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Abstract

Microbial gene loss is hypothesized to be beneficial when gene function is costly, and the gene product can be replaced via cross-
feeding from a neighbor. However, cross-fed metabolites are often only available at low concentrations, limiting the growth rates of
gene-loss mutants that are dependent on those metabolites. Here we define conditions that support a loss of function mutant in a
three-member bacterial community of (i) N,-utilizing Rhodopseudomonas palustris as an NHs " -excreting producer, (ii) N,-utilizing Vibrio
natriegens as the ancestor, and (iii) a V. natriegens N,-utilizaton mutant that is dependent on the producer for NH;*. Using experimental
and simulated cocultures, we found that the ancestor outcompeted the mutant due to low NH4* availability under uniform conditions
where both V. natriegens strains had equal access to nutrients. However, spatial structuring that increasingly segregated the mutant from
the ancestor, while maintaining access to NH4t from the producer, allowed the mutant to avoid extinction. Counter to predictions,
mutant enrichment under spatially structured conditions did not require a growth rate advantage from gene loss and the mutant
coexisted with its ancestor. Thus, cross-feeding can originate from loss-of-function mutations that are otherwise detrimental, provided
that the mutant can segregate from a competitive ancestor.
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Introduction is outweighed by the benefit of acquiring the gene product from a
Individuals within microbial communities constantly adapt neighbor. This type of gene loss is perhaps best known as the Black
to changing environments. One adaptation is beneficial loss- Queen Hypothesis (BQH) [1, 2]. The BQH includes a “producer”
of-function (LOF) mutations, which are enriched (increase in that creates a public good that promotes beneficial gene loss in a
frequency relative to the ancestor) when the cost of losing a gene recipient “beneficiary” [1, 2]. The term distinguishes beneficiaries
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Figure 1. The LOF mutant growth rate is inferior to that of the ancestor due to the low concentration of cross-fed nutrient; (A) the coculture consists of
(i) a producer, R. palustris (Rp) that fixes N, and excretes NHy+ due to a NifAx mutation, and two V. natriegens (Vn) strains consisting of, (ii) a recipient
that is incapable of N fixation and depends on the producer for NH4 T, and (iii) a self-sufficient, N-fixing ancestor; all strains are non-motile;

(B) Monod model estimates of V. natriegens ancestor and mutant growth rates in the coculture based on the concentration of each nitrogen source
(symbols); despite a higher maximum growth rate possible with NH4 T, sub-saturating NH4+ concentrations dictate that the ancestor will grow faster
with N (square) than the mutant with NHy* (triangle); see the Methods for model details; (C) estimated ancestor and recipient growth rates in

coculture with each nitrogen source.

from mutants with neutral or detrimental LOF mutations.
Beneficiaries also do not harm the producer, distinguishing them
from LOF “cheaters” that gain an adaptive advantage by exploiting
public goods at the expense of the producer [1, 3, 4]. The fitness
advantage from the LOF mutation should lead to the extinction
of the ancestral strain, provided that the producer is another
species [1]. Adaptive gene loss supported by cross-feeding has
been used to explain the natural prevalence of LOF mutants,
like auxotrophs [5-9]. However, whereas nutrient-rich conditions
are known to enrich for auxotrophs [10-13] and cross-feeding
of molecules like iron-scavenging siderophores can enrich for
cheaters [14-16], there are few direct observations of long-term
cross-feedingleading to the enrichment of spontaneously-evolved
LOF beneficiaries [17, 18]; most studies used engineered LOF
mutants.

One reason why gene loss might be infrequently observed is
because cross-fed nutrients often exist at sub-saturating con-
centrations, preventing the mutant from achieving a maximum
growth rate theoretically afforded by gene loss (Fig. 1). For exam-
ple, a trait that was predicted to be subject to beneficial gene loss
is Ny fixation, the conversion of nitrogen gas (N3) into ammo-
nium (NH4") via the cytoplasmic enzyme nitrogenase [1, 2]. N,
fixation is essential, expensive (e.g. 16 ATP per N, fixed [19]),
and NH,* can passively escape the cell due to its equilibrium
with membrane-permeable NH; [19-22]. However, when we cocul-
tured NH,4 t-requiring Escherichia coli with wild-type (WT) N,-fixing
Rhodopseudomonas palustris, E. coli initially grew at <1% of the
maximum possible rate and only reached 5% after 146 genera-
tions [22]. When we engineered R. palustris to excrete NHy*, E.
coli still only grew at 25% or 43% of the maximum growth rate,
depending on the level of NHy" excretion [23]. Based on these
observations, we predict thatin the presence of an NH, " -excreting
producer, another N,-fixing bacterium would have a competitive
advantage over a daughter nitrogenase LOF mutant (Fig. 1A),
whose growth rate would be restricted by low NH,* availability
(Fig. 1B, C).

Development and maintenance of cross-feeding is also
observed in spatially structured populations [5, 24-30]. Com-
munity structure can create nutrient pockets, deserts, and
gradients where populations have differential access based on

local conditions [30-33]. Clustering of cooperating partners can
decrease local nutrient concentrations, keeping cheaters to the
fringes [24, 27, 29, 34-36]. Metabolite-externalizing populations
can also achieve larger populations, despite carrying costly
mutations, when physically aggregated within cross-feeding
communities [28, 29]. More broadly, spatial structure can
accommodate diversity [37], including cheaters [24, 29] and
other competitors [38], but also slow-growing subpopulations
derived from an ancestor [33, 39]. These less-fit mutants can
succeed at the edges of a competitive ancestor population [39],
an important aspect of Wright's shifting balance theory on how
small populations can navigate fitness valleys [40]. Thus, the
extent to which fitness advantages from LOF mutations are
necessary for survival or enrichment in structured environments
remains unclear.

Here we address conditions that can support the enrichment
of a nitrogenase LOF mutant as a proxy for emergence in nature.
We used a defined bacterial community resembling one that
could result in a BQH scenario to test whether the LOF mutant
would be enriched as a beneficiary, cheater, or a mutant without
a fitness advantage. The community consisted of two species,
where one was an NH,t-excreting producer, and the other
species was subdivided into a self-sufficient ancestor and a LOF
mutant that was dependent on the producer (Fig. 1). Using both
experimental cocultures and computational models, we found
that the LOF mutant was always outcompeted by the ancestor
under uniform conditions. However, by progressively limiting
population overlap, we identified spatial conditions wherein
partial segregation allowed the LOF mutant to coexist with the
ancestor, independently of any advantage afforded by the LOF
mutation. Our results thus indicate that spatial structuring of
populations can sustain LOF mutants without meeting BQH crite-
ria of ancestor extinction nor a LOF mutation imparting a fitness
advantage.

Materials and methods
Bacterial strains

Strains, plasmids, and primers are in Tables S1-S3. Mutations
were verified via Sanger sequencing. Vibrio natriegens strains
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were derived from TND1964, containing pMMB-tfoX [41] (WT).
V. natriegens mutations were made by introducing linear PCR
products via natural transformation [41, 42]. The “ancestor,”
OFS003, is a kanamycin resistant (Adns::Kan®), non-motile (AflgE;
flagellar hook) derivative of the WT strain (Fig. S1). The LOF
mutant, OFS004, additionally carries a AnifA mutation, preventing
N, fixation, and dns is instead replaced by a spectinomycin
resistance cassette. Each cassette had a comparable effect on
the growth rate (Fig. S2).

The “producer,” R. palustris CGA4067, is a non-motile derivative
of CGA4005 [43], which itself is derived from type strain CGA0092
[44]. CGA4067 is incapable of H, oxidation (AhupS), has low cell
aggregation (AuppE) [45], excretes NH4t due to a mutation in nifA
[46], and is non-motile due to deletion of motAB (flagella stator).
CGA4039 was made incapable of N fixation by deleting structural
genes for all three nitrogenase isozymes [47]. R. palustris deletion
mutations were made by homologous recombination after intro-
ducing the appropriate suicide vector [47, 48], via electroporation
[23, 49, 50].

Growth conditions

V. natriegens and R. palustris were recovered from 25% glycerol
frozen stocks (-80°C) on agar plates containing LB3 (lysogeny broth
with 2% w/v NaCl) for V. natriegens or photosynthetic media (PM)
[51] with 10 mM disodium succinate for R. palustris. Kanamycin
(100 ugml~1) or spectinomycin (200 ug ml~1) were included where
appropriate. Anoxic media was prepared by bubbling with N,
in culture vessels, then sealing with rubber stoppers and alu-
minum crimps prior to autoclaving. Starter cultures were grown
from single colonies in 27-ml anaerobic tubes with 10 ml of
minimal media. R. palustris was grown in M9-derived coculture
media (MDC) [23] with 1.5 mM disodium succinate. V. natriegens
was grown in MDC modified with (final concentrations): 10 mM
glucose, 80 mM NaCl, 200 mM MOPS (pH 7), and 0.5 mM NH,Cl, to
transition cells to N,-fixing conditions; this media, without NH,4Cl,
is called VMDC. A 1% inoculum of R. palustris and a 0.5% inoculum
of each V. natriegens strain was then used to start anoxic cocultures
in VMDC with 5 mM glucose. Cultures were incubated at 30°C with
light from a halogen bulb (750 lumens).

Shaken (150 RPM) cocultures, including for invasion-from-rare
(IFR) assays, were grown in 10-ml volumes in 27-ml tubes, oriented
horizontally. Static IFR assays were performed in 4-ml volumes
in 10-ml anoxic serum vials with or without agarose (Research
Products International). Contaminating nitrogen was removed
from agarose (Fig. S3) by washing 0.15 g of agarose twice with
ultra-pure water and then once with VMDC (12-ml volumes in
a 15-ml conical tube; agarose was pelleted by centrifuging at
2415 x g and removing supernatants by pipette). Washed agarose
was resuspended in 100 ml VMDC in a 160-ml serum vial before
making anoxic and autoclaving. After autoclaving, molten agarose
was kept suspended during cooling by rocking overnight (Boekel
Scientific). Agitated agarose was stirred with a stir bar overnight
during cooling (200 RPM). Glucose and cations were added and
then agarose media was dispensed into serum vials by syringe
using a 17, 23-gauge needle (BD). IFR assays were inoculated
with 9 x 10° cells of producer and 9 x 10° cells of LOF mutant
plus ancestor at the specified ratio. For randomized static cell
distributions, the inoculum was dropped onto the media and
allowed to settle during incubation. Localized populations were
inoculated on opposite sides of the vial using a 2”, 21-gauge needle
(BD), to slowly inject cells just below the surface, without touching
the glass.

Analytical procedures

Motility was determined by using a pipette tip to stab a single
colony into LB3 with 0.3% agar and then measuring swim
diameter 17 h later. Cell density was measured as optical
density at 660 nm (ODggo) using a Genesys 20 spectrophotometer
(Thermo-Fisher) or colony-forming units (CFUs) on selective
media (see above). Growth rates were determined by fitting an
exponential trendline using Microsoft Excel. Glucose, organic
acids, and ethanol were quantified using a Shimadzu high
performance liquid chromatograph as described [52]. For IFR
assays, initial cell densities in agarose were assumed to be the
same as those determined in 0.3 ml samples from liquid controls.
Final cell densities, and metabolite levels were determined after
6 days by vortexing vials and then sampling 1 ml. For location
sampling, 0.35 ml was taken using a 2”, 21-gauge needle; cultures
were then discarded. LOF mutant change in frequency Af = (LOF
/(LOF + ancestor))ginar — (LOF /(LOF + ancestor))inial [53], where
each LOF and ancestor population was determined by counting
CFUs or using the reported populations from simulations. Linear
regression for IFR assays and other statistical analyses were
performed using GraphPad Prism v10. The extrapolated x-
intercept was used to infer the competitive outcome between
the LOF mutant and the ancestor as: (x,0) between 0 and
1, coexistence; (x,0)>1, ancestor extinction; (x,0) <0, mutant
extinction.

Mathematical modeling

The Monod model (Fig. 1) was:: u = pmax S/(S + km), where: pu,
growth rate; umex, maximum growth rate; S, NHs* or N, con-
centration; km, half-saturation constant for S. Parameter values:
NH4*, 2 uM based on 20 uM R. palustris ODggo~* [23]; Ny, 622 uM
based on Henry’s law assuming 1.02 atm and N, solubility of
6.1x 107* M atm™?) [54]; max With NH4*, 0.43 h™%; pmax with Ny,
0.25 h™1; kmyuay, 0.01 MM [55]; kimygz, 0.1 mM [56]. A 1.3-fold jumax
advantage with NH,* was assumed for the LOF mutant based on
a comparison of R. palustris strains (Fig. S4).

Population and metabolic dynamics in cocultures were simu-
lated in Mathematica (v13.3 Wolfram Research, Inc., 2023) using
coupled, nonlinear reaction-diffusion equations modified from
previous models describing cross-feeding between R. palustris and
E. coli [23, 43]. We numerically simulated the equations subject
to no-flux boundary conditions using Mathematica's NDSolve(]
function employing a stiff solver. Default parameter values are
given in Table S4. Cell densities, ¢;, are in number of cells ml~*, and
the numerical solution corresponds to time-dependent concen-
trations in a system size of (Ly = 2 cm) x (Ly = 2 cm) x (1 cm). The
time evolution of cell densities in the x — y plane is investigated
under different conditions, assuming the concentrations in the
z—direction are uniform. Diffusion constants for cells and nutri-
ents in liquid media versus the agarose matrix were estimated
using the Stokes-Einstein relation (Table S4). Model equations and
details are available in the Supplementary material.

Results

Development of a coculture to test BQH
predictions

Previously, we established obligate reciprocal cross-feeding
between E. coli and an R. palustris nifAx mutant [46]; E. coli
fermented glucose and excreted organic acids as essential carbon
for R. palustris and R. palustris fixed N, and excreted NH,* as
essential nitrogen for E. coli [23]. N, fixation was predicted to be
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subject to beneficial gene loss according to the BQH [1, 2]. To
test whether loss of N, fixation would be beneficial to bacteria
cocultured with NH4"-excreting R. palustris, we sought to replace
E. coli with N,-fixing, fermentative, V. natriegens. In the desired
coculture, V. natriegens would comprise a self-sufficient “ancestor”
subpopulation and a recipient LOF mutant subpopulation that
is dependent on the R. palustris “producer” for NH,* (Fig. 1A).
We refrain from calling the LOF mutant a beneficiary unless we
confirm a fitness benefit from the LOF mutation.

To build our desired populations, we prevented V. natriegens N,
fixation by deleting nifA, encoding the transcriptional activator
of nitrogenase genes. The AnifA LOF mutant did not grow with
N, but showed similar growth kinetics to the parent (ancestor) in
monocultures and in V. natriegens cocultures with NH4Cl (Fig. S5;
R. palustris omitted). We then verified that the producer could
support the LOF mutant in coculture with Ny; population trends
resembled R. palustris + E. coli cocultures, with both strains having
a common exponential phase where the V. natriegens LOF growth
rate more closely resembled that of R. palustris nifAx than a
monoculture growth rate [23] (Fig. S6A, B versus Fig. S5B, C). In
contrast, coculturing R. palustris with the V. natriegens ancestor
resembled R. palustris + E. coli cocultures with NH,4Cl; rapid growth
by the V. natriegens ancestor was followed by R. palustris growth [23]
(Fig. S6C). Glucose was exhausted and organic acids accumulated
in the first phase, indicative of V. natriegens ancestor growth, and
then organic acids were depleted in the second phase, indicative
of R. palustris growth (Fig. S6D). Having established the expected
trends, we then examined cocultures comprised of the producer,
ancestor, and LOF mutant (Fig. 1A).

The LOF mutant is not enriched when V.
natriegens subpopulations have equal access to
nutrients

Like cocultures pairing the producer and ancestor (Fig. S6C),
shaken cocultures combining the producer, ancestor, and LOF
mutant had two growth phases (Fig. 2A). Tracking (sub)populations
by CFUs showed an early dominance by the LOF mutant. We
assume that early LOF mutant growth was supported by trace
organic nitrogen (3 x 10° cells ml~! can be explained by 11 uM
NH,4*; Table S4) while the ancestor lagged, which we commonly
observe when V. natriegens uses Ny. Trace nitrogen could include
high nM - low uM NH,* from R. palustris starter cultures and
compounds from V. natriegens death upon transfer (note the low
initial cell densities). However, this early advantage was brief, and
the ancestor outcompeted the LOF mutant by 24 h (Fig. 2B). At
that time, glucose was exhausted and both Vibrio strains enter
stationary phase (Fig. 2C).

The above experiment used an initial LOF mutant frequency
of ~0.5, relative to the ancestor. To determine if the LOF mutant
could be enriched from different initial frequencies we performed
a reciprocal invasion-from-rare (IFR) assay, which also tests the
mutual invasion criterion for coexistence [53,57]. When trends are
linear, an x-intercept (x,0) between 0 and 1 suggests coexistence
of the mutant and ancestor, whereas (x,0) > 1 suggests ancestor
extinction, and (x,0) <0 suggests mutant extinction [53, 57, 58].
IFR assays provide similar insights as serial transfers but they
can be performed more quickly and are less prone to evolution
affecting the results [53]. We inoculated the LOF mutant and
ancestor at variable frequencies in shaken cocultures keeping the
total initial V. natriegens population at a 1:1 ratio with R. palustris.
The LOF mutant was consistently outcompeted by the ancestor
((x,0)=0.01, 95% CI: —0.19 to 0.14; Fig. 2D).

We considered that LOF mutant enrichment could be influ-
enced by NH,* excretion level (Fig. 1B, C) and the LOF mutant
fitness advantage. To explore these parameters, we built upon a
mathematical model [23] to describe population growth and diffu-
sion of cells and nutrients over a 2 x 2 cm domain (Supplementary
materials). First, we tested whether the model could replicate
experimental trends by simulating IFR conditions with uniformly
distributed populations and nutrients. We gave the LOF mutant a
maximum growth rate (u5,,) advantage of 1.1-times that of the
ancestor, based on a comparison of R. palustris growth rates with
and without nitrogenase expression (Fig. S4); a similar comparison
was not possible with V. natriegens because we do not have a
mutant that expresses nitrogenase in the presence of NH,*. The
results resembled those from experimental cocultures with an x-
intercept that was not significantly different from zero (Fig. 2E).

We mapped what maximum growth rate (uf,,) advantage
would be required for the LOF mutant to have a positive change
in frequency (Af) at different producer NH,* excretion levels.
At the experimentally-estimated NH,* excretion level of 6.5 x
101 umol cell~! [23], the LOF mutant would need an unrealistic
8-fold maximum growth rate advantage over the ancestor (Fig. 2F,
circle). The LOF mutant could be enriched with a lower growth
rate advantage at NH,* excretion levels 1-2 orders of magnitude
higher than R. palustris nifAx (Fig. 2F). Whereas a wide range of
NH,* excretion levels can be engineered [23,59, 60], natural exam-
ples are within an order of magnitude of R. palustris nifAx excretion
level (~8.3 x 107 umol cell~! for Azotobacter [61] assuming a
cell weight of 1 pg [62]). We also considered a scenario where
the producer grows as fast as the ancestor (instead of a~ 3-fold
difference in growth rate), to yield more public NH,*. Using the
higher producer growth rate shifted the Af boundary in favor
of LOF mutant enrichment, but the required growth advantage
was still ~3.5-times that of the ancestor at the experimentally
estimated NH, " excretion level (Fig. 2F).

We considered how NH,* privatization might affect population
outcomes. NHy* from nitrogenase is highly privatized; N, fixation
occurs in the cytoplasm where most NH,* will be assimilated
before it can escape. Generation of public goods outside the
cell can profoundly affect producer-consumer relationships [2,
43, 63-65]. Low privatization can enrich for LOF cheaters [14,
34, 66-68] and thus might also enrich for LOF beneficiaries. To
explicitly address low privatization, we modified our model to
describe a hypothetical production of NHs* outside of the cell
by both N, fixing bacteria [43] (Fig. 3A). In this scenario, the
LOF mutant was predicted to outcompete the ancestor, provided
the LOF mutant had a growth rate advantage; an x-intercept
could not be determined due to the nonlinear trend. However,
every change in frequency was positive (Fig. 3B). Without the
growth advantage, each change in frequency was zero (Fig. 3B).
Thus, whereas our results suggest that N, fixation is unlikely
to lead to the enrichment of LOF beneficiaries, the outcome
could be different for less-privatized public goods. Moving for-
ward, we focused on whether spatial structuring of populations
might facilitate LOF nitrogenase mutant enrichment, despite high
privatization.

Static conditions do not enrich for the LOF
mutant

Spatially structured communities can foster populations that
might otherwise have a fitness disadvantage [28, 29, 33, 38]. We
thus tested whether spatial structuring could lead to nitrogenase
LOF mutant enrichment. We began with minimal intervention by
coculturing non-motile strains under static conditions in either
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4 acids b 05 1.0 with a random initial cell distribution and diffusion constants
c consistent with agarose, where appropriate (Table S4). The sim-
- * N, o A LOF, 10% adv ulations also suggested LOF mutant extinction in both conditions
_(c% 0.1 A LOF, no adv (Fig. 4C).
Rp NifA* o™

Producer Initial frequency

Figure 3. Hypothetical extracellular NH4* production allows for
enrichment of the LOF mutant in accordance with the BQH; (A) the
modified model allows for production of NH4* via a hypothetical
extracellular enzyme (circles) produced by the N»-fixing producer and
ancestor populations; (B) simulated IFR with extracellular NHy+
production under spatially uniform conditions; initial LOF mutant
frequency range =0.1%-92.8% using V. natriegens populations only.

Segregation leads to LOF mutant enrichment
without a maximum growth rate advantage
Cross-feeding neighborhoods can occur at the scale of one to
several cells [31]. Thus, although we did not observe LOF mutant
enrichment at the domain level, there could have been pockets of
local enrichment. We addressed this possibility using the model
by varying a spatial filter (p) for the initial ancestor random
distribution, while maintaining a spatial filter value for the initial
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(D) simulated cell densities in a 2 x 2 cm domain (assumed to be uniform across height) at 0 h and 50 h; initial LOF mutant frequency fo was 0.061;
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mean LOF mutant change in frequency (Af(t)) from different random cell distributions (LOF mutant and producer given by p =0.80 for all ancestor
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parameters.

random LOF mutant and producer distributions (p =0.80). Larger
filter parameters give rise to a more fine-grained spatial variation,
resulting in more mixing of populations (Fig. S7). Smaller filter
parameters correspond to spatial coarsening (p=0.05), creating
regions where the ancestor is more isolated, though popula-
tions still overlap (Fig. S7). Simulations using p=0.05 showed
that the LOF-mutant can expand its population in regions where
the ancestor population remained low (Fig. 4D). When averaged
across the entire domain, the LOF mutant could be enriched when
the initial ancestor distribution was coarse (p <0.07; Fig. 4E, F).
We sought more control over the spatial distributions to
address how partial segregation impacts population outcomes.
We therefore simulated partially overlapping Gaussian distribu-
tions of each initial population at distinct sites (Fig. 5A; ancestor

at (x=0.5,y =1 cm) and the LOF mutant and producer colocalized
at (x = 1.5, y = 1 cm). Upon glucose depletion (~150 h), the
ancestor had grown around the LOF mutant and producer
populations, highlighting that the populations did not grow
in compartmentalized isolation (Fig. 5A). Despite some spatial
overlap of the initial Gaussian distributions, partial segregation
led to LOF mutant enrichment ((x,0) =0.38; 95% CI: 0.36 to 0.43),
with predicted coexistence with the ancestor (Fig. 5B).

We constructed an experimental counterpart by inoculating
populations at specific locations just below the surface of 0.15%
agarose media (Fig. 5C). We first verified that populations were
both localized and partially overlapping, using non-motile ances-
tor monocultures; the ancestor was detected at the opposite side
of the vial by 20 h, spreading via diffusion and growth (Fig. 5D).
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Figure 6. Segregation from the ancestor allows the LOF mutant to be enriched without an intrinsic maximum growth rate (u!,,,) advantage when
colocalized with the producer; all graphs are from simulated cocultures using an initial LOF mutant frequency fo of 0.061 (V. natriegens populations
only); all localized conditions (A-C,E,F) used initial population spatial distributions as in Fig. 5A where the producer and LOF inoculums are colocalized
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Glucose was also depleted more slowly on the opposite side of the
vial (Fig. 5E). Thus, inoculating populations on opposite sides of
the vial should allow for interactions from partially overlapping
populations, but with less local competition. We co-inoculated
the producer and the LOF mutant on one side of the vial and
the ancestor on the other side (Fig. 5C). In agreement with the
simulations, the LOF mutant was enriched, with predicted coexis-
tence with the ancestor ((x,0)=0.77; 95% CI: 0.64 to 0.98; Fig. 5F).
The final LOF mutant frequency was also significantly higher
compared to thatin static liquid (Fig. 5G, V. natriegens populations
only; the producer was the dominant species, making up ~99% of
the total population, Fig. SH).

Coexistence differs from the BQH prediction of ancestor extinc-
tion [1]. We thus investigated whether our results met the BQH
criterion of a LOF mutant fitness advantage [1], for which we used
growth rate. The simulated NH4* concentration never exceeded
the half-saturation constant (km) (Fig. S8), explaining why the
highest growth rate (u/(7,t)) at any location in the spatial
domain for the LOF mutant never exceeded that of the ancestor
(Fig. 6A, S8).

Using growth rate as the fitness metric in numerical simula-
tions with non-uniform spatial conditions can be misleading; the
calculated growth rate at a given point in time and space can be
high because of nutrient availability but cells might be absent
to take advantage of local conditions (Fig. 6B, C). We therefore
examined effective growth rate (ulg. ... (D), a spatially averaged
growth rate weighted by cell density (Supplementary material).

Under uniform conditions, the effective ancestor growth rate was
always higher than that of the LOF mutant (Fig. 6D). However, for
localized conditions, the LOF mutant achieved a higher effective
growth rate for most of the simulation, explaining its enrichment
(Fig. 6E). To assess whether the encoded LOF mutant maximum
growth rate (ul,,) advantage, afforded by the LOF mutation,
contributed to this outcome, we simulated the same conditions
with no maximum growth rate advantage. In this case, the
effective LOF mutant growth rate was lower, but not enough
to affect population outcomes (Fig. 6D-F; change in fitness was
determined from the time integral of the effective growth rate;
Fig. S9). Thus, our results suggest that the LOF mutant enrichment
was due to the initial partial segregation from the ancestor,
leading to local glucose depletion that prevented invasion by
the ancestor (Fig. S8). In other words, spatial conditions, rather
than an intrinsic fitness advantage from gene loss, led to the
enrichment of the LOF mutant.

LOF mutant enrichment is determined by the
degree of segregation from the ancestor

Based on the above results we hypothesized that LOF mutant
enrichment would depend on the degree of segregation from
the ancestor. We thus simulated inoculation sites as above and
increased population overlap by modifying the standard deviation
of the Gaussian distributions (o) for all populations (Fig. 7A); the
LOF mutant and producer peaks were always colocalized and
thus both experienced increasing initial overlap with the ancestor
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population. Increasing o led to a decrease in the IFR x-intercept
(Fig. 7B); for o >0.4, IFR plots resembled uniform conditions,
highlighting the importance of LOF mutant segregation from the
ancestor.

To test the simulated predictions, we agitated 0.15% agarose
by stirring to fragment the polymer and thereby widen initial
distributions at inoculation sites (Fig. 7C). Consistent with the
simulated results, agitating the agarose (increasing o), moved the
IFR results to resemble uniform conditions (Fig. 7D). The sensitiv-
ity of the matrix to disturbance might also explain the different
values from different IFR assays (Fig. 5D vs Fig. 7D) compared to
static liquid that always gave x-intercept values that were not
significantly different from zero (Fig. S10). Our results indicate
that less spatial overlap with the ancestor is essential for LOF
mutant enrichment, even when the mutant and producer are
colocalized.

LOF mutant enrichment does not require
producer colocalization

The above tests always colocalized the LOF mutant with the pro-
ducer. We questioned whether colocalization of these populations
was required for LOF mutant enrichment. We thus simulated
[FR conditions with the producer and ancestor colocalized and
segregated from the LOF mutant (Fig. 8A; o =0.2). The x-intercept
again suggested LOF mutant coexistence with the ancestor, but
at a lower equilibrium frequency ((x,0) =0.06; 95% CI: 0.03 to 0.10;

Fig. 8B). This result was confirmed experimentally by inoculating
populations in a similar spatial arrangement in 0.15% agarose
((x,0)=0.07;95% CI: 0.04 to 0.19; Fig. 8C). Again, this result was not
dependent on the LOF mutant maximum growth rate advantage
(Fig. 8D). Overall, our results suggest that segregation from the
ancestor is more important for LOF mutant enrichment than
producer colocalization, provided there is still sufficient access to
NH,* from the producer.

Discussion

We used an experimental coculture and a mathematical model
to test the BQH prediction that loss of nitrogenase would be
beneficial [1]. Beneficial nitrogenase loss did not seem feasible
given that low extracellular NH,* would prevent a higher growth
rate than that with N, (Fig. 1B, C). Indeed, the LOF mutant was
consistently outcompeted by the ancestor under uniform con-
ditions (Fig. 2, Fig. S10). However, segregation from the ancestor,
while maintaining access to NH;* from the producer, led to
LOF mutant enrichment (Fig. 4-8). Although we observed nitroge-
nase mutant enrichment, the outcome differed from BQH predic-
tions in two ways [1]: (i) the data suggested mutant coexistence
with the ancestor (Fig. 4-8; IFR (x,0) between 0 and 1), and (ii) a
maximum growth rate (u!,,,) advantage from gene loss was not
required (Figs. 6, 8). Thus, a LOF nitrogenase mutant need not be
a beneficiary nor a cheater to be enriched in the above spatial
conditions.
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Partial privatization and LOF mutant outcomes

There are likely other cases where sub-saturating cross-fed
nutrients under uniform conditions would favor the ancestor
over a LOF mutant. However, the privatization level of a cross-fed
resource could flip this outcome, even under uniform conditions
[2, 43, 63-65, 67, 68]. For example, others have predicted that
intracellularly-generated NH,* from N, fixation is less likely
to support LOF mutants than extracellular iron-scavenging
siderophores, for which ancestors and LOF mutants have equal
access [63]. This finding agrees with our hypothetical scenario
where we simulated extracellular NH,* production and observed
LOF mutant dominance (Fig. 3). Privatization might help explain
why there are few reports of spontaneous auxotroph emergence
during long-term cross-feeding of intracellularly generated
compounds; in one example, emergent amino acid auxotrophs
appeared to be transient [10]. However, in examples of less-
privatized detoxification services, spontaneous LOF mutants
appeared to be stable [17, 18]. Still, engineered pairings of amino
acid auxotrophs and producers suggest that beneficial fitness
outcomes are possible [69-71]. One possibility is that these cases
involved easily overlooked but important spatial organization,
like microscopic cell clusters [28].

Microbial community structure can
accommodate disadvantageous gene loss

The nitrogenase LOF mutation in our study is clearly disadvanta-
geous. Thus, the mutant was neither a cheater nor a beneficiary,
both of which imply a fitness advantage from gene loss. Whereas
a LOF cheater would benefit from emergence within a large
exploitable ancestor population [24, 27, 29, 34-36], enrichment
of a LOF nitrogenase mutant instead depended on a level of
segregation from its competitive ancestor. Our findings resemble
others where a less-fit mutant succeeded at the edge of the
ancestor population where competition was lower [39]. But how
can a less-fit LOF mutant escape its ancestor?

Segregation can be achieved through either dispersal of the
LOF mutant or the ancestor. For example, three bacterial species
cocultured in a nutrient rich environment could only coexist
in a biofilm if there was biased dispersal of the dominant
competitor [72]. Whereas we used non-motile strains to provide
more control over location, microbial motility can also influence
cooperator-competitor interactions. For example, competition
against a cheater was improved when an amino acid cross-feeding
bacterium was motile [29]. Motility also allowed for slower-
growing cooperative strains to increase in frequency relative to
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a cheater in swim agar [73]. Non-motile cells can also escape
communities via fluid flow (advection) [74]. Transient flow across
a surface can rapidly isolate cells, albeit at a low frequency in
lab conditions [75]. Other forms of community disruption or
bottlenecking can also lead to segregation and benefit a slow-
growing subpopulation [76, 77].

With prolonged segregation from the ancestor and access
to a cross-feeding partner, further genetic diversification can
occur including obligate dependencies through additional LOF
mutations [5, 6]. These events could contribute to genome
streamlining, which the BQH can partially address [1, 78,
79]. But what mechanisms would enrich for additional LOF
mutations? Although segregation from competitors can lead
to the enrichment of a LOF mutant, it seems improbable
that successive mutations would always coincide with both
segregation from the ancestor and access to a cross-feeding
partner. More likely, segregation from the ancestor is just one
factor contributing to the origin and maintenance of gene loss-
associated cross-feeding, along with mutations that impart
competitive advantages, like those described by the BQH. Our
findings underscore that environmental features that influence
spatial community structure are important to consider in the
evolution of cooperative phenotypes that might otherwise seem
to defy evolutionary theory.
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