where nearly 90% of functions execute for less than 30 
seconds. Each function has an SLO-based deadline, which if missed, 
results in an SLO violation.  
 We carefully model the carbon emissions and wastewater generation 
based on the models in [8], for our FaaS cloud datacenter cluster. The 
carbon emissions of a cluster are based on the total energy consumption 
and water usage. This is because during the processes of 1) electricity 
generation, 2) potable water production, and 3) wastewater treatment, 
“dirty” energy sources are utilized and carbon dioxide is released into 
the atmosphere. The carbon emissions of a cluster are also impacted by 
real-time factors such as cooling efficiency, carbon intensity of 
electricity, etc. Meanwhile, a large amount of water is consumed in the 
cooling units of datacenters to transfer the heat from a compute room to 
open space through water cycling and evaporation. Cycling water needs 
to be replaced regularly and evaporated water is directly released into 
the air. If there are thermal hotspots in the datacenter, more cooling 
energy is expended. We consider all of these effects when modeling 
carbon emissions and wastewater generation in our FaaS cloud cluster.   

IV. EXPERIMENTAL RESULTS

We consider a 50 node FaaS cluster, with each node consisting of 
128 cores (2 EPYC 7713 CPUs with 64-cores each) and 256 GB RAM. 
We select two state-of-the-art FaaS management frameworks to 
compare with our proposed (SFCM) framework. The first work 
(SCORE) utilizes a scoring system to schedule and scale containers and 
improves on the default Kubernetes scheduling algorithm [9]. The 
second work (HYBRID) proposes a hybrid method which utilizes both 
non-stopping virtual machines for long-running functions and short-
lived containers for short-running functions [10]. All three frameworks 
are adapted to make decisions every 15 minutes (epoch length) for 
different request intensity and functions IDs from the Azure function 
trace, discussed in the previous section. Both the container locations 
and sizing (scaling) decisions are determined by frameworks for each 
function ID in each epoch.  

Fig. 2. Pareto front of our multi-objective framework vs. [9], [10] 

First, we illustrate the generated solutions from the two state-of-
the-art FaaS scheduling frameworks SCORE [9] and HYBRID [10] 
along with solutions generated by our multi-objective framework 
SFCM in one epoch, in Fig. 2 (with the HYBRID approach’s objective 
values as normalization baseline). Instead of showing the 3-objective 
Pareto front (carbon, water, SLO) which is difficult to visualize in 3D, 
we show two simpler plots: a 2D Pareto front of carbon emission and 
SLO violations on the left, and a 2D Pareto front of water usage and 
SLO violation rate on the right. From Fig. 2, we can clearly see that 
SFCM provides a diverse solution set unlike SCORE and HYBRID. 

Furthermore, most solutions from SFCM dominate solutions from the 
two state-of-the-art frameworks.  

Lastly, Fig. 3 shows results aggregated over an 8-hour interval. We 
show results for four variants of our SFCM framework, where we pick 
solutions that optimize SLO (SFCM-SLO), carbon (SFCM-Carbon), 
water (SCFM-Water), and a weighted sum of the 3 metrics (SFCM-
Balance). It can be observed that SFCM-SLO, SFCM-Carbon, and 
SFCM-Water provide up to 22%, 35%, and 37% reduction in 
corresponding objectives compared to the best state-of-the-art 
framework (SCORE). SFCM-Balance attempts to co-optimize across 
all three objectives. It dominates the HYBRID framework, with 45%, 
25%, and 26% lower SLO violation rate, carbon emissions, and water 
usage. Compared with SCORE, SFCM-Balance is able to reduce 
carbon and water use by 14% and 20% respectively, while only 
compromising <1% SLO violation rate.  
 

Fig. 3. SLO violation rate (%), carbon usage, and wastewater 
generation results for the proposed SFCM framework vs [9], [10]

V. CONCLUSION
In this paper, we studied the problem of sustainable FaaS container 

scheduling and autoscaling in a single cloud datacenter to 
simultaneously minimize SLO violation rate, carbon emissions, and 
wastewater generation. We developed a novel multi-objective 
optimization framework (SFCM) for this problem. Our experimental 
results show that SFCM provides a diverse set of solutions, many of 
which dominate the solutions produced by state-of-the-art FaaS 
scheduling frameworks. In an 8-hour cumulative test on a FaaS cloud 
cluster, our framework reduces SLO violation rate, carbon emissions, 
and water usage by up to 45%, 25%, and 26% correspondingly 
compared to state-of-the-art FaaS scheduling frameworks. 
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