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Abstract: 

 

Cluster randomized trials (CRTs) are commonly used to evaluate the causal effects of 

educational interventions, where the entire clusters (e.g., schools) are randomly assigned to 

treatment or control conditions. This study introduces statistical methods for designing and 

analyzing two-level (e.g., students nested within schools) and three-level (e.g., students nested 

within classrooms nested within schools) CRTs. Specifically, we utilize hierarchical linear 

models (HLMs) to account for the dependency of the intervention participants within the same 

clusters, estimating the average treatment effects (ATEs) of educational interventions and other 

effects of interest (e.g., moderator and mediator effects). We demonstrate methods and tools for 

sample size planning and statistical power analysis. Additionally, we discuss common challenges 

and potential solutions in the design and analysis phases, including the effects of omitting one 

level of clustering, non-compliance, threats to external validity, and cost-effectiveness of the 

intervention. We conclude with some practical suggestions for CRT design and analysis, along 

with recommendations for further readings.  
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Design and Analysis of Cluster Randomized Trials 

Randomized controlled trials have been widely used to assess the efficacy of educational 

interventions worldwide. For example, a recent systematic review (Connolly et al., 2018) 

identified 1,017 unique randomized trials in education for the period 1980–2016, with over half 

of all the randomized trials identified being conducted in the U.S. The common use of 

randomized trials in education in the U.S., especially in the past two decades, could be attributed 

to several factors related to the creation of the Institute of Education Sciences (IES). In 2002, 

Congress passed the Education Sciences Reform Act, establishing IES as a scientific and funding 

agency for high-quality education research. The IES, through its initiative known as What Works 

Clearinghouse (WWC), considers randomized trials the most rigorous research design to test the 

efficacy of educational interventions. The National Center for Education Research (NCER) and 

National Center for Special Education Research (NCSER) provide funding for randomized trials 

in education primarily in the form of grants. IES also offers professional development for 

graduate students and early-career researchers through its pre and postdoctoral training programs 

in universities and for established researchers through its summer training institutes (see Hedges 

& Schauer (2018) for details) to increase the capacity of the field to conduct randomized trials. 

Other government agencies such as the National Science Foundation (NSF) and the Office of 

Investment and Innovation (OII) and foundations such as the William T. Grant Foundation and 

the Spencer Foundation have supported the use of randomized trials in program evaluation. 

These determined efforts have led to a surge in the number of randomized trials of educational 

interventions in the U.S., which has provided the field with abundant and rigorous information 

about “what works” to inform education policy, practice, and research. 
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Educational interventions usually involve nested data structure (e.g., students nested 

within classrooms nested within schools), and the treatment can be at any level. Specifically, 

when the treatment is at the lower or middle level (e.g., classroom or student level), it is usually 

called a multisite randomized controlled trial, while when the treatment is at the top level (e.g., 

school level), it is commonly called a cluster randomized trial (CRT). This paper focuses on 

CRTs frequently used in education, where the whole clusters (e.g., schools) rather than 

individuals (e.g., students) are randomly assigned to a treatment or control group. For example, 

IES has funded more than 250 experimental studies, most of which are CRTs (Spybrook et al., 

2020). In Asia, CRTs have also been used to assess the effectiveness of educational programs. 

For example, Mo et al. (2014) evaluated the effect of a computer-assisted learning (CAL) 

tutoring program on the mathematics achievement of third- and fifth-graders in China, where 

they randomly assigned a total of 72 elementary schools to the tutoring program or the business-

as-usual condition.  

CRTs in education often include two levels of clustering (e.g., students nested within 

schools) or three levels of clustering (e.g., students nested within teachers and teachers nested 

within schools). Students’ outcomes (e.g., test scores) within the same clusters are dependent due 

to shared experiences or resources (Raudenbush, 1997; Raudenbush & Bryk, 2002). Educational 

researchers face many challenges in addressing data dependencies during the stages of designing 

and analyzing CRTs. For example, traditional statistical methods (e.g., OLS regression, 

ANOVA, etc.) cannot be used to estimate the treatment effects in CRTs because these methods 

assume that each observation is independent of the others, an assumption that is violated in 

CRTs. The hierarchical linear models (HLMs) consider the dependence among students by 

allowing a random effect for each cluster (Raudenbush & Bryk, 2002) and thus are typically used 
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in education. Research methodologists in education have utilized HLMs to develop statistical 

methods for planning and analyzing CRTs, such as statistical power analysis (e.g., Dong & 

Maynard, 2013; Raudenbush et al., 2011; Tipton & Miller, 2016). They also implemented power 

and sample size computation methods into user-friendly tools and made them freely available 

online through the support of federal agencies and foundations. However, these methods and 

tools are not widely applied outside the U.S. For example, the inclusion of a power analysis is 

uncommon for CRTs conducted in Asia. A meta-analysis of randomized experiments of 

educational interventions aimed to improve elementary school student outcomes in developing 

countries, including East Asian and Pacific and South Asian countries (McEwan, 2015), found 

that just fewer than half of experiments reported conducting an a priori power analysis to 

determine the sample size necessary for the study to detect an effect of a given magnitude at a 

specific power level. 

This paper aims to introduce the recent development of statistical methods and tools for 

the design and analysis of CRTs in education. We focus on two- and three-level designs with 

continuous outcomes and begin by introducing the statistical models, assumptions, and sample 

size planning methods using a working example. Then, we discuss the methods and tools for 

addressing some common challenges educational researchers meet during the design and 

analysis phases. We conclude with some practical suggestions regarding CRT design and 

analysis and recommendations for further readings.  

Methods 

A Working Example  

This primer will introduce and illustrate the CRT design and analysis methods through a 

working example as follows. Suppose a research team wants to evaluate whether a computer-
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assisted learning (CAL) tutoring program could improve fifth graders' mathematics achievement 

through an experimental design. They have the option to utilize either a completely randomized 

design or a cluster randomized design. As shown in Figure 1, in a completely randomized design, 

students are individually assigned to either a treatment or control group. In contrast, a cluster 

randomized design assigns entire schools to either the treatment or control group, with all 

students within a school receiving the same condition. The research team may opt for a CRT due 

to its advantages over a completely randomized trial (Donner et al., 2000; Hayes & Moulton, 

2017). For instance, CRTs can reduce the risk of contamination between treatment and control 

groups, which can occur when individuals in the same school influence each other. Furthermore, 

it might be more practical or feasible to implement the CAL tutoring program to entire schools 

rather than to random students within schools. During the design phase, they need to determine 

(1) whether to conduct a two-or three-level design, (2) the effect of interest to estimate, (3) the 

statistical models used to estimate these effects, and (4) the sample size at each level to guarantee 

adequate power to detect the effect of interest. This section will discuss the statistical methods 

and tools to answer these questions.    

Potential outcome framework  

The causal effects of educational interventions are commonly defined through the 

potential outcome (PO) framework or Rubin Causal Model (RCM; Imbens & Rubin, 2015). We 

use a three-level design (e.g., students nested classrooms within schools) as an example to 

illustrate how RCM defines the causal effects, and note that similar definitions apply to two-level 

designs.   

 Specifically, the causal effect of the CAL tutoring program for each student – the 

individual treatment effect (ITE) is defined as 
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 𝐼𝑇𝐸 = 𝑌𝑖𝑗𝑘 (1) − 𝑌𝑖𝑗𝑘 (0), (1) 

 where 𝑌𝑖𝑗𝑘 (1) represents the potential outcome for student i in classroom j in school k if 

assigned to the treatment group and 𝑌𝑖𝑗𝑘(0) represents the potential outcome if assigned to the 

control group. The fundamental problem of causal inference is that we cannot observe both 

potential outcomes because each student can only be assigned to one group. Therefore, one of 

the two potential outcomes must be missing in practice, and ITE cannot be estimated. Instead, 

the RCM seeks to estimate the average treatment effect (ATE) for a particular population of 

participants.  

For CRTs, the ATEs can be defined at the student, classroom, or school level. For 

example, the school-level ATE is defined as  

 𝐴𝑇𝐸 = 𝐸[𝑌𝑘(1) − 𝑌𝑘(0)], (2) 

where 𝑌𝑘(1) and 𝑌𝑘(0) represent school-level potential outcomes for treatment and control 

groups, which are the school-level averages of student-level potential outcomes that are taken 

over the distribution of schools, and 𝐸[𝑌𝑘(1) − 𝑌𝑘(0)] represents the expected value of the 

difference between two potential outcomes. Similarly, the classroom-level ATE is defined as 

𝐸[𝑌𝑗𝑘(1) − 𝑌𝑗𝑘(0)], where 𝑌𝑗𝑘(1) and 𝑌𝑗𝑘(0) represent classroom-level potential outcomes, 

which are the classroom-level averages of student-level potential outcomes that are taken over 

the distribution of classrooms, and the student-level ATE is defined as 𝐸[𝑌𝑖𝑗𝑘(1) − 𝑌𝑖𝑗𝑘 (0)].  

It requires two key assumptions to estimate the ATEs at different levels: the 

unconfounded assignment and the Stable Unit Treatment Value Assumption (SUTVA; Imbens & 

Rubin, 2015). The unconfounded assignment assumption is guaranteed because of the random 

assignment. The SUTVA indicates no interference at different levels in identifying the ATEs at 

corresponding levels. It might be violated at a particular level but is reasonable at other levels 
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(Rhoads & Li, 2023). For example, CRTs administer the intervention at the cluster level, thereby 

requiring SUTVA to hold at this level, but not necessarily at the individual level. When 

treatments have significant peer effects within the same cluster, CRTs enable researchers to 

identify a combined effect that includes both the direct impact of treatment on individuals and 

the peer effects, assuming SUTVA is maintained at the cluster level. Similarly, to identify the 

student-level ATE, the potential outcome for student i in classroom j from school k should not 

depend on what treatment other students receive, which might not hold because of the peer 

effects (or spillover effects) within the same classroom and school. Recent literature has 

developed methods of identifying student-level ATE with spillover effects (e.g., DiTraglia et al., 

2023; Vazquez-Bare, 2023). It also should be noted that, when the unconfounded assignment and 

SUTVA hold, the ATEs at different levels are equal if the number of students per classroom and 

the number of classrooms per school are the same (Rhoads & Li, 2023). For the designs with the 

sample sizes varying among classes and schools, we must assume constant treatment effects 

across students and classrooms (i.e., no treatment heterogeneity across students and classrooms) 

to make the ATEs at different levels equal. 

Statistical Model 

HLMs are widely accepted as a common approach to estimating ATEs for CRTs in 

education (Raudenbush & Bryk, 2002). Specifically, for a two-level design (e.g., students nested 

with schools), assume there are J level-2 units (e.g., schools) in the study, and each level-2 unit 

has n level-1 units (e.g., students). The proportion of level-2 units assigned to the treatment 

condition is P. Then, the research team can use a two-model with a level-2 random intercept to 

estimate the ATE of the CAL tutoring program.  

Students Level: 
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 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝐁𝟏𝐣𝐗𝐢𝐣 + 𝑒𝑖𝑗, 𝑒𝑖𝑗~𝑁(0, 𝜎|𝐗
2 ), (3) 

School Level:   

 𝛽0𝑗 = 𝛾00 + 𝛾01 𝑇𝑗 + 𝚪𝟎𝟐𝐖𝐣 + 𝑢0𝑗, 𝑢0𝑗~𝑁(0, 𝜏|𝑇,𝐖
2 ), (4) 

 𝐁𝟏𝐣 = 𝚪𝟏𝟎, (5) 

where 𝑌𝑖𝑗 is the mathematics scores for student i in school  j, 𝐗𝐢𝐣 is a column vector of baseline 

student-level covariates (e.g., gender, race, prescore, etc.), 𝚩𝟏𝐣 is a row vector of student-level 

coefficients that are assumed to be fixed among schools 𝑇𝑗 is a binary treatment indicator 

variable coded as one for the students assigned to the treatment group and zero otherwise, 𝐖𝐣 is a 

column vector of baseline level-2 covariates (e.g., enrollment, location, type, etc.), 𝚪𝟎𝟐 is a row 

vector of school-level coefficients, and 𝚪𝟏𝟎 is a vector of school-level fixed effects. Note that the 

baseline covariates (e.g., 𝐗𝐢𝐣 and 𝐖𝐣) should be correlated with the outcome (𝑌𝑖𝑗) to improve the 

accuracy of the estimated treatment effects. We usually assume that the error term at level 1 (𝑒𝑖𝑗 ) 

follows a normal distribution with a mean zero and a constant conditional variance 𝜎|𝐗
2  and the 

random effect at level 2 (𝑢0𝑗) follows a normal distribution with a mean zero and a constant 

conditional variance 𝜏|𝑇,𝐖
2 . To get an unbiased estimate of the treatment effect (or a causal 

effect), the binary treatment indicator should be independent of the level-1 error (𝑒𝑖𝑗 ) and level-2 

random effect (𝑢0𝑗), which is met by design because of random assignment (Raudenbush & 

Bryk, 2002). Therefore, the parameter of interest—𝛾01—represents the ATE of the CAL tutoring 

program. 

Similarly, for a three-level design, assume that there are K level-3 units (e.g., schools), 

each level-3 unit has J level-2 units (e.g., classrooms), and each level-2 unit has n level-1 units 

(e.g., students). The proportion of level-3 units assigned to the treatment condition is P. The 
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research team can utilize a three-level model with level-2 and level-3 random intercepts to 

estimate the ATE of the CAL tutoring program for three-level designs, namely  

Students Level:  

 𝑌𝑖𝑗𝑘 = 𝛽0𝑗𝑘 + 𝚩𝟏𝐣𝐤𝐗𝐢𝐣𝐤 + 𝑒𝑖𝑗𝑘 , 𝑒𝑖𝑗𝑘 ~𝑁(0, 𝜎|𝐗
2 ), (6) 

Class Level 

 𝛽0𝑗𝑘 = 𝜋00𝑘 + 𝚷𝟎𝟏𝐤𝐖𝐣𝐤 + 𝑟0𝑗𝑘 , 𝑟0𝑗𝑘~𝑁(0, 𝜏|𝐖
2 ), (7) 

 𝐁𝟏𝐣𝐤 = 𝚷𝟏𝟎𝐤, (8) 

School Level:   

 𝜋00𝑘 = 𝛾000 + 𝛾001 𝑇𝑘 + 𝚪𝟎𝟎𝟐𝐙𝐤 + 𝑢00𝑘 , 𝑢00𝑘~𝑁(0, 𝜔|𝑇,𝐙
2 ), (9) 

 𝚷𝟎𝟏𝐤 = 𝚪𝟎𝟏𝟎, (10) 

 𝚷𝟏𝟎𝐤 = 𝚪𝟏𝟎𝟎, (11) 

where 𝑌𝑖𝑗𝑘  is the mathematics score for student i in classroom j in school  k, 𝐗𝐢𝐣𝐤 is a column 

vector of baseline student-level covariates, 𝚩𝟏𝐣𝐤 is a row vector of student-level coefficients that 

are assumed to be fixed at the class and school levels, 𝐖𝐣𝐤 is a column vector of baseline level-2 

covariates (e.g., teacher’s gender, age, education level, class size, etc.), 𝚷𝟎𝟏𝐤 is a row vector of 

class-level coefficients that are assumed to be fixed at the school level, 𝑇𝑘 is a binary treatment 

indicator variable, 𝐙𝐤 is a column vector of baseline school-level covariates (e.g., enrollment, 

location, type, etc.), and 𝚪𝟎𝟎𝟐 is a row vector of school-level coefficients. 𝚪𝟎𝟏𝟎 and 𝚪𝟏𝟎𝟎 are 

vectors of school-level fixed effects. The error term at level 1 (𝑒𝑖𝑗𝑘 ) and the random effects at 

levels 2 and 3 (𝑟0𝑗𝑘  and 𝑢0𝑘) are assumed to follow normal distributions with mean zeros and 

constant conditional variances. Because of random assignment, the treatment indicator (𝑇𝑘) is 

independent of level-1 error (𝑒𝑖𝑗 ) and the random effects at levels 2 and 3 (𝑟0𝑗𝑘  and 𝑢0𝑘). Thus, 
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the fixed effect associated with the treatment indicator —𝛾001—represents the ATE of the CAL 

tutoring program.  

Hypothesis Testing, Effect Size, and Power Analysis 

Educational researchers are commonly interested in two general questions when 

evaluating educational interventions: whether the intervention is effective and how large the 

ATE is. To answer the first question, the hypothesis testing approach is utilized. Specifically, we 

can use a t-test to examine the null hypothesis 𝐻0: 𝛾 = 0, where 𝛾 = 𝛾01 or 𝛾001 for two- or 

three-level designs, respectively, and the alternative hypothesis is 𝐻𝑎: 𝛾 ≠ 0. The t-statistic is the 

ratio of the estimate of the treatment effect (𝛾01 or 𝛾̂001) to its standard error (SE). Educational 

researchers can conduct HLM analyses using major statistical software (e.g., R, SAS, SPSS, 

Stata, etc.). In addition, educational researchers usually transform the treatment effects to effect 

sizes to interpret their magnitude and compare them among alternative programs. Effect size is a 

standardization of the treatment effect and is defined as 

 𝛿 =
𝛾

√𝑉𝑎𝑟(𝑌)
, (12) 

where 𝑉𝑎𝑟(𝑌) is the total variance of the outcome. Therefore, the effect size can be interpreted 

in terms of the standard deviation of the outcome. Table 1 provides the exact formulas of effect 

size for two- and three-level CRTs.   

 When a non-significant treatment effect is observed, there are three potential 

explanations: (1) the intervention was indeed ineffective, (2) the intervention was effective, but 

the study was not adequately powered to detect the effect, and (3) the study had sufficient power 

to detect the true effect, but due to the specific outcome of the randomization (e.g., "unhappy" 

randomization), the estimated effect turned out to be quite small (biased to 0) and thus 
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insignificant. The probability of detecting the effect of interest when the alternative hypothesis is 

true is known as statistical power.  

In the design phase, educational researchers need to figure out how many students, 

classrooms, and schools are needed to ensure adequate power (e.g., ≥ 0.8) to detect the treatment 

effect if it truly exists. One way to determine the sample size of a CRT is to calculate power. As 

we discussed above, under the normal distribution assumptions, we can test the null hypothesis 

𝛾 = 0 using a t-test. Assuming the alternative hypothesis is true, the test statistic follows a non-

central t-distribution with a non-centrality parameter:        

 𝜆̂ =
𝛾̂

√𝑉𝑎𝑟(𝛾̂) 
. (13) 

Under these specifications, the statistical power of a two-tailed test is (note 𝑡0 = 𝑡1−
𝛼

2
,𝑑𝑓) 

 Power = 1 – Η [𝑡0, df, 𝜆̂] + Η [-𝑡0, df, 𝜆̂], (14) 

where df is the degrees of freedom for the test and H(𝑡0, df, 𝜆̂) is the cumulative distribution 

function of the non-central t-distribution with a non-centrality parameter 𝜆̂. 

Another approach to deciding the sample size is to compute the minimum detectable 

effect size (MDES), which is defined as the smallest effect that has an acceptable chance (e.g., 

power > 0.8) of producing a treatment estimate that is statistically significant at the significance 

criterion (Bloom, 1995). In general, the MDES can be computed using the following formula:  

 
𝑀𝐷𝐸𝑆 = 𝑀𝑣 ∗ √

𝑉𝑎𝑟(𝛾)

𝑉𝑎𝑟(𝑌)
,                                                                                           

(15) 

where 𝑀𝑣 represents the sum of two t quantiles (Bloom, 1995). In particular, for two-tailed tests, 

which are usually applied, 𝑀𝑣 = 𝑡𝛼/2 + 𝑡1−𝛽, where 𝛼 represents the Type I error and 𝛽 

represents the Type II error for the tests (Bloom, 1995; Dong & Maynard, 2013).  
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Table 2 summarizes the computation formulas of the non-centrality parameters, MDES, 

and degrees of freedom for the analysis of main effects in two- and three-level designs based on 

prior literature (e.g., Bloom, 1995; Dong & Maynard, 2013; Konstantopoulos, 2008; 

Raudenbush, 1997). In general, power and MDES are determined by sample size at each level 

and a set of design parameters. Table 1 provides the meanings and computation formulas of these 

parameters, including the nested effects of the outcome and the covariates effect. Specifically, 

the nested effects are represented by the intra-class correlation coefficients (ICCs), indicating the 

proportion of variance at the second or third level to the total variance of the outcome, and it is 

negatively correlated with power. The covariate effects are represented by the proportion of 

variance explained by the covariates at a particular level. Please note that we include both 

unconditional models that do not include any covariates at any level and models with covariates 

(i.e., conditional models) in Table 2 to facilitate defining effect size and design parameters. In 

practice, it is recommended to incorporate covariates into the HLMs because many prior studies 

have shown that they can increase statistical power considerably (e.g., Bloom, Richburg-Hayes, 

& Black, 2007; Dong & Maynard, 2013; Dong et al., 2016; Konstantopoulos, 2008; Raudenbush, 

Martinez, & Spybrook, 2007). In addition, the sample sizes at the cluster level impact power and 

MDES more than the sample sizes at lower levels (e.g., Konstantopoulos, 2008), and thus, 

education researchers may consider sampling more schools than classes or students if the study 

budget and resources permit.  

Demonstration of Power and MDES Computation  

Numerous software options are available to help applied researchers conduct power 

analyses for CRTs, such as Optimal Design (Spybrook et al., 2011). We utilize PowerUp! tools 

(e.g., PowerUp!, PowerUpR, PyPowerUp!, etc.) because they are easy to use and freely available 
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from the Causal Evaluation website (https://www.causalevaluation.org/). In particular, the tool – 

PowerUp! (Dong & Maynard, 2013) is primarily designed to facilitate the MDES and the sample 

size computations for a given research design and analysis. It is implemented through the user-

friendly Microsoft Excel program and includes multiple worksheets, each specific to a particular 

design and analysis. To use this tool, users can follow a four-step procedure: (1) choose a study 

design (e.g., cluster random assignment design); (2) specify the number of clustering levels within 

the study (e.g., two or three); (3) specify the calculator to compute the MDES or the sample size for a 

given MDES; (4) specify the values of design parameters and statistical significance tests – the 

yellow highlighted parameters in the worksheet. Once users input these parameters, the PowerUp! 

automatically computes MDES or sample size. For example, suppose the research team would like 

to know the MDES for a two-level CRT that investigates the CAL tutoring program. In that case, 

they need first to choose “Simple Cluster Random Assignment,” select two levels and MDES, 

and then input all the required parameters highlighted in grey. In general, the research team can 

rely on three strategies to identify the reference values of the design parameters: consulting prior 

literature for similar studies, using large databases to estimate these parameters, and calculating 

these parameters from a pilot study (Spybrook et al., 2016). For example, prior studies have 

documented empirical values of the design parameters for student achievement (Hedberg & 

Hedges, 2014; Hedges & Hedberg, 2007). Table 3 provides an example of MDES computation 

that randomly assigns 40 schools (i.e., level-2 units; 𝐽 = 40) into treatment or control conditions 

in equal proportion (𝑃 =  0.5) with 100 students from each school (𝑛 =  100). In this example, 

the research team specified an alpha level of 0.05, a two-tailed test, 0.8 power, an ICC of 0.23, 

50% variance explained at both levels (𝑅1
2 = 𝑅2

2 = 0.5), and one covariate at level 2. After 

inputting these parameters highlighted in yellow, PowerUp! returned an estimate of the MDES 

equal to 0.314 (shown in Bold at the bottom of the worksheet).  

https://www.causalevaluation.org/
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If instead, the research team would like to compute the statistical power for a particular 

design and set of design parameters, they can use the PowerUpR package and its Shiny App 

(Bulus et al., 2022). For applied researchers not familiar with R programming, the PowerUpR 

Shiny App is recommended. Like using PowerUp!, users must first select a particular design 

(e.g., a three-level CRT) and then input the reference values of design parameters for power 

computation. Figure 2 shows an example output of PowerUpR Shiny App for a three-level 

design, where the research team randomly assigns 50 schools (𝐾 = 50) into treatment and 

control conditions in equal proportion (𝑃 =  0.5) with four classes from each school (𝑗 = 4) and 

25 students from each class (𝑛 = 25). In this example, the research team specified an alpha level 

of 0.05, a two-tailed test, an effect size of 0.25 (𝛿 = 0.25), an ICC of 0.15 at level 3 (𝜌3 = 0.15), 

an ICC of 0.05 at level 2 (𝜌2 = 0.05), R2 of 0.5 at all levels (𝑅1
2 = 𝑅2

2 = 𝑅3
2 = 0.5), and one 

covariate at level 3. PowerUpR Shiny provided the power estimate (statistical power = 0.843), 

degrees of freedom of the test, and Type I and II error rates. 

Moderation and Mediation Analyses 

Besides the ATE of an intervention, educational researchers and policymakers are often 

interested in exploring for whom, under what conditions, and through what mechanisms an 

intervention works or fails. For example, when evaluating the CAL tutoring program, besides the 

ATE (i.e., main effect), the research team might want to explore whether the treatment effect 

varies among subgroups of students, classrooms (or teachers), and schools with different 

characteristics (e.g., students’ gender, teachers’ educational level, school locale, etc.). These 

characteristics used to define subgroups are called moderators and could potentially alter the 

treatment effects (Baron & Kenny, 1986; Raudenbush & Liu, 2000). The moderator effects can 

be evaluated through HLMs with an interaction term between the treatment and moderator 
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variables. For example, to assess whether or not the effect of the CAL tutoring program varies 

between public and private schools in their two-level CRT, the research team can add a treatment 

by school type interaction term into the second-level model, namely 

Students Level: 

 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝚩𝟏𝐣𝐗𝐢𝐣 + 𝑒𝑖𝑗, 𝑒𝑖𝑗 ~𝑁(0, 𝜎|𝐗
2 ),                                                                         (16) 

School Level:   

 𝛽0𝑗 = 𝛾00 + 𝛾01 𝑇𝑗 + 𝚪𝟎𝟐𝐖𝐣 + 𝛾03𝑆𝑗 + 𝛾04𝑇𝑗𝑆𝑗 + 𝑢0𝑗, 𝑢0𝑗~ 𝑁(0, 𝜏|𝑇,𝐖,𝑆), (17) 

 𝐁𝟏𝐣 = 𝚪𝟏𝟎, (18) 

where 𝑆𝑗 is a binary private school indicator coded as one if for private schools and zero for 

public schools. The parameter of interest is 𝛾04, indicating the differences in treatment effects 

between private and public schools. We recommend centering the private school indicator (𝑆𝑗) so 

that 𝛾01 still represents the ATE; otherwise, it represents the treatment effect for private schools 

(i.e., 𝑆𝑗 = 0). Also, the research team can add a cross-level interaction to the two-level HLMs to 

evaluate whether the treatment effect varies between male and female students, namely  

Students Level: 

 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝐹𝑖𝑗 + 𝚩𝟐𝐗𝐢𝐣 + 𝑒𝑖𝑗, 𝑒𝑖𝑗 ~ 𝑁(0, 𝜎|𝐹,𝐗
2 ), (19) 

School Level:  

 𝛽0𝑗 = 𝛾00 + 𝛾01 𝑇𝑗 + 𝚪𝟎𝟐𝐖𝐣 + 𝑢0𝑗, 𝑢0𝑗~ 𝑁(0, 𝜏|𝑇,𝐖), (20) 

 𝛽1𝑗 = 𝛾10 + 𝛾11 𝑇𝑗 + 𝑢1𝑗, 𝑢1𝑗~ 𝑁(0, 𝜏|𝑇), (21) 

 𝐁𝟐𝐣 = 𝚪𝟐𝟎, (22) 

where 𝐹𝑖𝑗 is a binary female indicator coded as one for females and zero otherwise. The 

parameter of interest now is 𝛾11, indicating the difference in the treatment effects between male 
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and female students. Note that Equation 19 assumes that the gender gap at level 1 (i.e., 𝛽1𝑗) 

varies among schools after accounting for treatment effects, represented by the random effects 

𝑢1𝑗. The research team can also assume that the gender gap does not vary among schools and 

exclude the random effects from Equation 19. Similarly, the research team can evaluate whether 

the treatment effect varies among classrooms or teachers under a three-level design.  

Mediation analysis has been widely used to investigate the intermediate mechanism 

through which a treatment effect is transmitted (Baron & Kenny, 1986). The intermediate 

variable is called a mediator. Mediation analysis can inform not only how a treatment works but 

also identify gaps in a theory (Hayes, 2013; MacKinnon, Fairchild, & Fritz, 2007; Kelcey et al., 

2020). For example, if some prior theory indicates a direct relationship between self-esteem and 

student achievement but the mediation analysis identifies a significant indirect effect through a 

mediator (e.g., students’ motivation), it suggests that motivation plays a vital role in explaining 

how self-esteem influences student achievement. Thus, researchers can conclude that the theory 

could be further advanced to include the role of motivation. Mediation analysis is commonly 

applied through path analyses and has several modeling options and strategies depending on the 

level of mediators (e.g., Kelcey et al., 2017). For example, the research team can utilize 

mediation analysis to examine whether the CAL remedial tutoring program improves students’ 

learning through increasing student motivation, where the treatment is at the school level (level 

2), and the outcome (e.g., test scores) and mediator (i.e., student motivation) are measured at the 

student level (level 1). Such analysis can be implemented via a  2-1-1 mediation model, where 

“2” represents the level of treatment, the first “1” represents the level of mediator, and the second 

“1” represents the level of outcome. Figure 3 illustrates the paths of this mediation model. 

Specifically, path coefficient a represents the effects of the treatment (CAL tutoring) on the 
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mediator (a measure of students’ motivation), path coefficient b represents the effect of the 

mediator on students’ mathematics achievement, path coefficient c’ represents the direct effect of 

the treatment on students’ mathematics achievement, and path c represents the total effect of the 

treatment on the outcome. In simple mediation analyses, the total or main effect can be 

decomposed as 

Total effect = indirect effect + direct effect or c = ab + c’. 

The research team must choose appropriate statistical models to address the potential 

clustering effect because of the nested data structure when estimating these effects. For this 2-1-1 

model, they can estimate the total effect of the CAL program on students’ mathematics 

achievement using a two-level HLM that is comparable in structure to Equations 3, 4, and 5. It 

should be noted that the mediator should be excluded from the level-1 model when estimating 

the total effect. The research team examines the effects of the treatment on student motivation 

(path a in Figure 3) using a two-level model for the mediator, namely  

Students Level: 

 𝑚𝑖𝑗 = 𝛽0𝑗 + 𝚩𝟏𝐣𝐗𝐢𝐣 + 𝜁𝑖𝑗, 𝜁𝑖𝑗~𝑁(0, 𝜂|𝐗
2 ), (23) 

School Level:   

 𝛽0𝑗 = 𝜋00 + 𝑎𝑇𝑗 + 𝚪𝟎𝟐𝐖𝐣 + 𝑢0𝑗, 𝑢0𝑗~𝑁(0, 𝜏|𝑇,𝐖), (24) 

 𝐁𝟏𝐣 = 𝚪𝟏𝟎, (25) 

where mij represents a measure of motivation for student i in school j, 𝜁𝑖𝑗  is an error term that 

follows a normal distribution with a mean zero and a constant conditional variance 𝜂|𝐗
2 , and a is 

the effect of the CAL tutoring program on the mediator. All the other terms have been defined 

previously. To estimate the conditional relationship between the mediator and outcome, path b in 

Figure 3, the research team needs to use another two-level model, namely 
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Students Level: 

 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑚𝑖𝑗 + 𝚩𝟐𝐣𝐗𝐢𝐣 + 𝑒𝑖𝑗, 𝑒𝑖𝑗 ~𝑁(0, 𝜎|𝐗,𝑚
2 ), (26) 

School Level:   

 𝛽0𝑗 = 𝛼00 + 𝑏𝑚̅𝑗 + 𝑐′𝑇𝑗 + 𝚨𝟎𝟐𝐙𝐣 + 𝑢0𝑗, 𝑢0𝑗~𝑁 (0, 𝜏0
2

|𝑇,𝐙
), (27) 

 𝛽1𝑗 = 𝛼10, (28) 

 𝚩𝟐𝐣 = 𝚨𝟐𝟎, (29) 

where 𝛽1𝑗 is student-level coefficient that is assumed to be fixed at level 2, 𝑐′ is the direct effect, 

𝑚̅𝑗 is the average student motivation across students in school j with coefficient 𝑏 as the total 

conditional relationship between the mediator and mathematics achievement. The mediation 

effect (indirect effect) could be calculated as 𝑎 × 𝑏. Similar path analyses can be applied for 

level-2 mediators or three-level designs (see Kelcey, Spybrook, & Dong, 2019; Kelcey et al., 

2017; Kelcey et al., 2021; Kelcey et al., 2021).  

Under this formulation, we assume that exposure to the treatment does not moderate the 

relationship between the mediator and outcome. However, this assumption can be relaxed by 

adding an interaction between the treatment and mediator in the outcome model (e.g., Kelcey et 

al., 2016). Additionally, this approach takes up four primary assumptions. First, the 

identifiability of the mediation effect requires nonzero and overlapping probabilities for exposure 

to a treatment. Second, identifiability requires the SUTVA assumption. As discussed above, 

SUTVA includes that, for example, one person’s potential response (on the mediator or 

outcome) does not depend on another person’s treatment (or mediator) status. In multilevel 

settings, this is complicated by the clustering or shared experience of students within schools. 

Prior literature has developed several approaches to relax this assumption by tracking or 

approximating the nature of that influence (e.g., responses depend on the cluster mean values of 



21 
 

the mediator; Hong, 2005). In our example above, the influence of a student’s peers on the 

outcome may also operate through the average motivation of students within a school—that is, 

the collective peer motivation level within a school creates a contextual factor that also shapes 

the potential outcomes (e.g., Kelcey et al., 2017). Put differently, a student’s potential outcome 

also depends on the motivation of schoolmates in addition to treatment exposure and individual 

motivation.  

The third primary assumption to identify mediation effects under this approach is 

sequential ignorability. This assumption precludes unmeasured confounding of the treatment-

outcome relationship, treatment-mediator relationship, and the mediator-outcome relationship 

(Vanderweele, 2015). The first and second components of this assumption are typically fulfilled 

through the random assignment. However, because mediator values are not randomly assigned,  

ensuring the mediator-outcome relationship is unconfounded requires adjustment for covariates 

that potentially confound the relationship. In our running example, we need to consider students’ 

efficacy and learning engagement as well as other variables that are likely to influence 

motivation and the outcome. In addition, identifiability of the mediation effect typically draws on 

the assumption that there are no variables downstream of the treatment that are influenced by the 

treatment and subsequently confound the mediator-outcome relationship. Prior literature has 

developed several approaches to relax this assumption under different conditions and through 

alternative estimands (e.g., Imai & Yamamoto, 2013; Vansteelandt, 2017). More generally, 

literature has developed an array of sensitivity analyses to probe the robustness of results to 

violations of each of these assumptions (e.g., Vanderweele, 2015) 

In terms of planning studies to detect effects, the research team needs to conduct power 

analyses during the design phase to make sure the sample size is large enough to detect 
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moderator or mediator effects. More specifically, prior research has widely underscored the 

importance of supplementing main effect power analyses with moderation- and mediation-

specific power analyses because they typically propose different sample sizes and resource 

allocations (e.g., Cox & Kelcey, 2019; IES RFA, 2023; Kelcey et al., 2017; Sim et al., 2022). For 

example, professional standards across an array of fields require power analyses for moderation 

and mediation effects regardless of whether these components are primary, secondary, or 

exploratory in nature (e.g., Fairchild et al., 2017; IES RFA, 2023; Vo et al., 2019). Careful 

consideration of all effects in the planning stages helps ensure rigorous designs that address the 

full breadth of evidence sought. Even if researchers eventually privilege the power to detect one 

effect (e.g., main) over another effect (e.g., mediation) in the final design, these choices will be 

guided by informed tradeoffs. 

Prior studies (e.g., Dong et al., 2018, 2021; Kelcey et al., 2021; Spybrook et al., 2016) 

have developed the methods of computing statistical power and MDES for mediation and 

moderation analysis and have implemented them into user-friendly tools – PowerUp!-Moderator 

(Dong et al., 2017a) and PowerUp!-Mediator (Dong et al., 2017b) for applied researchers to 

conduct power analysis, which are also freely available the Causal Evaluation website 

(https://www.causalevaluation.org/).  

Common Challenges  

In this section, we discuss the potential solutions to some common challenges facing 

educational researchers when designing CRTs, including the effects of omitting one level of 

clustering, non-compliance, heterogeneous variance, blocking, threats to external validity, and 

cost-effectiveness of the intervention.  

https://www.causalevaluation.org/
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Omitting Middle-Level Information. It is recommended that the research design and 

analysis should be consistent with the nested data structure. For example, CRTs in education 

commonly involve students, classrooms, and schools, where the treatment is at the school level 

and there are more than one classroom sampled from each school. Therefore, a three-level design 

is recommended, and a three-level HLM should be used to estimate the ATE. However, the 

middle level (e.g., classroom) might be missing in practice because the available datasets might 

only identify the schools that students attend but not the classrooms in which they are taught 

(Zhu et al., 2012). In that case, the research team has to use a two-level HLM instead. Prior 

studies (e.g., Moerbeek, 2004) have shown that, for models that only include the treatment 

indicator without any covariates at any level (i.e., an unconditional model), if the classroom level 

is ignored, part of classroom-level variance will shift up to the school level, and the rest will shift 

down to the student level. As a result, the classroom-level variance is accounted for (e.g., 

Moerbeek, 2004), and  the main treatment effect and its SE will be the same as the ones from 

three-level models. When covariates are included in the HLMs, Zhu et al. (2012) found that in 

almost all situations the results will be nearly identical regardless of whether or not the 

classroom or middle level is omitted when designing or analyzing CRTs. However, one 

exception occurs when the middle-level variance is relatively large, such as in secondary schools 

where the proportion of classroom-level variance ranges from 0.293 to 0.376, the SE will be 

biased if the classroom level is omitted. In addition, when the study being planned has a 

markedly different cluster structure than the study that was used for planning purposes (e.g., the 

number of classrooms per school is halved), the MDESs from the two- and three-level analyses 

might yield quite comparable results. In these scenarios, adding student-level covariates that can 

explain a large proportion of the outcome variance (e.g., a pretest) can effectively eliminate any 
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potential problems. Therefore, educational researchers can utilize two-level analyses on three-

level data without significant concern regarding the analysis of the main effects. However, it 

should be noted that omitting the middle level would make it impossible to investigate the 

classroom-level moderator or mediator effects. In addition, when only one classroom is sampled 

from each school, a two-level model with students nested within classrooms should be utilized to 

estimate the treatment effects and the school-level covariates can be added at the second level. 

When the randomization is at the classroom level (i.e., a multisite design), the classroom level 

should not be omitted from the analysis.   

Non-compliance. During the implementation of the treatment, some participants may 

switch between the treatment and control groups. When some intervention participants do not 

comply with the random assignment, two options are available to estimate the intervention 

effects: the intention-to-treat (ITT) analysis, and the instrumental variable (IV) analysis (e.g., 

Angrist, 2006; Imbens & Rubin, 2015). We use the two-level design as an example to illustrate 

these methods. In particular, the ITT analysis compares the treatment and control groups 

according to the original random assignment, namely  

Students Level: 

 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝐗𝐢𝐣𝚩𝟏𝐣 + 𝑒𝑖𝑗, 𝑒𝑖𝑗 ~𝑁(0, 𝜎|𝐗
2 ), (30) 

School Level:   

 𝛽0𝑗 = 𝛾00 + 𝛾01 𝐴𝑗 + 𝐙𝐣𝚪𝟎𝟐 + 𝑢0𝑗, 𝑢0𝑗~𝑁(0, 𝜏|𝐴,𝐙), (31) 

 𝐁𝟏𝐣 = 𝚪𝟏𝟎, (32) 

where 𝐴𝑗 is a binary initial assignment indicator coded as one if a school is randomly assigned to 

the treatment group and zero otherwise. The parameter of interest—𝛾01—provides an unbiased 
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estimate of the causal effect of participants’ intention to treat but not the treatment effect because 

it ignores the non-compliance.  

The IV analysis has been widely utilized in experimental studies to deal with non-

compliance, and identify the causal effect of the intervention when the non-compliance is not 

random (e.g., Angrist, 2006; Konstantopoulos et al., 2016). Specifically, it uses the initial 

random assignment (e.g., 𝐴𝑗) as the IV of the actual receipt of the treatment (e.g., 𝐷𝑗) to estimate 

the causal effect of the treatment for compliers, which is usually called the local average 

treatment effect (LATE; Angrist, Imbens, & Rubin, 1996). Educational researchers can utilize 

the IV approach through the widely applied two-stage least-square (2SLS) estimation combined 

with cluster robust SEs or the 2SLS random effect estimator to deal with the nested data structure 

of CRTs (see Baltagi, 2013 or Wooldridge, 2010 for technical details). The IV approach can also 

be applied to moderation and mediation analyses (e.g., Dippel, Ferrara, & Heblich, 2020; 

Wooldridge, 2010).  

Heterogeneous Variance. We typically assume the homogeneity of variances when 

utilizing HLMs to evaluate the main, moderator, and mediator effects. Wooldridge (2019) 

provided an overview of testing for heteroskedasticity (e.g., White test; White, 1997) for 

ordinary least square regressions. These methods can be applied to HLMs by diagnosing the 

level-1 residuals and the estimated random effects at the second and third levels. When the 

homogeneity assumption is violated, the SEs and significance test will be biased. Educational 

researchers can address this issue by modeling systematic heteroskedasticity, which requires 

correctly specifying the heteroskedasticity function form (Wooldridge, 2019). An alternative and 

easier way is to compute the heteroskedasticity-robust SE that has been implemented in major 

statistical software such as R and Stata. It should be noted that traditional heteroskedasticity-
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robust SE requires at least 50 clusters to be effective (Huang, Wiedermann, & Zhang, 2023). 

Huang et al. assessed a specific robust SE estimator (i.e., the CR2 estimator; Bell & McCaffrey, 

2002) using a Monte Carlo simulation and found it effective when the number of clusters was 

smaller than 50. They also provided R syntax to apply the CR2 SEs (available from 

https://github.com/flh3/CR2).    

Blocking. Educational research can group similar clusters (e.g., schools) together and 

then randomize them into treatment and control conditions within each block to improve the 

precision of the estimated ATE. Although prior literature on blocking experiments focused on 

designs without nested data structures, their conclusions apply to CRTs. Specifically, based on 

the discussion from Pashley and Miratrix (2022), we recommend keeping the proportion of 

treated clusters similar across blocks. In addition, blocking is an excellent strategy to increase 

efficiency with respect to the effects of school-level moderators because it guarantees the 

balance of these moderators between treatment and control clusters (Dong, Kelcey, & Spybrook, 

2018). It should be noted that, with a limited number of clusters, blocking multiple school-level 

moderators is challenging. Thus, following Athey and Imbens (2017), we suggest blocking a few 

key moderators of interest and making sure there are at least four clusters (e.g., two in the 

treatment and two in the control) per block.  

External Validity. When examining the validity of a CRT, one needs not only to assess 

whether it yields an unbiased estimate of the ATE within the study sample (i.e., internal validity) 

but also on the population of interest (i.e., external validity). CRTs in education are typically 

conducted with a nonrandomly selected sample of schools that are recruited based on logistics 

factors such as convenience, the anticipated extent of implementation fidelity, the anticipated 

extent of responsiveness to the intervention, and cost (Olsen et al., 2013; Tipton & Olsen, 2018). 

https://github.com/flh3/CR2
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Prior studies (e.g., Olsen et al., 2013; Bell et al., 2016) have shown that nonrandomly selected 

samples yield biased impact estimates for the broader population of interest and thus are a vital 

threat to the external validity of CRTs. For example, Bell et al. (2016) indicated that for the 

Reading First program that was conducted in a nonrandomly selected sample of school districts 

from 11 educational impact evaluations, the impact estimates would be substantially biased 

downward with 0.10 standard deviations lower than the impact in the broader population.  

 Methods and tools have been developed to help educational researchers to improve the 

external validity of CRTs. A strategy to improve the representativeness of sites (e.g., schools or 

districts) is to stratify the population based on a set of characteristics that might moderate the 

impacts of the intervention and then systematically or randomly select sites from each stratum 

(Olsen & Orr, 2016; Tipton et al., 2014; see Tipton & Olsen, 2018 for details on steps to conduct 

stratifications). Researchers can then assess the representativeness of the selected sites by 

examining the proportion of the population being represented (i.e., coverage), calculating the 

standardized mean difference in the estimated program impacts between the distribution of the 

selected sites and the distribution of the target population, and/or doing both of these through 

calculating a generalizability index (Tipton & Olsen, 2018). Tipton and Miller (2016) provided a 

free web tool (www.thegeneralizer.org) for stratifying the population of interest and assessing 

the representativeness of the selected sample. It should be noted that, to successfully generalize 

results from CRTs, educational researchers must identify all potential moderators and the 

distribution of these moderators for the population of interest. Specifically, all school-level 

moderators (including student-level aggregates) must be known to generalize the results from a 

CRT to the school population of interest, and all student-level and school-level moderators must 

be known to generalize the results from a CRT to the student population of interest. The lack of 

http://www.thegeneralizer.org/
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inclusion of important moderator variables may lead to erroneous conclusions. That is, if not all 

effect moderators have been measured, there is no guarantee that adjustments will necessarily 

'improve' the generalizability of the effect. In fact, such adjustments might actually worsen it. 

Attempting to generalize a CRT effect based solely on the observed effect moderators could be 

more misleading than helpful for decision-makers. 

To further reduce bias when estimating the ATE for the population, researchers can 

consider using propensity score methods to post-stratify or subclassify the sample (Tipton et al., 

2014), regression modeling (Tipton & Olsen, 2018), or bounding approaches (Chan, 2017). 

Tipton and Olsen (2022) provided a comprehensive guide on steps and techniques to design and 

implement impact studies in education to make the findings more generalizable to the study’s 

target population.  

Cost-Effectiveness Analysis. While causal evaluations of educational interventions’ 

effects are essential, it is equally important to examine the cost of achieving these effects for 

more sound policy decision-making (Bowden, 2017; Monk, 1995; Ross et al., 2007). Evaluations 

without a credible cost analysis might lead to misleading judgments and decisions. For example, 

when the research team evaluates the computer-assisted tutoring program, they might find no 

significant difference in the effectiveness compared to a traditional in-person tutoring program. 

Still, schools, districts, and parents might see the CAL tutoring program as an attractive 

alternative to traditional face-to-face teacher professional development programs if it could be 

delivered at a much lower cost. Therefore, it is recommended that the research team incorporates 

a cost study and explore the cost-effectiveness of their program.  

The CRT that evaluates both the cost and effectiveness of an intervention is commonly 

named the cluster randomized cost-effectiveness trial (CRCET; Li et al., 2022). It links the cost 
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of implementing an intervention to its effect and thus helps researchers and policymakers 

adjudicate the cost-effectiveness of an intervention. Similar to the effectiveness data (e.g., test 

scores), the cost data also have a nested structure, and lower-level (e.g., student-level) cost is 

correlated within the same clusters (e.g., classrooms or schools). Therefore, recent studies (e.g., 

Li et al., 2020) recommend using HLMs to account for the dependencies of the cost data and 

evaluate CRCETs. They also developed a user-friendly tool—PowerUp!-CEA (Li et al., 2023)—

to support applied researchers in performing statistical power analysis for CRCETs.  

Conclusion 

This primer introduces the statistical methods in the design and analysis of CRTs that 

have been widely utilized to evaluate the causal effects of educational interventions.  

Specifically, we define causal estimands based on the potential outcome framework and utilize 

HLM to account for the dependency of the intervention participants within the same clusters. We 

demonstrate methods and tools for sample size planning and statistical power analysis. 

Additionally, we discuss common challenges and potential solutions in the design and analysis 

phases, including the effects of omitting one level of clustering, non-compliance, heterogeneous 

variance, blocking, threats to external validity, and cost-effectiveness of the intervention.  

CRTs in education commonly have two- or three-level of clustering, and thus, two- and 

three-level HLMs are introduced to estimate the main effects (e.g., ATEs), moderator effects, 

and mediator effects. When the middle-level (e.g., classroom-level) information is not available, 

educational researchers can use two-level models to analyze data from three-level CRTs in most 

scenarios. It is also recommended to include student-level covariates that could explain a large 

proportion of the outcome variance at the middle level (e.g., pretest scores) when the middle-

level information is missing.  
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One key consideration when designing a CRT is sample size planning through power 

analysis to guarantee a good enough chance to detect the effect of interest when it exists. We 

introduced statistical power analysis methods based on HLMs and demonstrated the power and 

MDES computation using PowerUp! tools. In general, the power of a CRT is determined by the 

sample sizes at all levels, effect size, ICCs, and the proportion of outcome variance explained by 

covariates at all levels. For both the two- and three-level designs, the sample size at the cluster 

level (e.g., schools) has a larger impact on power than the sample sizes at the lower levels (e.g., 

classes and students) holding other factors fixed (Konstantopoulos, 2017; Konstantopoulos, Li & 

Zhang, 2023; Li & Konstantopoulos, 2017; Raudenbush, 1997). We recommend educational 

researchers incorporate covariates into their HLM analyses to decrease the SEs of ATEs and 

increase power. Although many prior studies have provided reference values of the design 

parameters for the U.S., there is very limited information regarding these design parameters for 

Asian countries. To design CRTs with adequate power, one direction of future research is to 

estimate design parameters using large-scale datasets that include Asian countries or educational 

interventions conducted in Asia.  

It is not rare that some CRT participants do not comply with the random assignment in 

practice, and we recommend educational researchers employ the IV approach to estimate the 

treatment effects for compliers or LATEs. Prior studies also discussed the methods of obtaining 

the range of ATE using the IV approach and bounds analysis (e.g., Athey & Imbens, 2018). 

Besides the effectiveness, educational researchers need to consider the cost and cost-

effectiveness of an intervention for a comprehensive evaluation and solid decision-making. 

Recent developments in cost-effectiveness analysis and experimental designs have provided 

methods and guidelines for designing cost studies within CRTs using the ingredients method, 
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computing power for CRCETs, and performing cost-effectiveness analysis using HLMs (e.g., 

Bowden, 2023; Li et al., 2022).  

HLMs usually perform well in analyzing nested data when the number of clusters is 

relatively large (e.g., > 40). However, CRTs in education sometimes only have fewer clusters 

because of logistic or financial restrictions. Prior studies have shown that HLMs can be applied 

to CRTs with about 20 to 40 clusters and suggested small-sample corrections for CRTs with 10 

to 20 clusters (Bell et al., 2014; Kenward & Roger, 2009). Other studies provided alternative 

methods (e.g., generalized estimating equations, cluster bootstrapping, Bayesian methods, etc.) 

to analyze CRTs with a small number of clusters (e.g., Gelman, 2006; Huang, 2016; Morel et al., 

2003). For example, Huang and Li (2022) found that the use of OLS regression together with the 

bias-reduced linearization (BRL) cluster robust SE (Bell & McCaffrey, 2002) and empirically 

based degrees of freedom yields unbiased results with acceptable type I error and power. They 

also developed R and Stata packages to implement this method (Huang & Zhang, 2022). 

This primer introduces the moderator analysis to evaluate the treatment effect 

heterogeneity (TEH). Recent developments in statistics and econometrics proposed to use 

machine learning (ML) methods to explore the TEH by estimating the conditional average 

treatment (CATE). Compared to traditional interaction analysis, the ML methods have some 

advantages, such as allowing selecting moderators from a potentially large number of covariates 

and identifying the causal TEH. However, these methods usually assume the study participants 

are independent and thus cannot easily be applied to CRTs. Therefore, one direction of future 

research is to evaluate the performance of the ML methods for data with nested structures in 

exploring TEH. Another way of examining TEH is via quantile regression that examines the 

treatment effects across the distribution of the outcome (e.g., Konstantopoulos et al., 2019).  
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The current primer focuses on continuous outcomes (e.g., test scores), while binary 

outcomes (e.g., whether or not a student graduates from high school) are also frequently used in 

CRTs (e.g., Ding et al., 2021). Multilevel logistic regression or linear probability models can be 

used to estimate the treatment effect for CRTs with binary outcomes (see Raudenbush & Bryk, 

2002; Wooldridge, 2010). Besides the model-based methods (e.g., HLMs) discussed in this 

primer, design-based methods and tools are also available for the design and analysis of CRTs. 

For example, the software RCT-YES (Schochet, 2015) uses a non-parametric design-based 

approach that does not require assumptions on the distributions of potential outcomes to evaluate 

the effectiveness of CRTs (Schochet, 2016). It can estimate ATE, moderator effects, and 

compiler average causal effects with valid SEs for a wide range of single- and multilevel-level 

designs. In particular, for CRTs, the design-based non-parametric methods require fewer clusters 

because the analysis can be conducted using data on cluster-level averages rather than 

individual-level data (Schochet, 2016).  

This primer assumes no missing data in the design and analysis of CRTs. However, 

attrition or dropout is almost always expected in practice. Educational researchers can use 

modern missing data techniques such as multiple imputations (Little & Rubin, 2019) to address 

the missing values and then estimate the effects of interests using HLMs, as discussed above. 

Enders (2023) provided an overview of recent developments in missing data methodologies over 

the past two decades. He particularly discussed the methods of handling missing data for 

multilevel models, including joint model imputation, fully conditional specification, maximum 

likelihood estimation, Bayesian estimation and multiple imputation, and fixed effect imputation. 

Enders (2023) also introduced the current software, such as Blimp (Keller & Enders, 2021) and R 

package mdmb (Grund, Lüdtke, & Robitzsch, 2021).  



33 
 

This primer focused on cluster designs, while multisite designs are also very popular in 

education, where for example, students are nested within classrooms nested within schools and 

the treatment could be at the student or classroom level. Similar to CRTs, HLMs are widely used 

to analyze data from multisite randomized trials (e.g., Li & Konstantopoulos, 2019; Raudenbush 

& Liu, 2000). Prior studies also discussed utilizing alternative methods (e.g., fixed effect models; 

Miratix, Weiss, & Henderson, 2021; Dong et al., 2021) to estimate the main and moderator. 

Educational researchers can still use PowerUp! and PowerUp!-Moderator to plan their multisite 

studies.     
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Table 1. List of parameters used for power and MDES computations 

Parameters Meaning of the parameters and computation formulas 

𝛿2 Effect size for two-level design; 𝛿2 =
𝛾01

√𝜏2+𝜎2
 

𝛿3 Effect size for three-level design; 𝛿3 =
𝛾001

√𝜔2+𝜏2+𝜎2
 

𝜌 Intra-class correlation coefficient (ICC) for two-level designs; 𝜌 =
𝜏2

𝜏2+𝜎2
  

𝜌2 Intra-class correlation coefficients (ICCs) at the second level for three-level designs; 𝜌2 =
𝜏2

𝜔2+𝜏2+𝜎2
 

𝜌3 Intra-class correlation coefficients (ICCs) at the third level for three-level designs; ; 𝜌3 =
𝜔2

𝜔2+𝜏2+𝜎2
 

𝑅1
2 Proportion of level-1 variance explained by level-1 covariates; 𝑅1

2 = 1 −
𝜎|𝑋

2

𝜎2  

𝑅2
2 Proportion of level-2 variance explained by level-2 covariates; 𝑅2

2 = 1 −
𝜏|𝑤

2

𝜏2  

𝑅3
2 Proportion of level-3 variance explained by level-3 covariates; 𝑅3

2 = 1 −
𝜔|𝑍

2

𝜔2  

Note: To be conservative, we usually assume the treatment indicator does not explain any proportion of the outcome variance.  
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Table 2. Summary of HLMs, Non-centrality Parameter, MDES, and Degrees of Freedom for the Analysis of Main Effects 

Model Name Models Standardized Noncentrality () Parameter and MDES 

Degrees 

of 

Freedom  

Two-Level 

Unconditional 

Model 

Level-1: 

 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝑒𝑖𝑗 , 𝑒𝑖𝑗 ~𝑁(0, 𝜎2) 

Level-2:   

𝛽0𝑗 = 𝛾00 + 𝛾01 𝑇𝑗 + 𝑢0𝑗, 𝑢0𝑗~𝑁(0, 𝜏2)    

2u = 𝛿2√
𝑃(1 − 𝑃)𝐽𝑛

1 + (𝑛 − 1)𝜌
 

𝑀𝐷𝐸𝑆2𝑢 = 𝑀𝐽−2√
𝜌

𝑃(1 − 𝑃)𝐽
+

(1 − 𝜌)

𝑃(1 − 𝑃)𝐽𝑛
 

J-2 

Two-Level 

Conditional 

Model 

Level-1: 

 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝚩𝟏𝐣𝐗𝐢𝐣 + 𝑒𝑖𝑗 , 𝑒𝑖𝑗 ~𝑁(0, 𝜎|𝐗
2 ) 

Level-2:   

𝛽0𝑗 = 𝛾00 + 𝛾01 𝑇𝑗 + 𝚪𝟎𝟐𝐖𝐣 + 𝑢0𝑗, 𝑢0𝑗~𝑁(0, 𝜏|𝑇,W
2 ) 

𝐵1𝑗 = 𝛤01    

2c = 𝛿2√
𝑃(1 − 𝑃)𝐽𝑛

𝑛𝜌(1 − 𝑅2
2) + (1 − 𝜌)(1 − 𝑅1

2)
 

𝑀𝐷𝐸𝑆2𝐶 = 𝑀𝐽−𝑔−2√
𝜌(1 − 𝑅2

2)

𝑃(1 − 𝑃)𝐽
+

(1 − 𝜌)(1 − 𝑅1
2)

𝑃(1 − 𝑃)𝐽𝑛
 

J-2-g 

Three-Level 

Unconditional 
Model 

Level-1:  

𝑌𝑖𝑗𝑘 = 𝛽0𝑗𝑘 + 𝑒𝑖𝑗𝑘, 𝑒𝑖𝑗 ~𝑁(0, 𝜎2) 

Level-2: 

𝛽0𝑗𝑘 = 𝜋00𝑘 + 𝑟0𝑗𝑘, 𝑟0𝑗𝑘~𝑁(0, 𝜏2) 

Level-3:   

𝜋01𝑘 = 𝛾000 + 𝛾001 𝑇𝑘 + 𝑢0𝑘, 𝑢0𝑗~𝑁(0, 𝜔2)   

3u = 𝛿3√
𝑃(1 − 𝑃)𝐽𝐾𝑛

1 + (𝑛 − 1)𝜌
2

+ (𝐽𝑛 − 1)𝜌
3

 

𝑀𝐷𝐸𝑆3𝐶 = 𝑀𝐾−2√
𝜌3

𝑃(1 − 𝑃)𝐾
+

𝜌2

𝑃(1 − 𝑃)𝐽𝐾
+

1 − 𝜌2 − 𝜌3

𝑃(1 − 𝑃)𝐽𝐾𝑛
 

K-2 

Three-Level 

Conditional 
Model 

Level-1:  

𝑌𝑖𝑗𝑘 = 𝛽0𝑗𝑘 + 𝚩𝟏𝐣𝐤𝐗𝐢𝐣𝐤 + 𝑒𝑖𝑗𝑘, 𝑒𝑖𝑗 ~𝑁(0, 𝜎|𝐗
2 ) 

Level-2: 

𝛽0𝑗𝑘 = 𝜋00𝑘 + 𝚷𝟎𝟏𝐤𝐖𝐣𝐤 + 𝑟0𝑗𝑘, 𝑟0𝑗𝑘~𝑁(0, 𝜏|𝐰
2 ) 

𝐁𝟏𝐣𝐤 = 𝚷𝟏𝟎𝐤 

Level-3:   

𝜋01𝑘 = 𝛾000 + 𝛾001 𝑇𝑘 + 𝚪𝟎𝟐𝐙𝐤 + 𝑢0𝑘, 𝑢0𝑗~𝑁(0, 𝜔|𝑇,𝐙
2 ) 

𝚷𝟎𝟏𝐤 = 𝚪𝟎𝟏𝟎 
𝚷𝟏𝟎𝐤 = 𝚪𝟏𝟎𝟎 

3c = 𝛿3√
𝑃(1 − 𝑃)𝐽𝐾𝑛

𝐽𝑛𝜌
3
(1 − 𝑅3

2) + 𝑛𝜌
2
(1 − 𝑅2

2) + (1 − 𝜌
2

− 𝜌
3

)(1 − 𝑅1
2)

 

𝑀𝐷𝐸𝑆3𝐶 = 𝑀𝐾−𝑞−2√
𝜌3(1 − 𝑅3

2)

𝑃(1 − 𝑃)𝐾
+

𝜌2(1 − 𝑅2
2)

𝑃(1 − 𝑃)𝐽𝐾
+

(1 − 𝜌2 − 𝜌3)(1 − 𝑅1
2)

𝑃(1 − 𝑃)𝐽𝐾𝑛
 

K-2-q 

Note: (1) P represents the proportion of clusters (e.g., schools) assigned to the treatment group, n represents the sample size at level 1, 

J represents the sample size at level 2, and K represents the sample size at level 3. (2) g represents the number of covariates at level 2 

and q represents the number of covariates at level 3.  
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Table 3. Demonstration of MDES Computation for Two-level Cluster Designs using PowerUp! 

 

 

 

 



50 
 

 

 

Figure 1. Illustration of Completely Randomized Design and Cluster Randomized Design  
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Figure 2. Example of PoweUpR Shinny App Output: Power Computation for Three-level 

Cluster Designs  
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Figure 3. A 2-1-1 mediation model 
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