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ABSTRACT The opportunistic human pathogen Pseudomonas aeruginosa is naturally
infected by a large class of temperate, transposable, Mu-like phages. We examined the
genotypic and phenotypic diversity of P. aeruginosa PA14 lysogen populations as they
resolve clustered regularly interspaced short palindromic repeat (CRISPR) autoimmunity,
mediated by an imperfect CRISPR match to the Mu-like DMS3 prophage. After 12 days
of evolution, we measured a decrease in spontaneous induction in both exponential
and stationary phase growth. Co-existing variation in spontaneous induction rates in
the exponential phase depended on the way the coexisting strains resolved genetic
conflict. Multiple mutational modes to resolve genetic conflict between host and phage
resulted in coexistence in evolved populations of single lysogens that maintained CRISPR
immunity to other phages and polylysogens that lost immunity completely. This work
highlights a new dimension of the role of lysogenic phages in the evolution of their
hosts.

IMPORTANCE The chronic opportunistic multi-drug-resistant pathogen Pseudomonas
aeruginosa is persistently infected by temperate phages. We assess the contribution
of temperate phage infection to the evolution of the clinically relevant strain UCBPP-

PA14. We found that a low level of clustered regularly interspaced short palindromic

repeat (CRISPR)-mediated self-targeting resulted in polylysogeny evolution and large

genome rearrangements in lysogens; we also found extensive diversification in CRISPR
spacers and cas genes. These genomic modifications resulted in decreased spontaneous
induction in both exponential and stationary phase growth, increasing lysogen fitness.

This work shows the importance of considering latent phage infection in characterizing

the evolution of bacterial populations.

KEYWORDS lysogen, spontaneous induction, evolution, CRISPR, transposable phages
ystic fibrosis (CF) is a genetic disorder that makes patients vulnerable to respiratory
infections by environmental opportunistic pathogens like Pseudomonas aeruginosa.

Pseudomonas aeruginosa is a common human pathogen whose increase in multi-drug

antibiotic resistance has made it the focus of targeted phage therapy (1). In chronic

Pseudomonas infections of CF patients, it is common to find that all isolates track their

origin to a single ancestral genotype (2-8). Diversity of P. aeruginosa strains emerges

from this ancestor through de novo mutations generated by mutation and hypermuta-

tion genotypes (9), recombination (9, 10), and large deletions (11-13).

Pseudomonas aeruginosa is commonly infected by latent bacterial viruses (phages)
when colonizing CF patients (3, 9, 14-19). Canonically, temperate and chronic phages
can act as both sources of genetic novelty (20) and as potential assassins that can be
induced to kill their hosts (21, 22). In the lung environment, the presence of antibiotics
and reactive oxygen species (23-25) may act as inducing agents for phage (21, 26—
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29). Bacterial lysis through phage induction is hypothesized to help control bacterial
growth in the lung (21) and may potentially be used in synergy with antibiotics (30, 31).
Additionally, lysogeny has been shown to co-occur with host genome rearrangements
in chronically infecting Staphylococcus aureus (32-35) and Streptococcus pyogenes (36).
However, if and how lysogeny alters the evolution of the host genome remains unclear.

Mu-like transposable phages are a diverse family of phages that infect an equally
diverse range of bacteria (37). Upon infection of the host, Mu-like phages integrate into
the host chromosome through a conservative (cut-and-paste) transposition step that
occurs with low sequence preference (38-40). Lytic replication occurs via replicative
(copy-and-paste) transposition around the genome (41), which occurs 50-100 times
and terminates in headful packaging into the virion. In lysogeny, which is established
in approximately 10% of infections, a low-specificity insertion can increase the varia-
tion available to natural selection in P. aeruginosa populations through loss-of-function
mutations (42-44). P. aeruginosa lysogens have previously been found to have high
viral titers in culture (26, 45). Due to the nature of the chemistry that governs the
transposition reaction, these insertions may also cause structural rearrangements such as
deletions (46).

CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-
associated genes) is a bacterial and archaeal adaptive immune system that incorporates
foreign DNA fragments into an array as a spacer and subsequently targets any piece of
invading DNA that is complementary to the spacer (the protospacer) (47, 48). Mu-like
temperate phages are the most commonly targeted phages by CRISPR-Cas in Pseudo-
monas aeruginosa (49). Phage DMS3, a member of this group, was recovered from a
P. aeruginosa CF isolate and infects the type strain UCBPP-PA14 (14). DMS3 lysogens
inhibit quorum sensing and pilus formation (50). PA14 contains a Type 1-F CRISPR
system with a partial spacer match to DMS3 (51). This spacer has five mismatches
to the phage protospacer, which is not sufficient to mediate immunity to the phage
but leads to genetic conflict in DMS3 lysogens. This degenerate protospacer-spacer
mismatch between DMS3 and PA14 targets the PA14 chromosome, causing enough DNA
damage to stimulate the SOS response, which leads to the expression of pyocin genes,
cell death, and limitation of biofilm formation (52). Lysogens arising from PA14 cultures
infected with free DMS3 virions evolved to have a lower spontaneous induction in the
stationary phase and lost their CRISPR systems over a 7-day evolutionary period. This
was suggested to resolve genetic conflict caused by CRISPR self-targeting (immunopa-
thology), a phenomenon that is predicted to be common in bacteria with Type 1 CRISPR
systems and temperate phages (44).

Here, we assess the contribution of CRISPR-mediated genetic conflict between host
and temperate phage to the evolution of Pseudomonas by analyzing evolved lysogen
and non-lysogen populations. We show that selection to resolve genetic conflict alters
the evolutionary landscape of lysogen populations and that spontaneous induction rates
correlate with the type of conflict resolution. Experimental work combined with genomic
analysis demonstrates that transposable phages are a major source of variation beyond
mutation that impacts the evolutionary direction of P. aeruginosa lysogens.

MATERIALS AND METHODS
Experimental evolution

To establish the contribution of phages to host genome evolution, we evolved the
uninfected laboratory strain UCBPP-PA14 (53) and the established lysogen Lys2 (51) for
12 days by serial transfer. Our strains are listed in Table S1. Lys2 is derived from PA14 and
contains DMS3, which mediated a ~20 kb host deletion from 806,169 to 826,108 bp on
our PA14 reference chromosome, and a single A < G nonsynonymous point mutation at
position 4,755,306 in a hypothetical protein (deleted genes are listed in Table S2). For
each strain, we randomly selected three colonies and grew up independent overnight
cultures in LB (10 g tryptone, 5 g yeast extract, and 5 g sodium chloride per liter of water).
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We subcultured the cells and normalized them to an ODggg of 0.2 in 25 mL microcosms
in three parallel 250 mL flasks. We serially passaged triplicate cultures with daily 1:100
transfers for 12 days, with shaking and at 37°C, for approximately 72 bacterial genera-
tions. At the end of the experiment, we colony-purified six colonies isolated from each
replicate and six colonies from the Lys2 ancestor stock for further analysis. Six isolates
from each uninfected population were also sequenced, and the data are presented in Fig.
ST.

One-step growth curves

In order to calculate the burst size of DMS3, we performed one-step growth curves (54).
Overnight, stationary phase PA14 cultures were diluted 1:100 and grown in LB until they
reached an OD of 0.5. Phage was added to these cultures at a 1:10 volume ratio, for a
final MOI of 0.01, mixed well, and incubated at 37°C for 5 minutes. In order to calculate
adsorption, a fraction of the sample volume was immediately spun down for 5 minutes
at 30,000 rpm, and the supernatant was stored with 10% (vol/vol) chloroform to quantify
the remaining free phage. To begin the one-step growth curve, the remainder of the
samples were added to a pre-warmed medium at a 1:100 ratio to stop adsorption and
grown on a roller drum at 37°C for the next 2.5 hours. Samples were taken every 10
minutes and mixed with 10% (vol/vol) of chloroform for later quantification of PFUs.

We calculated burst size with the following equation: the total phage produced
(the difference between the average PFUs before and after the burst) was divided
by the number of cells that were infected (estimated by the number of adsorbed
phages multiplied by the estimated number of cells that proceeded through lysis). Our
measurements of an 8% lysogenization frequency, estimated by spot-on-lawn assay,
corresponded to measures in reference (55) (data not shown).

_ DD
ﬁ_ci*(l—l).

Here, B is burst size; p; and pq are the second and first plateaus, respectively; ¢; is the
number of infected cells; and [ is the lysogenization frequency. The burst size of DMS3
is 41.8 £ 8.4 phages per lysed cell (Fig. S2). All PFUs were enumerated by spotting the
phage-containing fraction on 0.5% double agar overlay plates.

Spontaneous induction measurements

Because multiple inputs could contribute to a higher raw PFU value in the stationary
phase and because the stationary phase itself could be an inducing condition for
some viruses (including phage Mu) (56), we chose to measure spontaneous induction
separately in both exponential and stationary phase, which necessitated the normaliza-
tion of PFU values with the CFU values. This was also a desirable method for controlling
whether increased growth rate was responsible for increased PFU values.

Growth curves were started from overnight cultures of replicate purified isolates.
We washed cultures three times by resuspension in fresh LB media, normalized the
OD to 0.2, and diluted them 1,000-fold. Time points were taken at 0 and 2-7 hours
to capture exponential phase growth and plated for both CFUs and PFUs. Samples
were incubated at 37°C on a roller drum. We measured spontaneous induction (q) by
taking the difference in the number of viral particles released by cells growing in the
exponential phase and normalizing by the estimated burst size, the average growth of
the culture, and the total time the culture grew.

AV

1= Bxarx0)’

Here, q is spontaneous induction and has units of burst cells per time; A V'is the total
increase in virion particles; 8 is the burst size; A t is the change in time; C is the average
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amount of cells in the culture. To account for exponential growth, all calculations were
based on the linear regression of the logyg-transformed A V and C values.

We also calculated spontaneous induction based on calculations in reference (57).
This paper approximated spontaneous induction at each time point with this formula:

|4
1=
the average amount of CFUs at that time. These methods produced qualitatively similar
results (Fig. S3).

To measure induction in the stationary phase, we began growth curves in the same
way as the exponential phase measurements. Time points were taken at 0, 10, 12, 15,
and 18 hours and plated for both CFUs and PFUs. To calculate the rate of spontaneous
induction, we used the same formula as above, except with un-regressed logged values.

; here, V is the number of virion particles at that time; 8 is the burst size; and C'is

Genome sequencing

In order to create a viral reference, DMS3 DNA was extracted from filtered Lys2 overnight
supernatant using the Phage DNA Isolation Kit (Norgen Biotek Corp, Cat #: 46800)
following the manufacturer’s instructions. Libraries were prepared with a Biomek 4000
liquid handler (Beckman-Coulter). We quantitated libraries with a Qubit fluorometer (Life
Technologies Corporation, REF #: Q32866). Libraries were pooled and submitted for 2 x
250 paired-end sequencing by the Roy J. Carver Biotechnology Center at the University
of lllinois Urbana-Champaign with an Illumina NovaSeq 6000. We received ~3.8 million
reads with about 100x coverage.

We inoculated evolved isolates and ancestral controls in 2 mL deep well plates in
LB and grew them overnight. We extracted gDNA with the Beckman-Coulter gDNA
extraction kit as above using the Nextera Flex Library Preparation Kit (Illumina). We
quantitated libraries with a Qubit fluorometer (Life Technologies Corporation, REF #:
Q32866). Libraries were pooled and submitted for 2 x 250 paired-end sequencing by
the Roy J. Carver Biotechnology Center at the University of lllinois Urbana-Champaign
with an lllumina NovaSeq 6000. We received an average of about 5 million reads per
genome. All raw reads are available on the NCBI database under BioProject number
PRINA1021667.

Genome analysis

We ran a custom QC pipeline on our raw FASTQ reads, available on Github (http://
www.github.com/igoh-illinois). Briefly, the lllumina adaptor sequences were trimmed
using TrimmomaticPE version 0. Read quality was checked with FastQC version 0.11.9
(options: --noextract -k 5 -f fastq). Reads were aligned using BWA-MEM (58) with default
options to a two-contig reference genome containing both our reference PA14 sequence
and our reference DMS3 sequence. To identify chromosomal mutations, we ran Breseq
(59) with default settings on the trimmed and quality-controlled reads. SAM files were
checked manually in both IGV version 2.12.3 (60) and Tablet version 1.21.02.08 (61).

To identify insertion sites of transposable phage, we ran a second, custom pipe-
line, available on Github (http://www.github.com/igoh-illinois). The pipeline identifies
insertion sites at nucleotide resolution by identifying reads that map to both the host
and viral chromosome (“split” reads). It further identifies insertion sites by finding reads
that have been split on either side of a 5-bp window, creating a small overlapping region
when mapped back to the host genome. This is the result of a 5-bp duplication, which is
characteristic of Mu and Mu-like phage transposition (62, 63).

While manually verifying the phage insertion sites in IGV, we found putative large
duplicated regions of the host chromosome. To verify these duplicated regions, we used
the depth command in Samtools (64) to find the number of reads that covered each
position in the genome and graphed this using RStudio (R version 4.3.1) (65). In order
to assess the protein content of deleted and duplicated regions, FASTA files of sequence
of the reference PA14 genome were given to the eggNOG-mapper-v2 pipeline (settings:
genomic data; default options) (66).
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We used the CRISPR Comparison Tool Kit (CCTK version 1.0.0) to identify and compare
CRISPR arrays of the lysogens (settings: crisprdiff; default options) (67).

Mitomycin C induction experiments

Single colonies of the strains of interest were inoculated in LB, grown overnight at
37°C on a roller drum, and subcultured until they reached an OD of 0.5. Cultures were
normalized, split, and incubated with or without 0.5 pg/uL mitomycin C for 3.5 hours,
after which CFUs and PFUs were enumerated.

Model information

We use a compartmental model based on a system of ordinary differential equations.
There are six lysogen compartments, each representing a lysogen characterized by a
distinct rate of spontaneous induction, but otherwise being identical. Lysogens are
induced at their associated rates and transition into the lytic state, which is followed by
phage production and bursting. The model is along the lines of the ones presented and
analyzed in our previous works (31, 68, 69). All lysogens are assumed to grow at the same
rate, and the total bacterial population grows logistically. The model equations read:

dL; o

=1
dI;

d_tl = =48I+ ql;
av,

3 = PoLi—uVi.

We have partially non-dimensionalized the model so that 1 time unit in the simula-
tions corresponds to about 50 minutes. The lysogeny growth rate is denoted by r, the
spontaneous induction rates by q;,i =1, ...,6, the rate of phage production by &, the
burst size is by 8, and the rate of viral degradation by u. The first two equations are
decoupled from the last one describing the phage (since we do not consider superinfec-
tions in this model). Therefore, the dynamics of the bacterial compartments resemble
those of generalized Lotka-Volterra competition.

Statistical measures

Data visualization and statistical analyses were performed in R version 4.3.1 (65) using
the packages tidyverse version 2.0.0 (70), car version 3.1-2 (71), rstatix version 0.7.2, and
emmeans version 1.8.6.

RESULTS

Evolution of a self-targeting lysogen results in decreased spontaneous
induction in exponential and stationary phases

After 12 days and ~72 generations of exponential growth in rich media, we found
that the spontaneous induction of DMS3 lysogens was significantly reduced compared
to ancestral isolates in the exponential phase (Fig. 1; ANOVA, F3¢g = 16.7, P < T1e-8).
Isolate induction rates within and between experimental replicates ranged from 0.1%
to 0.71% of the culture, while the induction rates of ancestral PA14 lysogen (Lys2)
isolates ranged from 0.38% to 1.1% of the culture (Fig. 1a). Significant differences were
robust to the use of other metrics to estimate spontaneous induction (57) (see Fig. S3).
Spontaneous induction was also significantly decreased in the stationary phase for all
evolved lysogens (Fig. S4; ANOVA, F3 109 = 86.98, P < 2.2e-16), although compared to
the exponential phase, induction was very reduced in stationary phase overall, indicating
that the majority of spontaneous induction takes place in the exponential phase in DMS3
lysogens.
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FIG 1 Experimental evolution results in lowered lysogen spontaneous induction. (a) Spontaneous induction was measured in the exponential phase in six

individual isolates from each of three evolved lysogen replicates (ev_pop_1, pink, ev_pop_2, blue, and ev_pop_3, light blue) and the ancestral strain Lys2

(anc_pop_2, gray). Points are the means of three technical replicates. Bars in the boxplots represent the median; crosses represent the means. Upper and lower

bounds of the box are the upper and lower interquartile ranges. Significance was tested with an ANOVA (F3 g = 23.27, P-value = 1.78e-10). Letters indicate

significance; groups with different letters have a P-value < 0.05; groups with the same or overlapping letters have a P-value of >0.05. (b) Bacterial growth curve

of all isolates through 18 hours, measured by CFU. (c) PFUs sampled through growth curve of all isolates (except the non-lysogenic WT PA14). In panels b and c,

stationary phase was measured in separate experiments, as indicated by the line breaks between 7 and 10 hours. Points represent the mean of three biological

replicates. Asterisks represent a significant difference between the ancestral and evolved populations. Significance was calculated with a Mann-Whitney U test

per time point.

Lysogen populations maintain diversity in CRISPR presence and function

Sequencing of lysogens from each population showed that lysogens evolved the CRISPR
locus through a combination of mutation and large deletions and other structural
variants (Table 1; Fig. 2). These mutations did not overlap with uninfected evolved
populations, which exhibited point mutations in flagellar and quorum sensing loci
(Fig. S1; Table S3), typical of other laboratory evolution experiments (72). Thirty-nine
percentage (7/18) of isolates mutated or deleted spacer 1 in the CRISPR2 array, which
contains the mismatched spacer that targets the integrated DMS3 (Fig. 2b; Fig. S5).
Two mutations occurred in parallel between two different replicate populations in
the evolved lysogen treatment: an A to G point mutation in the seed region of the
self-targeting spacer, and an exact deletion of the self-targeting spacer and its upstream
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TABLE 1 Description of mutations recovered in evolved lysogens

Group Sample ID Mutated region Description Due to Location on PA14-REF
phage chromosome

ev_popl ev_popl_1 CRISPR2 sp1-8 Deletion No 2,936,222-2,936,676

ev_popl ev_popl_1  tssK Type 6 secretion system baseplate gene; nonsynonymous No 94,370

ev_popl ev_popl_2 CRISPR2 sp1-4 Deletion No 2,936,462-2,936,675

ev_pop1 ev_popl1_3 A243,737 bp Includes CRISPR region Yes 2,835,111-3,078,848

ev_popl ev_popl_4 A 186,866 bp Includes CRISPR region Yes 2,839,227-3,026,093

ev_pop1 ev_popl_4 27,769 bp Duplicated region Yes 1,120,309-1,148,078

ev_popl ev_popl_4 cysT Sulfate transport protein; (CAG)4-3 No 329,528

ev_pop1 ev_popl1_5 CRISPR2 sp1 A < G mutation in the second nucleotide No 2,936,674

ev_popl ev_popl_6  CRISPR2 sp1 GAT < G deletion of first and second nucleotide No 2,936,673

ev_pop2 ev_pop2_1 A88,123 bp Includes CRISPR region Yes 2,921,860

ev_pop2 ev_pop2_2 cas8 Frameshift (predicted loss of C-term helical bundle region) No 2,929,846

ev_pop2 ev_pop2_3 A194,512bp Includes CRISPR region Yes 2,890,191-3,084,703

ev_pop2 ev_pop2_3 187,901 bp Duplicated region Yes 6,222,744-6,410,645

ev_pop2 ev_pop2_4  CRISPR2 sp1 Deletion No 2,936,643-2,936,675

ev_pop2 ev_pop2_5 CRISPR2sp1 A < G mutation in the second nucleotide No 2,936,674

ev_pop2 ev_pop2_6 A335331bp Includes CRISPR region Yes 2,811,042-3,146,373

ev_pop2 ev_pop2_6 244,019 bp Duplicated region Yes 876,284-1,120,303

ev_pop2 ev_pop2_6 Intergenic region (GCCAAQ)11-8 No 3,792,568

ev_pop3 ev_pop3_1 cas8 Frameshift (retention of first 57/435 aa) No 2,930,725

ev_pop3 ev_pop3_2 CRISPR2 sp1 Deletion No 2,936,644-2,936,675

ev_pop3 ev_pop3_3 cas’/ Frameshift (predicted loss of RNA-binding domain) No 2,927,776

ev_pop3 ev_pop3_4 A60,538bp Begins in cas3 gene and includes CRISPR2 array Yes 2,934,007-2,994,541

ev_pop3 ev_pop3_5 A34,249 bp Includes CRISPR region Yes 2,903,549-2,937,794

ev_pop3 ev_pop3_6 Casgene deletion Deletion of cas7 and cas5, partial deletion of cas6 and cas8 No 2,927,288-2,930,093

repeat (Fig. 2b; Fig. S6). Twenty-two percentage (4/18) of isolates had disruptions (three
independent frameshift mutations and a small deletion) within the cas genes cas7 and
cas8, which form part of the complex that mediates interference in P. aeruginosa (73). Of
these three frameshift mutations, one led to the predicted loss of the cas7 RNA-binding
domain, and two are predicted to interfere with the cas3 recruitment or interaction
domain of cas8 (Fig. 2b; Table 1). One strain was recovered with a 3-kb deletion in the cas
gene region that spans cas5 (also part of the interference complex) and cas7. While each
strain with mutations and indels in the CRISPR array likely no longer targets the DMS3
prophage, they maintain CRISPR function. We confirmed that the evolved lysogens did
not acquire new spacers (Fig. S6).

We observed that the remaining 44% (8/18) of evolved lysogen isolates carried
deletions of varying sizes; the smallest being a 3-kb deletion in the cas genes, and
the largest deletion, 335,331 bp, comprising about 5% of the PA14 chromosome. Seven
deletions were centered on the CRISPR2 array (Fig. 2c). These deletions ranged from
approximately 34 to 335 kb (mean = 163.3 = 100.3 kb). Deletions were independent
in each isolate, with no shared deletion boundaries even within the same culture (Fig.
2¢). Similarly, a previous study showed that PA14, when challenged with free DMS3
virions and subjected to a short-term evolution experiment, evolved genome dele-
tions encompassing the CRISPR region in the presence of self-targeting [see Extended
Data Table 1 in reference (44)]. Therefore, in the evolved lysogen populations, we
observed extensive coexistence between combinations of CRISPR spacer mutations and
large entire deletions of CRISPR, demonstrating the importance of phage infection in
determining distinct evolutionary trajectories in isolates in the same environment.
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FIG 2 Mutations in infected evolved strains are distinct from uninfected evolved strains. (a) Graph of mutations found in all infected evolved samples. (b)

Close-up of point mutations and small deletions in infected evolved strains. The majority are found in the self-targeting spacer 1 in the second CRISPR array.

Gray dashed lines indicate the location in the genes. (c) Close-up of large deletions in infected evolved strains. Gray dashed double lines indicate the boundaries

of the CRISPR-Cas region. In panels a-c, the y-axis indicates sample ID; x-axis indicates the position on the PA14 reference chromosome. Points represent point

mutations; triangles spanned by a segment represent deletions of the spanned region; squares spanned by a segment represent duplications of the spanned

region. White fill indicates a mutation that was caused by a virus.

Evolved lysogens with large deletions are polylysogens

While confirming that the evolved lysogens had retained the phage at its original
integration site (Materials and Methods), we found that the boundaries of the deletions
of the CRISPR regions were composed of reads that mapped to both the PA14 and DMS3
chromosomes (hereafter referred to as “split” reads), indicating that the large deletions
in these seven isolates resulted from a DMS3 transposition event that occurred from
within the chromosome (Fig. 2c). Therefore, we consider these deletions to be phage
mediated. The regions of the phage chromosome to which the split reads mapped
and the orientation of phage reads at the boundaries of the deletions in two samples
(1_4 and 2_3) suggest that more than one phage genome may be inserted in the gap
(Fig. 3d through e; Table 2). Notably, we did not recover any mutations in the phage
chromosome. This work clearly shows that the mechanism of deletion is through phage
transposition, which may arise from failed or partial induction events within a lysogen.
The large deletions, though centered around the CRISPR locus, had different deletion
boundaries. To assess the shared gene content in these regions, we used eggNOG-
mapper to query the functional protein content that was lost (Materials and Methods). In
addition to CRISPR, the deleted regions were enriched with genes from COG category S
(genes of unknown function), which included Type 6 secretion system-related genes tssF
and tssG, and multiple pyoverdine system genes, which are often lost during lung
colonization (6, 74, 75). Several pyoverdine biosynthesis and transport genes (fpvA, pvdE,
pvdH, pvdl, pvdM, pvdM, and pvdO) were deleted in six of the seven isolates with large
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deletions. PvdsS, a regulator of pyoverdine biosynthesis genes (76), and pvdR, a compo-
nent of the pyoverdine efflux transporter (77), were also deleted in five of the seven
isolates with large deletions. The co-localization of these virulence and defense gene
cassettes with CRISPR may contribute to variation in these regions (78, 79).

Evolved polylysogens contain large duplications

Three isolates containing phage-mediated large deletions in CRISPR also had large
duplications elsewhere in the genome (27, 188, and 244 kb; mean = 153 + 113 kb).
In these cases, these regions were not deleted but were doubled in coverage (Fig. 3a
through c). The location of these large duplications exactly corresponded to additional
insertion sites, which were recovered by our pipeline (Materials and Methods). Due
to the orientation of the PA14/DMS3 split reads at these insertion sites, which faced
away from each other rather than toward each other, and due to the fact that the
split reads at the boundaries of the duplicated regions only represented about 50% of
the total coverage, we interpret these regions to be large duplications with a phage
genome in the middle, as opposed to two independent viral insertions (Fig. 3d through
f). As the duplicated regions were not centered around a shared core, they were almost
completely non-overlapping in their gene content. Only one gene was duplicated in
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TABLE 2 Origin of phage reads at the deletion boundaries?

mSystems

Sample ID Group Upstream deletion boundary
Read mate maps to:

Downstream deletion boundary
Read mate maps to:

Lys2_ev_pop1_3 ev_pop_1 End of DMS3 genome
*Lys2_ev_pop1_4 ev_pop_1 Start of DMS3 genome
Lys2_ev_pop2_1 ev_pop_2 End of DMS3 genome
*Lys2_ev_pop2_3 ev_pop_2 Start of DMS3 genome
Lys2_ev_pop2_6 ev_pop_2 End of DMS3 genome
Lys2_ev_pop3_4 ev_pop_3 End of DMS3 genome
Lys2_ev_pop3_5 ev_pop_3 End of DMS3 genome

Start of DMS3 genome
Start of DMS3 genome
Start of DMS3 genome
Start of DMS3 genome
Start of DMS3 genome
Start of DMS3 genome
Start of DMS3 genome

“Asterisks denote samples where reads from only one end of the phage genome were recovered.

two of the three isolates (2_3 and 2_6), which was betT, a choline transporter known to
accumulate mutations in clinical isolates from CF patients (80-82). Broadly, genes from
category H (coenzyme metabolism) were represented in all three isolates, as well as
from P (inorganic ion metabolism) and S (genes of unknown function), as in the large
deletions. Several genes annotated as part of the major facilitator superfamily, a class
of membrane-associated transporter proteins, were also duplicated in two of the three
isolates, as well as genes from the moa family, which have recently been implicated in
biofilm formation (83). The fact that deletions and duplications caused by transposition
are found in the same genome suggests that at least a small number of cells induced
phage transposition into multiple regions of the chromosome but did not lyse (84, 85).

We noticed that two of these duplications (in 1_4 and 2_6) independently evolved
a shared boundary six nucleotides apart (at positions 1,120,309 and 1,120,303, respec-
tively) in an intergenic region between the 3’ end of a hypothetical protein and the
3’ end of an AraC transcriptional regulator. Accordingly, we investigated whether these
new insertion sites shared any sequence similarities. An analysis of all new lysogen
insertion sites (e.g., the deletion and duplication boundaries) using the motif-finding
software MEME Suite did not return any motifs, either using MEME (searching for a motif
in a 15-bp region centered on the insertion site) or MEME-ChIP (searching for centrally
enriched motifs 250 bp around the insertion site) (86, 87).

Neither the isolates containing large deletions nor the ones containing large
duplications differed in their growth from other evolved strains that did not have large
structural variation (Fig. S8A). This suggests that, under these conditions, the fitness costs
to deletions, duplications, or carrying additional copies of the phage in the chromosome
are smaller than the fitness gains by removing self-targeting. Although these phage-
mediated deletions of CRISPR represent the addition of one to two phage genomes
to the lysogen chromosome, the spontaneous induction rate of these isolates remains
reduced relative to the ancestral PA14 lysogen strain (Lys2) (Fig. 1; Fig. S8B). Additionally,
although viral output does not change with phage genome copy number after challenge
with mitomycin C, cell survival is significantly increased with increased phage genomes
(Fig. S8C), suggesting a possible mechanism of viral interference leading to cell survival,
which may also contribute to a decreased spontaneous induction.

Spontaneous induction correlates with mutation

We observed that spontaneous induction was variable among six isolates from each
replicate population (Fig. 1). We asked whether this variation might correlate with
differences in the type of CRISPR mutation [single nucleotide polymorphisms (SNPs),
small deletions, viral transposition, and structural variation]. To address this, we grouped
lysogens into one of five categories based on the type of mutation that occurred in
the genome (“cas deletion”; “cas mutation”; “spacer deletion”; “spacer mutation”; and
“large deletion polylysogen”) and asked whether including mutation type explained
the variation within these groups. We observed that all groups (with the exception

of the cas deletion group, which had only one isolate in its group) had significantly
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lower spontaneous induction than the ancestral strains (Fig. 4), and the large deletion
polylysogen group was significantly lower than lysogens that had lowered spontaneous
induction via SNPs or indels (Fig. 4, ANOVA, F5¢¢ = 19.3, P-value = 8.725e-12). Another
set of experiments that included a lysogenized ACRISPR strain showed that evolved
lysogens, which resolved genetic conflict via genome rearrangements, SNPs, and indels,
reduced CRISPR function to the level of a ACRISPR mutant (Fig. S9). A model incorporat-
ing mutation type was a significantly better fit than the model by experimental replicate
(Fig. 4, ANOVA, F 66 = 13.777, P < 1e-6). In view of these results, we find that heteroge-
neity in mutation type correlates to the heterogeneity in phenotype of spontaneous
induction in our evolved lysogens. Although large deletions had the lowest spontaneous
induction and therefore the highest fitness, they did not dominate any of the three
populations.

Given these small but significant variations in spontaneous induction that are
maintained within groups yet replaced the ancestral lysogen genotype, we wanted to
understand how long the diversity we observed within our experimental replicates could
persist in exponentially growing cultures. To do this, we developed a mathematical
model to compare six lysogens with six different rates of spontaneous induction (two
values from the ancestral group, two values from the host-mutation group, and two
values from the large deletion polylysogen group). In a deterministic model of lysogen
growth in the exponential phase with varied spontaneous induction rates, we found
populations with low densities of high inducers (representing the ancestor strain) and
allowed them to grow for 10 hours. After 10 hours, we introduced either strains with
low rates of spontaneous induction (representing the large deletion polylysogens) or
medium rates of spontaneous induction (representing host mutations), one at 10 hours
and the other at 24 hours, and tested whether they could invade. We found that when
low inducers are introduced to a high-inducing population, medium inducers cannot
subsequently invade (Fig. 5a). When we introduced medium inducers to a high-inducer
population after 10 hours of growth and then low inducers after 24 hours, medium
and low inducers outcompeted the high inducers and then coexisted in the absence
of the high inducers for about 2 days (Fig. 5b). This coexistence between low and
medium inducers recapitulates the observed recovery of low and medium inducers,
but not high inducers, in our experimental data (Fig. 4; for a model, see Fig. 5c). Given
the higher fitness, but not a complete takeover, of large deletion polylysogens, we
infer that deletions introduced by transposition occur at a lower rate than spontaneous
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FIG 5 Coexistence of different rates of spontaneous induction depends on the order of their introduction. (a) Mathematical model describes the behavior of
several lysogens with different spontaneous induction values. These graphs describe the growth of six lysogens over time in one continuously growing culture.
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from lowest to highest spontaneous induction values (L1 is the lowest; L6 is the highest). In panel a, the highest spontaneous inducers are introduced first.
At approximately 9 hours, low inducers are introduced; after about 1 day, medium inducers are introduced and do not establish. In panel b, the highest
spontaneous inducers are introduced first. At approximately 9 hours, medium inducers are introduced; after about 1 day, low inducers are introduced and
establish, resulting in a period of coexistence between medium and low inducers that is observed experimentally. (c) A model of self-targeting resolved by
different modes of mutation. Spontaneous induction caused by CRISPR self-targeting is resolved in two modes. Cells with high spontaneous induction are
indicated in red. One mode relies on low levels of DMS3 escape from lysogenic repression, which results in rare transposition events around the genome.
Recombination between multiple DMS3 chromosomes leads to large deletions, which may include the CRISPR area and results in cells with lower spontaneous
induction (green). In the second mode, self-targeting may be resolved by host mutations in the CRISPR-Cas array (orange) or by viral mutations in the targeted

region (not recovered in this study). Integrated DMS3 genomes are represented with arrows to indicate directionality.

mutation. From these observations, we find that the weak selection imposed by these
small differences in spontaneous induction, which are caused by different mutational
mechanisms, combined with the order in which they were introduced, may allow the
evolution of diversity in CRISPR self-targeting resolution in P. aeruginosa lysogens and
preserve coexistence of CRISPR+ and CRISPR- strains in the absence of additional
selective variables or environmental change.
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DISCUSSION

Although temperate phages are frequently recovered from long-term, evolving
Pseudomonas infections of the lungs of CF patients, phages are often considered at
single time points or outside of relationship to their bacterial hosts (18, 88-90). Evolution
experiments involving transposable phages often include susceptible cells or are begun
with free phages instead of established lysogens (42-44, 91). Because these transposable
phages may insert into the chromosome in many different locations, their frequency
in the population as lysogens is defined by selection for beneficial bacterial mutations.
Here, we show that this occurs in established PA14-DMS3 lysogens where ongoing
transposition results in polylysogens that are selected for because they resolve genetic
conflict by causing structural variants. This additional mutational mode, which occurs in
addition to the host mutation rate, introduces different types of variation that coexist
within a once-clonal population.

Our work supports previous studies showing that DMS3 lysogens evolve decreased
rates of spontaneous induction over time (44, 51). Here, we distinguish between
exponential and stationary phase and find that exponential phase induction accounts
for the majority of free phages in the medium. Our spontaneous induction estimates in
the exponential phase are approximately 0.37% and 0.72% of the evolved and ancestral
populations, respectively, which are both significantly higher than lambda-like phages
(57,92, 93) but are in line with other studies that report high spontaneous induction (94).
Mu-like phages have been reported previously to naturally produce high titers during
lysogen growth (26, 45, 51), suggesting that this evolutionary pressure is not restricted
to DMS3 and that Mu-like phages as a family have high spontaneous induction rates.
Because Mu-like phages are both highly prevalent and highly targeted in P. aeruginosa
(49), it is likely that CRISPR self-targeting will inform evolutionary outcomes in lysogens
of these related phages. Here, the resolution of self-targeting resulted in coexisting
variation in lysogen spontaneous induction rates in exponential growth, with polylyso-
gens having the lowest rates, but they are rare as a mutational class. Though rare, these
deletions, perhaps formed through incomplete or partial induction (84, 85), would likely
fix in a population that was evolved for longer than 12 days.

We find that the genetic conflict between Mu-like phage and host results in a tradeoff
between CRISPR immunity and spontaneous induction, which could help explain the
maintenance of CRISPR systems in P. aeruginosa (95-97). Previously, mutations in cas7
(51) and deletions of the entire CRISPR region (44) have been found to reduce phage
induction in the late log phase. We find that these differences in self-targeting resolution
reduce phage induction to different degrees and have profoundly different effects on
the host genome. Half (10/18) of the evolved lysogen isolates decreased their spontane-
ous induction while maintaining either CRISPR function (in mutations or deletions of
the self-targeting spacer) or the potential of CRISPR function (frameshift mutations in
cas genes), while the rest deleted CRISPR and lost any potential immunity, but more
substantially decreased their induction. Although it is possible that CRISPR targeting
directly induces transposition via some interaction of CRISPR machinery with DMS3, our
model for the generation of variation does not require this. Instead, our model requires
transposition from within the lysogen, which then causes variation through deletion and
duplication but does not result in lysis. Polylysogens from the coliphage Mu have only
rarely been isolated after low levels of induction: once due to a recombination event (85),
and once after surviving partial heat induction (84). Our results suggest that stochastic
transposition occurs at low rates relative to mutation but is recovered here because of
selection for the large deletions, which lead to lower spontaneous induction.

One explanation for the coexistence of these two genotypes (CRISPR maintenance
and higher induction, or CRISPR loss via polylysogeny and lower induction) is the order
in which these mutations were introduced. Modeling simulations show that spontaneous
induction rates from strains that resolved self-targeting via SNPs and indels (“medium”
inducers) do not invade established populations of strains with spontaneous induc-
tion rates from polylysogens (“low” inducers). This indicates that host-mediated SNPs

September 2024 Volume 9 Issue 9

mSystems

10.1128/msystems.00801-24 13


https://doi.org/10.1128/msystems.00801-24

Research Article

and indels likely arose before polylysogeny and large deletions, as both are main-
tained together despite spontaneous induction differences. This suggestion of an order
(host-mediated before phage-mediated) then suggests that the basal rate of phage
transposition is lower than host mutation. A lower rate of formation of higher-fitness
polylysogen “low” inducers, which compete with lower-fitness host-mutation “medium”
inducers with a faster rate of formation, may work to maintain a pool of diversity that
selection may subsequently act on in different ways, given the presence of other phages
or other ecological factors (98).

The results of genetic conflict in evolved lysogens are not limited to deletions of
CRISPR and may impact the rate of evolution of bacteria with latent infections. Gene
loss and genome reduction have also been shown to occur in P. aeruginosa lineages
during adaptation to the human lung, although the contribution of phages to this loss
is unclear (13, 89). In this study, pyoverdine and Type 6 secretion system genes were
lost in the majority of the polylysogens, and one evolved lysogen isolate (1_1) had a
nonsynonymous mutation in the Type 6 secretion system baseplate gene tssK (Table 1).
These genes, lost under laboratory conditions, are also often lost in chronic CF isolates
(75,81, 99).

The mechanism of large deletion formation is unclear in two isolates. In most (5/7)
evolved polylysogens, a phage genome simply replaced the deleted sequence as in
reference (44). In these isolates, the phage genome appeared in a head-tail configura-
tion, which could occur as a result of the replicative transposition reaction itself or as
a result of recombination between two preexisting phages. Recombination between
a duplicated sequence is an attractive hypothesis to explain the deletions because it
may lead to deletion or duplication of the intervening sequence (100). However, two
isolates, which both contain a duplication (1_4 and 2_3), exhibit non-canonical deletion
and duplication structures, where we recover host-phage junctions, which suggest two
phage genomes facing either head-head (reads recovered at both junctions which map
to the 5" end of the genome) or tail-tail (reads recovered at both junctions which map
to the 3’ end of the phage genome). Additionally, recombination may result in two
phage-host junctions on the 3’ end of the duplication, which lead in different ends of the
phage chromosome, whereas we only recover reads that lead in one end of the phage
chromosome (101).

An alternative model of large deletion formation is one in which primed spacer
acquisition of chromosomal spacers leads to CRISPR loss to avoid self-targeting-induced
cytotoxicity. Primed spacer acquisition can occur from degraded spacer-protospacer
pairs, which have extensive mismatches (102). Acquisition of self-targeting spacers
by Cas1 could lead to Cas3-mediated DNA damage and subsequent deletions (103).
However, we show that every deletion boundary is composed of reads that map to
the phage, indicating that phage transposition from within an established lysogen, and
not deletions that can be generated from new infections, is sufficient to generate these
genome rearrangements. It has been previously demonstrated that self-targeting can
select for the spontaneous deletion of the targeted element (104, 105), which we did
not observe, likely because of protection from phage curing by free viruses constantly
present in the lysogen media through superinfection exclusion (106). Whether and how
phage presence continues to alter the evolution of its host from the uninfected state and
how phage infection influences the rate and mechanism of this evolution are questions
that require future study to explain the ubiquity of phage infection in many clinical
environments (15, 107, 108).

P. aeruginosa evolution in the context of the CF lung can occur via a slow accumu-
lation of SNPs and indels (81) or a more rapid accumulation of SNPs due to the evolu-
tion of hypermutator genotypes (81, 109). Lysogenization by transposable phages may
offer a different mechanism of within-lung diversification, which operates in addition
to the baseline mutation rate. Due to the nature of short-read sequencing, it is likely
that polylysogeny of the same virus, and resulting genome rearrangements, have been
under-represented in current data sets of P. aeruginosa clinical isolates. Future studies
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should continue to identify signatures of multiple phage infections in clinical isolates
and look for deletions and duplications that may be associated with phages. Polyly-
sogeny of transposable phages may contribute to understanding variation in CRISPR
carriage among bacteria, although if polylysogeny is accompanied by CRISPR deletions,
it may be difficult to ascertain in which background they arose. The potential link
between transposition and low levels of DNA damage also opens the possibility of
other causes of low levels of DNA damage—for example, subinhibitory concentrations
of DNA-damaging antibiotics—to be driving evolutionary adaptation and diversity in
bacteria lysogenized by transposable phages. The extent to which phage infection
informs differences in evolutionary and functional outcomes in a clinical context is an
important subject for future work.
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