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Advantages of Monte Carlo Confidence Intervals for Incremental Cost-Effectiveness 

Ratios: A Comparison of Five Methods 

 

 

 

 

 

Abstract 

 

Cost-effectiveness analysis studies in education often prioritize descriptive statistics of cost-

effectiveness measures, such as the point estimate of the incremental cost-effectiveness ratio 

(ICER), while neglecting inferential statistics like confidence intervals (CIs). Without CIs, it 

becomes impossible to make meaningful comparisons of alternative educational strategies, as 

there is no basis for assessing the uncertainty of point estimates or the plausible range of ICERs. 

This study is designed to evaluate the relative performance of five methods of constructing CIs 

for ICERs in randomized controlled trials with cost-effectiveness analyses. We found that the 

Monte Carlo interval method based on summary statistics consistently performed well regarding 

coverage, width, and symmetry. It yielded estimates comparable to the percentile bootstrap 

method across multiple scenarios. In contrast, Fieller’s method did not work well with small 

sample sizes and treatment effects. Further, Taylor’s method and the Box method performed 

least well. We discussed two-sided and one-sided hypothesis testing based on ICER CIs, 

developed tools for calculating these ICER CIs, and demonstrated the calculation using an 

empirical example. We concluded with suggestions for applications and extensions of this work.   

 

 

Keywords: 

Confidence interval, Cost-effectiveness analysis (CEA), Fieller’s method, Incremental cost-

effectiveness ratio (ICER), Monte Carlo interval    
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Advantages of Monte Carlo Confidence Intervals for Incremental Cost-Effectiveness 

Ratios: A Comparison of Five Methods 

 

Cost-effectiveness analysis (CEA) is a type of economic evaluation that compares the 

costs and effects of alternative programs to identify which program is more efficient at 

improving an outcome of interest (Levin, et al., 2018; O’Brien et al., 1994; Wakker & Klaassen, 

1995; Willan & Briggs, 2006). The comparison is made between each program’s incremental 

cost-effectiveness ratio (ICER), where the costs to deliver the program that produced the effects 

are divided by the effectiveness estimate. The resulting metric from this ratio is the cost to 

produce a one unit increase in the outcome. Each ratio is then compared and the program with 

the lowest cost-effectiveness ratio is preferred. A limitation of CEA studies in education is the 

lack of precision in reporting ICERs to determine which approach is most efficient. It is difficult 

to say with confidence if one approach is more efficient than another without additional 

information on the variation in costs and the resulting variation in the ICER.  

Examples of evaluations that include both effects and costs have been increasingly 

common in education (e.g., Barrett et al., 2020; Bowden & Belfield, 2015; Jacob et al., 2016; 

Unlu et al., 2015). In the 2024 Request for Applications, the Institute of Education Sciences 

(IES) recommends understanding the total and incremental costs of the program for strong 

applications and requires CEA in the research plan for the impact grants (IES, 2024). We 

anticipate in the future there will be even more educational evaluations that include a cost-

effectiveness component, where the costs to produce the effects are reported. One goal of this 

effort is to strengthen the evidence base on program effects and to support future comparisons 

among program alternatives where effects are considered relative to their costs. Thus, it is 
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important to examine how the evidence on the costs of interventions is reported and how this can 

be strengthened to support comparative analyses.  

To date, studies that report the costs to produce effects have rarely provided information 

on how costs vary to support the use of statistical inference to determine if cost-effectiveness 

ratios are statistically different from one another. In a systematic review of randomized and 

quasi-experimental studies, we identified 13 publications that reported empirical estimates of the 

effectiveness and costs of educational interventions, and of those, ten only reported the point 

estimates of ICERs (Barret et al., 2020; Barrett & VanDerHeyden, 2020; Borman & Hewes, 

2002; Bowden et al., 2017; Clark et al., 2020; Finster et al., 2023; Guryan et al., 2020; Hollands 

et al., 2016; Kim et al., 2011; Scammacca et al., 2020). Only three reported the confidence 

interval of the ratio (Bowden & Belfield, 2015; Cil et al., 2023; Hunter et al., 2018).  

Furthermore, although all 13 publications reported sufficient details about the 

effectiveness outcomes (e.g., point estimates, standard errors, and p-values), none reported 

standard errors of the incremental costs or the correlations of the incremental costs and 

effectiveness outcomes. However, relevant cost data may have been collected and more results 

about incremental costs can be reported, especially for multisite studies. For instance, the cost 

data were collected at the site level in a multisite randomized trial to evaluate the effectiveness 

and cost of a curriculum for kindergarten, Zoology One (Gray et al, 2021). The published paper 

could but did not report the standard error of the incremental cost estimate or the correlation 

between incremental cost and effectiveness measures. (See the supplemental material for details 

of the search strategy.)  

The failure to report variance and confidence intervals for cost estimates limits the 

usefulness of study findings since it is difficult to make meaningful comparisons of findings 
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across studies or population groups within studies without knowledge of the precision of the 

point estimates and plausible range of ICERs. For instance, suppose the reported ICER for 

Program A was $100 per standard deviation increase in math achievement, while the reported 

ICER for Program B was $200 per standard deviation increase in math achievement. Comparing 

the ratios from the two studies alone does not allow for a meaningful judgment about whether 

Program A is in fact more cost-effective than Program B, since we have no information about the 

precision of the ratios. These constraints are due, in part, to the difficulty of conducting statistical 

inference analysis for ratio statistics (e.g., Bowden & Belfield, 2015; Hollands et al., 2013; Levin 

et al., 2012; Li et al., 2023; O’Brien et al., 1994). 

Other fields, including medicine, have overcome these challenges by defining precision 

levels and calculating and reporting confidence intervals for ICERs. Several approaches to 

calculating the confidence intervals for ICERs have been developed. For example, Polsky et al. 

(1997) compared the performance of four methods (the box method, the Taylor series method, 

the nonparametric bootstrap method, and the Fieller’s theorem method) using a Monte Carlo 

experiment. They found that the bootstrap method and Fieller’s theorem method were more 

accurate than the others in terms of miscoverage rates and symmetrical miscoverage. Polsky et 

al. (1997) used a binary outcome measure (mortality) to measure the effectiveness (the 

percentage difference in mortality between the treatment and control groups as the incremental 

effectiveness measure), did not vary the sample size in their simulations (n = 500), and only 

tested the percentile bootstrap method. However, in educational studies, continuous outcome 

measures, such as student academic achievement, are common, and the standardized mean 

differences as effect sizes are frequently used for the incremental effectiveness measures. In 

addition, the sample size also affects the coverage rate of the bootstrap methods (Preacher & 
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Selig, 2012), and the other bootstrap methods (e.g., bias-corrected bootstrap, and bias-corrected 

and accelerated bootstrap) may have advantages over the percentile bootstrap method when the 

distribution of the ratio is skewed (Polsky et al., 1997).  

Furthermore, the Monte Carlo confidence interval method based on summary statistics 

has been proposed for testing the product of two parameter estimates, e.g., mediation effects 

(Preacher & Selig, 2012; Kelcey et al. 2017, 2020), and demonstrated comparable performance 

with the bootstrap method in constructing confidence intervals in terms of coverage, symmetry, 

width, and speed.  

Monte Carlo confidence intervals have been used to examine the sensitivity (robustness) 

of cost-effectiveness ratios by changing some assumptions such as the discount rate and the 

intervention dosage (Boardman et al., 2018, Levin & Belfield, 2015). Also, the Monte Carlo 

confidence interval method based on the summary statistics (e.g., point estimates and standard 

errors of the incremental cost and effectiveness, and their correlation/covariance) has been used 

to demonstrate the problems with Taylor’s approximation in calculating confidence intervals for 

ICERs in a simple simulation (Mullahy & Manning, 1995).  

However, the Monte Carlo confidence interval method based on the summary statistics 

has not been systematically evaluated against all the other methods in constructing confidence 

intervals for ICERs. In addition, the conventional Monte Carlo confidence interval is constructed 

using the percentile method (e.g., the 2.5th percentile and the 97.5th percentile of the empirical 

distribution of the parameter of interest serve as the lower and upper limit of the 95% interval). 

Just like the bootstrap method, the percentile method may work less well than the bias-corrected 

Monte Carlo interval for parameters with skewed distributions. 
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Given the importance of confidence intervals (CIs) for sound application of findings from 

impact evaluations, the Standards for the Economic Evaluation of Educational and Social 

Programs has suggested that “CEA would ideally include confidence intervals for the 

incremental cost estimate(s) and the resulting cost-effectiveness ratios” “when an adequate 

number of cost estimates is available” (Cost Analysis Standards Project, 2021, p.43).  Given the 

lack of precedent and complexity in estimating confidence intervals for ICERs in education 

studies, it is important to provide statistical tools and guidance for calculating them.  

The purpose of this study is twofold. One is to conduct a Monte Carlo experiment to 

evaluate five methods of constructing CIs for ICERs in randomized controlled trials with cost-

effectiveness analyses: (1) the box method, (2) the Taylor series method, (3) the bootstrap 

method (percentile, bias-corrected, bias-corrected and accelerated), (4) Fieller’s theorem method, 

and (5) the Monte Carlo confidence interval based on the summary statistics (percentile and bias-

corrected). We also examine how sensitive the Monte Carlo intervals are to the misspecification 

of the correlation between costs and effects. The second purpose is to provide statistical tools, 

which include a SAS macro and a Microsoft Excel-based software, that facilitate accurate 

computation of CIs of ICERs. We hope this methodological paper will contribute to enhancing 

the reporting quality of applied research of CEA by providing more detailed information about 

the incremental costs and the ICER CIs.  

In what follows, we first introduce five methods for computing confidence intervals for 

the ICER. We then describe the procedure for the Monte Carlo experiment and criteria for 

assessing the adequacy of a confidence interval and present the simulation results. We then 

discuss the application of ICER CIs for hypothesis testing and demonstrate the calculation of 

confidence intervals based on two well-performing methods (Fieller’s theorem method and the 
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percentile and bias-corrected Monte Carlo confidence intervals based on the summary statistics) 

using the tools we developed. We use an example from a multisite randomized trial to evaluate 

the effectiveness and cost of a curriculum for kindergarten, Zoology One (Gray et al, 2021). 

Finally, we conclude with suggestions and directions for future research. 

Five Methods for Computing Confidence Intervals for ICER 

The incremental cost-effectiveness ratio (ICER) is defined as the incremental cost (𝛥𝐶) 

divided by the incremental effectiveness (𝛥𝐸): ICER = 𝛥𝐶/𝛥𝐸 (Bowden et al., 2017; Levin & 

Belfield, 2015; O’Brien et al., 1994; Wakker & Klaassen, 1995). In educational evaluations, the 

effectiveness measure for a continuous outcome variable (e.g., math achievement) is usually 

expressed as an effect size in standard deviation units. Thus, the ICER can frequently be 

interpreted as the cost per standard deviation increase in the outcome (Bowden et al., 2018; Cost 

Analysis Standards Project, 2021; Hollands et al., 2016; IES, 2020).  

In a randomized trial with a cost-effectiveness analysis with balanced design 

(𝑛1=𝑛0=𝑛/2), we can estimate 𝛥𝐶̂, 𝛥𝐸̂, and their standard errors (𝑆𝐸𝛥𝐶̂  and 𝑆𝐸𝛥𝐸̂) using 

multivariate regression models and calculated the 𝐼𝐶𝐸𝑅̂ =
𝛥𝐶̂

𝛥𝐸̂
. 

𝐸𝑖 = 𝛾0
𝑒 + 𝛾1

𝑒𝑇𝑖 + 𝜀𝑖
𝑒,                                                                                                      (1) 

𝐶𝑖 = 𝛾0
𝑐 + 𝛾1

𝑐𝑇𝑖 + 𝜀𝑖
𝑐,                                                                                                        (2) 

and [
𝜀𝑖

𝑒

𝜀𝑖
𝑐] ~𝑁 ([

0
0

] , [
𝜎𝑒

2 𝜎𝑒𝑐

𝜎𝑒𝑐 𝜎𝑐
2 ]),                                                                  (3) 

where 𝐸𝑖 and 𝐶𝑖 are the effectiveness measure (e.g., test scores) and the cost for participant i; 𝑇𝑖 

is a binary treatment indicator variable (𝑇𝑖 = 1 for treatment and 0 for control); 𝜀𝑖
𝑒 and 𝜀𝑖

𝑐 are the 

error terms for effectiveness and cost data, respectively. We assume the error terms follow 

bivariate normal distributions as shown in equation (3). 𝜎𝑒
2 and 𝜎𝑐

2 are the variances for the 
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effectiveness and cost error terms and 𝜎𝑒𝑐 is their covariance. The estimated 𝛾1
𝑒  (denoted as 𝛾1

𝑒 ) 

and 𝛾1
𝑐 (denoted as 𝛾1

𝑐) represent 𝛥𝐸̂ and 𝛥𝐶̂, respectively.  

Essentially, the parameters can be estimated using the following formulas (Briggs et al., 

2002): 

𝛥𝐸̂ = 𝛾1
𝑒 = 𝐸̅1 − 𝐸̅0 =

1

𝑛1
∑ (𝐸𝑖

𝑛1
𝑖=1 |𝑇𝑖 = 1) −

1

𝑛0
∑ (𝐸𝑖

𝑛
𝑖=𝑛1+1 |𝑇𝑖 = 0)  

𝛥𝐶̂ = 𝛾1
𝑐 = 𝐶1̅ − 𝐶0̅ =

1

𝑛1
∑ (𝐶𝑖

𝑛1
𝑖=1 |𝑇𝑖 = 1) −

1

𝑛0
∑ (𝐶𝑖

𝑛
𝑖=𝑛1+1 |𝑇𝑖 = 0)  

𝑉𝑎𝑟(𝛥𝐸̂) = (𝑆𝐸𝛥𝐸̂)2 = 𝑉𝑎𝑟(𝐸̅1) + 𝑉𝑎𝑟(𝐸̅0) =
𝑉𝑎𝑟(𝐸𝑖 |𝑇𝑖 = 1)

𝑛1
+

𝑉𝑎𝑟(𝐸𝑖|𝑇𝑖 = 0)

𝑛0
 

= 𝑉𝑎𝑟(𝛾1
𝑒) =

𝜎̂𝑒
2

𝑛𝜎𝑇
2 =

4𝜎̂𝑒
2

𝑛
  

𝑉𝑎𝑟(𝛥𝐶̂) = (𝑆𝐸𝛥𝐶̂ )2 = 𝑉𝑎𝑟(𝐶1̅) + 𝑉𝑎𝑟(𝐶0̅) =
𝑉𝑎𝑟(𝐶𝑖|𝑇𝑖 = 1)

𝑛1
+

𝑉𝑎𝑟(𝐶𝑖|𝑇𝑖 = 0)

𝑛0
 

= 𝑉𝑎𝑟(𝛾1
𝑐) =

𝜎̂𝑐
2

𝑛𝜎𝑇
2 =

4𝜎̂𝑐
2

𝑛
  

𝐶𝑜𝑣(𝛥𝐶̂, 𝛥𝐸̂) = 𝐶𝑜𝑣(𝐶1̅, 𝐸̅1) + 𝐶𝑜𝑣(𝐶0̅, 𝐸̅0)

= 𝑟1√𝑉𝑎𝑟(𝐶1̅)𝑉𝑎𝑟(𝐸̅1) + 𝑟0√𝑉𝑎𝑟(𝐶0̅)𝑉𝑎𝑟(𝐸̅0) = 2(𝑟1 + 𝑟0)
𝜎̂𝑐 𝜎̂𝑒

𝑛

=
𝜎̂𝑒𝑐

𝑛𝜎𝑇
2 =

𝑟𝜀𝑒,𝜀𝑐𝜎̂𝑐𝜎̂𝑒

𝑛𝜎𝑇
2 = 4𝑟𝜀𝑒,𝜀𝑐

𝜎̂𝑐 𝜎̂𝑒

𝑛
 

= 𝑟𝛥𝐶̂,𝛥𝐸̂√𝑉𝑎𝑟(𝛥𝐶̂)𝑉𝑎𝑟(𝛥𝐸̂) = 4𝑟𝛥𝐶̂,𝛥𝐸̂

𝜎̂𝑐 𝜎̂𝑒

𝑛
 

Hence, 𝑟𝛥𝐶̂,𝛥𝐸̂ =
(𝑟1+𝑟0)

2
= 𝑟𝜀𝑒,𝜀𝑐 , where 𝑟𝜀𝑒,𝜀𝑐 is the correlation coefficient of the error 

terms for effectiveness and cost data, and 𝑟1 and 𝑟0 are the correlation coefficients between costs 

and effects in the treamtent and control groups, respectively (Briggs et al., 2002). 
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The 𝛥𝐸 – 𝛥𝐶 plane (Figure 1) can be used to facilitate the interpretation of the ICER 

(e.g., Anderson et al., 1986; Black, 1990; Li et al., 2020; Polsky et al., 1997), where the 

horizontal axis represents the incremental effectiveness, and the vertical axis represents the 

incremental cost. The results (𝛥𝐸 and 𝛥𝐶) of a cost-effectiveness analysis can be denoted as a 

point in Figure 1 (e.g., the blue dot), where the slope of the ray connecting the origin and the 

point indicates the ICER [ICER = Tan (θ)]. All points on the ray have the same ICER, and the 

steeper the slope of this ray, the greater the ICER. The potential results of a cost-effectiveness 

analysis can fall into one of the four quadrants: (1) in Quadrant I, the treatment is more effective 

but more costly, and it is cost-effective if and only if the estimated ICER < k, where k is the cost-

effectiveness ratio of the alternative intervention to be compared; (2) in Quadrant II, the 

treatment is never deemed cost-effective; (3) in Quadrant III, the treatment is cost-effective if 

and only if the estimated ICER > k; and (4) in Quadrant IV, the treatment is always deemed cost-

effective. In summary, a treatment is deemed cost-effective if the estimated ICER lies below the 

red dotted line that represents the ICER = k, i.e., the shaded area. 

[Figure 1 about here] 

 

Because the 𝛥𝐸, 𝛥𝐶, and ICER reported in a cost-effectiveness analysis are the estimates 

of the population values from the sample, the precision of these estimates depends on the sample 

sizes and variances of costs and effectiveness measures. The 100(1 – 𝛼)% confidence interval is 

often used to measure the precision for estimates with sample variation, where 𝛼 is the Type I 

error rate. For instance, a 95% confidence interval, where 𝛼 = 0.05, defines a range which would 

include (or “cover”) the true population value 95% of the time if the study was repeated an 

infinite number of times. It also means that the true value would fall outside the interval (i.e., 
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“miscoverage”) 5% of the time. The coverage rate is the proportion of confidence intervals 

constructed by one method that cover the true population value. Confidence intervals that either 

over- or under-cover are poorly specified. If the coverage rate of the 95% confidence interval 

constructed by one method is greater than 0.95 (i.e., over-covering), it expresses too little 

confidence in the estimate and a narrower confidence interval that provides 95% coverage should 

be identified; if the coverage rate of the 95% confidence interval is smaller than 0.95 (i.e., under-

covering), it expresses too much confidence in the estimate and a wider confidence interval that 

provides 95% coverage should be identified (Polsky et al., 1997). Ideally, miscoverage of a two-

sided 95% confidence interval should be symmetric; that is, the true population value should be 

smaller than the lower limit of the 95% confidence interval 2.5% of the time and greater than the 

upper limit of the 95% confidence interval 2.5% of the time. 

The formulas for computing the two-sided 100(1 – 𝛼)% confidence intervals for the 𝛥𝐸 

and 𝛥𝐶 are readily available, e.g.,  𝐶𝐼1−𝛼(𝛥𝐸) = 𝛥𝐸̂ ∓ 𝑡1−𝛼 × 𝑆𝐸𝛥𝐸̂ , where 𝛥𝐸̂ is the 

incremental effectiveness estimate, 𝑡1−𝛼 is the two-sided critical value of the corresponding 

Student’s t distribution, and 𝑆𝐸𝛥𝐸̂ is the standard error of the 𝛥𝐸̂. Because the estimates of the 

standard errors of the 𝛥𝐸 and 𝛥𝐶 are unbiased and efficient when the sample size is sufficiently 

large and the distributions are approximately normal, the confidence intervals are reliable. 

However, because the distribution of the ratio may not be well behaved1 and there is no known 

unbiased and efficient estimator of the ratio’s standard error, there is no direct method for 

computing the confidence interval for ICER (O’Brien et al., 1994; Polsky et al., 1997; van Hout 

et al., 1994; Wakker & Klaassen, 1995). 

 
1 For example, when the ΔE and ΔC are independent normally distributed variables, the ratio follows a Cauchy 

distribution. The Cauchy distributed variables can take very extreme values and means of Cauchy distributions may 

not exist (Wakker & Klaassen, 1995).    
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Several methods have been proposed to calculate confidence intervals for ICER. Four 

methods that Polsky et al. (1997) evaluated in a Monte Carlo experiment include: the box 

methods, the Taylor method, the percentile bootstrap method, and Fieller’s theorem method. We 

evaluate all these four methods. In addition to the percentile bootstrap, we introduce the bias-

corrected bootstrap and bias-corrected and accelerated bootstraps below. Furthermore, we 

examine a new method, i.e., the Monte Carlo interval based on summary statistics, in 

constructing confidence intervals. 

Box method  

Wakker and Klaassen (1995) described the box method for constructing two-sided 

confidence intervals for ICER based on Bonferroni’s inequality. The box method does not make 

assumptions about the normality or symmetry of the distributions of 𝛥𝐸 and 𝛥𝐶 and it ignores 

the cost-effectiveness correlation. The confidence interval for the ICER is calculated using 

confidence limits computed separately for 𝛥𝐸 and 𝛥𝐶: 𝐶𝐼1−𝛼(𝐼𝐶𝐸𝑅) = (
𝐿𝐶

𝑈𝐸
,

𝑈𝐶

𝐿𝐸
), where 𝐿𝐸 and 

𝑈𝐸 are lower and upper confidence limits for 𝛥𝐸, and 𝐿𝐶  and 𝑈𝐶  are lower and upper confidence 

limits for 𝛥𝐶, if all four limits are positive; 𝐶𝐼1−𝛼(𝐼𝐶𝐸𝑅) = (
𝑈𝐶

𝐿𝐸
,

𝐿𝐶

𝑈𝐸
) if all four limits are 

negative. The 95% confidence interval for the ICER constructed by the box method using the 

95% confidence intervals for the 𝛥𝐸 and 𝛥𝐶 is conservative and has been found inappropriately 

wide (O’Brien et al., 1994; Mullahy & Manning, 1995). To avoid this problem, Polsky et al 

(1997) proposed to use narrower confidence intervals for the 𝛥𝐸 and 𝛥𝐶 to construct the 95% 

confidence interval for the ICER, that is, using the 68.4% confidence intervals for the 𝛥𝐸 and 𝛥𝐶 

(𝐶𝐼0.68(𝛥𝐸) = 𝛥𝐸̂ ∓ 1.0 × 𝑆𝐸𝛥𝐸̂ ; 𝐶𝐼0.68(𝛥𝐶) = 𝛥𝐶̂ ∓ 1.0 × 𝑆𝐸𝛥𝐶̂) rather than the 95% 

confidence intervals for the 𝛥𝐸 and 𝛥𝐶 (𝐶𝐼0.95(𝛥𝐸) = 𝛥𝐸̂ ∓ 1.96 × 𝑆𝐸𝛥𝐸̂ ; 𝐶𝐼0.95(𝛥𝐶) = 𝛥𝐶̂ ∓

1.96 × 𝑆𝐸𝛥𝐶̂).  
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Taylor series method  

O’Brien et al. (1994) applied the delta method, which involves a first-order Taylor series 

expansion to estimate the standard error of the ICER. The two-sided 95% confidence interval is 

defined by: 𝐶𝐼0.95(𝐼𝐶𝐸𝑅) = 𝐼𝐶𝐸𝑅̂ ∓ 1.96 × 𝑆𝐸𝐼𝐶𝐸𝑅̂ , where 𝐼𝐶𝐸𝑅̂ =
𝛥𝐶̂

𝛥𝐸̂
 and 𝑆𝐸𝐼𝐶𝐸𝑅̂ =

√(
𝛥𝐶̂

𝛥𝐸̂
)

2

(
(𝑆𝐸𝛥𝐶̂)

2

(𝛥𝐶̂)2 +
(𝑆𝐸𝛥𝐸̂)

2

(𝛥𝐸̂)2 −
2𝐶𝑜𝑣(𝛥𝐶̂,𝛥𝐸̂)

𝛥𝐶̂𝛥𝐸̂
). This method assumes a normal distribution for the 

ICER and incorporates the cost-effectiveness correlation into its standard error calculation. 

Bootstrap method 

Bootstrapping method (Efron, 1979; Efron & Tibshirani, 1993) is a nonparametric 

method that involves resampling from the study sample, computing the ICER in each of multiple 

samples, and constructing the confidence interval from the empirical sampling distribution of the 

ICERs (Chaudhary & Stearns, 1996; O’Brien et al., 1994). The first step of the procedure is to 

independently draw an arbitrarily large number (B) of resamples of size N with replacement from 

the original sample. Then the 𝛥𝐸, 𝛥𝐶, and ICER are calculated for each of these B resamples, 

resulting in an empirical sampling distribution of ICER. Then the confidence intervals are 

constructed, which differ for particular bootstrap approaches as defined next.  

The percentile bootstrap (Efron, 1981) uses the lower and upper 50𝛼% of the distribution 

of the estimated ICER to define the two-sided 100(1-𝛼)% confidence interval of ICER. The 

percentile bootstrap is simple to compute but may not work well if the bootstrap distribution is 

asymmetric. Efron (1981, 1982, 1987) and Efron and Tibshirani (1993) proposed the bias-

corrected bootstrap to reduce bias by incorporating an adjustment. Letting 𝑧0 be the z-score 

corresponding to the proportion of the B bootstrap resamples with the estimated ICER from each 

resample less than the estimated ICER from the original sample, two z-scores are defined as: 



15 
 

𝑧𝑙𝑜𝑤𝑒𝑟
′ = 2𝑧0 + 𝑧𝛼/2 and 𝑧𝑢𝑝𝑝𝑒𝑟

′ = 2𝑧0 + 𝑧1−𝛼/2, where 2𝑧0 is a correction for median bias. The 

proportions under the standard normal distribution that correspond to 𝑧𝑙𝑜𝑤𝑒𝑟
′  and 𝑧𝑢𝑝𝑝𝑒𝑟

′  are 

multiplied by 100 to serve as the adjusted percentiles for selecting the lower and upper 

confidence limits from the bootstrap distribution of the estimated ICER. The bias-corrected 

intervals do not always have good coverage (Schenker, 1985). Efron (1987) proposed the bias-

corrected and accelerated confidence intervals, which include further adjustment of skewness in 

the bootstrap distribution by an acceleration constant 𝑎̇: 𝑧𝑙𝑜𝑤𝑒𝑟
′ = 𝑧0 +

𝑧0+𝑧𝛼/2

1−𝑎̇(𝑧0+𝑧𝛼/2)
 and 𝑧𝑢𝑝𝑝𝑒𝑟

′ =

𝑧0 +
𝑧0+𝑧1−𝛼/2

1−𝑎̇(𝑧0+𝑧1−𝛼/2)
, where 𝑎̇ is a correction for skewness and is approximately 1/6 of the 

skewness of the bootstrap distribution of ICER. Note that when 𝑧0 = 0, the bias-corrected 

interval is same as the percentile interval; when 𝑎̇ = 0, the bias-corrected and accelerated 

interval is same as the bias-corrected interval; and when 𝑧0 = 𝑎̇ = 0, the bias-corrected and 

accelerated interval is same as the percentile interval. The primary benefits of bootstrapping are 

that it involves no distributional assumptions on the 𝛥𝐸, 𝛥𝐶, and ICER, and it considers the cost-

effectiveness correlation. 

Fieller’s theorem method 

Fieller (1954) proved a theorem for computing confidence intervals of a ratio by 

transferring the ratio into a linear function of two variables. The numerator and denominator of 

the ratio are assumed to follow a bivariate normal distribution. This method has been applied to 

construct confidence intervals for the ICER (Chaudhary & Stearns, 1996; O’Brien et al., 1994; 

Willan & O’Brien, 1996).  

In this case, we define the incremental net monetary benefit (INMB): 𝐼𝑁𝑀𝐵 = 𝜅𝛥𝐸̂ −

𝛥𝐶̂, where 𝜅 is the “willingness to pay” (Willan & Briggs, 2006), as the threshold ICER that 
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renders the intervention cost-effective (Stinnett & Mullahy, 1998). Then, observe 

𝜅𝛥𝐸̂−𝛥𝐶̂

√(𝜅2(𝑆𝐸𝛥𝐸̂)
2

+(𝑆𝐸𝛥𝐶̂)
2

−2𝜅𝐶𝑜𝑣(𝛥𝐶̂,𝛥𝐸̂))

~𝑁(0,1). The two-sided confidence interval at a significance 

level, 𝛼, is obtained by solving the inequality: |
𝜅𝛥𝐸̂−𝛥𝐶̂

√(𝜅2(𝑆𝐸𝛥𝐸̂)
2

+(𝑆𝐸𝛥𝐶̂)
2

−2𝜅𝐶𝑜𝑣(𝛥𝐶̂,𝛥𝐸̂))

| ≤ 𝑧𝛼/2. That is, 

𝑎𝜅2 + 𝑏𝜅 + 𝑐 ≤ 0, which is called the Fieller quadratic, where 𝑎 = (𝛥𝐸̂)
2

− 𝑧𝛼/2
2 (𝑆𝐸𝛥𝐸̂)2, 𝑏 =

−2[𝛥𝐶̂ ∙ 𝛥𝐸̂ − 𝑧𝛼/2
2 𝐶𝑜𝑣(𝛥𝐶̂, 𝛥𝐸̂)], and 𝑐 = (𝛥𝐶̂)

2
− 𝑧𝛼/2

2 (𝑆𝐸𝛥𝐶̂)2. When 𝑏2 ≤ 4𝑎𝑐, there is no 

real solution for the inequality; when 𝑏2 > 4𝑎𝑐 and 𝑎 < 0 (i.e., (
𝛥𝐸̂

𝑆𝐸𝛥𝐸̂

)
2

< 𝑧𝛼/2
2 ), the solution is 

(−∞, min{𝑙1, 𝑙2}) ∪ (max{𝑙1, 𝑙2}, +∞), where 𝑙1,2 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
; when 𝑏2 > 4𝑎𝑐 and 𝑎 > 0 

(i.e., (
𝛥𝐸̂

𝑆𝐸𝛥𝐸̂

)
2

> 𝑧𝛼/2
2 ), the solution is (min{𝑙1, 𝑙2}, max{𝑙1, 𝑙2}). In particular, when 𝑏2 > 4𝑎𝑐 and 

𝑎 is close to 0 (i.e., (
𝛥𝐸̂

𝑆𝐸𝛥𝐸̂

)
2

is close to 𝑧𝛼/2
2 ), the solution is close to (−∞, +∞).  

In summary, only when 𝑏2 > 4𝑎𝑐 and 𝑎 > 0 (i.e., (
𝛥𝐸̂

𝑆𝐸𝛥𝐸̂

)
2

> 𝑧𝛼/2
2 , indicating a 

significant treatment effect estimate on the effectiveness measure), does Fieller’s theorem 

provide a meaningful confidence interval. Fieller’s theorem method does not restrict the 

distribution of the ICER to be normal or symmetric, and it includes the cost-effectiveness 

correlation in the computation. 

The Monte Carlo confidence interval based on the summary statistics 

The Monte Carlo confidence intervals have been advocated for the sensitivity 

(robustness) analysis of the cost-effectiveness ratios by changing some assumptions such as the 

discount rate and the intervention dosage (Boardman et al., 2018). Mullahy and Manning (1995) 

also use the Monte Carlo confidence interval method based on the summary statistics (point 
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estimates and standard errors of the incremental cost and effectiveness measures, and their 

correlations/covariances) to demonstrate the problems of Taylor’s approximation in calculating 

confidence intervals for ICER in a simple simulation. However, the Monte Carlo confidence 

interval method based on the summary statistics has not been systematically evaluated against all 

the other methods in constructing confidence intervals for ICER. In contrast, the Monte Carlo 

confidence interval based on summary statistics has been evaluated for constructing confidence 

intervals for the product of two parameter estimates (i.e., mediation effects) and, in that 

application, demonstrated comparable performance with the bootstrap method regarding the 

coverage, width, symmetry, and speed (Preacher & Selig, 2012; Bai et al., 2023; Cox & Kelcey, 

2023; Kelcey et al. 2017, 2020). In addition, the conventional two-sided Monte Carlo confidence 

interval is constructed using the percentile method, e.g., the 2.5th percentile and the 97.5th 

percentile of the empirical distribution of the parameter of interest serve as the lower and upper 

limit of the 95% interval. Just like the bootstrap method, the percentile method may work less 

well when the distribution of the parameter is skewed, whereas the bias-corrected Monte Carlo 

interval may work better.  

The Monte Carlo interval method makes the assumption that the parameters 𝛥𝐸 and 𝛥𝐶 

have a joint normal sampling distribution, with parameters supplied by the estimates on the 𝛥𝐸 

and 𝛥𝐶: [∆𝐶∗

∆𝐸∗] ~𝑀𝑉𝑁 ([∆𝐶̂
∆𝐸̂

] , [
(𝑆𝐸𝛥𝐶̂)2  𝐶𝑜𝑣(𝛥𝐶̂, 𝛥𝐸̂)

 𝐶𝑜𝑣(𝛥𝐶̂, 𝛥𝐸̂) (𝑆𝐸𝛥𝐸̂ )2
]). A sampling distribution of 

𝛥𝐶̂

𝛥𝐸̂
 can be 

formed by repeatedly generating ∆𝐶∗ and ∆𝐶∗ and computing their ratio many times (e.g., M = 

100,000). Although parametric assumptions are invoked for 𝛥𝐶̂ and 𝛥𝐸̂, no parametric 

assumptions are made about the distribution of 
𝛥𝐶̂

𝛥𝐸̂
. Percentiles for this sampling distribution are 

identified to serve as the limits for a 100(1-𝛼)% confidence interval of ICER.  
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Similar to the bias-corrected bootstrap method, the bias-corrected Monte Carlo interval 

can be constructed as follows. Letting 𝑧0 be the z-score corresponding to the proportion of the M 

parameter sets with the estimated ICER (
∆𝐶∗

∆𝐸∗
) from each parameter set less than the estimated 

ICER (
𝛥𝐶̂

𝛥𝐸̂
) from the original sample, two z-scores are defined as: 𝑧𝑙𝑜𝑤𝑒𝑟

′ = 2𝑧0 + 𝑧𝛼/2 and 

𝑧𝑢𝑝𝑝𝑒𝑟
′ = 2𝑧0 + 𝑧1−𝛼/2, where 2𝑧0 is a correction for median bias. The proportions under the 

standard normal distribution that correspond to 𝑧𝑙𝑜𝑤𝑒𝑟
′  and 𝑧𝑢𝑝𝑝𝑒𝑟

′  are multiplied by 100 serves as 

the adjusted percentiles for selecting the lower and upper confidence limits from the sampling 

distribution of 
𝛥𝐶̂

𝛥𝐸̂
. 

The Monte Carlo Experiment 

 We conducted a Monte Carlo experiment to evaluate the performance of five methods for 

constructing two-sided confidence intervals for ICERs. Specifically, these methods include: the 

box method (1.96 SE and 1.0 SE), Taylor method, the bootstrap method (percentile, bias-

corrected, and bias-corrected and accelerated), Fieller’s theorem method, and the Monte Carlo 

intervals based on the summary statistics (percentile and bias-corrected) (Table 1). In addition, 

we examined the confidence intervals using the Monte Carlo interval method with misspecified 

cost-effectiveness correlations (assuming the correlation to be 0 while the true correlation is non-

zero).  

Procedure 

The procedures are below: 

(1) We generated cost and effectiveness data for randomized trials. We varied the sample 

sizes, the distributions of the cost, the correlations between the cost and the effectiveness 

measures, and incremental effectiveness (𝛥𝐸). The sample sizes (n) were 20, 40, 60, 100, 150, 
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200, 300, 400, 500, 600, and 800. The sample was randomly assigned to either the treatment 

group or control group in each trial. By definition, the ICER is a linear function of 𝛥𝐶, but it is 

not a monotone function of 𝛥𝐸. When 𝛥𝐸 is close to 0, the ICER approaches infinity, which 

implies that when 𝛥𝐸̂ is not statistically different from 0, there is a chance the ICER estimate 

will be infinity and the distribution of the ICER estimate can be bimodal— conditions that affect 

the confidence intervals. By following Polsky et al.’s (1997) simulation, we used a significant 

𝛥𝐶̂, but we allowed 𝛥𝐸̂ to be both significant and non-significant in our simulations to 

investigate how the significance of 𝛥𝐸̂ affected the confidence intervals; in addition, we used 

both normal and lognormal distributions for the costs. Thus, we assumed the cost estimates have 

a normal distribution with a mean of $20,000 and standard deviation (SD) of 2,000 for the entire 

sample, and we added 𝛥𝐶 = $5,000 to the cost for the treatment group; We also assumed the cost 

estimates have a lognormal distribution with a mean of $20,000 and the SD of 8,000 for the 

entire group, and we added 𝛥𝐶 = $5,000 to the cost for the treatment group. We assumed the 

effectiveness outcome has a normal distribution with a mean of 1.0 and the SD of 1.0 for the 

entire sample, and we added 𝛥𝐸 = 0.25 and 0.50, respectively, to the effectiveness outcome for 

the treatment group.  

Hill et al (2008) reported that the effect sizes from 61 randomized studies (468 effect 

sizes) are in the 0.07-0.51 range and the mean effect sizes from the meta-analysis of 76 meta-

analyses of educational interventions are in the 0.20-0.30 range. Recently, Kraft (2020) reported 

that the mean effect size is 0.16 (SD = 0.28) and the median effect size is 0.10 (the 30th 

percentile is 0.02 and the 70th percentile is 0.21) from the meta-analysis of 747 randomized 

studies (1,942 effect sizes). We chose 0.25 to represent the effect size of an effective educational 

intervention. In addition, we used an effect size of 0.50 to evaluate how the effect sizes may 
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affect the performance of various methods. Together with the sample sizes, these effect sizes can 

provide a wide range of significance levels of educational interventions (t = 0.56 – 7.07). 

 Empirical results about the correlations of the cost and effectiveness estimates in 

educational research are rarely reported. We used data from a multisite study (Gray et al, 2021) 

to get an empirical estimate of the correlation (0.33) among 19 sites. We followed Polsky et al.’s 

(1997) simulation and used a wide range of correlations from -0.5 to 0.5 in a step of 0.1 in the 

simulation. This range of correlations can allow us to explore how the correlations affect the 

performance of various methods. This resulted in a total 484 scenarios (11 sample sizes × 2 cost 

distributions × 2 𝛥𝐸 × 11 correlations).  

(2) For each scenario, we estimated 𝛥𝐶̂, 𝛥𝐸̂, and their standard errors (𝑆𝐸𝛥𝐶̂  and 𝑆𝐸𝛥𝐸̂) 

using two ordinary least square regression models (Equations 1-3), estimated the cost-

effectiveness correlation using 𝑟𝛥𝐶̂,𝛥𝐸̂ = (𝑟𝑇 + 𝑟𝐶)/2, and calculated the 𝐼𝐶𝐸𝑅̂ =
𝛥𝐶̂

𝛥𝐸̂
. We 

constructed two-sided 95% confidence intervals for the ICERs using five methods discussed 

above. Specifically, we used the box method based on both 1.96 standard errors and 1.0 standard 

errors of 𝛥𝐶̂ and 𝛥𝐸̂ when four limits are all positive or all negative, and we coded the other 

situations as “exclusive”. We used the Taylor series method based on the standard error of 𝐼𝐶𝐸𝑅̂ 

derived from the first-order Taylor series expansion.  

For bootstrapping, we used the macros developed by SAS Institute Inc. (2007) with 

modifications for calculating confidence intervals for the percentile, bias-corrected, and bias-

corrected and accelerated methods. We used Fieller’s method when (
𝛥𝐸̂

𝑆𝐸𝛥𝐸̂

)
2

> 𝑧𝛼/2
2 , and coded 

the other situations as “exclusive”. For the Monte Carlo interval based on the summary statistics, 

we used both the percentile and bias-corrected methods; in addition, we constructed confidence 
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intervals using the misspecified correlation between the cost and effectiveness outcome (always 

assuming 0). 

If the true ICER fell within the two-sided 95% CI, we coded the variable “coverage” as 1 

(0 otherwise); if the lower limit of the 95% CI exceeded the true ICER, we coded the variable 

“left_side_miscoverage” as 1. The interval width was calculated by the difference of the upper 

and lower confidence limits, i.e., 𝑈𝐼𝐶𝐸𝑅 − 𝐿𝐼𝐶𝐸𝑅 .  

(3) We conducted 3,000 replications for each scenario. We calculated the mean of the 

variable “coverage” as the coverage rate (CR), the mean of the variable “exclusive” as the 

exclusion rate, the average width, and the proportion of “left_side_miscoverage” in the total 

miscoverage as the symmetry measure over 3,000 replications. In addition, we calculated the 

bias of the coverage rate and the root mean square error (RMSE) of the coverage rate across 

multiple scenarios: 𝐵𝑖𝑎𝑠𝑘 = 𝐶𝑅𝑘 − 0.95 and 𝑅𝑀𝑆𝐸 = √
∑ (𝐶𝑅𝑘−0.95)2𝐾

𝑘=1

𝐾
, where 𝐶𝑅𝑘 and 𝐵𝑖𝑎𝑠𝑘 

are the coverage rate and bias for the kth scenario. Furthermore, we regressed the absolute value 

of the bias on the sample size, the 𝛥𝐸 (0.25 or 0.50), the distribution of the cost (lognormal or 

normal), and the correlation between the cost and effectiveness to investigate the effects of these 

factors.  

Criteria for Evaluating the Methods 

The primary evaluation criterion is the coverage rate, which is preferred to the interval 

width and symmetry measure for the ratio interval (Jiang et al., 2000) and the product interval 

(e.g., mediation effect, Preacher & Selig, 2012). The method with the best confidence interval is 

the one that produces the smallest RMSE of the coverage rate across multiple scenarios. In 

addition, a method is better if it comes closer to the target coverage rate of 95%. The interval 
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width and symmetry measure are the secondary criteria. The method is better if it produces 

narrower width and symmetry measure closer to 0.5. 

Results 

Summative Assessment  

Across all 484 simulation scenarios, the ICER estimates over 3,000 replications had an 

average skewness of 1.58 with a range of -54.77 to 54.77 and an average kurtosis of 1145.88 

with a range of 0.58 to 2999.92. The average exclusion rate for Fieller’s method was 0.37 with 

the maximum of 0.91. This means that, on average, 37% of the replications were not able to 

produce meaningful confidence intervals using Fieller’s method. The Box method (1.96 SE) and 

the Box method (1.0 SE) had average exclusion rates of 0.39 and 0.19 with maximum rates of 

0.99 and 0.84, respectively.  

The RMSE of the coverage rate, the average coverage rate, the average interval width, 

and the average symmetry across 484 simulation scenarios by the confidence interval 

constructing method are reported in Table 1. The percentile bootstrap method and the Monte 

Carlo interval based on the summary statistics produced the smallest RMSE (0.018 and 0.019, 

respectively). Surprisingly, the Monte Carlo interval based on the summary statistics when the 

correlation between costs and effects was misspecified (always assuming 0) produced a slightly 

larger RMSE (0.024). The box method (1.96 SE) produced the next smallest RMSE (0.049) 

followed by Taylor’s method (0.084) and Fieller’s method (0.095). The bias-corrected bootstrap 

method, the bias-corrected and accelerated bootstrap method, the bias-corrected Monte Carlo 

interval, and the Box method (1.0 SE) produced similar RMSE ranging from 0.114 to 0.119.   

[Table 1 about here] 
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The percentile bootstrap method produced the closest average coverage rate (0.965) to 

0.95 along with the Monte Carlo interval (0.966) and the Monte Carlo interval method with a 

misspecified correlation (0.966). The Box method (1.96 SE) produced the next closest average 

coverage rate (0.975) followed by Fieller’s method (0.914). In addition, the percentile bootstrap 

method and the Monte Carlo interval produced narrower ranges for the average coverage rate 

(0.924-0.983 and 0.934-0.983) than did the Monte Carlo interval with a misspecified correlation 

(0.888-0.997), Fieller’s method (0.530-0.980) and the Box method (1.96 SE) (0.715-1.000).  

The bias-corrected bootstrap method, the bias-corrected and accelerated bootstrap 

method, and the bias-corrected Monte Carlo interval resulted in under-coverage and produced 

similar average coverage rates around 0.88 and coverage range0.58-0.98. Both Taylor’s method 

and the Box method (1.0 SE) also resulted in under-coverage, with an average coverage rate of 

0.890 with a wide range (0.680-0.960) and an average coverage rate of 0.860 with a wide range 

(0.523-0.975), respectively. 

The percentile bootstrap method, the Monte Carlo interval, and the Monte Carlo interval 

with a misspecified correlation produced similarly small average coverage width with narrow 

ranges. All the other methods produced larger widths with larger ranges. The bias-corrected 

bootstrap method, the bootstrap bias-corrected and accelerated method, and the bias-corrected 

Monte Carlo interval produced better symmetry with an average of 0.38 and a range of 0.04-0.60 

than the other methods.   

Overall, ranges on the average coverage rate, width, and symmetry varied considerably 

across 484 simulation scenarios. Thus, it is important to investigate which simulation factors 

contribute to the variation. Table 2 presents the results of regressing the absolute value of the 

bias for the 95% coverage rate on the sample size, the effectiveness effect size (𝛥𝐸), the cost-
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effectiveness correlation, and the distribution of costs (lognormal vs. normal). The proportion of 

variance on the absolute value of the bias explained by these four simulation factors ranges from 

0.02 to 0.65 (R2 = 0.02-0.65) across all the methods. 

[Table 2 about here] 

 

All of these simulation factors were mean-centered, hence, the intercepts can be 

interpreted as the mean absolute value of the bias. The bootstrap percentile method and the 

Monte Carlo interval produced similarly smaller mean absolute bias (0.016 and0.017) than the 

other methods. This pattern is similar to the RMSE in Table 1. The sample size is statistically 

significant (p < 0.01) across all methods. The 𝛥𝐸 was statistically significant (p < 0.01) across all 

methods except for the Box CI (1.96 SE) and the Monte Carlo interval with a misspecified 

correlation. The magnitudes of the associations (coefficients) of the sample size and 

effectiveness effect size with the absolute value of the bias are smaller for the bootstrap 

percentile method and the Monte Carlo interval than the other methods.  

When the sample size and the effectiveness effect size increased, the absolute value of 

the bias decreased, except for the Monte Carlo interval with a misspecified correlation. The cost-

effectiveness correlation only affected the Box method (1.0 SE) and the Monte Carlo interval 

with a misspecified correlation. In addition, the quadratica term of the cost-effectiveness 

correlation also affected the bias for the Monte Carlo interval with a misspecified correlation. 

The distribution of costs (lognormal or normal) only affected the Box method (1.0 SE), Taylor’s 

method, and the Monte Carlo interval with a misspecifed correlation. 

Summary across 22 scenarios by the sample size and the 𝛥𝐸 
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Given that the sample size and the 𝛥𝐸 played a more consistently important role in 

explaining the bias across methods, we presented the summary results of RMSE, coverage rate, 

width, and symmetry by the 𝛥𝐸 and sample sizes across 22 scenarios (2 cost distributions × 11 

correlations) in Figures 2 and 3 and Tables 3 and 4. Based on the assigned treatment effects on 

the effectiveness measure and sample sizes, we also reported the t-statistics in the figure and 

tables: 𝑡 =
𝛥𝐸

𝑆𝐸𝛥𝐸
=

𝛥𝐸√𝑛

2
, where 𝛥𝐸 = 0.25 or 0.50, n = 20 – 800, and the variance of the 

effectiveness measure is 1 in the simulation. Specifically, Figures 2a and 2b presented the RMSE 

of 95% confidence interval coverage as a function of sample size for 𝛥𝐸 = 0.25 and 0.50, 

respectively; Figures 3a and 3b presented the average 95% confidence interval coverage as a 

function of sample size for 𝛥𝐸 = 0.25 and 0.50, respectively. In all four figures, the long grey 

dash line represents the Box method (1.0 SE), the short grey dash line represents the Box method 

(1.96 SE), the cyan solid line represents Taylor’s method, the red solid line represents the Monte 

Carlo interval based on the summary statistics, the long shadow blue dash line represents the 

percentile bootstrap method (Bootstrap PCTL), the short green dashed line represents Fieller’s 

method, the short dashed blue line represents the bias-corrected bootstrap method (Bootstrap 

BC), the orange solid line represents the bias-corrected and accelerated bootstrap method 

(Bootstrap BCa), and the long dark blue dash line represents the bias-corrected Monte Carlo 

interval based on the summary statistics (MC corrected).  

[Figures 2-3 about here] 

[Tables 3-4 about here] 

 

The percentile bootstrap method and the Monte Carlo interval based on the summary 

statistics had consistently good performance (small RMSE and close coverage to 0.95) across 𝛥𝐸 
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and sample sizes (and t-statistics). When t ≥ 2.5 (i.e., 𝛥𝐸 = 0.25 and n ≥ 400 or 𝛥𝐸 = 0.5 and n ≥ 

100), Fieller’s method, the bias-corrected bootstrap method, the bias-corrected and accelerated 

bootstrap method, and the bias-corrected Monte Carlo interval had similarly good performance 

as the bootstrap percentile method and the Monte Carlo interval (RMSE < 0.023 and coverage = 

0.942-0.972). However, when the t-statistic is small, for example, t < 1.77 (i.e., 𝛥𝐸 = 0.25 and n 

< 200 ), the bias-corrected bootstrap method, the bias-corrected and accelerated bootstrap 

method, and the bias-corrected Monte Carlo interval produce larger RMSE (> 0.07) and under 

coverage rate (< 0.88). When 𝛥𝐸 = 0.25 and n = 100, i.e., t = 1.25, Fieller’s method produced 

RMSE = 0.07 with an average coverage = 0.881 and the exclusion rate = 0.76, which means that 

Fieller’s method failed to construct the confidence intervals in 76% of the replications. Taylor’s 

method produced consistently under-covering coverage rates and approached good performance 

only when t ≥ 5.00 (𝛥𝐸 = 0.5 and n ≥ 400). The Box methods (1.96 SE) always produced over-

covering 95% coverage rates (0.956-0.993) except when t < 1.00 and the Box methods (1.0 SE) 

always produced under-covering 95% coverage rates (0.805-0.902). 

The percentile bootstrap method, the Monte Carlo interval, and the Monte Carlo interval 

with a misspecified correlation produced similarly smallest average coverage width consistently 

across 𝛥𝐸 and sample sizes. When t ≥ 5.0 (e.g., 𝛥𝐸 = 0.5 and n ≥ 400), Fieller’s method, the 

bias-corrected bootstrap method, the bias-corrected and accelerated bootstrap method, and the 

bias-corrected Monte Carlo interval had performance on width and symmetry (0.46-0.51) similar 

to the percentile bootstrap method and the Monte Carlo interval.  

The performance of these methods depends on the joint effect of the sample size and the 

𝛥𝐸 (i.e., t-statistic) because the ICER is a ratio statistic. By definition, the ICER is not a 

monotone function of 𝛥𝐸. When 𝛥𝐸 is close to 0, the ICER approaches infinity. It implies that 
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when 𝛥𝐸̂ is not statistically different from 0 (i.e., the t-statistic is smaller than the critical t), there 

is a chance the ICER estimate will be infinity and the distribution of the ICER estimate can be 

bimodal, which affect the confidence intervals.  

Summary across 44 scenarios by the cost-effectiveness correlation 

To investigate how the misspecification of the cost-effectiveness correlation using the 

Monte Carlo interval method affects confidence intervals, we present the summary results of 

RMSE and average coverage rates across 44 scenarios (11 sample sizes × 2 cost distributions × 2 

𝛥𝐸) as a function of the cost-effectiveness correlation (-0.5 to 0.5) in Figures 4 and 5. In addition 

to the Monte Carlo interval with a misspecified correlation (assuming 0), we also plotted the 

Monte Carlo interval with correctly specified correlation and the percentile bootstrap method as 

references, and the Box method (1.96 SE and 1.0 SE) as a comparison. The purple dotted line 

represents the Monte Carlo interval with a misspecified correlation, and the other methods used 

the same lines as forementioned. Not surprisingly, the RMSE of the 95% coverage rate for the 

Monte Carlo interval with a misspecified correlation had a curvilinear relationship with the 

correlation. When the true correlation is within (-0.3, 0.1), the misspecification of correlation has 

small effects on the RMSE and average coverage rate. Even when the correlation is misspecifed, 

the Monte Carlo interval produced smaller RMSE (0.016-0.035) and better coverage rates (0.945-

0.984) than the Box method.  

[Figures 4 & 5 about here] 

 

In summary, the Monte Carlo interval based on the summary statistics had the same good 

performance (coverage, width, and symmetry) as the percentile bootstrap method in constructing 

the two-sided confidence intervals for the ICER across all simulation scenarios. Both methods 
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were robust against the cost-effectiveness correlations and the distributions of costs (lognormal 

or normal) and produced better coverage, narrower width, and better symmetry when the sample 

size and the 𝛥𝐸 increased. Fieller’s method, the bias-corrected bootstrap method, the bias-

corrected and accelerated bootstrap method, and the bias-corrected Monte Carlo interval had 

good performance when the 𝛥𝐸 and sample sizes were large (e.g., 𝛥𝐸 = 0.5 and n ≥ 400, i.e., t ≥ 

5.0). Taylor’s method and the Box method (1.0 SE or 1.96 SE) had worse performance than the 

aforementioned methods. In addition, the misspecification of correlation (assuming 0) using the 

Monte Carlo interval had small effects on RMSE and average coverage rate when the true 

correlation was within (-0.3, 0.1).  

Application of ICER CIs for Hypothesis Testing and Demonstration of the Software 

The descriptive point estimate of the ICER itself is useful, but not enough for hypothesis 

testing or policy making. The ICER CIs provide a range of values within which the true value of 

ICER likely lie with confidence. The width of a CI measures the precision of the estimated 

ICER. Narrower intervals indicate more precise estimates, while wider intervals suggest less 

precision. This helps in understanding the reliability of the ICER estimates derived from a 

sample. In addition, the CIs can be used for hypothesis testing and in decision-making processes.  

For two-sided hypothesis testing in cost-effectiveness studies, the null hypothesis is 

typically stated as H0: ICER = k, meaning that the true ICER equals a threshold value k. The 

alternative hypothesis for a two-sided test is Ha: ICER ≠ k. For a left-sided test, H0: ICER ≥ k, 

meaning that the true ICER is equal or greater than k and tested program is equally or less cost-

effective; the alternative hypothesis is Ha: ICER < k, indicating that the true ICER is less than k 

and the tested program is more cost-effective. For a right-sided test, H0: ICER ≤ k, meaning that 

the true ICER is equal or smaller than k and the tested program is equally or more cost-effective; 



29 
 

Ha: ICER > k, suggesting that the true ICER is greater than k and the tested program is less cost-

effective. 

When α = 0.05, the 95% confidence interval for two-sided test is the values associated 

with the 2.5th and 97.5th percentiles. In the case of the left-sided test, the 95% confidence 

interval’s lower and upper limits are -∞ and the value at the 95th percentile, respectively; 

Conversely, for the right-sided test, these limits are the value at the 5th percentile and +∞, 

respectively. A hypothesis test is statistically significant when the 100(1 – 𝛼)% confidence 

interval does not include k.   

We developed a Microsoft Excel-based software and a SAS macro for calculating the 

two-sided and one-sided confidence intervals of the ICER using the Monte Carlo interval. In 

addition, we provided two-sided confidence intervals for Fieller’s method as a comparison. 

Unlike the bootstrap method, which requires the original data, these methods need only point 

estimates and standard errors of the incremental cost and effectiveness measures and their 

correlation. Once these summary statistics are input, the ICER and their confidence intervals will 

be automatically calculated for a specified confidence level.  

To demonstrate this software, we use an example from the forementioned multisite 

randomized trial to evaluate the effectiveness and cost of the Zoology One kindergarten 

curriculum (Gray et al, 2021). This example is a good representation of typical efficacy trials in 

education that educational outcomes data were measured at the individual level, but cost data 

were often collected at the site level. This example does not follow the ideal where we have costs 

per individual but we chose to use this example intentionally to demonstrate the wide and easy 

application of our methods. The original article (Gray et al, 2021) reported neither the standard 

error for the incremental cost estimate nor the correlation between incremental cost and 
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effectiveness measures. However, it did estimate the incremental costs per student using the 

ingredient method for 20 out of 21 schools in the original multisite study. In addition, the 

treatment effect sizes and their standard errors on the Woodcock Reading Mastery Test passage 

comprehension were estimated for 20 out of 21 schools.  

The study reported both incremental costs and effectiveness outcome estimates for 19 

schools. Thus, to recover these estimates for constructing ICER CIs, we applied methods 

typically used in Meta-Analysis to compute the point estimate and standard error of the 

incremental effectiveness of the tested intervention. We then calculated the mean and standard 

error of the incremental cost and the correlation of the incremental effectiveness and cost for 

these 19 schools. The estimated average effect size across these schools on the Woodcock 

Reading Mastery Test passage comprehension is 0.15 (SE = 0.04) and the incremental cost per 

student is $499.36 (SE = 48.91). The correlation between the incremental cost and effectiveness 

across 19 schools is 0.33.  

After these parameters are entered into the software and a desired confidence interval 

(95% in this case) is specified, the software produces an ICER estimate and its two-sided and 

one-sided 95% confidence intervals.  

Figure 6 presents the screenshot of this calculation based on the Excel-based software. 

The estimated ICER is $3,293, that is, the study findings suggest that, on average, using Zoology 

One, it would cost an average of $3,293 per pupil to increase passage comprehension scores by 

one standard deviation. The two-sided 95% confidence intervals of the ICER are ($2,209, 

$6,665) based on the Monte Carlo interval and ($2,209, $6,648) based on Fieller’s method. For 

the one-sided test, the left-sided 95% CI is (-∞, 5,721) and the right-sided 95% CI is (2,338, ∞). 

Figures S1 and S2 in the supplemental material present similar results using the SAS macro.  
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The distribution of the ICER based on Monte Carlo simulation is right-skewed. Note that 

the confidence intervals calculated from the Monte Carlo method change every time after the 

simulation is rerun. Increasing the number of replications of simulation will reduce the change. 

In this example, the 95% confidence intervals are very close between the Monte Carlo interval 

and Fieller’s method, providing greater confidence in the results.  

The two-sided 95% confidence interval of the ICER based on the Monte Carlo interval 

suggests that, if the studies are replicated infinitely, the true cost per student for each standard 

deviation increase on passage comprehension falls between $2,209 and $6,665 95% of times. If 

we knew that the true ICER for the alternative Program X was within this CI, we would not 

reject the null hypothesis that Zoology One was equally cost-effective as Program X. On the 

other hand, If we knew that the true ICER for the alternative Program X was outside of this CI, 

we could determine that Zoology One was not as cost-effective as Program X. 

If the true ICER for the alternative Program X was below the lower limit of the right-

sided 95% CI (i.e., $2,338), we would conclude that Zoology One was less cost-effective than 

Program X based on one-sided testing; If the true ICER for the alternative Program X was above 

the upper limit of the left-sided 95% CI (i.e., $5,721), we would conclude that Zoology One was 

more cost-effective than Program X based on one-sided testing. 

These ICER CIs and hypothesis testing can help stakeholders understand the range of 

potential ICERs and the uncertainty associated with those ICER estimates and assist with policy 

making, for example, choosing the statistically more cost-effective programs.  

 

[Figure 6 about here] 
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Conclusion 

 Through a Monte Carlo experiment, we have found that the Monte Carlo interval based 

on summary statistics has consistently good performance regarding coverage, width, and 

symmetry as the percentile bootstrap method in constructing the confidence intervals for the 

ICER across multiple scenarios (varying sample sizes, 𝛥𝐸, cost-effectiveness correlations, and 

distributions of costs). Although Fieller’s method has been recommended in the health literature 

(e.g., Briggs et al., 1999; Chaudhary & Stearns, 1996; Polsky et al., 1997) and the bias-corrected 

bootstrap method has also been recommended by Chaudhary and Stearns (1996), our study found 

that these two methods did not work well when the sample size and the effectiveness treatment 

effect size were small. Taylor’s method and the Box method (1.0 SE or 1.96 SE) had worse 

performance than the Monte Carlo interval and the percentile bootstrap method. The poor 

performance of Taylor’s method is consistent with the literature (e.g., Mullahy & Manning, 

1995). Thus, we suggest using the percentile bootstrap method and the Monte Carlo interval 

based on the summary statistics to construct the confidence intervals of the ICER. When the t-

statistic of the effectiveness measure is larger than 2.5, Fieller’s method, the bias-corrected 

bootstrap method, the bias-corrected and accelerated bootstrap method, and the bias-corrected 

Monte Carlo interval can also be used. 

One advantage of the Monte Carlo interval is that it is easier to compute compared to 

other methods (e.g., the bootstrap method), especially when the data structure of the cost and 

effectiveness measures are complicated. The Monte Carlo interval relies on the summary 

statistics (point estimates and standard errors of the incremental cost and effectiveness, and their 

correlation), which can be estimated from the conventional multilevel or ordinary least square 

analysis of the costs and effectiveness, while the bootstrap method may involve resampling the 
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clusters of participants. For example, in multisite cost-effectiveness studies, the effectiveness 

data are collected at the individual level and the cost data are collected at the site level, which are 

very common in educational evaluations. Researchers can first estimate the incremental costs 

and effectiveness outcome by site, and then calculate the means, standard errors, and their 

correlation of the incremental costs and effectiveness outcome across sites. The ICER CIs can be 

easily calculated by inputting these parameter estimates using the software. In addition, the 

Monte Carlo interval is particularly useful when the data from the original sample are not 

available and, thus, the bootstrap method is not feasible (e.g., in the systematic review).  

The second advantage of the Monte Carlo interval is noteworthy. It provides the 

empirical distribution of the ICER, akin to the bootstrap method. Moreover, it offers confidence 

intervals in most situations, unlike Fieller’s method. Researchers can easily identify negative and 

undefined ICERs in the empirical distribution. This is a significant benefit over Fieller’s method, 

which struggles to provide meaningful confidence intervals when the treatment effect lacks 

statistical significance. The third advantage is that the Monte Carlo interval can be directly 

applied for robustness analysis by changing the input parameters (e.g., the cost-effectiveness 

correlation). These advantages make the Monte Carlo interval a powerful method that is feasible 

for most scenarios in practice, and useful for sensitivity analysis. 

One limitation of the present study is that although we evaluated the Monte Carlo interval 

against some commonly used bootstrap methods (percentile, bias-corrected, and bias-corrected 

and accelerated), we did not test other methods, e.g., the Bayesian bootstrap (Rubin, 1981). 

Future research may investigate constructing credible intervals for the ICER using the Bayesian 

bootstrap method. Nevertheless, the percentile-based Monte Carlo interval has demonstrated 

good performance in constructing confidence intervals of the ICER.  
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Note that one limitation of applying ICER and ICER CIs for policy making is that the 

ICER assumes a linear relationship between the incremental costs and effectiveness outcomes 

while the incremental effectiveness results may not be scalable (i.e., an additional standard 

deviation increase in the effectiveness outcome may not be purchased by the same amount of 

money). For example, there may be a ceiling effect for impacts of the program or there may be a 

curvilinear relationship between the incremental costs and effectiveness outcomes. Questions 

about the value of ICER CIs to decision makers have been raised in medical literature and some 

researchers suggest that confidence surfaces are better suited for this decision making than CIs 

(e.g., Briggs & Fenn, 1998). One direction for future research is to investigate what measures or 

statistics (e.g., net monetary benefit) of cost-effectiveness analysis are more feasible and better 

than ICER CIs in education decision-making.  

Furthermore, to our knowledge, there is no statistical method available for designing 

randomized cost-effectiveness studies with adequate statistical power based on ICER. Another 

direction for future research is to use the Monte Carlo interval for power analysis of the ICER 

based on two- or one-sided testing like the analysis of power for mediation effects using Monte 

Carlo intervals (e.g., Kelcey et al. 2017; 2020).  

Finally, we echo the suggestion that “CEA would ideally include confidence intervals for 

the incremental cost estimate(s) and the resulting cost-effectiveness ratios” … “when an 

adequate number of cost estimates is available” in the Standards for the Economic Evaluation of 

Educational and Social Programs (Cost Analysis Standards Project, 2021, p.43). In addition, 

future empirical CEA studies are encouraged to report the variance (or standard error) of the 

incremental costs and the correlation of the incremental costs and incremental effectiveness 

when possible.  
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Figures and Tables 

 

Figure 1: The 𝛥𝐸 – 𝛥𝐶 Plane 

 

Note: The figure has been used in literature (e.g., Anderson et al., 1986; Black, 1990). 
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Figure 2: RMSE of 95% confidence interval coverage as a function of sample size 

 

 

2a (𝛥𝐸 = 0.25)        2b (𝛥𝐸 = 0.5) 

 

 
 

Note: RMSE was calculated across 22 scenarios (2 cost distributions × 11 correlations). “t” refers to the t-statistic of the treatment 

effect size for the effectiveness measure. 
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Figure 3: 95% confidence interval coverage as a function of sample size  

 

 

3a (𝛥𝐸 = 0.25)        3b (𝛥𝐸 = 0.5) 

 

 
 

Note: Coverage rate was calculated across 22 scenarios (2 cost distributions × 11 correlations). “t” refers to the t-statistic of the 

treatment effect size for the effectiveness measure. 
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Figure 4: RMSE of 95% confidence interval coverage as a function of cost-effectiveness correlation 

 

 
 

Note: RMSE was calculated across 44 scenarios (11 sample sizes × 2 cost distributions × 2 𝛥𝐸).  
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Figure 5: 95% confidence interval coverage as a function of cost-effectiveness correlation 

 

 
 

Note: RMSE was calculated across 44 scenarios (11 sample sizes × 2 cost distributions × 2 𝛥𝐸).  
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Figure 6: Screenshot of the ICER CI Calculator 
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Table 1: The summary results of 484 simulation scenarios 

Method RMSE Coverage rate Width Symmetry 

Box CI 

1.96 SE 0.049 
0.975  

(0.715, 1.000) 

309118  

(15081, 9M) 

0.00  

(0.00, 0.00) 

1.0 SE 0.117 
0.860  

(0.523, 0.975) 
219683  

(12225, 30M) 
0.00  

(0.00, 0.00) 

Taylor's method 0.084 
0.890  

(0.680, 0.96) 

149B 

(5386, 63T) 

0.00  

(0.00, 0.09) 

Bootstrap 

Bias-corrected 0.119 
0.884  

(0.583, 0.980) 

21M  

(5828, 1.4B) 

0.38  

(0.04, 0.59) 

Bias-corrected & 
accelerated 

0.114 
0.887  

(0.603, 0.98) 
18M  

(5827, 841M) 
0.37  

(0.04, 0.58) 

Percentile 0.018 
0.965  

(0.924, 0.983) 

148462  

(5829, 453887) 

0.11  

(0, 0.56) 

Fieller's theorem 0.095 
0.914  

(0.530, 0.980) 

251927  

(5825, 15M) 

0.12  

(0.00, 0.57) 

Monte Carlo 

interval 

Percentile 0.019 
0.966  

(0.934, 0.983) 
147065  

(5825, 450598) 
0.11  

(0, 0.57) 

Bias-corrected 0.118 
0.885  

(0.585, 0.981) 

460M  

(5825, 26B) 

0.38  

(0.04, 0.60) 

Misspecified correlation=0 0.024 
0.966  

(0.888, 0.997) 

174296  

(6497, 415561) 

0.10  

(0.00, 0.62) 

 

N = 484. Within the parathesis are the minimal and maximum values. “M” refers to million, “B” 

refers to billion, and “T” refers to trillion. 
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Table 2: The results of regressing the absolute value of the bias of the 95% coverage rate on the simulation factors 

Variables 
Box CI 

(1.96 SE) 
Box CI 
(1.0 SE) 

Taylor's 
method 

Bootstrap 

bias-
corrected 

Bootstrap 

bias-

corrected & 
accelerated 

Bootstrap 
percentile 

Fieller's 
theorem 

Monte 

Carlo 
(percentile) 

Monte 

Carlo 

(bias-
corrected) 

Monte Carlo: 

misspecified 
correlation=0 

Monte Carlo: 

misspecified 
correlation=0 

Intercept 0.041* 0.091* 0.061* 0.074* 0.071* 0.016* 0.048* 0.017* 0.073* 0.021* 0.021* 

Sample Size 

(1,000) 
-0.013* -0.115* -0.144* -0.242* -0.231* -0.006* -0.155* -0.007* -0.239* 0.005 0.005* 

Effectiveness 

Effect Size 
-0.008 -0.263* -0.234* -0.302* -0.293* -0.029* -0.237* -0.026* -0.303* 0.002 0.002 

Cost-Effect 

Correlation 
0.004 -0.053* -0.007 -0.004 -0.004 -0.001 -0.005 <0.001 -0.005 0.019* 0.019* 

Lognormal 
Cost 

0.003 -0.071* -0.015* -0.004 -0.004 -0.001 -0.005 -0.001 -0.005 0.004* 0.004* 

Squared 

Cost-Effect 

Correlation 

na na na na na na na na na na 0.031* 

R2 0.02 0.63 0.65 0.56 0.57 0.21 0.35 0.18 0.56 0.31 0.37 

 

Note: N = 484. *p < 0.01. 

All predictors are mean centered. The intercept represents the mean absolute value of the bias. 
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Table 3: Width by the 𝛥𝐸 and sample size 

  𝛥𝐸 = 0.25 

Method 
n=20 

(t=0.56) 
n=40 

(t=0.79) 
n=60 

(t=0.97) 
n=100 

(t=1.25) 
n=150 

(t=1.53) 
n=200 

(t=1.77) 
n=300 

(t=2.17) 
n=400 

(t=2.50) 
n=500 

(t=2.80) 
n=600 

(t=3.06) 
n=800 

(t=3.54) 

Box CI (1.96 SE) 263,684 413,344 870,427 385,835 692,307 575,276 661,146 374,906 244,068 475,753 208,643 

Box CI (1.0 SE) 175,182 405,816 342,171 297,378 745,588 266,322 332,947 1M 84,076 74,256 45,843 

Taylor's method 3T 4B 13B 26B 5B 1B 94M 156B 13M 24M 134,457 

Bootstrap bias-

corrected 
31M 50M 124M 86M 31M 38M 19M 10M 7M 4M 1M 

Bootstrap bias-

corrected & 

accelerated 

25M 39M 90M 83M 29M 37M 18M 10M 7M 4M 1M 

Bootstrap 

percentile 
255,237 316,643 351,621 383,762 380,935 364,689 301,303 238,308 184,696 140,480 86,402 

Fieller's theorem 269,538 267,743 278,766 295,430 327,436 545,315 668,887 241,072 389,886 898,588 122,261 

Monte Carlo 
(percentile) 

250,758 312,152 347,380 379,566 377,709 360,916 298,656 235,875 182,920 139,558 85,544 

Monte Carlo  

(bias-corrected) 
1B 1B 1B 1B 975M 579M 2B 240M 332M 132M 8M 

Monte Carlo: 

misspecified 

correlation=0 

252,669 313,074 347,874 379,761 377,750 361,092 298,764 235,947 182,987 139,620 85,601 

  𝛥𝐸 = 0.50 

Method 
n=20 

(t=1.12) 

n=40 

(t=1.58) 

n=60 

(t=1.94) 

n=100 

(t=2.50) 

n=150 

(t=3.06) 

n=200 

(t=3.54) 

n=300 

(t=4.33) 

n=400 

(t=5.00) 

n=500 

(t=5.59) 

n=600 

(t=6.12) 

n=800 

(t=7.07) 

Box CI (1.96 SE) 365,161 406,564 294,469 209,281 144,163 95,829 39,866 24,378 20,692 18,358 16,455 

Box CI (1.0 SE) 143,376 118,552 101,322 68,045 44,366 38,958 16,733 14,955 14,025 13,498 12,841 

Taylor's method 195B 62M 42M 8M 84M 133,505 12,824 10,204 8,838 7,917 6,704 

Bootstrap bias-

corrected 
23M 18M 22M 6M 1M 601,253 42,626 13,774 10,591 9,006 7,315 

Bootstrap bias-

corrected & 

accelerated 

19M 12M 19M 4M 1M 585,903 41,252 13,748 10,581 9,002 7,314 

Bootstrap 

percentile 
200,748 196,175 173,001 119,573 70,772 43,622 20,550 13,429 10,558 8,999 7,314 

Fieller's theorem 147,715 186,175 494,327 141,377 140,765 59,983 25,853 14,126 10,821 9,028 7,309 

Monte Carlo 

(percentile) 
198,367 194,549 171,690 118,874 70,495 43,566 20,566 13,401 10,566 9,016 7,309 

Monte Carlo  

(bias-corrected) 
469M 424M 336M 105M 40M 4M 68,782 13,747 10,597 9,027 7,309 

Monte Carlo: 

misspecified 
correlation=0 

199,175 194,448 171,578 118,837 70,534 43,646 20,633 13,467 10,623 9,071 7,354 

Note: Width was calculated across 22 scenarios (2 cost distributions × 11 correlations). “M” refers to 

million, “B” refers to billion, and “T” refers to trillion. “t” refers to the t-statistic of the treatment effect 

size for the effectiveness measure. 
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Table 4: Symmetry by the 𝛥𝐸 and sample size 

  𝛥𝐸 = 0.25 

Method 
n=20 

(t=0.56) 
n=40 

(t=0.79) 
n=60 

(t=0.97) 
n=100 

(t=1.25) 
n=150 

(t=1.53) 
n=200 

(t=1.77) 
n=300 

(t=2.17) 
n=400 

(t=2.50) 
n=500 

(t=2.80) 
n=600 

(t=3.06) 
n=800 

(t=3.54) 

Box CI (1.96 SE) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Box CI (1.0 SE) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Taylor's method 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Bootstrap bias-

corrected 
0.20 0.28 0.34 0.42 0.48 0.51 0.51 0.44 0.34 0.23 0.10 

Bootstrap bias-

corrected & 

accelerated 

0.21 0.28 0.33 0.41 0.47 0.51 0.50 0.44 0.34 0.22 0.10 

Bootstrap 

percentile 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fieller's theorem 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 

Monte Carlo 
(percentile) 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Monte Carlo  

(bias-corrected) 
0.20 0.28 0.34 0.42 0.48 0.52 0.51 0.45 0.34 0.22 0.09 

Monte Carlo: 

misspecified 

correlation=0 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  𝛥𝐸 = 0.50 

Method 
n=20 

(t=1.12) 

n=40 

(t=1.58) 

n=60 

(t=1.94) 

n=100 

(t=2.50) 

n=150 

(t=3.06) 

n=200 

(t=3.54) 

n=300 

(t=4.33) 

n=400 

(t=5.00) 

n=500 

(t=5.59) 

n=600 

(t=6.12) 

n=800 

(t=7.07) 

Box CI (1.96 SE) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Box CI (1.0 SE) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Taylor's method 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 

Bootstrap bias-

corrected 
0.37 0.46 0.49 0.41 0.23 0.17 0.37 0.48 0.50 0.51 0.48 

Bootstrap bias-

corrected & 

accelerated 

0.38 0.44 0.46 0.39 0.22 0.16 0.36 0.47 0.50 0.51 0.48 

Bootstrap 

percentile 
0.00 0.00 0.00 0.01 0.03 0.08 0.29 0.46 0.50 0.51 0.48 

Fieller's theorem 0.00 0.00 0.00 0.01 0.06 0.14 0.41 0.49 0.50 0.51 0.48 

Monte Carlo 

(percentile) 
0.00 0.00 0.00 0.01 0.03 0.07 0.28 0.47 0.50 0.51 0.48 

Monte Carlo  

(bias-corrected) 
0.38 0.47 0.49 0.42 0.24 0.17 0.35 0.48 0.50 0.51 0.48 

Monte Carlo: 

misspecified 
correlation=0 

0.00 0.00 0.00 0.00 0.02 0.06 0.27 0.46 0.49 0.50 0.48 

Note: Symmetry was calculated across 22 scenarios (2 cost distributions × 11 correlations). “t” refers to 

the t-statistic of the treatment effect size for the effectiveness measure. 
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Supplemental Material:  

 

SAS Macro for Calculating ICER CIs 

 

%MACRO 

ICER_CIs_Calculator(NET_COST,SE_NET_COST,NET_EFFECT,SE_NET_EFFECT,Correlation

_CE,CONFID, REPLICATIONS); 

 

/*** Monte Carlo Interval ***/ 

/* Create net cost-effectiveness variance-covariance matrix, and simulated 

data for Monte Carlo Interval*/ 

%Let cost_var = %sysevalf(&SE_NET_COST*&SE_NET_COST);       

/* Variance of net cost estimate */ 

%Let effect_var = %sysevalf(&SE_NET_EFFECT*&SE_NET_EFFECT);      

/* Variance of net effect estimate */ 

%Let ce_cov = %sysevalf(&Correlation_CE*&SE_NET_COST*&SE_NET_EFFECT);  

/* Covariance */ 

%Let ICER = %sysevalf(&NET_COST/&NET_EFFECT);        

%Let pctl = %sysevalf((100-&CONFID)/2);       

   /* Two-sided CI: left limit percentile */ 

%Let pctu = %sysevalf(&CONFID+(100-&CONFID)/2);                

        /* Two-sided CI: right limit percentile */ 

%Let pctu_L_sided = %sysevalf(&CONFID);       

   /* Left-sided CI: right limit percentile */ 

%Let pctl_R_sided = %sysevalf(100-&CONFID);      

   /* Right-sided CI: left limit percentile */ 

 

proc iml; 

mu = { &NET_COST, &NET_EFFECT }; 

sigma= { &cost_var &ce_cov, 

&ce_cov &effect_var}; 

call vnormal(ce, mu, sigma, &REPLICATIONS); 

create mcdata (RENAME=(COL1=cost COL2=effect)) from ce ; 

append from ce; 

quit; 

 

data mcdata; 

set mcdata; 

Lable ICER_sim = "Incremental cost-effectiveness ratios from simulation"; 

ICER_sim = cost/effect; 

run; 

 

* Get percentile confidence limits for simulated data ; 

proc univariate data=mcdata noprint; 

 var ICER_sim; 

 output out=ci_mcdata pctlpts= &pctl &pctu &pctl_R_sided &pctu_L_sided 

pctlpre=a pctlname=lcl ucl lcl_R_sided ucl_L_sided n=n; 

run; 

 

data ci_mcdata; 

alcl_L_sided = 'Negative Infinity';  

aucl_R_sided = 'Positive Infinity';  

retain alcl aucl alcl_L_sided aucl_L_sided alcl_R_sided aucl_R_sided; 
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drop n; 

length Method $50; 

Method="Monte Carlo Interval (Percentile)"; 

set ci_mcdata; 

run; 

 

/*** Fieller's theorem ***/ 

 

data Fieller; 

drop b2 a c; 

length method $50; 

 

b2= &NET_COST*&NET_EFFECT-

quantile('NORMAL',&pctu/100)**2*&Correlation_CE*&SE_NET_COST*&SE_NET_EFFECT; 

a = &NET_EFFECT*&NET_EFFECT-

quantile('NORMAL',&pctu/100)**2*&SE_NET_EFFECT*&SE_NET_EFFECT; 

c = &NET_COST*&NET_COST-

quantile('NORMAL',&pctu/100)**2*&SE_NET_COST*&SE_NET_COST; 

 

if a le 0 then do; 

Note = "No Solution"; 

alcl = .; 

aucl = .; 

end; 

 

if a > 0 then do; 

alcl = (b2-sqrt(b2*b2-a*c))/a ; 

aucl = (b2+sqrt(b2*b2-a*c))/a ; 

end; 

 

Method="Fieller's Theorem"; 

output; 

run; 

 

data ICER_CIs; 

retain Method; 

ICER = &ICER; 

Lable ICER = "Incremental cost-effectiveness ratio"; 

Lable alcl = "Lower limit of the two-sided &CONFID% confidence interval"; 

Lable aucl = "Upper limit of the two-sided &CONFID% confidence interval"; 

Lable alcl_L_sided = "Lower limit of the left-sided &CONFID% confidence 

interval"; 

Lable aucl_L_sided = "Upper limit of the left-sided &CONFID% confidence 

interval"; 

Lable alcl_R_sided = "Lower limit of the right-sided &CONFID% confidence 

interval"; 

Lable aucl_R_sided = "Upper limit of the right-sided &CONFID% confidence 

interval"; 

 

set ci_mcdata Fieller; 

NET_COST = &NET_COST; 

SE_NET_COST = &SE_NET_COST; 

NET_EFFECT = &NET_EFFECT; 

SE_NET_EFFECT = &SE_NET_EFFECT; 

Correlation_CE = &Correlation_CE; 

Confidence=&CONFID; 

Replications = &REPLICATIONS; 
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run; 

 

Proc print data = ICER_CIs label; 

run; 

 

proc sql noprint; 

select  

round(ICER,.1), 

round(alcl,.1), 

round(aucl,.1), 

alcl - (ICER - alcl) , 

aucl + (aucl - ICER) , 

10000 

into 

:ICER, 

:alcl_PCTL, 

:aucl_PCTL, 

:min_xaxis , 

:max_xaxis , 

:n_bins 

from Icer_cis where Method="Monte Carlo Interval (Percentile)"; 

quit; 

 

ods listing image_dpi=300; 

ods graphics / width=4.4 in height=3 in; 

 

ods listing gpath='C:\ICER'; 

 

ods graphics / imagename="dist_ICER_sim" imagefmt=png; 

title 'Distribution of the ICER based on Monte Carlo simulation' ; 

proc sgplot data=mcdata ; 

xaxis  

  valueattrs=(color=black size=12pt) min = &min_xaxis max = &max_xaxis; 

yaxis  

  valueattrs=(color=black size=12pt) offsetmax=0.1; 

   histogram ICER_sim  / scale=percent nbins = &n_bins; 

    refline &alcl_PCTL &aucl_PCTL / axis=x lineattrs=(thickness=2 

color=darkred pattern=dash) 

            label=("Lower Limit /(&alcl_PCTL)"  "Upper Limit /(&aucl_PCTL)") 

splitchar="/";  

 refline &ICER  / axis=x lineattrs=(thickness=2 color=darkred ) 

   label=("ICER /(&ICER)") splitchar="/";  

run; 

title; 

 

%MEND; 

 

 

%ICER_CIs_Calculator(499.36,48.91,0.15,0.04,0.33,95, 100000); 
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Figure S1: Screenshot of the output using the SAS Macro 
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Figure S2: Distribution of the simulated ICER from the SAS Macro 
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Overview of the Search and Screening Process for Empirical Cost-effectiveness Studies in 

Education 

 

We conducted a systematic review to identify scholarly publications that reported 

empirical estimates of the effectiveness and cost of educational interventions. We included 

studies that i) were randomized control trials (RCTs) in education, ii) collected student academic 

outcomes for students from grades K to 12, iii) were conducted in a U.S. setting, iv) reported 

estimates of the effectiveness and cost of the intervention, and v) were published in English. We 

used a comprehensive search strategy to identify and retrieve all relevant studies. We searched 

four large databases of indexed research in education and social sciences namely Education 

Resources Information Center (ERIC), ProQuest Central, ProQuest Central Dissertations and 

Theses Global, and SCOPUS. In addition, we did forward and backward reference harvesting 

and Google Scholar random search to locate additional studies. The following search term was 

used to locate relevant studies: Academic and (achiev* or outcome* or improv*) AND 

Randomized* and (control* or experiment* or trial* or design or methodology*) AND (cost* or 

budget* or finance* or expenditure* or expens*) AND (primary or elementary or preschool or 

“middle school*” or “high school*” or secondary).  

The search retrieved 604 total publications in which only 530 publications were unique. 

Together with 21 publications located through reference harvesting and Google Scholar random 

search, we had a pool of 551 publications to screen for eligibility. Our screening of the abstract 

and full text identified 20 publications that meet our criteria for eligibility. The other publications 

were screened out for various reasons, primarily of which were because the studies were RCTs in 

health sciences, were not conducted in a U.S. setting or were not targeting K-12 students, did not 
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provide estimates of the effectiveness and/or cost of the intervention, or did not collect student 

academic outcomes. Of the 20 publications that meet our eligibility criteria, only 10 publications 

reported the ICERs, in which all the eight publications reported the point estimates (Barret et al., 

2020; Barrett & VanDerHeyden, 2020; Clark et al., 2020; Cil et al., 2023; Finster et al., 2023; 

Guryan et al., 2020; Hollands et al., 2016; Hunter et al., 2018; Kim et al., 2011; Scammacca et 

al., 2020) and only two of them also reported the confidence interval (Cil et al., 2023; Hunter et 

al., 2018).  

In addition, we conducted a separate search and review for quasi-experimental studies 

using the same criteria and procedure, except that we focused on quasi-experimental studies 

instead of RCTs. Therefore, for example, we used the following search term to locate relevant 

studies: Academic and (achiev* or outcome* or improv*) AND (Quasi-experiment* or 

propensity score match*) AND (cost* or budget* or finance* or expenditure* or expens*) AND 

(primary or elementary or preschool or “middle school*” or “high school*” or secondary). The 

search identified a total of 166 publications including 16 duplicates across the four databases. 

Our reference harvesting and Google Scholar random search retrieved two additional 

publications. Of 152 publications screened for eligibility, only five were deemed to meet our 

review criteria. The vast majority of the studies were excluded mainly because they did not 

provide cost data, were conducted in a non-US or higher education setting, or were collecting 

health related outcomes. Of the five publications that meet our eligibility criteria, three 

publications reported the ICERs, in which all the three publications reported the point estimates 

(Borman & Hewes, 2002; Bowden & Bellfield, 2015; Bowden et al., 2017) and only one of them 

also provided the confidence interval (Bowden & Bellfield, 2015). 


