

1 Plasmid transmission dynamics and evolution of partner quality

2 in a natural population of *Rhizobium leguminosarum*

3

4 *David Vereau Gorbitz*^{a,b,✉}, Chase P. Schwarz^{a,c}, John G. McMullen^{d,*}, Mario Ceron-Romero^e,
5 Rebecca T. Doyle^f, Jennifer A. Lau^d, Rachel J. Whitaker^{a,b}, Carin K. Vanderpool^{a,b}, Katy
6 D. Heath^{a,b,c,✉}

7

8 ^aCarl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign,
9 Urbana, IL, USA

10 ^bDepartment of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, USA

11 ^cDepartment of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA

12 ^dDepartment of Biology, Indiana University, Bloomington, IN, USA

13 ^eDepartment of Biology, Case Western Reserve University, Cleveland, OH, USA

14 ^fDepartment of Biology, McMaster University, Hamilton, Ontario, Canada

15

16 Running Head: Genomic diversity found in a *R. leguminosarum* natural population

17

18 #Address Correspondence to David Vereau Gorbitz, davidv3@illinois.edu; or Katy D. Heath,
19 kheath@illinois.edu

20 *Present address: Biologics, Bayer Crop Sciences, Chesterfield, MO, USA

21 Abstract word count: 239

22 Text Word count: 5111

23 **ABSTRACT**

24 Many bacterial traits important to host-microbe symbiosis are determined by genes carried on
25 extrachromosomal replicons such as plasmids, chromids, and integrative and conjugative
26 elements. Multiple such replicons often coexist within a single cell and, due to horizontal
27 mobility, have patterns of variation and evolutionary histories that are distinct from each other
28 and from the bacterial chromosome. In nitrogen-fixing *Rhizobium*, genes carried on multiple
29 plasmids make up almost 50% of the genome, are necessary for the formation of symbiosis, and
30 underlie bacterial traits including host plant benefits. Thus the genomics and transmission of
31 plasmids in *Rhizobium* underlie the ecology and evolution of this important model symbiont.
32 Here we leverage a natural population of clover-associated *Rhizobium* in which partner quality
33 has declined in response to long-term nitrogen fertilization. We use 62 novel, reference-quality
34 genomes to characterize 257 replicons in the plasmidome and study their genomics and
35 transmission patterns. We find that, of the four most frequent plasmid types, two (types II & III)
36 have more stable size, larger core genomes, and track the chromosomal phylogeny (display more
37 vertical transmission), while others (types I & IV – the symbiosis plasmid, or pSym) vary
38 substantially in size, shared gene content, and have phylogenies consistent with frequent
39 horizontal transmission. We also find differentiation in pSym subtypes driven by long-term
40 nitrogen fertilization. Our results highlight the variation in plasmid transmission dynamics within
41 a single symbiont and implicate plasmid horizontal transmission in the evolution of partner
42 quality.

43 **IMPORTANCE**

44 Understanding how bacterial genes move through natural populations is critical for
45 understanding how bacterial traits evolve. The nitrogen-fixing bacterium *Rhizobium*

46 *leguminosarum* lives in symbiosis with plants and is a model for studying how gene transmission
47 from one cell to another on mobile genetic elements called plasmids impacts the evolution of
48 bacteria and plants. Here we characterize the genomes of a natural bacterial population, then use
49 novel approaches to show that mechanisms of plasmid gene transmission varies across multiple
50 plasmid types possessed by *R. leguminosarum*. We find that changes in plasmid genes are
51 associated with the decline of symbiotic partner quality in strains isolated from environments
52 undergoing long-term fertilization. Together, these results underscore the importance of plasmid
53 evolution in shaping ecosystem processes like nitrogen cycling. Our study provides a framework
54 for probing the plasmid dynamics within natural bacterial populations and how plasmid
55 transmission affects genetic diversity and ecological interactions in bacteria.

56 INTRODUCTION

57 Predictive models of bacterial trait evolution require a comprehensive understanding of
58 how bacterial genes are inherited in natural populations. Bacterial traits arise and evolve via
59 point mutations, gene duplication, homologous and non-homologous recombination, structural
60 variants like transposons, and rare events like functionalization of non-coding regions (1). In
61 addition, bacterial genomes can also undergo size-reduction in nutrient-limited environments or
62 through endosymbiosis (2,3). At the core of all these processes are the vertical and horizontal
63 transfer of genes and extrachromosomal elements (ECEs) such as plasmids, megaplasmids, and
64 chromids (4,5) between strains. Diverse ECEs are characterized by distinct patterns of mutation,
65 recombination, gene flow, and co-inheritance, which in turn influence how traits on these
66 elements evolve through time (6–8). Bacterial genomes having two or more independent
67 replicons – multipartite genomes – allow us to test how patterns of gene content, sequence
68 similarity, size variation, and horizontal transmission rates vary across multiple extra-
69 chromosomal elements within a single lineage of bacteria and thereby impact trait evolution.

70 Species with multipartite genomes are prevalent in nature and fill important ecological
71 niches, including as opportunistic pathogens/mutualists and obligate endosymbionts. Multipartite
72 genomes are particularly enriched in Pseudomonadota, but have been found in distant phyla
73 including Cyanobacteria, Leptospira, and Deinococcus (9). The ECEs of multipartite genomes carry
74 genes in symbionts that expand their hosts' metabolism, as well as genes that confer resistance to
75 antibiotics and heavy metal toxicity (10–15). ECEs can replicate independently of the
76 chromosome, be transmitted in whole or in part between bacteria via horizontal gene transfer
77 (HGT), and increase the size and diversity of a pangenome (the repertoire of core and variable
78 genes found in either all, or some, members of the species, respectively) (16–19). Moreover this

79 pangenomic variation is due in part to gene gain and loss via the action of mobile genetic
80 elements within the pangenome, often found on ECEs (20). Due to HGT, ECEs can have
81 evolutionary histories that are quite distinct from those of their bacterial chromosomes (21),
82 effectively decoupling the fitness interests of ECEs and chromosomes and even driving
83 coevolutionary dynamics among the elements within a single cell (22,23). Given the importance
84 of ECEs in symbionts and their ability to modify their hosts' ecology, there is a critical need for
85 an ECE-centric approach in natural bacterial populations.

86 Genomic variation in bacterial pangenomes including single nucleotide polymorphisms
87 (SNPs), indels, translocations, inversions, and duplications (24) are often concentrated on ECEs
88 (25). Yet approaches to studying genetic variation using high-throughput shotgun sequencing
89 tend to exclude or minimally investigate ECEs (26). For instance, common markers of
90 phylogenetic distance such as average nucleotide identity (ANI), percentage of shared single
91 nucleotide polymorphisms (SNPs), and shared genes are usually calculated on chromosomal
92 genes. Reference-based assemblies fail to fully capture presence-absence diversity, and can miss
93 major genome rearrangements, meaning that much of the genetic variation driving genome
94 evolution can be missed or misassembled (27,28). Non-reference based, *de novo* assembly of
95 closed, circular replicons is made difficult by repetitive elements in bacterial genomes and
96 particularly ECEs, resulting in genome fragmentation (29) and hindering the assembly and
97 analysis of ECEs and pan-genomes (30,31). Harnessing long-read technology to assemble
98 populations of closed, reference-quality genomes enables pan-genome analysis of genetic
99 diversity in natural populations of ECEs – the diversity on which selection acts.

100 Nitrogen-fixing rhizobia, bacteria that fix nitrogen in symbiosis with leguminous plants
101 (32), are good models for the evolutionary ecology of ECEs since they contain multiple and

102 diverse plasmids in their multi-partite genomes and because the genes required for associating
103 intracellularly with hosts are found on plasmids or Integrative and Conjugative Elements (ICEs)
104 (7,33,34). The *Rhizobium leguminosarum* species complex, formerly all one polyphyletic
105 species, was recently divided into at least 5 genospecies (35); most recently, certain genospecies
106 (*gsA*, *gsB*, *gsD*) have been classified as new species (*Rhizobium brockwellii*, *johnstonii*, and
107 *beringeri*, respectively) (36). *Rhizobium* isolates are well-known to carry many plasmids, which
108 can coexist in the same cells due to variation at the *repABC* operon (35,37); *repA* in particular
109 determines incompatibility group, and the same *repA* “Rh group” has been found across multiple
110 genospecies (35). These diverse *Rhizobium* plasmids tend to contain non-essential genes and are
111 mobile, based on studies showing that the phylogenetic histories of plasmid genes are distinct
112 from those of the chromosome (38). Fully-resolved genomes for many natural isolates are
113 required to address variation in phylogenetic history within and among plasmids and thus
114 understand plasmid transmission patterns on timescales relevant to bacterial trait evolution.

115 Clover-associated *Rhizobium* are a particularly powerful tool for understanding the
116 contribution of plasmid diversity and plasmid transmission to bacterial evolution in nature. The
117 canonical symbiosis genes that enable *Rhizobium* to interact with clover, vetch, and other hosts
118 are not only found on plasmids, but have been found on *different* plasmids among natural
119 isolates, indicating HGT of this critical gene region across replicons (32,35,39,40). In our
120 previous work using a population of *Rhizobium* from the Long Term Ecological Research
121 (LTER) site at Kellogg Biological Station (KBS) in Michigan, we found that strains from old
122 field communities exposed to long-term nitrogen (N) since 1998 are less-beneficial on average
123 for clover (*Trifolium spp.*) host plants, compared to control (41). Moreover we used reference-
124 based SNP analysis to associate this decline in partner quality, *i.e.*, the benefits that symbionts

125 provide to their host, with differentiation at the canonical symbiosis gene region (42). Beyond
126 contributing to fundamental knowledge on plasmids, a better understanding of plasmid
127 inheritance in these multi-partite genomes is critical for understanding symbiosis gene
128 transmission and thus the role of HGT in symbiosis trait evolution.

129 In this study, we generate high-quality reference genomes to study ECE dynamics in a
130 natural bacterial population, leveraging 62 previously-studied strains of *Rhizobium* (41–43). We
131 use this population to understand how sequence diversity, gene function, and size differ among
132 plasmids within a pan-genome (the plasmidome). We then use phylogenomic approaches to infer
133 how the propensity for horizontal and vertical inheritance differs across plasmids in the pan-
134 genome. Finally we study the pSym to examine the role of plasmid HGT in partner quality
135 decline.

136

137 **RESULTS**

138 *Delineating the plasmidome:* To assess the ECE diversity in natural populations of *R.*
139 *leguminosarum*, we used long-read technology to sequence and assemble complete genomes *de*
140 *novo* for all 62 nodule isolates from Weese et al. (41). Each strain's assembled genome contained
141 1–6 extrachromosomal elements. In total, we identified 257 extrachromosomal elements in our
142 bacterial population. Of those, 256 had at least one *repABC* operon, which has been used as a
143 basis for plasmid categorization (35,38,44,45), and 17 replicons had two distinct *repABC*
144 operons. One 1.4 Mbp replicon in strain 773_N did not contain identifiable plasmid replication
145 genes.

146 We first reconstructed a phylogenetic tree from a core chromosome alignment (Fig. S1),
147 which showed that 56 of our 62 strains formed a single clade identified as *R. leguminosarum*

148 sensu stricto, or *genospecies E* (*gsE*) (35). Four of the 62 strains (061_N, 173_C, 209_N, 231_N)
149 were identified as *gsB/Rhizobium johnstonii* (36), and were characterized within our population
150 by low diversity in the chromosomes shared between these four strains. The remaining two
151 strains, 717_N and 773_N, fell outside both *gsE* and *gsB* clades; strain 717_N is sister to the *gsB*
152 clade, and strain 773_N is the most basal strain. To further investigate the identity of strain
153 773_N, we queried NCBI non-redundant database with its 16S rRNA and *dnaA* sequences and
154 found that the closest sequence identity match with a complete genome for both sequences was
155 *Rhizobium sp.* WYJ-E13 (accession ID: PRJNA738292), 99.12% and 92.86% respectively.

156 To categorize all plasmids into discrete groups, we used a k-mer approach that considers
157 core and non-core regions of all plasmids. We calculated the k-mer signatures for all 257
158 replicons and generated a weighted undirected network component graph based on the Jaccard
159 Index for all-vs-all combinations (Fig 1). This approach benefits from using all genetic
160 information in both the core and non-core regions of the plasmid, as opposed to using only core
161 gene-coding regions present in all plasmids. This more inclusive approach is especially
162 important since there is little overlap in genes across all replicons. Of 257 plasmids, most (226)
163 fell into one of four plasmid clusters (hereafter type I, II, III, and IV; Fig. 1), while the few
164 remaining plasmids fell into an additional four types (hereafter type V, VI, VII, and VIII).
165 Plasmids were numbered based on sample number, and then size within the population. Both
166 Type I and Type IV plasmids clustered into 3 and 4 smaller sub-groups, respectively (labeled a,
167 b, c, d; Fig. 1)

168 The distribution of these plasmid types in our study correspond to the bifurcations in the
169 chromosome phylogeny (Fig. 2), with different genospecies possessing distinct plasmidomes.
170 Type IV plasmids were found in 58/62 strains across both genospecies (*i.e.*, *gsB* and *gsE*); type I,

171 II, and III plasmids were present in all 56 *gsE* strains (Fig. 2), while the plasmid type groups V,
172 VI, VII, and VIII were present in all four *gsB* strains, indicating that plasmid types delineated by
173 k-mer analysis track with chromosomal genospecies. Like their associated *gsB* chromosomes,
174 Type V-VIII plasmids contain little genomic diversity (table 1).

175 We next examined the presence of the canonical symbiosis genes (*i.e. nif, fix, and nod*) in
176 our annotated genomes, and found they were limited to type IV plasmids (pSym hereafter).
177 Therefore, the presence of type IV plasmids appears to be required for symbiosis with clovers
178 (*Trifolium* spp.) in this population of *Rhizobium*. Interestingly, we found that four of the 62
179 strains lacked the pSym, further corroborating that this non-essential element could be lost in
180 strains present within a naturally occurring population (42). Given that all 62 strains were
181 isolated from nodules, it is not known whether this loss occurred in culture or whether these
182 isolates co-infected nodules with symbiotically-capable strains (46,47).

183 Of the remaining smaller clusters of plasmids, fourteen unique plasmids did not group
184 with any other plasmid within the population (Fig. 1). Of these singleton replicons, six were
185 found in strains outside the main *gsE/gsB* clades; five of the singleton replicons belonged to
186 strain 717_N (type IX, X, XI, XII, and XIII), and one belonged to strain 773_N (Fig. 2). The
187 other eight singleton plasmids (hereafter, accessory plasmids) were in strains scattered across the
188 *gsE* phylogeny (Fig. 2).

189

190 *Genomic content of the plasmidome:* To visualize the difference in gene composition between
191 plasmids, we annotated the genomes using NCBI's PGAP (48), assigned genes to clusters of
192 orthologous genes (COG) groups (49), and performed a Principal Coordinate Analysis (PCoA)
193 with the Jaccard distance calculated from the presence-absence of orthologous gene clusters of

194 the plasmidome. We found that, using PCoA based on orthologous gene content, all 257
195 plasmids formed clear clusters that correlated with plasmid types from k-mer clustering (Fig. 3),
196 further indicating that these plasmid types differ in gene content and have distinct functional
197 roles. In the PCoA, the pSymS cluster together in the center between plasmids I-III, and
198 alongside the accessory plasmids, suggesting some shared gene content among these elements. In
199 particular, many (209) genes were shared between at least one accessory plasmid and one Type
200 IV plasmid.

201 Although the *gsB* plasmid types V-VIII formed k-mer clusters distinct from *gsE* plasmids
202 (Fig. 1), these four plasmids were similar to (had low Jaccard distances with) *gsE* plasmid types I
203 (V), II (VI), and III (VII and VIII) (Fig S2A), suggesting that these sets of elements serve
204 somewhat analogous functions in *gsB* and *gsE*. Indeed pairwise comparison of type I with V and
205 type II with VI indicated 56% and 74% core gene content overlap, respectively (Fig. S2B).
206 Interestingly, while pairwise distances between *gsE* plasmid type III and either *gsB* type VII or
207 VIII were low (Fig. S2A), pairwise distance between *gsB* types VII and VIII was very high (Fig.
208 S2B); these patterns suggest that the core gene content of type III in *gsE* is comprised of a
209 combination of the cores of Types VII and VIII in *gsB*. This is supported by an alignment of
210 types VII and VIII to the type III plasmid, showing large syntenic aligned blocks consistent with
211 shared plasmid history (Fig. S2C). Interestingly, while plasmid types I and V were both in Rh
212 group 1, and II and VI were both in Rh group 2, plasmid types III, VII, and VIII belonged to
213 three different Rh groups (4,5, and 3, respectively) (Table 1) – indicating that plasmid gene
214 content often, but not always, tracks *repABC*-based Rh group.

215 Overall, COG analysis suggested that high-level distribution of functional gene content
216 was similar across all plasmids (Fig. S3), despite their unique patterns of gene presence-absence

217 variation (PAV). Across all plasmid types in the population, four COG categories were
218 completely absent in the functional prediction (A, B, W, Y). The absence of these functions was
219 not surprising as they relate to RNA processing (A), chromatin (B), extracellular (W), and
220 nuclear (Y) structures, which are more commonly associated with eukaryotic or chromosomal
221 processes. The one outlier was the pSym, which features more genes for intracellular trafficking
222 and secretion (U), and recombination and replication (L) (Fig. S3).

223

224 *Variable size distributions in gsE Rhizobium plasmids:* Because we have the largest sample of
225 plasmids from *gsE* strains (I-III, and pSym), hereafter we primarily focus on the plasmidome of
226 the *gsE* subgroup in order to examine within-type variation and transmission. Plasmid types
227 varied in size and in the shape of their size distribution (Fig. 4). Type I plasmids were the largest
228 in our population, had the largest size variation, and had a bimodal distribution centered at either
229 ~0.9 Mbp or ~1.2 Mbp. Type II and type III plasmids were similar in size, with intermediate
230 lengths ranging from ~0.5-0.6 Mbp. Of the *gsE* plasmidome (types I-IV), pSyms were the
231 smallest (~0.2-0.4 Mbp). Notably, this symbiosis gene location is distinct from the reference
232 genome WSM1325 (*gsA*), in which the symbiosis genes are found on the largest plasmid (32).

233 Comparing the size variation within the type I plasmid with its core length, content, and
234 phylogeny (Fig. 4, Table 1) allows us to reconstruct the history of how dramatic changes in
235 plasmid size have evolved in this element. The three type I k-mer subgroups (I-a, I-b, I-c; Fig. 1)
236 map onto the three distinct groups in the type I core phylogeny (Fig. S4a). However although
237 subgroup I-b and I-c have similar size distributions, they contain distinct large insertions (Fig.
238 S4b). All small type I plasmids (subgroup I-a) form a clade that diverged from I-b after a single
239 loss of the ~0.3 Mb insertion (Fig. S4b, c). Thus independent gain and loss of large insertions is

240 responsible for the bimodal size distribution; in addition, these large insertions occur in similar
241 locations along the plasmid (Fig. S4c), suggesting that type I plasmids might have specific
242 hotspots where insertions are more likely.

243

244 *Mode of inheritance varies in the Rhizobium plasmidome:* To study plasmid transmission
245 modes, we used a phylogenetic approach with random resampling of orthologous genes to
246 quantify patterns of gene tree heterogeneity within each plasmid type. We then calculated the
247 Generalized Robinson-Foulds (GRF) distance between two trees as a measure (0-100) of
248 phylogenetic congruence between two trees. Mean GRF distance between gene trees of the
249 chromosome was 72.46, with a standard deviation of 5.40 (Fig. 5). The type I and type II
250 plasmids had similar distributions to each other and to the chromosome (mean = $72.84 \pm \text{sd } 5.08$
251 and $68.00 \pm \text{sd } 6.31$, respectively) – suggesting similar levels of within-element vertical versus
252 horizontal transmission on these three elements. By contrast, the distribution of type III plasmid
253 GRF distances (mean = $56.41 \pm \text{sd } 5.09$) indicates that gene trees within this element were more
254 similar – suggesting more internal consistency and thus less horizontal transmission of genes
255 compared even to the chromosome. Finally, the pSym GRF distribution was wider and centered
256 at mean = $86.79 \pm \text{sd } 9.46$, indicating higher divergence of gene trees among the loci on this
257 element, compared to the other four – consistent with abundant HGT of genes on the pSym.

258 Next, to assess the degree to which plasmids are vertically inherited (together with the
259 chromosome), versus horizontally (separately from the chromosome), we compared the
260 distributions of GRF distances when gene trees from each plasmid were compared to those from
261 the chromosome. The distributions of GRF values for plasmid types II and III fell inside the 95th
262 percentile of the chromosome GRF distance distribution (Fig. 5), indicating that the likelihoods

263 of co-inheritance of chromosomal genes with genes on these plasmids were not different from
264 the co-inheritance of chromosomal genes with each other – supporting abundant vertical
265 transmission alongside the chromosome in this population. By contrast, the chromosome-type I
266 gene distribution (mean = $83.24 \pm \text{sd } 2.97$) fell above the 95th percentile of the chromosomal
267 gene distribution (Fig. 5), indicating that the genes on these two elements tend to have distinct
268 evolutionary histories, suggesting HGT. Finally, GRF distances between genes on the
269 chromosome and the pSym were particularly high (mean = $99.56 \pm \text{sd } = 0.83$, with 881/1000
270 resamplings resulting in a maximum GRF = 100; Fig. 5), also suggesting high levels of
271 horizontal transmission of pSym genes relative to the chromosome – likely due to the HGT of
272 entire pSym plasmids across chromosomal lineages. Due to the small core, robust clade patterns,
273 and high levels of within-subclade core genes of the pSym (see below Fig. 6A,6B), we separately
274 ran the resampling analysis of gene tree heterogeneity by pSym subclade to test whether these
275 patterns of HGT result from across-clade differences rather than individual plasmids moving
276 independently of the chromosome. Despite high sequence similarity within Type IV-a, b, c, these
277 subclades show elevated GRF distances compared to the chromosome (Fig. S5A), suggesting
278 that the entire pSym is moving horizontally.

279

280 *pSym (Type IV) plasmid movement drives differences in partner quality:* Given the evidence for
281 abundant HGT of the pSym plasmid, and previous population genetic analyses focusing on
282 symbiosis-related loci (42), we next studied patterns of differentiation in the pSym in order to
283 relate pSym variation to symbiotic partner quality. First, we inferred a phylogenetic tree with
284 concatenated core sequences from the type IV plasmid and found four clades (Fig. 6A); these
285 clades mirror the four major k-mer clusters of type IV plasmids (Fig. 1).

286 The pSym is characterized by a particularly small core (52.1 kb, or 49 genes) relative to
287 other types (Table 1). Although a gene presence-absence plot shows modularity and unique gene
288 content unique in subclades IVa-c (Fig. S5B,C), groups of shared genes are often found in
289 unrelated clades (Fig. S5C), and the core gene set of any two pSym subgroups (regardless of
290 phylogenetic distance) is noticeably larger than the universal pSym core of 49 genes – indicating
291 abundant gene-sharing across groups on the pSym phylogeny (Fig. S5C, D). For example,
292 despite being more phylogenetically distinct and most often found in the *gsB* minor clade, nearly
293 all IV-d genes are shared with other type IV sub-clades (Fig. S5C).

294 We found clear cases of pSym HGT across distinct chromosomal lineages in our
295 population. First, although strain 717_N is more closely related to *gsB* than *gsE* at the
296 chromosome (Fig. S1) and shares no other plasmids with either group (Fig. 2), the 717_N pSym
297 falls alongside a group of high-quality *gsE* strains in the pSym tree (clade IV-b, Fig. 6A).
298 Similarly, although the *gsB* and *gsE* chromosomal clades generally have distinct plasmidomes
299 including the pSyms (Fig. 2, Fig 6A), two *gsE* strains (308_C and 859_N, Fig. S1) were found to
300 carry *gsB*-like pSyms (clade IV-d; Fig. 6A) indicating cross-genospecies HGT.

301 Finally we found striking correspondence between the core pSym phylogeny and the
302 benefits of symbiosis for plant hosts, as measured in a previous common garden experiment (41).
303 Within the major pSym groups, clades IV-a and IV-b contain mostly higher-quality strains that
304 originated from unfertilized control plots (Fig. 6A), whereas clade IV-c contains an abundance of
305 lower-quality strains isolated from N-fertilized plots and features longer branch lengths due to
306 SNPs in core genes (Fig. 6A). A Fisher's exact test supported a significant difference in
307 frequency of Type IV sub-clades between control and N treatments ($p = 0.042$; Fig. 6B).

308

309 **DISCUSSION**

310 Plasmid inheritance is a key process underlying bacterial trait evolution in natural and managed
311 ecosystems. Studies of plasmid variation and transmission within local-scale, recombining
312 populations are needed to quantify patterns of gene co-inheritance as well as their influence on
313 bacterial phenotypes. Here we delineate the major types, size, gene content variation, and
314 transmission patterns of coexisting plasmids from a single population of clover-associated
315 *Rhizobium*. We find that *Rhizobium* plasmids vary considerably in their size structures and
316 modes of transmission; some plasmids (type II, type III) appear to be primarily vertically
317 transmitted, while others (type I, pSym) are more likely to be horizontally transmitted.
318 Concomitant with these findings from within our best-sampled genospecies (*gsE*), we find that
319 most of the plasmidome is delimited by chromosomal lineages. Nevertheless, the extent of this
320 limitation varies across plasmids; for example, we find clear examples of cross-genospecies
321 HGT of the pSym. Finally, our analysis of pSym subclades indicates a role for pSym HGT in the
322 decline of clover-associated partner quality in N-fertilized environments. Below we discuss the
323 important lessons learned from each of the major element in our *Rhizobium* plasmidome, then
324 finish with a holistic discussion of the potential importance of transmission variation to the
325 evolution of bacterial traits.

326

327 *Type I plasmids*: The largest plasmid in *Rhizobium* frequently carries the symbiosis genes
328 (42,43). Indeed in previous work (42) using referenced-based assembly to WSM1325, we
329 assumed that the Type I plasmid was the symbiosis plasmid (see discussion of the pSym below).
330 This highlights the value of using non-reference-based genome assembly facilitated by long read
331 sequencing, as well as naïve k-mer based clustering, for studying plasmid variation, plasmid

332 transmission, and the evolution of plasmid-borne traits. Plasmid size variation is usually caused
333 by differing patterns of presence and absence of genes, which is caused by homologous
334 recombination or horizontal gene transfer (50,51). Studies of plasmid evolution usually limit
335 analyses to a handful of genes involved in plasmid replication, maintenance and transfer (52,53).
336 The ability to interrogate fully closed plasmid genomes allowed the separation of core and
337 variable content within this single plasmid type, revealing the gain and loss of large insertions
338 that dramatically alter plasmid size and track the core phylogeny. The internal consistency of the
339 type I plasmid (based on the comparison of core and variable content, and similar *within*-plasmid
340 gene tree distances to those of the chromosome) at first appears at odds with evidence for HGT
341 *between* type I plasmids and the chromosome. These results might hint at distinct mechanisms
342 governing within-element stability versus whole-element transfer in this plasmid (e.g.,
343 homologous recombination versus conjugation), though more functional studies are required to
344 make any generalizations.

345
346 *Type II and III plasmids*: We found that the type II and type III plasmids are more frequently
347 vertically transmitted alongside the chromosome, compared to the other plasmids, and
348 accordingly, have a large fraction of core genes. In contrast with type I and IV plasmids, the gene
349 PAV in type II and III plasmids is comprised of singleton genes being present at low frequencies
350 in the plasmids as opposed to large gene-clusters being present in multiple closely related
351 plasmids. This suggests that the mechanisms by which type II & III, and type I & IV are
352 acquiring and losing genes are different. In fact, the type III plasmid shows particularly low
353 *within*-plasmid GRF distances, suggesting particularly low rates of recombination, though the
354 potential mechanisms remain unclear.

355 Our observation that the *gsE* type III plasmid contains the gene content of *two* other
356 plasmids from the *gsB* group (type VII and VIII) might suggest a key evolutionary event in the
357 history of these *Rhizobium* plasmids – either a subdivision of one (fission) or a merging of two
358 (fusion) – and denotes a key change in how *gsE* and *gsB* strains subdivide their respective
359 genomes. Importantly, however, the type III does not share its Rh incompatibility group (35)
360 with either of these plasmids, making historical reconstruction difficult. Chromosomal fusion is
361 known in closely-related *Agrobacterium tumefaciens* (54). The “schism hypothesis” of
362 chromosome fission has been developed as an explanation for the evolution of multi-partite
363 genomes (51); such processes might generate plasmid diversity as well. Fusion and fission of
364 eukaryotic chromosomes is well-known to drive reproductive isolation and thus speciation in
365 plants and animals (54). Understanding the impact of these processes in the diverse plasmids
366 of *Rhizobium* and other species is paramount to further understanding bacterial genome evolution
367 and the diversification of bacterial species.

368

369 *Type IV plasmids*: The pSym is usually defined as the replicon that harbors genes necessary for
370 symbiosis with a host plant (23). In our population, the pSym is the type IV plasmid, the smallest
371 of the main plasmids and the only one present in both *gsE* and *gsB* chromosomal genospecies. It
372 is also the most variable, having a very small pool of core genes and deeply diverged lineages.
373 Nevertheless, we treat the pSyms as one “type” of plasmid for multiple reasons. First is their
374 clustering based on the k-mer approach we used to categorize plasmids. Though previous work
375 has used *repABC* Rh types to categorize *Rhizobium* plasmids (35), we found that 17 pSyms in
376 our population contain two distinct full *repABC* operons, suggesting the need for an additional
377 approach that reflects gene content similarity. Because plasmids with the same *repABC* groups

378 generally cannot be maintained in the same cell (55), it is unclear what the evolutionary
379 advantage of having two distinct copies of the operon in a single plasmid might be. Second,
380 while some pSym lineages possessed subclade-specific gene clusters, there was abundant shared
381 gene content in pairwise comparisons of the pSym subclades regardless of relatedness at the core
382 – suggesting mobility of pSym genes across the pSym phylogeny. Finally, examining all pSysts
383 together based on gene content and function allowed us to relate pSym subclade to symbiotic
384 partner quality and detect shifts in subclade frequency between N-fertilized and control plots (see
385 below).

386 The symbiosis plasmids in the *R. leguminosarum* species complex are well-known to
387 exhibit high levels of variable gene content and horizontal mobility (23,56,57). Nevertheless we
388 found that the pSym subclades tended to be associated with different chromosomal genospecies
389 (*gsE* and *gsB*), and the few notable exceptions allow us to pinpoint clear cases of pSym HGT
390 across the genospecies boundary. Previous approaches designed to detect introgression events
391 across genospecies support shared alleles at symbiosis genes *nifB*, *nodC*, and *fixT* across *gsE* and
392 *gsB* (35); our results suggest that the symbiosis plasmids move across these genospecies
393 boundaries as well. Although a much more thorough functional analysis would be required to
394 pinpoint the underlying drivers of transmission in our plasmids, extra recombination genes (L) in
395 the pSym might explain higher levels of recombination and PAV in this plasmid. Nevertheless it
396 is interesting to consider the genetic drivers and selective forces that might reinforce, versus
397 break up, this type of structure in chromosome-plasmid relationships through time and across
398 environmental conditions (e.g., the presence or absence of hosts, changing abiotic conditions
399 (51,58)).

400 Previously, we had reported differentiation of the symbiosis gene region between high-
401 quality partners in the control plots and low-quality partners in the N-fertilized plots in this
402 *Rhizobium* population, relative to the rest of the genome (42). Here, we add evidence that it is the
403 entire pSym, and not just the symbiosis gene region, that is differentiated. Together with
404 evidence for HGT of the pSym – both between chromosomal genospecies and within a single,
405 well-sampled genospecies (*gsE*) – we infer a shift in pSym subclade frequencies with a change in
406 the environment, rather than a gene-specific sweep at the symbiosis gene region. The shorter
407 branch lengths in higher partner quality pSym subclades might indicate purifying selection in
408 control plots, or relaxed selection in N-fertilized plots. Our new, plasmid-centric interpretation of
409 the genetic underpinnings of partner quality decline stems from both data type and analytical
410 methods; our long read-enabled full genome assemblies reveal diversity in symbiosis gene
411 location, duplicate pSym *repABC* types, and pSym gene content that was not previously visible.
412 What's more, these fully-resolved plasmidome sequences, combined with novel phylogenomic
413 analyses, allow us to quantify patterns of gene tree heterogeneity not only at the pSym, but
414 across all plasmid types and thus make inferences about the variation in transmission modes
415 among elements within a single genome.

416

417 *Transmission in the Rhizobium plasmidome*: The degree to which plasmid vertical versus
418 horizontal transmission modes are determined by chromosomal mechanisms, plasmid-specific
419 mechanisms, and/or the interaction is still being worked out (45,59). It has long been recognized
420 that plasmid transmission mode can evolve as the costs and benefits of conjugation-growth
421 tradeoffs shift (60,61), though the selective drivers in nature are not well-known. Most plasmid
422 transmission studies take place in the lab under strongly selective conditions in one or a few

423 laboratory or clinical strains (62,63), whereas population genomic studies on natural diversity
424 have historically not focused on ECEs given sequencing limitations (64,65). Studies of plasmid
425 transmission in natural populations are rare, though others have compared gene content and
426 plasmid diversity among non-coexisting plasmids within a single species (60,66). Here we
427 establish a novel framework for studying plasmid transmission in nature and find quite different
428 patterns of inheritance among the multiple plasmids that coexist within *Rhizobium* host cells.
429 Some plasmids appear to move more vertically alongside the chromosome, while others move
430 horizontally. Given that these plasmids co-occur in the same cells, plasmid-specific mechanisms
431 must explain this variation, at least in part. Our findings support evolutionary conceptions of
432 plasmids as having their own agency and fitness interests (61,67,68).

433 Rhizobia also provide a rare opportunity to study how plasmids and HGT facilitate
434 quantitative trait evolution in natural bacterial populations. Rhizobial symbiosis genes are known
435 to be both horizontally-transmitted and selected in nature (34,35). In our *Rhizobium* population,
436 we find frequent HGT of the pSym relative to the other plasmids paired with differentiation of
437 the pSym between N environments, suggesting environmentally-dependent selection on this
438 plasmid. The symbiosis genes in *Rhizobium* can move between plasmids (32,35,38,39), and as
439 we show here, those plasmids can vary in rates of HGT – potentially suggesting that the traits
440 governed by these mobile loci will evolve more or less rapidly depending on their genomic
441 location. Rapid evolution of symbiotic traits via gene-specific sweeps, whole plasmid sweeps,
442 and even plasmid loss (69) might be advantageous in context dependent mutualisms where the
443 costs and benefits of symbiosis shift with the biotic and abiotic context in which partners interact
444 (70,71).

445 By integrating genomics, plasmid biology, phylogenetics, and plant-microbe interactions
446 in wild bacteria, our study provides a framework for quantifying the relative rates of vertical and
447 horizontal transmission among the ECEs that coexist within a single species and elucidates the
448 role of plasmid HGT in an ecologically-important symbiosis that plays a critical role in global
449 nitrogen cycling.

450

451 MATERIALS AND METHODS

452 Strain isolation and growth: Here we generate novel genomes for a population of 62
453 *Rhizobium* strains originally isolated from old field successional plots at the KBS LTER. Full
454 methods detailing the long-term N fertilization experiment, strain isolations, and phenotypic
455 experiments to characterize partner quality symbiosis with three clover host species are described
456 elsewhere (41). Briefly, rhizobium strains were isolated from both N-fertilized and control plots.
457 Fertilized plots had been supplemented with 12.3 g N m⁻² per year granular ammonium nitrate
458 for 22 years prior to sampling, whereas control plots remained unfertilized.

459 DNA and sequencing: We grew the strain isolates in solid tryptone yeast (TY) media (5 g
460 L⁻¹ tryptone, 3 g L⁻¹ yeast extract, 6 mM CaCl₂, and 16 g L⁻¹ agar) plates at 30 C for 2 days.
461 After growth on solid media, single colonies were selected to inoculate 5 mL liquid TY media
462 for 1 day at 30 C in a roller drum. The PacBio Nanobind CBB kit (Pacbio, San Diego CA) was
463 used to extract high molecular weight (50–300+ kbp) DNA from 1 mL of bacterial culture for all
464 strain isolates. The DNA was sent for PacBio hifi long-read sequencing (72) at the W. M. Keck
465 center at the University of Illinois, where gDNAs were sheared with a Megaruptor 3 to an
466 average fragment length of 10kb then converted to barcoded libraries with the SMRTBell
467 Express Template Prep kit 3.0 and pooled in equimolar concentration. The pooled libraries were

468 sequenced on 2 SMRTcell 8M on a PacBio Sequel IIe using the CCS sequencing mode and a
469 30hs movie time. Circular consensus sequence (CCS) analysis was done using SMRTLink V11.0
470 using the following parameters: ccs --min-passes 3 --min-rq 0.99 lima --hifi-preset
471 SYMMETRIC --split-bam-named --peek-guess.

472 Genome assembly and annotation: All genomes were assembled using recommended
473 workflows in Trycycler (73). Briefly, raw reads were filtered for quality using Filtlong, assessing
474 both length and quality of the reads. The raw reads were then divided into a 12 maximally-
475 independent subsets using the subsample function in Trycycler. Next Trycycler uses three
476 assembly methods (Flye (74), Hifiasm (75), and Raven (76)) to generate independent whole-
477 genome assemblies for four read subsets each. Finally we used Trycycler to generate a
478 consensus genome based on these 12 assemblies, followed by manual curation to ensure
479 consistent genome structure across assemblies. Genomes were then annotated using NCBI's
480 Prokaryotic Genome Annotation Pipeline (PGAP).

481 Classification of plasmids: We generated individual fasta files for every replicon in every
482 strain then used sourmash (77) to generate and compare k-mer signatures and calculate pairwise
483 Jaccard Index (JI) values using the parameters: sketch dna -p scaled=10000, k=31, compare -p 8.
484 Signature tables were then imported into Cytoscape, and component graphs were created using a
485 minimum JI value of 0.1 to delineate clusters; this cutoff was chosen based on similar analyses
486 of *Rhizobium*, *Agrobacterium*, *Bradyrhizobium*, as well as a global plasmid analysis (7,37,78).
487 We classified the resulting clusters as plasmid “types”, then layered this plasmid presence onto
488 phylogenetic trees using “ggtree” and “ggplot” libraries in R (version 4.3.2 “eye holes”). We
489 used the package popgenome to calculate pi and Average Nucleotide Identity (ANI) for aligned
490 core regions of each plasmid type.

491 *Phylogenetic trees*: We used a custom SPINE-Nucmer pipeline (<https://github.com/Alan->
492 Collins/Spine-Nucmer-SNPs) to generate core genome alignments for all 62 genomes (core
493 genes were all chromosomal), all chromosomes (resulting in the same core), and subsequently
494 for each plasmid type. For each, core components were concatenated, aligned using MAFFT, and
495 used to generate phylogenetic trees in IQTree2 with parameters: -bb 10000 -st DNA.

496 *Presence-absence data and Principal Coordinate Analysis*: We used PIRATE (79) on
497 PGAP-annotated genomes to define orthologous gene presence-absence using PIRATE (79),,
498 followed by Principal Coordinate Analysis (PCoA) of this output using the “dplyr”, “vegan”
499 packages in Rstudio to calculate Jaccard distances between all samples based on shared gene
500 content. Pairwise distances were then transformed using the “cmdscale” function from the “stats”
501 package and sketched using the “ggplot” package. Gene presence-absence plots were made using
502 “pheatmap” package.

503 *Gene-tree simulations*: To assess patterns of plasmid inheritance, we created custom
504 scripts to generate distributions of gene tree distances among genes randomly subsampled from
505 within (or across) replicons in our population – with larger gene tree distances indicating more
506 gene tree heterogeneity and thus increased horizontal (versus vertical) transmission. First we
507 generated a list of the core genes in each plasmid using PIRATE. For each replicon, we used
508 custom R scripts to randomly subsample two sets of 100 genes (10 from the small core of the
509 type IV/pSym) from each strain, align them, create two phylogenetic trees, and calculate
510 Generalized Robinson-Foulds (GRF) distance between trees, then repeated this process over
511 1000 random resamplings. We plotted these GRF distributions using geom_density function in
512 the ggplot2 package. Next we repeated this process comparing samples from each plasmid to the
513 chromosome. Because the chromosome is necessarily vertically transmitted each generation, the

514 distribution of chromosome-to-chromosome comparisons serves as a null expectation for the
515 GRF distribution of a vertically inherited element in the presence of horizontal gene transfer,
516 recombination, and gene tree uncertainty.

517 **Availability of data and materials**

518 Phenotypic data, and scripts used for generating analyses will be available upon acceptance.
519 Genomes will be uploaded to NCBI genome database upon acceptance.

520

521 **ACKNOWLEDGMENTS**

522 D.V.G., K.D.H., C.K.V., and R.J.W. conceived the project. D.V.G. extracted and submitted
523 DNA for sequencing. D.V.G. and C.P.S. generated the genomes and performed bioinformatic
524 analyses. D.V.G. and K.D.H. drafted the article, and all authors participated in critical revisions
525 and approved the final version for submission. K.D.H., C.K.V., R.J.W., J.A.L. acquired funding
526 for the project.

527

528 We would like to acknowledge Dr. Alvaro Hernandez and Chris Wright from the Roy J. Carver
529 Biotechnology Center at the University of Illinois for library preparation and sequencing. We
530 thank Dr. Jaya Chandrashekhar, Dr. Susan Thomas, and the rest of GEMS for their feedback,
531 help, and coordination of lab protocols. We thank Dr. Ilan Shomorony, Dr. Pamela Martinez, and
532 Ivan Sosa-Marquez for their invaluable help, motivation, and insightful advice during the
533 manuscript writing process. The results and interpretation of this manuscript accomplished by
534 J.G.M. were in their personal capacity and are the author's own views and do not reflect the view
535 of their employer.

536

537 **Competing interests**

538 The authors declare that they have no competing interests

539 **Funding**

540 This research is a contribution of the GEMS Biology Integration Institute, funded by the

541 National Science Foundation DBI Biology Integration Institutes Program, Award # 2022049, as

542 well as NSF Award #1257938.

543

544

545 **REFERENCES**

546 1. Kirchberger PC, Schmidt ML, Ochman H. The Ingenuity of Bacterial Genomes. *Annu Rev*
547 *Microbiol.* 2020 Sep 8;74(Volume 74, 2020):815–34.

548 2. Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, et al. Genome Streamlining
549 in a Cosmopolitan Oceanic Bacterium. *Science.* 2005 Aug 19;309(5738):1242–5.

550 3. McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. *Nat Rev*
551 *Microbiol.* 2012 Jan;10(1):13–26.

552 4. Finan TM. Evolving Insights: Symbiosis Islands and Horizontal Gene Transfer. *J Bacteriol.*
553 2002 Jun;184(11):2855–6.

554 5. Karcagi I, Draskovits G, Umenhoffer K, Fekete G, Kovács K, Méhi O, et al. Indispensability of
555 Horizontally Transferred Genes and Its Impact on Bacterial Genome Streamlining. *Mol Biol*
556 *Evol.* 2016 May 1;33(5):1257–69.

557 6. Riley AB, Grillo MA, Epstein B, Tiffin P, Heath KD. Discordant population structure among
558 rhizobium divided genomes and their legume hosts. *Mol Ecol.* 2023;32(10):2646–59.

559 7. Weisberg AJ, Rahman A, Backus D, Tyavanagimatt P, Chang JH, Sachs JL. Pangenome
560 Evolution Reconciles Robustness and Instability of Rhizobial Symbiosis. *mBio.* 2022 Apr
561 13;13(3):e00074-22.

562 8. Epstein B, Burghardt LT, Heath KD, Grillo MA, Kostanecki A, Hämälä T, et al. Combining
563 GWAS and population genomic analyses to characterize coevolution in a legume-rhizobia
564 symbiosis. *Mol Ecol.* 2023;32(14):3798–811.

565 9. Landeta C, Dávalos A, Cevallos MÁ, Geiger O, Brom S, Romero D. Plasmids with a
566 Chromosome-Like Role in Rhizobia. *J Bacteriol.* 2011 Feb 24;193(6):1317–26.

567 10. Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV. Co-selection of antibiotic and
568 metal resistance. *Trends Microbiol.* 2006 Apr 1;14(4):176–82.

569 11. Foster TJ. Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in
570 bacteria. *Microbiol Rev.* 1983 Sep;47(3):361–409.

571 12. Ghosh A, Singh A, Ramteke PW, Singh VP. Characterization of Large Plasmids Encoding
572 Resistance to Toxic Heavy Metals in *Salmonella abortus equi*. *Biochem Biophys Res*
573 *Commun.* 2000 May 27;272(1):6–11.

574 13. Carattoli A. Resistance Plasmid Families in Enterobacteriaceae. *Antimicrob Agents*
575 *Chemother.* 2009 Jun;53(6):2227–38.

576 14. Jackson CR, Davis JA, Frye JG, Barrett JB, Hiott LM. Diversity of Plasmids and Antimicrobial
577 Resistance Genes in Multidrug-Resistant *Escherichia coli* Isolated from Healthy Companion
578 Animals. *Zoonoses Public Health*. 2015;62(6):479–88.

579 15. McMillan EA, Gupta SK, Williams LE, Jové T, Hiott LM, Woodley TA, et al. Antimicrobial
580 Resistance Genes, Cassettes, and Plasmids Present in *Salmonella enterica* Associated With
581 United States Food Animals. *Front Microbiol* [Internet]. 2019 Apr 17 [cited 2024 Mar 30];10.
582 Available from:
583 <https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2019.00832/full>

584 16. Brockhurst MA, Harrison E, Hall JPJ, Richards T, McNally A, MacLean C. The Ecology and
585 Evolution of Pangenomes. *Curr Biol*. 2019 Oct;29(20):R1094–103.

586 17. del Solar G, Giraldo R, Ruiz-Echevarría MJ, Espinosa M, Díaz-Orejas R. Replication and
587 Control of Circular Bacterial Plasmids. *Microbiol Mol Biol Rev*. 1998 Jun;62(2):434–64.

588 18. Domingues CPF, Rebelo JS, Monteiro F, Nogueira T, Dionisio F. Harmful behaviour through
589 plasmid transfer: a successful evolutionary strategy of bacteria harbouring conjugative
590 plasmids. *Philos Trans R Soc B Biol Sci*. 2021 Nov 29;377(1842):20200473.

591 19. Virolle C, Goldlust K, Djermoun S, Bigot S, Lesterlin C. Plasmid Transfer by Conjugation in
592 Gram-Negative Bacteria: From the Cellular to the Community Level. *Genes*. 2020
593 Nov;11(11):1239.

594 20. Mira A. The bacterial pan-genome: a new paradigm in microbiology. *Int Microbiol*.
595 2010;(13):45–57.

596 21. van Passel MW, Bart A, Luyf AC, van Kampen AH, van der Ende A. Compositional
597 discordance between prokaryotic plasmids and host chromosomes. *BMC Genomics*. 2006
598 Feb 15;7(1):26.

599 22. Harrison E, Brockhurst MA. Plasmid-mediated horizontal gene transfer is a coevolutionary
600 process. *Trends Microbiol*. 2012 Jun 1;20(6):262–7.

601 23. Wardell GE, Hynes MF, Young PJ, Harrison E. Why are rhizobial symbiosis genes mobile?
602 *Philos Trans R Soc B Biol Sci*. 2021 Nov 29;377(1842):20200471.

603 24. Mira A, Klasson L, Andersson SGE. Microbial genome evolution: sources of variability. *Curr
604 Opin Microbiol*. 2002 Oct 1;5(5):506–12.

605 25. Iwasaki W, Takagi T. Rapid Pathway Evolution Facilitated by Horizontal Gene Transfers
606 across Prokaryotic Lineages. *PLOS Genet*. 2009 Mar 6;5(3):e1000402.

607 26. Valiente-Mullor C, Beamud B, Ansari I, Francés-Cuesta C, García-González N, Mejía L, et al.
608 One is not enough: On the effects of reference genome for the mapping and subsequent
609 analyses of short-reads. *PLOS Comput Biol*. 2021 Jan 27;17(1):e1008678.

610 27. Hurgobin B, Edwards D. SNP Discovery Using a Pangenome: Has the Single Reference
611 Approach Become Obsolete? *Biology*. 2017 Mar;6(1):21.

612 28. Onishi-Seebacher M, Korbel JO. Challenges in studying genomic structural variant formation
613 mechanisms: The short-read dilemma and beyond. *BioEssays*. 2011;33(11):840–50.

614 29. Alkan C, Sajadian S, Eichler EE. Limitations of next-generation genome sequence assembly.
615 *Nat Methods*. 2011 Jan;8(1):61–5.

616 30. Durrant MG, Li MM, Siranosian BA, Montgomery SB, Bhatt AS. A Bioinformatic Analysis of
617 Integrative Mobile Genetic Elements Highlights Their Role in Bacterial Adaptation. *Cell Host*
618 *Microbe*. 2020 Nov 11;28(5):767.

619 31. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with
620 Antimicrobial Resistance. *Clin Microbiol Rev*. 2018 Aug;31(4):10.1128/cmr.00088-17.

621 32. Reeve W, O'Hara G, Chain P, Ardley J, Bräu L, Nandesena K, et al. Complete genome
622 sequence of *Rhizobium leguminosarum* bv. *trifolii* strain WSM1325, an effective
623 microsymbiont of annual Mediterranean clovers. *Stand Genomic Sci*. 2010 Jun 30;2(3):347.

624 33. Burghardt LT, diCenzo GC. The evolutionary ecology of rhizobia: multiple facets of
625 competition before, during, and after symbiosis with legumes. *Curr Opin Microbiol*. 2023
626 Apr 1;72:102281.

627 34. Epstein B, Tiffin P. Comparative genomics reveals high rates of horizontal transfer and
628 strong purifying selection on rhizobial symbiosis genes. *Proc R Soc B Biol Sci*. 2021 Jan
629 6;288(1942):20201804.

630 35. Cavassim MIA, Moeskjær S, Moslemi C, Fields B, Bachmann A, Vilhjálmsson BJ, et al.
631 Symbiosis genes show a unique pattern of introgression and selection within a *Rhizobium*
632 *leguminosarum* species complex. *Microb Genomics* [Internet]. 2020 Mar 16 [cited 2021 Apr
633 21];6(4). Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7276703/>

634 36. Young JPW, Jorrin B, Moeskjær S, James EK. *Rhizobium brockwellii* sp. nov., *Rhizobium*
635 *johnstonii* sp. nov. and *Rhizobium beringeri* sp. nov., three genospecies within the
636 *Rhizobium leguminosarum* species complex. *Int J Syst Evol Microbiol*. 2023;73(7):005979.

637 37. Weisberg AJ, Miller M, Ream W, Grünwald NJ, Chang JH. Diversification of plasmids in a
638 genus of pathogenic and nitrogen-fixing bacteria. *Philos Trans R Soc B Biol Sci*. 2021 Nov
639 29;377(1842):20200466.

640 38. Young JPW, Moeskjær S, Afonin A, Rahi P, Maluk M, James EK, et al. Defining the *Rhizobium*
641 *leguminosarum* Species Complex. *Genes*. 2021 Jan;12(1):111.

642 39. Reeve W, O'Hara G, Chain P, Ardley J, Bräu L, Nandesena K, et al. Complete genome
643 sequence of *Rhizobium leguminosarum* bv *trifolii* strain WSM2304, an effective

644 microsymbiont of the South American clover *Trifolium polymorphum*. *Stand Genomic Sci.*
645 2010 Feb 28;2(1):66–76.

646 40. Terpolilli J, Rui T, Yates R, Howieson J, Poole P, Munk C, et al. Genome sequence of
647 *Rhizobium leguminosarum* bv *trifolii* strain WSM1689, the microsymbiont of the one
648 flowered clover *Trifolium uniflorum*. *Stand Genomic Sci.* 2014 Jun 15;9(3):527–39.

649 41. Weese DJ, Heath KD, Dentinger BTM, Lau JA. Long-term nitrogen addition causes the
650 evolution of less-cooperative mutualists. *Evolution.* 2015;69(3):631–42.

651 42. Klinger CR, Lau JA, Heath KD. Ecological genomics of mutualism decline in nitrogen-fixing
652 bacteria. *Proc R Soc B Biol Sci.* 2016 Mar 16;283(1826):20152563.

653 43. Gordon BR, Klinger CR, Weese DJ, Lau JA, Burke PV, Dentinger BTM, et al. Decoupled
654 genomic elements and the evolution of partner quality in nitrogen-fixing rhizobia. *Ecol Evol.*
655 2016;6(5):1317–27.

656 44. Mazur A, Majewska B, Stasiak G, Wielbo J, Skorupska A. repABC-based replication systems
657 of *Rhizobium leguminosarum* bv. *trifolii* TA1 plasmids: Incompatibility and evolutionary
658 analyses. *Plasmid.* 2011 Jul 1;66(2):53–66.

659 45. Pinto UM, Pappas KM, Winans SC. The ABCs of plasmid replication and segregation. *Nat Rev*
660 *Microbiol.* 2012 Nov;10(11):755–65.

661 46. Dunny GM, Brickman TJ, Dworkin M. Multicellular behavior in bacteria: communication,
662 cooperation, competition and cheating. *BioEssays.* 2008;30(4):296–8.

663 47. Sachs JL, Ehinger MO, Simms EL. Origins of cheating and loss of symbiosis in wild
664 *Bradyrhizobium*. *J Evol Biol.* 2010;23(5):1075–89.

665 48. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI
666 prokaryotic genome annotation pipeline. *Nucleic Acids Res.* 2016 Aug 19;44(14):6614–24.

667 49. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2:
668 Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic
669 Scale. *Mol Biol Evol.* 2021 Dec 1;38(12):5825–9.

670 50. Dewan I, Uecker H. Is the distribution of plasmid lengths bimodal? *Plasmid.* 2024 Jan 1;129–
671 130:102721.

672 51. diCenzo GC, Finan TM. The Divided Bacterial Genome: Structure, Function, and Evolution.
673 *Microbiol Mol Biol Rev.* 2017 Aug 9;81(3):e00019-17.

674 52. Garcillán-Barcia MP, Alvarado A, de la Cruz F. Identification of bacterial plasmids based on
675 mobility and plasmid population biology. *FEMS Microbiol Rev.* 2011 Sep 1;35(5):936–56.

676 53. Thomas CM. Paradigms of plasmid organization. *Mol Microbiol*. 2000;37(3):485–91.

677 54. Liao Q, Ren Z, Wiesler EE, Fuqua C, Wang X. A dicentric bacterial chromosome requires
678 XerC/D site-specific recombinases for resolution. *Curr Biol*. 2022 Aug 22;32(16):3609–
679 3618.e7.

680 55. Pérez-Osegueda Á, Cevallos MA. RepA and RepB exert plasmid incompatibility repressing
681 the transcription of the *repABC* operon. *Plasmid*. 2013 Nov 1;70(3):362–76.

682 56. González V, Bustos P, Ramírez-Romero MA, Medrano-Soto A, Salgado H, Hernández-
683 González I, et al. The mosaic structure of the symbiotic plasmid of *Rhizobium etliCFN42* and
684 its relation to other symbiotic genome compartments. *Genome Biol*. 2003 May 13;4(6):R36.

685 57. Pérez Carrascal OM, VanInsberghe D, Juárez S, Polz MF, Vinuesa P, González V. Population
686 genomics of the symbiotic plasmids of sympatric nitrogen-fixing *Rhizobium* species
687 associated with *Phaseolus vulgaris*. *Environ Microbiol*. 2016;18(8):2660–76.

688 58. Ling J, Wang H, Wu P, Li T, Tang Y, Naseer N, et al. Plant nodulation inducers enhance
689 horizontal gene transfer of *Azorhizobium caulinodans* symbiosis island. *Proc Natl Acad Sci*.
690 2016 Nov 29;113(48):13875–80.

691 59. Funnell BE. Coordinating plasmid partition with bacterial chromosome segregation. *Proc
692 Natl Acad Sci*. 2024 May 21;121(21):e2407081121.

693 60. Bethke JH, Ma HR, Tsoi R, Cheng L, Xiao M, You L. Vertical and horizontal gene transfer
694 tradeoffs direct plasmid fitness. *Mol Syst Biol*. 2023 Feb 10;19(2):e11300.

695 61. Turner PE, Cooper VS, Lenski RE. Tradeoff Between Horizontal and Vertical Modes of
696 Transmission in Bacterial Plasmids. *Evolution*. 1998 Apr;52(2):315–29.

697 62. Humphrey S, San Millán Á, Toll-Riera M, Connolly J, Flor-Duro A, Chen J, et al.
698 Staphylococcal phages and pathogenicity islands drive plasmid evolution. *Nat Commun*.
699 2021 Oct 6;12(1):5845.

700 63. Peter S, Bosio M, Gross C, Bezdan D, Gutierrez J, Oberhettinger P, et al. Tracking of
701 Antibiotic Resistance Transfer and Rapid Plasmid Evolution in a Hospital Setting by
702 Nanopore Sequencing. *mSphere*. 2020 Aug 19;5(4):10.1128/msphere.00525-20.

703 64. Denamur E, Clermont O, Bonacorsi S, Gordon D. The population genetics of pathogenic
704 *Escherichia coli*. *Nat Rev Microbiol*. 2021 Jan;19(1):37–54.

705 65. Wyres KL, Lam MMC, Holt KE. Population genomics of *Klebsiella pneumoniae*. *Nat Rev
706 Microbiol*. 2020 Jun;18(6):344–59.

707 66. Matamoros S, van Hattem JM, Arcilla MS, Willemse N, Melles DC, Penders J, et al. Global
708 phylogenetic analysis of *Escherichia coli* and plasmids carrying the *mcr-1* gene indicates
709 bacterial diversity but plasmid restriction. *Sci Rep.* 2017 Nov 10;7(1):15364.

710 67. Carroll AC, Wong A. Plasmid persistence: costs, benefits, and the plasmid paradox. *Can J
711 Microbiol.* 2018 May;64(5):293–304.

712 68. Alonso-del Valle A, León-Sampedro R, Rodríguez-Beltrán J, DelaFuente J, Hernández-García
713 M, Ruiz-Garbajosa P, et al. Variability of plasmid fitness effects contributes to plasmid
714 persistence in bacterial communities. *Nat Commun.* 2021 May 11;12(1):2653.

715 69. Gano-Cohen KA, Wendlandt CE, Al Moussawi K, Stokes PJ, Quides KW, Weisberg AJ, et al.
716 Recurrent mutualism breakdown events in a legume rhizobia metapopulation. *Proc R Soc B
717 Biol Sci.* 2020 Jan 29;287(1919):20192549.

718 70. Heath KD, Stinchcombe JR. Explaining Mutualism Variation: A New Evolutionary Paradox?
719 *Evolution.* 2014;68(2):309–17.

720 71. Negotiation, Sanctions, and Context Dependency in the Legume-Rhizobium Mutualism.
721 [Internet]. [cited 2024 Jul 29]. Available from: <https://www-journals-uchicago-edu.proxy2.library.illinois.edu/doi/epdf/10.1086/659997>

723 72. Wenger AM, Peluso P, Rowell WJ, Chang PC, Hall RJ, Concepcion GT, et al. Accurate circular
724 consensus long-read sequencing improves variant detection and assembly of a human
725 genome. *Nat Biotechnol.* 2019 Oct;37(10):1155–62.

726 73. Wick RR, Judd LM, Cerdeira LT, Hawkey J, Méric G, Vezina B, et al. Trycycler: consensus
727 long-read assemblies for bacterial genomes. *Genome Biol.* 2021 Sep 14;22(1):266.

728 74. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat
729 graphs. *Nat Biotechnol.* 2019 May;37(5):540–6.

730 75. Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using
731 phased assembly graphs with hifiasm. *Nat Methods.* 2021 Feb;18(2):170–5.

732 76. Vaser R, Šikić M. Time- and memory-efficient genome assembly with Raven. *Nat Comput
733 Sci.* 2021 May;1(5):332–6.

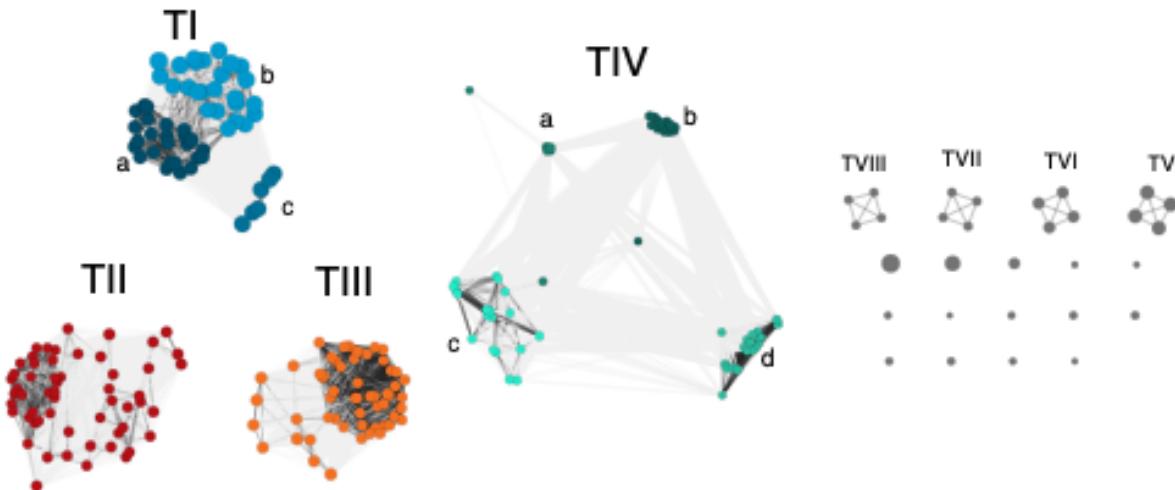
734 77. Pierce NT, Irber L, Reiter T, Brooks P, Brown CT. Large-scale sequence comparisons with
735 *sourmash* [Internet]. F1000Research; 2019 [cited 2024 Jul 1]. Available from:
736 <https://f1000research.com/articles/8-1006>

737 78. Acman M, van Dorp L, Santini JM, Balloux F. Large-scale network analysis captures biological
738 features of bacterial plasmids. *Nat Commun.* 2020 May 15;11(1):2452.

739 79. Bayliss SC, Thorpe HA, Coyle NM, Sheppard SK, Feil EJ. PIRATE: A fast and scalable
740 pangenomics toolbox for clustering diverged orthologues in bacteria. *GigaScience*. 2019 Oct
741 1;8(10):giz119.

742

743 **FIGURES AND TABLES**

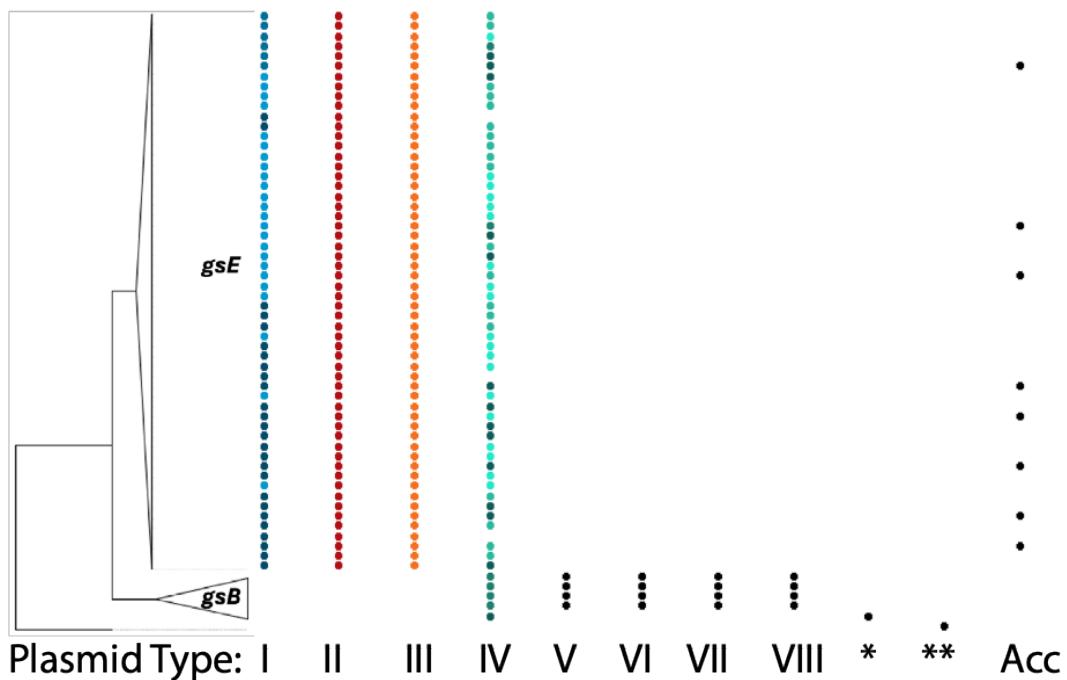

744 Table 1: Summary of *Rhizobium* plasmids featured in this study. For plasmids with more than
745 one representative, we report the range of plasmid size, core length, number of core genes,
746 nucleotide diversity (π), and average nucleotide identity (ANI). Rh type is based on *repABC*
747 sequence as in previous studies (35).

Plasmid Type	N	present in	Size (Mbp)	Core length (Mbp)	Core genes	π	ANI	Rh Type
I	56	gsE	0.92-1.43	0.62	510	0.015	97.94	1
II	56	gsE	0.51-0.63	0.39	335	0.02	97.32	2
III	56	gsE	0.56-0.73	0.50	421	0.017	97.89	4
IV	58	gsE, gsB, Rht_717_N	0.26-0.43	0.05	49	0.021	95.25	4, 6, 7, 8
V	4	gsB	0.93	0.93	587	0	100	1
VI	4	gsB	0.67	0.67	419	0	100	2
VII	4	gsB	0.39	0.39	219	0	100	5
VIII	4	gsB	0.35	0.35	246	0	100	3
IX	1	Rht_717_N	1.10	-	-	-	-	1
X	1	Rht_717_N	0.61	-	-	-	-	2
XI	1	Rht_717_N	0.31	-	-	-	-	3
XII	1	Rht_717_N	0.29	-	-	-	-	9
XIII	1	Rht_717_N	0.21	-	-	-	-	4

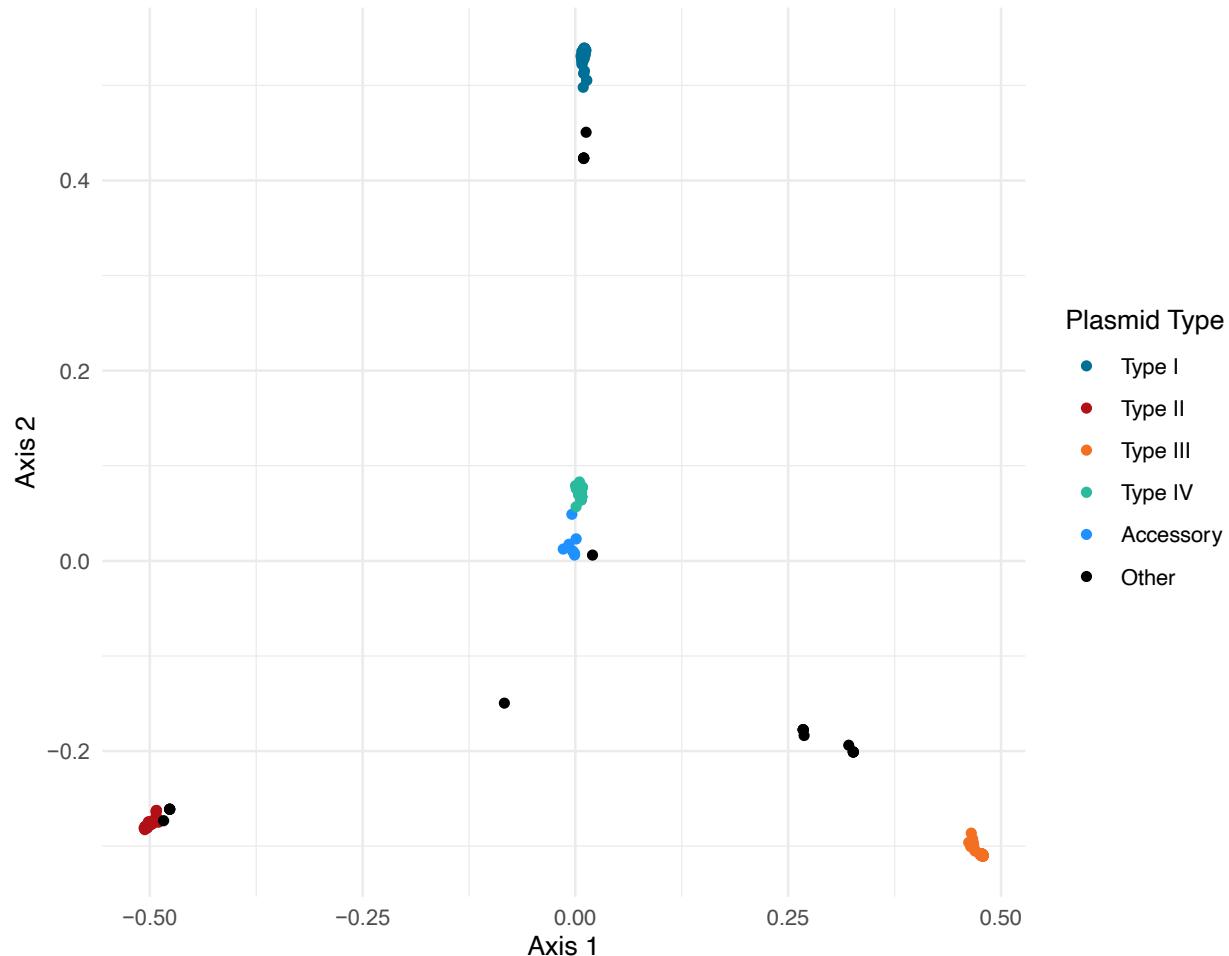
748

749

750 Figure 1: Weighted, undirected network of all 257 plasmids from a population of 62 clover-
751 associated natural isolates of *Rhizobium*. Plasmids (nodes) were grouped by Jaccard-Index
752 similarity > 0.1 into types. Darker edges indicate more pairwise similarity between nodes. Nodes
753 were colored blue (type I), red (type II), orange (Type III), and green (Type IV) and shaded by
754 subgroup for type I and IV plasmids. Plasmid types with few representatives (V-VIII and
755 singletons) were left unshaded.

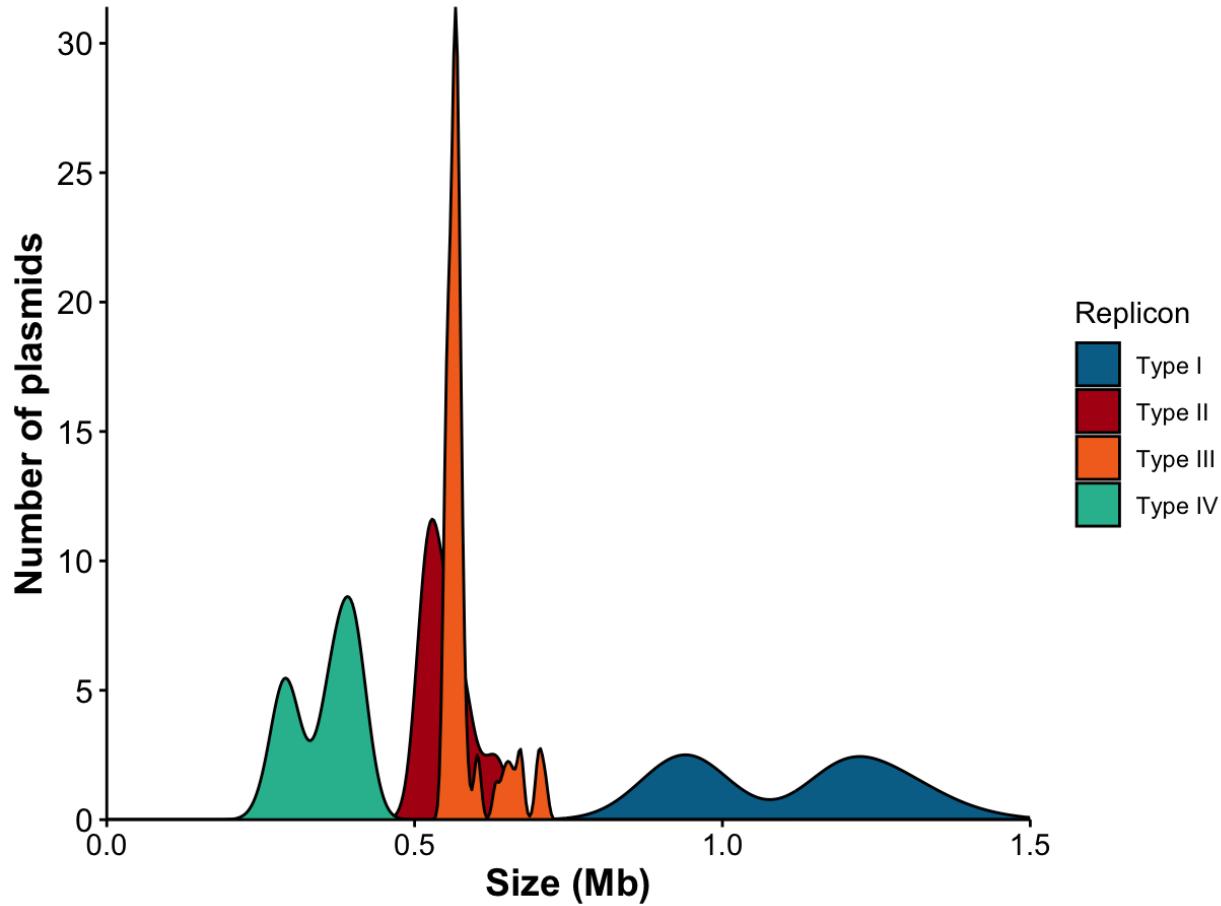


756


757

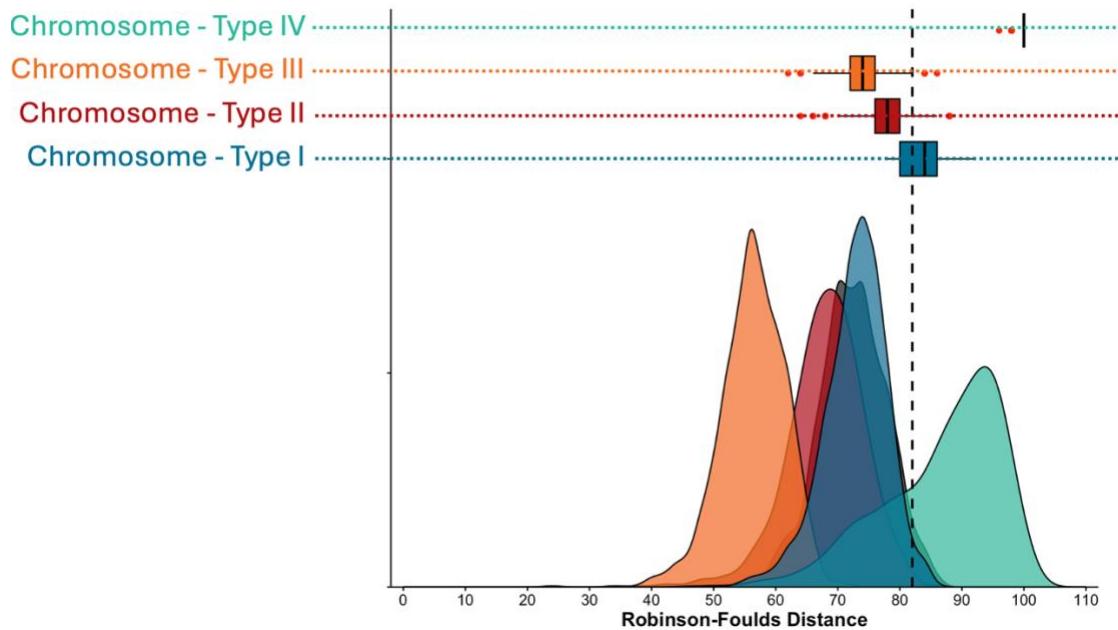
758 Figure 2: Distribution of plasmid types across the concatenated core chromosomal tree from a
759 natural population of 62 clover-associated strains of *Rhizobium*. Tree tips were collapsed to
760 highlight differences in plasmid composition between genospecies (*gsE* and *gsB*). Subclades
761 within types are represented by shape for Type I: circles (Type I-a), squares (Type I-b), and
762 triangles (Type I-c) and Type IV: circles (Type IV-a), squares (Type IV-b), triangles (Type IV-
763 c), and diamonds (type IV-d). Six replicons from strain 717_N (*) and a single 1.4 Mbp replicon
764 from strain 773_N (**) are each represented by a single dot.

765



768 Figure 3: Principal Coordinate Analysis (PCoA) based on the presence-absence matrix of
769 orthologous gene clusters in the *Rhizobium* plasmidome of 62 natural isolates. Each point
770 represents a single plasmid, with points closer together indicating more shared gene content.

771

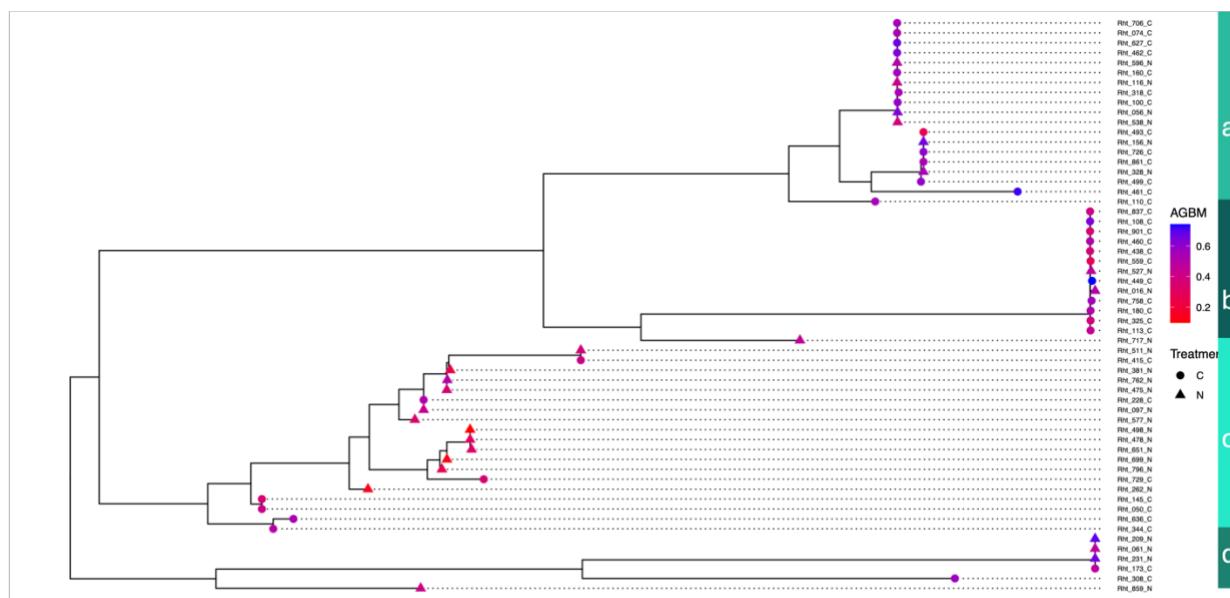

772 Figure 4: Distribution of plasmid size for each of the four major plasmid types (I-IV) commonly
773 found in *Rhizobium* genospecies (*gsE*). Distributions of types I-III include plasmids from all 56
774 *gsE* strains, whereas the type IV distribution includes 58 type IV plasmids from *gsE* and *gsB*
775 strains, as well as 717_N and 773_N.

776

777

778 Figure 5: GRF distance distributions of within-element and across-element gene trees. Values
779 closer to 0 represent higher levels of across-tree congruence, while values closer to 100 represent
780 higher levels of incongruence among trees. Within-element distances for the chromosome (gray),
781 Type I plasmid (blue), Type II plasmid (red), Type III plasmid (orange), and Type IV plasmid
782 (green) are shown as geometric smoothed distributions along the bottom. GRF distance
783 distributions between each plasmid and the chromosome are represented as horizontal box and
784 whisker plots. The vertical dotted gray line represents the 95th percentile of the within-
785 chromosome distribution.

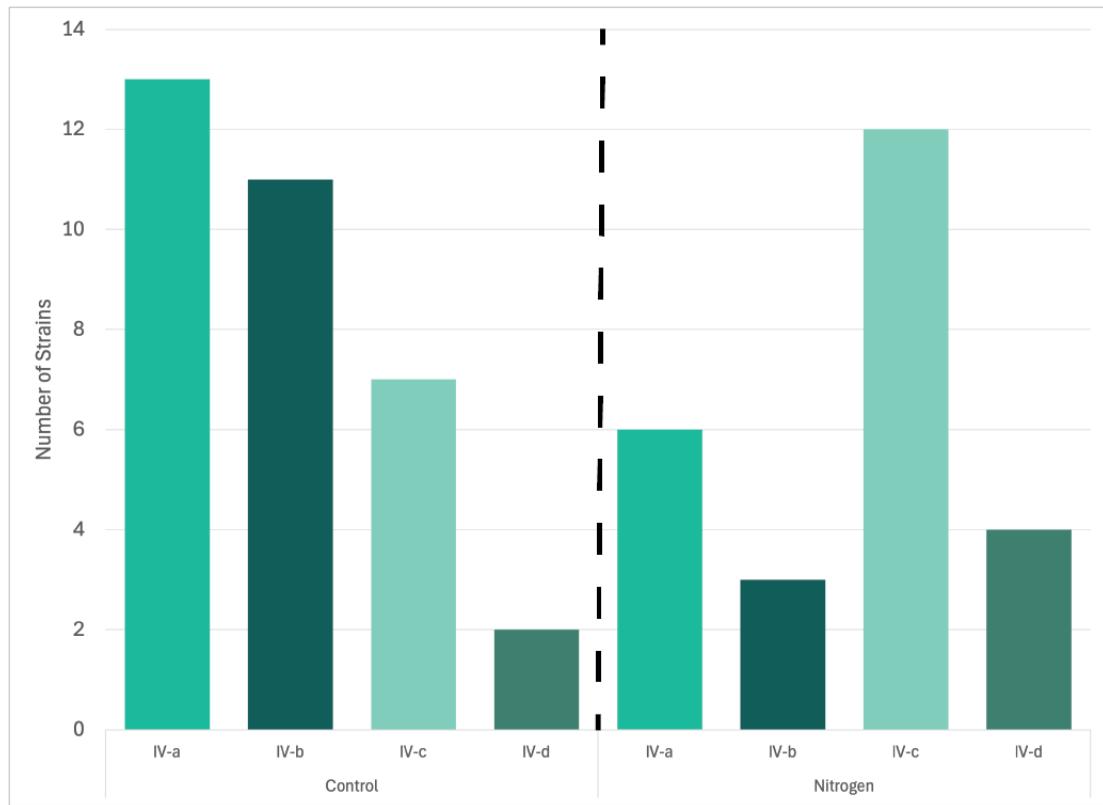
786


787

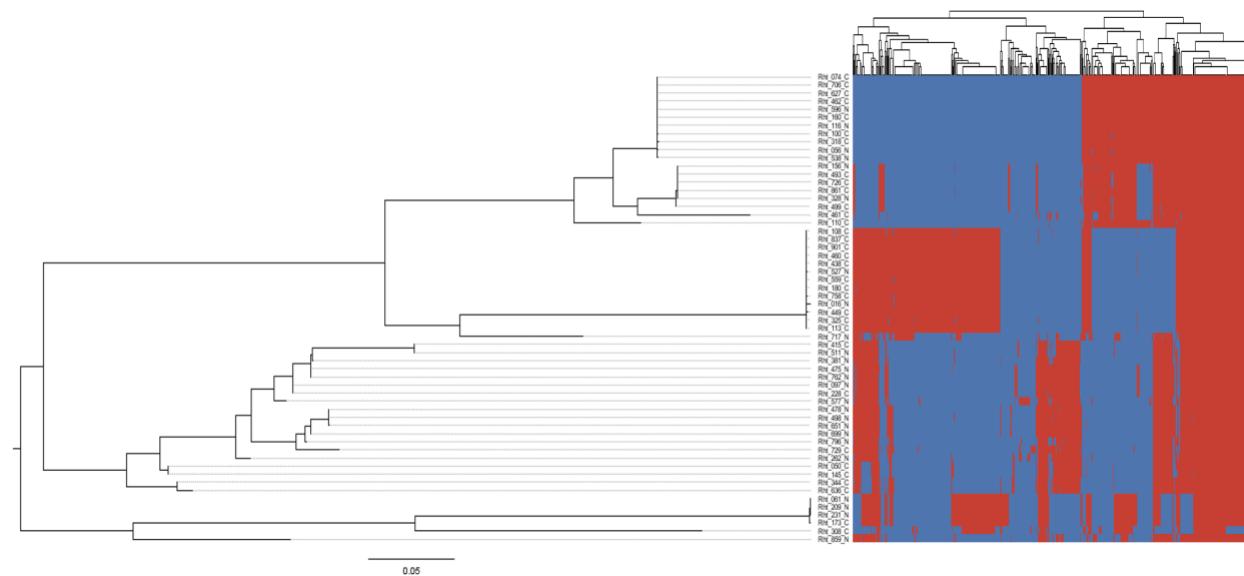
788

789

790 Figure 6: (A) Phylogenetic tree of the type IV plasmid (pSym) based on concatenated core gene
791 alignment, with nodes labelled with aboveground biomass (AGBM as color gradient) and plot
792 treatment of origin (C for control or N for N-fertilized). Type IV subclades (a-d) as in Figure 1
793 are indicated in shades of green on the right. (B) Number of strains from each Type IV sub-clade
794 isolated from either control (left) or N-fertilized (right) plots from the KBS LTER. Any nodes
795 with < 85% bootstrap support were collapsed.


796 A.

797


798

799 B.

800

801 C.

802

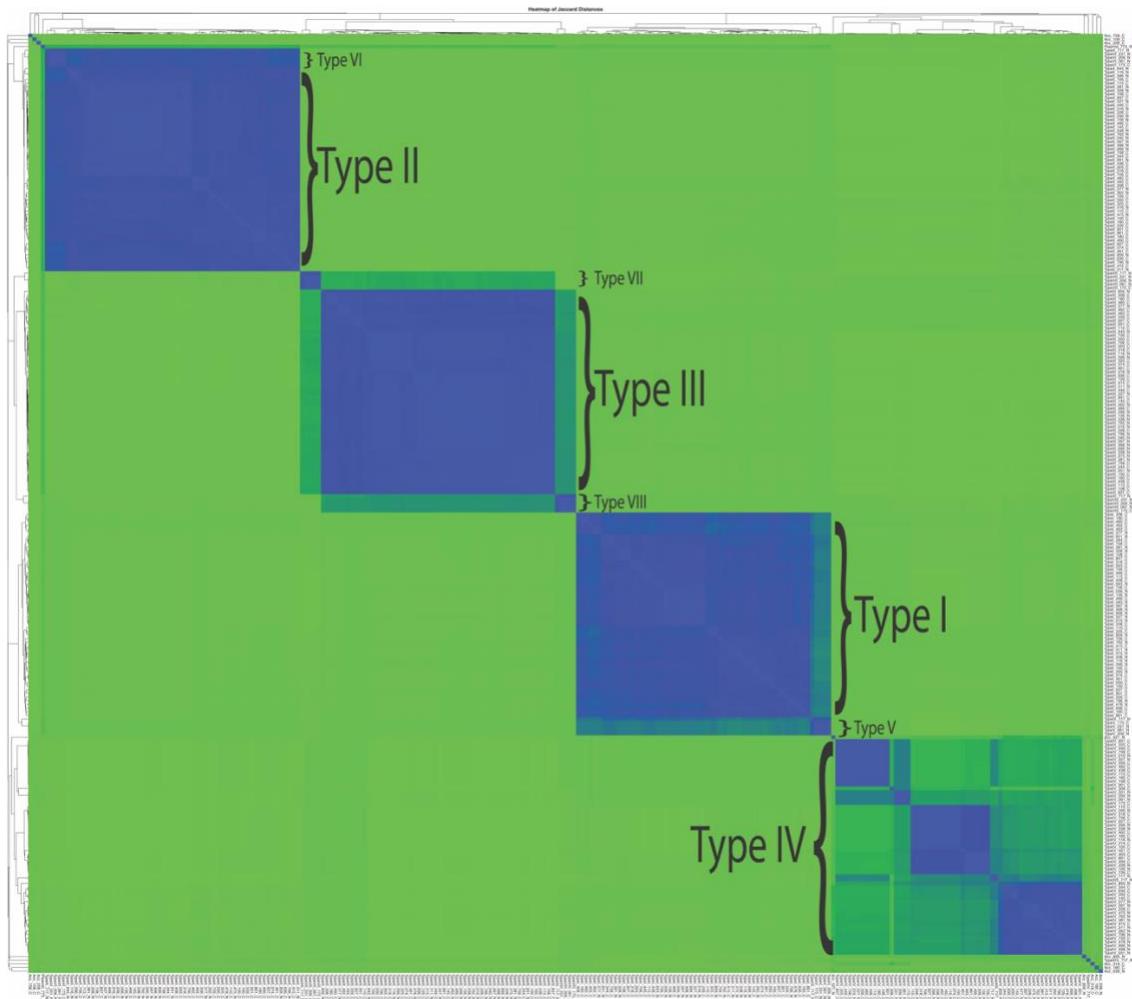
803 **SUPPLEMENTARY FIGURES AND TABLES**

804 Table S1: Size and strain of origin of accessory plasmids in the pangenome.

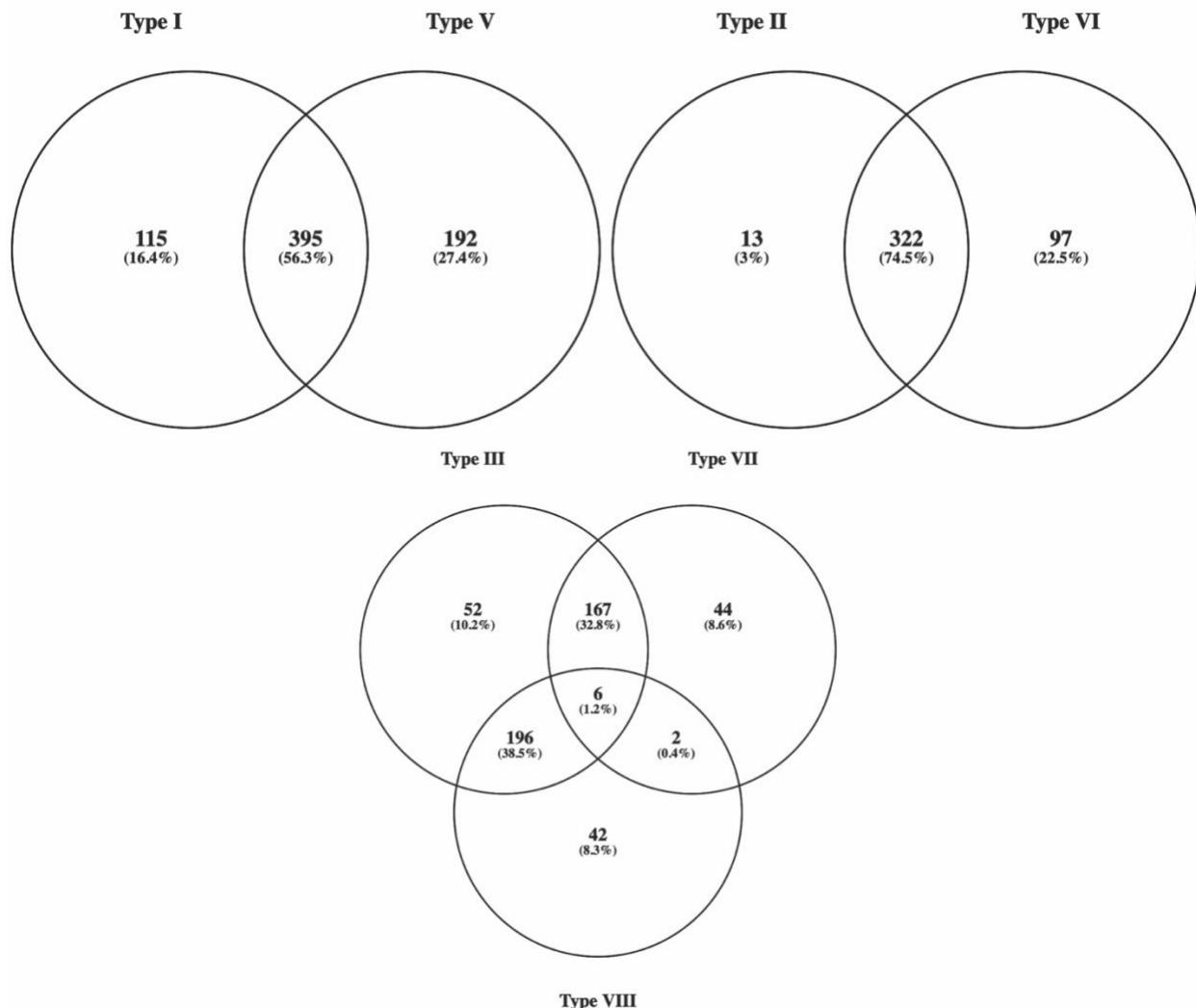
Accessory plasmid's strain	Size (bp)
Rht_108_C	72609
Rht_180_C	122968
Rht_228_C	73852
Rht_318_C	188843
Rht_527_N	277757
Rht_538_N	245492
Rht_758_C	22509
Rht_859_N	208987

805

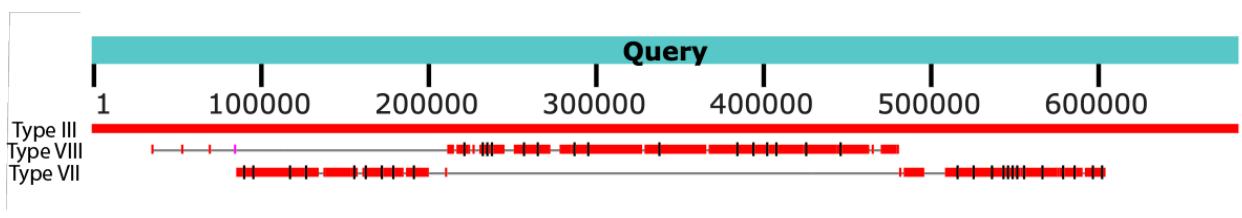
806


807 Figure S1: Chromosomal phylogeny of clover-associated *Rhizobium* strains from the KBS LTER
808 population alongside one representative each from five genospecies (A-E) of the *Rhizobium*
809 species complex, as described in Cavassim et al. 2020. Tree was manually rooted on strain
810 717_N. Any nodes with < 85% bootstrap support were collapsed.

811
812
813

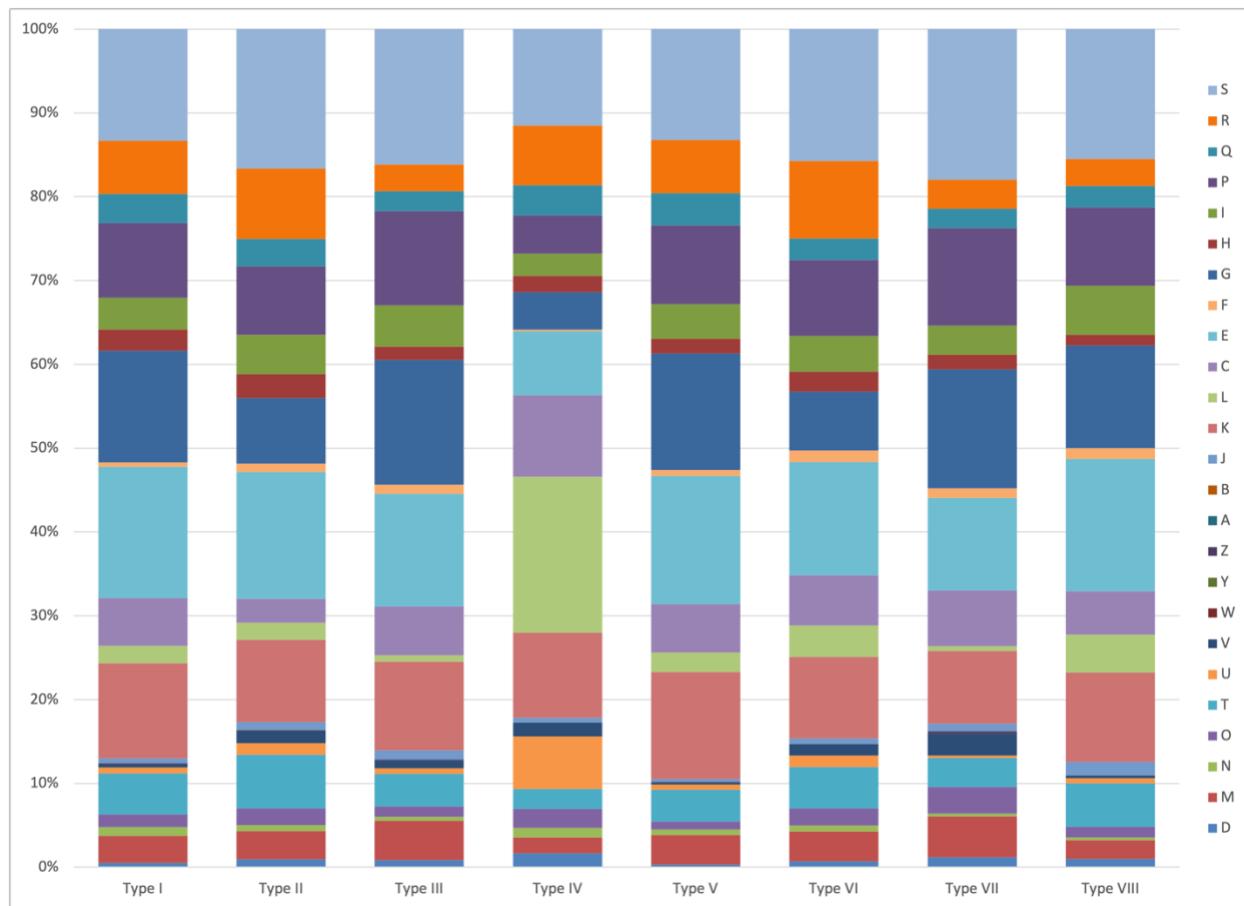

814 Figure S2: (A) Heatmap of pairwise Jaccard distances based on gene presence-absence between
815 all plasmids from our study, highlighting similarity in gene content between plasmid types from
816 *gsE* and *gsB*: I with V, II with VI, and III with VII/VIII. (B) Venn diagram of genes shared
817 across plasmid types III, VII, and VIII. (C) local alignment of a representative of type III (strain
818 110_C) with representatives of types VII and VIII (both from 231_N).

819 A.


820

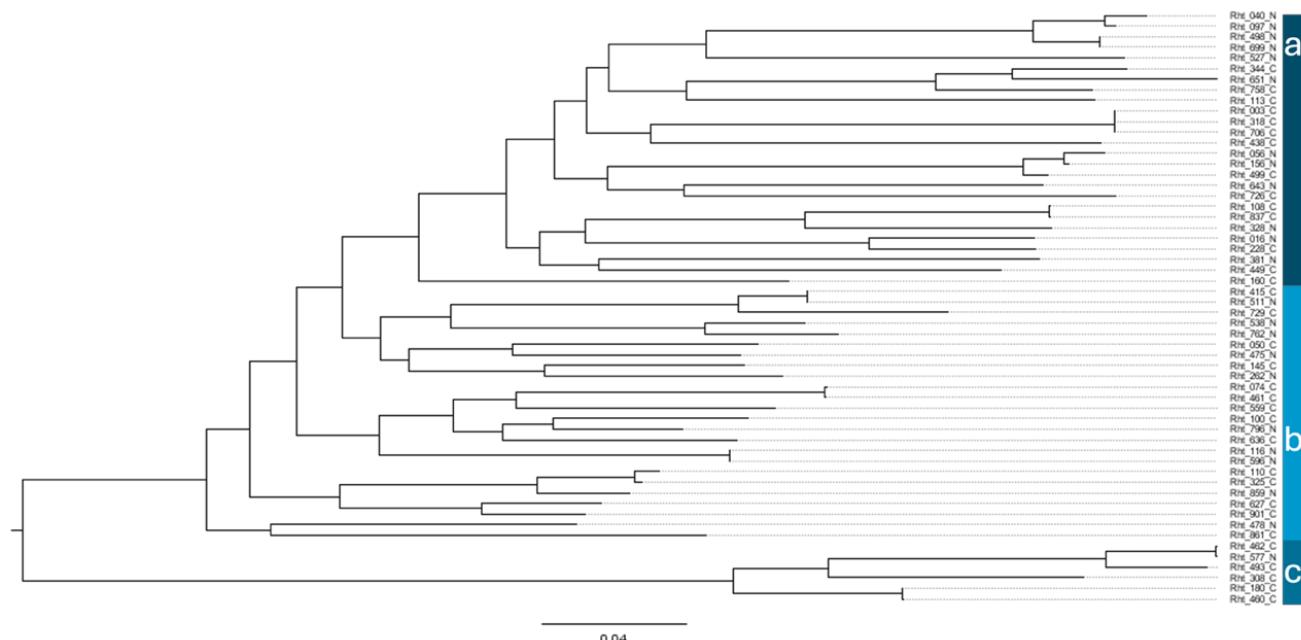
821 B.

822

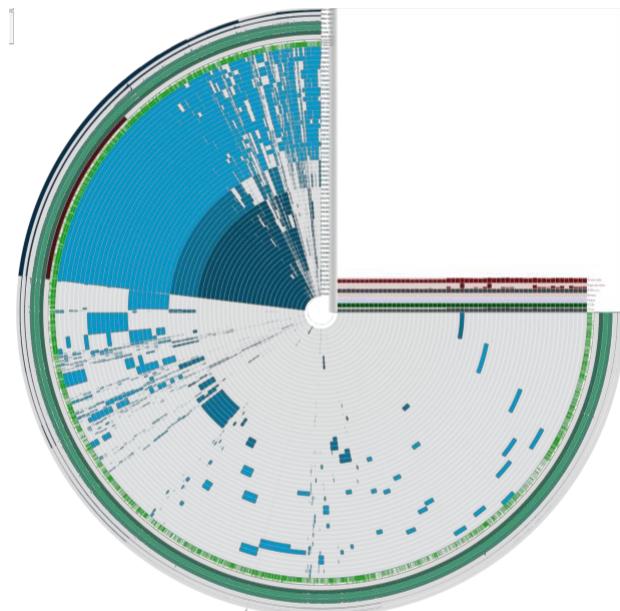

823 C.

824

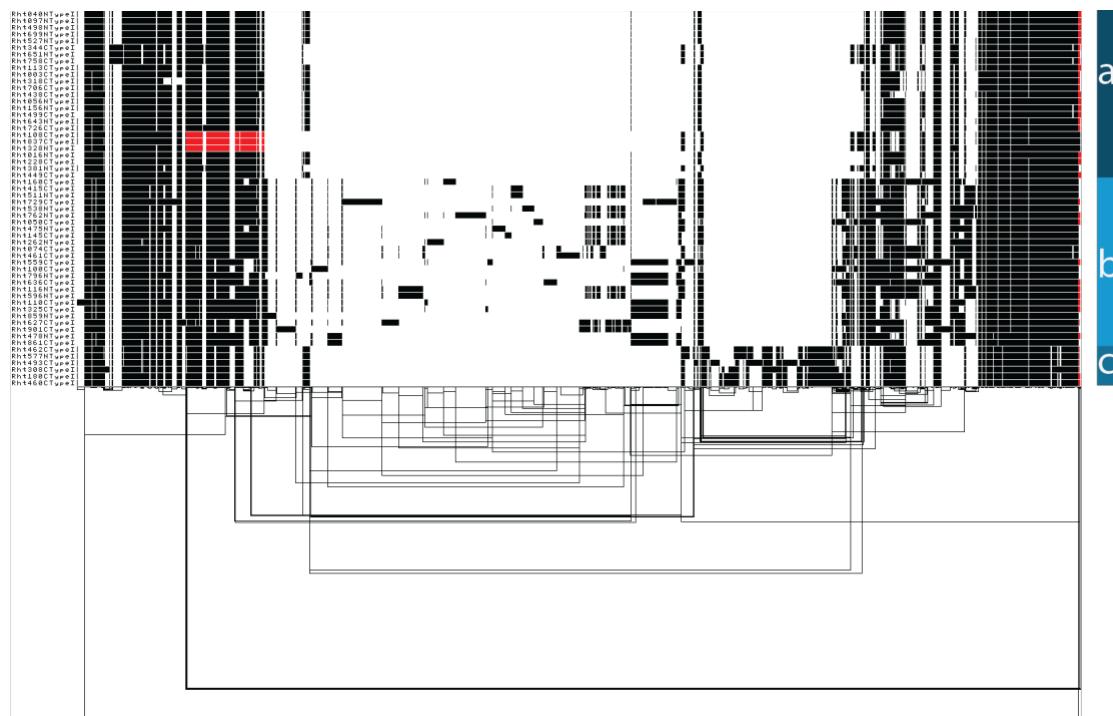
825


826 Figure S3: Distribution of COG functions across the plasmids of clover-associated *Rhizobium*
827 from a natural population: (S) Function unknown, (R) General function prediction only, (Q)
828 Secondary metabolites biosynthesis, transport and catabolism, (P) Inorganic ion transport and
829 metabolism, (I) Lipid transport and metabolism, (H) Coenzyme transport and metabolism, (G)
830 Carbohydrate transport and metabolism, (F) Nucleotide transport and metabolism, (E) Amino
831 acid transport and metabolism, (C) Energy production and conversion, (L) Replication,
832 recombination and repair, (K) Transcription, (J) Translation, ribosomal structure and biogenesis,
833 (B) Chromatin structure and dynamics, (A) RNA processing and modification, (Z) Cytoskeleton,
834 (Y) Nuclear structure, (W) Extracellular structures, (U) Intracellular trafficking, secretion, and
835 vesicular transport, (T) Signal transduction mechanisms, (O) Posttranslational modification,
836 protein turnover, chaperones, (N) Cell motility.

837


838 Figure S4: (A) Phylogenetic tree of the concatenated core genes of the type I plasmid, showing
839 the relationships among the three subclades clades as in Figure 1. Any nodes with < 85%
840 bootstrap support were collapsed. (B) Gene presence-absence anv'io plot of Type I plasmids,
841 colored by clade and showing that larger subclades I-b and I-c possess distinct large insertions.
842 (C) Pangenome graph view of the Type I plasmid population, showing distinct insertions in
843 larger subclades I-b and I-c occur in the same genomic location. Aligned sequences are in black,
844 and inverted regions are in red.

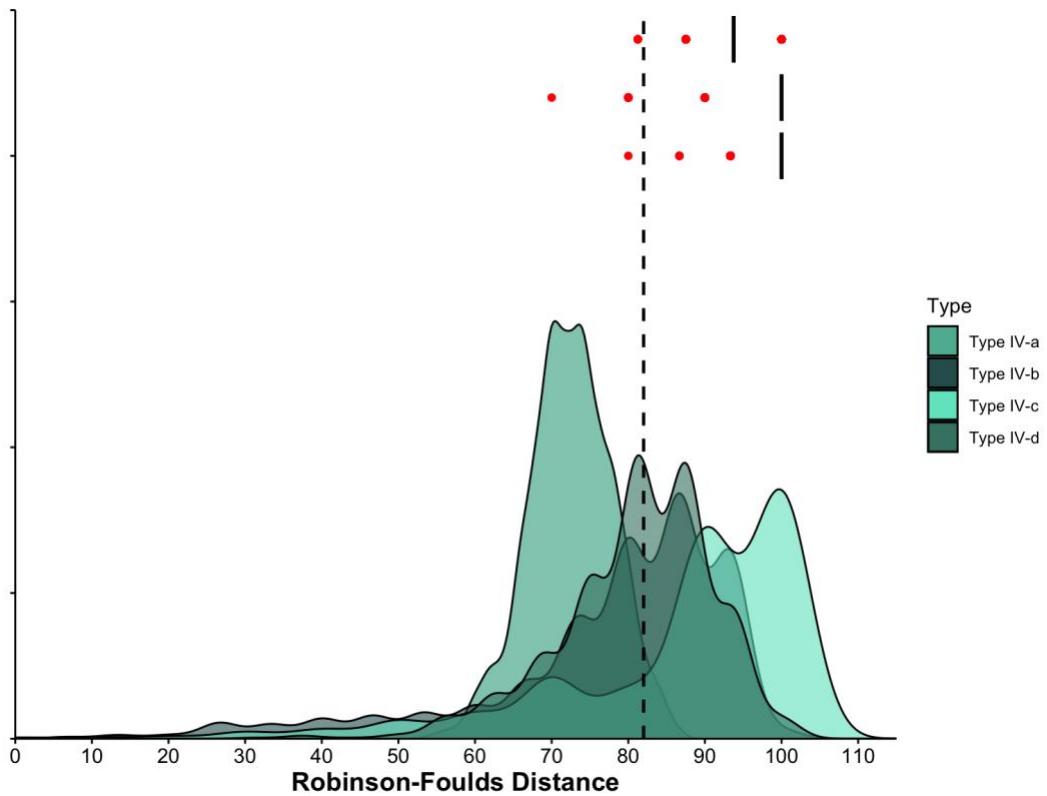
845 A.



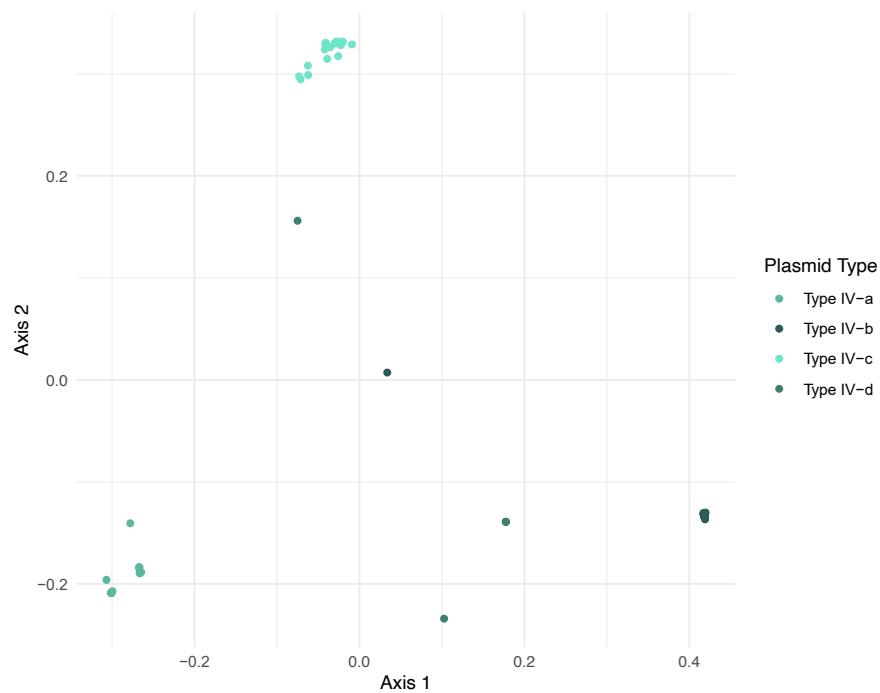
846

847 B.

848 C.

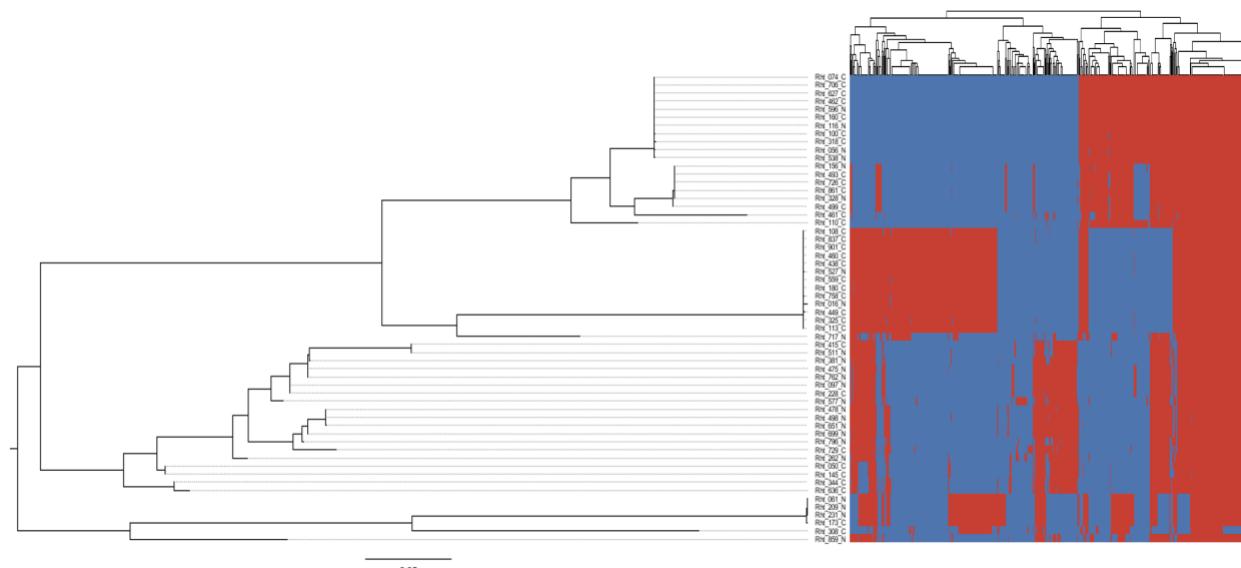


849

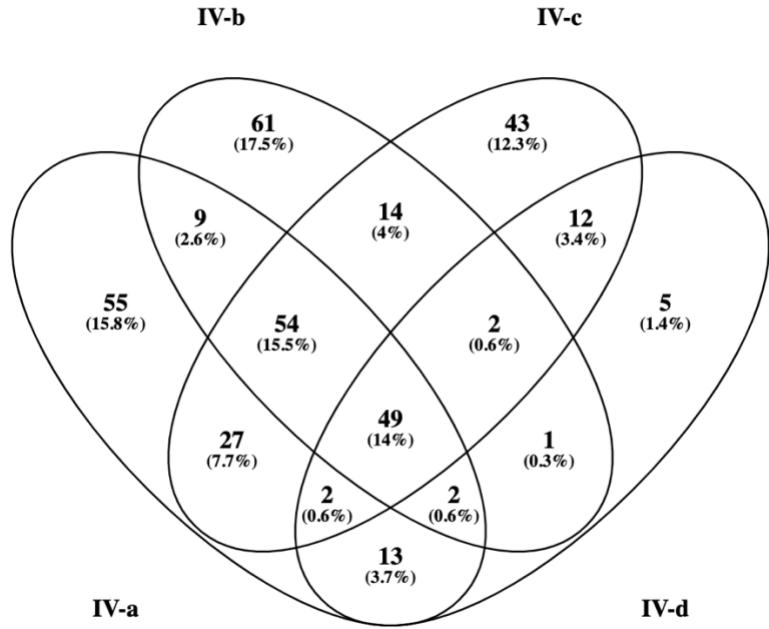

850

851 Figure S5: (A) GRF distances within Type IV subclades (smoothed distributions) and between
852 subclades and the chromosome (box and whisker plots). (B) Principal Coordinate Analysis
853 (PCoA) of orthologous gene clusters in the type IV plasmids in *Rhizobium*. (C) Tree of type IV
854 pSym showing orthologous genes that are present (red) or absent (blue) across strains. (D) Venn
855 diagram showing the number of core genes in different combinations of type IV subclades.

856 A.



858 B.


859

860 C.

861

862 D.

