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Advantages of Monte Carlo Confidence Intervals for Incremental Cost-Effectiveness
Ratios: A Comparison of Five Methods

Abstract

Cost-effectiveness analysis studies in education often prioritize descriptive statistics of cost-
effectiveness measures, such as the point estimate of the incremental cost-effectiveness ratio
(ICER), while neglecting inferential statistics like confidence intervals (Cls). Without CIs, it
becomes impossible to make meaningful comparisons of alternative educational strategies, as
there is no basis for assessing the uncertainty of point estimates or the plausible range of ICERs.
This study is designed to evaluate the relative performance of five methods of constructing Cls
for ICERs in randomized controlled trials with cost-effectiveness analyses. We found that the
Monte Carlo interval method based on summary statistics consistently performed well regarding
coverage, width, and symmetry. It yielded estimates comparable to the percentile bootstrap
method across multiple scenarios. In contrast, Fieller’s method did not work well with small
sample sizes and treatment effects. Further, Taylor’s method and the Box method performed
least well. We discussed two-sided and one-sided hypothesis testing based on ICER Cls,
developed tools for calculating these ICER Cls, and demonstrated the calculation using an
empirical example. We concluded with suggestions for applications and extensions of this work.

Keywords:

Confidence interval, Cost-effectiveness analysis (CEA), Fieller’s method, Incremental cost-
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Advantages of Monte Carlo Confidence Intervals for Incremental Cost-Effectiveness

Ratios: A Comparison of Five Methods

Cost-effectiveness analysis (CEA) is a type of economic evaluation that compares the
costs and effects of alternative programs to identify which program is more efficient at
improving an outcome of interest (Levin, et al., 2018; O’Brien et al., 1994; Wakker & Klaassen,
1995; Willan & Briggs, 2006). The comparison is made between each program’s incremental
cost-effectiveness ratio (ICER), where the costs to deliver the program that produced the effects
are divided by the effectiveness estimate. The resulting metric from this ratio is the cost to
produce a one unit increase in the outcome. Each ratio is then compared and the program with
the lowest cost-effectiveness ratio is preferred. A limitation of CEA studies in education is the
lack of precision in reporting ICERs to determine which approach is most efficient. It is difficult
to say with confidence if one approach is more efficient than another without additional

information on the variation in costs and the resulting variation in the ICER.

Examples of evaluations that include both effects and costs have been increasingly
common in education (e.g., Barrett et al., 2020; Bowden & Belfield, 2015; Jacob et al., 2016;
Unlu et al., 2015). In the 2024 Request for Applications, the Institute of Education Sciences
(IES) recommends understanding the total and incremental costs of the program for strong
applications and requires CEA in the research plan for the impact grants (IES, 2024). We
anticipate in the future there will be even more educational evaluations that include a cost-
effectiveness component, where the costs to produce the effects are reported. One goal of this
effort is to strengthen the evidence base on program effects and to support future comparisons

among program alternatives where effects are considered relative to their costs. Thus, it is



important to examine how the evidence on the costs of interventions is reported and how this can

be strengthened to support comparative analyses.

To date, studies that report the costs to produce effects have rarely provided information
on how costs vary to support the use of statistical inference to determine if cost-effectiveness
ratios are statistically different from one another. In a systematic review of randomized and
quasi-experimental studies, we identified 13 publications that reported empirical estimates of the
effectiveness and costs of educational interventions, and of those, ten only reported the point
estimates of ICERs (Barret et al., 2020; Barrett & VanDerHeyden, 2020; Borman & Hewes,
2002; Bowden et al., 2017; Clark et al., 2020; Finster et al., 2023; Guryan et al., 2020; Hollands
et al., 2016; Kim et al., 2011; Scammacca et al., 2020). Only three reported the confidence
interval of the ratio (Bowden & Belfield, 2015; Cil et al., 2023; Hunter et al., 2018).

Furthermore, although all 13 publications reported sufficient details about the
effectiveness outcomes (e.g., point estimates, standard errors, and p-values), none reported
standard errors of the incremental costs or the correlations of the incremental costs and
effectiveness outcomes. However, relevant cost data may have been collected and more results
about incremental costs can be reported, especially for multisite studies. For instance, the cost
data were collected at the site level in a multisite randomized trial to evaluate the effectiveness
and cost of a curriculum for kindergarten, Zoology One (Gray et al, 2021). The published paper
could but did not report the standard error of the incremental cost estimate or the correlation
between incremental cost and effectiveness measures. (See the supplemental material for details
of the search strategy.)

The failure to report variance and confidence intervals for cost estimates limits the

usefulness of study findings since it is difficult to make meaningful comparisons of findings



across studies or population groups within studies without knowledge of the precision of the
point estimates and plausible range of ICERs. For instance, suppose the reported ICER for
Program A was $100 per standard deviation increase in math achievement, while the reported
ICER for Program B was $200 per standard deviation increase in math achievement. Comparing
the ratios from the two studies alone does not allow for a meaningful judgment about whether
Program A is in fact more cost-effective than Program B, since we have no information about the
precision of the ratios. These constraints are due, in part, to the difficulty of conducting statistical
inference analysis for ratio statistics (e.g., Bowden & Belfield, 2015; Hollands et al., 2013; Levin
et al., 2012; Li et al., 2023; O’Brien et al., 1994).

Other fields, including medicine, have overcome these challenges by defining precision
levels and calculating and reporting confidence intervals for ICERs. Several approaches to
calculating the confidence intervals for ICERs have been developed. For example, Polsky et al.
(1997) compared the performance of four methods (the box method, the Taylor series method,
the nonparametric bootstrap method, and the Fieller’s theorem method) using a Monte Carlo
experiment. They found that the bootstrap method and Fieller’s theorem method were more
accurate than the others in terms of miscoverage rates and symmetrical miscoverage. Polsky et
al. (1997) used a binary outcome measure (mortality) to measure the effectiveness (the
percentage difference in mortality between the treatment and control groups as the incremental
effectiveness measure), did not vary the sample size in their simulations (n = 500), and only
tested the percentile bootstrap method. However, in educational studies, continuous outcome
measures, such as student academic achievement, are common, and the standardized mean
differences as effect sizes are frequently used for the incremental effectiveness measures. In

addition, the sample size also affects the coverage rate of the bootstrap methods (Preacher &



Selig, 2012), and the other bootstrap methods (e.g., bias-corrected bootstrap, and bias-corrected
and accelerated bootstrap) may have advantages over the percentile bootstrap method when the
distribution of the ratio is skewed (Polsky et al., 1997).

Furthermore, the Monte Carlo confidence interval method based on summary statistics
has been proposed for testing the product of two parameter estimates, e.g., mediation effects
(Preacher & Selig, 2012; Kelcey et al. 2017, 2020), and demonstrated comparable performance
with the bootstrap method in constructing confidence intervals in terms of coverage, symmetry,
width, and speed.

Monte Carlo confidence intervals have been used to examine the sensitivity (robustness)
of cost-effectiveness ratios by changing some assumptions such as the discount rate and the
intervention dosage (Boardman et al., 2018, Levin & Belfield, 2015). Also, the Monte Carlo
confidence interval method based on the summary statistics (e.g., point estimates and standard
errors of the incremental cost and effectiveness, and their correlation/covariance) has been used
to demonstrate the problems with Taylor’s approximation in calculating confidence intervals for
ICERs in a simple simulation (Mullahy & Manning, 1995).

However, the Monte Carlo confidence interval method based on the summary statistics
has not been systematically evaluated against all the other methods in constructing confidence
intervals for ICERs. In addition, the conventional Monte Carlo confidence interval is constructed
using the percentile method (e.g., the 2.5™ percentile and the 97.5™ percentile of the empirical
distribution of the parameter of interest serve as the lower and upper limit of the 95% interval).
Just like the bootstrap method, the percentile method may work less well than the bias-corrected

Monte Carlo interval for parameters with skewed distributions.



Given the importance of confidence intervals (Cls) for sound application of findings from
impact evaluations, the Standards for the Economic Evaluation of Educational and Social
Programs has suggested that “CEA would ideally include confidence intervals for the

99 ¢

incremental cost estimate(s) and the resulting cost-effectiveness ratios” “when an adequate
number of cost estimates is available” (Cost Analysis Standards Project, 2021, p.43). Given the
lack of precedent and complexity in estimating confidence intervals for ICERs in education
studies, it is important to provide statistical tools and guidance for calculating them.

The purpose of this study is twofold. One is to conduct a Monte Carlo experiment to
evaluate five methods of constructing Cls for ICERs in randomized controlled trials with cost-
effectiveness analyses: (1) the box method, (2) the Taylor series method, (3) the bootstrap
method (percentile, bias-corrected, bias-corrected and accelerated), (4) Fieller’s theorem method,
and (5) the Monte Carlo confidence interval based on the summary statistics (percentile and bias-
corrected). We also examine how sensitive the Monte Carlo intervals are to the misspecification
of the correlation between costs and effects. The second purpose is to provide statistical tools,
which include a SAS macro and a Microsoft Excel-based software, that facilitate accurate
computation of ClIs of ICERs. We hope this methodological paper will contribute to enhancing
the reporting quality of applied research of CEA by providing more detailed information about
the incremental costs and the ICER ClIs.

In what follows, we first introduce five methods for computing confidence intervals for
the ICER. We then describe the procedure for the Monte Carlo experiment and criteria for
assessing the adequacy of a confidence interval and present the simulation results. We then

discuss the application of ICER ClIs for hypothesis testing and demonstrate the calculation of

confidence intervals based on two well-performing methods (Fieller’s theorem method and the



percentile and bias-corrected Monte Carlo confidence intervals based on the summary statistics)
using the tools we developed. We use an example from a multisite randomized trial to evaluate
the effectiveness and cost of a curriculum for kindergarten, Zoology One (Gray et al, 2021).
Finally, we conclude with suggestions and directions for future research.
Five Methods for Computing Confidence Intervals for ICER

The incremental cost-effectiveness ratio (ICER) is defined as the incremental cost (4C)
divided by the incremental effectiveness (AE): ICER = AC/AE (Bowden et al., 2017; Levin &
Belfield, 2015; O’Brien et al., 1994; Wakker & Klaassen, 1995). In educational evaluations, the
effectiveness measure for a continuous outcome variable (e.g., math achievement) is usually
expressed as an effect size in standard deviation units. Thus, the ICER can frequently be
interpreted as the cost per standard deviation increase in the outcome (Bowden et al., 2018; Cost
Analysis Standards Project, 2021; Hollands et al., 2016; IES, 2020).

In a randomized trial with a cost-effectiveness analysis with balanced design

(n,=ny=n/2), we can estimate AC, AE, and their standard errors (SE 5 and SE ) using

multivariate regression models and calculated the ICER = %.
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where E; and C; are the effectiveness measure (e.g., test scores) and the cost for participant i; T;
is a binary treatment indicator variable (T; = 1 for treatment and 0 for control); €7 and &f are the
error terms for effectiveness and cost data, respectively. We assume the error terms follow

bivariate normal distributions as shown in equation (3). 62 and ¢ are the variances for the



effectiveness and cost error terms and g, is their covariance. The estimated y; (denoted as 75 )
and y{ (denoted as 7¢) represent AE and AC, respectively.
Essentially, the parameters can be estimated using the following formulas (Briggs et al.,

2002):
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Hence, 5z 1z = = Tge .c, Where 7 e .c is the correlation coefficient of the error

terms for effectiveness and cost data, and r; and 1 are the correlation coefficients between costs

and effects in the treamtent and control groups, respectively (Briggs et al., 2002).
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The AE — AC plane (Figure 1) can be used to facilitate the interpretation of the ICER
(e.g., Anderson et al., 1986; Black, 1990; Li et al., 2020; Polsky et al., 1997), where the
horizontal axis represents the incremental effectiveness, and the vertical axis represents the
incremental cost. The results (AE and AC) of a cost-effectiveness analysis can be denoted as a
point in Figure 1 (e.g., the blue dot), where the slope of the ray connecting the origin and the
point indicates the ICER [ICER = Tan (8)]. All points on the ray have the same ICER, and the
steeper the slope of this ray, the greater the ICER. The potential results of a cost-effectiveness
analysis can fall into one of the four quadrants: (1) in Quadrant I, the treatment is more effective
but more costly, and it is cost-effective if and only if the estimated ICER < k, where £ is the cost-
effectiveness ratio of the alternative intervention to be compared; (2) in Quadrant II, the
treatment is never deemed cost-effective; (3) in Quadrant III, the treatment is cost-effective if
and only if the estimated ICER > £; and (4) in Quadrant IV, the treatment is always deemed cost-
effective. In summary, a treatment is deemed cost-effective if the estimated ICER lies below the
red dotted line that represents the ICER = £, i.e., the shaded area.

[Figure 1 about here]

Because the AE, AC, and ICER reported in a cost-effectiveness analysis are the estimates
of the population values from the sample, the precision of these estimates depends on the sample
sizes and variances of costs and effectiveness measures. The 100(1 — a)% confidence interval is
often used to measure the precision for estimates with sample variation, where « is the Type I
error rate. For instance, a 95% confidence interval, where o = 0.05, defines a range which would
include (or “cover”) the true population value 95% of the time if the study was repeated an

infinite number of times. It also means that the true value would fall outside the interval (i.e.,
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“miscoverage”) 5% of the time. The coverage rate is the proportion of confidence intervals
constructed by one method that cover the true population value. Confidence intervals that either
over- or under-cover are poorly specified. If the coverage rate of the 95% confidence interval
constructed by one method is greater than 0.95 (i.e., over-covering), it expresses too little
confidence in the estimate and a narrower confidence interval that provides 95% coverage should
be identified; if the coverage rate of the 95% confidence interval is smaller than 0.95 (i.e., under-
covering), it expresses too much confidence in the estimate and a wider confidence interval that
provides 95% coverage should be identified (Polsky et al., 1997). Ideally, miscoverage of a two-
sided 95% confidence interval should be symmetric; that is, the true population value should be
smaller than the lower limit of the 95% confidence interval 2.5% of the time and greater than the
upper limit of the 95% confidence interval 2.5% of the time.

The formulas for computing the two-sided 100(1 — a)% confidence intervals for the AE
and AC are readily available, e.g., CI;_,(4E) = AE F t;_, X SE 3, where AE is the
incremental effectiveness estimate, t;_, is the two-sided critical value of the corresponding
Student’s ¢ distribution, and SE 4 is the standard error of the AE. Because the estimates of the
standard errors of the AE and AC are unbiased and efficient when the sample size is sufficiently
large and the distributions are approximately normal, the confidence intervals are reliable.
However, because the distribution of the ratio may not be well behaved' and there is no known
unbiased and efficient estimator of the ratio’s standard error, there is no direct method for
computing the confidence interval for ICER (O’Brien et al., 1994; Polsky et al., 1997; van Hout

et al., 1994; Wakker & Klaassen, 1995).

! For example, when the AE and AC are independent normally distributed variables, the ratio follows a Cauchy
distribution. The Cauchy distributed variables can take very extreme values and means of Cauchy distributions may
not exist (Wakker & Klaassen, 1995).
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Several methods have been proposed to calculate confidence intervals for ICER. Four
methods that Polsky et al. (1997) evaluated in a Monte Carlo experiment include: the box
methods, the Taylor method, the percentile bootstrap method, and Fieller’s theorem method. We
evaluate all these four methods. In addition to the percentile bootstrap, we introduce the bias-
corrected bootstrap and bias-corrected and accelerated bootstraps below. Furthermore, we
examine a new method, i.e., the Monte Carlo interval based on summary statistics, in
constructing confidence intervals.

Box method

Wakker and Klaassen (1995) described the box method for constructing two-sided
confidence intervals for ICER based on Bonferroni’s inequality. The box method does not make
assumptions about the normality or symmetry of the distributions of AE and AC and it ignores

the cost-effectiveness correlation. The confidence interval for the ICER is calculated using

confidence limits computed separately for AE and AC: CI,;_,(ICER) = (ZL]—C, %), where L and
E E

Ui are lower and upper confidence limits for AE, and L. and U, are lower and upper confidence

limits for AC, if all four limits are positive; Cl;_o(ICER) = (£, £€) if all four limits are
E E

negative. The 95% confidence interval for the ICER constructed by the box method using the
95% confidence intervals for the AE and AC is conservative and has been found inappropriately
wide (O’Brien et al., 1994; Mullahy & Manning, 1995). To avoid this problem, Polsky et al
(1997) proposed to use narrower confidence intervals for the AE and AC to construct the 95%
confidence interval for the ICER, that is, using the 68.4% confidence intervals for the AE and AC
(Clyeg(AE) = AE F 1.0 X SEzz; Cly g (AC) = AC F 1.0 X SE 5) rather than the 95%
confidence intervals for the AE and AC (Cly o5 (AE) = AE F 1.96 X SE 53; Cly 95 (AC) = AC F

1.96 x SE 7).
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Taylor series method
O’Brien et al. (1994) applied the delta method, which involves a first-order Taylor series

expansion to estimate the standard error of the ICER. The two-sided 95% confidence interval is

defined by: Clo g5 (ICER) = ICER F 1.96 X SE gz, where [CER = = and SE gz, =

2 32 32 P
\[ (g) ((S?C) + (SEAAE) - ZCOUA(AE'AE)). This method assumes a normal distribution for the
AE (40)? (4E)? ACAE

ICER and incorporates the cost-effectiveness correlation into its standard error calculation.
Bootstrap method

Bootstrapping method (Efron, 1979; Efron & Tibshirani, 1993) is a nonparametric
method that involves resampling from the study sample, computing the ICER in each of multiple
samples, and constructing the confidence interval from the empirical sampling distribution of the
ICERs (Chaudhary & Stearns, 1996; O’Brien et al., 1994). The first step of the procedure is to
independently draw an arbitrarily large number (B) of resamples of size N with replacement from
the original sample. Then the AE, AC, and ICER are calculated for each of these B resamples,
resulting in an empirical sampling distribution of ICER. Then the confidence intervals are
constructed, which differ for particular bootstrap approaches as defined next.

The percentile bootstrap (Efron, 1981) uses the lower and upper 50a% of the distribution
of the estimated ICER to define the two-sided 100(1-a)% confidence interval of ICER. The
percentile bootstrap is simple to compute but may not work well if the bootstrap distribution is
asymmetric. Efron (1981, 1982, 1987) and Efron and Tibshirani (1993) proposed the bias-
corrected bootstrap to reduce bias by incorporating an adjustment. Letting z, be the z-score
corresponding to the proportion of the B bootstrap resamples with the estimated ICER from each

resample less than the estimated ICER from the original sample, two z-scores are defined as:
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Ziower = 2Zg + Zg /2 a0d Zypper = 22Zo + Z1_4/2, Where 22, is a correction for median bias. The
proportions under the standard normal distribution that correspond to zj,,,,., and z;y, are
multiplied by 100 to serve as the adjusted percentiles for selecting the lower and upper
confidence limits from the bootstrap distribution of the estimated ICER. The bias-corrected
intervals do not always have good coverage (Schenker, 1985). Efron (1987) proposed the bias-

corrected and accelerated confidence intervals, which include further adjustment of skewness in

ZO+ZLZ/2

the bootstrap distribution by an acceleration constant a: zj, ., = Zo + azatzan)
- 0TZq/2

! —
and z;pper =

ZotZ1-q/2

Zy + —
0 1-d(zo+21-a/2)’

where a is a correction for skewness and is approximately 1/6 of the

skewness of the bootstrap distribution of ICER. Note that when z, = 0, the bias-corrected
interval is same as the percentile interval; when a = 0, the bias-corrected and accelerated
interval is same as the bias-corrected interval; and when z, = a = 0, the bias-corrected and
accelerated interval is same as the percentile interval. The primary benefits of bootstrapping are
that it involves no distributional assumptions on the AE, AC, and ICER, and it considers the cost-
effectiveness correlation.
Fieller’s theorem method

Fieller (1954) proved a theorem for computing confidence intervals of a ratio by
transferring the ratio into a linear function of two variables. The numerator and denominator of
the ratio are assumed to follow a bivariate normal distribution. This method has been applied to
construct confidence intervals for the ICER (Chaudhary & Stearns, 1996; O’Brien et al., 1994;
Willan & O’Brien, 1996).

In this case, we define the incremental net monetary benefit INMB): INMB = xAE —

AC, where K is the “willingness to pay” (Willan & Briggs, 2006), as the threshold ICER that
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renders the intervention cost-effective (Stinnett & Mullahy, 1998). Then, observe

KAE—-AC

~N(0,1). The two-sided confidence interval at a significance

J(xz(SEZE)Z+(SER)2—2chv(4TC,ZE))

KAE—-AC

J(KZ(SEA'E)2+(SEAAC)Z—ZKCOV(ZZ’,LTE'))

level, a, is obtained by solving the inequality: < Zg/7- Thatis,

akx? + bk + ¢ < 0, which is called the Fieller quadratic, where a = (LTE)Z - zé/z (SEz)%, b =

_ -

—2[4C - AE — zZ,,Cov(AC, AE)], and ¢ = (4T)° - 24/, (SEzz)?. When b? < 4ac, there is no

real solution for the inequality; when b? > 4ac and a < 0 (i.e., (SgE

2
) < z5,), the solution is

by
(—oo,min{ly, [,}) U (max{ly, [}, +0), where l; , = %j_m; when b? > 4ac anda > 0

_\2
(i.e., (SLE‘—EA) > Zé/z), the solution is (min{l,, [,}, max{l;, [,}). In particular, when b? > 4ac and
AE

. . AE
a is close to 0 (i.e.,
SEA’E

2
) is close to 262{/2), the solution is close to (—oo, +0).

In summary, only when b? > 4ac and a > 0 (i.e., (ngA
AE

2
) > z2 /2> Indicating a

significant treatment effect estimate on the effectiveness measure), does Fieller’s theorem
provide a meaningful confidence interval. Fieller’s theorem method does not restrict the
distribution of the ICER to be normal or symmetric, and it includes the cost-effectiveness
correlation in the computation.
The Monte Carlo confidence interval based on the summary statistics

The Monte Carlo confidence intervals have been advocated for the sensitivity
(robustness) analysis of the cost-effectiveness ratios by changing some assumptions such as the
discount rate and the intervention dosage (Boardman et al., 2018). Mullahy and Manning (1995)

also use the Monte Carlo confidence interval method based on the summary statistics (point
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estimates and standard errors of the incremental cost and effectiveness measures, and their
correlations/covariances) to demonstrate the problems of Taylor’s approximation in calculating
confidence intervals for ICER in a simple simulation. However, the Monte Carlo confidence
interval method based on the summary statistics has not been systematically evaluated against all
the other methods in constructing confidence intervals for ICER. In contrast, the Monte Carlo
confidence interval based on summary statistics has been evaluated for constructing confidence
intervals for the product of two parameter estimates (i.e., mediation effects) and, in that
application, demonstrated comparable performance with the bootstrap method regarding the
coverage, width, symmetry, and speed (Preacher & Selig, 2012; Bai et al., 2023; Cox & Kelcey,
2023; Kelcey et al. 2017, 2020). In addition, the conventional two-sided Monte Carlo confidence
interval is constructed using the percentile method, e.g., the 2.5" percentile and the 97.5%
percentile of the empirical distribution of the parameter of interest serve as the lower and upper
limit of the 95% interval. Just like the bootstrap method, the percentile method may work less
well when the distribution of the parameter is skewed, whereas the bias-corrected Monte Carlo
interval may work better.

The Monte Carlo interval method makes the assumption that the parameters AE and AC
have a joint normal sampling distribution, with parameters supplied by the estimates on the AE

(SEzz)? Cov(AC,AE)

and AC: [AC*] ~MVN [A:C , S
AEl'| Cov(AC,AE)  (SEg)?

AE*

D A sampling distribution of % can be

formed by repeatedly generating AC* and AC* and computing their ratio many times (e.g., M =
100,000). Although parametric assumptions are invoked for AC and AE, no parametric
assumptions are made about the distribution of %. Percentiles for this sampling distribution are

identified to serve as the limits for a 100(1-a)% confidence interval of ICER.
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Similar to the bias-corrected bootstrap method, the bias-corrected Monte Carlo interval

can be constructed as follows. Letting z, be the z-score corresponding to the proportion of the M

parameter sets with the estimated ICER (%) from each parameter set less than the estimated

ICER (%) from the original sample, two z-scores are defined as: z,,,¢, = 22g + 24/, and

Zypper = 2Zg + Z1_q/2, Where 2z, is a correction for median bias. The proportions under the
standard normal distribution that correspond to z;,,,., and z,,,,., are multiplied by 100 serves as
the adjusted percentiles for selecting the lower and upper confidence limits from the sampling
distribution of 2.
The Monte Carlo Experiment

We conducted a Monte Carlo experiment to evaluate the performance of five methods for
constructing two-sided confidence intervals for ICERs. Specifically, these methods include: the
box method (1.96 SE and 1.0 SE), Taylor method, the bootstrap method (percentile, bias-
corrected, and bias-corrected and accelerated), Fieller’s theorem method, and the Monte Carlo
intervals based on the summary statistics (percentile and bias-corrected) (Table 1). In addition,
we examined the confidence intervals using the Monte Carlo interval method with misspecified
cost-effectiveness correlations (assuming the correlation to be 0 while the true correlation is non-
Zero).

Procedure

The procedures are below:

(1) We generated cost and effectiveness data for randomized trials. We varied the sample
sizes, the distributions of the cost, the correlations between the cost and the effectiveness

measures, and incremental effectiveness (4E). The sample sizes (n) were 20, 40, 60, 100, 150,
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200, 300, 400, 500, 600, and 800. The sample was randomly assigned to either the treatment
group or control group in each trial. By definition, the ICER is a linear function of AC, but it is
not a monotone function of AE. When AE is close to 0, the ICER approaches infinity, which
implies that when AE is not statistically different from 0, there is a chance the ICER estimate
will be infinity and the distribution of the ICER estimate can be bimodal— conditions that affect
the confidence intervals. By following Polsky et al.’s (1997) simulation, we used a significant
AC, but we allowed AE to be both significant and non-significant in our simulations to
investigate how the significance of AE affected the confidence intervals; in addition, we used
both normal and lognormal distributions for the costs. Thus, we assumed the cost estimates have
a normal distribution with a mean of $20,000 and standard deviation (SD) of 2,000 for the entire
sample, and we added AC = $5,000 to the cost for the treatment group; We also assumed the cost
estimates have a lognormal distribution with a mean of $20,000 and the SD of 8,000 for the
entire group, and we added AC = $5,000 to the cost for the treatment group. We assumed the
effectiveness outcome has a normal distribution with a mean of 1.0 and the SD of 1.0 for the
entire sample, and we added AE = 0.25 and 0.50, respectively, to the effectiveness outcome for
the treatment group.

Hill et al (2008) reported that the effect sizes from 61 randomized studies (468 effect
sizes) are in the 0.07-0.51 range and the mean effect sizes from the meta-analysis of 76 meta-
analyses of educational interventions are in the 0.20-0.30 range. Recently, Kraft (2020) reported
that the mean effect size is 0.16 (SD = 0.28) and the median effect size is 0.10 (the 30
percentile is 0.02 and the 70" percentile is 0.21) from the meta-analysis of 747 randomized
studies (1,942 effect sizes). We chose 0.25 to represent the effect size of an effective educational

intervention. In addition, we used an effect size of 0.50 to evaluate how the effect sizes may
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affect the performance of various methods. Together with the sample sizes, these effect sizes can
provide a wide range of significance levels of educational interventions (¢ = 0.56 — 7.07).

Empirical results about the correlations of the cost and effectiveness estimates in
educational research are rarely reported. We used data from a multisite study (Gray et al, 2021)
to get an empirical estimate of the correlation (0.33) among 19 sites. We followed Polsky et al.’s
(1997) simulation and used a wide range of correlations from -0.5 to 0.5 in a step of 0.1 in the
simulation. This range of correlations can allow us to explore how the correlations affect the
performance of various methods. This resulted in a total 484 scenarios (11 sample sizes x 2 cost
distributions x 2 AE x 11 correlations).

(2) For each scenario, we estimated AC, AE, and their standard errors (SE 5 and SE )

using two ordinary least square regression models (Equations 1-3), estimated the cost-

effectiveness correlation using 1z sz = ('t + 1¢)/2, and calculated the I[CER = %. We

constructed two-sided 95% confidence intervals for the ICERs using five methods discussed
above. Specifically, we used the box method based on both 1.96 standard errors and 1.0 standard
errors of AC and AE when four limits are all positive or all negative, and we coded the other
situations as “exclusive”. We used the Taylor series method based on the standard error of [CER
derived from the first-order Taylor series expansion.

For bootstrapping, we used the macros developed by SAS Institute Inc. (2007) with

modifications for calculating confidence intervals for the percentile, bias-corrected, and bias-

corrected and accelerated methods. We used Fieller’s method when ( aE
AE

2
) > 25 /5, and coded

the other situations as “exclusive”. For the Monte Carlo interval based on the summary statistics,

we used both the percentile and bias-corrected methods; in addition, we constructed confidence
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intervals using the misspecified correlation between the cost and effectiveness outcome (always
assuming 0).

If the true ICER fell within the two-sided 95% CI, we coded the variable “coverage” as 1
(0 otherwise); if the lower limit of the 95% CI exceeded the true ICER, we coded the variable
“left side miscoverage” as 1. The interval width was calculated by the difference of the upper
and lower confidence limits, 1.e., U;cgr — Licgr-

(3) We conducted 3,000 replications for each scenario. We calculated the mean of the
variable “coverage” as the coverage rate (CR), the mean of the variable “exclusive” as the
exclusion rate, the average width, and the proportion of “left side miscoverage” in the total
miscoverage as the symmetry measure over 3,000 replications. In addition, we calculated the

bias of the coverage rate and the root mean square error (RMSE) of the coverage rate across

K — 2
multiple scenarios: Biasy = CR, — 0.95 and RMSE = fw+ow, where CRj, and Biasy

are the coverage rate and bias for the k" scenario. Furthermore, we regressed the absolute value
of the bias on the sample size, the AE (0.25 or 0.50), the distribution of the cost (lognormal or
normal), and the correlation between the cost and effectiveness to investigate the effects of these
factors.
Criteria for Evaluating the Methods

The primary evaluation criterion is the coverage rate, which is preferred to the interval
width and symmetry measure for the ratio interval (Jiang et al., 2000) and the product interval
(e.g., mediation effect, Preacher & Selig, 2012). The method with the best confidence interval is
the one that produces the smallest RMSE of the coverage rate across multiple scenarios. In

addition, a method is better if it comes closer to the target coverage rate of 95%. The interval

21



width and symmetry measure are the secondary criteria. The method is better if it produces
narrower width and symmetry measure closer to 0.5.

Results
Summative Assessment

Across all 484 simulation scenarios, the ICER estimates over 3,000 replications had an
average skewness of 1.58 with a range of -54.77 to 54.77 and an average kurtosis of 1145.88
with a range of 0.58 t0 2999.92. The average exclusion rate for Fieller’s method was 0.37 with
the maximum of 0.91. This means that, on average, 37% of the replications were not able to
produce meaningful confidence intervals using Fieller’s method. The Box method (1.96 SE) and
the Box method (1.0 SE) had average exclusion rates of 0.39 and 0.19 with maximum rates of
0.99 and 0.84, respectively.

The RMSE of the coverage rate, the average coverage rate, the average interval width,
and the average symmetry across 484 simulation scenarios by the confidence interval
constructing method are reported in Table 1. The percentile bootstrap method and the Monte
Carlo interval based on the summary statistics produced the smallest RMSE (0.018 and 0.019,
respectively). Surprisingly, the Monte Carlo interval based on the summary statistics when the
correlation between costs and effects was misspecified (always assuming 0) produced a slightly
larger RMSE (0.024). The box method (1.96 SE) produced the next smallest RMSE (0.049)
followed by Taylor’s method (0.084) and Fieller’s method (0.095). The bias-corrected bootstrap
method, the bias-corrected and accelerated bootstrap method, the bias-corrected Monte Carlo
interval, and the Box method (1.0 SE) produced similar RMSE ranging from 0.114 to 0.119.

[Table 1 about here]
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The percentile bootstrap method produced the closest average coverage rate (0.965) to
0.95 along with the Monte Carlo interval (0.966) and the Monte Carlo interval method with a
misspecified correlation (0.966). The Box method (1.96 SE) produced the next closest average
coverage rate (0.975) followed by Fieller’s method (0.914). In addition, the percentile bootstrap
method and the Monte Carlo interval produced narrower ranges for the average coverage rate
(0.924-0.983 and 0.934-0.983) than did the Monte Carlo interval with a misspecified correlation
(0.888-0.997), Fieller’s method (0.530-0.980) and the Box method (1.96 SE) (0.715-1.000).

The bias-corrected bootstrap method, the bias-corrected and accelerated bootstrap
method, and the bias-corrected Monte Carlo interval resulted in under-coverage and produced
similar average coverage rates around 0.88 and coverage range(.58-0.98. Both Taylor’s method
and the Box method (1.0 SE) also resulted in under-coverage, with an average coverage rate of
0.890 with a wide range (0.680-0.960) and an average coverage rate of 0.860 with a wide range
(0.523-0.975), respectively.

The percentile bootstrap method, the Monte Carlo interval, and the Monte Carlo interval
with a misspecified correlation produced similarly small average coverage width with narrow
ranges. All the other methods produced larger widths with larger ranges. The bias-corrected
bootstrap method, the bootstrap bias-corrected and accelerated method, and the bias-corrected
Monte Carlo interval produced better symmetry with an average of 0.38 and a range of 0.04-0.60
than the other methods.

Overall, ranges on the average coverage rate, width, and symmetry varied considerably
across 484 simulation scenarios. Thus, it is important to investigate which simulation factors
contribute to the variation. Table 2 presents the results of regressing the absolute value of the

bias for the 95% coverage rate on the sample size, the effectiveness effect size (AE), the cost-
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effectiveness correlation, and the distribution of costs (lognormal vs. normal). The proportion of
variance on the absolute value of the bias explained by these four simulation factors ranges from
0.02 to 0.65 (R°= 0.02-0.65) across all the methods.

[Table 2 about here]

All of these simulation factors were mean-centered, hence, the intercepts can be
interpreted as the mean absolute value of the bias. The bootstrap percentile method and the
Monte Carlo interval produced similarly smaller mean absolute bias (0.016 and0.017) than the
other methods. This pattern is similar to the RMSE in Table 1. The sample size is statistically
significant (p < 0.01) across all methods. The AE was statistically significant (» < 0.01) across all
methods except for the Box CI (1.96 SE) and the Monte Carlo interval with a misspecified
correlation. The magnitudes of the associations (coefficients) of the sample size and
effectiveness effect size with the absolute value of the bias are smaller for the bootstrap
percentile method and the Monte Carlo interval than the other methods.

When the sample size and the effectiveness effect size increased, the absolute value of
the bias decreased, except for the Monte Carlo interval with a misspecified correlation. The cost-
effectiveness correlation only affected the Box method (1.0 SE) and the Monte Carlo interval
with a misspecified correlation. In addition, the quadratica term of the cost-effectiveness
correlation also affected the bias for the Monte Carlo interval with a misspecified correlation.
The distribution of costs (lognormal or normal) only affected the Box method (1.0 SE), Taylor’s
method, and the Monte Carlo interval with a misspecifed correlation.

Summary across 22 scenarios by the sample size and the AE
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Given that the sample size and the AE played a more consistently important role in
explaining the bias across methods, we presented the summary results of RMSE, coverage rate,
width, and symmetry by the AE and sample sizes across 22 scenarios (2 cost distributions x 11
correlations) in Figures 2 and 3 and Tables 3 and 4. Based on the assigned treatment effects on

the effectiveness measure and sample sizes, we also reported the z-statistics in the figure and

AE _ AEVn
SExg 2

tables: t = where AE = 0.25 or 0.50, n = 20 — 800, and the variance of the

effectiveness measure is 1 in the simulation. Specifically, Figures 2a and 2b presented the RMSE
of 95% confidence interval coverage as a function of sample size for AE = 0.25 and 0.50,
respectively; Figures 3a and 3b presented the average 95% confidence interval coverage as a
function of sample size for AE = 0.25 and 0.50, respectively. In all four figures, the long grey
dash line represents the Box method (1.0 SE), the short grey dash line represents the Box method
(1.96 SE), the cyan solid line represents Taylor’s method, the red solid line represents the Monte
Carlo interval based on the summary statistics, the long shadow blue dash line represents the
percentile bootstrap method (Bootstrap PCTL), the short green dashed line represents Fieller’s
method, the short dashed blue line represents the bias-corrected bootstrap method (Bootstrap
BC), the orange solid line represents the bias-corrected and accelerated bootstrap method
(Bootstrap BCa), and the long dark blue dash line represents the bias-corrected Monte Carlo
interval based on the summary statistics (MC corrected).

[Figures 2-3 about here]

[Tables 3-4 about here]

The percentile bootstrap method and the Monte Carlo interval based on the summary

statistics had consistently good performance (small RMSE and close coverage to 0.95) across AE
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and sample sizes (and #-statistics). When 1> 2.5 (i.e., AE = 0.25 and n > 400 or AE = 0.5 and n >
100), Fieller’s method, the bias-corrected bootstrap method, the bias-corrected and accelerated
bootstrap method, and the bias-corrected Monte Carlo interval had similarly good performance
as the bootstrap percentile method and the Monte Carlo interval (RMSE < 0.023 and coverage =
0.942-0.972). However, when the #-statistic is small, for example, 1 < 1.77 (i.e., AE = 0.25 and n
<200 ), the bias-corrected bootstrap method, the bias-corrected and accelerated bootstrap
method, and the bias-corrected Monte Carlo interval produce larger RMSE (> 0.07) and under
coverage rate (< 0.88). When A4E = 0.25 and n = 100, i.e., = 1.25, Fieller’s method produced
RMSE = 0.07 with an average coverage = 0.881 and the exclusion rate = (.76, which means that
Fieller’s method failed to construct the confidence intervals in 76% of the replications. Taylor’s
method produced consistently under-covering coverage rates and approached good performance
only when ¢ >5.00 (4E = 0.5 and n > 400). The Box methods (1.96 SE) always produced over-
covering 95% coverage rates (0.956-0.993) except when ¢ < 1.00 and the Box methods (1.0 SE)
always produced under-covering 95% coverage rates (0.805-0.902).

The percentile bootstrap method, the Monte Carlo interval, and the Monte Carlo interval
with a misspecified correlation produced similarly smallest average coverage width consistently
across AE and sample sizes. When ¢ > 5.0 (e.g., AE = 0.5 and n > 400), Fieller’s method, the
bias-corrected bootstrap method, the bias-corrected and accelerated bootstrap method, and the
bias-corrected Monte Carlo interval had performance on width and symmetry (0.46-0.51) similar
to the percentile bootstrap method and the Monte Carlo interval.

The performance of these methods depends on the joint effect of the sample size and the
AE (i.e., t-statistic) because the ICER is a ratio statistic. By definition, the ICER is not a

monotone function of AE. When AE is close to 0, the ICER approaches infinity. It implies that
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when AE is not statistically different from 0 (i.e., the #-statistic is smaller than the critical 7), there
is a chance the ICER estimate will be infinity and the distribution of the ICER estimate can be
bimodal, which affect the confidence intervals.
Summary across 44 scenarios by the cost-effectiveness correlation

To investigate how the misspecification of the cost-effectiveness correlation using the
Monte Carlo interval method affects confidence intervals, we present the summary results of
RMSE and average coverage rates across 44 scenarios (11 sample sizes % 2 cost distributions x 2
AE) as a function of the cost-effectiveness correlation (-0.5 to 0.5) in Figures 4 and 5. In addition
to the Monte Carlo interval with a misspecified correlation (assuming 0), we also plotted the
Monte Carlo interval with correctly specified correlation and the percentile bootstrap method as
references, and the Box method (1.96 SE and 1.0 SE) as a comparison. The purple dotted line
represents the Monte Carlo interval with a misspecified correlation, and the other methods used
the same lines as forementioned. Not surprisingly, the RMSE of the 95% coverage rate for the
Monte Carlo interval with a misspecified correlation had a curvilinear relationship with the
correlation. When the true correlation is within (-0.3, 0.1), the misspecification of correlation has
small effects on the RMSE and average coverage rate. Even when the correlation is misspecifed,
the Monte Carlo interval produced smaller RMSE (0.016-0.035) and better coverage rates (0.945-
0.984) than the Box method.

[Figures 4 & 5 about here]

In summary, the Monte Carlo interval based on the summary statistics had the same good
performance (coverage, width, and symmetry) as the percentile bootstrap method in constructing

the two-sided confidence intervals for the ICER across all simulation scenarios. Both methods
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were robust against the cost-effectiveness correlations and the distributions of costs (lognormal
or normal) and produced better coverage, narrower width, and better symmetry when the sample
size and the AE increased. Fieller’s method, the bias-corrected bootstrap method, the bias-
corrected and accelerated bootstrap method, and the bias-corrected Monte Carlo interval had
good performance when the AE and sample sizes were large (e.g., AE = 0.5 and n > 400, i.e., t >
5.0). Taylor’s method and the Box method (1.0 SE or 1.96 SE) had worse performance than the
aforementioned methods. In addition, the misspecification of correlation (assuming 0) using the
Monte Carlo interval had small effects on RMSE and average coverage rate when the true
correlation was within (-0.3, 0.1).
Application of ICER ClIs for Hypothesis Testing and Demonstration of the Software

The descriptive point estimate of the ICER itself is useful, but not enough for hypothesis
testing or policy making. The ICER ClIs provide a range of values within which the true value of
ICER likely lie with confidence. The width of a CI measures the precision of the estimated
ICER. Narrower intervals indicate more precise estimates, while wider intervals suggest less
precision. This helps in understanding the reliability of the ICER estimates derived from a
sample. In addition, the CIs can be used for hypothesis testing and in decision-making processes.

For two-sided hypothesis testing in cost-effectiveness studies, the null hypothesis is
typically stated as Ho: ICER = k, meaning that the true ICER equals a threshold value k. The
alternative hypothesis for a two-sided test is Ha: ICER # £. For a left-sided test, Ho: ICER > £k,
meaning that the true ICER is equal or greater than k and tested program is equally or less cost-
effective; the alternative hypothesis is Ha: ICER < £, indicating that the true ICER is less than &
and the tested program is more cost-effective. For a right-sided test, Ho: ICER < &, meaning that

the true ICER is equal or smaller than & and the tested program is equally or more cost-effective;
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Ha: ICER > £, suggesting that the true ICER is greater than & and the tested program is less cost-
effective.

When a = 0.05, the 95% confidence interval for two-sided test is the values associated
with the 2.5" and 97.5" percentiles. In the case of the left-sided test, the 95% confidence
interval’s lower and upper limits are -oo and the value at the 95™ percentile, respectively;
Conversely, for the right-sided test, these limits are the value at the 5" percentile and +oo,
respectively. A hypothesis test is statistically significant when the 100(1 — a)% confidence
interval does not include k.

We developed a Microsoft Excel-based software and a SAS macro for calculating the
two-sided and one-sided confidence intervals of the ICER using the Monte Carlo interval. In
addition, we provided two-sided confidence intervals for Fieller’s method as a comparison.
Unlike the bootstrap method, which requires the original data, these methods need only point
estimates and standard errors of the incremental cost and effectiveness measures and their
correlation. Once these summary statistics are input, the ICER and their confidence intervals will
be automatically calculated for a specified confidence level.

To demonstrate this software, we use an example from the forementioned multisite
randomized trial to evaluate the effectiveness and cost of the Zoology One kindergarten
curriculum (Gray et al, 2021). This example is a good representation of typical efficacy trials in
education that educational outcomes data were measured at the individual level, but cost data
were often collected at the site level. This example does not follow the ideal where we have costs
per individual but we chose to use this example intentionally to demonstrate the wide and easy
application of our methods. The original article (Gray et al, 2021) reported neither the standard

error for the incremental cost estimate nor the correlation between incremental cost and
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effectiveness measures. However, it did estimate the incremental costs per student using the
ingredient method for 20 out of 21 schools in the original multisite study. In addition, the
treatment effect sizes and their standard errors on the Woodcock Reading Mastery Test passage
comprehension were estimated for 20 out of 21 schools.

The study reported both incremental costs and effectiveness outcome estimates for 19
schools. Thus, to recover these estimates for constructing ICER Cls, we applied methods
typically used in Meta-Analysis to compute the point estimate and standard error of the
incremental effectiveness of the tested intervention. We then calculated the mean and standard
error of the incremental cost and the correlation of the incremental effectiveness and cost for
these 19 schools. The estimated average effect size across these schools on the Woodcock
Reading Mastery Test passage comprehension is 0.15 (SE = 0.04) and the incremental cost per
student is $499.36 (SE = 48.91). The correlation between the incremental cost and effectiveness
across 19 schools is 0.33.

After these parameters are entered into the software and a desired confidence interval
(95% 1n this case) is specified, the software produces an ICER estimate and its two-sided and
one-sided 95% confidence intervals.

Figure 6 presents the screenshot of this calculation based on the Excel-based software.
The estimated ICER is $3,293, that is, the study findings suggest that, on average, using Zoology
One, it would cost an average of $3,293 per pupil to increase passage comprehension scores by
one standard deviation. The two-sided 95% confidence intervals of the ICER are ($2,209,
$6,665) based on the Monte Carlo interval and ($2,209, $6,648) based on Fieller’s method. For
the one-sided test, the left-sided 95% CI is (-o0, 5,721) and the right-sided 95% CI is (2,338, ).

Figures S1 and S2 in the supplemental material present similar results using the SAS macro.
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The distribution of the ICER based on Monte Carlo simulation is right-skewed. Note that
the confidence intervals calculated from the Monte Carlo method change every time after the
simulation is rerun. Increasing the number of replications of simulation will reduce the change.
In this example, the 95% confidence intervals are very close between the Monte Carlo interval
and Fieller’s method, providing greater confidence in the results.

The two-sided 95% confidence interval of the ICER based on the Monte Carlo interval
suggests that, if the studies are replicated infinitely, the true cost per student for each standard
deviation increase on passage comprehension falls between $2,209 and $6,665 95% of times. If
we knew that the true ICER for the alternative Program X was within this CI, we would not
reject the null hypothesis that Zoology One was equally cost-effective as Program X. On the
other hand, If we knew that the true ICER for the alternative Program X was outside of this CI,
we could determine that Zoology One was not as cost-effective as Program X.

If the true ICER for the alternative Program X was below the lower limit of the right-
sided 95% ClI (i.e., $2,338), we would conclude that Zoology One was less cost-effective than
Program X based on one-sided testing; If the true ICER for the alternative Program X was above
the upper limit of the left-sided 95% CI (i.e., $5,721), we would conclude that Zoology One was
more cost-effective than Program X based on one-sided testing.

These ICER CIs and hypothesis testing can help stakeholders understand the range of
potential ICERs and the uncertainty associated with those ICER estimates and assist with policy

making, for example, choosing the statistically more cost-effective programs.

[Figure 6 about here]
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Conclusion

Through a Monte Carlo experiment, we have found that the Monte Carlo interval based
on summary statistics has consistently good performance regarding coverage, width, and
symmetry as the percentile bootstrap method in constructing the confidence intervals for the
ICER across multiple scenarios (varying sample sizes, AE, cost-effectiveness correlations, and
distributions of costs). Although Fieller’s method has been recommended in the health literature
(e.g., Briggs et al., 1999; Chaudhary & Stearns, 1996; Polsky et al., 1997) and the bias-corrected
bootstrap method has also been recommended by Chaudhary and Stearns (1996), our study found
that these two methods did not work well when the sample size and the effectiveness treatment
effect size were small. Taylor’s method and the Box method (1.0 SE or 1.96 SE) had worse
performance than the Monte Carlo interval and the percentile bootstrap method. The poor
performance of Taylor’s method is consistent with the literature (e.g., Mullahy & Manning,
1995). Thus, we suggest using the percentile bootstrap method and the Monte Carlo interval
based on the summary statistics to construct the confidence intervals of the ICER. When the #-
statistic of the effectiveness measure is larger than 2.5, Fieller’s method, the bias-corrected
bootstrap method, the bias-corrected and accelerated bootstrap method, and the bias-corrected
Monte Carlo interval can also be used.

One advantage of the Monte Carlo interval is that it is easier to compute compared to
other methods (e.g., the bootstrap method), especially when the data structure of the cost and
effectiveness measures are complicated. The Monte Carlo interval relies on the summary
statistics (point estimates and standard errors of the incremental cost and effectiveness, and their
correlation), which can be estimated from the conventional multilevel or ordinary least square

analysis of the costs and effectiveness, while the bootstrap method may involve resampling the
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clusters of participants. For example, in multisite cost-effectiveness studies, the effectiveness
data are collected at the individual level and the cost data are collected at the site level, which are
very common in educational evaluations. Researchers can first estimate the incremental costs
and effectiveness outcome by site, and then calculate the means, standard errors, and their
correlation of the incremental costs and effectiveness outcome across sites. The ICER Cls can be
easily calculated by inputting these parameter estimates using the software. In addition, the
Monte Carlo interval is particularly useful when the data from the original sample are not
available and, thus, the bootstrap method is not feasible (e.g., in the systematic review).

The second advantage of the Monte Carlo interval is noteworthy. It provides the
empirical distribution of the ICER, akin to the bootstrap method. Moreover, it offers confidence
intervals in most situations, unlike Fieller’s method. Researchers can easily identify negative and
undefined ICERs in the empirical distribution. This is a significant benefit over Fieller’s method,
which struggles to provide meaningful confidence intervals when the treatment effect lacks
statistical significance. The third advantage is that the Monte Carlo interval can be directly
applied for robustness analysis by changing the input parameters (e.g., the cost-effectiveness
correlation). These advantages make the Monte Carlo interval a powerful method that is feasible
for most scenarios in practice, and useful for sensitivity analysis.

One limitation of the present study is that although we evaluated the Monte Carlo interval
against some commonly used bootstrap methods (percentile, bias-corrected, and bias-corrected
and accelerated), we did not test other methods, e.g., the Bayesian bootstrap (Rubin, 1981).
Future research may investigate constructing credible intervals for the ICER using the Bayesian
bootstrap method. Nevertheless, the percentile-based Monte Carlo interval has demonstrated

good performance in constructing confidence intervals of the ICER.
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Note that one limitation of applying ICER and ICER ClIs for policy making is that the
ICER assumes a linear relationship between the incremental costs and effectiveness outcomes
while the incremental effectiveness results may not be scalable (i.e., an additional standard
deviation increase in the effectiveness outcome may not be purchased by the same amount of
money). For example, there may be a ceiling effect for impacts of the program or there may be a
curvilinear relationship between the incremental costs and effectiveness outcomes. Questions
about the value of ICER Cls to decision makers have been raised in medical literature and some
researchers suggest that confidence surfaces are better suited for this decision making than Cls
(e.g., Briggs & Fenn, 1998). One direction for future research is to investigate what measures or
statistics (e.g., net monetary benefit) of cost-effectiveness analysis are more feasible and better
than ICER CIs in education decision-making.

Furthermore, to our knowledge, there is no statistical method available for designing
randomized cost-effectiveness studies with adequate statistical power based on ICER. Another
direction for future research is to use the Monte Carlo interval for power analysis of the ICER
based on two- or one-sided testing like the analysis of power for mediation effects using Monte
Carlo intervals (e.g., Kelcey et al. 2017; 2020).

Finally, we echo the suggestion that “CEA would ideally include confidence intervals for
the incremental cost estimate(s) and the resulting cost-effectiveness ratios” ... “when an
adequate number of cost estimates is available” in the Standards for the Economic Evaluation of
Educational and Social Programs (Cost Analysis Standards Project, 2021, p.43). In addition,
future empirical CEA studies are encouraged to report the variance (or standard error) of the
incremental costs and the correlation of the incremental costs and incremental effectiveness

when possible.

34



35



References:

Anderson, J.P., Bush, J.W., Chen, M., & Dolenc, D. (1986). Policy space areas and properties of
benefit cost/utility analysis. Journal of the American Medical Association, 255(6): 794—
795. 9.

Bai, F., Kelcey, B., Xie, Y., & Cox, K. (2023). Design and Analysis of Clustered Regression
Discontinuity Designs for Probing Mediation Effects. The Journal of Experimental
Education, 1-31. https://doi.org/10.1080/00220973.2023.2287445

Barrett, C. A., Truckenmiller, A. J., & Eckert, T. L. (2020). Performance feedback during writing
instruction: A cost-effectiveness analysis. School Psychology, 35(3), 193-200.

https://doi.org/10.1037/spg0000356

Barrett, C. A., & VanDerHeyden, A. M. (2020). A cost-effectiveness analysis of classwide math
intervention. Journal of school psychology, 80, 54-65.
https://doi.org/10.1016/].jsp.2020.04.002

Black, W.C. (1990). The CE plane: a graphic representation of cost-effectiveness. Medical
Decision Making, 10: 212-214.

Boardman, A. E., Greenberg, D. H., Vining, A. R., & Weimer, D. L. (2018). Cost-benefit
analysis: Concepts and practice (Fifth edition). Cambridge University Press, Cambridge,
United Kingdom ; New York, NY.

Borman, G. D., & Hewes, G. M. (2002). The Long-Term Effects and Cost-Effectiveness of
Success for All. Educational Evaluation and Policy Analysis, 24(4), 243-266.

https://doi.org/10.3102/01623737024004243

36


https://doi.org/10.1037/spq0000356

Bowden, A. B., & Belfield, C. (2015). Evaluating the Talent Search TRIO program: A benefit-
cost analysis and cost-effectiveness analysis. Journal of Benefit-Cost Analysis, 6(3), 572—

602. https://doi.org/10.1017/bca.2015.48

Bowden, A. B., Shand, R., Belfield, C. R., Wang, A., & Levin, H. M. (2017). Evaluating
Educational Interventions That Induce Service Receipt: A Case Study Application of City
Connects. American Journal of Evaluation, 38(3), 405—419.
https://doi.org/10.1177/1098214016664983

Briggs, A., & Fenn, P. (1998). Confidence intervals or surfaces? Uncertainty on the cost-
effectiveness plane. Health Economics, 7(8), 723-740.

Briggs, A. H., O'Brien, B. J., & Blackhouse, G. (2002). Thinking outside the box: recent
advances in the analysis and presentation of uncertainty in cost-effectiveness studies.
Annual review of public health, 23, 377-401.

https://doi.org/10.1146/annurev.publhealth.23.100901.140534

Briggs, A. H., Mooney, C. Z., & Wonderling, D. E. (1999). Constructing confidence intervals for
cost-effectiveness ratios: an evaluation of parametric and non-parametric techniques
using Monte Carlo simulation. Statistics in medicine, 18(23), 3245-3262.
https://doi.org/10.1002/(sici)1097-0258(19991215)18:23<3245::aid-sim314>3.0.co;2-2

Chaudhary, M. A., & Stearns, S. C. (1996). Estimating confidence intervals for cost-
effectiveness ratios: an example from a randomized trial. Statistics in medicine, 15(13),
1447-1458. https://doi.org/10.1002/(SICI)1097-0258(19960715)15:13<1447::AID-
SIM267>3.0.CO;2-V

Clarke, B., Cil, G., Smolkowski, K., Sutherland, M., Turtura, J., Doabler, C. T., Fien, H. &

Baker, S. K. (2020) Conducting a Cost-Effectiveness Analysis of an Early Numeracy

37


https://doi.org/10.1017/bca.2015.48
https://doi.org/10.1146/annurev.publhealth.23.100901.140534

Intervention. School Psychology Review, 49 (4), 359-373, DOLI:
10.1080/2372966X.2020.1761236

Cil, G., Chaparro, E. A., Dennis, C., & Smolkowski, K. (2023). The cost-effectiveness of an
English language curriculum for middle school English learners. School psychology,
38(1), 48-58. https://doi.org/10.1037/spq0000515

Cost Analysis Standards Project. (2021). Standards for the economic evaluation of educational
and social programs. American Institutes for Research. Retrieved April 3™, 2022 from

https://www.air.org/sites/default/files/Standards-for-the-Economic-Evaluation-of-

Educational-and-Social-Programs-CASP-May-2021.pdf

Cox, K. & Kelcey, B. (2023). A Partial Posterior p value Test for Multilevel Mediation.
Statistica Neerlandica, 77, 408-428.

Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals of Statistics, 7(1), 1—
26. DOI: 10.1214/a0s/1176344552

Efron, B. (1981). Nonparametric estimates of standard error: the jackknife, the bootstrap, and
other resampling methods. Biometrika, 68, 589—599.

Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. Philadelphia, PA:
Society of Industrial and Applied Mathematics CBMS-NSF Monographs, 38.

Efron, B. (1987). Better Bootstrap Confidence Intervals. Journal of the American Statistical
Association, 82(397), 171-185. doi: 10.1080/01621459.1987.10478410

Efron, B. & Tibshirani, R. J. (1993). An Introduction to the Bootstrap. New York: Chapman &
Hall.

Fieller, E. C. (1954). Some Problems in Interval Estimation. Journal of the Royal Statistical

Society. Series B (Methodological), 16(2), 175—185. http://www.]stor.org/stable/2984043

38


https://www.air.org/sites/default/files/Standards-for-the-Economic-Evaluation-of-Educational-and-Social-Programs-CASP-May-2021.pdf
https://www.air.org/sites/default/files/Standards-for-the-Economic-Evaluation-of-Educational-and-Social-Programs-CASP-May-2021.pdf
http://www.jstor.org/stable/2984043

Finster, M., Decker-Woodrow, L., Booker, B., Mason, C. A., Tu, S. & Lee, J. (2023). Cost-
Effectiveness of Algebraic Technological Applications, Journal of Research on
Educational Effectiveness. https://doi.org/10.1080/19345747.2023.2269918

Gray, A. M., Sirinides, P. M., Fink, R. E., & Bowden, A. B. (2021). Integrating literacy and
science instruction in kindergarten: Results from the efficacy study of Zoology One.

Journal of Research on Educational Effectiveness, 1-27.

https://doi.org/10.1080/19345747.2021.1938313

Guryan, J., Christenson, S., Cureton, A., Lai, 1., Ludwig, J., Schwarz, C., Shirey, E., & Turner,
M.C. (2021), The Effect of Mentoring on School Attendance and Academic Outcomes:
Randomized Evaluation of the Check & Connect Program. Journal of Policy Analysis

and Management, 40 (3), 841-882. https://doi.org/10.1002/pam.22264

Hollands, F. M., Kieffer, M. J., Shand, R., Pan, Y., Cheng, H., & Levin, H. M. (2016). Cost-
Effectiveness Analysis of Early Reading Programs: A Demonstration With
Recommendations for Future Research, Journal of Research on Educational
Effectiveness, 9(1), 30-53. doi: 10.1080/19345747.2015.1055639

Hollands, F. M., Pan, Y., Shand, R., Cheng, H., Levin, H. M., Belfield, C. R., ... & Hanisch-
Cerda, B. (2013). Improving early literacy: Cost-effectiveness analysis of effective
reading programs. Center for Benefit-Cost Studies of Education, Teachers College,

Columbia University. http://frg.vkcsites.org/wp-content/uploads/2018/07/KPALS-PDE-

A

Improving-Early-Literacy.pdf

Hunter, L. J., DiPerna, J. C., Hart, S. C., & Crowley, M. (2018). At what cost? Examining the
cost effectiveness of a universal social-emotional learning program. School psychology

Quarterly, 33(1), 147—-154. https://doi.org/10.1037/spq0000232

39


https://doi.org/10.1080/19345747.2021.1938313
https://doi.org/10.1002/pam.22264
http://frg.vkcsites.org/wp-content/uploads/2018/07/KPALS-PDF-Improving-Early-Literacy.pdf
http://frg.vkcsites.org/wp-content/uploads/2018/07/KPALS-PDF-Improving-Early-Literacy.pdf

Institute of Education Sciences (IES). (2020). Cost Analysis: A Toolkit (IES 2020-001). U.S.
Department of Education. Washington, DC: Institute of Education Sciences. Retrieved

April 31,2022 from https://ies.ed.gov/seer/pdf/IES_Cost_Analysis_Starter Kit V1.pdf.

Institute of Education Sciences (IES). (2024). Request for applications: Education research
grants program. U.S. Department of Education.
https://ies.ed.gov/funding/pdf/2024 84305A.pdf

Jacob, R., Armstrong, C., Bowden, A. B., & Pan, Y. (2016). Leveraging volunteers: An
experimental evaluation of a tutoring program for struggling readers. Journal of Research
on Educational Effectiveness, 9(supl), 67-92.

https://doi.org/10.1080/19345747.2016.1138560

Jiang, G., Wu, J. & Williams, G.R. (2000). Fieller's Interval and the Bootstrap-Fieller Interval for
the Incremental Cost-Effectiveness Ratio. Health Services & Outcomes Research
Methodology 1,291-303. https://doi.org/10.1023/A:1011499328061

Kelcey, B., Dong, N., Spybrook, J., & Cox, K. (2017). Statistical power for causally-defined
individual and contextual indirect effects in group-randomized Trials. Journal of
Educational and Behavioral Statistics, 24 (5), 499-530. doi: 10.3102/1076998617695506

Kelcey, B., Spybrook, J., Dong, N., & Bai, F. (2020). Cross-level mediation in school-
randomized studies of teacher development: Experimental design and power. Journal of
Research on Educational Effectiveness, 13 (3), 459-487. doi:
10.1080/19345747.2020.1726540

Kim, J. S., Olson, C. B., Scarcella, R., Kramer, J., Pearson, M., van Dyk, D., Collins, P. & Land,
R. E. (2011) A Randomized Experiment of a Cognitive Strategies Approach to Text-

Based Analytical Writing for Mainstreamed Latino English Language Learners in Grades

40


https://ies.ed.gov/seer/pdf/IES_Cost_Analysis_Starter_Kit_V1.pdf
https://doi.org/10.1080/19345747.2016.1138560

6 to 12. Journal of Research on Educational Effectiveness, 4 (3), 231-263, DOI:
10.1080/19345747.2010.523513
Kraft, M. A. (2020). Interpreting effect sizes of education interventions. Educational Researcher,

49(4), 241-253. https://doi.org/10.3102/0013189X20912798

Levin, H. M., & Belfield, C. (2015). Guiding the development and use of cost-effectiveness
analysis in education. Journal of Research on Educational Effectiveness, 8(3), 400-418.
https://doi.org/10.1080/19345747.2014.915604

Levin, H. M., Belfield, C., Hollands, F., Bowden, A. B., Cheng, H., Shand, R., ... & Hanisch-
Cerda, B. (2012). Cost-effectiveness analysis of interventions that improve high school
completion. Teacher College, Columbia University.

Levin, H. M., McEwan, P. J., Belfield, C., Bowden, A. B., & Shand, R. (2018). Economic
evaluation in education: Cost-effectiveness and benefit-cost analysis. SAGE publications.

Li, W., Dong, N., & Maynard, R. A. (2020). Power analysis for two-level multisite randomized
cost-effectiveness trials. Journal of Educational and Behavioral Statistics, 45 (6), 690-
718. doi: 10.3102/1076998620911916

Li, W., Dong, N., Maynard, R. A., Spybrook, J., & Kelcey, B. (2023). Experimental design and
statistical power for Cluster Randomized Cost-Effectiveness Trials. Journal of Research
on Educational Effectiveness, 16(4), 681-706, DOI: 10.1080/19345747.2022.2142177

Mullahy, J., & Manning, W. (1995). Statistical issues in cost—effectiveness analyses. In F. Sloan
(Ed.), Valuing Health Care: Costs, Benefits, and Effectiveness of Pharmaceuticals and
Other Medical Technologies (pp. 149-184). Cambridge: Cambridge University Press.
doi:10.1017/CB0O9780511625817.008

O'Brien, B. J., Drummond, M. F., Labelle, R. J., & Willan, A. (1994). In search of power and

41


https://psycnet.apa.org/doi/10.3102/0013189X20912798

significance: issues in the design and analysis of stochastic cost-effectiveness studies in
health care. Medical care, 32(2), 150—163. https://doi.org/10.1097/00005650-199402000-
00006

Polsky, D., Glick, H. A., Willke, R., & Schulman, K. (1997). Confidence intervals for cost-
effectiveness ratios: a comparison of four methods. Health economics, 6(3), 243-252.

https://doi.org/10.1002/(sic1)1099-1050(199705)6:3<243::aid-hec269>3.0.c0:2-z

Preacher, K. J. & Selig, J. P. (2012) Advantages of Monte Carlo Confidence Intervals for
Indirect Effects, Communication Methods and Measures, 6(2), 77-98, DOI.:
10.1080/19312458.2012.679848

Rubin, R. D. (1981). The Bayesian Bootstrap. The Annals of Statistics, 9(1), 130-134. DOI:
10.1214/a0s/1176345338

SAS Institute Inc. (2007). Jackknife and Bootstrap Analyses. Available at
https://support.sas.com/kb/24/982.html

Scammacca, N., Swanson, E., Vaughn, S. & Roberts, G. (2020) Cost-Effectiveness of a Grade 8
Intensive Reading and Content Learning Intervention. School Psychology Review, 49(4),
374-385, DOI: 10.1080/2372966X.2020.1760691

Schenker, N. (1985). Qualms about bootstrap confidence intervals. Journal of the American
Statistical Association, 80, 360-361.

Stinnett, A. A. & Mullahy, J. (1998). Net Health Benefits: A New Framework for the Analysis of
Uncertainty in Cost-Effectiveness Analysis. NBER Working Paper No. t0227, Available
at SSRN: https://ssrn.com/abstract=226637

Unluy, F., Edmunds, J., Fesler, L., & Glennie, B. (2015). A preliminary assessment of the cost and

benefit of the North Carolina's Early College High School Model and its impact on

42


https://doi.org/10.1002/(sici)1099-1050(199705)6:3%3c243::aid-hec269%3e3.0.co;2-z

postsecondary enrollment and earned college credit. [Paper presentation]. Spring 2015
Conference of the Society for Research on Educational Effectiveness (SREE),
Washington, DC, United States.

van Hout, B. A., AL, M. J., Gordon, G. S., & Rutten, F. F. (1994). Costs, effects and C/E-ratios
alongside a clinical trial. Health economics, 3(5), 309-319.

https://doi.org/10.1002/hec.4730030505

Wakker, P. & Klaassen, M.P. (1995). Confidence intervals for cost/effectiveness ratios. Health

Economics, 4(5): 373-381. https://doi.org/10.1002/hec.4730040503

Willan, A. R., & O'Brien, B. J. (1996). Confidence intervals for cost-effectiveness ratios: an
application of Fieller's theorem. Health economics, 5(4), 297-305.

https://doi.org/10.1002/(SIC1)1099-1050(199607)5:4<297::AID-HEC216>3.0.CO;2-T

43


https://doi.org/10.1002/hec.4730030505
https://doi.org/10.1002/hec.4730040503
https://doi.org/10.1002/(SICI)1099-1050(199607)5:4%3c297::AID-HEC216%3e3.0.CO;2-T

Figures and Tables

Figure 1: The AE — AC Plane

A |

(-) Incremental Cost (AC) (+)

(-) Incremental Effectiveness (4E) (+)

Note: The figure has been used in literature (e.g., Anderson et al., 1986; Black, 1990).
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Figure 2: RMSE of 95% confidence interval coverage as a function of sample size
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Note: RMSE was calculated across 22 scenarios (2 cost distributions X 11 correlations). “t” refers to the #-statistic of the treatment
effect size for the effectiveness measure.
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Figure 3: 95% confidence interval coverage as a function of sample size
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Figure 4: RMSE of 95% confidence interval coverage as a function of cost-effectiveness correlation
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Note: RMSE was calculated across 44 scenarios (11 sample sizes x 2 cost distributions x 2 AE).
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Figure 5: 95% confidence interval coverage as a function of cost-effectiveness correlation
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Figure 6: Screenshot of the ICER CI Calculator

MC Interval is based on 100,000 replications.

Fieller quadratic equation is (-0, L) or (U, +o0).

INPUT Parameters
Incremental Cost (AC) 499.36
SE of Incremental Cost 48.91
Incremental Effectiveness (AE) 0.15
SE of Incremental Effectiveness 0.04
Correlation of AC and AE 0.33
Confidence Interval (%) 95
OUTPUT
Incremental Cost-Effectiveness Ratio ICER=AC/AE) 3,329.07
Lower Limit | Upper Limit
Two-Sided 95% CI (Fieller's Theorem) 2,209.04 6,648.17
Two-Sided 95% CI (Monte Carlo Interval) 2,208.98 6,664.70
Left-Sided 95% CI (Monte Carlo Interval) -0 5,721.25
Right-Sided 95% CI (Monte Carlo Interval) 2,338.09 +00
Run MC

Note: Click Button "Run MC" to calculate the Monte Carlo (MC) confidence interval. The

"No Solution" occurs for Fieller's Theorem if AE is nonsignificant, when the solution to the
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Table 1: The summary results of 484 simulation scenarios

Method RMSE  Coverage rate Width Symmetry
0.975 309118 0.00
Box (1 1.96 SE 0049 0.715,1.000) (15081, 9M) (.00, 0.00)
LOSE 0117 0.860 219683 0.00
: ' (0.523,0.975)  (12225,30M) (0.00, 0.00)
, 0.890 149B 0.00
Taylor's method 0.084 0.680,096) (5386, 63T) (0.0, 0.09)
. 0.884 21M 0.38
Bias-corrected 0-119 " 0.583,0.980) (5828, 1.4B) (0.04,0.59)
Bootstra Bias-corrected & 0.114 0.887 18M 0.37
P accelerated ' (0.603,0.98) (5827, 841M) (0.04, 0.58)
. 0.965 148462 0.11
Percentile 0-018  0.924,0.983) (5829, 453887) (0, 0.56)
o 0.914 251927 0.12
Fieller's theorem 0095 0.530,0.980) (5825, 15M) (0.00,0.57)
. 0.966 147065 0.11
Percentile 0-019 " 0.934,0.983) (5825, 450598) (0, 0.57)
Monte Carlo Bias-corrected 0.118 0.885 460M 0.38
interval ' (0.585,0.981)  (5825,26B)  (0.04, 0.60)
. L 0.966 174296 0.10
Misspecified correlation=0 0.024 g0 0 997y (6497, 415561) (0.00,0.62)

N = 484. Within the parathesis are the minimal and maximum values. “M” refers to million, “B”

refers to billion, and “T” refers to trillion.
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Table 2: The results of regressing the absolute value of the bias of the 95% coverage rate on the simulation factors

Bootstrap Monte
Bootstrap bias- Monte Carlo  Monte Carlo: Monte Carlo:

Box CI Box CI Taylor's bias-  corrected & Bootstrap Fieller's Carlo (bias-  misspecified misspecified
Variables (1.96 SE) (1.0 SE) method corrected accelerated percentile theorem (percentile) corrected) correlation=0 correlation=0
Intercept 0.041*  0.091* 0.061% 0.074* 0.071* 0.016* 0.048* 0.017* 0.073* 0.021* 0.021*
fla‘(l)‘(%s Size  0.013%  -0.115% -0.144*  -0242%  -0.231*  -0.006* -0.155% -0.007%  -0.239* 0.005 0.005*
Effectiveness )08 _g.263* -0.234%  -0302¢  -0.293*  -0.029% -0.237% -0.026*  -0.303* 0.002 0.002
Effect Size
Cost-Effect 00 .053* 0007  -0.004  -0.004 20.001  -0.005  <0.001  -0.005 0.019*% 0.019%
Correlation
E‘;fformal 0.003  -0.071* -0.015*  -0.004  -0.004 20.001  -0.005  -0.001  -0.005 0.004* 0.004*
Squared
Cost-Effect na na na na na na na na na na 0.031*%
Correlation
R’ 0.02 0.63 0.65 0.56 0.57 0.21 0.35 0.18 0.56 0.31 0.37

Note: N=484. *p <0.01.
All predictors are mean centered. The intercept represents the mean absolute value of the bias.
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Table 3: Width by the AE and sample size

AE =025
Method n=20 1n=40 n=60 n=100 n=150 n=200 n=300 n=400 n=500 n=600 n=800
(t=0.56) (t=0.79) (t=0.97) (t=1.25) (t=1.53) (t=1.77) (t=2.17) (t=2.50) (t=2.80) (t=3.06) (t=3.54)
Box CI (1.96 SE) 263,684 413,344 870,427 385,835 692,307 575,276 661,146 374,906 244,068 475,753 208,643
Box CI(1.0SE) 175,182 405,816 342,171 297,378 745,588 266,322 332,947 1M 84,076 74,256 45,843
Taylor's method 3T 4B 13B 26B 5B 1B 94M 156B 13M 24M 134,457
Bootstrap bias- 3IM  50M  124M  8M 3IM  38M 19M 10M M 4M M
corrected
Bootstrap bias-
corrected & 25M  39M 90M 83M 29M 37M  ISM  10M 7M  4M M
accelerated
E;‘;zﬁ;“llg 255,237 316,643 351,621 383,762 380,935 364,689 301,303 238,308 184,696 140,480 86,402
Fieller's theorem 269,538 267,743 278,766 295,430 327,436 545,315 668,887 241,072 389,886 898,588 122,261
Monte Carlo 250,758 312,152 347,380 379,566 377,709 360,916 298,656 235,875 182,920 139,558 85,544
(percentile)
Monte Carlo 1B 1B 1B 1B 975M 579M 2B 240M 332M 132M  8M
(bias-corrected)
Monte Carlo:
misspecified 252,669 313,074 347,874 379,761 377,750 361,092 298,764 235,947 182,987 139,620 85,601
correlation=0
AE =0.50
Method n=20 n=40  n=60 n=100 n=150 n=200 n=300 n=400 n=500 n=600 n=800
(t=1.12) (t=1.58) (t=1.94) (t=2.50) (t=3.06) (t=3.54) (t=4.33) (t=5.00) (t=5.59) (t=6.12) (t=7.07)
Box CI (1.96 SE) 365,161 406,564 294,469 209,281 144,163 95,829 39,866 24,378 20,692 18,358 16,455
Box CI(1.OSE) 143,376 118,552 101,322 68,045 44,366 38,958 16,733 14,955 14,025 13,498 12,841
Taylor's method ~ 195B  62M 42M SM  84M 133,505 12,824 10,204 8838 7,917 6,704
Bootstrap bias- 23M  18M 20M 6M IM 601,253 42,626 13,774 10,591 9,006 7,315
corrected
Bootstrap bias-
corrected & 9M  12M 19M 4M IM 585,903 41,252 13,748 10,581 9,002 7,314
accelerated
Bootstrap 200,748 196,175 173,001 119,573 70,772 43,622 20,550 13,429 10,558 8,999 7,314
percentile
Fieller's theorem 147,715 186,175 494,327 141,377 140,765 59,983 25,853 14,126 10,821 9,028 7,309
Monte Carlo 198,367 194,549 171,690 118,874 70,495 43,566 20,566 13,401 10,566 9,016 7,309
(percentile)
Monte Carlo 469M  424M  336M  105M  40M  4M 68,782 13,747 10,597 9,027 7,309
(bias-corrected)
Monte Carlo:
misspecified 199,175 194,448 171,578 118,837 70,534 43,646 20,633 13,467 10,623 9,071 7,354

correlation=0

Note: Width was calculated across 22 scenarios (2 cost distributions x 11 correlations). “M” refers to
million, “B” refers to billion, and “T” refers to trillion. “t” refers to the ¢-statistic of the treatment effect
size for the effectiveness measure.
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Table 4: Symmetry by the AE and sample size

AE =0.25

Method n=20 n=40  n=60 n=100 n=150 n=200 n=300 n=400 n=500 n=600 n=800
(t=0.56) (t=0.79) (t=0.97) (t=1.25) (t=1.53) (t=1.77) (t=2.17) (t=2.50) (t=2.80) (t=3.06) (t=3.54)
Box CI(1.96SE)  0.00  0.00 0.00 000 0.00 0.00 000 000 000 0.00 000
Box CI(1.0SE)  0.00  0.00 0.00 000 0.00 0.00 000 000 000 0.00 000
Taylor's method ~ 0.00  0.00 0.00 000 0.00 0.00 000 000 000 0.00 000
Bootstrap bias- 020 028 0.34 042 048 051 051 044 034 023  0.10
corrected
Bootstrap bias-
corrected & 0.21 0.28 0.33 041 047 051 050 044 034 022  0.10
accelerated
Bootstrap 0.00  0.00 0.00 000 0.00 0.0 000 000 0.00 000 0.00
percentile
Fieller's theorem  0.00  0.00 0.00 000  0.00 000 000 000 000 000 0.05
Monte Carlo 0.00 0.00 0.00 000 000 000 0.00 000 000 0.00 0.0
(percentile)
Monte Carlo 020 028 0.34 042 048 052 051 045 034 022  0.09
(bias-corrected)
Monte Carlo:
misspecified 0.00  0.00 0.00 000 000 000 000 000 000 000 000
correlation=0
AE =0.50
Method n=20 n=40  n=60 n=100 n=150 n=200 n=300 n=400 n=500 n=600 n=800
(t=1.12) (t=1.58) (t=1.94) (t=2.50) (t=3.06) (t=3.54) (t=4.33) (t=5.00) (t=5.59) (t=6.12) (t=7.07)
Box CI(1.96SE)  0.00  0.00 0.00 000 000 000 000 000 000 000 000
Box CI(1.0SE)  0.00  0.00 0.00 000 000 000 000 000 000 000 000
Taylor's method ~ 0.00  0.00 0.00 000 000 000 000 000 000 000 002
Bootstrap bias- 037  0.46 0.49 041 023 017 037 048 050 051 048
corrected
Bootstrap bias-
corrected & 038  0.44 0.46 039 022 016 036 047 050 051 048
accelerated
Bootstrap 0.00  0.00 0.00 001 003 008 029 046 050 0.51 048
percentile
Fieller's theorem  0.00  0.00 0.00 001 006 014 041 049 050 051 048
Monte Carlo 0.00  0.00 0.00 001 003 007 028 047 050 051 048
(percentile)
Monte Carlo 038 047 0.49 042 024 017 035 048 050 051 048
(bias-corrected)
Monte Carlo:
misspecified 0.00  0.00 0.00 000 002 006 027 046 049 050 048

correlation=0

Note: Symmetry was calculated across 22 scenarios (2 cost distributions x 11 correlations). “t” refers to
the z-statistic of the treatment effect size for the effectiveness measure.
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Supplemental Material:

SAS Macro for Calculating ICER Cls

$MACRO
ICER CIs Calculator (NET COST,SE NET COST,NET EFFECT,SE NET EFFECT,Correlation
_CE,CONFID, REPLICATIONS) ;

/*** Monte Carlo Interval ***/
/* Create net cost-effectiveness variance-covariance matrix, and simulated
data for Monte Carlo Interval*/
$Let cost var = %sysevalf (&SE NET COST*&SE NET COST) ;
/* Variance of net cost estimate */
$Let effect var = %sysevalf (&SE NET EFFECT*&SE NET EFFECT);
/* Variance of net effect estimate */
sLet ce cov = %sysevalf (&Correlation CE*&SE NET COST*&SE NET EFFECT) ;
/* Covariance */
$Let ICER = %sysevalf(&NET_COST/&NET_EFFECT);
$Let pctl = %$sysevalf ((100-&CONFID) /2);
/* Two-sided CI: left limit percentile */
$Let pctu = %sysevalf (&CONFID+ (100-&CONFID) /2);
/* Two-sided CI: right limit percentile */
$Let pctu L sided = %sysevalf (&CONFID);
/* Left-sided CI: right limit percentile */
$Let pctl R sided = %sysevalf (100-&CONFID) ;
/* Right-sided CI: left limit percentile */

proc iml;

mu = { &NET COST, &NET EFFECT };

sigma= { &cost var &ce cov,

&ce cov &effect var};

call vnormal (ce, mu, sigma, &REPLICATIONS) ;

create mcdata (RENAME=(COLl=cost COL2=effect)) from ce ;
append from ce;

quit;

data mcdata;
set mcdata;

Lable ICER sim = "Incremental cost-effectiveness ratios from simulation";
ICER sim = cost/effect;
run;

* Get percentile confidence limits for simulated data ;
proc univariate data=mcdata noprint;
var ICER sim;
output out=ci mcdata pctlpts= &pctl &pctu &pctl R sided &pctu L sided
pctlpre=a pctlname=lcl ucl lcl R sided ucl L sided n=n;
run,

data ci mcdata;

alcl L sided = 'Negative Infinity';

aucl R sided = 'Positive Infinity';

retain alcl aucl alcl L sided aucl L sided alcl R sided aucl R sided;
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drop n;

length Method $50;

Method="Monte Carlo Interval (Percentile)";
set ci mcdata;

run;

/*** Fieller's theorem ***/

data Fieller;
drop b2 a c;
length method $50;

b2= &NET COST*&NET EFFECT-
quantile ('NORMAL', §pctu/100) **2*gCorrelation CE*&SE NET COST*&SE NET EFFECT;
a = &NET EFFECT*&NET EFFECT-

quantile ('NORMAL', §pctu/100) **2*§SE NET EFFECT*&SE NET EFFECT;

c = &NET COST*&NET COST-

quantile ("NORMAL', &§pctu/100) **2*&SE NET COST*&SE_NET COST;

if a le 0 then do;

Note = "No Solution";

alcl = .;

aucl = .;

end;

if a > 0 then do;

alcl = (b2-sqgrt (b2*b2-a*c))/a ;

aucl = (b2+sqgrt (b2*b2-a*c))/a ;
end;

Method="Fieller's Theorem";
output;
run;

data ICER CIs;
retain Method;
ICER = &ICER;

Lable ICER = "Incremental cost-effectiveness ratio";

Lable alcl = "Lower limit of the two-sided &CONFID% confidence interval";
Lable aucl = "Upper limit of the two-sided &CONFID% confidence interval";
Lable alcl L sided = "Lower limit of the left-sided &CONFID% confidence
interval™;

Lable aucl L sided = "Upper limit of the left-sided &CONFID% confidence
interval™;

Lable alcl R sided = "Lower limit of the right-sided &CONFID% confidence
interval";

Lable aucl R sided = "Upper limit of the right-sided &CONFID% confidence
interval";

set ci mcdata Fieller;

NET COST = &NET COST;

SE_NET COST = &SE_NET COST;

NET EFFECT = &NET EFFECT;

SE_NET EFFECT = &SE NET EFFECT;
Correlation CE = &Correlation CE;
Confidence=&CONFID;

Replications = &REPLICATIONS;



run;

Proc print data = ICER CIs label;
run;

proc sql noprint;
select

round (ICER, .1),
round (alcl, .1),
round (aucl, .1),

alcl - (ICER - alcl) ,
aucl + (aucl - ICER) ,
10000

into

:ICER,

:alcl PCTL,

:aucl PCTL,

:min xaxis ,

:max_xaxis ,

:n_bins

from Icer cis where Method="Monte Carlo Interval (Percentile)";
quit;

ods listing image dpi=300;
ods graphics / width=4.4 in height=3 in;

ods listing gpath='C:\ICER';
ods graphics / imagename="dist ICER sim" imagefmt=png;

title 'Distribution of the ICER based on Monte Carlo simulation' ;
proc sgplot data=mcdata ;

xaxis
valueattrs=(color=black size=12pt) min = &min xaxis max = &max xaxis;
yaxis
valueattrs=(color=black size=12pt) offsetmax=0.1;
histogram ICER sim / scale=percent nbins = &n bins;

refline &alcl PCTL &aucl PCTL / axis=x lineattrs=(thickness=2
color=darkred pattern=dash)
label=("Lower Limit /(&alcl PCTL)" "Upper Limit /(&aucl PCTL)")
splitchar="/";
refline &ICER / axis=x lineattrs=(thickness=2 color=darkred )
label=("ICER /(&ICER)") splitchar="/";
run;
title;

$MEND ;

$ICER CIs Calculator(499.36,48.91,0.15,0.04,0.33,95, 100000);

56



Figure S1: Screenshot of the output using the SAS Macro
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Figure S2: Distribution of the simulated ICER from the SAS Macro
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Overview of the Search and Screening Process for Empirical Cost-effectiveness Studies in

Education

We conducted a systematic review to identify scholarly publications that reported
empirical estimates of the effectiveness and cost of educational interventions. We included
studies that 1) were randomized control trials (RCTs) in education, i1) collected student academic
outcomes for students from grades K to 12, ii1) were conducted in a U.S. setting, iv) reported
estimates of the effectiveness and cost of the intervention, and v) were published in English. We
used a comprehensive search strategy to identify and retrieve all relevant studies. We searched
four large databases of indexed research in education and social sciences namely Education
Resources Information Center (ERIC), ProQuest Central, ProQuest Central Dissertations and
Theses Global, and SCOPUS. In addition, we did forward and backward reference harvesting
and Google Scholar random search to locate additional studies. The following search term was
used to locate relevant studies: Academic and (achiev* or outcome™* or improv*) AND
Randomized* and (control* or experiment* or trial* or design or methodology*) AND (cost* or
budget® or finance* or expenditure* or expens*) AND (primary or elementary or preschool or
“middle school*” or “high school*” or secondary).

The search retrieved 604 total publications in which only 530 publications were unique.
Together with 21 publications located through reference harvesting and Google Scholar random
search, we had a pool of 551 publications to screen for eligibility. Our screening of the abstract
and full text identified 20 publications that meet our criteria for eligibility. The other publications
were screened out for various reasons, primarily of which were because the studies were RCTs in

health sciences, were not conducted in a U.S. setting or were not targeting K-12 students, did not
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provide estimates of the effectiveness and/or cost of the intervention, or did not collect student
academic outcomes. Of the 20 publications that meet our eligibility criteria, only 10 publications
reported the ICERs, in which all the eight publications reported the point estimates (Barret et al.,
2020; Barrett & VanDerHeyden, 2020; Clark et al., 2020; Cil et al., 2023; Finster et al., 2023;
Guryan et al., 2020; Hollands et al., 2016; Hunter et al., 2018; Kim et al., 2011; Scammacca et
al., 2020) and only two of them also reported the confidence interval (Cil et al., 2023; Hunter et
al., 2018).

In addition, we conducted a separate search and review for quasi-experimental studies
using the same criteria and procedure, except that we focused on quasi-experimental studies
instead of RCTs. Therefore, for example, we used the following search term to locate relevant
studies: Academic and (achiev* or outcome* or improv*) AND (Quasi-experiment® or
propensity score match*) AND (cost* or budget* or finance* or expenditure® or expens*) AND
(primary or elementary or preschool or “middle school*” or “high school*” or secondary). The
search identified a total of 166 publications including 16 duplicates across the four databases.
Our reference harvesting and Google Scholar random search retrieved two additional
publications. Of 152 publications screened for eligibility, only five were deemed to meet our
review criteria. The vast majority of the studies were excluded mainly because they did not
provide cost data, were conducted in a non-US or higher education setting, or were collecting
health related outcomes. Of the five publications that meet our eligibility criteria, three
publications reported the ICERs, in which all the three publications reported the point estimates
(Borman & Hewes, 2002; Bowden & Bellfield, 2015; Bowden et al., 2017) and only one of them

also provided the confidence interval (Bowden & Bellfield, 2015).

60



