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Abstract: Although di erent strategies for mosquito-borne disease prevention can vary significantly
in their e cacy and scale of implementation, they all require that individuals comply with their use.
Despite this, human behavior is rarely considered in mathematical models of mosquito-borne diseases.
Here, we sought to address that gap by establishing general expectations for how di erent behavioral
stimuli and forms of mosquito prevention shape the equilibrium prevalence of disease. To accomplish
this, we developed a coupled contagion model tailored to the epidemiology of dengue and preventive
behaviors relevant to it. Under our model’s parameterization, we found that mosquito biting was the
most important driver of behavior uptake. In contrast, encounters with individuals experiencing disease
or engaging in preventive behaviors themselves had a smaller influence on behavior uptake. The relative
influence of these three stimuli reflected the relative frequency with which individuals encountered
them. We also found that two distinct forms of mosquito prevention—namely, personal protection
and mosquito density reduction—mediated di erent influences of behavior on equilibrium disease
prevalence. Our results highlight that unique features of coupled contagion models can arise in disease
systems with distinct biological features.

Keywords: coupled contagion; epidemiology; human behavior; ordinary di erential equations;
vector-borne disease

1. Introduction

Dengue virus is a mosquito-borne pathogen transmitted by Aedes aegypti and Ae. albopictus
mosquitoes that poses a risk to approximately half of the world’s population [1]. Currently, there is
no treatment for dengue and only one moderately e ective vaccine available, so interventions that
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target mosquitoes are the primary means of dengue prevention [2]. These interventions span a variety
of specific techniques, but they often boil down to either large-scale insecticide spraying, typically
performed by government agencies, or in-home water container management, typically performed by
residents and reinforced with educational campaigns [3,4]. Empirical studies suggest that “intersectoral”
approaches combining spraying and community-driven control are more successful than spraying or
community control strategies alone, although it is di cult to generalize across settings [5].

An important factor in the success of either of these strategies is human behavior, since interventions
can only be e ective if they are adopted in the first place. Behavioral choices can influence compliance
with spraying campaigns and participation in mosquito larval habitat reduction, sometimes producing
unexpected outcomes. For example, outdoor spatial spraying alone has been associated with a lower
adoption of in-home water container management and higher entomological risk, as observation of out-
door spatial spraying can give a false sense of security [6—8]. Inclusion of educational programming in a
campaign can counteract this e ect, however [9]. Most importantly, though, clinical trials of community
interventions have reported up to a 25% reduction in Aedes-borne diseases [10, 11], demonstrating that
individual behavior can have a measurable impact on transmission.

Mathematical modeling has been used to elucidate the interplay between disease and behavioral
dynamics for a variety of directly transmitted pathogens, particularly those impacted by vaccine
hesitancy [12, 13] and changing contact patterns [14—16]. Forecasting models that account for individual
behavioral change can produce significantly di erent forecasts than those that disregard adaptive
behaviors [16], which could compromise forecast accuracy [17, 18]. There are comparatively few
published models of mosquito-borne disease dynamics that include behavior, and much remains
unknown about the relationships among mosquito density, disease prevalence, and preventive behaviors.
Previous studies have explored relatively narrow questions around this topic, such as how changing
mosquito preventive behaviors in the presence of a dengue vaccine and varying intervention e ectiveness,
can impact transmission [19,20]. Those studies have also provided insight into the impacts of information
sharing across spatiotemporal scales and targeted public health messaging on mosquito-borne disease
incidence [21,22].

When disease-related behavior itself is conceptualized as an infectious entity, a “coupled contagion”
model presents a useful framework for understanding the feedback between such behaviors and disease.
This approach to modeling co-circulating contagious processes together, rather than independently,
specifically considers how transmission is impacted as the contagions evolve and interact. For directly
transmitted pathogens, reducing contact via social distancing or isolation are the primary forms of
preventive behavior. Several studies coupling adaptive behaviors and directly transmitted pathogens
found that even limited amounts of fear-driven self-isolation can drive multiple waves of infection in an
epidemic scenario [23-27], while targeted public health messaging strategies could minimize outbreak
size across a communication network [28]. Mosquito-borne diseases, in contrast, can be influenced by a
wider range of preventive behaviors. In addition to reducing the mosquito biting rate through the use
of a repellent, other preventive behaviors for mosquito-borne diseases include those with an indirect
e ecton transmission; namely, these are actions taken to reduce the mosquito population, rather than
transmission itself. Likewise, mosquito-borne diseases are unique in that exposures to mosquito biting
could prompt individuals to engage in preventive behaviors, independent of disease status.

In this study, we sought to establish fundamental principles for the coupled-contagion dynamics
of a mosquito-borne disease and mosquito prevention behaviors. Our model allowed for two distinct
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mosquito prevention behaviors: use of personal protection (which only confers direct protection) and
reduction of the mosquito larval habitat (which confers indirect protection by reducing mosquito density).
We considered three distinct influences that would prompt individuals to engage in these behaviors:
encountering people experiencing disease, encountering people engaging in preventive behaviors, and
encountering mosquitoes. Because our model with fully coupled dynamics of disease and behavior
was not analytically tractable, we first performed separate analyses of the equilibria of each component
model. We then explored the equilibria of the coupled model using numerical simulations, with a
focus on understanding how the assumptions and parameters underpinning the uptake and impact of
preventive behaviors a ect the equilibrium prevalence of behavior and, ultimately, disease.

2. Methods

2.1. Single contagion models

To explore the interface between mosquito-borne disease and mosquito preventive behaviors, we
developed two deterministic compartmental models for the standalone dynamics of disease and behavior.
We established a constant human population size N,

N S®O Ipr@®) RpQ),

such that N = 1, and leveraged this to characterize both single-contagion systems using analytical
methods. We identified local equilibria using Mathematica 14.0 [29], and performed local stability
analyses of those equilibria using the caracas R package (version 2.0.1) [30]. Calculations of the basic
reproduction number were performed using the approach described in [31].

2.1.1. Disease model

We developed a susceptible-infected-recovered-susceptible (SIRS) model to describe disease dy-
namics, modeled after dengue. In reality, dengue viruses comprise four distinct serotypes that confer
lifelong homologous immunity and temporary heterologous immunity [32]. Although the SIRS model
we used does not capture the full complexity of these dynamics, it does capture the fact that waning
heterologous immunity (as individuals transition from R to §) allows persistence of the four serotypes in
aggregate. In this model, susceptible individuals S are subject to the force of infection for the pathogen,

BI, such that

dS

- SRe—BIS, 2.1
where the P subscript denotes that this model refers to infection with the pathogen. Infected individuals

Ip recover from dengue at rate y and lose immunity to dengue at rate &, or

dl
—- BIS —vlp (2.2)
dR
—= vl — &Ry (2.3)
Given that % 0 and N = 1, we reduced this system to
ds
= S0 =S—Ip)=pIpS 2.4)
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dlp
—_— IpS — vl 2.5
dr BIpS —yIp (2.5)

and performed our analyses thereon.

2.1.2. Behavior model

We used a susceptible-infected-susceptible (SIS) model to describe the transmission of mosquito
preventive behavior. In the absence of disease, susceptible individuals S become infected with the
preventive behavior at arate Az ¢y M  ¢s1p, so that

C;—Lj Ll)IB - ABS, (26)
where the B subscript denotes that this model refers to infection with the behavior. Adoption of behavior
occurs at a rate equal to the sum of the current ratio of mosquitoes to humans M and the proportion of
individuals already performing the behavior Iz, weighted by two parameters ¢, and ¢g, respectively.
The ratio of mosquitoes to humans varies over time as the proportion of the population engaged in
preventive behaviors does, such that M m(1 — (1 — ay,)I), where 1 — ), represents the e cacy of
the preventive behavior in reducing mosquito density. Infected individuals then “recover” from this

behavior at rate w, J
I
—  AS —wlp, 2.7
dr B wip (2.7)
at which time they revert back to the state of no longer engaging in the behavior. We conducted the

same analysis of this two-dimensional system as was done for our disease model.

2.2. Coupled contagion model

Using our understanding of single contagion model equilibria and parameter relationships, we
integrated the two models into a single ODE system capturing the joint transmission of mosquito-borne
disease and mosquito preventive behavior (Figure 1).

Here, the coupled dynamics of disease and behavior were modeled as an SIRS-SIS system in
which humans can be infected with behavior alone (denoted by subscript B), pathogen alone (denoted
by subscript P), or co-infected with both pathogen and behavior (subscript PB). Simultaneous co-
transmission of pathogen and behavior is not allowed under our model, given that it would further
complicate the model and is likely to be an exceedingly rare event. The coupled nature of the model
allows for dynamic feedback between disease and behavior, which can interact in ways that drive
long-term disease dynamics [25].

As before, we assumed a constant human population without demographic change, disease-induced
mortality, or serotype dynamics. We summarize human population attributes as follows, where N
represents the entire population, N the proportion of the population engaged in preventive behaviors,
and Np the proportion of the population infected with the pathogen, implying

N S Ig Ipp Ip Rp Rpp
Ng Ip Ipp Rpp

Ny Ip Ip.
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Figure 1. Diagram of the coupled contagion model for dengue and behavior transmission.
Compartment labels refer to susceptible S, infected 7, and recovered R classes, while subscripts
indicate the contagion associated with each state: P for the pathogen alone, B for behavior
alone, and PB for both pathogen and behavior.

Susceptible individuals (S) in the model are naive to both pathogen and behavior, and become
infected with the pathogen at rate A and behavior at rate A,
ds

E (,UIB é:Rp - /lpS - /lBS (28)

Those infected with the pathogen (/) or behavior (/) alone can then become co-infected (/pp) at rate
Ap or App, respectively, so that singly infected states change via the contagious processes described in
dlp

E /1PS (L)IPB - /lBIp - ’)/Ip (29)

and e
d_f AgS — Applp — wlp  ERpp, (2.10)

and contribute to the co-infected state

dl
% Aglp  Applp — yIpp — wipp. (2.11)

Once singly or co-infected, immunity to the pathogen and the behavior each wane at independent rates
¢ and w, respectively, as individuals recover from infection and cease performing the behavior, such that

dRp

7 ’)/Ip—pr—/lBRp (URPB (212)
and IR
de AgRp  yIpp — ERpp — WRpp. (2.13)
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While the high-level transmission processes in the coupled model are structurally consistent with
our simpler, single contagion models, we have modified elements of both pathogen and behavior
transmission to explicitly incorporate a mechanism for feedback between them. To do so, we first
defined the force of infection for behavior, Az, to include the number of individuals infected with
the pathogen Np (i.e., Ip  Ipp), so that transmission of behavior is driven by a weighted sum of
the proportion of the population infected with the pathogen, the adult mosquito prevalence, and the
proportion of the population already engaged in the behavior, equal to

A ¢pNp duM  ¢sNp, (2.14)

where ¢p, ¢y, and ¢g are the weights for these three respective behavioral stimuli. We chose these
three stimuli because they span the range of possible influences on mosquito preventive behavior
uptake [33-35].

Table 1. Disease parameters, definitions, values, and sampling ranges for global sensitivity
analysis. Parameters described as calibrated were tuned to achieve an outbreak matching
published estimates of R, for dengue virus in temperate regions, approximately 2.0 [36,37].

Parameter Definition Value Sampling range Source(s)
ag Relative risk associated with use 0.569 0-1 [38]
of personal protection and partici-
pation in behavior
1-ay E cacy of community-level pre- 0.47 0-1 [10]
ventive behaviors in reducing
mosquito density

& Waning rate of heterologous 180 days™'  160-200 days™ [39,40]
dengue immunity

m Baseline ratio of mosquitoes to hu- 1.0 0.75-3.0 [41]
mans

vy Dengue infectious period 7 days™ 5-9 days™! [42]

v Extrinsic incubation period 14 days™ 12-16 days™ [43]

g Mosquito mortality rate 0.18 perday 0.13-0.23 per day [44]

a Mosquito biting rate 0.76 per day 0.6-0.9 per day [45]

b Probability of mosquito-to-human 0.3 0.2-0.4 Calibrated

transmission given a bite by an
infectious mosquito
c Probability of human-to-mosquito 0.3 0.2-0.4 Calibrated
infection given a bite on an infec-
tious host

We define the force of infection of the pathogen for those not performing the behavior to be
Ap  BNp, (2.15)

which features an expanded definition of the pathogen transmission rate 8 to include key components
of mosquito biology and pathogen transmission [46]. By substituting the Ross-Macdonald model’s
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basic reproduction number expression for mosquito-borne pathogen transmission into our disease-only
model’s R, term, we can express the transmission rate as

Ma?bce™"
8

, (2.16)

where M is the ratio of mosquitoes to humans, a is the blood-feeding rate, b is the probability that
an infectious mosquito infects a susceptible human during blood-feeding, c is the probability that an
infectious human infects a susceptible mosquito during blood-feeding, g is the mosquito mortality rate,
and v is the extrinsic incubation period (Table 1). As in the behavior-only model, M is proportional to
the population engaging in preventive behaviors, meaning that

M  m( - (1-ay)Np),

where 1—a), represents the reduction in mosquito density associated with preventive behaviors that result
in mosquito larval habitat reduction, which provides the entire population with indirect protection [10].

In addition to these community-level e ects on mosquito density, we assumed that individuals
engaged in preventive behaviors also experienced some amount of direct, personal protection through
actions such as the use of mosquito repellent. The parameter ap encapsulates this as a relative risk of
infection. This shows up in our model as a squared e ect given that it modifies the blood-feeding rate,
a, and mosquitoes blood-feed twice in a transmission cycle (Eq 2.16). Thus, the corresponding force of
infection for those performing the behavior is

App  ajdp. (2.17)
All behavioral parameters, definitions, and values are defined in Table 2.

Table 2. Behavioral parameters, definitions, values, and sampling ranges for global sensitivity

analysis.

Parameter Definition Value Sampling range References

op Weight of disease on preventive behav- 0.01 0-1 Assumed
ior participation

Oum Weight of mosquitoes on preventive 0.01 0-1 Assumed
behavior participation

Ps Weight of social influence on preven- 0.01 0-1 Assumed
tive behavior participation

w Waning rate of preventive behavior 15days™"  1-30 days™' Assumed

We used numerical analyses to approximate model equilibria based on the prevalence attained after
five years of model simulation, under a range of behavioral conditions. Simulations were performed
using R Statistical Software (version 4.3.2, 2023-10-31) and the deSolve R package (version 1.38)
[47,48].

We also performed a global, variance-based sensitivity analysis of the model with the Sobol method,
using the sensobol R package (version 1.1.5) [49]. This allowed us to quantify the amount of variance
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in disease and behavior equilibrium prevalence values that could be attributed to our input parameters
and interactions between them. We included all disease and behavior parameters in this analysis and
generated 16,000 parameter combinations of parameter values from the ranges given in Tables 1 and 2
using the Saltelli sampling scheme.

3. Results

3.1. Single contagion equilibria
3.1.1. Disease model

This model possesses two equilibrium solutions: a disease-free equilibrium, (S*,I*) (1,0), and an

endemic equilibrium ($*, I*) (%, Z‘,g_;;) Since an epidemic requires that ddif > 0, we substituted Eq

2.5 into this inequality and algebraically manipulated it until we obtained

l>1.

BS
Assuming a completely susceptible population, or S 1, we found the expression for the basic
reproduction number for the system, R, g. To assess the stability of this equilibrium, we formulated

the Jacobian matrix
P (—f ~Blp —¢ —,BS)
Blp  BS—-v)’

evaluated it at the disease-free equilibrium, and identified eigenvalues 4, S —vyand A, —£. Because
A, will always remain negative, values of A; determine stability. Notably, 5/y > 1 and 8 —y > 0 are
always satisfied simultaneously, meaning that the value of R, determines equilibrium stability. These
results are consistent with previous work [50-52] and provide a reference point for our more complex
model that incorporates behavior, as well.

3.1.2. Behavior model

To analytically characterize behavioral contagion dynamics in the absence of disease, we leverage
model population characteristics %’ 0 and N = 1 to reduce the system outlined in Eqs 2.6 and 2.7 to

dl
Tf (1 = Ip) — wlp. (3.1

We then substituted in the previously mentioned expressions for Az and M to produce the expanded

dlg

' (¢Mm(1 — (1 —ap)lp) ¢SIB)<1 - IB) — wlp, (3.2)

which is a Bernoulli di erential equation. As such, it was possible to identify the closed-form solution

1 e—/lt Cy

I(1) (3.3)

b
T rze—/lt Cs

where
A A(r =),
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A pym,
B =2¢ym ayd.m-— w,

C  oum—aypym— ¢s,

-B B> —4AC
rl ,

2A
5 —-B— VB> -4AC

’
2A ’
and C; is an integration constant. We then found two equilibrium solutions,
I —w-"2mpy maydy Ps+ \/—4m¢M(m¢M—m6¥M¢M—¢S) (—w=2mey maydyu ¢s)?
B 2(-moy maydm Ps) '

Though this equilibrium formula is not intuitive, it provides the initial impression that the baseline
mosquito to human ratio m and other related parameters—namely, those weighting mosquito density ¢,
and larval habitat reduction e cacy a—are influential to the behavior equilibrium. This makes sense
given the dynamic feedback between the mosquito population and behavior, which are necessarily more
di cult to disentangle than the one-way e ect of social reinforcement. We also note that parameter
values must satisfy the condition

dum(l —ay) # ¢s.

When this condition is violated, the right-hand side of Eq 3.2 no longer contains a quadratic dependence
on I, changing the structure of the model. Though there is no evident biological interpretation for
this relationship, when parameter combinations do not meet this condition under the baseline model
parameterization, we observe an intersection between the positive, stable solution and the negative,
unstable solution, though there is no change in stability at these points (Figure A1). Additionally, the
parameter weighting the influence of mosquito density, ¢,;, must be positive for Iz to go from zero
toward its non-zero equilibrium. When we examine Eq 3.2 with ¢,, 0, it simplifies to

ddif ¢SIB(1—IB)—O)IB.

In a population without behavior already present (i.e., with Iz 0), this reduced equation will always
equal zero. We can interpret this to mean that in this model, mosquitoes must be a behavior stimulus for
the behavior to arise in the first place.

We further explored model behavior and parameter relationships via linear stability analysis of Eq
3.2. Evaluating the first derivative of this equation at the positive equilibrium across a range of plausible
parameters produces all negative values, indicating that these parameter combinations produce only
stable solutions. The solutions associated with this analysis are shown in Figure 2, where we see that as
the waning rate of the behavior decreases (i.e., the duration of the behavior increases), the equilibrium
prevalence of the behavior increases. In addition to the fact that this means that fewer individuals give
up preventive behaviors in a given amount of time, more individuals in this category are gained as
a result of a stronger influence of people taking up preventive behaviors due to social influence. We
note that the sensitivity of I} to ¢s becomes stronger in Figure 2 as w decreases, which supports this
interpretation.
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Figure 2. Prevalence of behavior under varying behavior waning rates w. Fill color indicates
the equilibrium prevalence of the behavior in a population. We assume the baseline value
for mosquito control e cacy, 1 —ay  0.47, while varying weighting parameters for the
mosquito population ¢,, and social pressure ¢s.

3.2. Coupled contagion equilibria

We approached our analysis of the coupled contagion model numerically. Informed by our analysis
of the single contagion model for behavior in Figure 2, we set all ¢ parameters to 0.01 to ensure that the
magnitude of observed disease and behavior remained within reasonable bounds over the course of a
simulation and to exert a measure of control on the relative importance of each stimulus. Furthermore,
setting the baseline mosquito-to-human ratio m to 1 ensured that the product ¢, M was equal to ¢s and
¢p. These parameter choices established a baseline against which the e ects of changes to ¢ parameters
could be easily interpreted.
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Simulating the model across a five-year period in the absence of preventive behaviors, we observed
an equilibrium disease prevalence of 0.019, with a cumulative annual incidence of 971 per 1000 people
for the final year of the simulation (Figure 3). These outcomes are plausible according to prior work on
dengue epidemiology [36,37,53] and were most sensitive to the tuned transmission parameters b and ¢
(Table 1). When we introduced behavior into the model, we observed a reduction in equilibrium disease
prevalence from 0.019 to 0.015, with a corresponding reduction in cumulative annual incidence from
971 per 1000 people to 789 per 1000 people once equilibrium behavior prevalence was attained. In both
scenarios, we found that the time-varying e ective reproductive number declined from 2.0, the value
to which it was calibrated initially, to approximately 1.0 by the end of the five-year simulation as the
system reaches equilibrium (Figure A2).

%) %)
9 = 8 = -
Q o J = - Without behavior c o {p
@ y — With behavior Q
T O ¢ o
> = O
a o o o
o S
> S 5 S 4
c o c o
8 o)
o o o
Q Q
o I I I I o I I I I
0 500 1000 1500 0 500 1000 1500
Time (Days) Time (Days)

Figure 3. Disease and behavior dynamics over the course of a five-year simulation. Line color
and type indicate the presence or absence of the behavioral contagion.

To understand the relative influence of di erent behavioral parameters, we systematically removed
each influence on behavior participation one by one under our baseline model parameterization (Figure
4). Removing the influence of disease (¢p 0) increased equilibrium disease prevalence only slightly,
from 0.01517 to 0.01522. Removing the influence of social pressure (¢s  0) increased disease
prevalence somewhat more, up to 0.160. Most significantly, removing the influence of mosquitoes
(6m  0) increased disease prevalence to 0.0186, which suggests that the influence of mosquitoes
accounts for the majority of the reduction in disease prevalence when all influences on behavior are
included. The extent of these reductions in disease correlate with the extent of change in the equilibrium
behavior prevalence under each scenario about the ¢ parameters (Figure 4B). Ultimately, the relative
importance of these influences on behavior owes to the frequency with which people susceptible to
the behavior encounter them. Whereas everyone is bitten by mosquitoes, fewer are in contact with
individuals engaged in preventive behavior, and very few are in contact with an infectious person at any
given time.
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® o ()

o N 8]

c o c -

O : o _ = Without behavior

© © (4] e All - present

— o o = absen

o Q o » 5 absent

® © 5

w — h—

8 S g

T | 9 =

£ o

5 =

.: N -E _

2 S S

_— i = o

=3 o S o

o o )

w [ [ [ [ I I L = [ [ I [ [ [
0.0 04 0.8 0.0 04 0.8

L ] B . B
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In general, we found that the effects of the ¢ parameters on disease were robust to values of other
model parameters. Even so, the parameters governing the strength of the two forms of control played an
important role in shaping these effects. First, changes in the relative risk of infection due to personal
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protection (ap) used by individuals in the behavior class had no effect on the prevalence of behavior
but did affect disease prevalence (Figure 5). The curvilinear relationship between ag and equilibrium
disease prevalence reflects the quadratic effect of ag on Ry, given that it affects both mosquito bites
required for a complete transmission cycle. Second, changes in the efficacy of community-level larval
habitat reduction (1 — a;,) affected not only disease prevalence but also equilibrium behavior prevalence
(Figure 6). This is a result of the fact that community-level control reduces mosquito density (M), which,
in turn, reduces behavior prevalence. This reduction in behavior prevalence has the undesirable effect of
reducing the use of personal protection. However, this undesirable effect is outweighed by the desirable
effect of reducing mosquito density, resulting in a net reduction in disease prevalence.
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Figure 6. Equilibrium disease and behavior prevalence as the efficacy 1 — @, of community-
level mosquito larval habitat reduction varies. Line colors indicate the behavior stimuli present
or absent.

In addition to these one-at-a-time sensitivity analyses, we performed a global, variance-based sensi-
tivity analysis of all model parameters to gain a more holistic view of the behavioral and epidemiological
influences on long-term disease and behavior prevalence (Figure 7). We found that parameters directly
related to disease transmission had the greatest effect on observed disease prevalence, particularly ag, m,
and vy, which refer to the relative risk of disease associated with direct protection arising from preventive
behavior, the ratio of mosquitoes to humans in the population, and the disease recovery rate, respectively.
While we observed that these parameters had relatively high first-order indices, which evidence a direct
relationship between the parameter and disease prevalence, their notably higher total-order indices
suggest that interactions with other parameters are a key driver of their influence on observed disease.
Two behavioral parameters, the waning rate of behavior w and the influence of mosquitoes on behavior
éu, also have comparatively high total-order indices that again suggest involvement in higher-order
interactions.

In contrast with the broad range of influences on disease prevalence, variation in behavior prevalence
can be attributed almost entirely to w, behavior waning rate, and ¢,,, mosquito influence on behavior
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uptake. Together, these two parameters are responsible for over 85% of the total variance in behavior
prevalence observed. This result is consistent with our one-at-a-time analysis, for which the presence
of the mosquito influence on behavior ¢y was required to observe non-negligible behavior outcomes
(Figure 4). Further, evident model sensitivity to our choice of ¢ affirms our decision to assign identical
values to all ¢ parameters to exert a measure of control and ensure that we are capturing the influence of
behavior stimuli rather than individual behavior parameters.
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Figure 7. Variance-based sensitivity analysis of all model parameters for equilibrium disease
prevalence (A) and equilibrium behavior prevalence (B). Fill colors indicate if indices are first
or total order.
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4. Discussion

In this study, we used a coupled contagion model of a mosquito-borne disease and mosquito
preventive behaviors to gain insight into the primary drivers of feedbacks between disease and behavior
for a mosquito-borne disease. We found that the coupling of disease and behavior contagions resulted
in a lower equilibrium disease prevalence and a comparatively large equilibrium behavior prevalence.
How long individuals maintain preventive behaviors was found to be a major driver of the equilibrium
prevalence of behavior, which likewise a ects the contribution of social pressure to behavior uptake.
Interestingly, we found that the e ects of contagion coupling on equilibrium prevalence of both
contagions were most sensitive to the influence of mosquitoes in driving behavior uptake, followed
by social pressure and, finally, disease itself. The relative importance of these influences reflects
the frequency with which people encounter them. This finding highlights an important distinction
between coupled contagion dynamics of mosquito-borne versus directly transmitted disease systems,
given that mosquitoes are not a relevant influence to the latter. Another feature unique to coupled
contagion dynamics for mosquito-borne disease systems is that behaviors that reduce the mosquito
population can also reduce behavior uptake due to reduced contact with (and annoyance by) mosquitoes.
Counterintuitively, this can result in a diminishment of the benefits derived from reducing the mosquito
population, a phenomenon noted in some entomological field studies which observed that visible,
community-wide insecticide spraying can lead to a decline in individual protective actions [6—8].

Beyond our study, epidemiological modeling studies that include preventive behaviors report measur-
able reductions in observed disease when such behaviors are introduced into the system [13,21,22,54,55].
This result is consistent with clinical trials and other field-based studies of community intervention
performance [7,56,57]. Many of these modeling approaches include one or more parameters represent-
ing awareness of elements of the system (e.g., disease prevalence) as key drivers of participation in
the behavior of interest. Increasing this awareness via a fixed parameter or via a weighting parameter
for dynamic stimuli, as done here, is associated with more people engaging in behavior, regardless of
specific behavioral mechanisms. At the same time, specific behavior- and disease-related outcomes are
largely dependent on assumptions about stimulus strength and frequency, echoing real-world variation
in dengue control behavior motivations and actions observed within and between communities [5]. In
contrast with directly transmitted diseases, mosquito density adds complexity as both a stimulus and
target of control, subject to both direct and indirect e ects of preventive behaviors. While previous
models of mosquito-borne disease and behavior do account for both community-level mosquito larval
habitat reduction and individual-level personal protection, here we focus specifically on how they a ect
equilibrium prevalence of behavior and disease. In addition, we examined the e ects of three distinct
influences on the uptake of preventive behaviors. Our results reveal the consequences that even small
changes to behavioral stimuli can have for equilibrium disease prevalence, highlighting the need for
improved empirical understanding of these influences on the uptake of preventive behaviors.

In the absence of extensive empirical study, it can be di cult to explicitly quantify the attitudes
and influences underpinning preventive behaviors. However, identifying the behavioral elements that
drive e ective mosquito-borne disease control — e.g., the success of interventions that incorporate
community engagement and mobilization — could provide insight into a less-understood aspect of
mosquito-borne disease control. Previous studies exploring community-based dengue interventions
suggest that motivating factors are often time-varying [58], informed by socioeconomic and cultural
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expectations [9,59], and shaped by inter- and intra-community dynamics [60,61]. However, these factors
are further complicated by the bidirectional feedback between disease and behavior, which makes it
di cult to disentangle the two. There is a pressing need for more intentional field study development
and data collection to provide insight into these unknowns [12,62]. With such data, future refinement of
the mechanisms driving the dynamics of preventive behaviors can be advanced [54].

In this work, we relied on simplifying assumptions to hone in on behavioral processes of interest
and maintain analytical tractability in the single contagion transmission models. One such assumption
was the use of a static mosquito-human ratio, rather than implementing one of the many alternative
mosquito population model structures available [63—65]. There are also many other plausible approaches
to modeling behavior that would address aspects of the behavior-disease relationship not featured in
this study. First, our model assumes that individuals engaging in preventive behaviors stop doing so
at a constant rate over time. Expanding our model to allow the three behavioral stimuli to influence
not just the uptake of preventive behaviors, but also their continuation, would be one way to relax
this assumption. Similarly, allowing for heterogeneity in behavior uptake and e cacy could address
di erences within and among groups noted in clinical trials of community-based mosquito interventions,
as well as possible di erences in behavior participation driven by infection status [66,67]. Lastly, our
identification of mosquito biting as the primary influence on behavior uptake could be sensitive to our
model’s parameterization. Stimulus importance is context-dependent, though, and could be expected
to vary under di erent conditions. For example, during an outbreak, people would likely find disease
prevalence to be the most compelling influence toward control behaviors. Additionally, there could be
a mismatch between the mosquitoes that influence preventive behaviors and those that pose a risk of
infection [68].

Our work sought to characterize the interplay between disease and behavior in a general way for
mosquito-borne diseases. We found that these diseases may be distinct from others given the wider
range of stimuli that influence the uptake of preventive behaviors. We also found that there are distinct
ways in which the use of personal protection and mosquito density reduction a ect coupled contagion
dynamics, with the latter showing an interesting feedback in which mosquito density reduction results in
fewer mosquitoes, which in turn reduces the use of personal protection and contributes to more disease.
In this situation, indirect protection and direct protection work against each other via changes in the
prevalence of behavior, meaning that the relative e cacies of these interventions will dictate their net
e ect on disease in real-world systems. Likewise, empirical quantification of how the frequencies of
encounters with the three behavioral stimuli we considered translate into preventive behavior uptake is
an important priority for future work. Together, these findings highlight the importance of developing
coupled contagion models of disease and behavior in disease systems with di erent transmission modes
and other characteristics.
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Figure Al. Equilibrium prevalence of behavior under varying behavior parameter values,
for both positive, stable and negative, unstable solutions, in blue and gray, respectively. Red
circles indicate plotted parameter values leading to a violation of solution conditions, when
all other parameters are held at baseline values. Outcomes not valid for the population N = 1
are included for visualization purposes.
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