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Abstract:

Cluster randomized trials (CRTs) are commonly used to evaluate the causal effects of
educational interventions, where the entire clusters (e.g., schools) are randomly assigned to
treatment or control conditions. This study introduces statistical methods for designing and
analyzing two-level (e.g., students nested within schools) and three-level (e.g., students nested
within classrooms nested within schools) CRTs. Specifically, we utilize hierarchical linear
models (HLMs) to account for the dependency of the intervention participants within the same
clusters, estimating the average treatment effects (ATEs) of educational interventions and other
effects of interest (e.g., moderator and mediator effects). We demonstrate methods and tools for
sample size planning and statistical power analysis. Additionally, we discuss common challenges
and potential solutions in the design and analysis phases, including the effects of omitting one
level of clustering, non-compliance, threats to external validity, and cost-effectiveness of the
intervention. We conclude with some practical suggestions for CRT design and analysis, along
with recommendations for further readings.
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Design and Analysis of Cluster Randomized Trials

Randomized controlled trials have been widely used to assess the efficacy of educational
interventions worldwide. For example, a recent systematic review (Connolly et al., 2018)
identified 1,017 unique randomized trials in education for the period 1980-2016, with over half
of all the randomized trials identified being conducted in the U.S. The common use of
randomized trials in education in the U.S., especially in the past two decades, could be attributed
to several factors related to the creation of the Institute of Education Sciences (IES). In 2002,
Congress passed the Education Sciences Reform Act, establishing IES as a scientific and funding
agency for high-quality education research. The IES, through its initiative known as What Works
Clearinghouse (WWC), considers randomized trials the most rigorous research design to test the
efficacy of educational interventions. The National Center for Education Research (NCER) and
National Center for Special Education Research (NCSER) provide funding for randomized trials
in education primarily in the form of grants. IES also offers professional development for
graduate students and early-career researchers through its pre and postdoctoral training programs
in universities and for established researchers through its summer training institutes (see Hedges
& Schauer (2018) for details) to increase the capacity of the field to conduct randomized trials.
Other government agencies such as the National Science Foundation (NSF) and the Office of
Investment and Innovation (OII) and foundations such as the William T. Grant Foundation and
the Spencer Foundation have supported the use of randomized trials in program evaluation.
These determined efforts have led to a surge in the number of randomized trials of educational
interventions in the U.S., which has provided the field with abundant and rigorous information

about “what works” to inform education policy, practice, and research.



Educational interventions usually involve nested data structure (e.g., students nested
within classrooms nested within schools), and the treatment can be at any level. Specifically,
when the treatment is at the lower or middle level (e.g., classroom or student level), it is usually
called a multisite randomized controlled trial, while when the treatment is at the top level (e.g.,
school level), it is commonly called a cluster randomized trial (CRT). This paper focuses on
CRTs frequently used in education, where the whole clusters (e.g., schools) rather than
individuals (e.g., students) are randomly assigned to a treatment or control group. For example,
IES has funded more than 250 experimental studies, most of which are CRTs (Spybrook et al.,
2020). In Asia, CRTs have also been used to assess the effectiveness of educational programs.
For example, Mo et al. (2014) evaluated the effect of a computer-assisted learning (CAL)
tutoring program on the mathematics achievement of third- and fifth-graders in China, where
they randomly assigned a total of 72 elementary schools to the tutoring program or the business-
as-usual condition.

CRTs in education often include two levels of clustering (e.g., students nested within
schools) or three levels of clustering (e.g., students nested within teachers and teachers nested
within schools). Students’ outcomes (e.g., test scores) within the same clusters are dependent due
to shared experiences or resources (Raudenbush, 1997; Raudenbush & Bryk, 2002). Educational
researchers face many challenges in addressing data dependencies during the stages of designing
and analyzing CRTs. For example, traditional statistical methods (e.g., OLS regression,
ANOVA, etc.) cannot be used to estimate the treatment effects in CRTs because these methods
assume that each observation is independent of the others, an assumption that is violated in
CRTs. The hierarchical linear models (HLMs) consider the dependence among students by

allowing a random effect for each cluster (Raudenbush & Bryk, 2002) and thus are typically used



in education. Research methodologists in education have utilized HLMs to develop statistical
methods for planning and analyzing CRTs, such as statistical power analysis (e.g., Dong &
Maynard, 2013; Raudenbush et al., 2011; Tipton & Miller, 2016). They also implemented power
and sample size computation methods into user-friendly tools and made them freely available
online through the support of federal agencies and foundations. However, these methods and
tools are not widely applied outside the U.S. For example, the inclusion of a power analysis is
uncommon for CRTs conducted in Asia. A meta-analysis of randomized experiments of
educational interventions aimed to improve elementary school student outcomes in developing
countries, including East Asian and Pacific and South Asian countries (McEwan, 2015), found
that just fewer than half of experiments reported conducting an a priori power analysis to
determine the sample size necessary for the study to detect an effect of a given magnitude at a
specific power level.

This paper aims to introduce the recent development of statistical methods and tools for
the design and analysis of CRTs in education. We focus on two- and three-level designs with
continuous outcomes and begin by introducing the statistical models, assumptions, and sample
size planning methods using a working example. Then, we discuss the methods and tools for
addressing some common challenges educational researchers meet during the design and
analysis phases. We conclude with some practical suggestions regarding CRT design and
analysis and recommendations for further readings.

Methods
A Working Example
This primer will introduce and illustrate the CRT design and analysis methods through a

working example as follows. Suppose a research team wants to evaluate whether a computer-



assisted learning (CAL) tutoring program could improve fifth graders' mathematics achievement
through an experimental design. They have the option to utilize either a completely randomized
design or a cluster randomized design. As shown in Figure 1, in a completely randomized design,
students are individually assigned to either a treatment or control group. In contrast, a cluster
randomized design assigns entire schools to either the treatment or control group, with all
students within a school receiving the same condition. The research team may opt for a CRT due
to its advantages over a completely randomized trial (Donner et al., 2000; Hayes & Moulton,
2017). For instance, CRTs can reduce the risk of contamination between treatment and control
groups, which can occur when individuals in the same school influence each other. Furthermore,
it might be more practical or feasible to implement the CAL tutoring program to entire schools
rather than to random students within schools. During the design phase, they need to determine
(1) whether to conduct a two-or three-level design, (2) the effect of interest to estimate, (3) the
statistical models used to estimate these effects, and (4) the sample size at each level to guarantee
adequate power to detect the effect of interest. This section will discuss the statistical methods
and tools to answer these questions.
Potential outcome framework

The causal effects of educational interventions are commonly defined through the
potential outcome (PO) framework or Rubin Causal Model (RCM; Imbens & Rubin, 2015). We
use a three-level design (e.g., students nested classrooms within schools) as an example to
illustrate how RCM defines the causal effects, and note that similar definitions apply to two-level
designs.

Specifically, the causal effect of the CAL tutoring program for each student — the

individual treatment effect (ITE) is defined as



ITE = Y. (1) — Yy (0), (1)
where Y;;, (1) represents the potential outcome for student 7 in classroom ; in school & if
assigned to the treatment group and Y; (0) represents the potential outcome if assigned to the

control group. The fundamental problem of causal inference is that we cannot observe both
potential outcomes because each student can only be assigned to one group. Therefore, one of
the two potential outcomes must be missing in practice, and ITE cannot be estimated. Instead,
the RCM seeks to estimate the average treatment effect (ATE) for a particular population of
participants.

For CRTs, the ATEs can be defined at the student, classroom, or school level. For
example, the school-level ATE is defined as

ATE = E[Y, (1) — Y, (0)], ()

where Y, (1) and Y} (0) represent school-level potential outcomes for treatment and control
groups, which are the school-level averages of student-level potential outcomes that are taken

over the distribution of schools, and E[Y; (1) — Y, (0)] represents the expected value of the

difference between two potential outcomes. Similarly, the classroom-level ATE is defined as

E[Yj, (1) — Y (0)], where Y}, (1) and Y}, (0) represent classroom-level potential outcomes,
which are the classroom-level averages of student-level potential outcomes that are taken over
the distribution of classrooms, and the student-level ATE is defined as E[Y;; (1) — Y;;, (0)].

It requires two key assumptions to estimate the ATEs at different levels: the
unconfounded assignment and the Stable Unit Treatment Value Assumption (SUTVA; Imbens &
Rubin, 2015). The unconfounded assignment assumption is guaranteed because of the random
assignment. The SUTVA indicates no interference at different levels in identifying the ATEs at

corresponding levels. It might be violated at a particular level but is reasonable at other levels



(Rhoads & Li, 2023). For example, CRTs administer the intervention at the cluster level, thereby
requiring SUTVA to hold at this level, but not necessarily at the individual level. When
treatments have significant peer effects within the same cluster, CRTs enable researchers to
identify a combined effect that includes both the direct impact of treatment on individuals and
the peer effects, assuming SUTVA is maintained at the cluster level. Similarly, to identify the
student-level ATE, the potential outcome for student i in classroom j from school & should not
depend on what treatment other students receive, which might not hold because of the peer
effects (or spillover effects) within the same classroom and school. Recent literature has
developed methods of identifying student-level ATE with spillover effects (e.g., DiTraglia et al.,
2023; Vazquez-Bare, 2023). It also should be noted that, when the unconfounded assignment and
SUTVA hold, the ATEs at different levels are equal if the number of students per classroom and
the number of classrooms per school are the same (Rhoads & Li, 2023). For the designs with the
sample sizes varying among classes and schools, we must assume constant treatment effects
across students and classrooms (i.e., no treatment heterogeneity across students and classrooms)
to make the ATEs at different levels equal.
Statistical Model

HLMs are widely accepted as a common approach to estimating ATEs for CRTs in
education (Raudenbush & Bryk, 2002). Specifically, for a two-level design (e.g., students nested
with schools), assume there are J level-2 units (e.g., schools) in the study, and each level-2 unit
has n level-1 units (e.g., students). The proportion of level-2 units assigned to the treatment
condition is P. Then, the research team can use a two-model with a level-2 random intercept to
estimate the ATE of the CAL tutoring program.

Students Level:



Y;; = Bo; + ByjXyj + €;j,€;j~N(0,0%%), 3)
School Level:
Boj = Yoo + Vo1 Tj + To2Wj + u;, to;~N(0, frw), (4)
B1j = T'10, (5)
where Y;; is the mathematics scores for student i in school j, Xj; is a column vector of baseline
student-level covariates (e.g., gender, race, prescore, etc.), Byj is a row vector of student-level
coefficients that are assumed to be fixed among schools Tj is a binary treatment indicator
variable coded as one for the students assigned to the treatment group and zero otherwise, Wj is a

column vector of baseline level-2 covariates (e.g., enrollment, location, type, etc.), Iy2 is a row
vector of school-level coefficients, and I'yq is a vector of school-level fixed effects. Note that the

baseline covariates (e.g., X;; and Wj) should be correlated with the outcome (Y;;) to improve the
accuracy of the estimated treatment effects. We usually assume that the error term at level 1 (e;; )
follows a normal distribution with a mean zero and a constant conditional variance Gﬁ( and the
random effect at level 2 (u;) follows a normal distribution with a mean zero and a constant
conditional variance T|2T,w. To get an unbiased estimate of the treatment effect (or a causal
effect), the binary treatment indicator should be independent of the level-1 error (e;; ) and level-2
random effect (uy;), which is met by design because of random assignment (Raudenbush &

Bryk, 2002). Therefore, the parameter of interest—yy; —represents the ATE of the CAL tutoring
program.

Similarly, for a three-level design, assume that there are K level-3 units (e.g., schools),
each level-3 unit has J level-2 units (e.g., classrooms), and each level-2 unit has n level-1 units

(e.g., students). The proportion of level-3 units assigned to the treatment condition is P. The
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research team can utilize a three-level model with level-2 and level-3 random intercepts to

estimate the ATE of the CAL tutoring program for three-level designs, namely

Students Level:
Yijie = Bojic + BajiXiji + €ijis €ije ~N(0,0%), (6)
Class Level
Bojic = Mook + Mo1kWik + Tojk> Toji~N (0, i), (7)
Bijk = Mok, ()
School Level:
Took = Yo0o + Yoo1 Tk + Too2Zx + ook Uoox~N (0, w|2T,z)a )
o1k = To1o, (10)
10k = T100, (11)

where Y, is the mathematics score for student i in classroom ; in school £, Xy is a column
vector of baseline student-level covariates, Byjy is a row vector of student-level coefficients that
are assumed to be fixed at the class and school levels, Wjy is a column vector of baseline level-2
covariates (e.g., teacher’s gender, age, education level, class size, etc.), [1y1) is a row vector of
class-level coefficients that are assumed to be fixed at the school level, T} is a binary treatment
indicator variable, Z is a column vector of baseline school-level covariates (e.g., enrollment,
location, type, etc.), and Iyg, is a row vector of school-level coefficients. Iy and Iy are
vectors of school-level fixed effects. The error term at level 1 (e;jx ) and the random effects at
levels 2 and 3 (7, and uy) are assumed to follow normal distributions with mean zeros and

constant conditional variances. Because of random assignment, the treatment indicator (T}) is

independent of level-1 error (e;; ) and the random effects at levels 2 and 3 (7 and ugy ). Thus,
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the fixed effect associated with the treatment indicator —yo, —represents the ATE of the CAL
tutoring program.

Hypothesis Testing, Effect Size, and Power Analysis

Educational researchers are commonly interested in two general questions when
evaluating educational interventions: whether the intervention is effective and how large the
ATE is. To answer the first question, the hypothesis testing approach is utilized. Specifically, we
can use a t-test to examine the null hypothesis Hy: y = 0, where y = vy, or ¥y, for two- or
three-level designs, respectively, and the alternative hypothesis is H,: y # 0. The ¢-statistic is the
ratio of the estimate of the treatment effect (¥y; or 7497 to its standard error (SE). Educational
researchers can conduct HLM analyses using major statistical software (e.g., R, SAS, SPSS,
Stata, etc.). In addition, educational researchers usually transform the treatment effects to effect
sizes to interpret their magnitude and compare them among alternative programs. Effect size is a

standardization of the treatment effect and is defined as

_ Y
T Vvar(yy (12)

where Var(Y) is the total variance of the outcome. Therefore, the effect size can be interpreted
in terms of the standard deviation of the outcome. Table 1 provides the exact formulas of effect
size for two- and three-level CRTs.

When a non-significant treatment effect is observed, there are three potential
explanations: (1) the intervention was indeed ineffective, (2) the intervention was effective, but
the study was not adequately powered to detect the effect, and (3) the study had sufficient power
to detect the true effect, but due to the specific outcome of the randomization (e.g., "unhappy"

randomization), the estimated effect turned out to be quite small (biased to 0) and thus
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insignificant. The probability of detecting the effect of interest when the alternative hypothesis is
true is known as statistical power.

In the design phase, educational researchers need to figure out how many students,
classrooms, and schools are needed to ensure adequate power (e.g., > 0.8) to detect the treatment
effect if it truly exists. One way to determine the sample size of a CRT is to calculate power. As
we discussed above, under the normal distribution assumptions, we can test the null hypothesis
y = 0 using a #-test. Assuming the alternative hypothesis is true, the test statistic follows a non-

central 7-distribution with a non-centrality parameter:

17 (13)
4= T
Under these specifications, the statistical power of a two-tailed test is (note £y = ¢, _a ;)
>
Power=1—H [to, df, A1+ H [-to, df, 1], (14)

where df is the degrees of freedom for the test and H(t,, df; 1) is the cumulative distribution
function of the non-central ¢~distribution with a non-centrality parameter /.

Another approach to deciding the sample size is to compute the minimum detectable
effect size (MDES), which is defined as the smallest effect that has an acceptable chance (e.g.,
power > 0.8) of producing a treatment estimate that is statistically significant at the significance

criterion (Bloom, 1995). In general, the MDES can be computed using the following formula:

var(y) (15)
var(y)’

MDES = M, *

where M,, represents the sum of two ¢ quantiles (Bloom, 1995). In particular, for two-tailed tests,
which are usually applied, M,, = t,, + t1_p, where a represents the Type I error and

represents the Type II error for the tests (Bloom, 1995; Dong & Maynard, 2013).
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Table 2 summarizes the computation formulas of the non-centrality parameters, MDES,
and degrees of freedom for the analysis of main effects in two- and three-level designs based on
prior literature (e.g., Bloom, 1995; Dong & Maynard, 2013; Konstantopoulos, 2008;
Raudenbush, 1997). In general, power and MDES are determined by sample size at each level
and a set of design parameters. Table 1 provides the meanings and computation formulas of these
parameters, including the nested effects of the outcome and the covariates effect. Specifically,
the nested effects are represented by the intra-class correlation coefficients (ICCs), indicating the
proportion of variance at the second or third level to the total variance of the outcome, and it is
negatively correlated with power. The covariate effects are represented by the proportion of
variance explained by the covariates at a particular level. Please note that we include both
unconditional models that do not include any covariates at any level and models with covariates
(i.e., conditional models) in Table 2 to facilitate defining effect size and design parameters. In
practice, it is recommended to incorporate covariates into the HLMs because many prior studies
have shown that they can increase statistical power considerably (e.g., Bloom, Richburg-Hayes,
& Black, 2007; Dong & Maynard, 2013; Dong et al., 2016; Konstantopoulos, 2008; Raudenbush,
Martinez, & Spybrook, 2007). In addition, the sample sizes at the cluster level impact power and
MDES more than the sample sizes at lower levels (e.g., Konstantopoulos, 2008), and thus,
education researchers may consider sampling more schools than classes or students if the study
budget and resources permit.

Demonstration of Power and MDES Computation

Numerous software options are available to help applied researchers conduct power

analyses for CRTs, such as Optimal Design (Spybrook et al., 2011). We utilize PowerUp! tools

(e.g., PowerUp!, PowerUpR, PyPowerUp!, etc.) because they are easy to use and freely available
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from the Causal Evaluation website (https://www.causalevaluation.org/). In particular, the tool —

PowerUp! (Dong & Maynard, 2013) is primarily designed to facilitate the MDES and the sample
size computations for a given research design and analysis. It is implemented through the user-
friendly Microsoft Excel program and includes multiple worksheets, each specific to a particular
design and analysis. To use this tool, users can follow a four-step procedure: (1) choose a study
design (e.g., cluster random assignment design); (2) specify the number of clustering levels within
the study (e.g., two or three); (3) specify the calculator to compute the MDES or the sample size for a
given MDES; (4) specify the values of design parameters and statistical significance tests — the
yellow highlighted parameters in the worksheet. Once users input these parameters, the PowerUp!
automatically computes MDES or sample size. For example, suppose the research team would like
to know the MDES for a two-level CRT that investigates the CAL tutoring program. In that case,
they need first to choose “Simple Cluster Random Assignment,” select two levels and MDES,
and then input all the required parameters highlighted in grey. In general, the research team can
rely on three strategies to identify the reference values of the design parameters: consulting prior
literature for similar studies, using large databases to estimate these parameters, and calculating
these parameters from a pilot study (Spybrook et al., 2016). For example, prior studies have
documented empirical values of the design parameters for student achievement (Hedberg &
Hedges, 2014; Hedges & Hedberg, 2007). Table 3 provides an example of MDES computation
that randomly assigns 40 schools (i.e., level-2 units; / = 40) into treatment or control conditions
in equal proportion (P = 0.5) with 100 students from each school (n = 100). In this example,
the research team specified an alpha level of 0.05, a two-tailed test, 0.8 power, an ICC of 0.23,
50% variance explained at both levels (R = RZ = 0.5), and one covariate at level 2. After
inputting these parameters highlighted in yellow, PowerUp! returned an estimate of the MDES

equal to 0.314 (shown in Bold at the bottom of the worksheet).
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If instead, the research team would like to compute the statistical power for a particular
design and set of design parameters, they can use the PowerUpR package and its Shiny App
(Bulus et al., 2022). For applied researchers not familiar with R programming, the PowerUpR
Shiny App is recommended. Like using PowerUp!, users must first select a particular design
(e.g., a three-level CRT) and then input the reference values of design parameters for power
computation. Figure 2 shows an example output of PowerUpR Shiny App for a three-level
design, where the research team randomly assigns 50 schools (K = 50) into treatment and
control conditions in equal proportion (P = 0.5) with four classes from each school (j = 4) and
25 students from each class (n = 25). In this example, the research team specified an alpha level
of 0.05, a two-tailed test, an effect size of 0.25 (6 = 0.25), an ICC of 0.15 at level 3 (p; = 0.15),
an ICC of 0.05 at level 2 (p, = 0.05), R’ of 0.5 at all levels (R? = R = R3 = 0.5), and one
covariate at level 3. PowerUpR Shiny provided the power estimate (statistical power = 0.843),
degrees of freedom of the test, and Type I and II error rates.

Moderation and Mediation Analyses

Besides the ATE of an intervention, educational researchers and policymakers are often
interested in exploring for whom, under what conditions, and through what mechanisms an
intervention works or fails. For example, when evaluating the CAL tutoring program, besides the
ATE (i.e., main effect), the research team might want to explore whether the treatment effect
varies among subgroups of students, classrooms (or teachers), and schools with different
characteristics (e.g., students’ gender, teachers’ educational level, school locale, etc.). These
characteristics used to define subgroups are called moderators and could potentially alter the
treatment effects (Baron & Kenny, 1986; Raudenbush & Liu, 2000). The moderator effects can

be evaluated through HLMs with an interaction term between the treatment and moderator
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variables. For example, to assess whether or not the effect of the CAL tutoring program varies
between public and private schools in their two-level CRT, the research team can add a treatment

by school type interaction term into the second-level model, namely

Students Level:
Yij = Boj + ByXy + ey, €5 ~N(0, o), (16)
School Level:
Boj = Yoo + Yor Tj + ToaW + ¥03S; + ¥0aT}S; + Uoj, Uoj~ N(0, Tjr.ws)s (17)
Blj = I, (18)

where §; is a binary private school indicator coded as one if for private schools and zero for
public schools. The parameter of interest is y,,, indicating the differences in treatment effects
between private and public schools. We recommend centering the private school indicator (S;) so

that y, still represents the ATE; otherwise, it represents the treatment effect for private schools
(i.e., §; = 0). Also, the research team can add a cross-level interaction to the two-level HLMs to

evaluate whether the treatment effect varies between male and female students, namely

Students Level:
Yij = Boj + BujFij + BoXij + ey, 5~ N(0,0%: %), (19)
School Level:
ﬁoj =Yoo + Yo1 Tj + To2Wj + ugj, ug;~ N(O,me), (20)
Bij = Y10 T Y11 Tj + uqj, uyj~ N(O'T|T), (21)
BZ]‘ = I, (22)

where F;; is a binary female indicator coded as one for females and zero otherwise. The

parameter of interest now is y;4, indicating the difference in the treatment effects between male
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and female students. Note that Equation 19 assumes that the gender gap at level 1 (i.e., B )

varies among schools after accounting for treatment effects, represented by the random effects
uyj. The research team can also assume that the gender gap does not vary among schools and
exclude the random effects from Equation 19. Similarly, the research team can evaluate whether
the treatment effect varies among classrooms or teachers under a three-level design.

Mediation analysis has been widely used to investigate the intermediate mechanism
through which a treatment effect is transmitted (Baron & Kenny, 1986). The intermediate
variable is called a mediator. Mediation analysis can inform not only how a treatment works but
also identify gaps in a theory (Hayes, 2013; MacKinnon, Fairchild, & Fritz, 2007; Kelcey et al.,
2020). For example, if some prior theory indicates a direct relationship between self-esteem and
student achievement but the mediation analysis identifies a significant indirect effect through a
mediator (e.g., students’ motivation), it suggests that motivation plays a vital role in explaining
how self-esteem influences student achievement. Thus, researchers can conclude that the theory
could be further advanced to include the role of motivation. Mediation analysis is commonly
applied through path analyses and has several modeling options and strategies depending on the
level of mediators (e.g., Kelcey et al., 2017). For example, the research team can utilize
mediation analysis to examine whether the CAL remedial tutoring program improves students’
learning through increasing student motivation, where the treatment is at the school level (level
2), and the outcome (e.g., test scores) and mediator (i.e., student motivation) are measured at the
student level (level 1). Such analysis can be implemented via a 2-1-1 mediation model, where
“2” represents the level of treatment, the first “1” represents the level of mediator, and the second
“1” represents the level of outcome. Figure 3 illustrates the paths of this mediation model.

Specifically, path coefficient a represents the effects of the treatment (CAL tutoring) on the

18



mediator (a measure of students’ motivation), path coefficient b represents the effect of the
mediator on students’ mathematics achievement, path coefficient ¢’ represents the direct effect of
the treatment on students’ mathematics achievement, and path ¢ represents the total effect of the
treatment on the outcome. In simple mediation analyses, the total or main effect can be
decomposed as

Total effect = indirect effect + direct effect or c =ab + c’.

The research team must choose appropriate statistical models to address the potential
clustering effect because of the nested data structure when estimating these effects. For this 2-1-1
model, they can estimate the total effect of the CAL program on students’ mathematics
achievement using a two-level HLM that is comparable in structure to Equations 3, 4, and 5. It
should be noted that the mediator should be excluded from the level-1 model when estimating
the total effect. The research team examines the effects of the treatment on student motivation

(path a in Figure 3) using a two-level model for the mediator, namely

Students Level:
mi; = Poj + By X + Gij. Sy ~N(0.mik), (23)
School Level:
Boj = Moo + aTj + To2W; + ug;, uo;~N(0,Tjrw), (24)
Byj = I'10, (25)

where m;; represents a measure of motivation for student 7 in school j, {;; is an error term that
follows a normal distribution with a mean zero and a constant conditional variance r)lzx, and a is

the effect of the CAL tutoring program on the mediator. All the other terms have been defined
previously. To estimate the conditional relationship between the mediator and outcome, path b in

Figure 3, the research team needs to use another two-level model, namely
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Students Level:

Yij = Boj + Brjmij + ByX;i + ey, €5 ~N(o, 0|§(,m), (26)
School Level:
Boj = Qoo + b + C'Tj + AgaZ; + Uy, Ug;~N (0, TSIT‘Z), (27)
.Blj = dqp, (28)
BZj = Azp, (29)

where B, ; is student-level coefficient that is assumed to be fixed at level 2, ¢’ is the direct effect,
m; is the average student motivation across students in school j with coefficient b as the total

conditional relationship between the mediator and mathematics achievement. The mediation
effect (indirect effect) could be calculated as a X b. Similar path analyses can be applied for
level-2 mediators or three-level designs (see Kelcey, Spybrook, & Dong, 2019; Kelcey et al.,
2017; Kelcey et al., 2021; Kelcey et al., 2021).

Under this formulation, we assume that exposure to the treatment does not moderate the
relationship between the mediator and outcome. However, this assumption can be relaxed by
adding an interaction between the treatment and mediator in the outcome model (e.g., Kelcey et
al., 2016). Additionally, this approach takes up four primary assumptions. First, the
identifiability of the mediation effect requires nonzero and overlapping probabilities for exposure
to a treatment. Second, identifiability requires the SUTV A assumption. As discussed above,
SUTVA includes that, for example, one person’s potential response (on the mediator or
outcome) does not depend on another person’s treatment (or mediator) status. In multilevel
settings, this is complicated by the clustering or shared experience of students within schools.
Prior literature has developed several approaches to relax this assumption by tracking or

approximating the nature of that influence (e.g., responses depend on the cluster mean values of
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the mediator; Hong, 2005). In our example above, the influence of a student’s peers on the
outcome may also operate through the average motivation of students within a school—that is,
the collective peer motivation level within a school creates a contextual factor that also shapes
the potential outcomes (e.g., Kelcey et al., 2017). Put differently, a student’s potential outcome
also depends on the motivation of schoolmates in addition to treatment exposure and individual
motivation.

The third primary assumption to identify mediation effects under this approach is
sequential ignorability. This assumption precludes unmeasured confounding of the treatment-
outcome relationship, treatment-mediator relationship, and the mediator-outcome relationship
(Vanderweele, 2015). The first and second components of this assumption are typically fulfilled
through the random assignment. However, because mediator values are not randomly assigned,
ensuring the mediator-outcome relationship is unconfounded requires adjustment for covariates
that potentially confound the relationship. In our running example, we need to consider students’
efficacy and learning engagement as well as other variables that are likely to influence
motivation and the outcome. In addition, identifiability of the mediation effect typically draws on
the assumption that there are no variables downstream of the treatment that are influenced by the
treatment and subsequently confound the mediator-outcome relationship. Prior literature has
developed several approaches to relax this assumption under different conditions and through
alternative estimands (e.g., Imai & Yamamoto, 2013; Vansteelandt, 2017). More generally,
literature has developed an array of sensitivity analyses to probe the robustness of results to
violations of each of these assumptions (e.g., Vanderweele, 2015)

In terms of planning studies to detect effects, the research team needs to conduct power

analyses during the design phase to make sure the sample size is large enough to detect
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moderator or mediator effects. More specifically, prior research has widely underscored the
importance of supplementing main effect power analyses with moderation- and mediation-
specific power analyses because they typically propose different sample sizes and resource
allocations (e.g., Cox & Kelcey, 2019; IES RFA, 2023; Kelcey et al., 2017; Sim et al., 2022). For
example, professional standards across an array of fields require power analyses for moderation
and mediation effects regardless of whether these components are primary, secondary, or
exploratory in nature (e.g., Fairchild et al., 2017; IES RFA, 2023; Vo et al., 2019). Careful
consideration of all effects in the planning stages helps ensure rigorous designs that address the
full breadth of evidence sought. Even if researchers eventually privilege the power to detect one
effect (e.g., main) over another effect (e.g., mediation) in the final design, these choices will be

guided by informed tradeoffs.

Prior studies (e.g., Dong et al., 2018, 2021; Kelcey et al., 2021; Spybrook et al., 2016)
have developed the methods of computing statistical power and MDES for mediation and
moderation analysis and have implemented them into user-friendly tools — PowerUp!-Moderator
(Dong et al., 2017a) and PowerUp!-Mediator (Dong et al., 2017b) for applied researchers to
conduct power analysis, which are also freely available the Causal Evaluation website

(https://www.causalevaluation.org/).

Common Challenges
In this section, we discuss the potential solutions to some common challenges facing
educational researchers when designing CRTs, including the effects of omitting one level of
clustering, non-compliance, heterogeneous variance, blocking, threats to external validity, and

cost-effectiveness of the intervention.
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Omitting Middle-Level Information. It is recommended that the research design and
analysis should be consistent with the nested data structure. For example, CRTs in education
commonly involve students, classrooms, and schools, where the treatment is at the school level
and there are more than one classroom sampled from each school. Therefore, a three-level design
i1s recommended, and a three-level HLM should be used to estimate the ATE. However, the
middle level (e.g., classroom) might be missing in practice because the available datasets might
only identify the schools that students attend but not the classrooms in which they are taught
(Zhu et al., 2012). In that case, the research team has to use a two-level HLM instead. Prior
studies (e.g., Moerbeek, 2004) have shown that, for models that only include the treatment
indicator without any covariates at any level (i.e., an unconditional model), if the classroom level
is ignored, part of classroom-level variance will shift up to the school level, and the rest will shift
down to the student level. As a result, the classroom-level variance is accounted for (e.g.,
Moerbeek, 2004), and the main treatment effect and its SE will be the same as the ones from
three-level models. When covariates are included in the HLMs, Zhu et al. (2012) found that in
almost all situations the results will be nearly identical regardless of whether or not the
classroom or middle level is omitted when designing or analyzing CRTs. However, one
exception occurs when the middle-level variance is relatively large, such as in secondary schools
where the proportion of classroom-level variance ranges from 0.293 to 0.376, the SE will be
biased if the classroom level is omitted. In addition, when the study being planned has a
markedly different cluster structure than the study that was used for planning purposes (e.g., the
number of classrooms per school is halved), the MDESs from the two- and three-level analyses
might yield quite comparable results. In these scenarios, adding student-level covariates that can

explain a large proportion of the outcome variance (e.g., a pretest) can effectively eliminate any
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potential problems. Therefore, educational researchers can utilize two-level analyses on three-
level data without significant concern regarding the analysis of the main effects. However, it
should be noted that omitting the middle level would make it impossible to investigate the
classroom-level moderator or mediator effects. In addition, when only one classroom is sampled
from each school, a two-level model with students nested within classrooms should be utilized to
estimate the treatment effects and the school-level covariates can be added at the second level.
When the randomization is at the classroom level (i.e., a multisite design), the classroom level
should not be omitted from the analysis.

Non-compliance. During the implementation of the treatment, some participants may
switch between the treatment and control groups. When some intervention participants do not
comply with the random assignment, two options are available to estimate the intervention
effects: the intention-to-treat (ITT) analysis, and the instrumental variable (IV) analysis (e.g.,
Angrist, 2006; Imbens & Rubin, 2015). We use the two-level design as an example to illustrate
these methods. In particular, the ITT analysis compares the treatment and control groups

according to the original random assignment, namely

Students Level:
Y;j = Boj + XijByj + e, ; ~N(0,05%), (30)
School Level:
Boj = Yoo + Yo1 4j + ZjTo2 + uyj, u0j~N(0'T|A,Z)a (31)
Blj = I0, (32)

where A; is a binary initial assignment indicator coded as one if a school is randomly assigned to

the treatment group and zero otherwise. The parameter of interest—yy; —provides an unbiased
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estimate of the causal effect of participants’ intention to treat but not the treatment effect because
it ignores the non-compliance.

The IV analysis has been widely utilized in experimental studies to deal with non-
compliance, and identify the causal effect of the intervention when the non-compliance is not
random (e.g., Angrist, 2006; Konstantopoulos et al., 2016). Specifically, it uses the initial
random assignment (e.g., 4;) as the IV of the actual receipt of the treatment (e.g., D;) to estimate
the causal effect of the treatment for compliers, which is usually called the local average
treatment effect (LATE; Angrist, Imbens, & Rubin, 1996). Educational researchers can utilize
the IV approach through the widely applied two-stage least-square (2SLS) estimation combined
with cluster robust SEs or the 2SLS random effect estimator to deal with the nested data structure
of CRTs (see Baltagi, 2013 or Wooldridge, 2010 for technical details). The IV approach can also
be applied to moderation and mediation analyses (e.g., Dippel, Ferrara, & Heblich, 2020;
Wooldridge, 2010).

Heterogeneous Variance. We typically assume the homogeneity of variances when
utilizing HLMs to evaluate the main, moderator, and mediator effects. Wooldridge (2019)
provided an overview of testing for heteroskedasticity (e.g., White test; White, 1997) for
ordinary least square regressions. These methods can be applied to HLMs by diagnosing the
level-1 residuals and the estimated random effects at the second and third levels. When the
homogeneity assumption is violated, the SEs and significance test will be biased. Educational
researchers can address this issue by modeling systematic heteroskedasticity, which requires
correctly specifying the heteroskedasticity function form (Wooldridge, 2019). An alternative and
easier way is to compute the heteroskedasticity-robust SE that has been implemented in major

statistical software such as R and Stata. It should be noted that traditional heteroskedasticity-
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robust SE requires at least 50 clusters to be effective (Huang, Wiedermann, & Zhang, 2023).
Huang et al. assessed a specific robust SE estimator (i.e., the CR2 estimator; Bell & McCaffrey,
2002) using a Monte Carlo simulation and found it effective when the number of clusters was
smaller than 50. They also provided R syntax to apply the CR2 SEs (available from

https://github.com/flh3/CR2).

Blocking. Educational research can group similar clusters (e.g., schools) together and
then randomize them into treatment and control conditions within each block to improve the
precision of the estimated ATE. Although prior literature on blocking experiments focused on
designs without nested data structures, their conclusions apply to CRTs. Specifically, based on
the discussion from Pashley and Miratrix (2022), we recommend keeping the proportion of
treated clusters similar across blocks. In addition, blocking is an excellent strategy to increase
efficiency with respect to the effects of school-level moderators because it guarantees the
balance of these moderators between treatment and control clusters (Dong, Kelcey, & Spybrook,
2018). It should be noted that, with a limited number of clusters, blocking multiple school-level
moderators is challenging. Thus, following Athey and Imbens (2017), we suggest blocking a few
key moderators of interest and making sure there are at least four clusters (e.g., two in the
treatment and two in the control) per block.

External Validity. When examining the validity of a CRT, one needs not only to assess
whether it yields an unbiased estimate of the ATE within the study sample (i.e., internal validity)
but also on the population of interest (i.e., external validity). CRTs in education are typically
conducted with a nonrandomly selected sample of schools that are recruited based on logistics
factors such as convenience, the anticipated extent of implementation fidelity, the anticipated

extent of responsiveness to the intervention, and cost (Olsen et al., 2013; Tipton & Olsen, 2018).
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Prior studies (e.g., Olsen et al., 2013; Bell et al., 2016) have shown that nonrandomly selected
samples yield biased impact estimates for the broader population of interest and thus are a vital
threat to the external validity of CRTs. For example, Bell et al. (2016) indicated that for the
Reading First program that was conducted in a nonrandomly selected sample of school districts
from 11 educational impact evaluations, the impact estimates would be substantially biased
downward with 0.10 standard deviations lower than the impact in the broader population.
Methods and tools have been developed to help educational researchers to improve the
external validity of CRTs. A strategy to improve the representativeness of sites (e.g., schools or
districts) is to stratify the population based on a set of characteristics that might moderate the
impacts of the intervention and then systematically or randomly select sites from each stratum
(Olsen & Orr, 2016; Tipton et al., 2014; see Tipton & Olsen, 2018 for details on steps to conduct
stratifications). Researchers can then assess the representativeness of the selected sites by
examining the proportion of the population being represented (i.e., coverage), calculating the
standardized mean difference in the estimated program impacts between the distribution of the
selected sites and the distribution of the target population, and/or doing both of these through
calculating a generalizability index (Tipton & Olsen, 2018). Tipton and Miller (2016) provided a

free web tool (www.thegeneralizer.org) for stratifying the population of interest and assessing

the representativeness of the selected sample. It should be noted that, to successfully generalize
results from CRTs, educational researchers must identify all potential moderators and the
distribution of these moderators for the population of interest. Specifically, all school-level
moderators (including student-level aggregates) must be known to generalize the results from a
CRT to the school population of interest, and all student-level and school-level moderators must

be known to generalize the results from a CRT to the student population of interest. The lack of

27


http://www.thegeneralizer.org/

inclusion of important moderator variables may lead to erroneous conclusions. That is, if not all
effect moderators have been measured, there is no guarantee that adjustments will necessarily
'improve' the generalizability of the effect. In fact, such adjustments might actually worsen it.
Attempting to generalize a CRT effect based solely on the observed effect moderators could be
more misleading than helpful for decision-makers.

To further reduce bias when estimating the ATE for the population, researchers can
consider using propensity score methods to post-stratify or subclassify the sample (Tipton et al.,
2014), regression modeling (Tipton & Olsen, 2018), or bounding approaches (Chan, 2017).
Tipton and Olsen (2022) provided a comprehensive guide on steps and techniques to design and
implement impact studies in education to make the findings more generalizable to the study’s
target population.

Cost-Effectiveness Analysis. While causal evaluations of educational interventions’
effects are essential, it is equally important to examine the cost of achieving these effects for
more sound policy decision-making (Bowden, 2017; Monk, 1995; Ross et al., 2007). Evaluations
without a credible cost analysis might lead to misleading judgments and decisions. For example,
when the research team evaluates the computer-assisted tutoring program, they might find no
significant difference in the effectiveness compared to a traditional in-person tutoring program.
Still, schools, districts, and parents might see the CAL tutoring program as an attractive
alternative to traditional face-to-face teacher professional development programs if it could be
delivered at a much lower cost. Therefore, it is recommended that the research team incorporates
a cost study and explore the cost-effectiveness of their program.

The CRT that evaluates both the cost and effectiveness of an intervention is commonly

named the cluster randomized cost-effectiveness trial (CRCET; Li et al., 2022). It links the cost
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of implementing an intervention to its effect and thus helps researchers and policymakers
adjudicate the cost-effectiveness of an intervention. Similar to the effectiveness data (e.g., test
scores), the cost data also have a nested structure, and lower-level (e.g., student-level) cost is
correlated within the same clusters (e.g., classrooms or schools). Therefore, recent studies (e.g.,
Li et al., 2020) recommend using HLMs to account for the dependencies of the cost data and

evaluate CRCETs. They also developed a user-friendly tool—PowerUp!-CEA (Li et al., 2023)—

to support applied researchers in performing statistical power analysis for CRCETs.
Conclusion

This primer introduces the statistical methods in the design and analysis of CRTs that
have been widely utilized to evaluate the causal effects of educational interventions.
Specifically, we define causal estimands based on the potential outcome framework and utilize
HLM to account for the dependency of the intervention participants within the same clusters. We
demonstrate methods and tools for sample size planning and statistical power analysis.
Additionally, we discuss common challenges and potential solutions in the design and analysis
phases, including the effects of omitting one level of clustering, non-compliance, heterogeneous
variance, blocking, threats to external validity, and cost-effectiveness of the intervention.

CRTs in education commonly have two- or three-level of clustering, and thus, two- and
three-level HLMs are introduced to estimate the main effects (e.g., ATEs), moderator effects,
and mediator effects. When the middle-level (e.g., classroom-level) information is not available,
educational researchers can use two-level models to analyze data from three-level CRTs in most
scenarios. It is also recommended to include student-level covariates that could explain a large
proportion of the outcome variance at the middle level (e.g., pretest scores) when the middle-

level information is missing.
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One key consideration when designing a CRT is sample size planning through power
analysis to guarantee a good enough chance to detect the effect of interest when it exists. We
introduced statistical power analysis methods based on HLMs and demonstrated the power and
MDES computation using PowerUp! tools. In general, the power of a CRT is determined by the
sample sizes at all levels, effect size, ICCs, and the proportion of outcome variance explained by
covariates at all levels. For both the two- and three-level designs, the sample size at the cluster
level (e.g., schools) has a larger impact on power than the sample sizes at the lower levels (e.g.,
classes and students) holding other factors fixed (Konstantopoulos, 2017; Konstantopoulos, Li &
Zhang, 2023; Li & Konstantopoulos, 2017; Raudenbush, 1997). We recommend educational
researchers incorporate covariates into their HLM analyses to decrease the SEs of ATEs and
increase power. Although many prior studies have provided reference values of the design
parameters for the U.S., there is very limited information regarding these design parameters for
Asian countries. To design CRTs with adequate power, one direction of future research is to
estimate design parameters using large-scale datasets that include Asian countries or educational
interventions conducted in Asia.

It is not rare that some CRT participants do not comply with the random assignment in
practice, and we recommend educational researchers employ the IV approach to estimate the
treatment effects for compliers or LATEs. Prior studies also discussed the methods of obtaining
the range of ATE using the IV approach and bounds analysis (e.g., Athey & Imbens, 2018).
Besides the effectiveness, educational researchers need to consider the cost and cost-
effectiveness of an intervention for a comprehensive evaluation and solid decision-making.
Recent developments in cost-effectiveness analysis and experimental designs have provided

methods and guidelines for designing cost studies within CRTs using the ingredients method,
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computing power for CRCETs, and performing cost-effectiveness analysis using HLMs (e.g.,
Bowden, 2023; Li et al., 2022).

HLMs usually perform well in analyzing nested data when the number of clusters is
relatively large (e.g., > 40). However, CRTs in education sometimes only have fewer clusters
because of logistic or financial restrictions. Prior studies have shown that HLMs can be applied
to CRTs with about 20 to 40 clusters and suggested small-sample corrections for CRTs with 10
to 20 clusters (Bell et al., 2014; Kenward & Roger, 2009). Other studies provided alternative
methods (e.g., generalized estimating equations, cluster bootstrapping, Bayesian methods, etc.)
to analyze CRTs with a small number of clusters (e.g., Gelman, 2006; Huang, 2016; Morel et al.,
2003). For example, Huang and Li (2022) found that the use of OLS regression together with the
bias-reduced linearization (BRL) cluster robust SE (Bell & McCaffrey, 2002) and empirically
based degrees of freedom yields unbiased results with acceptable type I error and power. They
also developed R and Stata packages to implement this method (Huang & Zhang, 2022).

This primer introduces the moderator analysis to evaluate the treatment effect
heterogeneity (TEH). Recent developments in statistics and econometrics proposed to use
machine learning (ML) methods to explore the TEH by estimating the conditional average
treatment (CATE). Compared to traditional interaction analysis, the ML methods have some
advantages, such as allowing selecting moderators from a potentially large number of covariates
and identifying the causal TEH. However, these methods usually assume the study participants
are independent and thus cannot easily be applied to CRTs. Therefore, one direction of future
research is to evaluate the performance of the ML methods for data with nested structures in
exploring TEH. Another way of examining TEH is via quantile regression that examines the

treatment effects across the distribution of the outcome (e.g., Konstantopoulos et al., 2019).
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The current primer focuses on continuous outcomes (e.g., test scores), while binary
outcomes (e.g., whether or not a student graduates from high school) are also frequently used in
CRTs (e.g., Ding et al., 2021). Multilevel logistic regression or linear probability models can be
used to estimate the treatment effect for CRTs with binary outcomes (see Raudenbush & Bryk,
2002; Wooldridge, 2010). Besides the model-based methods (e.g., HLMs) discussed in this
primer, design-based methods and tools are also available for the design and analysis of CRTs.
For example, the software RCT-YES (Schochet, 2015) uses a non-parametric design-based
approach that does not require assumptions on the distributions of potential outcomes to evaluate
the effectiveness of CRTs (Schochet, 2016). It can estimate ATE, moderator effects, and
compiler average causal effects with valid SEs for a wide range of single- and multilevel-level
designs. In particular, for CRTs, the design-based non-parametric methods require fewer clusters
because the analysis can be conducted using data on cluster-level averages rather than
individual-level data (Schochet, 2016).

This primer assumes no missing data in the design and analysis of CRTs. However,
attrition or dropout is almost always expected in practice. Educational researchers can use
modern missing data techniques such as multiple imputations (Little & Rubin, 2019) to address
the missing values and then estimate the effects of interests using HLMs, as discussed above.
Enders (2023) provided an overview of recent developments in missing data methodologies over
the past two decades. He particularly discussed the methods of handling missing data for
multilevel models, including joint model imputation, fully conditional specification, maximum
likelihood estimation, Bayesian estimation and multiple imputation, and fixed effect imputation.
Enders (2023) also introduced the current software, such as Blimp (Keller & Enders, 2021) and R

package mdmb (Grund, Liidtke, & Robitzsch, 2021).
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This primer focused on cluster designs, while multisite designs are also very popular in
education, where for example, students are nested within classrooms nested within schools and
the treatment could be at the student or classroom level. Similar to CRTs, HLMs are widely used
to analyze data from multisite randomized trials (e.g., Li & Konstantopoulos, 2019; Raudenbush
& Liu, 2000). Prior studies also discussed utilizing alternative methods (e.g., fixed effect models;
Miratix, Weiss, & Henderson, 2021; Dong et al., 2021) to estimate the main and moderator.
Educational researchers can still use PowerUp! and PowerUp!-Moderator to plan their multisite

studies.
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Table 1. List of parameters used for power and MDES computations

Parameters Meaning of the parameters and computation formulas
8, Effect size for two-level design; §, = \/Zz(faz
8 Effect size for three-level design; §3 = %
p Intra-class correlation coefficient (ICC) for two-level designs; p = rzgz
P2 Intra-class correlation coefficients (ICCs) at the second level for three-level designs; p, = #ZZMZ
P3 Intra-class correlation coefficients (ICCs) at the third level for three-level designs; ; p; = ﬁjmz
R} Proportion of level-1 variance explained by level-1 covariates; R? = 1 — ji;(
R} Proportion of level-2 variance explained by level-2 covariates; RZ = 1 — %
R} Proportion of level-3 variance explained by level-3 covariates; R? = 1 — (:—lzzz

Note: To be conservative, we usually assume the treatment indicator does not explain any proportion of the outcome variance.
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Table 2. Summary of HLMs, Non-centrality Parameter, MDES, and Degrees of Freedom for the Analysis of Main Effects

o1k = Yooo T Yoo1 Tk + To2Zi + Ugy, uo;”N(O' ‘U|2T.z)
o1k = To1o
;0 = Tigo

MDESsc = My_,_, j

P(1-P)K ' P(1-P)JK P(1 - P)JKn

Degrees
Model Name Models Standardized Noncentrality (A) Parameter and MDES of
Freedom
Two-Level Level-1: s P(1 - P)Jn
wo-Leve _ 2 2u = 6, ,7
Y. = 8., e ~N(0, 14+ (n—-1
Unconditional i = Poj +eij € ~N(0,0%) . J-2
Model Level-2: ’ 1-p)
Boj = Yoo Yo Tj + Uoj, o ~N(0,7%) MRS M’_ZJP(l —P) P~ Pn
Two-Level I;/eve—l-,}?: +ByX + e, e;; ~N(0,0%) Ay =6 \] Fa- b
wo-Leve ij = Poj T Byjij T €y, €35 ~INAY, O)x Ze ™ ™ 1-R)+(1-p)(1—R
Conditional Level-2: np(1-R) + (1 - p)(1 - R Sog
Model Boj = Yoo + Yor Tj + To2W; + ugj, ug;~N(0, 78 ) MDES.. — M pU-RY) (1-p)(1~R)
By, =Ty 72 [p1—-P)] T P(1-P)jn
Level-1:
Yijk = Bojk + eiji €ij ~N(0,0?) _— P(1—-P)JKn
- =4
Three-Level Level-2: MU 1+ (= 1Dp, + Un = Dp,
Unconditional _ 2 K-2
Bojk = Took + Tojio Toj~N(0,7%) ——
Model P3 P2 1—p,—p3
Level-3: MDESsc =M |5 —pyk Y P =Pk T P(1 = PYjKn
To1k = Yooo + Yoo1 Tk + ok Uo;j~N(0, w?)
Level-1:
Yiik = Bojk + B1jeXijk + €iji> €ij ~N(0, Uﬁ()
h l I[;evel-2: T N(O , ) A = P(1— P)JKn
Three-Leve 0jk = Mook 01k Wik T Tojiks Toje ~ VY Tiw E 1—R2) + 1=R) +(1=p. —p.)(1—R?
Conditional By = My Jnp,( 3) npz( 2+ ( Py = P3)( 1) K-2-q
Model Level-3: ps(1—RY) pa(1-R})  (1—p,—ps)(1—R])

Note: (1) P represents the proportion of clusters (e.g., schools) assigned to the treatment group, n represents the sample size at level 1,
J represents the sample size at level 2, and K represents the sample size at level 3. (2) g represents the number of covariates at level 2
and q represents the number of covariates at level 3.
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Table 3. Demonstration of MDES Computation for Two-level Cluster Designs using PowerUp!

Model 3.1: MDES Calculator for Two-Level Cluster Random Assignment Design (CRA2_2)— Treatment at Level 2

Assumptions Comments
Alpha Level () 0.05 |Probability of a Type I error
Two-tailed or One-tailed Test? 2
Power (1-8) 0.80 |Statistical power (1-probability of a Type 1I error)
Rho (ICC) 0.23 |Proportion of variance in outcome that is between clusters
P 0.50 |Proportion of Level 2 units randomized to treatment: Jt / (Jt + J¢)
R, 0.50 |Proportion of variance in Level 1 outcomes explained by Level 1 covariates
R, 0.50 |Proportion of variance in Level 2 outcome explained by Level 2 covariates
g* 1 Number of Level 2 covariates
n (Average Cluster Size) 100 | Mean number of Level 1 units per Level 2 cluster (harmonic mean recommended)
] (Sample Size [# of Clusters]) 40 |Number of Level 2 units
M (Multiplier) 2.88 |Computed from T; and T,
T, (Precision) 2.03 |Determined from alpha level, given two-tailed or one-tailed test
T, (Power) 0.85 |Determined from given power level
MDES 0.314 | Minimum Detectable Effect Size

Note: The parameters in grey cells need to be specified. The MDES will be calculated automatically.
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Treatment Control
Student Ty Student C;
Student T, Student C,
Student T;, Student C,,

Treatment Control
School Ty School T; School C; School Cy
Student Ty, Student Ty Student Cy Student Cp,q
Student T Student Ty, Student C; 5 Student Cy,
Student Ty; Student T), Student €y, Student Cy;

Completely Randomized Design

Cluster Randomized Design

Figure 1. Illustration of Completely Randomized Design and Cluster Randomized Design
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Mode

You have requested statistical power for: Three-level Cluster-randomized Trial

Result

Statistical power:

Degrees of freedom: 48
Standardized standard error: ©.083
Type I error rate: .05

Type II error rate: 0.157
Two-tailed test: TRUE

Figure 2. Example of PoweUpR Shinny App Output: Power Computation for Three-level

Cluster Designs
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Figure 3. A 2-1-1 mediation model
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