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CONGRUENCE RFRS TOWERS

by Ian AGOL & Matthew STOVER (*)
With an appendix by Mehmet Haluk SENGUN

ABSTRACT. — We describe a criterion for a real or complex hyperbolic lattice
to admit a residually finite rational solvable (RFRS) tower that consists entirely of
congruence subgroups. We use this to show that certain Bianchi groups PSL2(Oy)
are virtually fibered on congruence subgroups, and also exhibit the first examples
of RFRS Kéhler groups that are not a subgroup of a product of surface groups and
abelian groups.

RESUME. — Nous donnons un critére pour qu'un réseau réel ou complexe hy-
perbolique admette une tour résiduellement finie rationnelle soluble (RFRS) qui se
compose entierement de sous-groupes de congruence. Nous l'utilisons pour mon-
trer que certains groupes de Bianchi PSL2(Oy4) sont virtuellement fibrés sur des
sous-groupes de congruence, et donnons aussi les premiers exemples de groupes de
Kahler RFSR qui ne sont pas des sous-groupes d’un produit de groupes de surface
et de groupes abéliens.

1. Introduction

Let T" be a finitely generated group. The first author introduced the no-
tion of I" being virtually RFRS to prove that certain hyperbolic 3-manifolds
are virtually fibered [1], and eventually this was used to prove that all finite-
volume hyperbolic 3-manifolds virtually fiber [2, 16, 29]. Finding such a
cover effectively remains an open problem.

In this paper, we study finding RFRS towers arising from congruence
covers of arithmetic manifolds. For example, we will prove:
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THEOREM 1.1. — The Bianchi groups PSL2(Oq4) with d  —1 (mod 8)
and d square-free contain a RFRS tower consisting entirely of congruence
subgroups. In particular, these Bianchi orbifolds virtually fiber on a con-
gruence cover.

We achieve this using the fact that these Bianchi groups virtually embed
in the group O(4,1;7Z). We then apply a very general idea to the congru-
ence subgroup of level 4 in O(4, 1; Z) to show that it is virtually RFRS with
tower {I';} for which each I'; contains the congruence subgroup of level 2
for some n;. This example also allows us to find infinitely many commen-
surability classes of cocompact arithmetic Kleinian groups that virtually
fiber on a congruence cover; see [3, Lem. 4.6] for examples. We will also
show:

THEOREM 1.2. — There is a torsion-free cocompact lattice in PU(2,1)
that is RFRS. Therefore, there is a RFRS Kahler group that is not iso-
morphic to a subgroup of the direct product of surface groups and abelian
groups.

This addresses a question raised by recent work of Friedl and Vidussi;
see the discussion immediately following [15, Thm. E]. Our example is
a congruence subgroup of a particular Deligne-Mostow lattice [12]. Note
that nonuniform lattices in PU(n, 1) cannot be RFRS, since their cusp
groups are two-step nilpotent groups, which themselves are not RFRS. In
particular, the methods of this paper cannot apply to nonuniform complex
hyperbolic lattices. See Remark 3.17.

We briefly describe the method of constructing these towers. Suppose
that k is a number field and G is a k-algebraic group such that G(k) ®g R
modulo compact factors is isomorphic to SO(n, 1) or SU(n, 1). Let O be
the ring of integers of k and p a prime ideal of Oy with residue characteristic
p. Suppose that I'(p) is the congruence subgroup of level p in the arithmetic
lattice G(Ok), and that I' < T'(p) is a finite index subgroup such that
H'(T;Z) has no p-torsion.

Using the fact that G(k) is closely related to the commensurator of T,
we find a sequence {g,} in G(k) such that

RrAYS
n=0
is a RFRS tower for T'. The key is to find an initial g1 € G(k) so that

I'/(CNngiTgr ")
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CONGRUENCE RFRS TOWERS 309

is an elementary abelian p-group. One then inductively defines each g,, in
a manner most succinctly described using the p-adic Bruhat—Tits building
for G(k,), where ky, is the local field associated with p. Note that the above
implicitly assumes that H; (I'; Z) is infinite, hence our results can only apply
for lattices in SO(n, 1) and SU(n, 1).

We close by briefly recalling the connection between RFRS and various
notions of fibering. When {I';} is a RFRS tower with I'; = m1(M;) the
fundamental group of an irreducible 3-manifold, the first author proved
that there is some jjy so that M; fibers over S! for all j > jo [1, Thm. 5.1]
(the statement of the theorem does not explicitly say that the fibered man-
ifold comes from the RFRS tower, but it is implicit in the proof). It is
a famous theorem of Stallings that this is equivalent to I'; admitting a
homomorphism onto Z with finitely generated kernel for all j > jo. Such
a homomorphism is called an algebraic fibration, and recent work shows
that being virtually RFRS is closely related to being virtually algebraically
fibered.

For example, Friedl and Vidussi [15, Thm. E] showed that virtually RERS
Ka&hler groups are either virtually algebraically fibered or virtually surface
groups, and Kielak proved that an infinite finitely generated virtually RFRS
group is virtually algebraically fibered if and only if its first [(®) betti num-
ber is zero [18, Thm. 5.3]. Both proofs provide a group in the RFRS tower
that algebraically fibers. See [26] and [17] for more about algebraic fibra-
tions of lattices in Lie groups and Coxeter groups. In particular, in [26] the
second author showed that all arithmetic subgroups of SU(n, 1) of “simplest
type” virtually algebraically fiber on a congruence subgroup; this includes
the example used to prove Theorem 1.2 above. On the other hand, there
are known examples of arithmetic lattices I' in SU(n, 1) so that A% is finite
for all congruence subgroups A < I' [23, Thm. 15.3.1], hence I cannot vir-
tually algebraically fiber on a congruence subgroup. It is unknown whether
all lattices in SU(n, 1) (arithmetic or not) virtually algebraically fiber. We
rephrase our results in this language in Corollaries 3.6 and 3.16, and see
Section 4 for further discussion.

In the Appendix, Mehmet Haluk Sengiin shows that the methods devel-
oped in this paper can be used to construct congruence RFRS towers for
many prime-level congruence subgroups of Bianchi groups. Specifically, for
d=—-1,-2,-3,—7,—11 and p a prime ideal of residue characteristic p with
relatively small norm, Sengiin shows that the abelianization of the level p
congruence subgroup of PSL(Qy) is p-torsion-free roughly twice as often as
not. As we show in Section 3.1, having no p-torsion in the abelianization

TOME 73 (2023), FASCICULE 1



310 Ian AGOL & Matthew STOVER

of the level p congruence subgroup allows one to construct a RFRS tower
in the tower of p-congruence subgroups of PSL(O,).

This paper is organized as follows. In Section 2 we describe some basic
preliminary results on RFRS towers and congruence towers. In Section 3
we give three examples that describe our general method for producing
congruence towers that are RFRS. These examples suffice to prove the
theorems stated above. Finally, in Section 4 we make closing comments
and raise some questions.

Acknowledgments

We thank Alan Reid and Steven Tschantz for helpful conversations and
the referee for pointing us to [30].

2. Preliminaries on towers

In this section, we discuss two types of towers of finite index subgroups
of a group: RFRS towers, and p-congruence towers.

2.1. RFRS towers

Let T" be a finitely generated group with commutator subgroup denoted
by T™) = [T, T'] and abelianization

r* =r/1W = g (I; 7).
We then define the rational abelianization "% to be the image of I'% in
I’ @, Q= Hy(T;Z) ®7 Q = Hi(T;Q)
under the natural homomorphism and the rational commutator subgroup
) = ker (I — 7).
Clearly T™ < TtV is finite index and I = H,(T; Z)/Torsion.

Given a group I', let {T';} be a cofinal tower of finite index subgroups of
I' with 'y =T'. In other words,

(1) NT; = {1}
(2) T is a finite index subgroup of T';
(3) FjJrl < FJ for all ]

ANNALES DE L’INSTITUT FOURIER



CONGRUENCE RFRS TOWERS 311

We say that {T';} is a RFRS tower if, in addition,
(%) (Fj)y(nl) <Tjyq forall j > 0.

Remark 2.1. — The original definition of RFRS [1, Def. 2.1] also required
that I'; be normal in I'. However, it is also pointed out in [1] that if there
is a RFRS tower, then there is also a normal RFRS tower by passing to
core subgroups (i.e., the largest normal refinement).

We say that T' is RFRS if it admits such a tower and that it is virtually
RFRS if it contains a finite index subgroup that is RFRS. We note that
RFRS is short for “residually finite Q-solvable”, and refer to [1] for further
details and examples.

We briefly recall that if G is a group and I' < G a subgroup, the com-
mensurator of I in G is the group consisting of those g € G such that
I'N(glg~1!) has finite index in both I and gT'g~*. Our key technical lemma
is the following;:

LEMMA 2.2. — Let G be a group and I' < G a finitely generated sub-
group such that T'®* has no p-torsion. Suppose that {go = Id, g1, 92, ..}
is a sequence in G such that each g; is in the commensurator of I' in G.
Define

A;=gilg;!
b=
=0

Finally, suppose:

(1) The sequence {I',,} is a cofinal tower of subgroups.
(2) For each n, there exists some 0 < i < n—1 such that A;/(A;NA,)
is an abelian p-group.
Then {T',,} is a RFRS sequence for T.

Proof. — Note that Ag =T’y =T and
Ao/(AO N Al) = Fo/Fl
is an abelian p-group. Since I'¢® = I'% has no p-torsion, the projection from
'y onto I'y/T'; must factor through T, i.e., (1“0)£1) <TIy.

We now show that (FnH)SU < Tyge for all n > 0. Since T',, 42 equals
Tpi1 N Ao, to prove that {T',} is a RFRS sequence, we must show that
(P < Ano.

Fix 0 < i < n+1 such that A;/(A; NA,42) is an abelian p-group. Since
A; =T, we see that A% has no p-torsion, and hence (Ai)g}) < (A;NAL12).

TOME 73 (2023), FASCICULE 1



312 Ian AGOL & Matthew STOVER

Then I'y 11 < A; by construction, and the natural map Fffj_l — A;ab
induced by the inclusion must factor through the map from I'j, 1 to I‘:ﬁfl.
Indeed, AT% is torsion-free, so I'yio — AT factors through Fg‘fl. It
follows that

(Crs)M < (A)P < (AN Agya).

This gives that (Fn+1)$1) < Ao, as desired. Since {T',,} satisfies the other
hypotheses to be a RFRS sequence by assumption, this completes the proof
of the lemma. O

Our goal will be to apply Lemma 2.2 to certain p-congruence towers in
arithmetic lattices. We now introduce these towers.

2.2. p-congruence towers

We refer the reader to [20, Ch. I and II] for terminology and results from
algebraic number theory used in this section and elsewhere in the paper.
Let k be a number field with integer ring Oy, G C GL,, (k) be a k-algebraic
matrix group, and I' = G(Of). Given a prime ideal p of Oy and j > 1,
let T'(p7) be the level p? congruence subgroup of T, i.e., all those elements
that are congruent to the identity modulo p’. The collection {I'(p’)} is the
p-congruence tower for I'. This is a cofinal tower of normal subgroups of T'.

We record some elementary facts. Let p be a rational prime. Recall that
in a p-group every element has order a power of p, and in an elementary
p-group every element has order p.

LEMMA 2.3. — Suppose k is a number field with ring of integers Oy,
G C GL, (k) is a k-algebraic matrix group, and I' = G(Oy). Let p be a
prime ideal of Oy, and p the characteristic of the finite field Oy, /p. Then:

(1) For all j > 1, T'(p?)/T'(p?*!) is an elementary abelian p-group.

(2) For all k > j > 1, T'(p?)/T(p¥) is a p-group.

(3) Forall j > 2,T(p?)/T(p*) is abelian for every k < 2j. In particular,
I'(p?)/T(p?*2) is abelian.

Proof. — Let O, be the integral closure of O in the completion k, of k
with respect to its p-adic norm. Fix a uniformizing element 7 for Op. Then
we have that O /p = O, /(7)O, and p is the characteristic of this finite
field.

If « € T(p?), then we can write

a=Id+mM

ANNALES DE L’INSTITUT FOURIER



CONGRUENCE RFRS TOWERS 313

for some M € M,,(O,). Then
S p
D _ jkMk‘
W =3 ()
k=0
which is visibly congruent to the identity modulo 77/*!. This proves that

every element of I'(p?)/T'(p?*!) has order p.
Now, suppose that

a=Id+r'M
B =Id+m'N
for a, 8 € I'(p?). Then:
af = (Id+7' M)(1d +7/ N)
=Id+7m(M + N) + 7% MN
Ba = (Id+7? N)(Id +77 M)
=Id+7/ (N + M)+ 7 NM

We see that a and 8 commute modulo 7* for all k < 2. Since 25 > j + 1
for j > 1, w, this proves the first and third assertions of the lemma. The
second statement is an immediate consequence of the first. O

Remark 2.4. — Replacing Oy, with Oy, in the proof of Lemma 2.3 is only
necessary when p is not a principal ideal. When it is principal, one can
implement the proof in O instead with 7 a generator for p.

3. Examples

We now describe the examples that suffice to prove the main results
stated in the introduction. Our techniques work in much greater generality,
and the reader will hopefully find these examples illustrative enough to
apply our methods in other settings.

3.1. The magic manifold
It goes back to Thurston that the fundamental group I' of the magic man-
ifold arises from the congruence subgroup F(H'T‘/j?) inside PGL2(Q(v/—7)).

It is homeomorphic to the complement in S of the 3-chain link 63 (see Fig-
ure 3.1 and [27, Ex. 6.8.2]).

TOME 73 (2023), FASCICULE 1
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Figure 3.1. The magic manifold is the complement of the 3-chain link.

Note that p = (H'Tﬁ) is a prime ideal dividing 2. We will show that
the magic manifold admits a 2-congruence tower that is RFRS. Note that
the magic manifold is itself fibered, so the fact that PSLy(Qy) fibers on a
congruence subgroup is not new in this case.

Since p has norm 2, the completion of Q(v/—7) at p is Q2, and hence we
obtain an embedding of T into PGL2(Q3). Consider the action of PGL2(Q3)
on its Bruhat-Tits tree 7, which is a 3-regular tree (see Figure 3.2).

Figure 3.2. The Bruhat-Tits tree T for PGL2(Qz).

We briefly recall that vertices of 7 are homothety classes of Zs-lattices
in Q3, and two vertices [£;] and [Ls] are adjacent if and only if there are
representatives in the homothety classes such that Lo C £y with £4/Ls
isomorphic to the finite field Fo with two elements. See [25, §I1.1] for details.

Then I' < PGLy(Z2) naturally stabilizes the vertex vy associated with
the standard lattice Z%. Notice that PGLy(Q(y/—7)) acts transitively on

T, and the element
(0 2
g1 = 10

ANNALES DE L’INSTITUT FOURIER



CONGRUENCE RFRS TOWERS 315

exchanges vy with a neighbor v;. One then checks that
L(p?) <Tngilg*t <T,

and it follows from Lemma 2.3 that T'/(T'Ng;Tg; ') is an elementary abelian
2-group.

We now define g, € PGL2(Q(v/=7)) and v,, = g, (v9) € T by choosing
some v; for 0 < ¢ < n — 1 for which not all neighbors of v; are contained
in {vg,...,vn—1}, letting v, be one such neighbor of v;, and taking g, to
be the conjugate of g1 in PGLy(Q(v/—7)) that swaps v; and v,,. Define
A, = g.T'g;t. Then

A /(AL NAY)
is an elementary abelian 2-group by the same reasoning that we applied to
AO/(AI n AQ)
Let v,, range over all vertices of 7. Defining

r, =T,
1=0

we have that (T, lies in the stabilizer in PGL2(Q2) of every homothety
class of lattices in Q%, which is clearly trivial. Therefore {I',} is cofinal. In
particular, Lemma 2.2 applies to show that this tower is RFRS.

Remark 3.1. — This idea applies to any principal congruence arithmetic
link. In [5] it is shown that there are principal congruence links for discrim-
inant d = 1,2,3,5,7,11,15,19,23,31,47,71. This includes discriminants
d = 17,15,23,31,47,71 that are congruent to —1 mod 8; these values of d
are not handled by the next section. More generally, this construction works
for congruence subgroups of arithmetic Kleinian groups with no p-torsion
in their 1°% homology for the appropriate p; see Appendix A by Sengiin for
further examples.

3.2. Bianchi groups and O(4,1;Z)

Consider the quadratic form ¢g in 5 variables with matrix
Qo = diag(1,1,1,1,-1),

and let O(4,1;Z) be the group of integral automorphisms of gg. Then
O(4,1;7Z) determines a nonuniform arithmetic lattice in O(4,1). For an
integer N > 1, let T'(N) denote the congruence subgroup of O(4,1;7Z) of
level N.

TOME 73 (2023), FASCICULE 1
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It is known that O(4,1;Z) is the group generated by reflections in the
simplex in hyperbolic 4-space with Coxeter diagram given in Figure 3.3.
Moreover, the congruence subgroup I'(2) of level two is the right-angled
Coxeter group generated by reflections in the sides of a polyhedron obtained
from 120 copies of the simplex for O(4, 1;Z). See [22].

3 3 4
Ig
Figure 3.3. The Coxeter diagram for O(4,1;Z).

It will be convenient to change coordinates. The matrix

1 1 00 0
0 -1 00 1
a=[0 0 1 0 0 |eSL2)
0 0 01 0
1 1 00 -1

conjugates O(4,1;Z) to O(q; Z), where ¢ is the quadratic form with matrix

0000 1
0100 0
Q=100 10 of,
00010
10000

ie., Q@ = 'aQoa. Since « is integral of determinant one, it preserves all
congruence subgroups of SL5(Z). Thus aI'(N)a~! is the level N congruence
subgroup of O(g; Z) for all N > 1, and we continue calling it just I'(V).

We will also need the Bruhat—Tits building associated with O(g; Q2),
which is a (5, 3)-regular tree 7. See [28, §2.7] and Figure 3.4. Considering
O(g;Q2) as a subgroup of GL5(Q2), we obtain an injection of buildings
T — X, where X is the building associated with PGL5(Q2). We briefly
describe 7 using this embedding. While we do not need details of the
finer structure of T, for the reader’s convenience in what follows we give a
complete argument that 7 is a (3, 5)-regular tree.

As in the 2-dimensional case, vertices of X are in one-to-one correspon-
dence with homothety classes of Zy-lattices in Q3, where vertices z and y
are adjacent if there are representatives £, and £, for the two homothety

ANNALES DE L’INSTITUT FOURIER
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Figure 3.4. The Bruhat-Tits tree T for O(q; Q2).

classes so that 2L, C £, C L,. See [25, Exer. I1.1.4]. We fix the base vertex

o — [<€1, N ,85>],
where {e;} is the basis for which ¢ has the given matrix and (—) denotes
the Zo-span. The stabilizer of 2y in GL5(Q2) is generated by GL5(Z2) and
the scalar matrices. Then O(q; Z2) stabilizes z, which implies that we can
realize T as the convex hull of the O(g; Q2)-orbit in X of xg.

The apartment A of X associated with the Qs-split torus of diagonal
matrices in GL5(Q2) (e.g., see [28, §1]) can be identified with the set of
homothety classes

(1@, 27} e
i.e., the orbit of zy under the diagonal subgroup. The Qs-split torus of
diagonal matrices in the rank one group O(g; Q2) is

A0 0
S={l0 1d 0| :rxeQiy,
0 0 At

where Id is the 3 x 3 identity matrix, and the convex hull of the S-orbit of
xo is then the apartment Ag of 7 associated with S. The S-orbit of xg is

xr =[(2"e1,€2,...,€4,27 "e5)]
for r € Z, and its convex hull also includes the vertices
377«4-% = [<2T+1€17 €2,...,€4, 2_7065”.

We see that Ag is a line with vertex set {z, : «a € %Z}, where z, is
adjacent to g if and only if |o — 8| = 3.

Since O(q; Q2) acts transitively on apartments of T [28, §2], the vertex
set of T is the O(g; Q2)-orbit of {20,z }. In particular, to prove that T is
a (5, 3)-regular tree we need to prove the following two lemmas.

LEMMA 3.2. — The vertex xq € 7 has valence 5.

TOME 73 (2023), FASCICULE 1
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LEMMA 3.3. — The vertex T1€ T has valence 3.

Proof of Lemma 3.2. — We must compute the O(g; Zs)-orbit of z1. We
define Ly = (ey,...,e5) and C% = (2e1,e3,...,e5). Neighbors of zp in X
are in one-to-one correspondence with proper nonzero subspaces of

Vo = Lo/2L¢ = TF5.

Let {€;} be the basis for V; induced by {e;}.

If g, denotes the quadratic form on V4 induced by the restriction of ¢ to
Ly, then we see that the image of £ 1 in Vj is the gy-orthogonal complement
éé of €5, which we note is a codimension one subspace that contains the
isotropic vector es5. To prove the lemma it then suffices to compute the
orbit of 22 under the image G of O(g; Z3) under reduction modulo 2 (e.g.,
see [28, §3.5.4]).

Since vt = éé if and only if v = €5, it moreover suffices to compute the

Gy-orbit of €5. One checks that this orbit is
{es,e1,e1+e+e3+e5,e+e2+e +6,¢e +e3+eq+es)

This proves the lemma. g

Proof of Lemma 3.3. — The proof is very similar to the proof of
Lemma 3.2, so we sketch the argument and leave it to the reader to verify
the details. With notation as in that proof, we consider

QE% C2£0 CAC% = <f17"‘>f5>‘

Then Vi = C%/2£% is a vector space with basis {f;} with respect to
which the quadratic form g 1 contains a two-dimensional totally degenerate

subspace spanned by f; and f;.
Since the image of 2L in V% is the line spanned by f,, we must compute
its orbit under the reduction modulo 2 of the stabilizer in O(gq; Q2) of E%.

One shows that this orbit consists of the lines spanned by f;, f5, and
f1+ fs, and the lemma follows. 0

Remark 3.4. — The neighbors of xy in Ay are T and z_1. The other

1
2
neighbors have representatives:

(2e1,e14+e2,e1+e3,eq,e1+e2+e3+e5)
(2e1,e1+ea2,e3,e1+es,e1+ex+es+es)

(261, €2, €1 +e3,e1+eq,e1+e3+es+es)
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Similarly, x 1 has neighbors zy and z; along with the vertex with represen-

tative
1
€1+§€5, €2, €3,€4,€5 ),

which is the image of £y under the matrix

1 0 000
1 1 000
0 0 1 0 0]eSO(qQ)
0 0 010
-2 -1.0 0 1

that stabilizes L% .

We now prove the main result of this section. Recall that the Bianchi
groups PSLy(04) with d # —1 (mod 8) are all commensurable with sub-
groups of O(4,1;Z), and one can choose the subgroup of PSLy(Oy4) con-
tained in O(4, 1;Z) to be a congruence subgroup of each. We can then use
the following to prove Theorem 1.1.

PrROPOSITION 3.5. — The congruence subgroup I'(4) of level 4 in
O(4,1;Z) admits a congruence RFRS tower.

Proof. — Recall that the congruence subgroup I'(2) of level 2 in O(n, 1;Z)
is a right-angled Coxeter group [22, Thm. 7]. One computes that I'(2)/T'(4)
and T'(2)/T'(2)™") are elementary abelian 2-groups of the same order, hence
I'(4) = T'(2)(M). We then see that I'(4) has torsion-free abelianization by [10,
§4.5], as the abelianization of the commutator subgroup of any right-angled
Coxeter group is isomorphic to the reduced degree zero homology of a
certain complex, hence it is necessarily torsion-free. Alternately, using the
presentation for O(4, 1; Z) as a Coxeter group with diagram as in Figure 3.3,
one can easily check using a computer algebra program like Magma [9] that
in fact ['(4)%® = Z55. In particular, T'(4)?® has no 2-torsion.

Consider the matrix

0 0 0 0 2
0 -1 0 0 0
=0 0 -1 0 0] €SO0(;Q) <5S0(¢g;Q2)
0 0 0O -1 0
1 g 0 0 0

that exchanges the vertices zg, 1 € 7 and fixes the intermediate vertex x 1
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We now set Tg = I'(4) and T'; = g1Tg; *. We claim that
I'(16) < Ty NIy < Ty

To see this, one first notices that

1+ 16as —32¢9 —32e3 —32ey 64eq
—8bs 1+ 16bs 16b3 16b4 —32by
g1 | —8cs 16c, 14 16c3  16¢4 —32¢; | g7t
—8ds 16ds 16d3 1+16dy —32d;
4aq —8as —8as —8ay 1+ 16a,
1+ 16a, 16as 16as 16a4 16as5
160, 1+ 160, 16b3 1604 16b5
= 16¢4 16¢o 1+ 16¢c3 16¢4 16¢5
16ds 16d> 16ds3 1+ 16dy 16ds
16e1 16eo 16e3 16ey4 1+ 16e5

for aj,...,e5 € Z. Also, since g1 € SO(q, Q), the matrix on the right-hand
side preserves ¢ if and only if the matrix being conjugated on the left-hand
side does. This proves the claim.

Lemma 2.3 implies that I'(4)/T'(16) is an abelian 2-group, hence so is
I'y/T'1. We now define g,, inductively as follows. Let z,, be a vertex of T
in the SO(g; Q2)-orbit of xg that is distance 2 in T from some vertex z; in
{zg,...,2n_1}. Since SO(q; Q) is dense in SO(g; Q2), there exists an h,, in
SO(q; Q) so that h,(xo) = z; and h,(z1) = z,,. We define g,, = h,g1h; " .

Choose the sequence {,, } to exhaust the SO(gq; Q2)-orbit of zy. Then it is
easy to see that the sequence {g, } satisfies all the conditions of Lemma 2.2.
In particular, if A,, = g,Tog,, ! and

n
Fn = ﬂ Anv
i=0
then {T',,} is cofinal, and the elements g,, satisfy the requisite assumptions
by construction. Therefore there is a RFRS tower for I'(4). O

COROLLARY 3.6. — The group SO(4,1;7Z) has a congruence subgroup
that is algebraically fibered.

Proof. — Since SO(4,1;Z) has bgg) = 0 (see [21, Lem. 1]), a result of
Dawid Kielak [18, Thm. 5.3] implies that some level 2* congruence subgroup
is algebraically fibered. O
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Remark 3.7. — The proof of Proposition 3.5 would work without alter-
ation for the level 4 congruence subgroup of SO(n,1;Z) for any n > 2, as
long as it has no 2-torsion in its abelianization. This holds for n = 2,3, 4,
however Steven Tschantz computed that Hy(T'(4);Z) = Z*%% x Z/2 for
' =S0(5,1;Z).

Remark 3.8. — For n = 2,...,7, the congruence subgroup I'(2) of level
2 in O(n,1;Z) is a right-angled Coxeter group [22, Thm. 7]. As noted in
the proof of Proposition 3.5, the commutator subgroup F(2)(1) then has
torsion-free abelianization by [10, §4.5]. For n < 4, I'(2)(") equals T'(4). For
n > 4, we have that I'(2)(") is a proper finite index subgroup of T'(4). Tt
is possible that H;(T'(4)) is torsion-free for n > 5 in spite of Tschantz’s
computation for n = 5.

Proof of Theorem 1.1. — For d # —1 (mod 8), there is a finite index
subgroup A of PSLy(O,) that is isomorphic to a subgroup of the group I'(4)
in Proposition 3.5. For d square-free, the quadratic form g4 = (1,1,1, —d) is
isotropic if and only if d Z —1 (mod 8); [3, Thm. 6.2] and the subsequent
discussion. In this case, PO(qq;Z) is commensurable with PSLy(Oy) [3,
Thm. 2.3], hence one can embed PO(gq4; Z) into PO(4,1;Z) up to commen-
surability by [3, Lem. 6.3] and as in the proof of [3, Lem. 4.6(i)]. The proof
that such a A exists in fact produces a congruence subgroup of PSLa(Oy).
Intersecting this with the RFRS tower given in Proposition 3.5 produces
the desired RFRS tower for A. This proves the theorem. O

Remark 3.9. — The above gives an explicit congruence subgroup of
PSL2(O4) that begins a congruence RFRS tower. We sketch the argument
bounding the index of this subgroup when d =1 (mod 4) is a sum of two
squares (equivalently, no prime dividing d is congruent to 3 modulo 4). In
this case, PSLy(O4) can be realized as the subgroup of SO(qq;Z) for

dd

o O oNlR O
o0 o O Nl
cor~ o o
o o o o
Qo0 o o

that preserves the upper left 4 x 4 block (e.g., see [11, §3.1]). Then gq is
equivalent to the standard quadratic form (—1,1,1,1,1) under the change
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of variables with matrix

1 1.0 0 O

-1 1.0 0 O

h 0O 01 0 0
d = a b
o 00 = =

db d

a

O 0 0 —— =

d d

where d = a? + b

Thus if v € PSL2(O4) < SO(qa; Z), then hj'yhg preserves the standard
quadratic form. If v € SO(qq;Z) is congruent to the identity modulo 8d,
then h;lfyhd € SO(4,1;Z) is congruent to the identity modulo 4. Follow-
ing [11, Eq. (3.1)], one sees that the congruence subgroup of PSLy(Oy)
of level 8d maps into the congruence subgroup of SO(gg4;Z) of level 8d.
Computing the index of this congruence subgroup, we see that PSLs(Oy)
contains a RFRS subgroup of index at most

1
PSL, (04/(8d)04)| = (8d)° - —— -
[PSL2 (Ou ) pl(g)od( N(p) )

However, one can likely improve upon this.

Remark 3.10. — Methods analogous to work of Michelle Chu [11] on ef-
fectively embedding subgroups of Bianchi groups in SO(6, 1; Z) could allow
one to prove that the above Bianchi groups contain a congruence RFRS
tower of uniformly bounded index.

Remark 3.11. — If the congruence subgroup of level 4 in SO(6, 1; Z) has
no 2-torsion in its first homology, then Theorem 1.1 holds for all Bianchi
groups. See [3, Lem. 4.4]. More generally, one only needs to find a prime p
so that the congruence subgroup of level p in SO(6, 1;Z) has no p-torsion in
its abelianization, which seems likely but very difficult to verify computa-
tionally. If this holds, then all Bianchi groups contain a congruence RFRS
tower and hence fiber on a congruence subgroup.

3.3. A complex hyperbolic example

Our example will come from a congruence cover of a Deligne-Mostow
orbifold [12]. We recall that for certain (n + 3)-tuples p of integers (called
weights) satisfying a condition called INT, Deligne and Mostow constructed
lattices T'), < I'sy, in PU(n, 1), where 3 is the symmetry group of the
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weights and I's,, /I, = 3. Let B? denote complex hyperbolic 2-space in
what follows.

The example we consider here is u = (2,2,2,2,2), hence ¥ = S5. Follow-
ing [19], the underlying analytic space for the orbifold B?/T",, is the blowup
of the complex projective plane P? at the four vertices of the complete
quadrangle, and each divisor has orbifold weight 5. See Figure 3.5. (Note
that the convention in [19] is to divide the elements of u by their ged, so
p is listed as (1,1,1,1,1).) Then S5 acts on this blowup of P? in a natural
way with quotient the underlying analytic space for B2/ I'sy.

NS

Figure 3.5. The orbifold B?/T',,. Each line or circle represents a P!
in the orbifold locus, and each has orbifold weight 5. Local orbifold
groups at intersection points are all (Z/5)?.

It is known that these lattices are arithmetic. More specifically, let E
be Q((s), where (5 is a primitive 5 root of unity, and F = Q(«) with
a? = 5 be its totally real quadratic subfield. Define ¢ = 1_70‘ and consider
the hermitian form on E? with matrix

¢ 1 0
h=[1 ¢ 1
01 ¢

Then h has signature (1, 2) at one complex place of E and signature (3, 0) at
the other complex place. Since —h then has signature (2, 1) the appropriate
place, and because similar hermitian forms have isomorphic unitary groups,
it follows that PU(h,Op) is a cocompact arithmetic lattice in PU(2,1),
where O = Z[(5] is the ring of integers of E. Let m = (5 — 1 and p; = 7Op
be the unique prime ideal of O dividing 5Og. Note that Og/ps = Fs,
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p2 = aOp, and p? = 50p. We then have the following, which was proved
by Yamazaki and Yoshida.

PROPOSITION 3.12 ([30, Prop. 4.3]). — With notation as above, we have
I's, = PU(h,OFg) and T',, is the congruence subgroup I's,,(ps) of level ps
in FEH'

The lattice of interest to us is supplied by the following lemma.

LEMMA 3.13. — With notation as above, the congruence subgroup of
level p2 = aOp in Ty, is the commutator subgroup of T',, and its abelian-
ization is isomorphic to Z.5°.

Proof. — The first statement was proved by Yamazaki and Yoshida [30,
Thm. 1]. Using a presentation for I',, (e.g., see [30, Prop. 2.1]) one then com-
putes the abelianization of the commutator subgroup of I';, in Magma [9]
to complete the proof of the lemma. O

Remark 3.14. — We note the following analogy between O(4,1;Z) and
I's,. Recall that O(4,1;Z) is a Coxeter group whose congruence subgroup
of level 2 is a right-angled Coxeter group, and the commutator subgroup of
the right-angled group is the congruence subgroup of level 4 in O(4, 1;Z).
Analogously, I's,, is a complex hyperbolic reflection group whose congru-
ence subgroup of level ps5 is the complex hyperbolic reflection group Iy,
and the commutator subgroup of I',, is the congruence subgroup of I'y, of
level p2.

We now describe the building used to apply our methods to prove that
s, (p?) admits a congruence RFRS tower. Let E5 be the completion of E
with respect to the valuation associated with p5. Then E5 = Q5((5) is a
degree four totally ramified extension of Q5 with intermediate quadratic
subfield F5 = Q5(«) and 7 is a uniformizer for E5. The group SU(h, E3) is
the unique special unitary group in 3 variables with respect to E5/F5, and
the associated Bruhat—Tits building is a tree [28, §2.10].

As in Section 3.2, a change of coordinates will be convenient for describ-
ing this building. One can find a change of coordinates with entries in the
ring of integers Os of Es so that h has matrix —hg for

0 01
ho=({0 1 0
100
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For example,

_ —1
R Rt

c = 146 51 (1—0%(1+5)
—l—-a+e 0 —2%,:5

suffices, where ¢ is a square root of 1 + « and € is a square root of 4 + 2a.
Critically, d,e € Of (one can see this by showing that the prime aOp of
O dividing 5 splits in both F'(§) and F(e), and 4, € are invertible in OF
since 1 + « and 4 + 2« have norm —4). Since this conjugation is integral
over E5 with determinant 1, and because similar hermitian forms have the
same unitary group, we have that I'y,, is isomorphic to the intersection of
the F-points of SU(hg) with SU(hg, Os).

Following [28, §2.10], the building for SU(hg, E5) has vertices the set of
additive norms ¢ on EZ so that

v(ho(z,y)) = é(x) + ¢(y)
for all pairs 2,y € E3, where v is the extension to E5 of the normalized
valuation on Fj (i.e., with value group %Z) There is an obvious action of
SU(hg) on the set of norms, and the norm stabilized by SU(hg, O5) is the
vertex vy associated with the norm
do(z1, 22, 23) = inf{r(z;) : 1< j <3}

In particular, I's, stabilizes this vertex.

The matrix
0 0 =
go = 0 Cg 0 S SU(h)
1 0 0

(where 7 is the conjugate of 7 for the Gal(FE5/F5)-action) acts on the tree
by sending vg to the vertex vy associated with the norm

¢1(x1, 22, 23) = inf {V(l'l) - %71/(952), v(z3) + ;} )

since v () = % It also fixes the intermediate vertex associated with

4

Then one checks by a direct matrix computation that the intersection of
9ol (p2)go ' with I'sy,(p2) contains T'(pi). Indeed, note that pi = 50x
and if

Y(z1, 22, x3) = inf {y(xl) - i,u(m),y(xg) + 1} .

1+ 5¢3 —(G +2¢+)ndey (G2 +2¢¢ + ¢s)mlcn
v= (3 + ¢ —1)mdbs 1+ 5by —(C3 4+ 2¢2 +2¢5 + )by |,
(B +2¢+2¢G+Dr2as (G +2¢+ G)mdas 1+ 5aq
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then v € I's;,(p2) and

1+ 5(11 5&2 5@3
909yt = 50,  145by  5bs € s, (pd).
5¢cq 5co 1+ 5c3

From here, one applies the techniques developed in the previous examples
to prove Theorem 1.2.

Remark 3.15. — Analogous to our realization of the building for PO(g; Q2)
inside the building for PGL5(Q2) in Section 3.2, we can realize the building
for PU(h, E5) inside the building for PGL3(Es) by taking the vertex asso-
ciated with an additive norm ¢ to be the homothety class of the O lattice
on which ¢ takes nonnegative values. In the above notation and recalling
that v is normalized to have value group %Z, this gives:

¢o [(61762,€3>]
P11 — [<7T€1,€2,7T71€3>]
P = [(me1, ez, €3)]

One can proceed as in Section 3.2 to compute the fundamental apartment
associated with the standard Qs-split torus and compute the valence of
each vertex of the tree.

Combining Theorem 1.2 and [15, Thm. E], one obtains a new proof of
the following (which was known by [26, Thm. 3] without knowing which
congruence tower contains the fibration).

COROLLARY 3.16. — The group I's,, virtually algebraically fibers on a
congruence subgroup of level dividing 5.

Remark 3.17. — We note that nonuniform lattices in PU(n, 1) cannot be
virtually RFRS for n > 2. This is because their cusp subgroups are virtually
two-step nilpotent groups, but two-step nilpotent groups are not virtually
RFRS and being RFRS descends to subgroups. However, if I' < PU(n, 1)
was a nonuniform arithmetic lattice contained in the congruence subgroup
of level p for which I'*’ contains no p-torsion, where p is a prime of residue
characteristic p, then the methods of this paper would produce a congruence
RFRS tower, which is impossible. In particular, we conclude that I'** must
have p-torsion.

One way to find this p-torsion is as follows. Since I is contained in a con-
gruence subgroup, away from some small exceptions the associated com-
plex hyperbolic manifold B"/T" admits a smooth toroidal compactification
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in the sense of [4]. One often sees that the cusp cross-sections of B™/T’
are nil-manifolds with p-torsion in their homology. For example, for I'(p)
the center of any peripheral subgroup generates p-torsion in the homol-
ogy of the associated nil-manifold. Careful consideration of the standard
Mayer—Vietoris sequence for the toroidal compactification (cf. [13, §4]) al-
lows one to then conclude that this p-torsion in the homology of the cusp
cross-section must in fact induce p-torsion in the homology of B"/T".

In particular, peripheral subgroups of I can force I'*’ to have p-torsion
when I' is contained in the congruence subgroup of level p. Thus the ob-
struction to I' containing a RFRS tower is also an obstruction to I'* having
no p-torsion.

4. Conclusion

There are many natural questions that arise from the results and methods
of this paper.

We recall that a group I is said to algebraically fiber if it has a homo-
morphism onto Z with finitely generated kernel. This is an algebraic gen-
eralization of the well-known Stallings criterion for a compact 3-manifold
to fiber over S*.

QUESTION 4.1. — Which commensurability classes of rank 1 arithmetic
lattices contain a congruence subgroup that is algebraically fibered?

This question was originally posed by Baker and Reid in personal com-
munication. A 4-dimensional lattice that virtually algebraically fibers was
given in [17, Rem. 5.3], though we do not know if the example fibers on a
congruence subgroup. An obvious obstruction to having a virtual algebraic
fibration on a congruence subgroup is if every congruence lattice in the
commensurability class has trivial 15* betti number. For example, Bergeron
and Clozel proved that the first betti number vanishes for all congruence
arithmetic lattices in PO(7,1) defined via triality [8, Thm. 1.1]. For all
other arithmetic lattices in PO(n, 1), n # 3, one can find a congruence sub-
group with nontrivial 15¢ betti number [7, Cor. 1.8] (the n = 3 case is open
— see [24] for a discussion of what is known). There are also classes of arith-
metic lattices in PU(n, 1) where each kind of behavior occurs. See [6] for
more on what is known for cohomological vanishing for congruence arith-
metic lattices in PU(n, 1) and [26] for more on algebraic fibrations in that
setting.
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QUESTION 4.2. — Given a congruence arithmetic group, how often does
a principal congruence subgroup at a prime ideal p have no p-torsion in H1,
where p|p? Is there some arithmetic significance to this phenomenon?

See Appendix A by Sengiin for data indicating that vanishing of p-torsion
is quite frequent for congruence subgroups of Bianchi groups, but by no
means ubiquitous.

QUESTION 4.3. — For eachn > 1, is there a prime p so that the congru-
ence subgroup T'(p) of level p in SO(n, 1;Z) has no p-torsion in its abelian-
ization?

If true, this would give a positive answer to Question 4.1 for arithmetic
hyperbolic groups of simplest type (i.e., those defined by a quadratic form),
since one can embed a congruence subgroup of these groups into SO(n, 1;Z)
by restriction of scalars.

QUESTION 4.4. — When does I'(p™), n € N, form a RFRS sequence? Is
the sequence RFRS whenever it is at the first stage, i.e., l"(p)g-l) <I(p?)?

This is roughly a version of another question posed by Baker and Reid
in private communication. In this paper, we only show that an interlac-
ing of this sequence is RFRS if H;(I'(p);Z) has no p-torsion. Also recall
Remark 3.17.

QUESTION 4.5. — When does this strategy work for nonarithmetic hy-
perbolic lattices? When is there a congruence subgroup that fibers, or a
congruence RFRS tower?

Note that any lattice in PO(n,1), n > 3, or PU(n,1), n > 2, is a sub-
group of an S-arithmetic group by local rigidity. Indeed, the lattice can be
embedded in GL,,(K) for K a number field, and hence lies in GL,,(O) for O
some finitely generated subring of K. Therefore, the notion of congruence
subgroup makes sense when one avoids the primes in .S, where S denotes
the primes that are inverted in O. Despite the fact that methods of this
paper cannot apply to a nonarithmetic lattice (since its commensurator is
discrete) and moreover the ambient S-arithmetic group containing it can-
not admit a RFRS tower (since it has trivial virtual betti number), this
does not preclude a nonarithmetic lattice from nevertheless admitting a
congruence RFRS tower.
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Appendix A. Torsion in the homology of principal
congruence subgroups of Bianchi groups

A.1. Introduction

Let K be an imaginary quadratic field with ring of integers Z . An ideal
a of Zk determines a finite-index normal subgroup I'(J) of the Bianchi
group SL2(Z), called the principal congruence subgroup of level a. If p
is a prime idea of Zy over the rational prime p, the question of whether
the abelian group Hy(T'(p),Z) has p-torsion arises naturally in the current
work of Tan Agol and Matthew Stover. In this appendix, we try to gain
insight into this question by producing numerical data.

A.2. Methodology

Let K be one of the five imaginary quadratic fields for which Zy is
Euclidean, namely K = Q(v/—d) with d = 1,2,3,7,11. Let p be a prime
ideal of Zx. Our starting point is the basic fact that Hy(I'(p),Z) ~ T'(p)®®
where T'(p)?® is the abelianization of I'(p). To compute the abelianization
of I'(p), we will need a presentation. We will obtain this presentation from
a presentation of SLo(Zg) using the standard functions in the Finitely
Presented Groups package of the computer algebra system Magma.

Presentations for Bianchi groups go back to the late 19th century. We
prefer to use those given in [14, p. 37]. The presentations given there are
for the projective Bianchi groups PSLa(Zk ). To obtain a presentation for
SL2(Z k), we simply introduce another generator j = (Bl _01), modify the
existing relations accordingly and add new relations to ensure that j is
central. We present here the result for the case K = Q(v/—1):

SL2(ZK) = <G;, b,’U/,j ‘ (a‘b)g :ja b2 :jaj2 = 17 [a,u} = 17
(bubu™1)® =1, j = (bu®bu™")?, j = (aubau™"b)?,[a, j] =1, [u, j] =1).
We have the matrix realizations a = (§1), b= (9 ') and u = ((1) V;T)

The principal congruence subgroup I'(p) is the kernel of the surjective
homomorphism
b
d

SLy(Zx) — SLa(Zx /p), (Z Z) — (

where z — T is the reduction map Zx — Zgk/p. We implement this
homomorphism in Magma and ask Magma to compute its kernel. Given
the presentation of SLy(Zg ), Magma then can compute a presentation for

aQr Ql
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['(p) using Reidemeister—Schreier type algorithms. Finally we ask Magma
to compute the abelianization. For the readers’ convenience, we make our
code public on our homepage.(!)

A.3. Results

As mentioned above, we compute with prime ideals. As Hq(I'(p),Z) ~
H,(I'(p),Z), for prime ideals with p # p (here), we computed with only
one of them. We list the norm of the prime ideal p, the rank of Hy(I'(p),Z)
and the size of the torsion subgroup of Hi(I'(p),Z). The size is given in its
prime factorisation.

Norm(p) ‘ rank ‘ size of torsion
K =Q(v-1)

2 25

5 1

9 20 1
13 42 1
17 72 1
29 238 3!
37 342 1
41 420 202
49 825 76
53 702 3104
61 930 21249962
73 1332 3375741974

K =0Q(-2)
22
1

11 60 1

17 144 29

19 180 1
25 403 57
41 881 2855174012740
43 924 28834267421 2744
49 1724 7138
59 1740 220035811116315859236 574360
67 2244 220031359396697166647667276838011664791768
73 2738 2369329619737311151174208974220517215095972

©) https://sites.google.com/site/mhaluksengun/research
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Norm(p) ‘ rank ‘ size of torsion
K =Q(v-3)
33
21
1
13 28 1
19 60 1
25 117 1
31 160 1
37 228 319
43 308 244
61 620 362
67 748 208567
79 1040 2804178
K =Q(v-7)
3 21
7 24 1
40 3!
11 60 1
23 264 222
25 376 57
29 420 515
37 684 3191938
43 924 58741446742
53 1404 232037525935285754
67 2244 2105636711678968131681376646368
71 2520 2288514099725970897031179937701931972
K =Q(v-11)
3 4 1
4 15 22
5 12 1
11 81 1
23 264 o112
31 480 29653099323130
37 722 173819363756833%6
47 1151 31385471 7469313746974619146160948
53 1404 2320516071271 91045352431 526835285954
59 1740 234834()8558711611581712()19583158595819958233605279602034158
67 2244 | 213631321713331686766197683316861366230958580708678295625618956
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